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II. Abstract 
Eukaryotic organisms, including human, require molecular oxygen (O2) to survive. During 

periods of low O2 availability (hypoxia), a family of protein transcription factors become 

stabilised (Hypoxia Inducible Factors, HIF) and allow the adaption to hypoxia by regulating 

gene expression. Hypoxic adaption is required for cellular survival and is considered a 

hallmark of cancer. HIF is a heterodimeric protein consisting of a stable beta subunit (HIF-

1β) and an O2 labile alpha subunits (HIF-1α  or HIF-2α). The two HIFα isoforms share ~50% 

sequence homology, yet have different target genes, O2 sensitivity and sub-nuclear 

localisation. The O2-dependent stability of HIFα subunits is due to an O2 dependent, proline 

hydroxylation post translational modification (PTM) resulting in degradation. The current 

understanding of post-translational regulation beyond the O2 dependent hydroxylation are 

poorly understood. Previous published studies aiming to identify HIF PTMs did it using a 

targeted/biased approach and failed to compare isoforms. Therefore, the primary aim of 

this work was to expand the understanding of the regulatory network of HIFα proteins, by 

obtaining an unbiased identification of PTMs and binding partners using a proteomics 

approach. We have performed an in-depth analysis of PTMs across ~90% of the total 

protein sequence for HIF-1α and HIF-2α in response to hypoxia, with a specific focus on 

phosphorylation. In total, ~50 different PTMs were confidently identified (~25 of which 

were phosphorylation) for each HIFα proteins, with the majority of these PTM sites being 

novel. Identified PTM sites were investigated through a combination of hypoxia regulation, 

evolutionary analysis, domain localisation and crystal structure modelling to identify 

potentially interesting sites to prioritise functional characterisation. This led to the 

discovery of HIF-1α Serine 31 phosphorylation, a previously superficially investigated site, 

as a potentially important mechanism to fully abolish HIF-1α-mediated transcription by 

preventing its binding to DNA. In addition, HIFα binding partners in response to hypoxia 

were identified. We demonstrated that many more proteins interact with HIFα proteins 

than currently known. The binding partner profiles were hypoxia-dependent, especially for 

HIF-2α which had >10 fold more binding partners confidently identified in hypoxia than 

normoxia. Combined with Gene ontology (GO) analysis, the binding partners identified 

strongly suggest a role for HIFα with mitochondria. Whilst we have discovered many novel 

data, this project has opened many avenues for further investigation. Overall, it is clear that 

the current understanding of HIF mediated hypoxia signalling is incomplete, and that the 

signalling pathways at play are orders of magnitude more complex than the current 

understanding. 
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1.1. Cellular adaptation and the requirement 
aaaiof cell signalling 

All living organisms, either single or multi-cellular, need to be able adapt to their changing 

environment in order to survive. Because various environmental signals (stimuli) are 

possible, organisms require mechanisms to sense specific environmental stimuli and 

transduce the signal to promote the appropriate adaptive response. Over a prolonged time 

period, the adaption process to the environment drives the evolution of species, 

highlighting its significance. For multicellular organisms, adaption at the cellular level 

permits cells to function as independent cell types to form highly complex systems. 

 

An extracellular signal needs be transduced intracellularly to promote an adaptive 

response, known as cell signalling. The adaptive response is ultimately achieved by a 

change in the gene expression programme. The steps required involve protein complexes 

and a range of chemical reactions to convey the message to the DNA binding proteins. The 

mechanisms evolved by cells to identify a specific stimuli and regulate protein interactions, 

for the appropriate response, are highly varied. A generalised principle is that the stimuli is 

detected by specialised receptor proteins localised on cellular membranes and result in 

protein structural changes, permitting the interaction with other target proteins (known as 

effector proteins) which may then lead to gene expression regulation. However, certain 

stimuli can freely diffuse into cells allowing intracellular protein receptors to induce a 

signalling response, such as Estrogen signalling (Björnström et al., 2005). 

 

One important aspect of cell signalling is the ability to switch off the adaptive response 

once the cell has responded to the stimulus, or once the stimulus is no longer present, to 

prevent excessive response. Hence, effector proteins generally result in the expression of 

inhibitor proteins that inactivate the cellular signalling pathways, as part of a negative 

feedback loop system. A very common mechanism to regulate effector proteins is the cyclic 

protein accumulation/degradation in response to stimuli. Besides being highly metabolically 

inefficient, this mechanism can result in delays between stimulus detection and gene 

expression changes. Therefore, cells have evolved mechanisms to rapidly modify an already 

translated protein to swiftly alter its structural and functional properties, known as post 

translation modification (PTM). PTMs can be reversible and irreversible modifications. Thus, 

PTMs permit cell signalling without the accumulation/degradation cycling, providing a 

means for much more rapid responses. 
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1.1.1. Post translational modification (PTM) 
PTM is a process that results in the covalent modification of a specific amino acid residue 

within the protein sequence. Thus, PTM alters the modified residues biochemical properties 

by size, and potentially charge, which can act as a switch to alter protein binding partners 

and function; thereby enabling signal transduction. As singular entities, PTMs are highly 

varied with >400 different types of PTM recorded in the UniProt database 

(The UniProt Consortium, 2017), highlighting the range of different strategies that have 

evolved to regulate protein function. The same PTM on different proteins does not 

necessarily result in the same functional outcome, nor does the same PTM of different sites 

within a given protein. Furthermore, identical residues can be modified by different PTMs, 

depending on the signal, and result in different regulatory roles. PTMs do not generally 

occur as single events but rather are highly abundant in ‘decorating’ the protein at sub-

stoichiometric levels below total protein. Thus, PTMs result in the simultaneous fine tuning 

of signalling pathways and allow for a single protein to participate in multiple different 

regulatory pathways at once (Mann et al., 2003). Therefore, a protein can be viewed as 

separate ‘proteoforms’, each having a different PTM map and function. Because of the 

large number of PTMs possible, only a few relevant PTMs to my work are discussed below. 

 

1.1.1.1. Phosphorylation 
Phosphorylation is a reversible PTM that involves the functional attachment of a negatively 

charged phosphate group to a residue, performed by a kinase and hydrolysed by a 

phosphatase (Figure 1.1). Phosphorylation is highly abundant within cells with >500 

different human kinases identified, equating to ~2% of the proteins encoded by the human 

genome (Manning et al., 2002), that are regulated by different cell signals and/or target 

different sequences for PTM within a protein. For scale, it is predicted that at any one 

moment approximately a third of all proteins in the cellular protein complement are 

phosphorylated (Cohen, 2001 & Olsen et al., 2006). Phosphorylation canonically occurs on 

Serine (S), Threonine (T) and Tyrosine (Y) residues at a ratio of ~86% : 12% : 2% (Olsen et al., 

2006), however more recent studies identify that Histidine (H), Arginine (R), Lysine (K), 

Aspartic acid (D), Glutamic acid (E) and Cysteine (C) are also extensively phosphorylated in 

humans (Hardman et al., 2019). 
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Figure 1.1: The structure of non-phosphorylated and phosphorylated Serine, Threonine and Tyrosine residues. 

 

The relatively large and negatively charged phosphate group has been shown to have 

various effects to a modified protein, either by protein structural changes or acting as a 

docking site (to promote) or blocking agent (to prevent) additional binding partners from 

associating. Functionally, phosphorylation has been shown to regulate protein function by 

many mechanisms including the aforementioned binding partner role, altering the sub-

cellular localisation of a protein and/or stability roles (reviewed by Hunter et al., 1992). 

With such a vast a role in cellular signal transduction, aberrant 

phosphorylation/phosphatase expression (or function) is linked to many diseases and 

represents one of the largest markets for drug discovery (Cohen, 2001 & Cohen, 2002). 

 

1.1.1.1. Lysine PTMs 
Lysine is a positively charged amino acid that has been identified to undergo multiple PTM 

states including acetylation, methylation, ubiquitination and SUMOylation (Figure 1.2). 
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Many more lysine PTMs exist and have functionally important roles, however only the 

aforementioned PTMs are described here. Lysine acetylation, performed by acetyl-

transferases and removed by de-acetylases, results in the addition of an acetyl group to the 

positively charged amino-group side chain of lysine and resulting in charge neutralisation. 

Acetylation has been shown to have various roles in protein regulation, similar to 

phosphorylation. Although acetylation has been identified as an essential signalling 

mechanism on a large proportion of human proteins, and at multiple different sites, the 

number of acetyl-transferases in the human genome (~20, Drazic et al., 2016) is much 

smaller than the number of kinases identified. Dysregulation of acetylation is linked with 

multiple diseases (Drazic et al., 2016 & Timmermann et al., 2001). 

 

Figure 1.2: The structure of a selection of lysine PTMs. 

 

Most of the investigation into the role of lysine methylation has been conducted on DNA 

bound proteins such as histones. These studies show that lysine can be mono-, di- and tri- 

methylated, each known to have different regulatory roles. Unlike acetylation, methylation 

does not result in charge neutralisation (Figure 1.2), hence is suggested to play a role 

primarily acting as docking/blocking site to change protein binding partners (Lanouette et 

al., 2014 & Blanc et al., 2017). Recent studies demonstrated the key role of methylation in 

cellular signalling pathways, as, for example, for the Epidermal growth factor receptor 

(EGFR) pathway (Hsu et al., 2011), and for regulating transcription factor function by 

binding partners and/or stability means (Huang et al., 2007 & Lee et al., 2017). Because of 

the relatively recent discovery of their role beyond histone proteins, few methylated 

proteins have been identified, however the role of methylation in cancer progression is well 

known (Lanouette et al., 2014). 
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Ubiquitin (Ub in Figure 1.2) is an example of a PTM that involves the covalent addition of a 

small (~8.5 kDa) protein tag to lysine residues. Ubiquitination is a 3-stage process involving 

a ubiquitin activating (E1), ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzyme, thus 

providing the mechanism to target multiple different lysine residues (Komander et al., 

2012). Ubiquitination is a highly complex PTM, the ubiquitin molecule itself contains 7 

different lysine residues which can undergo sequential ubiquitination PTMs leading to the 

formation of highly branched, poly-ubiquitin chains (Komander et al., 2012). Ubiquitination 

is a reversible PTM by the function of de-ubiquitinase enzymes. There are ~80 encoded de-

ubiquitinases in the human genome, highlighting the complexity of ubiquitin mediated 

signalling (Komander et al., 2009). Poly-ubiquitination is generally associated with a 

catabolic role, increasing the rate that tagged proteins are degraded by the 26S 

proteasome. However, the different branching patterns of poly-ubiquitination are 

suggested to have different roles, and have been shown to stabilise proteins too (Komander 

et al., 2012 & Sun et al., 2004). 

 

Similar to ubiquitin, Small Ubiquitin related Modifier (SUMO, Figure 1.2) is a 12 kDa protein 

tag that involves a 3-stage activation process for lysine modification (SUMOylation), and is 

reversible by SUMO-specific proteases (Flotho et al., 2013). SUMOylation can result in 

complex SUMO chains, similar to ubiquitin (Flotho et al., 2013). Humans encode 4 different 

SUMO isoforms (SUMO-1/2/3/4), where the SUMO-1 has poor sequence similarity to the 

highly conserved SUMO-2/3/4 isoforms (Flotho et al., 2013). SUMOylation has varied roles 

dependent on the target and location (similar to phosphorylation and acetylation), but 

generally alters binding partners by acting as a docking or blocking site. 

  

1.1.1.2. Redox sensitive PTMs 
General cellular processes such as mitochondrial function result in the production of highly 

reactive free radical species, known as reactive oxygen and nitrogen species (ROS/RNS). 

ROS/RNS can non enzymatically react with multiple amino acids including methionine, 

phenylalanine, tryptophan, histidine and cysteine (Sharma et al., 2010). Cysteine is 

particularly prone to ROS/RNS reaction by containing a free thiol group and results in 

multiple different reversible and irreversible PTM states known to regulate cellular 

signalling (Hess et al., 2005 & Chung et al., 2013).  

 

Under severe oxidative stress, cysteine can undergo irreversible oxidation into 2+ and 3+ 

oxidative states, sulfinic acid and sulfonic acid respectively (Figure 1.3). Although not well 
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studied, these irreversible oxidative cysteine states are known to be important PTMs for 

modulating protein structure (Vivancos et al., 2005, Blackinton et al., 2009 & Fujiwara et al., 

2007). Additionally, enzymes have also been identified that utilise O2 as a cofactor to 

hydroxylate specific residues including lysine, tryptophan, asparagine and proline (Figure 

1.3). The role of hydroxylation is context specific, playing a major role in collagen structure 

but having different roles intracellularly on different proteins, from degradation to altering 

binding partners (Tak et al., 2019 & Zurlo et al., 2016). Recent studies suggest that 

intracellular proline hydroxylation is highly specific to a single family of proteins that are 

known to be stability regulated by O2 tension (Cockman et al., 2019). 

 

Figure 1.3: The structure of residues that can undergo redox sensitive PTMs. 
Hydroxylation of proline, asparagine and tryptophan are enzyme mediate and are reversible. Cysteine oxidation 

states are ROS mediated and irreversible. 
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1.2. Oxygen-dependent signalling 
For eukaryotic organisms, one example of an environmental stimuli that cells monitor is the 

availability of molecular oxygen (O2). Eukaryotic organisms, including humans, are known as 

obligate aerobes and require O2 to survive. O2 is used in a process called oxidative 

phosphorylation, where O2 is reduced into water (H2O) to yield high quantities of ATP 

(Adenosine triphosphate), a chemical energy storage molecule. ATP is ubiquitously used by 

all organisms and cells to provide an energy source to promote chemically unfavourable 

reactions, including some PTMs. Although O2 is essential for life, both over oxygenation 

(hyperoxia) and under oxygenation (hypoxia) can result in cellular stress, and are 

potentially lethal for organisms. Thus, cells have evolved highly specific O2 sensing 

mechanisms to stringently monitor available O2 and allow the adaption to changes in 

environmental O2 tension. Therefore, beyond its role in metabolism, O2 is a signalling 

molecule. Low O2 levels in the cells surroundings (hypoxia) trigger a range of intracellular 

events, known as hypoxia signalling. This signalling pathway is the focus of this thesis.  

 

1.3. Hypoxia 
The definition of hypoxia is when the O2 demand by a cell outweighs the available O2 supply 

to that cell. Simply, if the O2 supply to a tissue or cell is insufficient for regular metabolic 

activity then they are deemed hypoxic. Table 1.1 contains a summary of organs and 

required O2 tension for normal function.  

 

Table 1.1: Examples of O2 tension in regular organs and associated tumours.  
Median values of O2 tension shown, data collected from Muz et al., 2015 & Carreau et al., 2011. 

 

In response to hypoxia, cells trigger pathways to ultimately promote the restoration of 

normal O2 tension and O2 independent energy metabolism, increasing cell survival rates 
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during periods of prolonged hypoxia. For example, hypoxia promotes the upregulation of 

genes encoding proteins that are involved with iron metabolism (Transferrin, Rolfs et al., 

1997), erythropoiesis (EPO, Wang et al., 1993), angiogenesis (VEGF, Forsythe et al., 1996), 

and the anaerobic stages of energy metabolism- glycolysis (Chen et al., 2001 & Marsin et 

al., 2002). Thus, pathways aim to increase the available O2 saturation per unit of blood and 

permit increased rates of O2 independent energy metabolism during hypoxia, however 

inefficiently. 

 

Physiologically, hypoxia can be separated into two categories: global and localised hypoxia. 

Mild global hypoxia is an essential factor for correct embryonic development (where O2 

availability is limited by placental diffusion, (Dunwoodie, 2009), and adaptions to high 

altitudes (where the partial pressure of O2 in the air is limited, Frisancho, 2013). While 

pathologies can induce global hypoxia, such as anaemia where there is a lack of 

haemoglobin containing iron to carry O2, pathologies generally result in localised hypoxia by 

blocking the delivery of O2 to tissues/cells, for example in heart attacks and strokes where 

blockages in blood vessels directly disrupts the supply of oxygenated blood to tissues and 

cells. 

 

1.4. Hypoxia and cancer 
Due to the rapid replication rate of tumours/cancers, the cell masses created are usually 

large in size and have a poor vasculature network, resulting in localised hypoxic cores 

within the tumour microenvironment (Figure 1.4). Table 1.1 has examples of the median O2 

tension of different tumour cell types compared to their normal cellular state. Since the 

first draft of “The Hallmarks of Cancer” in 2000, the increased rate of angiogenesis was a 

known characteristic that promotes cancer survival (Hanahan et al., 2000). In 2011, an 

updated draft of The Hallmarks of Cancer was published which included the upregulation of 

glycolytic pathways (Hanahan et al., 2011). Significantly, both of these pathways related to 

tumour survival are canonically hypoxia upregulated pathways, highlighting the potential 

importance of hypoxia in cancer. 
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Figure 1.4: Hypoxia and the tumour microenvironment. 
 A large tumour mass combined with poor vasculature can cause hypoxic tumour cores, as low as 0.1% O2. 

 

Infact, it has been shown that an extended, or unregulated, hypoxic response can result in 

multiple of the hallmarks of cancer becoming upregulated (Figure 1.5), including: 1) 

Activating invasion and metastasis, through the upregulation of extracellular metabolism 

proteins such as matrix metalloproteases (MMPs, Ben-Yosef et al., 2002) and uPA/uPAR 

(Urokinase Plasminogen Activator and receptor, Gupta et al., 2011). 2) Sustaining 

proliferative signalling, through regulating autocrine signalling proteins such as 

Transforming Growth Factor –α (TGFα, Krishnamachary et al., 2003) and Insulin-like Growth 

Factor 2 (IGF2, Feldser et al., 1999). 3) Resisting cell death, through various mechanisms 

including the reduced expression of proteins involved with apoptosis pathways (Erler et al., 

2004) and upregulation of Multi-Drug Resistance (MDR) proteins; resulting chemo-

resistance (Comerford et al., 2002). Thus tumour/cancer hypoxia is a poor prognostic 

marker for cancer patient survival. 
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Figure 1.5: The hypoxia regulated hallmarks of cancer survival and progression.  
Each section of the wheel contains a hallmark trait which promotes cancer survival and progression. *indicates 
primary targets of hypoxic regulation, **indicates secondary targets of extended hypoxia regulation. Modified 
from Hanahan et al., 2011. 

 

1.5. Hypoxia Inducible Factor- The master 
aaairegulator of the hypoxic response 

In 1995, the Greg Semenza lab discovered an O2 dependent, labile protein transcription 

factor was responsible for the hypoxic induced expression of erythropoietin (EPO), and 

subsequent increased rate of angiogenesis, termed the Hypoxia Inducible Factor (HIF, Wang 

et al., 1995). Wang and co-workers were able to identify that the active HIF transcription 

factor was a basic Helix-Loop-Helix (bHLH), Per-Arnt-Sim (PAS) domain containing, 

heterodimeric complex consisting of the O2 dependently degraded protein (termed HIF-1α) 

and an O2 insensitive protein (termed HIF-1β, also known as Aryl hydrocarbon Nuclear 

Translocator (ARNT)) (Wang et al., 1995 & Wang et al., 1995). Thus, in response to hypoxia 

(limited O2 availability) HIF-1α is no longer degraded, permitting the formation of the active 

HIFαβ dimer that can regulate gene expression. 

 

1.1.2. HIFα isoforms 
Further characterisation of the HIF-1α protein (Pugh et al., 1997 & Jiang et al., 1997) 

identified three additional functional domains, and their minimalistic sequences: the 
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Oxygen Dependent Degradation domain (ODDD), the Amino-terminal Transactivation 

domain (NTAD) and Carboxyl-terminal Transactivation domain (CTAD), with the 2 TAD 

domains having distinctly different functions (schematically depicted in Figure 1.6). 

Figure 1.6: Schematic diagram of the HIF-1α and HIF-2α domain structure.  
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At the same time, a second hypoxia inducible transcription factor, with high sequence 

homology to HIF-1α, was simultaneously identified by four separate laboratories, thus the 

multiple names associated to it: Endothelial PAS domain protein -1 (EPAS1, Tian et al., 

1997), HIF-1α Like Factor (HLF, Ema et al., 1997), HIF Related Factor (HRF, Flamme et al., 

1997) and Member Of PAS Superfamily 2 (MOPS2, Hogenesch et al., 1997). Later studies 

identified that this second hypoxia responsive protein, though slightly larger than HIF-1α, 

could be functionally compartmentalised into bHLH, PAS, ODDD, NTAD and CTAD domains, 

identically to HIF-1α (Figure 1.6); thus this protein was termed HIF-2α (Wiesener et al., 

1998 and O’Rourke et al., 1999). 

 

A third HIFα gene locus exists (HIF-3α), which exhibits high rates of multiple splicing, giving 

rise to over six separate protein isoforms that generally contain an ODDD and NTAD in 

combination with different domains (Maynard et al., 2003 & Gu et al., 1998). The most 

predominant HIF-3α isoform is a 307 amino acid protein with extremely high sequence 

homology to the bHLH and PAS domains of HIF-1α and HIF-2α and functions in a dominant 

negative mechanism to inhibit HIFα signalling, termed Inhibitory PAS domain protein (IPAS, 

Makino et al., 2001 & Makino et al., 2002). Thus HIF-3α was not a target for this study, 

which solely focuses on HIF-1α and HIF-2α. 

 

1.1.3. HIF-1α versus HIF-2α 
Although HIF-1α and HIF-2α are expressed almost ubiquitously by cells in vivo (Stroka et al., 

2001, Wiesener et al., 2003 & Rosenberger et al., 2002) and have an overall high sequence 

homology of ~50% (Tian et al., 1997), their functional characteristics and downstream roles 

are different. For example, their target genes regulated, their O2 sensitivity and their sub-

nuclear localisation are different between the two HIFα isoforms (discussed below). 

 

1.1.3.1. Target genes 
Many studies have determined the promoter region where active HIF dimers bind, 

irrespective of HIFα isoform, as 5’-RCGTG-3, termed the Hypoxia responsive element (HRE, 

Wenger et al., 2005 & Schödel et al., 2011). The HRE is highly abundant within the human 

genome, however HIF-1α and HIF-2α occupy <1% (~500) of the total HREs available in 

response to hypoxia (Mole et al., 2009). Significantly, <20% of HREs identified can be 

occupied by both HIFα isoforms, thus many HREs have HIF-1α or HIF-2α exclusivity, 

suggesting differential roles for HIF-1α and HIF-2α in response to hypoxia (Mole et al., 

2009). This conclusion is further supported by additional genome wide Chromatin 
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Immunoprecipitation assays (Schödel et al., 2011 & Smythies et al., 2019), microarray 

analysis (Hu et al., 2003) and biochemical approaches (Raval et al., 2005 & Lau et al., 2007) 

which all identified HIF-1α and HIF-2α specific target gene regulation. For example, HIF-1α 

specifically regulates genes encoding enzymes of the glycolytic pathway (Hu et al., 2003), 

while HIF-2α specifically regulates the Transforming growth factor alpha gene (TGFα, Raval 

et al., 2005),  yet both HIFα isoforms regulate genes encoding proteins involved with 

angiogenesis (Hu et al., 2003). Recently, the gene specificity of HIFα isoforms has been 

shown to be due to specific binding locations of HIFα in respect to the hypoxia regulated 

gene, with HIF-1α predominately binding at HREs in close proximity to gene promoters 

while HIF-2α binds predominately at distant gene enhancer HREs (Smythies et al., 2019). 

 

1.1.3.2. Stability  
Since its discovery, HIF-1α protein stability has been known to be O2 dependent, only 

stabilising at 1% O2 (Wang et al., 1995). HIF-1 α is rapidly degraded upon reoxygenation, 

with a half-life of ~5 min (Moroz et al., 2009). Although many published data show a similar 

O2 dependent stability profile for HIF-2α, there is growing evidence that HIF-2α stability is 

less sensitive to O2 tensions than HIF-1α. Many published data show that HIF-2α is strongly 

stabilised at 2-5% O2 (Holmquist-Mengelbier et al., 2006 & Nilsson et al., 2005) and more 

recent data report that HIF-2α is actually stable at atmospheric O2 (21%), with only 

marginal increase in stability at 1% O2 (Hara et al., 1999, Fujita et al., 2012, Uchida et al., 

2004, Xie et al., 2018, Bagnall et al., 2014 & Taylor et al., 2016). As suggested by these 

publications, HIF-2α protein stability is probably cell-line dependent. This is supported by 

Bracken et al., 2006, who demonstrated that HIF- 1α and HIF-2α protein stability and 

transcriptional function vary dramatically by cell line. 

 

1.1.3.3. Nuclear localisation 
HIF-1α appears as a homogenous distribution throughout the nucleus, while HIF-2α 

localises to distinct punctate during hypoxia (Hara et al., 1999). Later studies even suggest 

that HIF-2α is physically trapped within these fine punctate, potentially by nuclear tethering 

(Taylor et al., 2016, Figure 1.7). 
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Figure 1.7: The nuclear localisation of HIF-1α and HIF-2α tagged with EGFP.  
HIF-1α homogenously distributed throughout the nucleus, while HIF-2α is non-homogenously distributed as 
intense punctate (taken from Taylor et al., 2016). 

 

Although the exact role played by sub-nuclear localisation in regulation/differentiating HIF-

1α and HIF-2α is not fully determined, a recent study has shown that transcription factors 

can form concentrated hubs via, which have the potential to phase-separate at higher 

concentrations (Chong et al., 2018). In this study the authors postulated that the weak, 

dynamic, and transient contacts between transcription factors within the hubs, play a role 

in disease-causing dysregulation of gene expression. In the HIF context, they might 

underpin some target gene expression regulatory differences.  

 

1.1.4. HIFα domain function 
As stated, both HIF-1α and HIF-2α can be compartmentalised into five distinct functional 

domains: bHLH, PAS, ODDD, NTAD and CTAD (Figure 1.6). Sequence alignment comparisons 

between HIF-1α and HIF-2α (Tian et al., 1997) identified that the bHLH and PAS domains 

share the highest degree of sequence homology of all domains at 85% and 70% 

respectively. This is unsurprising considering their importance for DNA binding and HIF-1β 

binding. Tian et al., 1997 also identified that the CTAD also has significant sequence 

homology at ~70%, while the ODDD and NTAD have minimal sequence homology (~40% 

and ~20% respectively, Figure 1.6). Later studies characterising the domains of HIFα 

proteins identified that the CTAD is required for binding to the histone acetyltransferase 

proteins CREB binding protein (CBP) and p300, the CBP/p300 complex (Ema et al., 1999). 

The HIF-p300/CBP binding axis is well known to be essential for the HIF dependent 

transcriptional response to hypoxia, likely by chromosomal remodelling (Ema et al., 1999 & 

Kallio et al., 1998). The ODDD between HIFα isoforms shares ~40% sequence homology, 

however it appears to have a similar role in the O2 dependent degradation of both HIF-1α 



32 
 

and HIF-2α (discussed further in the O2 dependent regulation section 1.6). The NTAD shares 

the least sequence homology between HIFα isoforms and was initially thought to explain 

the gene targeting differences observed by HIF-1α and HIF-2α (Hu et al., 2003). In 2007, the 

NTAD was proved to control gene specific targeting of HIFα isoforms. Using mutational 

analysis (where the HIF-2α NTAD was inserted into HIF-1α, and vice versa), it was 

demonstrated that mutant HIF-1α could express HIF-2α specific genes, and vice versa (Hu et 

al., 2007 & Lau et al., 2007). It was also found that secondary, isoform specific, cofactor 

binding partners bound within the NTAD and were responsible for isoform specific gene 

regulation; including ETS like protein 1 (ELK) for HIF-2α (Hu et al., 2007). 

 

1.6. O2 dependent regulation 
The O2-dependent regulation mechanism is shown in Figure 1.8. A class of enzymes, the 

Prolyl Hydroxylases (PHDs), encoded by the EGLN genes, utilise molecular O2 and iron as 

cofactors to result in the proline hydroxylation of HIFα subunits (Epstein et al., 2001 & 

Bruick et al., 2001). Proline hydroxylation occurs within the ODDD at the specific residues: 

HIF-1α P402/P564 and HIF-2α P405/531 (Jaakkola et al., 2001, Ivan et al., 2001 & Masson et 

al., 2001). HIFα Proline hydroxylation acts as a recognition site for binding of the Von 

Hippel-Lindau E3 ubiquitin ligase complex (pVHL), resulting in the poly-ubiquitination of 

HIFα and subsequent protein degradation through the 26S proteasome (Ivan et al., 2001, 

Jaakkola et al., 2001 & Masson et al., 2001).  
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Figure 1.8: The canonical oxygen dependent regulation pathway of HIFα during hypoxia and normoxia. 
In normoxia (right hand side), available O2 is used as a cofactor for PHDs to hydroxylate HIFα proline residues 
(HIF-1α P402/P564 and HIF-2α P405/P531), resulting in the recognition and poly-ubiquitination by VHL and 
subsequent degradation by the 26S proteasome. FIH also hydroxylates HIFα on an Asparagine residue (HIF-1α 
N803 and HIF-2α N847) causing the inhibition of essential interactions with CBP/p300. During hypoxia (left hand 
side), a lack of O2 inhibits both PHDs and FIH, thus resulting in the accumulation and translocation of HIFα into 
the nucleus where dimerization with HIF-1β and complexing with the essential co-factors CBP/p300 occur; 
resulting in transcriptional regulation.  

 

As shown in Figure 1.8, a second O2 dependent regulatory pathway has also been 

discovered. Factor Inhibiting HIF-1 (FIH-1) is an asparaginyl hydroxylase protein, using 

molecular O2 to hydroxylate a single asparagine residue within the CTAD of both HIF-1α 

(N803) and HIF-2α (N847). FIH-1 maintains function at much lower O2 tensions than PHDs, 

as low as 0.5% O2, and is responsible for abolishing transcriptional activity independently of 

protein stability by blocking the essential cofactor interactions with CBP/p300 (Lando et al., 

2002, Lando et al., 2002 & Mahon et al., 2001). 
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Overall, in normoxia HIFα proteins are rapidly degraded and transcriptionally inactivated by 

hydroxylation through the function of PHDs and FIH-1, both requiring O2 as a cofactor. 

Thus, when there is a lack of O2, the activity of PHDs and FIH-1 become greatly reduced; 

allowing the accumulation and translocation of HIFα into the nucleus, where the active HIF 

transcription factor forms and regulates gene expression. 

 

1.7. O2 independent regulation 
Many PTMs do not require O2 directly as a co-factor, as is the case for hydroxylation. For 

example, phosphorylation, acetylation, methylation, ubiquitination and SUMOylation are all 

O2 independent. Thus, many PTMs can regulate protein function independently of O2 

tension. These PTMs have all been shown to regulate HIFα proteins in hypoxia, or hypoxia 

mimicking conditions, by 3 mechanisms: 1) PTM occurs directly on the HIFα proteins 

(discussed below). 2) PTM occurs on a secondary binding partner, thus indirectly regulating 

HIFα proteins (Kewley et al., 2005). 3) PTM occurs on proteins that do not interact with 

HIFα, yet result in the elevated translation rate of HIFα proteins (Page et al., 2002). 

 

Because of the important association of HIF with cancer progression, many different 

pathways have been identified as essential regulators of the HIFα proteins, such as the 

MAPK cascade and PI3K-mTOR pathway. However, importantly, the exact mechanisms by 

which these pathways regulate HIF is unclear, with many pathways being found to regulate 

HIFα proteins both directly and indirectly (Reviewed by: Kietzmann et al., 2016, Dengler et 

al., 2014, Lee et al., 2004 & Semenza, 2003). Additionally, many of the studies that show 

direct regulation of HIFα by PTMs fail to identify the exact site of modification, an essential 

aspect of functional outcomes, but rather narrow PTM location to a specific domain. 

Therefore, only PTMs that have been localised to a specific residues of HIF-1α or HIF-2α are 

discussed here. A summary of the modifications previously described is depicted in Figure 

1.9 and listed in Table 1.2 & Table 1.3 for HIF-1α and HIF-2α respectively. 
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Figure 1.9: Schematic depiction of all known (to date), site specific PTMs that regulate HIF-1α or HIF-2α. 
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 Table 1.2: Known post translational modifications of HIF-1α. 
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Table 1.3: Known post translational modifications of HIF-2α. 
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It is clear from Figure 1.9 and Table 1.2 & Table 1.3 that many more PTMs have been 

identified of HIF-1α than HIF-2α, possibly because of its earlier discovery. The functional 

consequences of these PTMs are discussed below. 

 

1.1.5. HIFα phosphorylation 
Phosphorylation has been shown to regulate both HIFα isoforms, in terms of protein 

stability, transactivation and nuclear localisation. A total of 28 different phosphorylation 

sites have been identified for HIF-1α, although not all are considered to have functional 

effects, and 5 different sites for HIF-2α. 

 

1.1.5.1. Stability 
The phosphorylation status of HIF-1α has been shown to have large effects on protein 

stability, both positively and negatively, although no phosphorylation mediated stability 

roles have yet been defined for HIF-2α. Two separate studies have identified Glycogen 

Synthase Kinase 3β (GSK3β) phosphorylation at HIF-1α sites: T498, S502, S505, T506, S510, 

S551, T555 and S589, resulting in protein degradation (Flügel et al., 2007 & Cassavaugh et 

al., 2011). Infact, mutation of these GSK3β phosphorylation sites to phospho-null alanine 

residues increased protein stability >10 fold in normoxia (Flügel et al., 2007 & Cassavaugh 

et al., 2011), highlighting the importance that PTMs can play. Polo-like Kinase 3 (Plk3) has 

also been demonstrated to have a role in the degradation of HIF-1α, by phosphorylation at 

S576 and S657. In C. elegans, the redox sensitive AMP-activated protein kinase (AMPK) was 

shown to phosphorylate HIF-1α S419 leading to its degradation (Hwang et al., 2014). 

However, human cell line studies conflict this and suggest AMPK induces HIF-1α protein 

stability, mediated through JNK signalling pathways (Jung et al., 2008).  

 

Phosphorylation at different sites of HIF-1α has been demonstrated to have stabilising 

roles. Bullen et al., 2016 identified that Protein Kinase A (PKA) could multiply phosphorylate 

HIF-1α at 10 different sites in vitro, but found that only T63 and S692 phosphorylation 

increased protein stability. A role for Cyclin Dependent Kinases (CDK) in promoting HIF-1α 

stability has also been identified. CDK1 was shown to phosphorylate HIF-1α at S668, and 

CDK5 at S687, both resulting in increased protein stability. Cam et al., 2010 also report that 

Ataxia telangiectasia Mutated (ATM) can phosphorylate HIF-1α at S696 to result in 

increased protein stability. 
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1.1.5.2. Transactivation 
There is a single reported case of phosphorylation-induced global transcriptional 

inactivation for HIF-1α and HIF-2α, S247 (Kalousi et al., 2010) and T844 (Gradin et al., 2002) 

respectively. Casein Kinase 1δ (CK1δ) was shown to phosphorylate HIF-1α at S247, 

preventing the formation of HIFαβ dimers and thus inhibiting transcriptional roles without 

affecting protein stability (Kalousi et al., 2010). Gradin et al., 2002 did not identify a kinase 

that causes the phosphorylation, but rather mutated serine and threonine residues within 

the CTAD to determine a potential role for phosphorylation. However, phospho-null 

mutants of T844 to alanine resulted in the inability to bind p300/CBP thereby inhibiting 

transcription. 

 

Phosphorylation has also been demonstrated to have a role in differentiating HIF-1α and 

HIF-2α binding partners for gene specificity (To et al., 2006). To et al., 2006 identified that 

HIF-2α T324 can be phosphorylated by Protein Kinase D1 (PKD1), which prevents the SP1 

transcription factor from binding. HIF-1α contains a sequence variation that prevents PKD1 

phosphorylation, thus SP1 can bind and mediate a specific set of gene targets. 

 

1.1.5.3. Nuclear localisation 
Phosphorylation has been shown to regulate the nuclear localisation of both HIF-1α and 

HIF-2α proteins, without affecting protein stability. Extracellular signal Regulated protein 

kinases 1 & 2 (ERK1/2) have been demonstrated to phosphorylate both HIF-1α (at S641 and 

S643) and HIF-2α (at S672) (Mylonis et al., 2006, Mylonis et al., 2008 & Gkotinakou et al., 

2019). Phosphorylation at these sites was shown to promote nuclear accumulation, while 

phospho-null mutations were exclusively cytoplasmic, this was identified as the result of 

preventing interactions with the nuclear exporter protein CRM-1. Additionally, CK1δ 

phosphorylation of HIF-2α S383 and T528 results in nuclear accumulation, similarly by 

blocking CRM-1 mediated nuclear export (Pangou et al., 2016). 

 

1.1.6. HIFα acetylation 
Acetylation has been shown to regulate both HIFα isoforms, regulating protein stability and 

transactivation. Although acetylation status of HIFα is much less studied compared to 

phosphorylation, current theories suggest a functional role in terms of stability and 

transactivation. 
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1.1.6.1. Stability 
The first reported acetyl-transferase to have function in regulating HIF-1α was Arrest 

Defective Protein 1 (ARD-1, an acetyl transferase protein), which resulted in the acetylation 

of K532 (Jeong et al., 2002). It was demonstrated that K532 acetylation was essential for 

the O2 dependent, VHL mediated degradation post proline hydroxylation, and that 

acetylation-null mutations to arginine residues were stable in normoxia (Jeong et al., 2002 

& Lee et al., 2010). However, two separate studies (albeit in different cell lines, Murray-

Rust et al., 2006 & Arnesen et al., 2005) have failed to identify ARD-1 mediated HIF-1α 

acetylation. This therefore could suggest that acetylation mediated degradation may be cell 

line dependent. 

 

Geng et al., 2012 identified that p300 dependent acetylation of HIF-1α at K709 results in 

increased protein stability. This study also identified reduced rates of ubiquitination by less-

conservative acetylation-null K709 mutations to alanine, suggesting potential PTM 

competition where acetylation prevents ubiquitination mediated protein degradation. A 

previous study by the same group used multi-site acetylation-null mutations of the lysine 

residues in the bHLH domain (K10, K11, K12, K19 and K21) to demonstrate acetylation 

induced HIF-1α degradation (Geng et al., 2011). The methodology employed by Geng et al., 

2011 did not identify an acetyl-transferase protein responsible for the modification nor the 

role of individual sites, hence it is possible only 1 site requires acetylation for degradation. 

HIF-2α has not yet been identified to be regulated at the protein stability level by 

acetylation. 

 

1.1.6.2. Transactivation 
Acetylation has also been reported to affect HIF-1α and HIF-2α transactivation, by both 

global and specific gene targeting mechanisms. p300/CBP associated factor (PCAF) was 

demonstrated to acetylate HIF-1α at 2 separate sites to regulate transactivation. Lim et al., 

2010 identified K674 as an acetylation site that results in the global upregulation of HIF-1α 

target genes, however did not identify an explanation for this observation. While Xenaki et 

al., 2008 demonstrated that PCAF acetylation at K389 resulted in the differential regulation 

of specific HIF-1α target genes, such as the upregulation of Carbonic anhydrase-IX and 

downregulation of Lactate dehydrogenase, highlighting a gene specific targeting 

mechanism of acetylation. A single publication has shown the role of acetylation on HIF-2α 

activity. Dioum et al., 2009 identified the acetylation sites K385, K685 and K741 on O2 stable 

HIF-2α (P405A/P531A), and used multi-site acetylation-null mutation analysis to 
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demonstrate HIF-2α acetylation increased transcriptional function without affecting protein 

stability. 

 

1.1.7. HIFα methylation 
Most research on methylation as a PTM has been conducted on DNA bound proteins such 

as histones, where it is known to regulate secondary protein binding by either acting as a 

docking site (to promote) or blocking agent (to prevent) protein interactions (reviewed by 

Lanouette et al., 2014 & Blanc et al., 2017). More recently, methylation has been identified 

as a key PTM in regulating protein function in signal transduction pathways, including the 

EGFR – ERK pathway (Hsu et al., 2011), and for regulating transcription factor function, such 

as p53 (Huang et al., 2007). Methylation has also been shown to regulate both protein 

stability and transactivation of HIF-1α and HIF-2α. 

 

1.1.7.1. Stability 
Methylation has been suggested to be an important PTM for regulating HIF-1α protein 

stability. Lee et al., 2017 demonstrated that SET9 could methylate HIF-1α K391 and was 

required for the efficient normoxic proline hydroxylation by PHDs, with methylation null 

mutations to arginine being stable in normoxia. Thus, Lee et al., 2017 suggest that K391 

methylation may be an important pre-requisite for the O2-dependent PHD mediated 

degradation pathway. 

 

HIF-1α methylation at K32 has also been identified by 2 separate groups, however have 

conflicting evidence regarding the functional outcomes (Kim et al., 2016 & Liu et al., 2015). 

Kim et al., 2016 shows that the overexpression of a methyl-transferase protein (SET7/9) 

results in the increased degradation rate of HIF-1α, while Liu et al., 2015 use the same assay 

to report transcriptional inhibition independent of HIF-1α protein degradation. Liu et al., 

2015 also identified that the respective HIF-2α site (K29) is also a methylation site with 

identical functional outcomes. 

 

1.1.7.2. Transactivation  
Bao et al., 2018 identified K674 as a target for mono- and di- methylation by Histone-lysine 

N-methyltransferase EHMT2 (G9a) and G9a Like protein (GLP). K674 methylation was 

demonstrated to inhibit HIF-1α dependent transcription, independent of protein stability. 

This observation is particularly interesting considering acetylation at K674 was shown to 
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have identical regulatory roles (Lim et al., 2010), potentially suggesting a mechanism of 

regulation that is more dependent on charge neutralisation of K674 than the PTM type. 

 

1.1.8. HIFα SUMOylation 
The role of SUMOylation in HIF-1α dependent signalling is controversial, multiple studies all 

identify the identical SUMOylation sites yet report a different functional outcome by PTM. 

Initially, Bae et al., 2004 identified HIF-1α K391 and K477 as SUMOylation sites for the 

SUMO-ligase Ubc9, and demonstrated that SUMOylation induced protein stability. 

However, a second independent group identified PIASy as the SUMO-ligase of HIF-1α K391 

and K477 sites, and demonstrated SUMOylation induced degradation (Cheng et al., 2007 & 

Kang et al., 2010). While a third independent group identify RanBP2/NUP538 as the SUMO-

ligase responsible for modifying HIF-1α K391 and K477 sites and could not identify a protein 

stability role of SUMOylation, yet showed transcriptional inactivation by SUMOylation. 

Again, the conflicting reports for SUMOylation of the same sites, might be due to the 

different cell lines used, but also to the use of different SUMO-ligases and HIF-1α 

recombinant fragments. A single publication has reported SUMOylation of HIF-2α at K394 

(van Hagen et al., 2010). van Hagen et al., 2010 identified SUMOylation motifs with HIF-2α 

and used SUMOylation-null arginine mutations to show that K394 SUMOylation induced 

protein degradation. 

 

1.1.9. HIFα Ubiquitination 
As described earlier, the canonical pathway of O2 dependent degradation involves the 

hydroxylation of proline residues followed by poly-ubiquitination, resulting in rapid 

proteasomal degradation (Ivan et al., 2001,  Jaakkola et al., 2001, Masson et al., 2001). 

Tanimoto et al., 2000 sequentially mutated all K residues within the HIF-1α ODDD to 

identify K532 as the major site responsible for O2 dependent ubiquitination and 

degradation. Using similar techniques, Paltoglou et al., 2007 identified that HIF-1α K532, 

K538 and K542 (and respective HIF-2α sites K497, K503 and K512) could also be 

ubiquitinated in normoxic conditions. Because my work focuses on the role of specific sites 

of PTM, only ubiquitination that has been associated to specific HIFα residues are 

discussed. However it is important to mention that the ubiquitination status of HIFα is a 

highly studied field and has been shown to be a much more complex regulatory system 

than only proline hydroxylation based degradation by involvement of different ubiquitin 

ligases and de-ubiquitinating enzymes (reviewed by Schober et al., 2016). One interesting 
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example of ubiquitination is a possible role in switching between HIF-1α to HIF-2α 

dependent signalling in prolonged hypoxia. Koh et al., 2008 identified a novel E3 ubiquitin 

ligase termed Hypoxia Associated Factor (HAF) which specifically poly-ubiquitinates HIF-1α 

only, resulting in the rapid degradation by the 26S proteasome. Later studies from the same 

group found that HAF could bind to HIF-2α at the CTAD, promoting transcriptional function 

of HIF-2α target genes by promoting DNA binding at HREs (Koh et al., 2011 & Koh et al., 

2014). 

 

1.1.10. HIFα nitrosylation 
All modifications discussed so far were enzyme driven. However, PTMs can occur through 

non-enzyme mediated reactions. For example, the production of reactive oxygen, or 

nitrogen, species (ROS/RNS) can react with free thiol groups of cysteine residues, resulting 

in multiple different cysteine PTM modifications that are both reversible and irreversible 

(Reviewed by Hess et al., 2005 & Chung et al., 2013). ROS/RNS production occurs 

endogenously through general mitochondrial function and cell signalling pathways, and is 

greatly increased in response to hypoxia (Chandel et al., 1998 & Bell et al., 2007). Nitric 

Oxide (NO) is a RNS that has been shown to modify HIF-1α C800, with contradictory reports 

regarding its function. Initially, Yasinska et al., 2003 has shown that S-nitrosylation of C800, 

by chemical or signalling meditated strategies, resulted in a HIF-1α CTAD mutated fragment 

(N803A, to prevent asparagine hydroxylation) binding strongly to p300/CBP. Whereas, a 

later study by Cho et al., 2007 used a non-mutated variant of the same CTAD fragment to 

show that S-nitrosylation-null mutants to alanine bound stronger to p300/CBP, the 

opposite effect of the previous study. 

 

1.8. Limitations of previous studies 
HIF-1α, and to a lesser extent HIF-2α, have been shown to be regulated by various PTMs, 

impacting either protein stability, transactivation or nuclear localisation. An important 

consideration is that many of these studies relied on the use of recombinant fragment 

based approaches coupled with in vitro assays to identify PTMs (Table 1.2 & Table 1.3). 

These strategies however have multiple intrinsic issues: 1) recombinant proteins, 

particularly small fragments, may not fold correctly. 2) A reported PTM site discovered on a 

small fragment, may be buried within the full length protein, and hence physically blocked 

by internal stoichiometric mechanisms. 3) Proteins tend to form large protein complexes 

for regulation, a fragment may lack many protein interactions in neighbouring regions of 
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the protein which could block the reported PTM site 4) The ratios used by in vitro assays 

might force interactions, resulting in modification that would not otherwise be observed in 

cellulo. Overall, the false discovery (and false negative) rate of these techniques can be 

potentially quite high and may not reflect true in vivo regulatory mechanisms.  

 

Additionally, for hypoxic conditions, studies generally used hypoxia mimicking drugs such as 

DMOG (Dimethyloxalylglycine), DFO (Deferoxamine), DFX (Deferasirox) and CoCl2 (cobalt 

chloride), which are PHD inhibitors (directly, by iron chelation or iron replacement). 

Therefore, hypoxia mimicking drugs do not necessarily reflect the true effects observed by 

a lack of O2. For example, DFO based iron chelation, used to increase HIFα stability, has 

additionally been shown to induce cell cycle arrest at the G1/S boundary by reducing the 

protein levels of cyclin D1 and p21; by inhibiting their mRNA cytoplasmic translocation and 

increased non-ubiquitin dependent proteasomal degradation (Fu et al., 2007 & Nurtjahja-

Tjendraputra et al., 2007).  

 

Furthermore, the use of multiple different cancer cell lines, many with important regulatory 

proteins and modifying proteins deleted or mutated, may explain some of the observed 

discrepancies (Bracken et al., 2006). This is particularly evident for HIF-1α K532 acetylation 

(Jeong et al., 2002, Lee et al., 2010, Arnesen et al., 2005 & Murray-Rust et al., 2006) and 

HIF-1α K391 and K477 SUMOylation (Bae et al., 2004, Berta et al., 2007, Cheng et al., 2007 

& Kang et al., 2010). 

 

Finally, all these studies were performed in a targeted manner, aimed at identifying a single 

PTM through in vitro assays, motif analysis and PTM-null mutations. Thus, these studies 

lack any perspective into how multiple PTMs may affect overall protein function inside cells, 

a potentially important aspect for fine tuning regulatory responses (Mann et al., 2003 & 

Lanucara et al., 2013). Unbiased PTM discovery is therefore critical to understand how the 

PTM map of HIF-1α and HIF-2α changes in response to true O2 deprivation. Such 

investigation is essential for the discovery of novel regulatory mechanisms and to unravel 

the signalling strategies that coordinate the hypoxic response. One method to explore the 

PTM modification status of proteins in an unbiased manner is to use a proteomics 

approach. 
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1.9. Proteomics 
The term proteome was used originally to describe all expressed proteins within a cell at a 

given time. However, it has evolved to also include all proteoforms (differentially PTM 

forms of the same protein), a reflection that the functional aspect of proteins are orders of 

magnitude more complicated than simply the complement of expressed genes (Tyers et al., 

2003), as exemplified with HIFα PTMs discussed above. Many more PTMs exist than have 

been discussed above in the context of HIFα, including glycosylation, sulphation and 

acylation (Mann et al., 2003). Additionally, PTMs can occur in a combinatorial fashion which 

may regulate protein function differently than either PTM alone (Mann et al., 2003). As 

many PTMs are reversible, often occurring at sub-stoichiometric levels compared to total 

protein, this allows the simultaneous co-existence of multiple functionally distinct subsets 

of the same protein within a cell (Mann et al., 2002); hence can pose a challenge for 

proteomics analysis. With the advancements in technology over the past 25 years, mass 

spectrometry (MS) has become an essential component of proteomics analysis. MS can be 

used not only for protein identification and to determine PTM status of proteins, but also to 

quantify protein levels, sub-cellular protein localisation, protein interactions and protein 

structures (Reviewed by Han et al., 2008, Aebersold et al., 2016, Mallick et al., 2010, 

Schneider et al., 2018 & Lanucara et al., 2014). 

 

1.1.11. Bottom-Up Proteomics 
Although MS-based proteomics analysis can be performed on full length proteins (Top-

Down proteomics) there are many technical challenges to this, including: 1) A lack of 

fractionation techniques to decrease the complexity of samples. 2) The inefficiency of 

protein fragmentation in a gaseous phase, required to identify the protein. 3) Difficulty in 

the ionisation of proteins (Lanucara et al., 2013 & Zhang et al., 2013). Peptides, made from 

the proteolysis of proteins, are much smaller and circumvent the problems associated with 

analysis of intact proteins. Thus a ‘Bottom-Up’ approach is common, where proteins 

undergo proteolysis and protein identity is inferred from peptide sequence. Bottom-Up 

proteomics approaches are also referred to as shotgun proteomics due to its similarity to 

shotgun genomic sequencing (Lanucara et al., 2013 & Zhang et al., 2013).  

 

For a typical Bottom-Up approach, proteins are extracted from the system of interest, 

followed by denaturation, reduction of disulphide bonds and alkylation of cysteine residues 

to prevent reformation of disulphide bonds, before proteolysis. Proteolysis most commonly 
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uses Trypsin as a protease because it has a highly specific cleavage pattern at the C-

terminus of Arginine (R) and Lysine (K) residues (unless the K/R +1 position is proline (P)). 

Electrospray ionisation (ESI, section 1.1.15) of tryptic digested products thus typically 

results in doubly protonated peptide ions, which is beneficial in terms of analysing large 

peptides with mass analysers (section 1.1.16) of smaller m/z ratios (Paizs et al., 2005, Zhang 

et al., 2013 & Michalski et al., 2012). 

 

However, proteolysis exponentially increases sample complexity. Thus, for highly complex 

samples there can be competitive/preferential ionisation of peptides combined with an 

inability for the MS to analyse all peptides available at any one time. Hence, low abundance 

proteins, and different PTM proteoforms, are challenging to analyse without prior 

fractionation techniques, purification or enrichment strategies being additionally employed 

(Mann et al., 2002). Consequently, peptides are separated by Reverse-Phase 

chromatography prior to MS analysis. Immunoprecipitation (IP) of target proteins or PTM 

enrichment can also aid in analysis. 

 

1.1.12. IP-coupled Proteomics 
A cells proteins do not function as separate entities but rather form highly complex, multi-

protein complexes that result in protein function (Alberts, 1998), for example the HIF-1α – 

HIF-1β complex (Wang et al., 1995). Additionally, for a PTM to occur a modifying enzyme 

must come into contact with the target protein, even if transiently. Thus, protein binding 

partners result in an additional layer of complexity when attempting to understand cellular 

regulatory mechanisms, thus is an important aspect to investigate. 

 

A method to investigate binding partners, and simultaneously solve the problem of 

potential low abundance proteins, is to specifically purify the protein of interest prior to 

proteomics analysis. The most common method for protein purification is to use an 

antibody to the target protein, that is bound to a solid phase, thus purifying the protein of 

interest and, under the correct conditions, any interacting proteins at a specific time (Co-IP) 

away from the whole cell proteome (Dunham et al., 2012). Thus Co-IP reduces sample 

complexity, increases the relative abundance of the target protein and allows identification 

of target protein interactors (Mallick et al., 2010). Although it is possible to identify protein 

interactors post IP through alternative techniques to proteomics, such as western blotting, 

these are largely Low Throughput (LTP) and are inherently biased by the requirement of 

prior knowledge of potential binding partners to investigate. Proteomics analysis provides a 
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High Throughput (HTP), unbiased identification approach, significantly improving 

understanding of protein interaction networks (Dunham et al., 2012 & Mallick et al., 2010). 

 

1.1.13. Phospho-Proteomics 
As mentioned, the proteome is highly fluidic in nature, in part due to the dynamic nature of 

PTMs (Mann et al., 2002). Due to the sub-stoichiometric levels of PTMs, and the fact that 

certain regions of the protein will not be analysable by MS following tryptic digest, it can be 

difficult to identify and locate the site of a PTM using standard Bottom-Up proteomics 

approaches, even following IP. Thus, enrichment strategies have been developed that can 

enrich for a specific PTM in the background of unmodified peptides. Many enrichment 

strategies for phosphorylation have been developed, including antibody-based techniques 

and targeting the charge introduced by phosphorylation. IP using anti phospho-tyrosine 

antibodies is fairly efficient. However phospho -serine and –threonine antibodies are highly 

dependent on the sequence surrounding the PTM site (Fíla et al., 2012), thus are not 

particularly useful for the vast majority of the phospho-proteome. 

 

Alternatively, using metal cations bound to a solid matrix, known as Immobilised Metal Ion 

Affinity Chromatography (IMAC), results in the enrichment of peptides that contain the 

negatively charged phosphate moiety. Thus, IMAC reduces sample complexity for more in 

depth analysis of phospho-peptides (Mann et al., 2002 & Rainer et al., 2015). The most 

commonly used phospho-peptide enrichment method is by Titanium dioxide (TiO2). 

 

1.1.14. Liquid Chromatography Mass Spectrometry 
As mentioned, MS has become an integral part of proteomics, however sample complexity 

is often too high for in-depth MS analysis alone. To deconvolute sample complexity, a prior 

Liquid Chromatography (LC) separation step is commonly coupled prior to MS analysis, 

where peptides are bound to a C18 column and eluted using an increasing acetonitrile 

concentration gradient, separating peptides based on their hydrophobicity. The LC system 

is coupled in-line with the ESI source of the mass spectrometer, thus as peptides are eluted 

off the LC column, they directly enter the mass spectrometer for analysis. The reduced 

complexity at any given time thus dramatically increases the depth of coverage of MS-

based proteomics analysis. 

 

In order to determine peptide primary sequence for protein identification, tandem MS 

(MS/MS) is generally performed. At any given time, the m/z ratio is recorded for all peptide 
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ions eluting from the LC column in an MS1 scan. Subsequently, the most intense, or 

desired, ions are sequentially isolated and fragmented. Fragment ions are then analysed by 

a second round of MS, and the m/z ratios of the product ions identified, generating an MS2 

spectrum. To prevent the same precursor m/z ion from MS1 being selected for multiple 

rounds of fragmentation and MS2 analysis, MS/MS is generally performed in a data 

dependent-acquisition mode (DDA) combined with an exclusion time window. Thereby, a 

‘Top X’ approach can be adopted to obtain tandem mass spectra analysis of a defined 

number of most intense precursor ions from the MS1 scan.  

 

A typical mass spectrometer consists of three essential components: an ionisation source, a 

mass analyser and a detector, although the exact components will vary depending on the 

type of instrument. For LC-MS/MS, the ionisation source is coupled to the LC elution and 

ionises peptides into a gaseous phase to enter the mass spectrometer. A mass analyser 

manipulates ions according to m/z ratios and a detector records the signal of ions when 

ejected from the mass analyser. Mass spectra are created from a MS scan by plotting 

detected m/z ratio against relative intensity of all ions in each respective MS scan. Tandem 

mass spectra can thus be used to determine the primary sequence of a peptide, which is 

searched against a database of all potential proteins in a sample. In this manner, a tandem 

mass spectrum can be used to identify a peptide and the gene product it was derived from. 

 

1.10.  Thermo Orbitrap Fusion Tribrid 

The continued development of MS techniques has led to the generation of multiple mass 

analysers, and peptide ion fragmentation techniques. The most advanced mass 

spectrometers combine these technologies into hybrid systems to provide extensive 

flexibility for MS/MS analysis. The Thermo Orbitrap Fusion Tribrid mass spectrometer is an 

example of this, combining a quadrupole, linear ion trap and Orbitrap mass analyser (Figure 

1.10, Senko et al., 2013). Utilising multiple mass analysers, it is possible to perform mass 

analysis (MS1, MS2 or MSn) in either the Orbitrap or the Iontrap, thus maximising efficiency. 

Additionally, this allows MS/MS analysis to be performed in a time-dependent mode, rather 

than a Top X mode, where a maximal (undefined) number of precursor ions can be analysed 

in the Orbitrap while product ions are detected in the Iontrap (Senko et al., 2013). The 

Thermo Orbitrap Fusion Tribrid mass spectrometer also incorporates multiple different 

fragmentation strategies (see section 1.1.17), thus making its use in proteomics highly 

advantageous for both in-depth protein identification and phospho-proteome analysis.  
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Figure 1.10: Schematic view of the Thermo Orbitrap Fusion Tribrid Mass Spectrometer. 
All major components of the MS are labelled, including: ion guides, mass analysers, ETD source and electrospray 
ionisation source. Taken from Senko et al., 2013. 
 

1.1.15. Electrospray Ionisation 
To analyse large biomolecules (peptides), ‘soft’ ionisation mechanisms are required to 

ensure that ions produced are not simultaneously fragmented. Electrospray ionisation (ESI) 

is the most commonly used ‘soft’ ionisation technique used for proteomics analysis. During 

ESI, a sample in a volatile solvent (acetonitrile) is passed through a high voltage capillary, 

generating a highly charged droplet cloud, of equal charge to the capillary (Fenn et al., 

1989). Charged droplets are heated to high temperatures (~300 oC) as they enter a high-to-

low pressure gradient, resulting in the desolvation of droplets and creating multiply 

charged gaseous ions, which can be analysed by MS (Fenn et al., 1989 & Kebarle et al., 

1993). ESI produces ions in the form of [Mass+nH]n+ where n = the number of protons 

added. 

 

1.1.16. Mass analysers 
Upon entering the mass spectrometer, ions are guided into a mass analyser. Mass analysers 

use a variable magnetic and/or electric field to eject ions and allow all ions of a single m/z 

ratio to be detected. There are multiple types of mass analyser, each with inherent 

properties to analyse different m/z ranges, sensitivity, resolution and mass accuracy (Haag, 
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2016 & Yates et al., 2009). The Thermo OrbiTrap Fusion Tribrid primarily consists of two 

main mass analysers, an Iontrap and an Orbitrap, with the quadrupole typically being used 

in a m/z filtering mode only. 

 

1.1.16.1. Iontrap 
Iontrap mass analysers rely on a high frequency, oscillating electric field to spatially capture 

all ions within electrodes. The application of a varying radio frequency (RF) voltage to the 

capturing electrodes results in the selective resonance of a particular m/z ion, resulting in 

its ejection from the Iontrap and detection by the detector; thus ejection/detection is 

dependent upon m/z ratio (Stafford et al., 1984). Two main types of Iontrap mass analysers 

have been developed: 3D (also known as Paul’s) Iontrap and 2D linear Iontrap (Figure 1.11).  

 

Figure 1.11: Schematic view of Iontrap mass analysers. 
A) 3D (Paul) Iontrap, consisting of two hyperbolic end cap electrodes (at the same AC voltage) surrounding a 
ring electrode (exhibits the varying RF frequency) to trap ions in a figure of 8. B) 2D Linear Iontrap, consisting of 
four parallel, oppositely charged, hyperbolic pole electrodes (that exhibit varying RF frequencies) with capping 
electrodes (exhibit DC voltages) to trap ions within an internal cavity cloud. The end caps and central trap can 
each experience different DC voltages. Detectors are perpendicular to the length of the Iontrap. 
 

A 3D Iontrap consists of a ring electrode surrounded by two hyperbolic electrode plates 

(Figure 1.11 A). All ions that enter into the 3D Iontrap are trapped spatially in a 3D figure-of-

eight trajectory, and experience resonance ejection from the ion cloud by changing the RF 

voltage applied to the central ring electrode (Stafford et al., 1984 & Williams et al., 1994). A 

2D linear Iontrap applies the same basic principles as a 3D Iontrap, however has a different 

structural layout. A 2D linear Iontrap consists of four parallel hyperbolic pole electrodes, of 

opposite changes, surrounded by end cap electrodes, thus trapping ions linearly (Figure 

1.11 B). The RF voltage is applied to the end caps of the 2D linear Iontrap, resulting in the 
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selective resonance ejection of a particular m/z ratio, perpendicularly to the Iontrap 

direction, enabling detection (Schwartz et al., 2002). Because a 2D linear Iontrap has a large 

internal capacity between electrodes, compared to other mass analysers, it allows for the 

large accumulation of ions before space-charge ion effects occur, thus providing the ability 

to achieve high sensitivity. However, Iontraps lack mass accuracy and resolving power 

compared to more advanced mass analysers such as the Orbitrap (Douglas et al., 2005) 

 

1.1.16.2. Orbitrap 
The Orbitrap is another type of ion-trapping mass analyser that was used in this project. An 

Orbitrap consists of a spindle-like pole electrode encapsulated by concave electrodes to 

form a barrel-like structure (Figure 1.12, Makarov, 2000). A linear electric field is applied 

between electrodes which causes ions to oscillate bi-spatially, orbitally around and axially 

along the inner spindle-like electrode, with frequency of oscillations being independent of 

each other (Makarov, 2000). The frequency at which a particular ion axially oscillates is 

directly proportional to the m/z ratio of the ion. When a mixture of ions is detected, a 

complex, repeating wave is generated over time. Fourier Transformation (FT) can then be 

used to convert the complex repeating wave into its component wave frequencies, which 

are proportionate to the m/z ratios and their respective intensities, to generate a mass 

spectrum (Scigelova et al., 2011). As frequency of oscillation can be detected much more 

accurately than time, Orbitrap mass analysers provide very high mass accuracy and 

resolution. However, they are more prone to space-charge effects, resulting in decreased 

sensitivity (Scigelova et al., 2011 & Makarov, 2000). 

Figure 1.12: Schematic view of an Orbitrap mass analyser.  
Consisting of two concave electrodes forming a barrel around a central spindle electrode. Ions are injected in 
time interval ‘packets’ through a whole in an outer electrode and ions oscillate both orbitally around and axially 
along the central spindle. 
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1.1.17. Peptide fragmentation 
Peptide sequence determination requires peptide ion fragmentation and MS2 (MS/MS) 

analysis. For peptide analysis, multiple fragmentation methods have been developed which 

primarily result in fragmentation along the peptide backbone (Figure 1.13 , Hunt et al., 

1986, Johnson et al., 1988, Zubarev et al., 1998, Syka et al., 2004 & Frese et al., 2012). 

 

Figure 1.13: Nomenclature of peptide fragment ions. 
a, b and c ions are different fragmentations of the peptide backbone, numbered sequentially from the amino-
terminus of peptides. x, y and z ions are respective counterparts, of a, b, c ions, and labelled from the carboxy-
terminus of peptides. R groups are of unknown amino acid side chains. CID/HCD predominantly results in b, y 
ions, ECD/ETD predominantly results in c, z ions and EThcD results in all four ion types. Taken from Paizs et al., 
2005. 

 
1.1.17.1. Collisional-induced dissociation 

The most commonly used fragmentation technique is collision-induced dissociation (CID). 

CID involves selectively exciting a specific m/z ratio and allowing it to collide with an inert 

gas to promote fragmentation. Generally, CID fragmentation occurs along the amide bond, 

producing a heterogeneous mixture of b and y ions, depending on how the charge localises 

post fragmentation (Figure 1.13). b –ions are derived from N-terminal peptide ion 

fragments, and y –ions are derived from C-terminal peptide ion fragments (Johnson et al., 

1988). By deducing the exact mass of b/y ions, it is possible to determine the primary 

sequence of the peptide by calculating mass changes between identified m/z ratio peaks at 

MS2 (Johnson et al., 1988 & Hunt et al., 1986).  

 

There are 2 general types of CID, resonance CID (performed in Iontraps, Johnson et al., 

1988) and beam type CID, also known as higher energy collisional dissociation (HCD, 

performed in a specialised collision cell, Olsen et al., 2007). Resonance CID, involves the 

selective resonance excitation of a single m/z ratio (by changing the RF voltage), leading to 

their increased collision rate with the inert gas (commonly helium) and fragmentation 

(Johnson et al., 1988). Thus, upon a single fragmentation event, a different m/z ratio is 

generated and the ions are no longer excited, hence MS2 spectra can be information 

limited. HCD involves filtering a specific m/z ratio into a specialised collision cell which has a 

variable RF voltage applied to accelerate ions into a high pressure of inert gas (commonly 
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nitrogen) to promote fragmentation (Olsen et al., 2007). Because HCD does not require 

resonance excitation, fragment ions undergo secondary fragmentation events to provide 

greater depth of b/y ion production, allowing the more efficient determination of peptide 

primary sequence (Olsen et al., 2007). However, a particular problem of CID is the 

susceptibility of phosphorylation to both CID and HCD methods (Zhang et al., 2009). 

 

1.1.17.2. Electron mediated dissociation 
Another commonly used fragmentation technique is through the absorption of thermal 

electrons by multiply protonated, charged peptide ions. Electron Transfer Dissociation 

(ETD) utilises a chemical anion vehicle to introduce electrons efficiently to peptide ions in a 

gaseous state (Syka et al., 2004). The absorption of electrons by ions results in the 

spontaneous fragmentation of electron hypervalent species, primarily at the N-Cα bond; 

producing a heterogeneous mixture of c and z ions (Figure 1.13, McLafferty et al., 2001 & 

Zubarev et al., 1998). c –ions are derived from N-terminal peptide ion fragments, and z –

ions are derived from C-terminal peptide ion fragments (Zubarev et al., 1998). In a similar 

manner to CID/HCD, deducing the exact mass of c/z ions allows for the determination of 

peptide primary sequence. ETD results in peptide fragmentation in a non-energetic 

reaction, thus preserving PTM localisation data. However these fragmentation strategies 

are limited to multiply charged species (3+), due to the electron-induced charge reduction 

and inability to fragment singly charged (1+) ions (Sobott et al., 2009). 

 

1.1.17.3. Dual fragmentation 
More recently, a combined dual fragmentation approach has been developed which utilises 

both HCD and ETD fragmentation strategies (EThcD, Frese et al., 2012). EThcD 

fragmentation creates a highly heterogeneous mixture of b, y, c and z ions in order to 

obtain more in-depth data to determine primary sequence while maintaining an increased 

chance that the PTM is not lost (Frese et al., 2012 & Frese et al., 2013). 

 

1.11. Data analysis 
In order to identify peptides, and thus proteins, from MS/MS analysis, search engines can 

be used to search obtained spectra against a database consisting of all potential proteins in 

the sample, for example the human protein complement. Three search engines are relevant 

to this project: MASCOT (Perkins et al., 1999), PEAKS DB (Zhang et al., 2012) and 

Andromeda (Cox et al., 2011). Search engines use complex algorithms to match MS2 

spectra (also known as peptide spectral matches (PSMs)) against the database to determine 
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primary peptide sequence and infer protein identity. As a peptide can be unique to a single 

protein or found within multiple proteins, inferred protein identities are scored based on 

the total number of PSMs that match to a specific protein. 

 

To estimate the false-positive rate of PSMs randomly matching a target database, all PSMs 

are subject to a second-round search against a fictional decoy database of equal size, which 

is usually the primary database with the sequence of proteins reversed. Comparison of the 

total number of matching PSMs from the desired and decoy databases allows the 

determination of a false discovery rate (FDR). Thus, FDR reflects the probability that any 

given PSM that matches the desired database is due to chance. Hence, a FDR cut-off can be 

applied, generally at 1%, to statistically control the number of false positive protein 

identifications per sample. 

 

For PTM discovery, data analysis needs to account for the known mass change introduced 

at the peptide level in the MS1 spectrum and the amino acid level in the MS2 spectrum, to 

determine the PTM site (Perkins et al., 1999). However, as stated, fragmentation 

techniques can result in the neutral loss of PTMs and difficulty in localising its site (Mann et 

al., 2002), essential information to characterise the biological function of a PTM. Therefore, 

common proteomics practise is to provide a site localisation confidence score of identified 

PTMs, determined through bioinformatics approaches. phosphoRS (ptmRS, Taus et al., 

2011) is a tool that analyses specific product ions to predict PTM site localisation, and has 

been used here with MASCOT as part of the Proteome Discoverer pipeline. Similar 

approaches are applied for PEAKS PTM and Ascore (part of the PEAKS pipeline, Han et al., 

2011), and Andromeda with PTM score (part of the MaxQuant pipeline, Cox et al., 2011). 

 

1.1.18. Quantitative proteomics 
In response to a specific stimulus, PTMs and protein interactions can change, thus altering 

the functions of the protein of interest. It is therefore relevant to define quantitatively the 

changes, in order to further understand the proteome. However, MS analysis is not 

inherently quantitative due to differences in ionisation efficiency of peptides (Bantscheff et 

al., 2007).Therefore, multiple strategies have been developed to quantify proteins, either in 

relative terms (fold change comparisons between treatments) or absolute terms (the 

number of copies a cell has of a single protein). Relative quantification can be further 

divided into two distinct techniques: label-free or labelled approaches (Bantscheff et al., 
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2007 & Bantscheff et al., 2012). Here, relative quantification was performed using a label-

free approach, described below. 

 

1.1.18.1. Label free quantification 
Label-free quantification is a less accurate approach compared to label based techniques as 

the samples are prepared and analysed independently, resulting in increased experimental 

and analytical variation (Bantscheff et al., 2007 & Bantscheff et al., 2012). Whilst highly 

flexible and theoretically able to compare an unlimited number of samples, label free 

quantification requires extensive normalisation techniques to compensate for experimental 

error. Commonly used normalisations include LC elution time correction and signal intensity 

correction against house-keeping proteins, both of which are assumed to be near identical 

for different samples (Gillet et al., 2016 & Välikangas et al., 2018). Thus, although not the 

most powerful technique for quantification, label free techniques provide a rapid and low-

cost strategy to simultaneously extract semi-quantitative information from proteomics 

datasets. 

 

Two strategies have been developed to infer protein abundance from peptides: Spectral 

counting and peptide intensity averaging. Spectral counting relies on the fact that for a 

given protein, a greater number of PSMs will be identified for a protein of greater 

abundance, when normalising for protein length (Washburn et al., 2001, Arike et al., 2014, 

Old et al., 2005 & Bantscheff et al., 2007). However, spectral counting approaches are 

relatively controversial due not measuring any physical traits of identified peptides and is 

further complicated by the inclusion of dynamic exclusion windows which prevent the same 

m/z ratio being sent for MS2 analysis multiple times, thus limiting the number of PSMs (Old 

et al., 2005). 

 

Alternatively, a more computationally intensive, intensity-based quantification is possible. 

For each m/z peak identified at MS1, the intensity is integrated against the timescale of the 

LC chromatogram to determine peptide intensity as a measure of ion area; accounting for 

physiochemical properties of peptides and different elution width windows. Each peptide 

identified for a protein has the intensity areas averaged to infer protein intensity, which is 

then compared between experimental conditions (Bondarenko et al., 2002, Old et al., 2005 

& Bantscheff et al., 2007). 
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1.1.18.2. Label based quantification 
Label-based quantification approaches are generally considered more accurate because 

they allow the mixing of samples at an early stage in sample preparation so that each 

sample experiences identical experimental and analytical variation (Bantscheff et al., 2007 

& Bantscheff et al., 2012). Labelling approaches require the covalent incorporation of a 

known mass difference, either by in cellulo metabolic C13 labelling (SILAC, Ong et al., 2002) 

or post-digest isobaric tagging of peptides (TMT, Thompson et al., 2003 or iTRAQ, Ross et 

al., 2004). However, these experiments are expensive and complicated by the need to 

optimally achieve near 100% labelling efficiency. They also require samples to be prepared 

simultaneously, which was not feasible with the experiments performed here (Chapter 3). 

 

1.1.19. Software tools  
Various software packages are available to analyse LC-MS/MS data, which can be open 

source or commercial. Generally, the ideal software tool is dependent on the required 

analysis and is influenced by the experimental design and MS instrumentation used. In this 

thesis, Proteome Discoverer was used for protein identification and phosphorylation 

analysis, through the MASCOT and ptmRS pipeline described above. PEAKS PTM was used 

for searching of all known PTMs, both biological and artefactual, in an ‘open’ PTM search, 

and MaxQuant was used for label free, intensity-based quantification. 

 

1.1.19.1. PEAKS PTM 
PEAKS is a software package that allows identification of proteins without a database 

present, or has a poor quality database, through the de novo sequencing of PSMs to directly 

determine peptide primary sequence (Ma et al., 2003 & Zhang et al., 2012). PEAKS PTM 

then creates a smaller secondary database of all proteins identified from the initial de novo 

peptide primary sequence. The concatenated secondary database is then used in a 

database search fashion for all unidentified m/z ratios with variable modifications of all 

known PTMs in the Unimod database (>300, Han et al., 2011 & Creasy et al., 2004). PEAKS 

PTM uses a novel FDR calculation where the initial large database is used as reversed decoy 

database to search against in an open PTM fashion. The identifications from the larger 

reversed database are then compared against the identifications in the smaller correct 

orientation database to determine the FDR in a more strigent manner, reducing potential 

bias for underestimating FDR (Zhang et al., 2012 & Bern et al., 2009). As such PEAKS was 

used for open PTM searching of all LC-MSMS data. 
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1.1.19.2. MaxQuant 
MaxQuant is an open source software package with high flexibility for the quantification of 

both labelled and label free LC-MS/MS data by spectral matching and ion intensity 

methods, discussed above (Cox et al., 2014). MaxQuant uses its in-built search engine, 

Andromeda (Cox et al., 2011). As discussed, quantification approaches generally rely on the 

ability for large, global normalisation techniques against ‘housekeeping proteins’ assumed 

to be at identical levels independently of treatment (Välikangas et al., 2018). However, 

hypoxia is known to induce large effects on the level of expression for many housekeeping 

genes (Caradec et al., 2010), and thus potentially protein level, and may not be suitable for 

these type of normalisation strategies.  

 

Critically, MaxQuant utilises a process termed delayed normalisation, in which protein 

intensities are initially inferred from peptide area intensities (Cox et al., 2014). Identified 

proteins with minimal differences in protein intensity between experimental conditions are 

then used to normalise data, independently of being considered a housekeeping protein or 

not (Cox et al., 2011 & Cox et al., 2014). Thus, MaxQuant software is a more suitable 

package for the label free quantification of the LC-MS/MS analysis data obtained in this 

work. Perseus is a complementary, open source, software designed to aid in the extraction 

and interpretation of required information from MaxQuant, having various built in 

statistical and visualisation tools (Tyanova et al., 2016). 

 

1.12. Research Aims: 
The aim of this thesis was discover putative PTMs and binding partners that may regulate 

full length HIF-1α and HIF-2α proteins in cellulo, and in response to hypoxia. The results will 

aid to further understand the cellular mechanisms used to regulate HIF-1α and HIF-2α, and 

how their dysregulation may lead to pathologies. Using proteomics techniques, I identified 

a large number of novel PTMs and binding partners that occur in both O2-dependent and -

independent manners. Their significance were further investigated by initial functional 

characterisation. 
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2. Chapter 2: Materials and 
Methods 



59 
 

2.1. Chemicals and reagents 
Tissue culture reagents were purchased from Gibco. Powdered chemical reagents and 

custom DNA primers were purchased from Sigma-Aldrich, unless otherwise stated. Mass 

spectrometry (MS) solvents were purchased from Thermofisher, HPLC grade. All Eppendorf 

tubes used are Ultra-High recovery Eppendorf tubes (STARLAB). 

 

2.2. Cell culture, transfection and treatment 
2.2.1.  Cell passaging 

HeLa cells (ECACC catalogue #: 93021013) were grown in DMEM media supplemented with 

10% (v/v) Foetal calf serum, 1% (v/v) Non-Essential Amino Acids and 1% (v/v) 

Penicillin/streptomycin and incubated at 37 oC, 5% CO2 , 21% O2. Cells were passaged at 80-

90% confluency. Passaging involved removing the media, washing cells in PBS and 

incubating with 1X Trypsin/EDTA for 5 min. Detached cells were re-suspended in growth 

media, cell count obtained using a TC20- Automate cell Counter (BioRad) and seeded at a 

density of 1x105 cells/mL (~1.35x105 cells/cm2). 

 

2.2.2.  PEI 40K MAX linear stock solution 
PEI 40K MAX linear powder (Polysciences #24765) was resuspended to make a 1% (w/v) 

solution in sterile PBS by continual stirring for 18 hr at 4 oC. The stock solution was adjusted 

to pH 7.5 by addition of 5 M NaOH before sterile filtering through a 0.22 µm filter, 

aliquoting and storage at 4 oC. Referred to as PEI in this thesis. 

 

2.2.3.  Transient transfection 
Transient transfection was conducted 24 hr prior to experimental use. During transfection 

optimisation, various reagents were tested, following manufacturers guidelines (Table 2.1). 

Additionally, the recommended ratio for volume of transfection reagent (µL):quantity of 

DNA (µg), was changed 0.5 and 2 fold, in order to identify if a better ratio existed. The final 

transfection conditions used throughout were as follows:  unsupplemented DMEM media 

was used to dilute DNA to a final DNA concentration of 10 ng/µL. For MS experiments (High 

HIFα expression level), the total quantity of DNA was at a 1:1 ratio of HA-Clover-HIFα:empty 

vector (pcDNA3(-)). For biochemical and functional assays (low HIFα expression level), the 

DNA was at a 1:19 ratio of HA-Clover-HIFα:empty vector. To this, a ratio of 4 µL PEI:1 µg of 

DNA was added. Transfection mixes were vortexed and left to stand at room temperature 

for 30 min. The volume of transfection mix added to cultured cells is equivalent to 5% of 
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the total cell culture volume (example volumes in Table 2.2). Cells were incubated for 18 hr 

before media was replaced and cells treated. All plasmids used are listed in Table 2.3. 

 

Table 2.1: Transfection reagents tested during optimisation and recommended conditions.  
*Recommended to determine empirically for different plasmids. 

 

Table 2.2: Transfection conditions for a 10 cm (56.7 cm2) plate.  
Table includes required volumes (μl) of reagents and quantities (μg) of DNA for the High and low expression 
levels of HA-Clover-HIFα and empty vector. 

 

Table 2.3: Plasmids used and their availability. 

 

2.2.4.  Hypoxic incubation 
Hypoxic incubation was at 1% O2, performed in a Don Whitley H35 Hypoxystation. To 

ensure correct O2 tensions, the hypoxic chamber was tested monthly using a Microx 4 fibre 

Optic Oxygen Meter (PreSens). Cells, PBS and lysis buffer were incubated in hypoxia for 4 

hr, unless otherwise stated. 
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2.3. Cell lysis and protein extraction 
2.3.1.  Cell lysis and protein extraction 

Post treatment, cells were washed in PBS before adding 11.4 µL/cm2 (equivalent to 600 µL / 

10 cm plate) lysis buffer (50 mM Tris pH 8.0, 120 mM NaCl, 5 mM EDTA, 0.5% (v/v) NP-40, 

1X EDTA-free cOmplete protease inhibitor (Roche) and 1X phosSTOP (Roche), unless 

otherwise specified). Cells were scraped and supernatant collected into Ultra-High recovery 

Eppendorf tubes (STARLAB) before removal from the hypoxic chamber, in case of hypoxic 

incubation. Normoxic treated cells were lysed identically. Lysates were rotated end-over-

end for 30 min at 4 oC, unless otherwise specified, before centrifugation at 10,000 g for 10 

min at 4 oC. Cleared supernatant was collected into fresh Ultra-High recovery Eppendorf 

tubes. 

 

2.3.2. Protein concentration determination 
Protein quantification was performed using the Pierce BCA Protein assay Kit (ThermoFisher) 

following the manufacturer’s recommended protocol, using a serial dilution of bovine 

serum albumin (BSA) of: 1.5, 1.0, 0.5, 0.25 mg/mL, as the reference standard. 

 

2.4. HaloTag visualisation 
2.4.1. In vivo labelling 

The required volume of HaloTag- Oregon Green (Promega, G2801), of 0.25 µL/cm2 of 

culture plate, was diluted 200 fold in unsupplemented DMEM media. An equivalent volume 

of media was removed from cells and replaced by the diluted HaloTag- Oregon Green 

solution. Cells were returned to incubation for 15 min and then washed 2 X with equal 

volumes of unsupplemented DMEM, before adding growth media. Cells were incubated for 

30 min and the growth media replaced before being taken for microscopy or lysed for SDS-

PAGE analysis. 

 

2.4.2. In vitro labelling 
Cells were lysed as described above. HaloTag- Oregon Green (Promega, G2801) was diluted 

200 fold by direct addition into cell lysate. This was rotated end-over-end for 30 min at 

room temperature and used directly for SDS-PAGE analysis. 
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2.5. Immunoprecipitation (IP) 
2.5.1. Endogenous protein IP 

Post hypoxic incubation, 5x106 cells (1x 10 cm plate) were lysed as previously described 

(600 µL lysis buffer) using the HA-Tag IP optimised lysis buffer (25 mM Tris pH 8.0, 350 mM 

NaCl, 1 mM EDTA, 1 mM EGTA, 0.5% (v/v) Triton X-100) or antibody manufacturer 

recommended lysis buffer (50 mM Tris pH 8.0, 120 mM NaCl, 1 mM EDTA, 0.2% (v/v) NP-

40), both supplemented with EDTA free cOmplete protease inhibitors (Roche) and 

phosSTOP phosphatase inhibitors (Roche). IP used the Pierce CrossLink Magnetic IP/CO-IP 

Kit (88805) following manufacturers recommended protocol, omitting the antibody-bead 

crosslinking stages. Briefly, using a magnetic stand for all bead collection steps, 25 µL of 

protein A/G beads were washed in the provided lysis buffer (25 mM Tris pH 7.4, 150 mM 

NaCl, 1 mM EDTA, 1% (v/v) NP-40, 5% (v/v) glycerol) before 2 µg of antibody in 100 µL 1X 

coupling buffer (provided) was added and left to shake at 600 rpm for 15 min at room 

temperature, to pre-bind antibodies to beads. Antibody-bead complexes were washed in 

supplied lysis buffer and 1 mg of cleared protein lysate added and left to rotate end-over-

end for 18 hr at 4 oC. IPs were washed 3 X in lysis buffer and eluted in 25 µL of 2 X Laemmli 

buffer with boiling at 95 oC for 10 min. 

 

2.5.2. HaloTag IP 
All components required for IP are part of the HaloTag Mammalian Pull-Down System 

(G6504) kit, except the wash buffer (TBS + 0.05% (v/v) NP-40). The manufacturers 

recommended protocol for IP was followed, alongside 2 published protocols (Ohana et al., 

2011 & Daniels et al., 2014), all scaled to work with 5x106 cells (1 X 10 cm plate). All 

methods collect cells by scraping in PBS followed by centrifugation at 2,000 g for 10 min 

and lysed in 50 µL/mL of cell culture medium using the supplied mammalian lysis buffer (50 

mM Tris pH 7.5, 150 mM NaCl, 1% (v/v) Triton X-100, 0.1% (v/v) sodium deoxycholate & 1 X 

Protease inhibitor cocktail (G6521)). Physical perturbations to aid cell lysis were as follows: 

1) Manufacturer recommend: passing cell lysate through a 25- gauge needle, 2) Ohana et 

al., 2011: Sonication max power 10 s on, 10 s off (Cavitek 27 L professional ultrasonic 

cleaner, Allendale-ultrasonics) 3) Daniels et al., 2014: -80 oC for 1 hr freeze-thaw cycle with 

dounce glass homogenizer (2.0 mL size). Cell lysates were then cleared by centrifugation at 

10,000 g for 10 min at 4 oC and collected into fresh tubes before following the 

manufacturer recommend IP protocol. Briefly, all centrifugation steps were performed at 

2000 g for 3 min, 100 µL of HaloLink resin was washed 3 X in the supplied lysis buffer before 



63 
 

adding 1 mg of protein lysate and rotating end-over-end for 2 hr at room temperature. 

Bead-protein complexes were washed 3 X in the supplied lysis buffer and 2 X in wash 

buffer. Bound protein was eluted with 30 U of TEV protease (V6101) according to 

manufacturer’s recommended protocol. 

 

2.5.3. GFP-Traps IP for Mass spectrometry analysis 
A total of ~1.5x108 cells (30 X 10 cm plates) were lysed as previously described in section: 

2.3.1, but collected into a 50 mL falcon tube (~18 mL lysis buffer). Cell lysate (20 mg) was 

diluted in dilution buffer (lysis buffer without NP-40) to a final concentration of 0.2% NP-40, 

a 2.5 fold dilution. Preclearing was performed with bab-20 (CHROMOTEK) beads at a 

volume equivalent to 1:200 of bab-20 beads (µL):diluted lysate (µL) (~300 µL of bab-20 

bead suspension). Unless stated, all centrifugation steps were performed at 3,000 g for 2 

min. Before addition to diluted lysate, bab-20 beads were equilibrated by washing 3 X in 5 

volumes worth of dilution buffer, compared to volume of bead suspension. To preclear, the 

diluted lysate - bab-20 beads were rotated end-over-end for 1 hr at room temperature and 

centrifuged at 5,000 g for 5 min, supernatant was collected into fresh tubes. IP was 

performed with GFP-TRAP_A (CHROMOTEK) beads at a volume equivalent to 1:800 of GFP-

TRAP_A (µL):diluted lysate (µL) (~75 µL of GFP-TRAP_A bead suspension). Before addition 

to diluted lysate, GFP-TRAP_A beads were equilibrated as stated for bab-20 beads. To IP, 

the diluted lysate – GFP-TRAP_A beads were rotated end-over-end for 18 hr at 4 oC. IP 

complexes were collected and washed sequentially 3 X as described for bead equilibration 

and 2 X in 25 mM AmBic (ammonium bicarbonate in HPLC grade H2O). For all subsequent 

steps, HPLC grade solvents were used. An equal volume of 1% (w/v) Rapigest SF (WATERS) 

in 25 mM AmBic, to the initial volume of GFP-TRAP_A bead suspension, was added to 

washed beads and boiled at 95 oC for 15 min with 5 s vortexing every 2.5 min. Rapigest SF 

was diluted to a final concentration of 0.06% (v/v) in 25 mM AmBic and centrifuged 10000 g 

for 5 min and eluted supernatant collected into Ultra high recovery Eppendorf tubes 

(STARLAB). 
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2.6. Gel based analysis 
2.6.1. SDS-PAGE sample preparation 

Cleared protein lysates (30 µg) were mixed with 5X Laemmli buffer (250 mM Tris-HCl pH 

6.8, 30% (v/v) glycerol, 10% (w/v) SDS, 500 mM DTT, 0.05% (w/v) bromophenol blue) and 

heated at 95 oC for 10 min. Samples were allowed to cool before loading onto a SDS-PAGE 

gel. 

 

2.6.2. SDS-PAGE 
Gels were made to obtain 3 mL a 4% stacking gel (4% (v/v) acrylamide, 125 mM Tris-HCl pH 

6.8, 0.1% (w/v) SDS, 0.1% (w/v) APS, 0.1% (v/v) TEMED) and 5 mL of a 7.5% resolving gel 

(7.5% (v/v) acrylamide, 375 mM Tris-HCl pH 8.8, 0.1% (w/v) SDS, 0.1% (w/v) APS, 0.1% (v/v) 

TEMED). For IP efficiency determination, an equal volume of protein sample was loaded per 

lane. For specific protein quantification, equal total protein (20 µg) of protein samples was 

loaded. For western blotting, all gels were loaded with 5 µL of Color prestained Protein 

Standard, Broad Range (10-250 kDa, New England Biolabs, P7719). For Coomassie staining, 

all gels were loaded with 5 µL of unstained SDS-PAGE standard, broad range (BIORAD, 161-

0317). Electrophoretic separation was performed at 200 V until the bromophenol blue dye 

front reached the end of the gel (~45 min) in electrophoresis running buffer (25 mM Tris pH 

~8.3, 192 mM Glycine, 1% (w/v) SDS). 

 

2.6.3. Coomassie staining 
Colloidal coomassie stain was prepared as described by Candiano et al., 2004. Briefly 

colloidal coomassie consists of: 0.12% (w/v) Coomassie G250 dye, 10% (w/v) ammonium 

sulphate, 10% (v/v) phosphoric acid and 20% (v/v) methanol. Gels were immersed in 

colloidal coomassie solution and allowed to stain for 18 hr at room temperature on an 

orbital shaker. Gels were destained in milliQ H2O on an orbital shaker at room temperature, 

changing the water frequently, until the gel was clear. Images were captured using an 

Epson Scanner. 

 

2.6.4. Western blotting 
Protein transfer onto nitrocellulose membrane (0.2 µm, BIORAD) was performed in transfer 

buffer (electrophoresis buffer + 10% (v/v) ethanol) for 2 hr at 300 mA, 4 oC. Membranes 

were blocked in a 5% (w/v) skimmed milk solution (Marvel) dissolved in TBST (20 mM Tris-

HCl pH 7.5, 150 mM NaCl, 0.1% (v/v) Tween-20) for 1 hr at room temperature on an orbital 

shaker. Membranes were washed 3 X 10 min in TBST with shaking before addition of 
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primary antibody for overnight incubation at 4 oC with orbital shaking. After primary 

incubation, membranes were washed 3 X 10 min in TBST and incubated with the secondary 

antibody for 1 hr at room temperature with orbital shaking. All antibodies used are listed in 

Table 2.4, and were diluted in 5% (w/v) BSA in TBST. After secondary antibody incubation, 

membranes were washed 3 X 10 min in TBST and detected using ECL reagents: ECL clarity 

(BIORAD) or, the more sensitive, Amersham ECL select (GE Lifesciences). Images were 

captured using a Syngene gel imaging G-Box using the GeneSnap image acquisition 

software. Densitometry of western blots was performed using Fiji (Schindelin et al., 2012). 

 

Table 2.4: Summary of antibodies used for western blotting and IP.  

 
 

2.7. Bacterial expression 
2.7.1. LB (Luria-Bertani) broth 

A 2.5% (w/v) solution was made using LB broth powder (Miller, Merck Millipore) in MilliQ 

H2O, as per manufacturer’s recommendations. LB broth was autoclaved once dissolved and 

allowed to cool to room temperature before use. 

 

2.7.2. LB agar and antibiotic selection 
A 3.7% (w/v) solution was made using LB agar powder (Miller, Merck Millipore) in MilliQ 

H2O, as per manufacturer’s recommendations. LB agar was autoclaved once dissolved and 

allowed to cool to ‘touch hot’ temperature before adding required antibiotic selection and 

pouring plates under flame. Plates were allowed to cool and either used instantly or stored 

at 4 °C. Final concentrations of 50 µg/mL kanamycin or 100 µg/mL ampicillin were used. 
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2.7.3. Generation of heat-shock competent cells 
Subcloning Efficiency DH5α competent cells (Thermofisher #18265017) were streaked onto 

agar plates without selection and grown for 18 hr at 37 oC. A single colony was picked and 

grown in 100 mL LB broth, without antibiotic selection, at 37 oC in an orbital shaker to an 

OD600 of 0.6. Bacterial suspension was centrifuged at 1500 g for 10 min at 4 oC and the 

supernatant discarded. Maintaining all steps and buffers on ice, the cell pellet was 

resuspended in 50 mL of 50 mM autoclaved CaCl2 (calcium chloride) and incubated on ice 

for 30 min. Centrifugation was repeated and cells resuspended in 1 mL of 100 mM 

autoclaved CaCl2 and incubated at 4 oC for 18 hr. 100% glycerol was added to a final 

concentration of 20% (v/v) (250 µL), and cells aliquoted and stored at -80 oC, minimum of 

48 hr before use. 

 

2.7.4. Heat shock transformation 
For cloning purposes STELLAR competent cells were used (TakaraBio), for plasmid 

propagation purposes DH5α heat shock competent cells were used (in-house generated, 

section: 2.7.3). Bacteria were defrosted from -80 oC on ice for 30 min. Unless otherwise 

stated, 5 ng plasmid DNA was added to 50 µL bacterial cells and left on ice for further 30 

min in polypropylene tubes (Fisher scientific #10384641). Using a water bath, tubes were 

heated to 42 oC for 45 s before returning to ice for 2 min. SOC media (450 µL, ThermoFisher 

#15544034) was added and cells incubated at 37 oC on an orbital shaker for 1 hr. Bacteria 

were plated, under flame, at 100 µL and 400 µL onto relevant antibiotic selection plates and 

grown at 37 oC for 18 hr. 

 

2.8. DNA based and cloning techniques 
2.8.1. Plasmid visualisation and cloning design 

SnapGene Viewer was used to visualise plasmids maps and sequences, identify restriction 

sites and aid in the design primers (SnapGene software (from GSL Biotech; available 

at snapgene.com)). 

 

2.8.2. Restriction digestion 
All restriction enzymes were purchased from New England Biolabs (NEB) in their HF (High 

Fidelity) format. Digestion was performed using the CutSmart buffer provided at 37 oC for 1 

hr. For testing purposes, 250 ng of DNA was digested with 0.25 µL of enzyme(s) in a total 

https://www.snapgene.com/
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volume of 25 µL. For DNA extraction and further cloning purposes, 1 µg of DNA was 

digested with 1 µL of enzyme(s), in a total volume of 25 µL. 

 

2.8.3. Primer design and generation 
The sequences of all primers used are available in Table 2.5 to Table 2.8. All primers were 

synthesised by Sigma-Aldrich as standard oligonucleotides in a desalted format. Primers 

were resuspended to 100 µM (information supplied by manufacturer) in MilliQ water and 

vigorously vortexed before use, stored at -20 oC. Primers were diluted to 5 µM stocks for 

use.  

 

Table 2.5: Sequencing primers.  
Includes a description of which primers were used for each construct. Sequencing of full length HIFα genes 
required multiple primers due to the length of the genes, only 1 primer used per sequencing reaction. The 
location of the primer binding within the respective gene, and the stop codons, respective to promoter and 5’ -> 
3’ sequence are included. 

 

Table 2.6: In-Fusion cloning primers. 
Includes a description of how the primer was used, 5’ -> 3’ sequence and predicted melting temperature (Tm) 
for the gene specific portion of primer. For sequence, uppercase letters are vector specific and bases inserted to 
correct reading frame, lower case letters are gene specific. 
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Table 2.7: Site Directed mutagenesis primers. 
Includes plasmid for mutation, position of amino acid mutation site with from and to mutations, 5’-> 3’ 
sequence and predicted melting temperature. For sequence, uppercase letters match plasmid sequence, lower 
case letters are sites of mutation. 

 

Table 2.8: Quantitative Real Time PCR (qRT-PRC) primers. 

Includes the gene name that primers were against, direction of primer and 5’ -> 3’ sequence. 

  

2.8.4. Polymerase Chain Reaction (PCR) 
The KOD polymerase kit (Merck Millipore), a high fidelity, proof-reading polymerase, was 

used throughout to reduce mutation risk. PCR reactions were made using the supplied 

reagents and as described by manufacturer. For a 50 µL reaction mix: 5 µL 10X KOD 

polymerase buffer, 5 µL mixed dNTPs (2 mM each dNTP), 3 µL MgSO4 (25 mM), 3 µL of each 

diluted primer stock (5 µM), 20 ng plasmid and milliQ H2O to make the final volume. For 

new primers, a 50 µL reaction was split equally into 10 tubes to test a gradient of 
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temperatures at Stage 2 (b). Once the optimal temperature is determined a larger scale PCR 

reaction was set-up for extraction purposes. PCR reaction conditions in Table 2.9. 

 
Table 2.9 PCR reaction conditions.  
A gradient of 55-70 oC is used for new primers to determine optimal temperature. X = 1 min/kBp of amplified 
gene. 

 

2.8.5. Agarose gel electrophoresis 
A 1% (w/v) high melting temperature agarose gel (Bioline) was made by diluting agarose in 

TAE buffer (40 mM Tris-acetate pH ~8.5, 1 mM EDTA) and boiled until bubbling, ~2 

min/100mL, in a microwave. Molten agar was left to cool until ‘touch hot’ before a final 

concentration of 5% (v/v) Midori Green advanced DNA stain (Nippon Genetics) was added, 

mixed and poured into the gel casting tray (~75 mL). DNA samples were mixed with 

homemade DNA loading dye (5X stock) to a 1X concentration (10% (v/v) glycerol, 3.3 mM 

Tris pH 8.0, 10 mM EDTA, 0.01% (w/v) Bromophenol Blue). Samples ran alongside 10 µL of 

HyperLadder 1KB+ (Bioline). Samples were run at 100 V for 30 min. For extraction, gels 

were visualised using a UV box. For imaging, gels were visualised and imaged using a 

Syngene gel imaging G-Box using the GeneSnap image acquisition software. 

 

2.8.6. In-gel DNA extraction 
DNA fragments were excised from agarose gels using a scalpel and purified using the 

E.Z.N.A in gel extraction kit (Omega bio-tek) following adjusted manufacturers 

recommendations. Briefly, the agarose slice is melted, bound to a DNA binding membrane 

and washed before elution. Adjustments include: extending washing conditions to 4 X 5 

min, and, after the max speed drying spin step, a 10 min incubation at 70 oC with the lid 

open to further dry spin the column membrane before elution. Elution was done in TAE 

buffer, elution volume was dependent on downstream purposes: for In-Fusion Cloning: 20 

µL, for mutagenic PCR and ligation: 50 µL. 
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2.8.7. In-Fusion Cloning 
In-Fusion Cloning (Clontech) technology was used to create all HA-Clover based plasmids 

(HA-Clover only, HA-Clover-HIF-1α and HA-Clover-HIF-2α) following manufacturers 

recommended protocols. Briefly, destination vector was linearised with restriction 

enzymes, PCR was performed on the insert of interest using In-Fusion cloning compatible 

primers: Primers as described in Table 2.6 (with a 5’ 15 bp overhang complementary to the 

destination plasmid). Bases were inserted as necessary to correct the reading frame and 

recover restriction digest sites. Both linearised plasmid and amplified inserts were purified 

using in gel extraction (section 2.8.6). In-Fusion reaction mixes were performed in a total 

volume of 20 µL with a 3:1 molar ratio of insert:vector using the following equation: 

For transformation, 5 µL of the infusion reaction mix was used to with Stellar competent 

cells (Clontech), (conditions described in 2.10.4). 

 

2.8.8. Ligation 
All ligation reactions were performed using T4 DNA ligase and supplied buffer reaction (1X 

concentration: 50 mM Tris-HCl pH 7.5, 10 mM MgCl2 1 mM ATP, 10 mM DTT) following the 

manufacturer’s recommended protocol (New England Biolabs, #M0202S). Briefly, 50 ng of 

digested linearized vector backbone was mixed with digested insert a 1:3 molar ratio of 

vector:insert, calculated using the above equation, with 2 µL of T4 DNA ligase and made to 

total volume of 20 µL with milliQ H2O. Ligation was performed at 37 oC for 30 min, followed 

by heat inactivation at 65 oC for 15 min. For bacterial heat shock transformation, 5 µL of 

ligation reaction was transformed into STELLAR competent cells (Clontech). 

 

2.8.9. Plasmid amplification 
For cloned and mutagenic plasmids, 5 colonies were picked from antibiotic selection plates 

and added into separate 50 mL falcon tubes containing 5 mL LB broth, maintaining 

antibiotic selection, and grown at 37 oC shaking on an orbital shaker for 8 hr. 0.5 mL cell 

suspension was mixed with 0.5 mL 80% (v/v) sterile glycerol to create glycerol stocks and 

froze at -80 oC. The remaining cell suspension was used for DNA extraction using the 

GeneJET plasmid miniprep kit (ThermoFisher). Briefly, cells were pelleted, lysed, neutralised 

to precipitate protein and cleared by centrifugation (13,000 g for 5 min) before applying to 

a DNA binding membrane for washing and elution using centrifugation (13,000 g for 1 min). 

The same adaptions as described for in gel extraction (section 2.8.6) are used. Plasmids 
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were sequenced (see LightRun DNA sequencing section 2.8.10). For a plasmid containing 

the correct gene, 100 µL of the glycerol stock was added into 200 mL LB broth, with 

antibiotic selection, and grown for 18 hr at 37 oC in an orbital shaker. Plasmid was extracted 

from bacteria using the PureLink HiPure Plasmid Maxiprep Kit (Invitrogen), following the 

manufacturer’s protocol. Principles are identical to miniprep, but include an additional 

isopropanol-ethanol precipitation step to further purify the DNA. 

 

2.8.10. LightRun DNA sequencing 
All sequencing was performed with GATC Biotech (Eurofins genomics) using the LightRun 

sequencing option. Sequencing required, 100 ng of purified plasmid mixed with 5 µL of a 

single diluted sequencing stock (5 µM), made to a total of 10 µL in H2O. Sequencing primers 

listed in Table 2.5. 

 

2.9. Cloning HA-Clover plasmids 
A schematic view of cloning protocol is presented in Figure 3.10. 

 

2.9.1. HA-Clover-HIF-1α  
HA-HIF-1α plasmid (a gift from Prof Sonia Rocha) was linearised with BamHI. The Clover 

gene was PCR amplified using the stated primers (Table 2.6) from a Clover-only plasmid 

(Addgene #40259). The Clover stop codon was removed and both BamHI sites were 

restored (either end of sticky ends) during primer design, to maintain the reading frame 

and allow easy removal of the Clover gene should other tags be required in the future. The 

final plasmid map is depicted in (Figure 2.1). 
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Figure 2.1: Plasmid map of cloned HA-Clover-HIF-1α.  
Viewed and annotated in Snapgene viewer (SnapGene software (from GSL Biotech; available at snapgene.com)) 

 

2.9.2. HA-Clover only  
The HA-HIF-1α plasmid was digested with both BamHI and EcoRV to remove the HIF-1α 

gene. The clover gene was amplified with new stated primers (Table 2.6) from the Clover-

only plasmid. Primer design restored the N-terminal Clover BamHI and C-terminal EcoRV 

sites, and a stop codon C-terminally adjacent to the EcoRV site. This was done for future 

cloning with easy production of N-terminal and C-terminal clover constructs by linearization 

with EcoRV or BamHI respectively. The final plasmid map is depicted in Figure 2.2. 

 

 

 

 

https://www.snapgene.com/
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Figure 2.2: Plasmid map of cloned HA-Clover only.  
Viewed and annotated in Snapgene viewer (SnapGene software (from GSL Biotech; available at snapgene.com)). 

 

2.9.3. HA-Clover-HIF-2α  
The HA-Clover only plasmid was linearised with EcoRV and the HIF-2α gene PCR amplified 

with stated primers (Table 2.6) from a HaloTag-HIF-2α plasmid available in the Sée lab. The 

C-terminal EcoRV site was restored in primer design. The final plasmid map is depicted in 

Figure 2.3. 

 

 

 

 

 

 

https://www.snapgene.com/
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Figure 2.3: Plasmid map of cloned HA-Clover-HIF-2α.  
Viewed and annotated in Snapgene viewer (SnapGene software (from GSL Biotech; available at snapgene.com)) 

 

2.10. Site directed mutagenesis (SDM) - 
aaaMEGAprimer 

SDM was used to create point mutations within the HIFα gene. MEGAprimer protocol is 

depicted diagrammatically in Figure 2.4. The PCR protocol described (2.8.4) was used for 

SDM. Flanking primers were designed within the vector backbone to create a full-length 

mutant HIFα gene, irrespective of HIF-1α or HIF-2α gene, thus allowing the same flanking 

primers to be used for SDM of either the HIF-1α or HIF-2α genes. Mutagenic primers (7 bp 

either side of mutated codon) were designed so that their orientation would create the 

smallest PCR fragment in a first round of PCR (all primers listed in Table 2.7). First round 

https://www.snapgene.com/
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PCR used the mutagenic primer and a single flanking primer to create the MEGAprimer. 

MEGAprimer was extracted following the in-gel extraction protocol described (section 

2.8.6). Second round PCR followed an adapted version of the described PCR protocol 

(2.8.4), using: 250 ng MEGAprimer and 50 ng plasmid. The second flanking primer was used 

with the MEGAprimer to amplify the full length gene. The full length gene was in-gel 

extracted and digested with the restriction enzymes: BsrGI and NotI. HA-Clover was 

digested identically and both subjected to in-gel extraction (2.8.6). Vector backbone and 

insert were ligated together (see ligation section: 2.8.8) and transformed by heat shock 

(2.7.4) into STELLAR competent cells (Takarabio). 
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Figure 2.4: Schematic depiction of the MEGAprimer protocol used for SDM of S31 of HIF-1α.  
Includes a description of each step performed throughout the creation of SDM plasmid. F1 and F2 = flanking 
primer locations, M = mutagenic primer location, MP = MEGAprimer location, MFL = mutant full-length gene. B 
= BsrGI and N = NotI restriction enzyme sites. X = ligation site. Plasmid viewed and automatically annotated 
using Snapgene Viewer (SnapGene software (from GSL Biotech; available at snapgene.com)). 

https://www.snapgene.com/
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2.11. Sample preparation for mass 
aaaspectrometry (MS)  

HPLC grade solvents and highest purity powdered chemical reagents were used 

throughout. 

 

2.11.1. Reduction and alkylation 
A Nanodrop-2000 was used to determine protein concentration of eluted material at a 

wavelength of 205 nm. DTT (Dithiothreitol), dissolved in 25 mM AmBic, was added to a final 

concentration of 3.33 mM and heated at 60 oC for 10 min. The sample was cooled to room 

temperature and IAA (Iodoacetamide), dissolved in 25 mM AmBIC, was added to a final 

concentration of 9.5 mM and incubated at room temperature in dark for 30 min. Remaining 

IAA was quenched by the addition of DTT to a final concentration of 7 mM DTT. 

 

2.11.2. Proteolytic digestion 
Reduced and alkylated samples were split equally into three Ultra low bind tubes for 

digestion by either: 10:1 (w/w) Trypsin Gold (Promega), 7.5:1 (w/w) Chymotrypsin 

(Promega) or 5:1 (w/w) Elastase (Promega) (w/w: total eluted protein : enzyme). Total 

eluted protein determined from the nanodrop 2000 protein concentration reading in 

2.11.1. Samples were incubated at manufacturers recommended temperatures for 18 hr 

with 600 rpm shaking on a Thermomixer (Eppendorf). Post digestion, trifluoroacetic acid 

(TFA) and acetonitrile (ACN) was added to a final concentration of 1.5% (v/v) and 3% (v/v), 

respectively, and incubated at 37 oC with 600 rpm shaking for 2 hr before incubating on ice 

for 2 hr. The sample was centrifuged at 13000 g for 15 min at 4 oC and the clear supernatant 

collected. For mass spectrometry analysis of binding partners, 5% (20 µL) of the 

supernatant was removed, the remaining 95% was dried to completion under cooled 

vacuum centrifugation (Centrifuge: UNIVAPO – 150 ECH, Cooling unit: UNICRYO MC2L -60 

oC, Vacuum pump: UNIVAC DQ4). 

 

2.11.3. Strong Cation Exchange (SCX) 
Strong cation exchange (SCX) was used for removal of PEG contamination from peptide 

samples prior to TiO2 phospho-peptide enrichment. Dried peptides were dissolved in 200 µL 

of 1.5% (v/v) TFA in H2O and sonicated at maximum power for 10 min (Cavitek 27 L 

professional ultrasonic cleaner, Allendale-ultrasonics). SCX stage tips were prepared by 

packing 5 discs of SCX membrane (Empore™ Supelco 47 mm Cation Exchange disc #2251) 
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into a 200 µL pipette tip. Tips were equilibrated by the sequential washing of 2X 200 µL of 

each: acetone, methanol, H2O, 5% (v/v) ammonium hydroxide (in H2O) and H2O. All 

centrifugation steps were performed at 4000 g for 4 min, or until all liquid had passed 

through the stage tip. Peptide samples were passed through the equilibrated tip 2 X and 

washed 5 X in 50 µL 1.5% (v/v) TFA in H2O before eluting in 3 fractions of 100 µL of 5% (v/v) 

ammonium hydroxide (in H2O). Elutions were combined and dried to completion under 

cooled vacuum centrifugation (described in section: 2.11.2).  

 

2.11.4. Titanium dioxide (TiO2) phospho-peptide 
aaaaaaenrichment 

Dried peptides were dissolved in loading buffer (80% (v/v) ACN, 5% (v/v) TFA, 1 M glycolic 

acid in H2O) to a concentration of 25 ng/μl and sonicated as stated for SCX (section 2.11.3). 

Concentration was determined using the Nanodrop settings described in 2.11.1. A ratio of 

100:1 (w/w) TiO2 resin (GL Sciences) to peptide was added and mixed at 1400 rpm on a 

thermomixer (Eppendorf) at room temperature for 20 min with intermittent vortexing 

every 5 min for 5 s. Sequential wash steps equivalent to 1.2:1 (w/v) TiO2 resin to wash 

buffer were performed subsequently with loading buffer, wash buffer 1 (80% (v/v) ACN, 1% 

(v/v) TFA in H2O) and wash buffer 2 (10% (v/v) ACN, 0.2% (v/v) TFA in H2O) with 1400 rpm 

shaking for 10 min. All centrifugation steps were at 2000 g for 1 min and supernatant was 

removed between washes. Peptides were eluted by sequential 1% (v/v) and 5% (v/v) 

ammonium hydroxide elutions, equivalent to 1.5:1 (w/v) TiO2 resin to elution buffer, and 

combined before drying to completion by vacuum centrifugation (as described in 2.11.2). 

Dried peptides were resuspended in 20 μL of 3% (v/v) ACN, 1% (v/v) TFA (in H2O) and 

sonicated as stated in 2.11.2. Samples were centrifuged at 13000 g for 15 min at 4 oC and 

18 µL taken for LC-MS/MS analysis. 

 

2.12. Orbitrap Fusion Tribrid Mass 
aaaispectrometer 
2.12.1. Liquid chromatography peptide separation 

Peptides were separated by reverse-phase HPLC using an UltiMate 3000 nano system 

(Dionex) coupled in-line to an Orbitrap Fusion mass spectrometer (ThermoScientific). 

Peptides were loaded onto a trapping column (PepMap100, C18, 300 µm x 5 mm) in MS 

loading buffer (3% (v/v) ACN, 0.1% (v/v) TFA) at a flow rate of 9 µL/min for seven minutes. 

Peptides were then resolved at a flow rate of 0.3 µL/min on an analytical column (Easy-
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Spray C18 75 µm x 500 mm, 2 µm bead diameter column) over a 60 minute gradient of 3% 

buffer A (0.1% (v/v) Formic acid in H2O):97% buffer B (80% (v/v) ACN, 0.1% (v/v) Formic acid 

in H2O) to 20% buffer A:80% buffer B, with a final 5 min 100% B wash. 

 

2.12.2. High-Low MS/MS method, binding partner 
aaaaaaidentification 

For unenriched samples, MS1 spectra were acquired in the Orbitrap (60K resolution at a 

m/z 200) over a m/z range of 350-2000, AGC target = 2E5, maximum injection time = 100 

ms. MS2 data were acquired in a data dependent acquisition (DDA) mode, using a ‘top 

speed’ method with a cycle time of 3 s. HCD fragmentation was set to 32% normalised 

collision energy (NCE) in the Iontrap. Iontrap MS2 settings were as follows: rapid mode (15K 

resolution at m/z 200), maximum injection time = 50 ms, fragmentation intensity threshold 

= 5E4 for 2+ to 5+ charge states. A dynamic exclusion window of 60 s was applied at a 0.5 Da 

mass tolerance. 

 

2.12.3. HTP HCD and EThcD method development 
The High-High method by Ferries et al., 2017 was used as an initial starting point to 

optimise MS data acquisition for the IP and TiO2 enriched samples. Briefly, the Orbitrap was 

used for MS1 and MS2 scans (60K and 30K resolution at 200 m/z respectively) in a DDA 

mode, 32% NCE HCD only fragmentation, AGC target = 2E5, fragmentation intensity 

threshold = 5E4, maximum injection time = 100 ms. For EThcD methods, the instrument 

parameter settings were kept the same. ETD reaction time was calibrated relative to the ion 

charge state, using an angiotensin standard. The HCD NCE was changed between 22%-18% 

in sequential LC-MS/MS experiments. 

 

2.12.4. High-High MS/MS method, phospho-peptide 
aaaaaaidentification 

Final method for TiO2 enriched phospho-peptide samples, MS1 spectra were acquired in 

the Orbitrap (60K resolution at a m/z 200) over a m/z range of 350-2000, AGC target = 5E5 

ions, maximum injection time = 250 ms. MS2 data was acquired in a DDA mode, using a top 

speed method with a cycle time of 3 s. HCD fragmentation was set to 32% NCE in the 

Orbitrap. Orbitrap MS2 settings were: 30K resolution at m/z 200, maximum injection time = 

250 ms, fragmentation intensity threshold = 2E4 for 2+ to 5+ charge states and 2 µscans 

performed. A dynamic exclusion window of 5 s was applied at a 10 ppm mass tolerance. 
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2.13. Mass spectrometry Data analysis 
2.13.1. Proteome Discoverer (PD) 

Proteome Discoverer v1.4 was used to process LC-MS/MS data from the Orbitrap Fusion 

Tribrid for binding partner identification and phospho-peptide identification and site 

localisation. All database searches were performed using the MASCOT search engine 

against the UniProt Human reviewed database (updated August 2018); instrument type = 

ESI-FTICR, fixed modifications = cysteine carbamidomethylation; variable modifications = 

methionine oxidation. For TiO2 enriched samples, phosphorylation of S/T/Y was also 

included as a variable modification. For samples digested with trypsin (K/R -not P) a 

maximum of 2 miscleaves allowed. For samples digested with chymotrypsin (F/Y/L/W/M) a 

maximum of 4 miscleaves allowed. For samples digested with elastase (A/V/S/G/L/I) a 

maximum of 8 miscleaves allowed. For the High-Low MS/MS methods (binding partner 

identification), mass tolerances were MS1 = 10 ppm and MS2 = 0.5 Da. For High-High 

MS/MS methods (phospho-peptide detection and PTM localisation), mass tolerances were 

MS1 = 10 ppm and MS2 = 0.01 Da. The ptmRS mode, in PD, was used to localise the site of 

phosphorylation on the peptides. All identified peptides were filtered to a 1% False 

Discovery Rate (FDR) at the Peptide Spectral Match (PSM) level. 

 

2.13.2. MaxQuant and Perseus 
MaxQuant (1.6.7.0, Cox et al., 2011 & Cox et al., 2014) was used for label free 

quantification (LFQ) of high-low data for binding partner analysis. Perseus (1.6.7.0, Tyanova 

et al., 2016) was used to extract and visualise data from the MaxQuant output. All data 

were searched against the UniProt Human Reviewed database (August 2019) and the in-

built contaminants database using the Andromeda search engine. Miscleaves for the 

different enzymes were set as described previously for Proteome Discoverer (section 

2.13.1). For intensity calculations, split peaks was disabled and peptides were selected if 

they were 7 amino acids or longer. Constant modification of cysteine 

carbamidomethylation and variable modifications of methionine oxidation and N-term 

acetylation were used. Default instrument parameter settings were used for an Orbitrap - 

Iontrap system. The match between runs option was enabled with a time window of 10 

min. MS1 and MS2 scans were set to a 10 ppm and 0.5 Da tolerances respectively, peptides 

were filtered to a 1% FDR at the PSM level. Perseus was used to group identified peptides 

by unique protein identifier and average peptide intensity to estimate protein abundance. 

Missing values were imputed with a normalised distribution below the lowest intensity 
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peptides identified. A 2-sample t-test was performed between the two O2 conditions, s0 = 

0.1. Data was imported into R for use with a custom R script (provided by Dr Amy Campbell, 

part of the Eyers group) that colours significant identifications (P value <0.05) red, labels 

points with Gene name (from UniProt) if P value <0.01, and scales point size depending on 

the sum of PSMs between all replicates and conditions. 
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2.14. Final method for HA-Clover 
aaaiimmunoprecipitation and mass 
aaaispectrometry analysis 

Figure 2.5: Flow diagram of the final methodology applied for the immunoprecipitation of HA-Clover tagged 
HIFα proteins 
Figure includes: Day each step was performed, which protocol was used (indented bullet points) and 

approximate sequence coverage obtained at a 1% FDR for both HIF-1α and HIF-2α proteins. 
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2.15. Bioinformatics analysis 
2.15.1. Phylogeny 

Phylogenetic analysis was performed using the human HIF-1α (Q16665) and HIF-2α 

(Q99814) sequences following instructions from Hall, 2013. Briefly, protein sequences were 

BLAST searched for all homologous sequences and a manual filter of 50% sequence 

homology applied. All partial and ‘unknown protein’ labelled sequences were removed. If 

multiple isoforms existed for a single species, reciprocal blast searches were performed to 

identify those sequences with most similarity to the human equivalent, and the others 

removed. Genus-species names were converted into common names using the Taxize 

plugin for R (using the Global Names Resolver (GNR)). Phylogeny analysis was performed in 

MEGA7 using 500 bootstrap replicates. 

 

2.15.2. DAVID 
Gene ontology functional annotation was performed using DAVID (Database for 

Annotation, Visualisation and Integrated Discovery, version 6.8, Dennis et al., 2003). 

Molecular function and Biological process annotations were kept, filtering out all other 

annotations, and P-values adjusted using the Benjamini-Hochberg method; a stringent P-

value correction that multiplies the initial P-value by the total number of annotations 

divided by the rank of a given annotation. Data visualisation was performed using a custom 

R script (provided by Dr Amy Campbell). 

 

2.16. Biochemical assays 
2.16.1. Real Time Quantitative PCR (RT-qPCR) 

Per sample, 4x105 cells (1 X 6 cm plate) were plated, transfected as stated (Section 2.2.3) 

and incubated for a further 24 hr at 21% or 1% O2. Cells were washed in PBS, lysed (400 µL 

of the supplied lysis buffer (Roche)) and RNA extracted using the HiPure RNA isolation kit 

(Roche), following the manufacturer’s recommended protocol. RNA (1 µg), determined 

from a Nanodrop 2000 reading, was converted into cDNA using the SuperScript Vilo reverse 

transcription master mix (Invitrogen), following the manufacturer’s recommended 

protocol. Briefly, all components were mixed and incubated at 25 oC for 10 min, followed by 

1 hr at 42 oC and terminated at 85 oC for 5 min. cDNA was diluted 20 fold in RNAse/DNAse 

free H2O before use. RT-qPCR was performed using a LightCycler480 using white bottom, 96 

-well plates (Roche). Master mixes were prepared so that a single well contained a total of 
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20 µL, consisting of: 10 µL SYBR Green PCR mix (Roche), 2 µL cDNA (or H2O for negative 

controls), 1 µL of each forward and reverse diluted stock primers (5 µM) for VEGF/GLUT-1 

in H2O. For EGLN1/EGLN3 4 µL cDNA and 3 µL of each forward and reverse diluted stock 

primers (5 µM) were used. All primers are listed in Table 2.8. Three technical replicates 

were performed per sample, per run. Three biological repeats were performed. Real Time 

qPCR cycling parameters are detailed in Table 2.10. Data analysis was performed using the 

LightCycler480 SW1.8 software, using the relative quantification method against the house 

keeping gene CYCLOA. 

 

Table 2.10: Cycling parameters used for RT-qPCR. 

 

2.16.2. Luciferase assay 
Per sample, a total of 2x105 cells per dish/well (1 X 35 mm dish / 6 well plate) were grown 

and transfected as described (2.2.3), using 50% of the total DNA quantity for transfection as 

a HRE-Luciferase plasmid (Addgene # 26731). Cells were washed in PBS and lysed in 35 

µL/cm2 of plate surface area (200 µL/ well) using luciferase lysis buffer (25 mM Tris-

phosphate pH 7.5, 15% (v/v) glycerol, 1% (w/v) BSA, 8 mM MgCl2, 0.1 mM EDTA, 2 mM DTT, 

1% (v/v) Triton-X 100) and shaken for 10 min on an orbital shaker. Cell lysate was split into 

three separate wells of 80 µL in a white walled and bottomed 96 well plate (Greiner), for 

triplicate technical replicates. A 2.5 fold excess (200 µL) of luciferase working solution was 

added to each well (500 µM Luciferin (Abcam, #ab145164), 5 µM ATP (Sigma-Aldrich, 

#FLAAS-1VL) in lysis buffer). A BMG Labtech FLUOstar Omega plate reader was used to 

shake the plate at 200 rpm for 5s before standing in the dark for 5 min and an endpoint 

luminometry readings taken. Readings were taken twice to ensure that the luciferase 

reaction was at a steady state. 
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2.16.3. CHIP 
Cells (~5x106, 1x 15 cm dish) were transfected following the high expression level 

transfection (as described in section 2.2.3). CHIP protocol was followed from Batie et al., 

2019. Cells were subjected to incubation at normoxia or 1% O2 for 4 hr, before washing in 

PBS and crosslinking in 1% formaldehyde for 10 min, while maintaining O2 incubation 

conditions. Excess formaldehyde was quenched using 125 mM glycine for 5 min before 

taking cells to the bench. Cells were washed 2 X in PBS before lysing in 400 µL CHIP lysis 

buffer (50 mM Tris pH 8.1, 1% (w/v) SDS, 10 mM EDTA and 1X EDTA free cOmplete 

protease inhibitors (Roche)) per 15 cm dish (2.75 µL/cm2). Cells were scraped for collection 

and left on ice for 10 min before sonication, 8 cycles of 15 s on 30s off at 50% amplification 

on ice (Sonics Vibra-Cell # VCX130). Samples were cleared by centrifugation at 13000 g, 4 oC 

for 10 min and supernatant collected. Lysate (100 µL) was diluted 10 fold in dilution buffer 

(20 mM Tris pH 8.1, 1% (v/v) Triton-X100, 2 mM EDTA, 150 mM NaCl) and precleared using 

2 µg sheered salmon sperm DNA, 20 µL G-Sepharose 50% bead slurry (Generon) and end-

over-end rotation for 2 hr at room temperature. IP was performed by addition of a final 

concentration of 0.1% (v/v) Brij-35, 2 µg of the anti-GFP antibody (Roche, #11814460001) 

and end-over-end rotation at 4 oC for 18 hr. Anti-Mouse IgG was used as a negative control 

for IP (I5381, Sigma). Antibody complexes were captured using 30 µL G-Sepharose 50% 

bead slurry (Generon) in 2 µg sheered salmon sperm DNA with end-over-end rotation at 4 

oC for 1 hr. Captured complexes were sequentially washed for 5 min each at 4 oC with end-

over-end rotation in wash buffer 1 (20 mM Tri pH 8.1, 0.1% (w/v) SDS, 1% (v/v) Triton X-

100, 2 mM EDTA and 150 mM NaCl), wash Buffer 2 (wash buffer 1 + 500 mM NaCl), and 

Wash Buffer 3 (10 mM Tris pH 8.1, 250 mM Lithium Chloride, 1% (v/v) NP-40, 1% (w/v) 

sodium deoxycholate, 1 mM EDTA), 2 X TE buffer (10 mM Tris pH 8.0, 1 mM EDTA) before 

elution with 120 µL elution buffer (1% (w/v) SDS, 100 mM sodium-bicarbonate). Crosslinks 

were reversed by addition of NaCl to a final concentration of 200 mM and incubated at 65 

oC for 18 hr with 300 rpm shaking on a Thermomixer. For proteolytic digestion, Tris-HCl pH 

6.5 and EDTA were added to a final concentration of 40 mM and 10 mM respectively. 

Proteinase K (20 µg) was added and incubated at 45 oC for 1 hr. DNA was purified using the 

PCR product purification kit (NBS biologicals) following the manufacturer’s recommended 

protocol. Purified DNA (3 µL) was used for RT-qPCR analysis, as described (section: 2.15.1).  
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2.16.4. Microscopy  
Samples were grown and transfected, as stated, using 35 mm glass bottom dishes (Greiner). 

Imaging was performed on a LSM780 Zeiss Microscope equipped with GFP (488 nm) and 

RFP (561 nm) filters, 20X and 63X objectives (numerical apertures of 0.75 and 1.4 

respectively) and a temperature (37 oC), O2 (21%) and CO2 (5%) tension control unit. 
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3. Chapter 3: Development 
of a mass spectrometry 
compatible 
immunoprecipitation 
protocol of HIFα 
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3.1. Introduction: 
As discussed in the introduction, HIF-1α and HIF-2α have a high sequence homology of 

~50% but, despite this homology, have different characteristics, including: sub-nuclear 

localisation, oxygen sensitivity and target genes. Regulatory mechanisms of the HIFα 

subunits have been investigated through targeted approaches, yet lack a discovery style 

experiment to identify all PTMs in an unbiased manner. Current published data 

investigating PTM regulation of HIFα subunits have used recombinant fragment-based 

approaches coupled with in vitro assays to identify and characterise PTMs. However, 

there are intrinsic issues with using these types of approaches to define PTMs and their 

roles, including incorrect folding of recombinant proteins, particularly for fragments, and 

thus there is a high possibility that the target proteins may not interact with endogenous 

modifying proteins. Hence, the false discovery (and false negative) rate of these 

techniques can be quite high. It is essential to investigate the regulatory roles of PTMs and 

of interactions with binding partners on full length HIFα expressed in cells, in order to 

understand the isoform specific characteristics observed in cells. 

 

To achieve this, we aimed to adopt a high throughput (HTP) mass spectrometry (MS) 

analysis strategy for the in-depth characterisation of HIF-1α and HIF-2α PTMs and their 

binding partners in cells cultured at different O2 levels. The initial objective was to design 

an immunoprecipitation (IP) protocol for full length HIF-1α and HIF-2α proteins from 

human HeLa cell lines that is compatible with such MS approaches. 

 

3.2. Aims: 
The aim of this chapter was to optimise a strategy for the specific IP of full-length HIF-1α 

and HIF-2α proteins from the widely used human HeLa cell line model.  Due to the low 

expression levels of endogenous HIFα and the relatively high amount of protein required 

for discovery proteomics and comprehensive PTM analysis, this ultimately required 

optimisation of an exogenous protein expression system, utilising a tagged protein for IP. 
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3.3. Endogenous HIF-1α and HIF-2α 
aaaiimmunoprecipitation: 
3.3.1.  Antibody selection 

For greatest biological relevance (minimal artefactual data) in identified PTMs and binding 

partners, the direct IP of endogenous cellular HIF-1α and HIF-2α proteins is required to 

ensure that the physiological signalling pathways are maintained. However, this relies on 

the availability of antibodies that are isoform specific and that recognise proteins in a 

folded state. HIF-1α and HIF-2α have a high sequence homology and their secondary 

structures are unknown; thus, specific antibody selection can be problematic. For IP, 

monoclonal and polyclonal antibodies have intrinsic advantages and disadvantages. For 

example, monoclonal antibodies have little batch-to-batch variation due to their robust 

production techniques, however, although a single antibody may increase the isoform 

specificity, it simultaneously increases the chance of epitope masking due to altered protein 

folding or differential protein binding and/or PTMs within the epitope. These could 

potentially result in IP variability/bias or even failure (Wardle et al., 2015). On the other 

hand, polyclonal antibodies detect multiple epitopes, limiting the risk of epitope masking 

but also may lack isoform specificity, and have a larger risk of batch-to-batch variation 

(Wardle et al., 2015). The most important consideration for IP-based PTM mapping is the 

risk of enrichment of proteins in an unmodified state, or conversely in a particular modified 

state, associated with monoclonal antibody-based IPs. Thus, monoclonal antibody-based IP 

can potentially introduce a bias in identified PTMs and binding partners, if the pathways are 

mutually exclusive, a problem circumvented by polyclonal antibodies and detection of 

multiple epitopes. 

 

A review of the literature identified 4 commonly used antibodies suitable for IP for each 

isoform, which were purchased and tested. A summary of the antibodies evaluated is 

provided in Table 2.4. Interestingly, there is a lack of evidence by manufacturers, or in 

publications, that unequivocally show isoform specificity of antibodies. Considering that 

HIF-1α and HIF-2α have near identical masses from western blotting (~120 kDa) it is 

impossible to distinguish between them without tagged-overexpression (resulting in a 

molecular weight shift) or silencing/knockdown controls.  

 

Specificity testing was conducted using the exogenous expression of a GFP tagged- HIF-1α 

or HIF-2α protein, using O2 stable GFP-HIF-1α-DM and GFP-HIF-2α-DM constructs, available 
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in the Sée lab. The DM constructs have been mutated to remove the O2 sensitive proline 

residues (P402A/P564A and P405A/P531A for HIF-1α and HIF-2α respectively), thus 

eliminating their O2 dependent regulation for maximal stability, and abundance, regardless 

of environmental O2 levels. These GFP-tagged HIFα proteins have an increased apparent 

molecular weight to ~150 kDa by western blot, thus independent exogenous expression can 

be used for cross reactivity testing by western blot (Figure 3.1).   

 

Figure 3.1: Sensitivity and specificity testing of 8 different commercially available HIF-1α and HIF-2α 
antibodies. 
Untransfected HeLa cells were incubated for 4 hr at 21% or 1% O2 as indicated. Transiently transfected GFP-

HIFα-DM isoforms were left at 21% O2 for 24 hr post transfection, before lysing all conditions simultaneously. 

Western blotting antibody dilutions are stated in Table 2.4. β-actin was used as a loading control. 

 
Except for BD610959 and 26422-1-AP, every antibody tested could specifically and 

adequately detect the exogenously expressed GFP-HIF-1α-DM or GFP-HIF-2α-DM proteins. 

However, only 20960-1-AP (Proteintech) and a700-003 (Bethyl laboratories) could detect 

the endogenous HIF-1α and HIF-2α proteins respectively, thus these antibodies were used 

for IP optimisation. These antibodies are used throughout this thesis for western blotting 

and referred to as HIF-1α or HIF-2α primary antibodies. 

 

3.3.2. Antibody IP optimisation 
When using IP of bait proteins to identify binding partners it is important to consider and 

minimise the co-purification of non-specific ‘background’ proteins. These contaminants are 
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generally environmentally introduced, inadvertent from sample preparation, or of high 

cellular abundance proteins, such as serum albumin or myosin, and are predicted to 

account for up to 95% of all IP coupled mass spectrometry identified proteins (Trinkle-

Mulcahy, 2012). Hence it is essential to optimise IP conditions to limit non-specific 

interactions, while maintaining weak or transiently interacting proteins of interest.  

 

A protocol for the IP of HA-tagged proteins using a commercially available anti-HA antibody 

cross-linked to magnetic beads (Pierce) had previously been optimised in the Eyers lab. 

Therefore, this protocol was used as a starting point for the IP of endogenous HIFα 

proteins, substituting the anti-HA antibody for the anti-HIF-1α or anti-HIF-2α antibodies. 

Although this protocol uses a cross-linking strategy, for initial optimisations this step was 

not included. This protocol uses a relatively stringent lysis and wash buffer to minimise non-

specific interactions, however is above the manufacturers recommended concentrations, 

therefore a second lysis buffer recommended by the antibody manufacturers was also 

tested (Figure 3.2). 

 

Figure 3.2: IP optimisation for endogenous HIF-1α and HIF-2α proteins.  
Western blot analysis using either the HIF-1α or the HIF-2α antibodies of total lysate (10% volume), unbound 
protein material (10% volume) and eluted fraction (100% volume) following IP using either the Eyers lab 
protocol, or manufacturer recommended conditions. HeLa cells were incubated at 1% O2 for 4 hr before lysis in 
the relevant lysis buffers. Arrows indicate bands of the correct molecular mass for HIF-1α and HIF-2α. Lysis 
buffer 1 composition: 25 mM Tris pH 8.0, 350 mM NaCl, 1 mM EDTA, 1 mM EGTA, 0.5% Triton X-100. Lysis 
buffer 2 composition: 50 mM Tris pH 8.0, 120 mM NaCl, 1 mM EDTA, 0.2% NP-40. Both lysis buffers were 
supplemented with EDTA-free cOmplete protease inhibitors and phosSTOP phosphatase inhibitors (Roche). 

 

The initial immunoprecipitation protocol from the Eyers lab was successful in purifying 

~40% of total endogenous HIF-1α protein. IP efficiency was increased by ~2 fold when using 

the manufacturer recommended lysis/wash buffer (Figure 3.2), determined by 

densitometry (data not shown). However, neither method tested was successful for IP of 

HIF-2α, shown primarily by a lack of a band at the correct molecular weight in the elution 

lane, and secondarily by equally intense bands between the lysate and unbound lanes. 
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Combined, these data suggest a potential problem with antibody-epitope recognition or 

antibody-bead association, rather than loss caused by wash steps or failure to elute. An 

intense band of ~55 kDa is seen in the elution lane of all conditions; presumably the 

antibody heavy chain given that the same antibody is used for IP and western blotting. This 

suggests that the anti HIF-2α antibody can efficiently bind to the magnetic beads, thus the 

problem rather lies in epitope recognition. To confirm this, the antibody-bead binding 

efficiency was tested by following the IP protocol for both anti-HIF-1α and anti-HIF-2α 

antibodies without cellular lysate. ‘Mock’ IPs were then analysed by SDS-PAGE and stained 

with Colloidal Coomassie stain to highlight all proteins in the sample (Figure 3.3). 

Figure 3.3: Antibody bead binding efficiency.  
Colloidal coomassie stained SDS-PAGE gel of lysate free, mock IPs using the anti-HIF-1α and anti-HIF-2α 
antibodies. IPs were performed following the optimised protocol from the Eyers lab without cross-linking and 
using the manufacturer recommended lysis/wash buffer. Lysis performed in 5X Laemmli’s buffer. 10% of input, 
unbound and elution samples were loaded and stained with Colloidal Coomassie stain. 

 

For the anti-HIF-1α antibody, where IP was successful (Figure 3.2), there was a single band 

of ~55 kDa in the input material. As expected for successful IP, without cross-linking, this 

band is significantly reduced and then recovered by bead binding and elution stages 

respectively (Figure 3.3). A faint band in the unbound lane can be explained by the high 

quantity of antibody used potentially being above the maximum binding capacity of the 

beads. For the anti-HIF-2α antibody, 3 bands were detected in the input lane; a prominent 

~66 kDa band and two equally intense bands of ~55 kDa. The manufacturer (Bethyl 

Laboratories) states this antibody is supplied in a 0.1% BSA solution (~66 kDa), which aligns 

to the 66 kDa BSA standard of the molecular weight ladder (BIORAD Broad MW range 

marker unstained, catalogue #: 1610317), thus confirming the identity of the heavier band. 

This suggests that the ~55 kDa bands are the antibody chains. The ~55 kDa bands have an 
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identical band pattern to the anti-HIF-1α antibody positive control (Figure 3.3), thus this 

suggests that the anti-HIF-2α antibody successfully binds to, and elutes from, the magnetic 

beads. Hence, the likely explanation for IP failure is that the HIF-2α antibody cannot identify 

the epitope; either by protein folding or protein-complex formation that masks the epitope, 

as hypothesised previously, but works for western blotting because of protein 

denaturation. 

 

Overall, endogenous HIF-1α could be successfully and efficiently pulled-down using the 

manufacturer recommended buffers with the method developed in the Eyers lab. However, 

due to the high amount of protein necessary for discovery PTM analysis (see Figure 3.15 

(A)) and without a successful method to IP endogenous HIF-2α, it was decided to explore 

tag-based exogenous expression strategies.  

 

3.4. Exogenous expression of tagged- HIF-1α 
aaaiand HIF-2α for immunoprecipitation: 
3.4.1.  Exogenous expression optimisation: 

There are many options for the expression of tagged fusion proteins in cell lines including 

genomic knock-in technology (CRISPR/Cas9), bacterial artificial chromosomes (BACs) and 

plasmids, each with inherent advantages and disadvantages. Although technically 

challenging and costly, the development of CRISPR/Cas9 has revolutionised human cell 

genetic manipulation. This technology can insert genes/tags within the genome at specific 

sites, thereby maintaining endogenous protein levels and improving biological reliability for 

pathway interrogation (Cong et al., 2013 & Hsu et al., 2014). BACs are large supercoiled 

segments of DNA that allow expression of a target gene of interest under its endogenous 

promoter, following expression into relevant cells. BACs are typically ~200 kbp in size and 

contain large segments of upstream and downstream neighbouring DNA to the endogenous 

gene of interest. Putting the gene into its natural context increases the likelihood that 

endogenous gene expression regulation may be maintained, but is not 100% successful. As 

an added complication, BACs require extensive genetic manipulation for tag insertion and 

screening of clones to evaluate copy number, and thus BAC-mediated protein expression 

levels, in comparison with endogenous protein (Shizuya et al., 2001). In contrast, plasmids 

are small (usually <10 kbp) circular pieces of DNA which contain all the essential signalling 

motifs to promote self-replication and transcription of the tagged-gene of interest 

independently to the host genome (reviewed by del Solar et al., 1998). Consequently, 



94 
 

plasmids do not contain endogenous transcriptional promoters or regulatory pathways and 

typically result in high expression of the desired protein, either continuously or following 

induction. Their easy genetic manipulation, ability for large scale fusion-protein production 

and ease for transient transfection/stable cell line selection have popularised the use of 

plasmids exponentially.  

 

Without prior knowledge of which tags will work for successful HIFα IP, combined with the 

difficulty of creating knock-in/BACs systems and the requirement for large quantities of 

protein post IP (which would not be available with endogenous expression levels (Figure 

3.15 (A)), a transient plasmid based exogenous expression system was selected for 

optimisation for the pull-down and PTM analysis experiments. 

 

Plasmid DNA introduction into cells involves getting the hydrophilic DNA through the 

hydrophobic phospholipid bilayer. Three main strategies have been developed for DNA 

transfection into cells: virus-mediated, chemical reagents and physical perturbations, each 

having different degrees of cytotoxicity, efficiency and reproducibility (reviewed by Kim et 

al., 2010). The most common, and simplest, technique for DNA transfection is the use of 

commercially available chemical reagents, known as transfection reagents. These are 

designed to facilitate DNA endocytosis and subsequent ejection inside the cytoplasm. As 

high quantities of tagged-HIFα proteins are required for IP and subsequent comprehensive 

PTM analysis by MS, it was important to optimise transfection efficiency. Several available 

transfection reagents were tested (Table 2.1). Optimisation studies aimed to obtain the 

greatest number of transfected cells, with a reasonable level of expression, while 

maintaining nuclear localisation, cell viability and avoiding cellular stress (membrane 

blebbing). 

 

For initial optimisations, a luciferase reporter construct under the control of a strong viral 

CMV promoter (CMV-Luc) was transfected into HeLa cells, following the manufacturers 

recommended protocols for each reagent. Thus, luciferase signal reflects the total 

transfection rate of cells. Additionally, the volume of each transfection reagent was altered 

0.5X and 2X, maintaining the quantity of plasmid DNA, to identify the best DNA:reagent 

ratio for transfection efficiency (Figure 3.4 (A)).  
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Figure 3.4: Transfection efficiency optimisation by luciferase assay and fluorescence imaging.  
A) Comparison of transfection efficiencies between 7 different transfection reagents, measured as a luciferase 
response from a CMV-Luciferase plasmid in HeLa cells. B) Microscopy analysis of FuGENE HD, PEI and JetPrime 
using the optimised DNA:reagent ratios from (A). Overexpression of GFP-HIF-2α-DM was used for fluorescence 
imaging at 20X magnification, with a 2x2 grid of images at brightfield and 488 nm fluorescence excitation, and 
single images at 63X magnification using a Zeiss LSM 780 microscope. 
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These studies showed that PEI 40K MAX linear (referred to as PEI from now) and JetPrime 

had the greatest transfection efficiencies according to CMV-luciferase response, 

considerably outperforming the more common transfection reagents by 2-5 fold 

respectively (Figure 3.4 (A)). Although luciferase assays provide a high throughput method 

for determining transfection efficiency, they cannot distinguish between an increased 

number of transfected cells or dramatic luciferase overexpression in fewer cells. Therefore 

the two best transfection reagents (PEI and JetPrime) and FuGENE HD, used as a 

benchmark as it was previously optimised within the Sée lab, were further assessed for 

exogenous protein expression by confocal fluorescence microscopy (Figure 3.4 (B)).  

 

GFP-HIF-2α-DM expression was used because of the highly distinct, nuclear only, fine 

punctate localisation of the HIF-2α protein (Hara et al., 1999 & Taylor et al., 2016). Strong 

overexpression of GFP-HIF-2α-DM has been shown to lead to aggregation and cytoplasmic 

expression; thereby allowing an assessment of aberrant expression. The 20X magnification 

images (Figure 3.4 (B)) clearly confirm the better transfection efficiency of PEI and JetPrime 

compared to FuGENE HD, measured by the number of fluorescent cells. Brightfield images 

of the same region shows considerably more cell death (rounded cells) with JetPrime and 

FuGENE HD transfections compared to PEI transfection. At 63X magnification, which 

permits visualisation of nuclear localisation, it is apparent that JetPrime causes significant 

cellular stress with membrane blebbing and cytoplasmic expression of GFP-HIF-2α-DM. 

Conversely, FuGENE HD and PEI transfections have the expected specific nuclear punctate 

localisation (Hara et al., 1999 & Taylor et al., 2016). Thus, PEI was selected as the 

transfection reagent for optimising tagged-HIFα IPs, at a 4 µL:1 µg transfection 

reagent:DNA ratio per 200,000 cells in a 35 mm dish (8.8 cm2). 

 

3.4.2.  Tag selection 
Exogenous expression of an IP tagged- fusion protein can have many advantages over 

target-antibody based IP approaches, including the circumnavigation of problems 

associated with the use of polyclonal and monoclonal antibodies discussed previously 

(section 3.3.1). A multitude of tags have been developed for IP, each with intrinsic 

advantages such as enhancing solubility or fluorescence for ease of visualisation (reviewed 

by Terpe, 2003). Within the Sée lab, there has been some success in using the HaloTag and 

GFP-Traps technology for purification of non-HIFα proteins. N-terminal tagged HaloTag-HIF-

2α and GFP-HIFα-DM constructs (N-terminal and C-terminal tagged), were readily available 
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in the Sée lab and were therefore used as initial starting points for optimisation. IP kits 

against these tags are commercially available, HaloLink resin (Promega) and GFP-Traps 

(CHROMOTEK), and have been successfully used by many groups for IP and MS analysis 

(Daniels et al., 2014, Ohana et al., 2011, Trinkle-Mulcahy et al., 2008, Lipinszki et al., 2014 & 

Smits et al., 2013). 

 

3.4.3.  HaloTag IP optimisation 
A problem associated with all antibody-based IP protocols is that the IP efficiency reaches a 

saturation equilibration, thus resulting in efficiencies of 60-90%. This is dependent on 

factors such as antibody strength/dissociation constant (Kd) and steric hindrance of 

neighbouring antibodies by target protein binding (Encell et al., 2012). This effect can be 

overcome by using an excess of antibody and capturing beads, but simultaneously results in 

the increased risk of contaminant binding partner identification. Thus, for low expression 

level proteins, such as transcription factors, large numbers of cells may be required. 

HaloTag was developed to bypass this equilibrium effect by covalent capture of 

HaloTagged- fusion proteins (Los et al., 2008). HaloTag is a haloalkane dehalogenase 

protein that contains a mutated aspartate catalytic triad. This allows the activation and 

nucleophilic attack of haloalkanes to form a covalently bound intermediate but lacks the 

ability to hydrolyse the bond to release free enzyme (shown schematically in Figure 3.5). 

Thus HaloLink resin, coated with haloalkanes, covalently captures HaloTag- fusion proteins. 

For elution, a highly specific protease sequence can be incorporated into a linker sequence 

between the HaloTag and protein of interest to recover the protein and binding partners, 

away from the HaloTag and non-specific contaminants (Los et al., 2008, Encell et al., 2012 & 

Daniels et al., 2014). 
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Figure 3.5: Schematic view of the catalytic mechanism of the Haloalkane dehalogenase protein versus the 
HaloTag technology. 
Critical residues required for function are shown with hydrogen bonding (dotted lines) and movement of 
electrons (arrows). Red is the haloalkane molecule that is coupled to R, for example beads. A) Endogenous 
haloalkane dehalogenase, Asp106 acts as a nucleophile to attack haloalkanes to form the covalently bonded 
alkane-enzyme intermediate. Glu130 promotes the general base nature of His272 resulting in the hydrolysis of 
the alkane-enzyme bond, releasing free enzyme. B) HaloTag technology, mutation of His272 to Phe results in 
the inability to hydrolyse the covalently bound intermediate; thus covalently trapping HaloTag (Taken from 
Encell et al., 2012). Asp = aspartic acid, His = histidine, Glu = glutamic acid, Trp = tryptophan, Phe = 
phenylalanine 

 

Initially we needed to determine whether the exogenous expression of HaloTag-HIF-2α 

maintained the physiological properties of HIF, such as nuclear localisation. A benefit of the 

HaloTag is the ability for specific labelling and direct visualisation, using a cell permeable 

fluorescent dye (Los et al., 2008), such as HaloTag- Oregon Green (Promega). HaloTag-HIF-

2α was transfected into HeLa cells and visualised by fluorescent confocal microscopy 

(Figure 3.6). Inclusion of an untransfected control highlights that the labelling was specific 

to HaloTag expressing cells. At 10X magnification a poor transfection efficiency was 

observed at ~20% (Figure 3.6), however this could be artificially under-represented due to a 

potentially inefficient labelling step. Importantly, at 100X magnification nuclear localisation 

is punctate, as expected (Figure 3.6). Thus, IP optimisation was conducted. 
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Figure 3.6: Transfection efficiency and nuclear localisation of HaloTag-HIF-2α. 
Untransfected or HaloTag-HIF-2α transfected HeLa cells, using the PEI protocol as described and imaged 
following HaloTag- Oregon Green labelling, following the manufacturer’s protocol. Single images were acquired 
using brightfield and at 488 nm fluorescence excitation at 10X and 100X magnification with a Zeiss LSM 780 
microscope. 

 
To obtain enough HaloTag-HIFα protein for LC-MS/MS analysis it was essential to ensure 

that transfection efficiency scaled proportionally with plate size. Due to the covalent nature 

of the HaloTag, either fluorescent labelling or IP can be performed per experiment. Hence, 

cells were grown in small dishes (as optimised) or large 10 cm dishes and transfected, 

scaling for plate surface area (~6 fold). Cells from both plate sizes were lysed, as for IP, and 

an aliquot of lysate was fluorescently labelled in vitro. Subsequent SDS-PAGE and 

fluorescent gel scanning allowed me to assess the protein expression levels of HaloTag-HIF-

2α in comparison to a standard that was fluorescently labelled in live cells (Figure 3.7). 
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Figure 3.7: Transfection efficiency & scalability of HaloTag-HIF-2α exogenous expression. 
A composite image of HaloTag- Oregon Green labelled untransfected or HaloTag-HIF-2α expressing HeLa cell 
lysates, grown as stated. Labelling was performed as indicated and lysis performed following manufacturer’s IP 
protocol. Labelled lysates were analysed by SDS-PAGE and fluorescently imaged on an ImageQuant LAS4000 
system, using the Cy2 filter, and then stained colloidal coomassie. 

 

Similar to in culture labelling, in vitro labelling is specific to HaloTag expressing cells (Figure 

3.7). Comparing identical plate sizes of the in culture labelled standard to the in vitro 

labelled lysate shows an ~1.5 fold increase in fluorescent intensity, thus ~50% transfection 

efficiency (determined by densitometry, data not shown). This apparent increase is likely 

the result of a more efficient labelling technique in vitro than in culture, confirming the 

potential under-estimation of transfection efficiency when live cell imaging, as discussed 

earlier. Similar band intensities were observed between small (35 mm) and large (10 cm) 

cell culture plates, showing that the transfection efficiency was unaffected by plate size. 

Therefore, large plates were prepared for initial IP optimisations. Protocols selected as an 

initial basis included the manufacturer’s recommended protocol and two published 

protocols from Ohana et al., 2011 and Daniels et al., 2014. These protocols are referred to 

as Method 1, Method 2 and Method 3 respectively from now on. 

 

All methods evaluated used the manufacturer recommended lysis buffer, short bead 

binding times and TEV based elution. However, physical perturbations to aid cell lysis 

differed: method 1 uses a 25-gauge needle, method 2 uses sonication and method 3 uses -

80 oC freeze-thaw cycles. All cell lysis methods are followed by centrifugation to remove 

cellular debris. Post lysis, all samples were analysed through In vitro lysate labelling and 

SDS-PAGE analysis. A lack of a fluorescent band was observed for each tested method, 

suggesting a failure in transfection. However, an identically prepared plate labelled in 

culture and analysed by fluorescence confocal microscopy showed adequate levels of 
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transfection (data not shown). Combined, these data suggest a potential loss of the 

HaloTag-HIF-2α protein during lysate preparation, which was not observed previously. 

Differences between the previously used in vitro labelling protocol and the IP protocol is 

the inclusion of a centrifugation step to remove insoluble cellular debris in the latter. Thus, 

to check the effects of centrifugation, lysate and pellets were analysed by western blot 

(Figure 3.8). 

 

Figure 3.8: Analysis of HaloTag-HIF-2α solubility when lysed under different conditions. 
Western blot analysis of untransfected and HaloTag-HIF-2α transfected HeLa cells, probed with an anti-HIF-2α 
primary antibody. Each method uses a lysis buffer of: 50 mM HEPES pH 7.5, 150 mM NaCl, 1 mM DTT, 0.5 mM 
EDTA and 0.005% NP-40. Method 1: manufacturer recommended, lysis by passing through a 25-gauge needle. 
Method 2: Ohana et al., 2011, lysis by sonication, maximum power for 10 s on 10 s off for 2 min. Method 3: 
Daniels et al., 2014, lysis by a 1 hr -80 oC Freeze-Thaw cycle. Post lysis, lysates were centrifuged 10 min at 
13,000 g and cleared supernatant collected. Cellular debris pellets were resuspended in Laemmli’s buffer. 
Method 1 was used for the untransfected and uncleared lysates, but without the centrifugation step for the 
latter. 

 

Using an anti-HIF2α antibody provides the advantage of simultaneous investigation of the 

endogenous and exogenously expressed HIF-2α proteins. An untransfected control shows 

that lysis is efficient and the endogenous HIF-2α protein is soluble, with a single band of 

~120 kDa in the cleared lysate lane only (Figure 3.8). For the transfected samples, the 

uncleared lysate shows a doublet band pattern equating to endogenous HIF-2α and the 

HaloTag-HIF-2α protein, at ~150 kDa. All three tested lysis methods result in the removal of 

the HaloTag-HIF-2α protein, shown by a single 150 kDa band in the resuspended cellular 

debris lanes only. The solubility of endogenous HIF-2α protein was unaffected by the 

exogenous expression of HaloTag-HIF-2α protein, yet the HaloTag-HIF-2α protein was 

clearly lost from the lysate fraction post centrifugation. Without centrifugal clearing, or the 

ability to pre-clear samples, the ratio of non-specific interactors will inevitably increase 
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dramatically, which may mask the signal of true binding partners. Thus, HaloTag based IP 

was abandoned and GFP tagged IP approaches were explored. 

 

3.4.4.  GFP-Trap IP optimisation 
GFP-Traps (CHROMOTEK) are commercially available, pre-conjugated antibody-beads 

designed for the IP of GFP-tagged proteins. Unlike traditional antibody IP approaches, GFP-

Traps utilise the development of nanobodies, which are comparable to a single heavy chain 

of antibodies but retain epitope recognition. Due to their more simplistic nature, 

nanobodies can be created with much greater affinities; usually with dissociation constants 

(Kd) in the pM range (reviewed by Muyldermans, 2013). GFP-Traps are claimed to have a Kd 

of <1 pM and are available conjugated to different matrices; agarose coupled are used 

throughout these studies. 

 

GFP-HIF-2α-DM was previously used during transfection optimisation (Figure 3.4 (B)), as 

such localisation studies were not repeated. Previous data from the Sée lab, and 

manufacturer’s statements, suggests orientation of the GFP-tag in relation to the protein of 

interest can be essential for successful IP. Thus, both GFP-HIFα-DM and HIFα-DM-GFP were 

tested for IP efficiency (Figure 3.9 (A)). By comparing elution efficiency it was clear that N-

terminally tagged GFP-HIFα-DM constructs are required for IP; with ~90% efficiency 

compared to an undetectable band for C-terminal HIFα-DM-GFP constructs (Figure 3.9 (A)). 

C-terminal HIFα-DM-GFP constructs appear to bind GFP-Traps, because of the lack of a 

band in unbound lanes, but lack an elution band. This result is unlikely to be due to failure 

to elute, because of the use of 5X Laemmli’s buffer (10% (w/v) SDS). Alternatively, a more 

likely scenario is that weak binding interactions between GFP traps and C-terminal HIFα-

DM-GFP may result in the dissociation of the HIFα-DM-GFP protein from the GFP-Traps 

during washing. 
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Figure 3.9: The development of a mass spectrometry compatible GFP-Trap IP protocol. 
HeLa cells were grown in 21% O2 and transfected with the indicated plasmid. Cells were lysed 24 hr post 
transfection in 50 mM Tris pH 8.0, 120 mM NaCl, 1 mM EDTA, 0.5% NP-40 supplemented with EDTA free 
cOmplete protease inhibitors (Roche) and phosSTOP (Roche). Lysate was diluted to 0.2% NP-40 in an identical 
lysis buffer lacking NP-40. IP was performed according to the manufacturer’s protocol. Western blots were 
performed with a primary anti-GFP antibody. A) Efficiency of IP using N-terminal and C-terminal GFP tagged 
HIFα-DM constructs, elution with 5X Laemmli’s buffer. B) Development of a GFP-Trap IP protocol compatible 
with high throughput mass spectrometry analysis. Changes include a preclearing step with bab-20 beads, HPLC 
grade buffers, addition of 2 X 25 mM Ambic washes, and elution with 1% RapiGest SF in 25 mM Ambic pH 8.0. A 
secondary elution in 5X Laemmli’s was performed subsequently.  

 

N-terminal GFP-HIFα-DM was efficiently immunoprecipitated for both HIFα proteins, 

therefore further optimisations focused on modifications to create a MS compatible 

protocol and limit non-specific binding partners (Figure 3.9 (B)). To this end, all buffers were 

made with HPLC grade components, a preclearing step and elution in a MS-compatible 

buffer were all employed. bab-20 beads (CHROMOTEK) have an identical composition of 
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matrix compared to the GFP-Traps, but lack the nanobody conjugation. Thus, incubation of 

bab-20 beads with cleared lysate, prior to IP, can remove non-specific binding partners 

resulting from matrix association (pre-clear). RapiGest SF (Waters) is an acid labile, mild 

detergent that can be degraded into an insoluble product (and a volatile soluble 

component) for removal by centrifugation (Yu et al., 2003). Thus, RapiGest SF elution allows 

the recovery of proteins and HTP MS analysis without the need for sample clean-up steps. 

 

Western blot analysis of the modified protocol (Figure 3.9 (B)) shows that pre-clearing does 

not affect the levels of available GFP-HIFα-DM protein, shown by near identical band 

intensities of lysates pre- and post- preclearing lanes. Importantly, RapiGest SF elution is 

highly efficient, resulting in ~80% IP efficiency of both GFP-HIF-1α-DM and GFP-HIF-2α-DM 

proteins (Figure 3.9 (B)). Although a prominent band exists with the secondary elution, it is 

crucial to note that 100% of this elution was loaded for analysis, 10 fold greater than the 

RapiGest SF elution. Hence, the secondary elution is artificially abundant for direct 

comparisons. Once the IP protocol was developed, WildType (WT) GFP-HIFα constructs 

were required for biological relevance of IP experiments. Previous WT HIFα plasmids 

obtained by the Sée lab were found to have multiple point mutations that result in amino 

acid substitutions, therefore new WT HIFα constructs were obtained and cloned to contain 

the GFP tag. 

 

3.5. WildType HA-Clover-HIFα Cloning: 
A WT HA-HIF-1α plasmid was obtained (a gift from the Prof Rocha lab) and a GFP isoform 

(Clover) was cloned into the plasmid for GFP-Trap IP, and allow further downstream 

microscopy analysis. Although a HA-tag is present in this construct there is no guarantee 

that the previously optimised HA IP protocol within the Eyers lab would be successful. 

Clover is a GFP isoform with greater dynamic range and photostability, thus is preferable 

for advanced microscopy techniques (Lam et al., 2012). GFP-Traps are stated to be as 

efficient for IP when using Clover. To evaluate this, a Clover- only plasmid was 

immunoprecipitated prior to cloning. Western blot analysis showed an efficiency of ~80% 

for Clover IP (data not shown). Thus, insertion of the clover gene into the HA-HIF-1α 

plasmid was conducted (HA-Clover-HIF-1α), and subsequent cloning of HA-Clover-HIF-2α 

and HA-Clover only plasmids performed, using the In-Fusion cloning (TakaraBio) 

technology. All plasmid cloning is schematically depicted in Figure 3.10.  
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Figure 3.10: Schematic view of the In-Fusion cloning strategy used for the creation of HA-Clover-HIFα and HA-
Clover plasmids. 
Green = Clover sequence, Grey = HIFα sequences, yellow/pale green = regulatory domains of plasmid. 
Restriction enzyme sites (B=BamHI, E=EcoRV) and primer designs for each plasmid are included A) HA-Clover-
HIF-1α from HA-HIF-1α. B) HA-Clover from HA-HIF-1α. C) HA-Clover-HIF-2α from HA-Clover. Plasmid maps 
viewed in SnapGene software (SnapGene software (from GSL Biotech; available at snapgene.com)). 
 

https://www.snapgene.com/
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Initially it was presumed that the HA-tag would have minimal effect on IP efficiency of HA-

Clover-HIFα, due to its short length of 9 amino acids. Therefore, once cloned, HA-Clover-

HIF-1α was tested for IP efficiency with GFP-Traps; confirming this assumption with an 

efficiency of ~85% (Figure 3.11). Thus, cloning of HA-Clover and HA-Clover-HIF-2α was 

performed (Figure 3.10 (B) and (C) respectively). The HA-Clover only construct was used as 

a negative control to allow contaminant binding partner identification and background 

subtraction of non-specific binding partners associated with the HA-Clover tag. 

 

Figure 3.11: Determination of the suitability of the HA-Clover tag for IP. 
Western blot analysis of HeLa cells transfected with the indicated plasmid 24 hr prior to 4 hr incubation at 1% 
O2. The mass spectrometry compatible GFP-Trap IP protocol was followed and probed with an anti-GFP primary 

antibody. 
 

All plasmids were validated by DNA sequencing using GATC Biotech, sequencing primers 

listed in Table 2.5. As before for HA-Clover-HIF-1α, HA-Clover-HIF-2α was 

immunoprecipitated and western blotting performed to ensure successful IP with the HA-

Clover tagged construct (Figure 3.11). This shows a similar IP efficiency of ~85% is obtained. 

To obtain more biologically relevant data, I undertook final optimisation steps to test the 

feasibility of low level exogenous expression systems for in-depth PTM analysis. 

 
 

3.6. Final optimisations: 
3.6.1.  Exogenous expression levels 

The newly cloned HA-Clover-HIFα plasmids are under the control of different regulatory 

elements (in the plasmid backbone) compared to the previously used, and optimised, GFP-

HIFα-DM plasmids. Thus, identical transfection conditions may result in different expression 
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levels. In order to optimise the exogenous expression levels of HIFα, maintaining 

physiological O2 dependent protein stability and transcriptional activity, a reporter assay 

using a luciferase plasmid under the control of the Hypoxia Responsive Element (HRE) was 

used (HRE-Luciferase). Hence, luciferase signal is representative of the level of active HIF 

transcription. The optimised PEI transfection protocol was used and the amount of HA-

Clover-HIF-1α was sequentially altered (Figure 3.12). HA-Clover-HIF-1α exogenous 

expression was selected for optimisations due to the endogenous protein being completely 

O2 dependently degraded, thus aberrant exogenous expression at 21% O2 is easy to 

identify. To maintain the overall quantity of DNA in transfection mixes, the addition of a 

transcriptionally inactive empty vector was used, pcDNA3.1(-). 
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Figure 3.12: Expression levels of HA-Clover-HIF-1α, determined by HRE-Luciferase assay. 
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The optimised expression levels of GFP-HIF-1α-DM result in <2 fold greater transcriptional 

activity compared to endogenous HIF-1α (Figure 3.12). An O2 dependent induction of 

transcription of fully stable HIF-1α is unsurprising considering the second O2 dependent 

regulatory mechanism involving FIH-1 (Lando et al., 2002), see introduction (1.6). A 

dramatic increase in transcriptional output was observed (~35 fold) for identical 

transfection conditions using the HA-Clover-HIF-1α plasmid. By using decreased amounts of 

the HA-Clover-HIF-1α plasmid (as low as 10 ng (0.01 μg)) an O2 dependent transcriptional 

activity could be observed, at a reasonable level compared to endogenous conditions. To 

highlight the transcriptional output of the cloned HA-Clover-HIF-1α, at 10 ng of plasmid 

there was an observable ~2 fold increase in HRE-luciferase signal compared to the 

optimised (0.5 µg (50 X more DNA)) GFP-HIF-1α-DM conditions. 

 

There are two possible explanations for these observations: 1) induction of expression from 

the HA-Clover-HIF-1α plasmid is orders of magnitudes higher than the GFP-HIF-1α-DM 

plasmid, therefore although HA-Clover-HIF-1α is O2 dependently degraded, the quantity of 

HA-Clover-HIF-1α protein outweighs the system flux, and thus accumulates in normoxia. 2) 

The GFP-HIF-1α-DM protein is highly inefficient at initiating transciption. Possible 

explanations for the latter include: a short linker sequence resulting in steric hindrance with 

the GFP-tag, or the known point mutations result in amino acid substitutions that effect 

HIF-1α transactivation, although being fully stable. Sequencing the full length HIF-1α gene, 

from the GFP-HIF-1α-DM plasmid, identified six amino acid substitution mutations, besides 

the known proline hydroxylation sites: 13N insertion, K14R, V87M, D544G, K548R and 

T627I. Although removing the prospect of direct comparisons between constructs, the 

identification of these mutations may be helpful in the future when identifying PTMs to 

characterise. 

 

Considering in-depth discovery PTM analysis requires a large quantity of protein, we 

decided to benchmark a low expression level (fully O2 dependently degraded) against a high 

expression level (maximal expression without observable effects on nuclear localisation, 

cell stress and cell viability) to determine the scale required for MS analysis, and feasibility 

of using a low expression model. Therefore, similar to Figure 3.12, sequentially decreasing 

levels of HA-Clover-HIF-1α plasmid was transfected into cells and investigated using 

microscopy and western blotting techniques. 
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Figure 3.13: Creation of low and high expression HA-Clover-HIF-1α models. 



111 
 

 
Complementary to luciferase data, transfection of 1 µg HA-Clover-HIF-1α resulted in vast 

protein expression at 21% O2. Additionally microscopy analysis identified that 1 µg of HA-

Clover-HIF-1α resulted in significant cell death rates of  ~70% (Figure 3.13 (A)). This result 

was mimicked with the HA-Clover only plasmid, however no significant cell death was 

observed with the empty vector control. Therefore, combined, these data suggest that the 

HA-Clover tagged plasmids are causing lethality, likely due to their high expression levels. 

To reduce expression levels, we tried lowering the length of timings that transfection mixes 

were incubated with cells and/or reducing the quantity of HA-Clover-HIF-1α plasmid DNA in 

the transfection mix (Figure 3.13 (A)). 

 

Reduction of the transfection time to 6 hr resulted in poor transfection efficiencies (<10%) 

at any DNA quantity, however maintained a high cell death rate in fluorescent cells (Figure 

3.13 (A)). Reduction of HA-Clover-HIF-1α plasmid maintained high transfection efficiences 

whilst reducing the rate of cell death. At 0.5 μg HA-Clover-HIF-1α (per 200,000 cells in a 35 

mm plate), cell death rates were comparable to the empty vector controls (<10%) and 

maintained nuclear only expression. Thus 0.5 µg equivalents for transfection were selected 

as the high expression level (Figure 3.13 (A)). 

 

To create the low expression level system, which is fully O2 dependently degraded, clover 

fluorescence was to be visualised in an O2 dependent manner. Thus, fluorescence imaging 

was performed pre- and post- 1% O2 incubation. Thus, an absence of fluorescence at 21% 

O2 could be explained by a failure to transfect, or an expression level too low for detection. 

Therefore, a different wavelength fluorescent protein encoding plasmid (pcDNA3-mRUBY2) 

was included as an internal transfection control, in order to monitor transfection efficiency 

(Figure 3.13 (B)).  

 

A time point of 8 hr of 1% O2 incubation was used for microscopy analysis, as this is when 

maximal endogenous HIF-1α protein accumulation occurs (Bagnall et al., 2014). At 50 ng 

(0.05 μg) DNA (per 200,000 cells in a 35 mm plate) clover fluroescence was found to be O2 

sensitive, and maintaining a transfection efficiency of ~50% (Figure 3.13 (B)). Greater or 

reduced DNA concentrations resulted in either abnormal expression at 21% O2 or 

undetectable expression levels respectively (Figure 3.13 (B)). Thus 50 ng equivalents were 

selected as the low expression level. 
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To validate microscopy data, the same transfection condtions were analysed by western 

blotting (Figure 3.13 (C)). Probing with anti-HIF-1α shows that the HA-Clover-HIF-1α protein 

(~150 kDa) at the low expression level had an identical banding pattern to endogenous HIF-

1α protein (~120 kDa); having complete O2 dependent degradation (Figure 3.13 (C)). 

Supporting microscopy data, the high expression level of HA-Clover-HIF-1α was not O2 

sensitive, shown by equally intense bands at both O2 tensions (Figure 3.13 (C)). 

Comparisons between low and high expression models finds an ~20 fold increase in 

exogenous expression in the latter (determined by densitometry analysis, data not shown). 

 

Interestingly, the large overexpression of HA-Clover-HIF-1α does not result in the 

dysregulation of the O2 dependent degradation pathways for endogenous HIF-1α, which 

maintained 21% O2 degradation (Figure 3.13 (C)). It could be argued that the large 

overexpression of HA-Clover-HIF-1α in 21% O2 may be the result of overloading the 

endogenous system flux, thus maintaining endogenous HIF-1α regulation is surprising.  

 

3.6.2. Mass spectrometry optimisations 
As mentioned, discovery proteomics requires a considerable quantity of protein to be 

purified for analysis. Therefore, with the development of high expression and low 

expression models, we decided to benchmark both expression levels for LC-MS/MS 

analysis, post Titanium Dioxide (TiO2) phospho-peptide enrichment (TitanSphere, GL 

Sciences). This will aid in the determination of whether scaling the low expression (more 

biologically relevent) model is feasible (Figure 3.14). Figure 3.14 (A) shows western blot 

analysis of 600 μg lysate (1x 10 cm plate) IPs from both the high and low expression levels. 

For IP, lysate requires a 2.5 fold dilution; likely explaining the lack of a band for endogenous 

HIF-1α or HA-Clover-HIF-1α in the low expression model whole cell lysate. Importantly, 

Figure 3.14 (C) shows that the high expression level model obtains ~20 fold more HA-

Clover-HIF-1α protein post IP than compared to the low expression model (in agreement 

with Figure 3.13 (C)). Hence, 20 X 10 cm plates would be required for similar levels of HA-

Clover-HIF-1α post IP. 
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Figure 3.14: IP model comparison and assessment of the variability introduced by SCX based removal of PEG.  
A) Western blot analysis of 600 μg IPs of high and low HA-Clover-HIF-1α expression models in HeLa cells 
incubated with 4 hr 1% O2. B) BPC’s of trypsin digested IPs pre- (white) and post-SCX (grey). C) Enlarged boxed 
region of pre-SCX BPC of (B), highlighting the +44 Da repeating unit (red arrows). D) Venn diagram of proteins 
identified at 1% FDR confidence from identical injections pre-SCX at time point 0 (1), 24 hr later (2) and post 
SCX. Includes the number of proteins and equivalent percentage for each overlap. 

 

Trypsin digested IPs were split 5% for LC-MS/MS analysis (to analyse sequence coverage 

and binding partners, Figure 3.14 (B)) and 95% for TiO2 enrichment (for phospho-peptide 

identification and site localisation), following the HCD Orbitrap only method from Ferries et 

al., 2017. Digest injections found a repeating unit contamination of +44 Da at ~5% relative 

intensity, likely to be Polyethylene Glycol (PEG) (Figure 3.14 (B) and Figure 3.14 (C)). TiO2 

enrichment for phospho-peptides resulted in the co-enrichment of the PEG contamination, 

150 kDa 

250 kDa 

100 kDa 
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to much greater levels than any phospho-peptides (data not shown). A ‘mock’ control IP, 

using identical buffers without cellular lysate, lacked this PEG contamination (data not 

shown). Thus, the likely source of contamination is during lysate preparatory stages in cell 

culture plates. 

 

With the requirement of using a hypoxic chamber to generate hypoxic samples, there is not 

an easy and reliable method to incorporate a trypsinisation protocol during cellular lysis. 

Therefore, a strategy to remove PEG post IP and digestion was adopted, using a Strong 

Cation Exchange (SCX) stage-tip protocol. LC-MS/MS analysis of digests post SCX shows the 

PEG contaminant was successfully removed, however the Base Peak Chromatogram (BPC) 

was simultaneously affected (Figure 3.14 (B)). It is likely that SCX may cause the loss of 

peptides in a stoichiometric fashion. However, SCX incorporation results in the addition of 

24 hr of sample preparation time prior to LC-MS/MS analysis, hence BPC variations could be 

the result of analytical variance. To investigate the variability induced by SCX, a large IP was 

performed and split equally for analysis in a pre-SCX state, at the time points of 0 hr and 24 

hr, whilst SCX was performed and analysed alongside the 24 hr time point. 

 

Data was analysed through a Proteome Discoverer coupled MASCOT pipeline and filtered to 

a 1% False Discovery rate (FDR), matching protein identifications were determined using 

the BioVenn tool (Hulsen et al., 2008) (Figure 3.14 (D)). Figure 3.14 (D) found that the 2 pre-

SCX samples had ~65% of all identified proteins matched, hence a baseline of ~35% 

variability. The majority of this variance is accounted for by substantially more protein 

identifications at the initial 0 hr time point analysis, likely reflecting peptide instability and 

precipitation over time. Figure 3.14 (D) also shows that post-SCX identifications matched 

~80% of the identified proteins that were identified in the 24 hr pre-SCX time point control. 

Additionally, ~70% of all proteins identified in both pre-SCX time points were also identified 

post-SCX, thus SCX inclusion does not appear to introduce any further variation into LC-

MS/MS based protein identification Figure 3.14 (D). 

 

IPs (600 μg) of high and low expression level lysates were repeated, with the incorporation 

of the SCX PEG removal and TiO2 enrichment protocols. BPC’s of TiO2 enriched IPs show 

very small peaks in the high expression level samples only (Figure 3.15 (A)). This intensity is 

far below the fragmentation intensity threshold required for discovery analysis, hence no 

peptide identifications were obtained. Considering that a ~20 fold increase in HA-Clover-

HIF-1α is obtained by high expression level IP (Figure 3.14 (A)), the low expression model 
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would be insufficient for discovery PTM analysis without very large experiments, therefore 

this route was abandoned.  
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Figure 3.15: TiO2 enrichment phospho-peptide detection and scaling. 
A) BPC’s of HA-Clover-HIF-1α IPs post TiO2 enrichment. IPs of model and quantity of protein as stated from HeLa 
cells incubated with 4 hr 1% O2. B) Table of identified HIF-1α peptides at a 1% FDR confidence. Data from 6 mg 
High expression model IP. Analysis through Proteome Discoverer 1.4 using the MASCOT search engine. Fixed 
modifications = Carbamidomethlation of Cysteine. Variable modifications = phosphorylation of Serine, 
Threonine or Tyrosine and oxidation of methionine. Table includes peptide sequence (lower case letter 
symbolises modified residue), modifications and position, peptide MASCOT score and E-value. 



117 
 

 

A 10 fold increase of initial high expression lysate (10 X 10 cm plates, 6 mg lysate) was 

tested for phospho-peptide detection post TiO2 enrichment. The BPC showed numerous 

intense peaks (Figure 3.15 (A)). Using the described Proteome Discoverer data analysis 

pipeline, with variable modifications of phospho- Serine, Threonine and Tyrosine, 17 

peptides were confidently identified at a 1% FDR, 13 of which were phosphorylated (Figure 

3.15 (B)).  

 

3.6.3.  Bead ratio and elution optimisations 
Currently, the manufacturer recommend bead:lysate ratio was used (25 μl bead slurry:1 X 

10 cm plate (600 μg lysate)). However, because a 10 fold increase to the recommended 

amount of lysate was required for LC-MS/MS analysis, this would result in a large quantity 

of GFP-Traps used per experiment. Besides the associated cost, an excess of GFP-Traps 

provides an increased opportunity for ‘noise’ proteins to bind the bead resin. Therefore, 

identical lysate was split for multiple IPs using varying densities of GFP-Traps (Figure 3.16 

(A)). It has to be noted that the band intensity in the unbound lane is ~2 fold greater when 

using 10 fold less GFP-Traps (2.5 μl / 600 μg lysate). However, RapiGest SF elution resulted 

in equal quantities of HA-Clover-HIF-2α obtained. Therefore this bead:lysate ratio was 

incorporated into the protocol. 
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Figure 3.16: Bead density and non-canonical phosphorylation compatibility optimisations. 
High expression model HA-Clover-HIFα (as stated) HeLa cell lysate (600 µg) incubated at 1% O2 for 4 hr prior to 
IP. A) GFP-Trap bead density optimisation, stated fold change of GFP-Traps (and buffer volumes) used to 
manufacturer’s recommendation, probed with a primary anti-HIF-2α antibody. B) Non-canonical 
phosphorylation compatibility, identical IPs eluted as stated, probed with a primary anti-HIF-1α antibody. Boxed 
regions are to highlight that a lane from a single gel has been moved post-processing. 
 
 

Within the Eyers lab there is particular interest in non-canonical phosphorylation. Histidine, 

Lysine, Arginine, Aspartic acid, Glutamic acid and Cyesteine can all be phosphorylated, as 

well as the traditional Serine, Threonine and Tyrosine residues (Besant et al., 2009, 

Attwood et al., 2011 & Hardman et al., 2017). However, non-canonical phosphorylation is 

heat and acid labile, therefore nor the GFP-Trap IP protocol, SCX clean-up, TiO2 phospho-

peptide enrichment or traditional mass spectrometry methodolgy is applicable for such 

investigations. A non-canonical phosphorylation pipeline has been developed in the Eyers 

lab, using HeLa cells and 8 M urea (Hardman et al., 2017). Therefore, identical IPs were 

performed and eluted by RapiGest SF (optimised here) or an equal volume of 8 M urea, in 

order to determine the feasibility of adopting the non-canonical phosphorylation pipeline 

(Figure 3.16 (B)). Western blot analysis found that the urea elution resulted in the lack of a 

band, whereas a secondary elution in 5X Laemmli’s buffer resulted in a very significant band 
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(Figure 3.16 (B)). Combined, this suggests that 8 M urea is not a strong enough elution 

condition to dissociate HA-Clover-HIF-1α from GFP-Traps. Thus, the non-canonical 

phosphorylation analysis was abandoned, and we decided to focus on traditional 

phosphorylation sites. 

 

3.7. Discussion: 
At the time of writing, this chapter describes the first protocol able to IP full length HIF-1α 

and HIF-2α from mammalian cell lines with sufficient abundance for in-depth discovery 

PTM analysis. Initially, target antibody-based IPs were investigated for the analysis of 

endogenous HIFα protein regulation. Although several antibodies were tested for 

sensitivity, selectivity and IP ability, they all failed the requirements. Combined with the 

apparent level of expression required for discovery PTM analysis, exogenous 

overexpression of IP-tag based HIFα was investigated. The HaloTag tag was found to make 

the HIF-2α protein insoluble, whereas GFP tagging was successfully used for IP with ~85% 

efficiency. The use of HA-Clover-HIFα proteins not only provides a means of IP but also 

allows for live-cell microscopy techniques, hence having the advantage of not requiring 

immunostaining protocols for visualisation. 

 

Although a large exogenous overexpression is required for the initial identification of PTMs, 

future experiments could adopt a Selective Reaction Monitoring (SRM) MS approach to 

specifically search for m/z ratios of interest. SRM can provide in excess of 100 fold increases 

to sensitivity, feasibly allowing endogenous protein investigations, however requires pre-

knowledge of known modified peptides and respective m/z ratios for selective MS filtering 

and fragmentation (reviewed by Lange et al., 2008). Therefore, this approach is not possible 

currently. Thus, future experiments could use SRM to validate PTMs identified here using 

the low expression model or endogenous HIFα proteins in the future. 

 

An interesting observation is that the large exogenous overexpression of WT HA-Clover-HIF-

1α (>20 fold greater than endogenous HIF-1α) resulted in the exogenous protein expression 

at 21% O2 without affecting endogenous HIF-1α O2 dependent stability, which maintained 

complete O2 dependent degradation. Several possibilities could explain this, including: 1) 

The HA-Clover tag interferes with the PHD-VHL targeting for degradation, possibly by steric 

hindrance and blocking modifying proteins from binding as efficiently. 2) A different, and 

prominent, unknown degradation pathway exists for HIF-1α, which is disrupted by N-

terminal tagging. A potential example could be the N-end rule; endogenous HIF-1α protein 
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has a glutamic acid residue at its secondary position, known to be destabilising in mammals, 

while HA-Clover-HIF-1α protein has an alanine residue, known to be stabilising in mammals 

(Varshavsky, 2011 & Tasaki et al., 2007). Therefore, the O2 dependent stability observed for 

endogenous HIF-1α, although there is a large excess of HA-Clover-HIF-1α that accumulates 

in 21 O2, may not be due to the PHD-VHL pathway but rather the result of the N-end rule 

pathway, which is more efficient in degrading the endogenous protein. 

 

Another interesting observation is the comparison of WT HA-Clover-HIF-1α transcriptional 

output versus GFP-HIF-1α-DM, with 50 fold less DNA of HA-Clover-HIF-1α resulting in a 

greater HIF dependent luciferase signal than GFP-HIF-1α-DM. We never investigated 

protein expression levels, thus the WT HA-Clover-HIF-1α protein expression level could be 

several fold higher than GFP-HIF-1α-DM, although maintains the ability for O2 dependent 

degradation at low expression levels. Further investigations should determine the protein 

expression level differences between plasmids, western blotting of samples will provide an 

answer to this. However, assuming similar protein expression levels, then the difference in 

transcriptional activity is due to a biochemical reason. The identification of 6 separate 

mutations within the GFP-HIF-1α-DM protein is of potential interest as these may block the 

efficient transactivation of the exogenous protein. These identified mutations may guide 

functional characterisation studies, if PTMs are identified in close proximity. 

 

We attempted to adopt a non-canonical phospho-proteomics pipeline to investigate the 

complete phosphorylation status of HIF-1α and HIF-2α, however the GFP-Traps technology 

bound the HA-Clover tag too strongly to elute in current compatible methods. Future 

studies could use different strategies to investigate non-canonical phosphorylation, such as: 

anti-GFP antibody-based IPs, which are weaker than GFP-Traps and therefore may elute in 

8 M urea. Or eluting in a detergent based buffer and performing a buffer exchange into MS 

compatible buffers for digestion. 

 

We have been able to show that TiO2 based phospho-peptide is possible for in-depth LC-

MS/MS analysis, however this does not reflect the full PTM status of HIFα proteins; with 

many other PTMs known to regulate HIF-1α and HIF-2α (see introduction section 1.7). 

Additionally, TiO2 enrichment is known to be inefficient for tyrosine phosphorylation 

identification (Lombardi et al., 2015). Therefore, future studies could look to adopt the 

protocol described here for IP followed by secondary IP enrichment using antibodies 

against specific PTMs, for example anti- lysine acetylation antibodies. 
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4. Chapter 4: HIFα PTMs 
and binding partners 
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4.1. Introduction  
As discussed in the introduction, cell signalling strategies have been vital in the 

development and wide evolutionary variation of multi-cellular organisms. However, for a 

cell to elicit a response, a ligand needs to transduce a signal through the cell membrane to 

induce its downstream effect, such as gene transcription. The evolution of reversible 

modifications of proteins, known as post translational modifications (PTMs) has allowed for 

rapid activation and termination of effector proteins to finely regulate a response. Many 

PTMs exist and regulate each protein differently, however phosphorylation is considerably 

one of the largest mechanism utilised by cells with >500 known kinases in humans 

(Manning et al., 2002). It is also predicted that a third of all proteins expressed at any time 

are phosphorylated (Olsen et al., 2006).  

 

To further complicate PTM regulation, the same type of PTM within a given protein can 

have functionally distinct effects depending on the residue that is modified. For example, 

HIF-1α phosphorylation at S692 results in protein stabilisation (Bullen et al., 2016), whilst 

phosphorylation on S657 results in protein degradation (Xu et al., 2010) and 

phosphorylation on S641/S643 promotes nuclear localisation (Mylonis et al., 2006 & 

Mylonis et al., 2008). PTMs are generally sub-stoichiometric, thus allowing diverse and 

independent regulatory mechanisms and pathways to co-exist by functionally altering 

subsets of the protein (Mann et al., 2002). Thus, the involvement of PTMs results in the 

proteome being exponentially more complex and dynamic than a collection of expressed 

gene products. 

 

There has not yet been a study that defines the PTM status of full length HIFα proteins 

occurring within cells or in response to hypoxia. As a consequence the effects of hypoxia on 

the HIF-1α and HIF-2α PTM network have not been elucidated either. This is particularly 

relevant for HIF-2α, where O2 dependent protein stability appears to play a lesser role in 

functional regulation, compared to HIF-1α (see introduction 1.1.3). 

 

The lack of in cellulo data for HIFα PTMs can be explained by several technical challenges, 

including: 

1) Endogenous HIFα proteins are of extremely low abundances within cells, 0.123 

ppm and 1.53 ppm for HIF-1α and HIF-2α respectively (data obtained from PAXdb, 

Wang et al., 2012). For comparison  the p53 protein (gene: TP53), an essential 



123 
 

transcription factor where dysregulation of PTM status is well-known for cancer 

progression (reviewed by: Meek et al., 2009), has an abundance of 22.2 ppm; ~200-

20 fold greater than the HIFα isoforms respectively (data obtained from PAXdb, 

Wang et al., 2012). Combined with poor HIFα antibodies that are not suitable for IP 

(discussed in chapter 3, section 3.3), the ability to purify endogenous HIFα in 

sufficient quantities for discovery mass spectrometry analysis is difficult. Given the 

stoichiometric ratio of PTMs, this reduces the abundance of the different PTM 

states (proteoforms) further, to levels potentially below the limit of detection for 

discovery MS experiments. Thus PTM identification and correct site localisation are 

challenging (Mann et al., 2002). I solved these challenges in Chapter 3, by using HA-

Clover-HIFα constructs overexpression and IP against the Clover tag. 

2) The selection of PTMs to investigate. From previous studies (Table 1.2 & Table 1.3), 

HIF-1α has been shown to be modified by multiple different types of PTMs, 

including: hydroxylation (Jaakkola et al., 2001) phosphorylation (Kalousi et al., 

2010), acetylation (Jeong et al., 2002), methylation (Lee et al., 2017), ubiquitination 

(Tanimoto et al., 2000), SUMOylation (Bae et al., 2004) and S- nitrosylation 

(Yasinska et al., 2003). Because the stoichiometric ratio of PTMs is undetermined, it 

is possible that PTM containing peptides may be below the limit of detection of the 

analytical system and/or masked by unmodified peptides. Thus, in a paradoxical 

fashion, discovery analysis attempting to identify all PTMs can lead to the lack of 

confident data. Strategies exist to enrich a specific PTM, in the background of 

unmodified/different PTM peptides, allowing the in-depth analysis of a specific 

PTM per LC-MS/MS experiment. Enrichment strategies can be antibody IP based or 

affinity based. The former is useful for specific modifications such as ubiquitination 

(Udeshi et al., 2013). However, phospho- serine and threonine antibodies are 

generally poor and highly dependent on the sequence environment of the PTM 

(Fíla et al., 2012). Therefore, it is preferential to investigate phosphorylation 

through Immobilised Metal ion Affinity Chromatography (IMAC). As discussed in 

the introduction, IMAC exploits the charge specific properties of phosphorylation to 

bind and purify phospho-peptides from the background of unmodified peptides 

(Mann et al., 2002 & Rainer et al., 2015). In chapter 3, we demonstrated that it was 

possible to use TiO2, the most commonly used IMAC resin, for phosphorylation 

enrichment of HIF-1α peptides. Thus, phosphorylation will be the main focus for 

PTM identification in this work. 
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3) The poor sequence coverage observed by LC-MS/MS analysis of HIFα digestion. A 

traditional proteomics workflow utilises trypsin as a proteolytic enzyme to create 

analysable peptides from proteins. Trypsin is preferentially used due to its specific 

cleavage pattern at the C-terminus of Lysine (K) and Arginine (R) residues, thus 

resulting in 2+ ion peptides (on average) which aid in peptide flyability and 

fragmentation (Paizs et al., 2005, Zhang et al., 2013 & Michalski et al., 2012). 

However, the peptides analysed are thus dependent on the distribution of K and R 

residues throughout a protein of interest. Hence tryptic digestion can be 

disadvantageous because it can result in peptides too large or too small for LC-

MS/MS analysis, determined by sequence (Tsiatsiani et al., 2015 & Mallick et al., 

2006). As a consequence, trypsin digestion alone can result in large sections of 

proteins that are unanalysed, resulting in poor protein sequence coverage and 

concomitant loss of PTMs being identified. By utilising a combination of proteolytic 

strategies, each generating their own identifiable peptides, it is possible to increase 

protein coverage detected by mass spectrometry analysis; providing a more in 

depth view of the PTM status of proteins (reviewed by Meyer et al., 2011). 

4) The labile nature of the phosphate moiety and difficulty in PTM localisation. 

Although phosphorylation is a covalent modification, the phospho-bond is much 

more susceptible to collisional induced fragmentation techniques (CID), which are 

required for amide bond fragmentation to obtain the peptide primary sequence 

and to localise the PTM. Thus, CID and, more pertinently, higher energy collision 

dissociation (HCD) can result in the neutral loss of the phosphate moiety and 

reduced ability to localise the PTM (Lehmann et al., 2007). Software has been 

developed to statistically infer phosphorylation localisation post neutral loss (Taus 

et al., 2011). Alternatively, additional fragmentation methods are available such as 

Electron Transfer Dissociation (ETD). ETD induces fragmentation specifically at the 

N-Cα bond in a non-vibrational fragmentation method, bypassing the neutral loss 

effect of phosphorylation (Syka et al., 2004). However, ETD fragmentation is highly 

inefficient for low charge state peptide ions (<3+) and the prominent tryptic ions 

are 2+. Hence a combinatorial method utilising both ETD and HCD fragmentations 

(EThcD) was developed (Frese et al., 2012 & Frese et al., 2013). In theory, by 

creating mixed ETD/HCD fragmentation spectra it maximises fragmentation for 

determining peptide primary sequence (HCD) while increasing the likelihood that 

localisation data may be maintained (ETD) (Frese et al., 2012 & Frese et al., 2013). 
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5) Biological interpretation. The development of large datasets can make it difficult to 

identify interesting aspects to initially focus on for further characterisation. Beyond 

defining presence and absence of PTMs between biological conditions, MS can be 

used quantitatively to investigate how the level of a PTM changes depending on a 

specific treatment (Thompson et al., 2003). The more accurate labelling strategies 

require the different samples to be prepared simultaneously to remove LC-MS/MS 

variation, a prospect not possible here due to the experimental size (Chapter 3, 

section 3.6.2). However, label free quantification can be performed, which 

experiences greater experimental error but allows the theoretical comparison of an 

unlimited number of samples. Additionally, investigating the evolutionary history of 

a PTM site can be insightful as highly conserved sites are likely to have essential 

functional importance (Bui et al., 2016, Beltrao et al., 2013 & Capra et al., 2007). 

Label free quantification and evolutionary analysis strategies were used here. 

 

An additional aspect of IP-coupled MS analysis is the Co-IP of binding partners. Although 

impossible to determine whether a Co-IP’d protein is a direct or an indirect interactor of 

the target protein, binding partners can be essential for function, for example the HIFα – 

HIF-1β interaction (Wang et al., 1995). Additionally, for a PTM to occur the modifying 

enzyme must come into contact with the protein of interest, although may not be stably 

bound. Thus, using a High Throughput (HTP) mass spectrometry approach to discover the 

binding partners that are Co-IP’d with HIF-1α and HIF-2α may not only unlock the signalling 

mechanisms differentiating the two isoforms but also potentially identify any modifying 

enzymes which may cause a given PTM. The latter can be fed back into pathway analysis to 

understand the global regulatory pathways acting on the HIFα proteins. 

 

4.2. Aims: 
The aim of this chapter was to use the developed GFP-Traps IP protocol for HA-Clover-HIFα 

proteins in order to identify: 1) The PTMs that occur in response to hypoxia for full length 

HIF-1α and HIF-2α in cellulo. A specific focus on phosphorylation will be applied, for the 

technical reasons mentioned above, however all PTMs were investigated. 2) The binding 

partners of HIFα isoforms in response to hypoxia. As mentioned above, several technical 

challenges needed to be overcome for an in-depth analysis of both HIFα proteins. This 

included: 
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1) Improving sequence coverage identified by LC-MS/MS analysis. Traditional 

tryptic digests resulted in <35% HIFα protein coverage, thus digestion with multiple 

proteases was investigated.  

2) The attainment of maximal and confidently localised PTM data, by benchmarking 

different MS/MS fragmentation methods.  

3) Biological Interpretation of identified PTMs. Upon PTM data acquisition, a 

quintuple approach to biological interpretation was applied. Domain, treatment, 

isoform sequence comparison, phylogenetic/evolutionary and cancer database 

screening analyses were performed to aid in the identification of potentially more 

important sites of regulation. Where applicable, PTM sites were analysed using 

crystal structure modelling to predict the impact of a modification through close 

proximity intra- and inter- molecular interactions.  

 

Additionally, using the binding partner information obtained, gene ontology analysis and 

label free quantification approaches were performed to identify how binding partners 

acting on HIFα change between O2 tensions. I used these data to determine specifically 

enriched pathways, and identify the upstream enzymes potentially responsible of the PTMs 

identified, which may have a regulatory role in the HIF signalling network. 

 

4.3. Improving sequence coverage: 
In order to define an in-depth PTM map it is important that most of the protein sequence of 

interest can be analysed, at the peptide level, using MS methods. Therefore, the developed 

GFP-Trap IP coupled MS protocol was followed and the digested eluent analysed using a 

high scan frequency Orbitrap-Iontrap method. Trypsin digestion resulted in <35% of the 

HIF-1α protein sequence being identified at a 1% FDR (Figure 4.1), hence two-thirds of the 

protein, and potentially PTMs occurring, were not detectable. To improve the depth of PTM 

map obtainable, the IP process was repeated multiple times and digested with different 

proteases and analysed identically to trypsin. Proteases tested included: Chymotrypsin, 

Elastase, Asp-N, Glu-C and Lys-C (Figure 4.1, not all data shown). 

 

Chymotrypsin (cleaves at tyrosine (Y), phenylalanine (F), tryptophan (W), leucine (L) and 

methionine (M)) and particularly Elastase (cleaves at alanine (A), glycine (G), valine (V), 

serine (S), leucine (L) and isoleucine (I)) are prone to not cleaving at every possible site, 

known as miscleaves. Miscleave frequency needs to be accounted for at the time of data 
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interrogation because increasing the number of permitted miscleaves allows for more 

peptide identifications, however simultaneously increasing the chance that a given 

fragmentation spectrum (PSM) can match the reversed sequence database, used to 

determine FDR, by chance. Thus a balance exists when filtering to a 1% FDR, allowing too 

few potential miscleaves results in not all fragmented peptides being identified, and 

allowing too many increases the false positive rate and subsequent removal of correctly 

matched data by FDR filtering. To calculate the optimal parameters for data analysis, the 

same data file was analysed repeatedly, sequentially changing the permitted number of 

miscleaves per peptide, and recording the number of peptides and total number of PSMs 

identified at 1% FDR filtering (Table 4.1). This allowed me to evaluate the miscleave 

propensity for each protease and determine optimal parameters to assess obtainable 

protein coverage. 

 

Table 4.1: Determination of the best miscleave parameters for maximal confidently identified peptides for 
Elastase and Chymotrypsin.  
Table includes stated number of miscleaves post 1% FDR filtering, Protein confidence as determined by MASCOT 
score, number of unique peptides and the total number of PSMs identified for HIF-1α. LC-MS/MS was acquired 
following digestion at pre- (using a High-Low high scan frequency Orbitrap-Iontrap MS/MS method) and post- 
TiO2 enrichment (using a High-High low scan frequency Orbitrap-Orbitrap method), digest peptides and TiO2 

enriched peptides respectively, # PSMs is summed number of PSMs from both runs that were confidently 
identified. 
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Table 4.1 shows that, as expected, as the number of miscleaves decreases, the number of 

PSMs and peptides identified generally do as well. At a 1% FDR cut-off, elastase with 9 

miscleaves identified 15 PSMs, however, successive decreases to 8 and 7 miscleaves found 

that 90 and 73 PSMs were maintained respectively. Hence 8 miscleaves was selected for 

elastase digestion samples, equating to ~65% protein sequence coverage (Figure 4.1). At a 

1% cut-off, chymotrypsin identified equal numbers of PSMs for both 5 and 4 miscleaves 

(174). Thus, to reduce the potential for increased false positive rates, 4 miscleaves was used 

to analyse chymotrypsin digest samples; equating to ~45% protein sequence coverage 

(Figure 4.1).  
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Figure 4.1: Identified sequence map of HIF-1α. 
HA-Clover-HIF-1α protein sequence, with peptide identifications at a 1% FDR highlighted. Data from the digest 
stage LC-MS/MS analysis using a High-Low MS/MS method. Bold and underlined = HA-Clover tag sequence, Pink 
= Trypsin digested (2 miscleaves), Green = Chymotrypsin digested (4 miscleaves), Grey = Elastase digested (8 
miscleaves). An overall coverage map is displayed to determine complete protein coverage, where a hierarchy 
for highlighting was applied of Trypsin, Chymotrypsin, and Elastase. 

 

As Figure 4.1 shows, combining data obtained from trypsin, chymotrypsin and elastase 

digestions equates to >90% of the HIF-1α protein sequence confidently identified at a 1% 
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FDR. The majority of the missing sequence is located at the HIF-1α N-terminus which is K/R 

rich, thus producing small peptides that are difficult to multiply charge, hence having poor 

fragmentation efficiency. Significantly, for phosphorylation analysis, >95% of the total S/T/Y 

residues were identified, allowing the creation of an in-depth phosphorylation map. 

Although additional proteases were investigated (Asp-N & Glu-C), no further protein 

coverage was obtained by their addition into the protocol, as such were not used. This 

experiment was repeated with HA-Clover-HIF-2α, using the same digest miscleave 

parameters, similarly obtaining >90% sequence coverage (data not shown). 

 

4.4. MS/MS method development: 
As discussed in the introduction, different methods for peptide fragmentation exist, namely 

HCD, ETD & EThcD. Many benchmark studies comparing these fragmentation methods have 

been performed for HTP phosphorylation analysis of trypsin digested human proteome, yet 

leading to different conclusions. Frese et al., 2012 showed that EThcD resulted in an 

improved peptide confidence score in 72% of all peptides when compared to HCD alone, 

translating to a marginal increase in correct phosphorylation localisation to 97%, from 95%. 

However, due to the increased time required for a dual fragmentation approach, EThcD 

resulted in 11% less total number of PSMs, thus a trade-off exists in HTP ability versus 

peptide confidence. This study was performed on the human proteome, thus is much more 

complex than my samples that are post IP (of a low copy number protein) and TiO2 

enrichment. As a result, the reduced PSM count of EThcD may be inconsequential for my 

study, if providing more confidently localised PTMs. However, a more recent study from the 

Eyers lab found that an Orbitrap only, HCD only fragmentation strategy combined with 

ptmRS analysis outcompeted EThcD in the total number of PSMs and correct 

phosphorylation site localisation (Ferries et al., 2017). Therefore, it was necessary to 

determine whether an HCD only or EThcD strategy provided the most confident data for my 

samples. 

 

The MS/MS methods from Ferries et al., 2017 (Orbitrap only, HCD collision energy (NCE) at 

32% and Orbitrap only EThcD, ETD calibrated time and HCD collision energy at 25%) were 

tested. Alongside these, a series of successive changes to the HCD collision energy of EThcD 

methods (25%-18%) were tested to potentially increase PTM localisation confidence, by 

providing less collisional energy. Additionally, it was theorised that a second HCD only 

method, designed to increase sensitivity and fragmentation time, could be beneficial within 
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this study (due to the vastly reduced complexity of samples post –IP and –TiO2 phospho-

peptide enrichment, compared to the human proteome). Changes to the Ferries et al., 2017 

method included: intensity required for peptide fragmentation (lowered to 2E4 ions, from 

2E5), targeted peptide ion count before fragmentation (AGC target, increased to 5E5, from 

2E5), maximum injection time (time spent collecting ions before fragmentation, if AGC 

target is not reached, increased to 250 ms from 100 ms) and the inclusion of 2 µ-scans (a 

technique that fragments a particular m/z ion twice and additively combines spectra to 

improve the signal to noise ratio). Each method was tested on the identical, post TiO2 

enrichment, HA-Clover-HIF-2α IP sample. The number of peptides identified, ptmRS score, 

peptide confidence MASCOT score and E-value were recorded for benchmarking (Table 

4.2). 
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Table 4.2: MS/MS method benchmarking for the most confidently identified and localised phospho-peptides. 
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As reported by Ferries et al., 2017, we found that the HCD-Orbitrap only method 

outperformed any of the tested EThcD methods in terms of the number of confidently 

localised phospho-peptides. We observed that many of the peptides identified in HCD 

methods are of 2+ charge state, thus explaining their lack of identification in EThcD 

methods (Sobott et al., 2009). The newly created high sensitivity, HCD only, Orbitrap only 

method resulted in the most phospho-peptides identified at a 1% FDR. Peptides identified 

were also at a greater confidence using MASCOT Score and E-value statistics and, 

significantly, resulted in greater ptmRS scores for identical peptides identified by different 

MS/MS methods. For example the LLSsVcSENEsEAEADQQmDNLYLK doubly phosphorylated 

peptide had both sites of phosphorylation identified to a confidence of  >99.0, while the 

Ferries et al., 2017 method could not distinguish between S7 or S11 as a phosphorylation 

site, both at a 50/50 chance. Thus, for this study, all phosphorylation analysis was 

performed using the newly developed HCD only MS/MS method. 

 

4.5. Biological interpretation of MS data- 
aaaiPhylogeny analysis: 

With the identification of potentially many PTM sites, attempting to prioritise sites for 

further investigation is a non-trivial task. Using a combined approach of MS data analysis 

and evolutionary history analysis of a particular site, it can potentially provide insight into 

the functional importance of a modification. Evolutionary conserved sites have more 

chance to be associated with essential functionality, while a highly mutated site could 

reflect poor functional importance (Beltrao et al., 2013 & Capra et al., 2007). However, the 

mutations that arise during evolution can also provide insight. For example, if a 

phosphorylated serine residue is mutated to a negatively charged aspartic acid residue it 

may reflect a state of permanent phosphorylation, conversely mutation to an uncharged, 

unmodifiable residue, such as alanine, could reflect a state of permanent 

unphosphorylation (Pham et al., 2008, diagrammatically depicted in Figure 5.1). Therefore, 

combining the evolution of a PTM site with species knowledge, of where a mutation 

occurred (for example Carp species known for extreme hypoxia tolerance (Nilsson et al., 

2004)), may lead to the identification of potential sites of importance. 

 

Following the guidelines from Hall, 2013, all protein matches to either HIF-1α or HIF-2α 

were obtained by BLAST searching. This was reduced to a non-redundant database by 
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reciprocal BLAST searching and a phylogenetic tree created for both HIF-1α (data not 

shown) and HIF-2α (Figure 4.2). The multiple sequence alignments were reoriented to 

match the order of the evolutionary tree, thus allowing the evolution of a specific site to be 

followed with ease. For this analysis, only vertebrate species were used for two reasons: 1) 

HIF-2α has only evolved in species with extensive oxygen delivery systems (Graham et al., 

2017). 2) Invertebrate HIF-1α homologs are vastly different to vertebrate homologs. For 

example, Drosophila melanogaster HIF-1α homolog, sima, is >1500 residues long 

(approximately twice the size), contains only one proline (P) hydroxylation site, lacks a 

definable CTAD and has primary functions in tracheal proliferation (Gorr et al., 2004). 

Therefore, it is reasonable to assume the regulatory pathways at play may be very 

different.  
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Figure 4.2: Molecular Phylogenetic analysis of HIF-2α protein sequences by Maximum Likelihood method.  
Evolutionary history was inferred by use of maximum Likelihood based on the JTT matrix model (Jones et al., 
1992). The highest log likelihood (-47644.35) tree is shown. Initial tree(s) for the heuristic search were obtained 
using Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and 
selecting the superior log likelihood topology. A discrete Gamma distribution was used to model evolutionary 
rate among sites (5 categories (+G, parameter = 0.9749)). The rate variation model allowed for some sites to be 
evolutionarily invariable ([+I], 8.63% sites). The tree is drawn to scale, with branch lengths measured in the 
number of substitutions per site. The analysis involved 227 amino acid sequences. All positions with less than 
95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases 
were allowed at any position. There were a total of 730 positions in the final dataset. Evolutionary analyses 
were conducted in MEGA7 (Kumar et al., 2016). 500 bootstrap replicates were used and values represent the 
confidence that a branch point exists. Common names, from the R Taxize plugin, are used for naming purposes. 



136 
 

 

4.6. Mass spectrometry sample preparation: 
Following the optimised GFP-Trap IP protocol on exogenously expressed HA-Clover-HIFα, 

IPs were performed in duplicate at both 21% and 1% O2 concentrations. After SCX clean-up, 

5% of the sample was analysed on a 1 hr LC gradient using a High-Low MS/MS method for 

maximal protein identifications, facilitating binding partner identification. The remaining 

95% was TiO2 enriched and 100% analysed using the optimised HCD only High-High 

Orbitrap only MS/MS method (section 4.4). All data were analysed using Proteome 

Discover, searching against the human non-redundant database and filtered to 1% FDR, 

equating to ~90% and ~60% sequence coverage post IP and TiO2 enrichment respectively. 

The next sections discuss the PTMs and binding partners identified. 

 

4.7. Phosphorylation data: 
Overall, ~25 phosphorylation sites were identified for both of HIF-1α and HIF-2α at a 

confidence of 1% FDR and ptmRS >99.0 (Figure 4.3, supporting peptide data in appendix 1), 

showing these proteins undergo extensive PTM. Comparing the phosphorylation sites 

identified to previously published data (Table 1.2 & Table 1.3) and HTP data recorded in 

PhosphoSitePlus (Hornbeck et al., 2015 & Hornbeck et al., 2012), showed  that the vast 

majority of the identified sites here are novel, with only 7 sites for HIF-1α and 2 sites for 

HIF-2α previously characterised. Considering the wealth of data published for HIF-1α 

phosphorylation, ~40 sites when including HTP identified sites, it is surprising that so few 

were identified in our data. However it is important to consider that the majority of 

proteomics studies will not be under hypoxic conditions, as well as the inefficiencies with 

trypsin digestion (Figure 4.1), therefore will artificially select against HIFα phospho-peptide 

detection. It can also be argued that the lack of previously identified phospho-sites (with 

functional characterisation) could be a reflection of the cell type specific regulation or a 

combination of previous studies not using true O2 deprivation hypoxia or the potentially 

high false positive rates of in vitro assays.  

 

For discussion, phosphorylation sites have been grouped together below based on their 

previous discovery, O2 dependence and domain localisation. The groups have been selected 

by observed characteristics and discussed in an order based on their potential interest, with 

a grouping order of:  1) previously characterised, 2) localisation in the ODDD, 3) localisation 

in the NTAD, 4) O2 dependency, 5) proline hydroxylation site proximity 6) localisation in the 
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bHLH and PAS-A/B domains, 7) clustering and 8) localisation in the inhibitory domain. If a 

particular PTM is applicable to multiple groups it is discussed in the primary group only, 

unless otherwise stated. However the site is present in the respective table containing their 

evolutionary history and isoform comparisons at the start of each group (Table 4.3-Table 

4.19). 
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Figure 4.3: Schematic view of the phosphorylation map of HIF-1α and HIF-2α. 
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4.7.1. Previously characterised: 
In total 7 phosphorylation sites, out of 22, have been previously characterised for HIF-1α 

(S31, S465, S641, S643, S657, S687 and S696) and 3, out of 5, have been previously 

characterised for HIF-2α (S383, T528 and S830), listed in Table 4.3. 

 

Table 4.3: Characteristics of HIF-1α and HIF-2α phosphorylation sites identified.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variations are highlighted by single letter amino acid code, the O2 tension 
a PTM was identified in and comparisons to HIF-2α sequence. NA = not applicable, X = residue was not 
phosphorylated. 

 
4.7.1.1. Serine 31, a potential DNA binding role 

Utilising a recombinant fragment of HIF-1α in an in vitro PKA assay, Bullen et al., 2016 

identified multiple sites of phosphorylation (see introduction, 1.7); including S31 and S465. 

Based on the lack of observable effects on protein stability, when expressing the HIF-1α 

fragments in cells which contained a phospho-null mutation (serine to alanine), both sites 

were deemed not to have a biological function and not investigated further. Importantly, 

only investigating a phospho-null mutation removes the effect that phosphorylation may 

have through the introduction of charge. Similarly, it is possible that phosphorylation may 

not have a resultant effect on protein stability but rather transactivation. Thus the 
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evolutionary history of both S31 and S465 poses a potentially interesting view, particularly 

for S31 which resides in the bHLH domain, an almost 100% conserved domain in all species 

of HIF-1α (Figure 4.4 (A)) and HIF-2α. Interestingly, the residue at position 31 is a non-

phosphorylatable glycine residue in all bony fish species (Osteichthyes). To investigate this 

site further, I performed Pymol modelling on the partial HIF-1α-HIF-1β-DNA crystal 

structure (PDB: 4ZPR, Wu et al., 2015), using the PyTMs plugin to in silico phosphorylate 

S31 (Warnecke et al., 2014, Figure 4.4 (B)). 
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Figure 4.4: Serine 31 Evolutionary and structural analysis.  
A) Multiple sequence alignment comparisons of residues 29-34, arrow identifies S31. Selection of model 
organisms from a variety of phylogenetic families within the full dataset are shown, boxed region shows the 
Bony fish species (Osteichthyes), which is expanded to include all Bony fish species within the dataset. B) Crystal 
structure of phosphorylated S31. PyTMs plugin (Warnecke et al., 2014) was used to in silico phosphorylate S31 
in PDB file 4ZPR (Wu et al., 2015). Green = HIF-1α, Blue = HIF-1β, Orange = DNA backbone. 
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Figure 4.4 (B) shows that S31 phosphorylation is in close proximity to the DNA backbone. It 

could be hypothesised that the negatively charged phosphate group may repel the 

negatively charged DNA backbone, thus resulting in transcriptional inhibition induced by 

phosphorylation, due to decreased ability to bind DNA. Hence, Bullen et al., 2016 would not 

have discovered the role of S31 phosphorylation, based only on protein stability 

measurements and phospho-null mutations. Interestingly, in our dataset and published 

data, there are no reports of phosphorylation at the respective HIF-2α serine residue (S28), 

thus identifying a potential HIF-1α specific pathway. Sequence alignment comparisons 

between isoforms finds the only amino acid different in the surrounding region is HIF-1α 

S28 to HIF-2α C25, identifying a potentially important site for motif analysis. 

 

4.7.1.2. Nuclear localisation 
HIF-1α phosphorylation at S641 and/or S643, by ERK1/2, have been shown to be 

responsible for nuclear accumulation, by preventing its nuclear export (Mylonis et al., 2006 

& Mylonis et al., 2008). In their study, MS analysis was inconclusive to determine which 

serine residue, if not both, were phosphorylated. However phospho –mimetic (nuclear 

accumulation) and –null (nuclear exclusion) mutations of either site resulted in the same 

phenotypic effect. Data presented here provide strong evidence that both phosphorylation 

sites co-exist as a doubly phosphorylated peptide (appendix 1). Interestingly, S643 

phosphorylation was detected as a singly phosphorylated peptide while S641 was only 

identified in the presence of S643, as a doubly phosphorylated peptide. This suggests a 

possible priming, or synergistic, mechanism where S643 phosphorylation is essential for the 

secondary phosphorylation at S641 (as seen with GSK3β signalling (Beurel et al., 2015)). In 

agreement with this hypothesis, S643 is highly evolutionarily conserved while S641 is poorly 

conserved, with variation primarily to non-phosphorylatable residues. Hence, these sites 

may work synergistically or have slightly different roles not yet discovered. 

 

HIF-2α phosphorylation at S383 and T528, by CK1δ, have previously been shown to be 

responsible for nuclear accumulation, in an identical mechanism to HIF-1α S641/643 

(Pangou et al., 2016). Interestingly, both S383 and T528 are highly conserved across 

vertebrate species, with 100% conservation of T528, suggesting an important role. 

Sequence comparisons identifies that HIF-2α S383 aligns with the novel S380 

phosphorylation site of HIF-1α. The surrounding sequences of these phosphorylation sites 

are poorly conserved between isoforms. Interestingly, HIF-2α T528 phosphorylation is O2 

dependent, only present at 21% O2, and is within very close proximity to the proline 



143 
 

hydroxylation site P531. Thus, T528 may have underlying roles not identified by Pangou et 

al., 2016, discussed further in the Proline hydroxylation proximity section (4.7.5). 

 

4.7.1.3. Protein stability 
The remaining HIF-1α phosphorylation sites (S657, S687 and S696) have all been shown to 

regulate protein stability. S657, phosphorylated by Plk3, has been shown to promote HIF-

1α degradation (Xu et al., 2010), while both S687, phosphorylated by CDK5 (Herzog et al., 

2016) and S696, phosphorylated by ATM (Cam et al., 2010) stabilise HIF-1α.  S657 is a 100% 

conserved site and sequence alignment comparisons finds that it aligns to the, novel T626 

phosphorylated residue of HIF-2α, which too is highly conserved. However, sequences 

surrounding S657 of HIF-1α and T626 of HIF-2α are poorly conserved between isoforms. 

 

HIF-1α S687 phosphorylation by CDK5 suggests a role in cell cycle progression, thus 

evolutionary analysis identifying that a serine residue only exists in primate species is 

intriguing. The ability for phosphorylation is maintained in other mammals by variaton to a 

threonine residue, except for Ungulate species which instead have a non-phosphorylatable 

alanine residue. All other vertebrate species contain a non-phosphorylatable residue, with 

no distinct residue selection.  Interestingly, HIF-1α S687 aligns to the novel phosphorylation 

site S672 of HIF-2α, which has an identical evolutionary pattern to the former. However, 

the surrounding sequence is poorly conserved, this may provide an explanation to how HIF-

1α S687 phosphorylation only occurs in 21% O2 while HIF-2α S672 is O2 independent. S696 

of HIF-1α is evolutionarily poorly conserved, and although aligns to a threonine residue of 

HIF-2α the latter is not phosphorylated. 

 

4.7.1.4. Transcriptional effects 
Of all phosphorylation sites that have previously been characterised and identified in this 

study, only HIF-2α S830 has been shown to effect transcription. S830 phosphorylation 

resulted in an increase of transcriptional output by ~2 fold, without affecting protein 

stability, although this was not investigated further (Gradin et al., 2002). S830 resides in the 

CTAD, involved with p300/CBP binding interactions, which is a 100% conserved domain 

among all vertebrate species analysed. Sequence comparisons between isoforms shows 

that HIF-2α aligns to the novel phosphorylation site of HIF-1α: S786, which too is 100% 

conserved. The surrounding regions of respective sites are also highly conserved, both 

between isoforms and evolutionarily, thus suggesting a potentially essential function 

shared between isoforms, such as regulating p300/CBP association. Interestingly, HIF-2α 
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S830 phosphorylation was only detected in 1% O2 while HIF-1α S786 phosphorylation was 

detected O2 independently.  

 

All phosphorylation sites discussed below are novel and therefore have no functional 

assessment in the narrative. 

 

4.7.2. ODDD hyperphosphorylation 
The ODDD was named due to containing the oxygen sensitive proline resides, which upon 

hydroxylation leads to degradation (see introduction 1.6). However, a striking feature in our 

data is the hyperphosphorylation of the HIF-1α ODDD, especially compared to the HIF-2α 

ODDD. Indeed, there was 15 and 5 phosphorylation sites identified respectively (Figure 4.5), 

listed in Table 4.4 and Table 4.5 respectively. 

 

Figure 4.5: Schematic view of the ODDD and NTAD phosphorylation map of HIF-1α and HIF-2α.  
Stated domains of HIFα proteins are highlighted, with canonical domain numbering. Confidently identified 
phosphorylation sites (1% FDR, ptmRS score >99.0) are mapped to the protein and coloured dependent on 
whether they are novel (red), have been seen by previous HTP mass spectrometry studies (blue) or have 
previously undergone functional characterisation (green). The sequence coverage seen from mass spectrometry 
analysis (from Figure 4.1, bold line) and the sequence homology between isoform domains (fine line and score) 
is depicted below the protein schematic. A) Phosphorylation sites identified in 1% O2, B) Phosphorylation sites 
identified in 21% O2. 
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Table 4.4: Characteristics of HIF-1α phosphorylation sites identified within the ODDD.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variations are highlighted by single letter amino acid code, the O2 tension 
a PTM was identified in and comparisons to HIF-2α sequence. NA = not applicable, X = residue was not 
phosphorylated. 

 

Interestingly, 7 (out of 15) of the HIF-1α phosphorylation sites within the ODDD are O2 

dependent, being observed in my investigations only in 21% O2: S415, T418, T490, S510, 

S525, S581 and T605. Surprisingly, no phosphorylation sites within the ODDD were 

identified in 1% O2 only. Thus, it is likely that the O2 dependent regulation of HIF-1α protein 

stability, through the ODDD, is more complex than initially thought and may be influenced 

by phosphorylation status. It could be hypothesised that the hyperphosphorylation status 

of the ODDD in 21% O2 may enhance the efficiency of HIF-1α degradation, potentially by 

promoting PHD interactions and subsequent degradation. Interestingly none of these 

phosphorylation sites are highly conserved, with approximately half of these residues 

present in mammalian species only. Furthermore, the majority of residue variation at these 

phosphorylation sites were to non-phosphorylatable residues, or to regions of the protein 

that are missing, suggesting a potentially important regulatory mechanism that has evolved 

specifically in mammals. Similarly, since HIF-1α and HIF-2α share ~40% sequence homology 

in the ODDD, it is surprising that none of the phosphorylation sites identified in HIF-1α 

mapped to phosphorylation sites of HIF-2α. If these HIF-1α phosphorylation sites have a 

role in protein degradation, it may partially explain why HIF-2α regulation is less dependent 
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on O2 dependent degradation compared to HIF-1α. Intriguingly, HIF-1α phosphorylation 

sites S510 and S581 both align to Cysteine (C) residues of HIF-2α, which can experience 

redox sensitive PTMs and may have unique roles (reviewed by: Chung et al., 2013). 

Although there is currently no evidence for redox-mediated modification of these C 

residues. 

 

We observed that the O2 dependent phosphorylation sites: T490, S510 and S525 are 

interspersed with O2 independent phosphorylation sites: S484, S500 and S515. This region 

is the most densely phosphorylated portion of either HIF-1α or HIF-2α, and has an 

approximate repeating unit of a multiple of four, potentitally suggesting this region could 

be α-helical in structure (Pauling et al., 1951). Theoretically, this could allow an O2 

independent phosphorylation face of the α-helix to be used in essential functions, such as 

correct protein folding, while allowing an O2 dependent phosphorylation face to have 

secondary functions, such as protein degradation. Without a crystal structure it is 

impossible to validate this theory. Therefore we adopted an ab initio (sequence inferred) 

modelling approach of a 60 residue fragment encompassing these 6 phosphorylation sites 

(A475-L535), using the Robetta online server (Song et al., 2013 & Raman et al., 2009). The 

most likely model is shown in Figure 4.6 and has been phosphorylated in silico at all 6 

identified sites. Importantly, the homology aspect of modelling was very poor, at a score of 

0.05 (between 0 (no crystal structures for modelling) – 1 (complete crystal structure)), 

hence the model is highly reliant on sequence based protein structure prediction, which 

although has limitations on large proteins can be useful for smaller proteins (Lee et al., 

2017).  
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Figure 4.6: Combined homology and ab initio model of the high density, O2 dependent phosphorylation region 
of the HIF-1α ODDD. 
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Figure 4.6 shows that although there are α-helical regions present, the initial hypothesis of 

a large α-helix is incorrect. However, it is clear that the O2 independent phosphorylation 

sites are in very close proximity to negatively charged glutamic acid residues: S484-E479 is 

<2 Á and S515-E518 is <5 Á, thus are likely to experience strong repulsive interactions 

(Barlow et al., 1983). We notice that the last O2 dependent site (S500) is ~7 Á in distance 

from Leucine (L) 535, the last residue that was used in this model. Investigating the next 

amino acids identifies E537, therefore it is possible this glutamic acid residue is within 

closer proximity to the S500 phosphorylation site than the modelled leucine residue; 

resulting in charge repulsion. Therefore, although not α-helical as initially hypothesised, the 

O2 independent phosphorylation sites are likely to have a dramatic role on protein folding. 

Additionally, all O2 dependent phosphorylation sites (T490, S510 and S25) are modelled to 

face externally, thus potentially acting as docking sites for binding partners. However, 

without knowing the stoichiometry of how these phosphorylation sites occur, it is possible 

that all occur simultaneously. Thus, the O2 independent phosphorylation sites, facing 

negatively charge glutamic acid residues, may result in large structural rearrangements, 

hence the O2 dependent sites will likely be in different positions to as modelled here.  

 

Evolutionary analysis of the modelled region shows that it is well conserved in the majority 

of vertebrate species analysed, except for Bony fish which show high rates of variation 

within this region; interesting considering they experience temporal hypoxia much more 

frequently than most species. Interestingly, sequence comparison to HIF-2α shows that this 

region is poorly conserved between isoforms, but is rich in serine/threonine residues; 

containing a total of 13 sites. Unfortunately, large parts of this region were not detectable 

by the MS/MS methods used, thus we were unable to evaluate the phosphorylation status 

of this region. 

 

Remaining HIF-1α phosphorylation sites within the ODDD (S438, S451, T458 and S589) are 

all O2 independent. Although all novel in terms of LTP studies, S451 phosphorylation has 

been observed in 5 separate HTP MS studies, thus supporting its existence. Interestingly, 

S451 is a 100% conserved site among species and lies within a highly conserved region 

between species, suggesting a functionally important role. Sequence comparisons with HIF-

2α show that this region is missing and therefore could be hypothesised to have a role in 

differentiating HIF-1α from HIF-2α. S438 and T458 are both highly conserved, with the 

former 100% conserved in all species analysed. S589 is much less conserved with non-
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phosphorylatable residues of glycine and lysine identified in bird species and bony fish 

species respectively. The identification that a negatively charged phosphorylation site aligns 

to a positively charged lysine residue is particularly interesting, and may suggest a potential 

charge importance role. For example, phosphorylation may inhibit a binding partner 

through charge repulsion, while a lysine residue can promote it by strengthening 

electrostatic interactions. Sequence comparisons to HIF-2α identifies that a negatively 

charged glutamic acid residue aligns to this phosphorylation site, thus could support this 

hypothesis and suggest a permanent role for HIF-2α in signal transduction and temporal 

role for HIF-1α. 

 

Table 4.5: Characteristics of HIF-2α phosphorylation sites identified within the ODDD.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variation are highlighted by single letter amino acid code, the O2 tension 
a PTM was identified in and comparisons to HIF-1α sequence. NA = not applicable, X = residue was not 
phosphorylated.  

 

Comparison of Table 4.4 and Table 4.5 highlights how different the phosphorylation status 

of the ODDD is between HIF-1α and HIF-2α. Interestingly, T406 and S413 are virtually 

conserved in all vertebrate species analysed and are in close proximity to the proline 

hydroxylation site P405, discussed further in the proline hydroxylation proximity section 

(4.7.5). 

 

The remaining phospho-sites T447, S449 and S453 form a tight cluster, however 

phosphorylated T477 is identified as an exclusive site while phosphorylated S449 and S453 

are identified as singly and doubly phosphorylated peptides (Table 4.6). It may be 

hypothesised that the T447 and S449/S453 phosphorylation sites could have different roles, 

with the latter two phosphorylation sites potentially having synergistic effects. However, 

this would require further investigation to support such statements. Evolutionary analysis 

reveals that all three sites are poorly conserved, with no species other than mammals 

having all three residues.  
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Table 4.6: Identifying peptides and confidence of T447, S449 and S453 phospho-sites.  
Includes the peptide sequence, Uppercase letter = unmodified, Lowercase letter = phosphorylation site, the 
number of PSMs that identified a particular peptide, the ptmRS score, peptide confidence score and E-value 
from the best PSM. 

  

Overall, the functional characterisation of the identified phosphorylation status of the HIFα 

isoforms ODDD will be an interesting avenue to explore in the future, potentially providing 

an insight for better understanding of the fine tuning of HIFα protein stability at 21% O2. 

 

4.7.3. N-Terminal Transactivation Domain (NTAD) 
aaaaaahypophosphorylation:  

The NTAD is the fundamental region involved with determining gene specificity of the HIFα 

isoforms, and has the least sequence similarity of the canonical domains (Hu et al., 2007 & 

Tian et al., 1997). We therefore hypothesised that the NTAD may experience heavy PTM 

regulation in order to alter binding partners and gene specificity. Thus the complete 

absence of identified phosphorylation sites within the HIF-1α NTAD is surprising (Figure 

4.7). This observation is supported by published data too, where a distinct lack of 

phosphorylation is identified within the NTAD of HIF-1α (data from PhosphoSitePlus). In 

fact, only one publication has identified phosphorylation within the HIF-1α NTAD at S551 

and T555, both resulting in protein degradation; thus may explain why we were unable to 

identify these sites (Flügel et al., 2007 & Flügel et al., 2012). 
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Figure 4.7: Schematic view of the NTAD phosphorylation map of HIF-1α and HIF-2α.  
Confidently identified phosphorylation sites (1% FDR, ptmRS score >99.0) are mapped to the protein and 
coloured dependent on whether they are novel (red), have been seen by previous HTP mass spectrometry 
studies (blue) or whether they have undergone previous characterisation (green). The sequence coverage seen 
from mass spectrometry analysis (from Figure 4.1) is depicted below the protein schematic (bold line) along 
with the sequence homology between isoform domains (fine line and score). A) Phosphorylation sites identified 
in 1% O2, B) Phosphorylation sites identified in 21% O2. 
 
 
Table 4.7: Characteristics of HIF-2α phosphorylation sites identified within the NTAD.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variation are highlighted by single letter amino acid code, the O2 tension 
at which the PTM was identified in and comparisons to HIF-1α sequence. NA = not applicable, X = residue was 
not phosphorylated. 

 

Figure 4.7 and Table 4.7 show that HIF-2α is phosphorylated at 4 positions within the NTAD: 

T517, S543, T559 and T528, the latter discussed in the proline hydroxylation proximity 

section (4.7.5). All 4 sites are highly conserved across vertebrate species, although the 

NTAD itself is poorly conserved. Despite the poor sequence homology between HIF-1α and 

HIF-2α, it is interesting that the HIF-2α S543 and T559 phospho-sites both align to 

negatively charged aspartic acid residues of HIF-1α. 
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Overall, it will be interesting to investigate whether the HIFα isoforms undergo novel PTMs 

of different types in the NTAD domain, such as acetylation or ubiquitination which have 

previously been published (Jeong et al., 2002 & Paltoglou et al., 2007). Alternatively, it will 

be interesting to investigate whether the NTAD undergoes PTM regulation in different cell 

lines, which may explain differences seen (Bracken et al., 2006), or whether the sequence 

differences alone are responsible for the specificity of HIFα gene targeting. 

 

4.7.4. O2 dependent phosphorylation: 
Although the process of phosphorylation does not directly require O2 as a cofactor, wit is 

known that O2 tension can regulate kinase (or phosphatase) function by PTM (Shao et al., 

2014), therefore it can also be hypothesised that signalling pathways in response to hypoxia 

may change. Therefore the identification of O2 dependent phosphorylation sites is not 

surprising, with a total of 12 and 8 phosphorylation sites only identified in an O2 dependent 

manner for HIF-1α (Table 4.8) and HIF-2α (Table 4.9) respectively. 

 

Table 4.8: Characteristics of HIF-1α phosphorylation sites identified that are O2 dependent.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variation are highlighted by single letter amino acid code, the O2 tension 
a PTM was identified in and comparisons to HIF-2α sequence. NA = not applicable, X = residue was not 
phosphorylated. 
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Interestingly, only two phosphorylation sites on HIF-1α were identified in 1% O2 only: S31 

and S384, the former discussed previously in previously characterised section (4.7.1.1) and 

the latter in the negatively charged cluster section (4.7.7). The remaining ten phospho-sites 

that were differentially regulated by O2 tension were only identified in 21% O2: S415, T418, 

T490, S510, S525, S581, T605, S641, T652 and S687. Of these, only T652 has not been 

discussed above, phospho-sites S415-T605 were discussed in the ODDD section (4.7.2) and 

S641 & S687 were discussed in the previously characterised section (4.7.1.2 and 4.7.1.3 

respectively). T652 has been identified previously in a single HTP study and was only 

detected as a doubly phosphorylated peptide in this study with S657. As we identify S657 as 

a singly phosphorylated peptide it suggests that a possible priming mechanism may exist, in 

which S657 is initially phosphorylated and can result in secondary phosphorylation at S652, 

possibly affecting the functional degradation role of S657 (Xu et al., 2010). 

 

Table 4.9: Characteristics of HIF-2α phosphorylation sites identified that are O2 dependent.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variations are highlighted by single letter amino acid code, the O2 tension 
a PTM was identified in and comparisons to HIF-1α sequence. NA = not applicable, X = residue was not 
phosphorylated. 

 

HIF-2α phosphorylation status appears to be more O2 dependent, with 4 sites specifically 

identified in 21% O2 (S453, T528, S581 and S683) and in 1% O2 (S345, T597, S606 and S830), 

3 of these sites are discussed elsewhere: S453 in the ODDD section (4.7.2), T528 in the 

proline hydroxylation proximity section (4.7.5), and S830 in the previously characterised 

section (4.7.1.4). Both remaining 21% O2 only phospho-sites (S581 and S683) lie within an 
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undefined domain of HIF-2α that is poorly conserved among all species investigated. 

Similarly, there is poor sequence homology between HIFα isoforms within this region, thus 

it is difficult to determine their importance or their potential role beyond differentiateing 

HIFα isoforms. Of the remaining 1% O2 only phospho-sites, T597 and S606 are both within 

the same undefined domain of HIF-2α, as S581 and S683, and are equally poorly conserved. 

Based on my observations of numerous O2 dependent phosphorylation sites, it is possible 

that this undefined domain could have an important role in HIF-2α O2 dependent 

regulation. 

 

The last HIF-2α 1% O2 only phosphorylation site (S345) is within the PAS-A/B domains and is 

highly conserved among all vertebrate species analysed. S345 has been crystallised in the 

HIF-2α-HIF-1β crystal structure complex (PDB: 4ZP4, Wu et al., 2015), therefore I could 

model the S345 phospho-site (Figure 4.8). Figure 4.8 (A) shows that S345 phosphorylation 

introduces the negative charge within 2 Å from a negatively charged glutamic acid residue 

(E348, cyan), thus likely resulting in structural rearrangements through charge repulsion. 

Figure 4.8 (B) shows that this region of HIF-2α (green) is encapsulated by HIF-1β (blue). 

Although the amino acids 347-359 of HIF-1β failed to crystallise, it is clear that to connect 

the two fragments of HIF-1β that did crystallise then the unstructured region would have to 

pass over the HIF-2α S345 containing domain. Therefore, it is plausible that if 

phosphorylation at S345 results in a structural rearrangement, then the HIF-1β binding 

domain would be disrupted too; potentially regulating HIF-2α dependent transcription by 

regulating dimerization in an O2 dependent, phosphorylation dependent manner. 

 

 

 



155 
 

Figure 4.8: Phosphorylated S345 of HIF-2α and potential resultant affects.  
Crystal structure (PDB: 4ZP4, Wu et al., 2015), modelled in Pymol and phosphorylated using the PyTMs plugin 
(Warnecke et al., 2014). Green: HIF-2α, Blue: HIF-1β, Red: phospho-S345, Cyan: possible S345 interacting 
residues; W318 & E348. Distances measured using Pymol Distance wizard. A) Close proximity of phospho-S345 
to W318 & E348. B) Zoomed out image to highlight possible role in HIF-1β binding. Residues between T346-
P360 did not crystallise (marked on the structure to highlight the start and end points of the missing region). 

 

 

4.7.5. Proline hydroxylation proximity 
The canonical proline hydroxylation sites are P402/P564 for HIF-1α and P405/P531 for HIF-

2α. These proline hydroxylation sites reside in highly conserved regions between isoforms 

(Figure 4.9). From domain analysis, the LAP (leucine, alanine, proline-hydroxylated) motif is 

essential for proline hydroxylation, observed at all sites for both isoforms. We found that a 

third site of the LAP motif exists within HIF-2α specifically (P576), which resides in a region 

of very poor sequence homology to HIF-1α (Figure 4.9). Evolutionary analysis shows that 

this third LAP motif only exists in mammalian species and thus may suggest an important, 

isoform specific, evolved function. 
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Figure 4.9: Hydroxylated Proline residues and close proximity phosphorylation sites observed with HIF-2α. 
Shows the aligned HIFα sequences from MUSCLE multiple sequence alignment and viewed in clustal X. * 
indicate identical residues at a position, : identifies a strong conservation mutation, . identifies a weak 
conservation mutation and blank spaces indicate no conservation mutation (determined by clustal matrix). Red 
boxes highlight the LAP motif for Proline hydroxylation and arrows identify sites of HIF-2α specific 
phosphorylation. 

 

Interestingly, as Figure 4.9 shows, although the canonical proline hydroxylation sites are 

highly conserved between HIFα isoforms, HIF-2α is specifically phosphorylated within close 

proximity to all hydroxylated Proline residues (arrowed): P405/T406, P531/T528 and the 

novel P576/S581. Additionally, HIF-1α has non-phosphorylatable residues at each 

respective site. Considering the increased O2 dependent stability of HIF-2α compared to 

HIF-1α, it is possible that these phosphorylation sites (T406, T528 and S581) could block, or 

reduce the affinity of, PHD binding; thereby preventing the O2 dependent degradation. 

Supporting this hypothesis, all three phosphorylation sites are identified at 21% O2 and, for 

the canonical proline hydroxylation sites, are highly conserved in all species (Table 4.10).  

 

Table 4.10: Characteristics of HIF-2α phosphorylation sites identified that are within close proximity to Proline 
hydroxylation sites.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variation are highlighted by single letter amino acid code, the O2 tension 
a PTM was identified in and comparisons to HIF-1α sequence. NA = not applicable, X = residue was not 
phosphorylated. 

 

Evolutionary analysis of all species identifies that S581 is less conserved, however, since this 

LAP motif only exists in mammalian species then the conservation of S581 in these species 

could support this theory. Overall, HIF-2α phosphorylation in close proximity to proline 

hydroxylation sites may stabilise the protein in an O2 independent manner, a mechanism 
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that is not present in HIF-1α; potentially explaining the 21% O2 HIF-2α protein stability 

observed. 

 

4.7.6. DNA binding and HIF-1β interaction domains: 
The βHLH and PAS-A/B domains are the most highly conserved domains between HIF-1α 

and HIF-2α, with 85% and 75% sequence homology respectively. Therefore, it was 

surprising to find that 5 of the 6 phosphorylation sites identified in this region align to non-

phosphorylatable residues between isoforms, and that the remaining HIF-1α S31 phospho-

site aligns to the non-phosphorylated HIF-2α S28, in this study (Figure 4.10). 

Phosphorylation sites are: HIF-1α S31, discussed in the previously characterised section 

(4.7.1.1), and HIF-2α sites S46, S72, S79, S163 and S345, the latter discussed in the O2 

dependent phosphorylation section (4.7.4, Table 4.11). 

 

Figure 4.10: Phosphorylated residues within the βHLH domain of HIF-1α and HIF-2α.  
Shows the aligned HIFα sequences from MUSCLE multiple sequence alignment and viewed in clustal X. * 
indicate identical residues at a position, : identifies a strong conservation mutation, . identifies a weak 
conservation mutation and blank spaces indicate no conservation mutation (determined by clustal matrix). Red 
boxes highlight the phosphorylation site and arrows identify sites position of phosphorylation, number based 
from isoform that is modified. 

 

Table 4.11: Characteristics of HIF-2α phosphorylation sites identified within the bHLH and PAS-A/B domains.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variation are highlighted by single letter amino acid code, the O2 tension 
at which a PTM was identified in and comparisons to HIF-2α sequence. NA = not applicable, X = residue was not 
phosphorylated. 

 

Evolutionary analysis shows that the HIF-2α bHLH domain is virtually 100% conserved 

among all species. However, S46 only exists in mammals and bony fish, with remaining 

species having the non-phosphorylatable residue asparagine. Sequence alignments to HIF-

1α also identifies an asparagine residue at this position. Since asparagine is present in all 

HIF-1α species and non-mammalian species of HIF-2α, it could highlight a HIF-2α specific 

function that has evolved in mammalian species only. HIF-2α S163 is better evolutionarily 
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conserved than S46, however is similarly a non-phosphorylatable residue in some species 

and in HIF-1α. 

 

Interestingly, HIF-2α S72 and S79 are located within a 16 residue region of the bHLH 

domain which is the only part of this domain that is not highly conserved between HIFα 

isoforms (Figure 4.10). HIFα isoform sequence alignment shows that HIF-2α phospho-sites 

S72 and S79 both align to non-phosphorylatable residues of alanine and isoleucine in HIF-

1α, respectively. HIF-2α S72 and S79 were both identified as singly phosphorylated peptides 

and as a doubly phosphorylated peptide (data in appendix 1) and are O2 independent. 

Therefore, it may be hypothesised that these sites may have roles in differentiating HIFα 

isoform functions through DNA or HIF-1β binding mechanisms. 

 

Interestingly, S72 is evolutionarily conserved, while S79 is only present in mammalian 

species, with non-phosphorylatable residues identified in all other species (Table 4.11). 

Hence, a previous HTP study providing supportive evidence for S79 phosphorylation makes 

this site of potential interest. The crystal structure of the bHLH and PAS-A/B domains (PDB 

4ZP4, Wu et al., 2015), did not crystallise efficiently within this region, with multiple large 

fragments missing which encompass the phosphorylation sites S72, S79 and S163 (Figure 

4.11). 
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Figure 4.11: Phosphorylated S72 of HIF-2α and potential resultant effects.  
Crystal structure (PDB: 4ZP4, Wu et al., 2015), modelled in Pymol and phosphorylated using the PyTMs plugin 
(Warnecke et al., 2014). Green: HIF-2α, Blue: HIF-1β, Red: phospho-S72. Residues that failed to crystallise are 
highlight by white text identifying the positions of last crystallised residues. 

 

As Figure 4.11 shows, HIF-2α (green) regions between S75-M87, L149-M162 and V211-

L219, and HIF-1β (blue) region between L141-L158, are all missing. It is clear that this region 

is important for HIF-2α - HIF-1β binding interactions. For HIF-2α S75-M87 to connect, the 

missing sequence must directly pass over, or under, the HIF-1β α-helix. Interestingly, the 

lower face of the HIF-1β α-helix contains negatively charged glutamic acid residues while 

the upper face contains positively charged lysine residues. Thus, depending on how the 

missing sequence between S75-M87 folds, it is possible that phosphorylation at S79 could 

result in repulsive or attractive forces respectively. S72 appears to face into a missing 

region of HIF-2α (V211-L219), which contains both negatively charged glutamic acid 

residues and positively charged lysine residues. Thus, similar to S79, S72 phosphorylation 

may result in repulsive or attractive forces respectively. Hence it is possible that S72 and 

S79 phosphorylation could either result in structural rearrangements, by charge repulsion, 

and result in the loss of HIF-1β binding, or alternatively stabilise the HIF-2α - HIF-1β dimer, 

by charge attraction. Without the full crystal structure, it is impossible to determine either 

possibility. 
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4.7.7. HIF-1α Negatively charged cluster: 
From our data we have identified a highly phosphorylated domain of HIF-1α, between 

residues 380-385: S380, T383, S384 and S385. Sequence analysis identifies that this 

phosphorylation cluster contains multiple negatively charged residues as well, possibly 

creating a negatively charged pocket (378 V-E-Sp-E-D-Tp-Sp-Sp-L 387). However, the 

available crystal structure (4ZPR) does not cover these regions to further validate this. Mass 

spectrometry analysis confidently identifies each phospho-site with >10 PSMs and ptmRS 

scores of >99.5 for each, thus I have confidence in their identifications (Table 4.12). 

Interestingly, these phosphorylation sites show a degree of mutual exclusivity, both S380 

and S384 only appear as singly phosphorylated peptides (mutually exclusive), while T383 

and S385 appear as singly- and doubly- phospho-peptides (Table 4.12). 

 

Table 4.12: Identifying peptides and confidence of S380, T383, S384 and S385 HIF-1α phospho-sites.  
Includes the peptide sequence, Uppercase letter = unmodified, Lowercase letter = phosphorylation site, the 
number of PSMs that identified a particular peptide, the ptmRS score, peptide confidence score and E-value 
from the best PSM. 

 

Table 4.13: Characteristics of HIF-1α phosphorylation sites identified within the negatively charged cluster.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variation are highlighted by single letter amino acid code, the O2 tension 
a PTM was identified in and comparisons to HIF-2α sequence. NA = not applicable, X = residue was not 
phosphorylated. 

 

All singly phosphorylated sites within this cluster are O2 independent, except for S384 

which was only identified in 1% O2 (Table 4.12). The doubly phosphorylated (T383 and 
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S385) peptide only identified in 21% O2 (Table 4.12). Overall, this could suggest two 

possibilities: 1) the different phosphorylation sites may have different roles, or 2) the 

introduction of a negative charge by phosphorylation is required for functional outcomes, 

irrespective of location. Evolutionary analysis finds this region to be conserved within 

phylogenetic vertebrate families, but poorly between families; especially for Bony fish 

which have large insertions. However, it is interesting that both mutually exclusive 

phosphorylation sites (S380 and S384) are exclusive to mammalian species, with non-

phosphorylatable residues in all other species (Table 4.13). Hence, evolutionary analysis 

could suggest that possibility (1) is more likely and that S380/S384 may allow for different 

regulatory pathways that have evolved specifically in mammalian species. Sequence 

alignment to HIF-2α shows this HIF-1α cluster and surrounding regions are poorly 

conserved. 

 

4.7.8. Inhibitory domain: 
The inhibitory domain was originally termed through deletion construct analysis attempting 

to identify the main functional domains of HIF-1α (Jiang et al., 1997). Jiang et al., 1997 

found that the HIF-1α CTAD was of residues 786-826, while a construct from residues 576-

826 had no function; hence the term “inhibitory domain” was coined for residues 576-785. 

From previously published data (PhosphoSitePlus), the inhibitory domain is the most PTM 

dense containing domain of HIF-1α; with 27 separate modifications identified from LTP and 

HTP studies. Here, we show that the inhibitory domain is a heavily phosphorylated domain 

for HIF-1α (Table 4.14) and the most densely phosphorylated domain of HIF-2α (Table 

4.15).  
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Table 4.14: Characteristics of HIF-1α phosphorylation sites identified within the inhibitory domain.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variation are highlighted by single letter amino acid code, the O2 tension 
at which a PTM was identified in and comparisons to HIF-2α sequence. NA = not applicable, X = residue was not 
phosphorylated. 

 
Table 4.15: Characteristics of HIF-2α phosphorylation sites identified within the inhibitory domain.  
Table includes position of PTM, how many studies have identified the respective site with function and 
reference, evolutionary history where variation are highlighted by single letter amino acid code, the O2 tension 
at which a PTM was identified in and comparisons to HIF-1α sequence. NA = not applicable, X = residue was not 
phosphorylated. 

 

Interestingly, sequence alignments between HIFα isoforms shows that the HIF-2α inhibitory 

domain has a large (~60 residue) insertion within the inhibitory domain, and in aligned 

regions, has very poor sequence homology between HIFα isoforms (Figure 4.12). However, 
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as Figure 4.12 shows, two sites of phosphorylation between HIFα isoforms do align (green), 

HIF-1α/HIF-2α numbering: S657/T625 and S687/S672, which could reflect an important 

shared function. The fact that many of the identified phosphorylation sites within the 

inhibitory domain are O2 dependent, for both HIFα isoforms, suggests that this domain 

could be an important domain for O2 dependent functions and differentiating HIFα isoform 

functions.  

 

Figure 4.12: Phosphorylated residues within the inhibitory domains of HIF-1α and HIF-2α.  
Shows the aligned HIFα sequences from MUSCLE multiple sequence alignment and viewed in clustal X. * 
indicate identical residues at a position, : identifies a strong conservation mutation, . identifies a weak 
conservation mutation and blank spaces indicate no conservation mutation (determined by clustal matrix). Red 
boxes highlight HIF-1α specific phosphorylation, Blue boxes highlight HIF-2α specific phosphorylation and Green 
boxes highlight phosphorylation of the same aligned residue between HIFα isoforms. 

 

Because many of the identified phosphorylation sites within the inhibitory domain have 

previously been characterised or are O2 dependent, they have been discussed in relevant 

sections (4.7.1 and 4.7.4). Therefore only HIF-2α S696 and S790 are discussed here. HIFα 

isoform sequence alignments show that HIF-2α S696 is within the poorly conserved region 

between both isoforms, aligning to a non-phosphorylatable asparagine residue, while S790 

is within the large insertion of HIF-2α (Figure 4.12). Interestingly, this entire region is poorly 

evolutionarily conserved among species and could reflect an evolutionary ‘hot-pocket’ for 

evolving novel regulatory mechanisms for HIFα isoforms. 

 

4.8. Search for other PTMs 
Since a dual mass spectrometry approach was used, for identifying binding partners and 

phosphorylation sites (post TiO2 enrichment), the former will contain every HIFα peptide 

present and thus all PTMs that have a role in regulating HIFα proteins. As discussed, un-

enriched, PTMs are likely to be at a very low level in comparison to unmodified peptides 

and therefore it is very likely that not every PTM peptide will be detected by our MS 

analysis. However, some PTMs may be at a high enough level to be detected. Additionally, 

it is possible that, TiO2 enriched phospho-peptides may contain additional types of PTM 
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that would not have been identified previously because they were not considered in the 

data analysis parameters.   

 

PEAKS is a software tool that can be used to perform an ‘open PTM’ search for over 300 

different PTMs (that are both biological and artefactual in nature), and is known to 

outperform similar software when filtering to a 1% FDR (Zhang et al., 2012, Han et al., 2011, 

Ma et al., 2003 & Creasy et al., 2004). Therefore all digested and TiO2 enriched LC-MS/MS 

data were additionally analysed using PEAKS, employing the optimised miscleave 

parameters (described in section 4.3). Searches were performed twice, where cysteine 

carbamidomethylation was set as a fixed and variable modification, in order to identify 

potential redox based cysteine PTMs; potentially interesting considering the O2 sensitive 

nature of HIFα proteins. Modifications confidently identified at 1% FDR and 5% minimal ion 

intensity (a measure of localisation score) are depicted in Figure 4.13 and labelled in Table 

4.16 to Table 4.19. Interestingly, the open PTM search clearly identifies considerably more 

PTMs in 21% O2 than 1% O2, in agreement with my phosphorylation data. Each PTM type is 

discussed as a separate modification below. No phosphorylation data is mentioned here as 

no additional sites were identified by PEAKS.  
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Figure 4.13: Schematic view of the PTM status of HIF-1α and HIF-2α, without phosphorylation.  

 

4.8.1. Oxidative modifications 
Redox sensitive PTMs are well known regulators of both HIFα protein stability, through 

proline hydroxylation (Jaakkola et al., 2001, Ivan et al., 2001 & Bruick et al., 2001), and 

transcriptional activity, through asparagine hydroxylation (Lando et al., 2002, Lando et al., 
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2002 & Mahon et al., 2001). Considering that proline hydroxylation results in the rapid 

degradation of HIFα, it is not surprising that the canonical sites of proline hydroxylation 

were not identified (HIF-1α: P405 and P531 and HIF-2α: P405 and P531 (Jaakkola et al., 

2001, Ivan et al., 2001 & Masson et al., 2001). Therefore it was incredibly interesting to 

identify novel HIF-2α proline hydroxylation sites (P137 and P206) at a 5% FDR (removed at 

1% (data not shown)), that are specific to 1% O2 conditions. Therefore it is possible these 

sites are real but poorly fragment or, equally valid, they are matching by chance; hence 

should be validated before investigating further. These novel hydroxylation sites do not 

contain the LAP motifs required for the EGLN PHD function, either suggesting the action of 

different proline hydroxylases, discussed further in the known binding partners section 

(4.13.1.4), or that these sites may be false positive by the reduced stringency filter. 

 

It is known that FIH-1 maintains enzymatic activity in O2 tensions as low as 0.5% O2 (Lando 

et al., 2002), thus it was not surprising to identify N803 and N847 hydroxylation (HIF-1α and 

HIF-2α respectively) in 1% O2. It is likely that protein molecules that have been proline 

hydroxylated in 21% O2 are also aspargine hydroxylated, thus explaining the lack of 

identification for aspargine hydroxylation at 21% (due to it being rapidly degraded). 

 

Oxidation is also possible on the following amino acids: methionine, phenylalanine, 

tryptophan, histidine and cysteine, by either enzymatic reactions or interaction with 

Reactive oxygen species (ROS) (Sharma et al., 2010). Although methionine oxidation can 

have biological roles in disease and ageing (Mohsenin et al., 1989 & Hoshi et al., 2001), it is 

generally accepted that standard MS sample preparation techniques can artefactually 

increase methionine oxidation rates (Ghesquière et al., 2014), thus it was disregarded as a 

PTM here due to the lack of adequate controls. Neither phenylalanine or histidine oxidation 

was identified here. 

 

Although tryptophan oxidation is also potentially artifactual, it requires much stronger 

oxidising conditions and is seldom seen due to proteomics based sample preparation. 

During cellular lysis, tryptophan oxidation can occur artifactually but is generally identified 

in a very specific manner that is enriched to mitochondrial proteins, and is at a much 

reduced frequency than methionine oxidiation (Perdivara et al., 2010 & Taylor et al., 2003). 

Additionally, there are various pathologies associated with the dysregulation of these 

enzymes (Ehrenshaft et al., 2015).  
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Similarly, cysteine residues can undergo multiple, reversible oxidation states by reaction 

with both reactive oxygen and nitrogen Species (ROS/RNS) at the free thiol group, if in a 

non-disulfide bonded state (reviewed by Chung et al., 2013). Under severe oxidative stress, 

cysteine residues can be irreversibly oxidised into 2+ and 3+ oxidative states: sulfinic acid 

and sulfonic acid respectively. Published studies have found an important regulatory role 

for irreversibly oxidised cysteine residues (Vivancos et al., 2005, Blackinton et al., 2009 & 

Fujiwara et al., 2007). Considering ROS/RNS accumulate in hypoxia (Chandel et al., 1998 & 

Bell et al., 2007), it is likely that hypoxia could ellict an oxidative based PTM response in HIF 

signalling. Thus both tryptophan and cysteine oxidative PTMs were considered as true 

PTMs rather than artefactual, and are discussed below. All oxidiative PTMs discussed are 

located within Table 4.16. 
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Table 4.16: Characteristics of Oxidative based PTMs of HIF-1α and HIF-2α.  
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4.8.1.1. Tryptophan oxidation 
HIF-1α has a single site of tryptophan oxidation (W752), specific to 21% O2. W752 is within a 

highly conserved region and is also a highly conserved site, with only a single clade of Bony 

Fish having a glycine residue. The functional importance of this variation is hard to predict; 

although glycine can not undergo an oxidative modification, the size and hydrophobicity 

differences between tryptophan and glycine are likely to have a larger structural effect.  

 

HIF-2α has 3 tryptophan oxidation sites (W318, W438 and W652) that are identified in both 

mono-oxidised and di-oxidised states. All 3 tryptophan sites are highly conserved from 

evolutionary analysis. Interestingly, the oxygenation state of both W318 and W438 are O2 

dependent; W318 is mono-oxidised in both O2 tensions but only di-oxidised in 21% O2, 

whilst W438 is mono-oxidised only in 1% O2 and di-oxidised only in 21% O2. Similarly, W652 

is both mono- and di- oxidised only in 21% O2, suggesting that the sites are all 

independently regulated. Of particular interest, W438 resides within the ODDD, which is a 

highly conserved domain between isoforms. Therefore it is surprising to identify HIF-2α 

W438 aligns to the phosphorylated HIF-1α T458 residue, with a single HTP study providing 

supportive evidence of its existence. These residues and PTMs have highly differing 

characteristics, suggesting possible functional differences. 

 

4.8.1.2. Cysteine oxidation 
Considering the accumilation of ROS/RNS in hypoxia (Chandel et al., 1998 & Bell et al., 

2007), it is not surprising to identify that the number of both sulfinic acid and sulfonic acid 

irreversible cysteine oxidative PTMs increases by hypoxic incubation, with 7 cysteines 

modified in 1% O2 compared to 4 in 21% O2. As the majority of cysteine oxidation sites 

identified here are found in both sulfinic and sulfonic acid forms, it is unknown whether 

they may have separate functions or function interchangably. All oxidised cysteine residues 

detected at 21% O2 were also detected at 1% O2, except for C780 in HIF-1α, suggesting that 

some sites are more readily oxidized than others. Besides C780, all oxidised cysteines are 

localised in the DNA binding (bHLH) and HIF-1β binding (PAS-A/B) domains. Interestingly, 

although the bHLH and PAS-A/B domains share the most sequence homology between HIFα 

isoforms, HIF-2α is much more extensively oxidised than HIF-1α and in a 1% O2 only 

dependent manner. Considering the near 100% conservation of all cysteine residues within 

these domains, this could suggest an important function that may differentiate HIFα 

isoforms. 

 



170 
 

4.8.2. Ubiquitination 
Ubiquitination is a 8.5 kDa protein tag which is typically covalently attached to lysine 

residues, through a 3-stage activation process. Mono-ubiquitination and poly-ubiquitination 

chains can occur through multiple linkage strategies of monomers. Different linkage 

strategies have been shown to have different cellular outcomes. However, poly-

ubiquitination generally results in tagged-protein degradation through the proteasome 

(reviewed by Komander et al., 2012). Traditional shotgun- based proteomics (protein 

digestion) result in the concomitant digestion of ubiquitin, thus consequently it is 

impossible to distinguish between mono- or poly- ubiquitination. However, ubiqutination at 

a specific site is detectable by a ‘GG-tag’ that remains attached to the lysine residue post 

digestion (reviewed by Kirkpatrick et al., 2005).  

 

Ubiquitination is an important HIFα PTM, having roles in regulating protein stability, and 

potentially switching to a HIF-2α dependent signalling state in prolonged hypoxic conditions  

(Koh et al., 2008, Koh et al., 2011, Koh et al., 2014, Paltoglou et al., 2007, Tanimoto et al., 

2000 & Maxwell et al., 1999, reviewed by Schober et al., 2016). Recently, ubiquitination has 

been shown to be involved in a non-canonical activation pathway that results in the 

ubiquitination of cysteine, serine, threonine and tyrosine residues through thiol-ester and 

hydroxy-ester bonding respectively. These non-canonical ubiquitination generally result in 

protein degradation (Reviewed by: McDowell et al., 2013). All ubiquitination sites identified 

here are discussed below, and are listed in Table 4.17. 
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Table 4.17: Characteristics Ubiquitination PTMs of HIF-1α and HIF-2α.  
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Two sites of lysine ubiquitination were detected in total, both in HIF-1α at K214 and K477. 

Considering the rapid degradatory nature of ubiquitination, it is possible that this PTM is 

not easily identifiable without proteasomal inhibition. Interestingly, K214 is highly 

evolutionarily conserved, except in Bony fish where a negatively charged glutamic acid 

residue aligns. Not only does a glutamic acid residue remove the ability for ubiquitination, 

lysine and glutamic acid are oppositely charged residues, thus may reflect a dual role of 

K214 where there is a charge importance. K477 ubiquitination has a HTP study for 

supportive evidence, and was also identified as a site of methylation in this study. K477 has 

also been identified in multiple LTP as a site of SUMOylation, with conflicting results in 

terms of protein stability and transactivation roles (Cheng et al., 2007, Bae et al., 2004 & 

Berta et al., 2007).  

 

Taking into account the degradatory nature of non-canonical ubiquitination sites, it was not 

surprising to detect non-canonical ubiquitination predominantly in 21% O2, with only a 

single site identified in 1% O2 (HIF-2α at S747). We identified two hydroxy-ester 

ubiquitination sites: HIF-1α at T736 and HIF-2α at S747, these do not align between HIFα 

isoforms and have fairly poor evolutionary conservation.  

 

The remaining ubiquitination sites are all cysteine linked. Commonly used reduction 

strategies for mass spectrometry sample preparation have been shown to result in the 

removal of cysteine ubiquitination (Williams et al., 2007), which could explain the lack of 

previous identification within the proteome. It is observed that every cysteine 

ubiquitination site is neighboured by a serine/threonine residue, which could have resulted 

in mis-annotation of PTM localisation if the peptide was poorly fragmentated. However, 

setting the data analysis for fixed cysteine carbamidomethylation (chemically induced by 

sample preparation), in an attempt to force localisation onto the neighbouring 

serine/threonine residue, resulted in the PSM no longer being identified. This suggests that 

either: cysteine is infact ubiquitinated and is more stable than initially thought, or 

serine/threonine ubiquitination blocks the ability to chemically modify the cysteine 

residues. Interestingly, many of the cysteine ubiquitination sites detected are also sites of 

oxidative PTM in 1% O2 (HIF-1α: C194, HIF-2α: C74 and C195), which could suggest a bi-

functional role for these cysteine residues. For example, 21% O2 ubiquitination promotes 

degradation whereas oxidative PTMs in 1% O2 could promote accumulation. 
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4.8.3. Acetylation 
Lysine acetylation involves the addition of an acetyl group to the positively charged amino 

group of lysine residues, resulting in charge neutralisation. Both HIF-1α and HIF-2α have 

been shown to be regulated by acetylation, having both protein stability and transcriptional 

function roles (Lim et al., 2010 & Dioum et al., 2009). Six separate acetylation sites were 

identified in this dataset, HIF-1α: K674 and K709 and HIF-2α: K379, K385, K685 and K705, 

with two of these being novel: HIF-2α K379 and K705. All data listed within Table 4.18. 
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Table 4.18: Characteristics of Acetylation PTM sites of HIF-1α and HIF-2α.  

  

 

HIF-1α K674 acetylation, by PCAF, was shown to promote transcriptional function by 

enhancing p300/CBP-HIF-1α interactions (Lim et al., 2010). Interestingly, HIF-1α K674 has 

been identified by two separate published HTP studies as a site of ubiquitination. Thus HIF-
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1α K674 might have a dual role, influenced by PTMs, in a mechanism where acetylation 

prevents protein degradation by blocking ubiquitination at this site. Suporting this theory, 

HIF-1α K674 is virtually 100% evolutionarily conserved and acetylation is only identified in 

1% O2. Hypoxia dependent acetylation could thus prevent normoxic ubiquitination and 

degradation, an avenue not explored in the previous publication. 

 

HIF-1α K709 acetylation was shown to directly promote protein stability (Geng et al., 2012). 

Interestingly, 4 separate HTP studies have identified K709 as a site of ubiquitination, 

therefore it can be argued that the 2 PTMs may compete for HIF-1α K709 modification to 

regulate protein stability, as discussed for HIF-1α K674. HIF-1α K709 resides within an 

evolutionarily highly conserved region of ~20 residues, however in all Bony fish there is an 

arginine residue. This variation corresponds to what is used for biochemical mutational 

analysis for acetylation, where lysine residues are mutated to arginine for acetylation-null 

investigations because it maintains the positive charge without the ability to be acetylated 

(Gorsky et al., 2016). 

 

Dioum et al., 2009 showed that HIF-2α was acetylated on K385, K685 (both identified in this 

study) and K741, and that a triple mutant reduced transcriptional function without affecting 

protein stability. However the effect of individual sites was not explored. Both HIF-2α K385 

and K685 have been identified as sites of ubiquitination by HTP studies, which could 

suggest a protein stability role, as discussed for HIF-1α K674, which was not observed by 

Dioum et al., 2009. However, it is possible that the use of different cell lines and treatments 

before analysis could impact HIF-2α stability, with different regulatory profiles for different 

cell lines (Bracken et al., 2006). Interestingly, HIF-2α K685 is only present in mammalian 

species, with all other species having variation to aspartic acid or glutamic acid mutations, 

which are oppositely charged to lysine and may therefore suggest an importance of charge. 

 

Both HIF-2α K379 and K705 acetylation sites are novel and are specific to HIF-2α, aligning 

respectively to a missing region and an alanine residue within HIF-1α. Interestingly, 

evolutionary analysis identifies that HIF-2α K379 has specifically evolved in primate and 

ungulate species only, with remaining mammals having a negatively charged glutamic acid 

residue. All other vertebrate species investigated have a charge neutral amino acid. Overall 

this could suggest a recently developed functional trait that is charge dependent. Similarly, 

HIF-2α K705 is only present in mammalian species, with all other species having a serine 

residue, which hypothetically can undergo phosphorylation to introduce a negative charge. 
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4.8.4. Methylation 
Lysine and arginine methylation have classically been associated with histone modification 

and gene expression regulation. Methylation has also been identified as an important PTM 

in signal transduction pathways, including the EGFR – ERK pathway (Hsu et al., 2011), and 

for regulation of protein function such as p53, where mono-methylation inhibits function 

and di-methylation activates function through co-factor binding  (Huang et al., 2007), 

reviewed by Biggar et al., 2014. Infact, HIF-1α and HIF-2α have been shown to be 

methylated at K32 and K29, respectively, but has conflicting reported functional effects 

with reports showing inhibition of transcriptional function without affecting their stability 

(Liu et al., 2015) and methylation induced degradation (Kim et al., 2016). Additionally, HIF-

1α methylation at K391 was found to promote PHD-VHL dependent degradation (Lee et al., 

2017), showing the potential importance of this modification in hypoxia signalling. None of 

these sites were identified in this study, however a total of 4 novel HIF-1α and HIF-2α 

methylation sites were identified, listed in Table 4.19. 
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Table 4.19: Characteristics of Methylation PTM sites of HIF-1α and HIF-2α.  
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Our data show that all HIF-1α methylation sites are novel and are present at 21% O2 only, 

suggesting a potential O2 dependent regulatory role. Interestingly, all 3 HIF-1α lysine 

methylation sites (K71, K477 and K532) have been identified as sites for other PTMs, 

suggesting a potential dual function (as discussed previously in the acetylation section 

(4.8.3)). HIF-1α K71 was detected as a site of ubiquitination in two separate HTP studies 

while both K477 and K532 have been extensively investigated in LTP studies as 

SUMOylation and acetylation/ubiquitination sites.  K477 was also identified as a site of 

ubiquitination in our data, therefore was discussed previsouly in section 4.8.2. 

 

LTP studies have shown HIF-1α K532 is ubiquitinated, post PHD Proline hydroxylation, 

resulting in degradation (Tanimoto et al., 2000 & Paltoglou et al., 2007). Additionally, HIF-

1α K532 was shown to be a site of acetylation, by ARD-1 (Arrest Defective protein -1), 

triggering degradation (Jeong et al., 2002 & Lee et al., 2010). However, the role of HIF-1α 

K532 has conflicting evidence, with studies showing that acetylation does not occur 

(Murray-Rust et al., 2006 & Arnesen et al., 2005). Considering the range of reported PTMs 

(ubiquitination, acetylation, and methylation from this study), combined with 100% 

conservation of HIF-1α K532, it is highly likely that K532 has essential regulatory roles which 

are not yet fully understood. The final HIF-1α methylation site is a novel arginine residue 

(R463), which is poorly conserved. 

 

All HIF-2α methylation sites detected in this study (K379, K596, R690 and K705) are novel 

sites. Similarly to HIF-1α, lysine methylation sites were only present at 21% O2, R690 

methylation was identified in both O2 tensions. Evolution analysis shows that HIF-2α R690 

only exists in primates, marsupials and rodents, with remaining mammalian species having 

a Glutamine variation. This variation is used as an acetylation-mimetic mutation to maintain 

side chain structure but removing the charge (Gorsky et al., 2016). Thus, it is interesting as 

methylation does not result in charge neutralisation, like acetylation. Interestingly, both 

K379 and K705 are sites of acetlyation, and were therefore discussed above.  

 

4.8.5. SUMOylation 
Although SUMOylation has been shown as an important PTM that regulates HIF-1α (Bae et 

al., 2004, Berta et al., 2007 and Cheng et al., 2007) and HIF-2α (van Hagen et al., 2010) 

function, no sites were detected within this study. It is possible that the cell line and O2 

treatments used did not result in SUMOylation. However, a more plausible explanation is 

the difficulty in identifying SUMOylation PTMs using MS without targeted approaches 
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(Hendriks et al., 2016, Hendriks et al., 2018 & Tammsalu et al., 2015). SUMO is a protein 

tag, similar to ubiqutin, however it is poorly digested with trypsin and results in a 30 amino 

acid tag attached to the peptide; too large for standard proteomics analysis. 

 

4.9. COSMIC database 
With the advancements of genome sequencing technology, high quality genome sequences 

can be produced and computationally aligned/annotated relatively quickly. This has lead to 

a wealth of data where different cancer samples have been sequenced to identify 

mutational patterns in genes of interest, that may result in amino acid mutation (missense 

mutation). The COSMIC database (Catalogue Of Somatic Mutations In Cancer) is the largest 

repository for such data with over a million partial and >28,000 full genome tumour 

sequence entries (Bamford et al., 2004 & Forbes et al., 2016). The COSMIC database was 

analysed to identify mutations in the HIF-1α and HIF-2α (EPAS-1) genes that result in 

missense mutations, with the aim to identify potential hotspots of mutation that align to 

PTMs identified in this study; potentially pointing to important functional sites worthy of 

prioritising for further investigation. 

 

A total of 50,243 and 48,762 unique tumour samples had been sequenced containing the 

HIF-1α and HIF-2α genes respectively. Considering the importantance of hypoxia, and active 

HIF, in tumour survival and progression, this number of tumours lead to a surprisinly low 

total mutation count of 261 and 357 for HIF-1α and HIF-2α respectively (~0.5% of all 

tumours). For comparison p53 (TP53 gene) has been sequenced in 167,617 unique tumours 

and was found mutated in 41,588 tumours (~25% of all samples), equating to a mutation 

frequency 50 fold greater in p53 than either HIFα genes.  

 

Since the specific aim of this analysis was to identify site-specific mutational hotspots for 

potential PTM effects, only missense mutations (amino acid substitution) were 

investigated, hence synonymous, nonsense, frameshift insertions/deletion and in-frame 

insertion/deletion mutations were removed from the dataset. This lowered the mutation 

count to 190 for HIF-1α and 270 for HIF-2α. The COSMIC database stores mutations of the 

same site to different DNA bases as separate records, thus a highly mutated site to no 

specific residue would not be identified as significantly mutated. Therefore all mutations for 
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a single site were cumulated together and plotted against amino acid position for 

respective protein (Figure 4.14). 

Figure 4.14: Missense mutational hotspot mapping of HIF-1α and HIF-2α.  
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Figure 4.14 shows that both HIF-1α and HIF-2α have a mutational hotspot with ~15% of all 

HIF-1α mutations located at K213 + D238, and ~23% of all HIF-2α mutations between 

positions 529-532. Interestingly, none of the PTM sites identified in our study, or in 

published studies, are identified as mutational hotspots in cancer samples. The two 

enriched HIF-1α mutation sites (K213 and D238) are relatively close together and oppositely 

charged, therefore these sites may interact with each other to form an ion pair; hence 

mutation to either can give the same phenotypic effect. HIF-1α K213 and D238 were 

modelled using the crystal structure (PDB: 4ZPR, Wu et al., 2015, Figure 4.15). Figure 4.15 

shows that K213 is situated within a missing region (199-218), however D238 is spatially 

distant from C218 (the closest amino acid in the crystal structure to K213). An alternatively 

theory that Figure 4.15 could suggest is that HIF-1α K213 and D238 are involved with HIF-1β 

binding regulation, both being in close proximity to a HIF-1β α-helix. Interestingly, the HIF-

2α mutational hotspot localises to the prolyl-hydroxylation site (P531) and consensus ‘LAP’ 

motif seen in all known proline hydroxylation sites (Figure 4.14), suggesting that the loss of 

degradation for HIF-2α is an important cancer survival mechanism.  

Figure 4.15: Crystal structure mapping to investigate K213 and D238 cancer mutations of HIF-1α.  
PDB: 4zpr, green = HIF-1α, blue = HIF-1β, red = surrounding amino acids of the deletion encompassing K213 and 
D238, cyan = amino acids connecting K213 and D238. Numbering following crystal structure numbers, from Mus 
musculus. 
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4.10. Binding partners   
MS analysis of the eluted material, before TiO2 phospho-peptide enrichment, allowed for 

total protein analysis to identify Co-IP’d HIF-1α and HIF-2α binding partners. A confidently 

identified peptide count per protein filter was not applied, however identified proteins 

were only kept in the dataset if identified in both replicates. Finally, using the HA-Clover 

only control we created background subtracted lists by the removal of non-specific binding 

partners. All binding partners from each IP and replicate filtering are listed in Appendix 2. 

 

4.10.1. Replicate variability 
Although significant optimisation was performed, including lysis/wash buffer and length of 

washes (Chapter 3), there was relatively low reproducibility in protein identifications (50-

60%) between replicate IPs performed under the same conditions (Figure 4.16). The low 

identity reproducibility is also observed using the HA-Clover only negative control, 

suggesting an analytical repeatibility issue rather than a specific HIFα characteristic. It is 

clear that the HA-Clover only tag, and/or GFP-Traps resin, have their own specific binding 

partners, ‘background’ proteins that are removed from the HIFα list to identify ‘real’ 

binding partners. Nevertheless, the number of unspecific ‘noise’ proteins identified is 

significantly lower than the number of proteins identified by either HIFα isoform (Figure 

4.16). 
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Figure 4.16: Replicate variability of identified proteins post IP of HA-Clover-HIF-
1α, HA-Clover-HIF-2α and HA-Clover only.  

 

4.10.2. O2 dependent binding partners 
Proteins that were confidently identified in both replicates were kept for further evaluation 

(Dark green of Figure 4.16), while proteins identified in only one replicate were filtered out. 
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For background subtraction, the same filtering was applied to HA-Clover only proteins 

identified and any proteins that were identified in the same O2 tension experiments for 

both HA-Clover only and HA-Clover-HIFα IPs were removed. Post background subtraction, 

HIF-1α had a total of 610 and 571 protein identifications for 1% and 21% O2 respectively, 

HIF-2α had a total of 900 and 270 protein identifications for 1% and 21% O2 respectively 

(Figure 4.17). 
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Figure 4.17: O2 dependent binding partners for HIF-1α and HIF-2α.  
 

As might have been expected, the HIFα binding partners change significantly as a result of 
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were identified as HIF-1α binding partners (571 vs 610 for 21% and 1% O2 respectively), 

only ~34% of proteins are identified in both conditions; thus ~66% of the proteins identified 

are O2 dependent. More striking is the HIF-2α binding partner data. As previously discussed, 

it could be hypothesised that PTMs and binding partners may play a greater role in 

regulating HIF-2α as its stability is less dependent on O2 tension than HIF-1α. Data here 

indeed suggest this, with >700 proteins identified specifically in 1% O2 compared to 73 at 

21% O2. This ~10 fold increase in the size of the interacting network induced by hypoxia is 

interesting (especially when compared to HIF-1α) and will require additional invesitgation. 

 

4.10.3. Gene Ontology (GO) analysis 
Gene ontology (GO) enrichment analysis was performed to identify which cellular pathways 

interact with HIFα isoforms, in an O2 dependent and independent manner (Huang et al., 

2007 & Huang et al., 2008). For GO annotation enrichment analysis, the DAVID (Database 

for Annotation, Visualisation and Integrated Discovery) tool was used (Dennis et al., 2003). 

Data was stringently filtered for GO-terms of Biological process and Molecular function 

annotations at a Benjamini-Hochberg corrected P-value <0.05 only (Figure 4.18 to Figure 4.21: 

GO Enrichment Analysis of HIF-2α interactors in either O2 tension.Figure 4.21), all GO enrichment data 

in appendix 3). These filtering criteria were applied to provide a broad overview of the 

processes in which HIFα may be involved with and of the specific pathways that may 

regulate HIFα function. 
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Figure 4.18: GO Enrichment Analysis of HIF-1α interactors identified in both O2 tensions.  
GO enrichment analysis was performed in DAVID using the background subtracted list of binding partners 

identified in both O2 tensions (427 proteins). A Fishers exact test is performed for  P-values and were adjusted 

for multiple hypothesis testing using the Benjamini-Hochberg correction and are plotted against fold 

enrichment. The dotted horizontal line represents an adjusted P-value of 0.05. Points are only plotted if the 

adjusted P-value is <0.05 and are labelled if the adjusted P-value is <0.01. Points are labelled with respective GO 

annotation and are scaled according to the number of proteins within an annotation. 

 

 

 

 

 

 

 

 
 
 
 
 
 

Both O2 tensions 



188 
 

Figure 4.19: GO Enrichment Analysis of HIF-1α interactors identified in either O2 tension.  
GO enrichment analysis was performed in DAVID using the lists of background subtracted binding partners 

identified in 21% O2 only (310 proteins), 1% O2 only (235 proteins. A Fishers exact test is performed for  P-values 

and were adjusted for multiple hypothesis testing using the Benjamini-Hochberg correction and are plotted 

against fold enrichment. The dotted horizontal line represents an adjusted P-value of 0.05. Points are only 

plotted if the adjusted P-value is <0.05 and are labelled if the adjusted P-value is <0.01. Points are labelled with 

respective GO annotation and are scaled according to the number of proteins within an annotation. Proteins 

identified in 21% O2 only (left hand side) and 1% O2 only (right hand side). 

 

 
 
 

 

21% O2 only 1% O2 only 
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Figure 4.20: GO Enrichment Analysis of HIF-2α interactors in both O2 tensions.  
GO enrichment analysis was performed in DAVID using the lists of background subtracted binding partners 

identified in both O2 tensions (292proteins). A Fishers exact test is performed for P-values and were adjusted for 

multiple hypothesis testing using the Benjamini-Hochberg correction and are plotted against fold enrichment. 

The dotted horizontal line represents an adjusted P-value of 0.05. Points are only plotted if the adjusted P-value 

is <0.05 and are labelled if the adjusted P-value is <0.01. Points are labelled with respective GO annotation and 

are scaled according to the number of proteins within an annotation. 

Both O2 tensions 
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Figure 4.21: GO Enrichment Analysis of HIF-2α interactors in either O2 tension.  

GO enrichment analysis was performed in DAVID using the lists of background subtracted binding partners 

identified in 21% O2 only (70 proteins), 1% O2 only (677 proteins. A Fishers exact test is performed for P-values 

and were adjusted for multiple hypothesis testing using the Benjamini-Hochberg correction and are plotted 

against fold enrichment. The dotted horizontal line represents an adjusted P-value of 0.05. Points are only 

plotted if the adjusted P-value is <0.05 and are labelled if the adjusted P-value is <0.01. Points are labelled with 

respective GO annotation and are scaled according to the number of proteins within an annotation. Proteins 

identified in 21% O2 only (left hand side) and 1% O2 only (right hand side). 

 

Although GO enrichment analysis was performed on binding partners specifically identified 

in 1% or 21% O2 only, many of the significantly enriched GO annotations are found in both 

O2 tensions (Figure 4.18 and Figure 4.20) and the separate O2 tensions (Figure 4.19 and 

Figure 4.21), for example protein binding and poly(A) RNA binding. The likely explanation 

for this is the broad classification system used by DAVID, thus resulting in many different 

proteins grouped under the same GO annotation. An example of which is proteasomal 

proteins, significantly enriched GO annotations of: proteasomal degradation, protein 

binding, NF-kB signalling, WNT signalling, MAPK cascade, ATPase activity (and more) all 

21% O2 only 1% O2 only 
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consist primarily of the proteasomal proteins with a single differentiating protein to classify 

them as independent groups; NEMO in NF-kB signalling or MAP2K3 in MAPK cascade. 

Therefore, although this analysis may provide some insight into potential functions, further 

more in-depth analysis is needed in respect of actual proteins identified before conclusions 

can be made. Hence only a few GO annotations will be discussed here. Due to issues of 

bioinformatics complexity and time constraints, HIF-1α versus HIF-2α comparisons were 

not performed. 

 

For both HIFα isoforms, the amount of ribosomal proteins identified post background 

subtraction is interesting; with >50 different proteins associated to the ribosome identified. 

Although ribosomal proteins are generally considered background ‘noise’ of the IP, the lack 

of these in the HA-Clover only IPs in comparison to HIFα IPs would suggest otherwise. It is 

undeterminable from this dataset whether HIFα interacts with these proteins either directly 

or indirectly. 

 

Interestingly, the ATPase activity/ATP binding groups conisist of many parts of the 

mitochondrial electron transport chain, including the majority of the ATP-synthase pump. A 

search of the data for mitochondrial proteins (DAVID GO-annotation) highlights a significant 

number of proteins IP’d that are endogenously located within the mitochondria at >100 in 

total (~10% of total proteins identified) for both HIFα isoform, and O2 independently 

binding. This number of internally localised mitochondrial proteins identified would suggest 

that the HIFα proteins may have a fraction of total protein localised into the mitochondria. 

This hypothesis is also supported by some published studies which used biochemical and 

proteomics approaches to show  a sub-population of HIF-1α localised into the mitochondria 

(Briston et al., 2011, Concolino et al., 2018 & Thomas et al., 2019). Although these papers 

only mention HIF-1α,  they do not investigate HIF-2α. Therefore it is possible from the data 

presented here that HIF-2α also localises to mitochondria. Because of these identifications, 

we decided to search the mitochondrial DNA (UniProt accession: NC_012920, Andrews et 

al., 1999) for HREs to suggest whether HIF may have a role in regulating mitochondrial gene 

expression. Interestingly, we identified 20 putative HRE promoter sequences ((A/G)CGTG, 

Schödel et al., 2011), although further investigation is needed to understand whether these 

may be promoters and regulate gene expression, or are intronic in nature. 
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For HIF-1α, the GO annotations identified are marginally different between protein 

identifications of 21% only, 1% only and both O2 conditions. The potentially more 

interesting GO annotations, such MAPK cascade and NF-kB singalling that are only 

identified in 21% O2, primarily consist of the identical proteins with a single differentiating 

protein (Protesomal proteins with either MAP2K3 or NEMO respectively). Therefore GO 

annotations need further investigation before drawing conclusions, as discussed above. 

 

Significantly more enriched GO annotations were identified for HIF-2α at 1% O2, compared 

to 21% O2, as would be expected given the ~10 fold increase in unique protein 

identifications (73 compared to >700 respectively). Surprisingly, HIF-2α in 21% O2 had 

cytoskeletal proteins specifically enriched, with no equivalent GO annotations in 1% O2 or 

any O2 tension of HIF-1α. The major constituents of the cytoskeletal protein GO annotation 

are: proteins of the Arp2/3 complex, Talin and Tubulin isoforms. 

 

Interestingly, enzymes essential for GPI (glycosylphosphatidylinositol) anchoring are 

specifically enriched by HIF-2α at 1% O2 only: GPAA1, PIGK, PIGS, PIGT & PIGU, all of which 

are located within the Endoplasmic Reticulum (ER) (GPI anchor function and localisation of 

binding partners discovered by: Ohishi et al., 2000 & Ohishi et al., 2001). Predicition tools 

(PredGPI) suggest HIF-2α does not have any sites for GPI-anchoring (Pierleoni et al., 2008). 

This therefore suggests that, upon hypoxic incubation, HIF-2α may become localised into 

the ER. In addition, our data finds that the GO annotation of: ‘ER to Golgi vesicle mediated 

transport’ is also significantly enriched, specifically in 1% O2 and for HIF-2α only. This could 

reflect a potential role of HIF-2α in extracellular vesicle packaging. Aga et al., 2014 has 

shown that HIF-1α can be packaged into extracellular vesicles, which then influence 

surrounding cells to promote cancer progression. However HIF-2α has not been 

investigated for similar function. 

 

Another interesting aspect is the enrichment of telomerase influencing proteins identified 

as HIF-2α specific binding partners; with both ‘telomerase RNA localization to Cajal bodies’ 

and ‘protein localisation to teleomere’ significantly enriched in both O2 tensions. Due to the 

nuclear speckle localisation of telomeres (Abreu et al., 2011 & Lee et al., 2015), it is feasible 

that HIF-2α interaction with proteins associated with telomeres could partially explain the 

speckled nuclear localisation obsered of HIF-2α. 
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Investigating the proteins which constitute these telomere associated GO annotations show 

they consist of identical proteins: RUVB like AAA ATPase’s and 6 Chaperonin containing 

TCP1 subunits (2, 3, 5, 6, 7, 8). The latter are components of the TRiC complex which has 

been shown to regulate PHD3 specifically (Masson et al., 2004). However, PHD3 was not 

identified as a HIF-2α binding partner here, thus the PHD3-HIF-2α association cannot be 

blamed for the HIF-2α-TRiC identification.  

 

4.11. Label Free Quantification analysis of binding 
aaaapartners  

Due to experimental size and setup, label based quantification was not appropiate. 

Therefore a label free approach was used to quantify binding partner fold changes induced 

by O2 tension. As discussed in the introduction (Section 1.1.18.1) Label Free Quantification 

(LFQ) is less accurate than labelling approaches as samples are prepared and analysed 

independently of each other, hence experimental error and variation between runs can 

impact the precision and accuracy of protein quantification (Bantscheff et al., 2012 & 

Bantscheff et al., 2007). Therefore LFQ approaches are reliant on normalisation against 

‘housekeeping proteins’ (Välikangas et al., 2018). However, hypoxia induces large effects in 

gene expression of many house keeping genes (Caradec et al., 2010), that are used as 

housekeeping proteins, combined with IP specifically enriching a subset proteins from the 

proteome in an unknown manner (and thus may include common housekeeping proteins), 

these approaches are not necessarily adequate here. 

 

MaxQuant is an open source software that allows the LFQ analysis of such data. Critically, 

MaxQuant determines the summed protein intensities initially to identify proteins that 

minimally change between conditions, which are used to normalise data to in a process 

termed delayed normalisation (Cox et al., 2014 & Cox et al., 2011). Perseus, also open 

source software, has been designed to aid the extraction of required information from 

MaxQuant outputs and aid in visualisation with a range of tools (Tyanova et al., 2016). 

 

LFQ was based on a minimum of 1 peptide identified at 1% FDR, calculating the area under 

the peak. Peptides were grouped by their unique protein identifier and were only retained 

in the data if they were observed in both replicates of either O2 tension. Peptide intensities 

were averaged to infer protein intensity and normalised to the fold change of HIFα 

proteins, as small abundance differences (<1.2 fold) were found between O2 tensions. Thus, 

the data contains all binding partner interactions, as filtered previously when using 
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Proteome Discoverer, with calculated protein intensities that are normalised to HIFα levels, 

available in Appendix 4.  

 

Importantly, MaxQuant matches peaks between conditions even if one condition lacks an 

identified MS/MS spectra, due to too low intensities. Missing values (undetected m/z 

ratios) are imputed with a fictional number, from a normally distributed dataset that is 

below the lowest intensity recorded from the MS/MS data. Theoretically this should result 

in statistically valid differences, however if intensities are variable and of low intensity it is 

possible that imputed values lead to the loss of significance. Hence data shown from the 

Proteome Discoverer pipeline (Figure 4.17), that requires MS/MS data, have many more 

proteins that are O2 dependently regulated, whereas LFQ data (Figure 4.22 & Figure 4.23) 

has statistically significant fold change differences of data that includes proteins identified 

in both O2 tensions. For example, it is feasible to have a 10 fold change in protein intensity, 

identified by LFQ, which was initially identified in both O2 conditions.  
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Figure 4.22: LFQ analysis of HIF-1α binding partners in response to O2 tension.  
LFQ was performed using MaxQuant, based on a minimum of 1 peptide identified at 1% FDR in both replicates 
of either O2 tension, with match between runs applied. Peptide intensity was measured by the area under the 
peak and all peptide intensities averaged for protein intensity. Missing intensities were imputed from a normal 
distribution. Protein intensities were normalised to HIF-1α protein intensity. P-values were determined using a 
Students 2-sample t-test. Plot is of –Log10(P-Value) against Log2(fold change), where positive values are enriched 
in 1% O2 and negative values enriched in 21% O2. Dotted lines are at a P-value <0.05 and 2- Fold enrichment. 
Points coloured red are significant at P-value <0.05. Labelled points are significant at P-Value <0.01 and have a 
fold change of >2. Point size is scaled to the number of peptides identifying a protein. 

 

 

 

 

1% O2 21% O2 
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Figure 4.23: LFQ analysis of HIF-2α binding partners in response to O2 tension.  

LFQ was performed using MaxQuant, based on a minimum of 1 peptide identified at 1% FDR in both replicates 
of either O2 tension, with match between runs applied. Peptide intensity was measured by the area under the 
peak and all peptide intensities averaged for protein intensity. Missing intensities were imputed from a normal 
distribution. Protein intensities were normalised to HIF-2α protein intensity. P-values were determined using a 
Students 2-sample t-test. Plot is of –Log10(P-Value) against Log2(fold change), where positive values are enriched 
in 1% O2 and negative values enriched in 21% O2. Dotted lines are at a P-value <0.05 and 2- Fold enrichment. 
Points coloured red are significant at P-value <0.05. Labelled points are significant at P-Value <0.01 and have a 
fold change of >2. Point size is scaled to the number of peptides identifying a protein. 

 

As suggested, the number of binding partners that are significantly differentially IP’d is 

lower than the Proteome Discoverer pipeline to identify O2 dependent binding partners. For 

example, Proteome Discoverer identified >300 binding partners specific to HIF-1α in 1% O2 

1% O2 21% O2 
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only, compared to <150 identified with LFQ at a P-value <0.05. Interestingly, LFQ shows that 

some binding partners do have very dramatic fold changes induced by O2 tension. For 

example the fold change of greatest statistical significance for HIF-1α (~80 fold, P-value = 

~1x10-7) is ANKRD34B. Greater fold changes do exist, for example HSPA5 (also known as 

BiP) with >1000 fold change between O2 tensions, however investigating the data shows 

both 21% O2 replicates resulted in no identified peptides and are thus has imputed values. 

Therefore, HSPA5 is a true hypoxia regulated binding partner, interesting considering its ER 

specific localisation. 

 

Brief investigation of this LFQ data identifies interesting fold changes from a PTM 

standpoint. VCPIP is a deubiquitinating enzyme (DUB), known to be important in mitosis 

and golgi assembly (Wang et al., 2004), which bound HIF-1α 5 fold greater in 21% O2 than 

1%; a surprising observation considering the role of ubiquitination and degradation. HIF-2α 

binding partner shows an inverted ubiquitination protein associated binding partner 

pattern, with the significantly increased intensities of ubiqutinating enzymes LTN1 and 

HUWE1 in 1% O2, by  ~10- and ~ 4- fold respectively.  Therefore, these data suggest very 

different roles of ubiquitination in HIFα isoform regulation. 

 

4.12. Protein kinase binding partners of HIFα 
As we were particularly interested in phosphorylation as a PTM, we searched the DAVID 

data output by kinases. The kinase data was then filtered down for protein kinases 

specifically (Table 4.20), as the datset contained nucleotide, lipid and sugar kinases as well 

as kinase interacting proteins, such as NEMO. A total of 14 and 19 proteins kinases were 

identified for HIF-1α and HIF-2α respectively. This is perhaps not surprising given the 

transient nature of kinase – substrate interactions. 
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Table 4.20: HIF-1α and HIF-2α interacting protein kinases and O2 tensions observed in.  
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Table 4.20 clearly shows that the HIFα binding kinome is influenced by O2 tension, with the 

majority of kinases only identified in a specific O2 tension. This is partly unexpected 

considering the phopshorylation maps of both HIFα isoforms (Figure 4.3) did not differ 

greatly between O2 tensions. However, as discussed, it is likely that some kinases that 

phosphorylate HIFα have not been identified due to their transient nature. Importantly, it is 

impossible to decipher whether the identified kinases are directly binding to HIFα proteins 

or are indirectly immunoprecipitated through a secondary binding partner. 

 

The identification of tyrosine specific kinases is of interest since no tyrosine 

phosphorylation sites were identified from our mass spectrometry analysis. It is possible 

that the level of tyrosine phosphorylation is below the limit of detection for the 

methodology or, alternatively, an indication that HIFα is localised with these kinases in a 

‘primed’ state for the correct signal to enable a rapid response. Additionally, TiO2 is known 

to have limitations in terms of phospho-tyrosine identification, therefore a more targeted 

approach would be useful for these investigations using phospho-tyrosine specific 

antibodies for secondary IPs (Lombardi et al., 2015). Whilst some kinases identified have 

previously been shown to phosphorylate the HIFα proteins, including: MTOR (Land et al., 

2007), GSK3β (Flügel et al., 2007) and CDK1 (Warfel et al., 2013), the majority of the kinases 

identified are novel interactors of HIF-1α and HIF-2α. 

 

All of the HIF-1α 1% O2 only identified kinase interactors were also identified as HIF-2α 1% 

O2 only binding partners. Of the 21% O2 only HIF-1α kinases, both STRAP and MAP2K3 were 

also identified as HIF-2α binding partners, however only in 1% O2. AURKA and GSK3β were 

the only kinases specific to HIF-1α, both identified in 21% O2. Although conflicting, a 

transcriptional relationship has been shown between HIF-1α and AURKA, yet no interaction 

or phosphorylation has been found (Cui et al., 2013 & Fanale et al., 2013). GSK3β has been 

shown to multiply phosphorylate HIF-1α within the ODDD, ultimately leading to protein 

degradation, independently of proline hydroxylation and O2 tension (Flügel et al., 2007, 

Flügel et al., 2012, Cassavaugh et al., 2011 & Mottet et al., 2003), therefore its HIF-1α only 

identification could potentially explain some of the stability differences between HIF-1α 

and HIF-2α. 

 

The HIF-2α specific kinase interactors identified are all novel. Interestingly, PLK1 was 

identified in this study, with the PLK3 isoform previously shown to phosphorylate HIF-1α at 

S657, although HIF-2α was not investigated in this published study (Xu et al., 2010). Here 
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we show that, using HIFα isoform sequence alignments, the known PLK3 dependent HIF-1α 

S657 phosphorlyation site aligns to the novel HIF-2α T626 site, therefore could suggest the 

phosphorylation site for the PLK1 kinase identified. 

 

MET (Rankin et al., 2014 & Vanichapol et al., 2015), NEK7 (Korgaonkar et al., 2008), EGFR 

(Franovic et al., 2009 & Alam et al., 2016) and GAK (a CDK5 associated protein, Herzog et 

al., 2016) are all kinases essential for mitotic cell cycle progression that have been linked as 

target genes of the hypoxic response as part of a feedback loop. None of these kinases have 

been implicated in HIFα regulation, rather identifying expression level changes of stated 

kinases in response to hypoxia.  

 

4.13. Known binding partners  
The current main regulatory pathways for HIFα regulation is the O2 dependent degradation 

and inactivation pathway and transcriptional complex formation, consisting of 7  proteins: 

PHD1-3 (EGLN1-3), FIH-1, HIF-1β and p300/CBP (Ivan et al., 2001, Epstein et al., 2001, 

Bruick et al., 2001, Jaakkola et al., 2001, Semenza et al., 1992, Wang et al., 1995, Lando et 

al., 2002, Lando et al., 2002, Masson et al., 2003, Jiang et al., 1996, Arany et al., 1996 & 

Kallio et al., 1998)). Therefore we searched our data to investigate how these interactions 

change in response to hypoxia, simultaneously validating our findings. This is of particular 

interest as the experimental design used here overexpresses WT HIFα, rather than 

traditionally used O2 insensitive proline mutations to prevent the hydroxylation-

degradation pathway. 

 

4.13.1.1. HIF-1β 
For HIF-1α, HIF-1β (ARNT) was found as a binding partner in both O2 tensions. LFQ however 

identifies, counter intuitatively, that HIF-1β was enriched >6 fold more in 21% O2 than 1% 

O2, and is significant to a P-value <0.05 (hence not labelled in Figure 4.22). For HIF-2α, HIF-

1β was found to be 1% O2 specific using the Proteome Discoverer analysis pipeline, yet 

MaxQuant showed a non-significant no fold change. The latter is likely due to variation in 

the data at 21% O2, with one replicate showing imputed data values (no peptides identified, 

hence removed as an interactor in Proteome Discoverer data) while the second replicate 

shows minimal differences to 1% O2 intensities. Thus the nature of O2 sensitive binding is 

undeterminable without further replicates. 
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4.13.1.2. FIH-1 
FIH-1 was not identified, in any condition and for either HIFα isoform, although the ‘open’ 

PTM search identified HIFα asparagine hydroxylation. This could suggest highly transient or 

weak interactions of HIFα - FIH-1. 

 

4.13.1.3. p300/CBP  
p300/CBP was not identified in any HIF-1α sample.  For HIF-2α, p300/CBP showed different 

results, depending on the data analysis platform used (similar to HIF-1β). Proteome 

discoverer failed to identify p300/CBP in 21% O2, thereby classifying it as 1% O2 specific 

protein. However, MaxQuant detects >2 fold enrichment of p300/CBP in 21% O2 with a 

significant P-value (<0.01). In these circumstances, it is of greater significance to believe 

Proteome Discoverer data because they require MS/MS spectra and determination of 

primary peptide sequence to identify a peptide, where MaxQuant can, infrequently, 

mistake non-fragmented identical m/z ratios at ther MS1 stage as the same peptide, which 

may not be the case. 

 

4.13.1.4. PHDs 
The PHDs that have been shown to regulate both HIFα isoforms are translated from the 

EGLN genes. For HIF-1α EGLN1 (PHD2) was identified as a binding partner in both O2 

tensions. LFQ found that there was infact a 4 fold increase of EGLN1 in 21% compared to 

1% O2, as may be expected when O2 is a limiting factor. Interestingly, for HIF-2α EGLN1 was 

identified as a binding partner specific to 1% O2, through Proteome Discoverer, and 

supported by LFQ identifying >3 fold more EGLN1 in 1% O2 than 21% O2. The functional 

importance of this is unknown, however would suggest that in early hypoxia HIF-2α may 

experience an increased rate of proline hydroxylation. HIF-1α IPs did not identify any other 

interacting EGLN proteins, likely due to their involvement with rapid HIF degradation. 

Similarly, EGLN2 (PHD1) was not detected by HIF-2α IPs. EGLN3 (PHD3) was identified using 

MaxQuant, however there was no significant quantitative fold change dependent on O2 

tension observed. 

 

Interestingly, searching for prolyl hydroxylases using DAVID identified multiple other 

proline hydroxylases as novel interactors of HIFα proteins, including: Prolyl 4-hydroxylases 

1, and 2 (procollagen-proline, 2-oxoglutarate-4-dioxygenases), Protein Disulfide isomerase 

(Prolyl 4-hydroxylase subunit beta) and Prolyl 3-hydroxylases 1, 2 and 3 (Leprecans), 

referred to by their gene names (P4HA1, P4HA2, P4HB, P3H1, P3H2 and P3H3) from now. 

Although P4HB is a protein disulfide isomerase, and not a proline hydroxylase, it is an 
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essential component of the P4HA1/2 complexes which result in proline hydroxylation. Thus, 

P4HB acts as supporting evidence for the correct identification of these additional proline 

hydroxylases. 

 

P4HA1/2 are localised to the endoplasmic reticulum and hydroxylate proline residues at 

position 4 of the proline side chain (Pihlajaniemi et al., 1991 & Myllyharju, 2003). Their 

primarily known for their function in hydroxylating collagen proteins. However, P4HA1/2 

have been shown to hydroxylate other proteins at conserved A-P-G motifs too, such as 

prion proteins and Argonaute 2 (Gill et al., 2000 & Qi et al., 2008), although this motif is not 

present in either HIFα isoform. HIF-1α has been shown to increase the expression of the 

P4HA1/2 genes in response to hypoxia, which in turn can act as a positive feedback loop to 

promote HIF-1α stability, by limiting the availability α-ketoglutarate, an essential cofactor 

for the EGLN proteins (Epstein et al., 2001, Gilkes et al., 2013 & Xiong et al., 2018). We 

found that HIF-1α had ~6 fold more P4HA2 enriched in 1% O2 than 21% O2, (P-value <0.05), 

while PHB had no fold change and P4HA1 was not identified. For HIF-2α a similar pattern 

was observed with ~4 fold more P4HA2 enriched in 1% O2, while both P4HA1 and P4HB 

were found to have no fold change induced by O2 tension. 

 

P3H1/2/3 hydroxylate proline residues at position 3 of the side chain of Proline residues. 

P3H1 is localised within the ER and basement membrane of cells, while P3H2/3 are both 

localised within the golgi. P3Hs are much less studied in comparison to the PHDs and 

P4HAs, however are known to be highly specific in their hydroxylation of collagen isoforms 

(Vranka et al., 2004, Hudson et al., 2013 & reviewed by Gorres et al., 2010). 

 

4.14. Discussion 
The data presented in this chapter are the first known discovery proteomics analysis to map 

O2 dependent PTMs and binding partners of full length HIFα isoforms from human cells. 

Previous studies have used targeted proteomics approachs and/or recombinant or 

overexpressed fragments of the HIFα proteins to identidy single PTMs from in vitro assays. 

Besides the very low abundance of HIFα proteins in human cells, their primary sequence 

makes mass spectrometry analysis, by canonical tryptic digestion, data limiting; with 

maximal sequence coverage of ~35%. We were able to achieve >90% sequence coverage of 

the HIFα proteins by combining data from different protease digests, a process not 

commonly applied to proteomics due to the cleavage sites of different proteases increasing 
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the chance for 1+ charge state peptide ions, which are suboptimal for MS/MS based 

primary sequence determination. 

 

Although an open PTM search was performed to identify any PTM, the specific focus of this 

study was on phosphorylation, primarily due to the availablity of phospho-peptide 

enrichment strategies from the background of all unmodified/alternative PTM peptides and 

the known roles of phosphorylation in regulating HIFα proteins. All phosphorylation data 

were obtained using an optimised high sensitivity, high resolution MS/MS method to 

maximise peptide fragmentation and phosphorylation site localisation. Phosphorylation 

localisation from MS/MS data was analysed using a statistical software tool (ptmRS), to 

predict the confidence of site localisation. In total, ~50 different PTMs were identified on 

both HIF-1α and HIF-2α, with ~25 of these being phosphorylation at different sites. It is 

important to consider that the level of overexpression required for this in-depth PTM 

analysis may result in artifactual PTMs being identified. Whilst this strategy maintains the 

PHD-VHL pathway, although the rate of HIFα synthesis outweighs the degradation rate, 

therefore could be argued more biologically relevant than proline hydroxylation mutants 

that are traditionally used for O2 independent protein expression. 

 

Combining identified PTMs with phylogeny analysis, I set out to identify potentially 

functionally important PTM sites; highly conserved regions are thought to be more likely to 

have important regulatory roles. Similarly, sites of phopshorylation that show variation 

specifically to negatively charged residues could reflect an important role that has evolved 

to be signalling activated, where residues that are uncharged and non-phosphorylatable 

could reflect the loss of a signalling pathway.  

 

However, with previous knowledge, the phylogeny analysis can also be hypothesis driven. 

For example species that are hypoxia tolerant vs sensitive may have sequence variation to 

aid in adaptions. This is supported by recent studies by anthropologists, where humans that 

have been living at high altitudes for many generations (Tibetan, Andean) have a significant 

enrichment of mutations in HIF-2α. However these were largely within intronic regions 

(Simonson et al., 2010, Yi et al., 2010 &  Beall et al., 2010). Interestingly, our cancer 

genomics database mining also found that the HIFα genes were very rarely mutated (both 

in exonic and intronic regions), although HIFα expression levels and downstream targets 

were generally increased. This suggests that regulatory proteins of HIFα are more prevalent 

to mutation and in turn alter HIFα function, as known for the EGLN genes (Simonson et al., 
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2010 & Bigham et al., 2009). This study also compared HIF-1α and HIF-2α PTMs to 

potentially identify sites/patterns, which could aid in explaining the functional differences 

between isoforms. 

 

4.14.1. PTM data 
It is clear from Table 1.2 & Table 1.3 that the majority of published PTMs of HIFα proteins, 

including phosphorylation, were not identified in this study. There are numerous potential 

reasons for this: 1) past studies generally using in vitro assays and recombinant HIFα 

fragment based approaches which are inherently suspectible to artefacts. 2) HIFα 

regulation, including O2 dependent regulation, is highly dependent on cell type (Bracken et 

al., 2006), thus the use of a single cell line, single hypoxic O2 tension and single incubation 

time could all affect identified PTMs. 3) Only phosphorylation was analysed in depth. Other 

PTMs that may occur at low frequencies may not be identified if they are below the limit of 

detection in these analyses. Interestingly, the main functional domains that share minimal 

sequence homology, thus can be argued to differentiate, HIF-1α and HIF-2α  have distinctly 

different PTM profiles. 

 

4.14.1.1. ODDD 
It is obvious from Figure 4.5 that the ODDD of HIF-1α is hyperphosphorylated, with a total 

of 15 different phosphorylation sites identified. Interestingly, 7 of these phosphorylations 

are O2 dependent and only occur in 21% O2, particularly curious considering the process of 

phosphorylation does not require O2 as a cofactor, like hydroxylases. Additionally, 

considering there are a total of 12 O2 dependent phosphorylation events for HIF-1α, this 

means that 67% of the O2 dependent phosphorylation sites identified are located within the 

ODDD. Overall, this may reflect on three possibilies: 1) the role of phosphorylation in the 

canonical PHD degradation pathway, where phosphorylation may promote PHD association 

and degradation. 2) The complexity of alternative degradation pathways at play, or 3) 

kinases that are O2 dependently regulated have function in the PTM of HIF, for example 

AMPK kinase (Shao et al., 2014 & Hwang et al., 2014). 

 

As a crystal structure of the ODDD is unavailable, sequence based ab initio modelling was 

performed on the region encompassing the densest, and O2 dependent, phosphoylation 

region (475-535). This revealed that all O2 independent sites are internally facing and in 

such close proximity to negatively charged glutamic acid residues (<5 Å) that space-charge 

effects will likely lead to structural rearrangements. Modelling also highlighted that O2 
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dependent phosphorylations are all externally facing, which could potentially act as docking 

sites for binding partners and secondary functions, such as promoting degradation. 

Unfortunately, our data could not decipher whether these PTMs co-exist or are mutually 

exclusive, therefore it is possible that O2 dependent PTMs are mutually exclusive to O2 

independent. Hence, it will be interesting to investigate how mutational analysis will affect 

HIF-1α function. However, this may require mutation of multiple sites for functional effects 

to be observed. To limit the number of mutations required, a ‘Middle-Down’ MS approach 

could be adopted, where HIF-1α is minimally digested, in order to determine the co-

existance of phosphorylation sites on larger peptides (~10 kDa). 

 

Conversely, HIF-2α has few phosphorylation sites within the ODDD, a total of 5, with only 

one O2 dependent site. Therefore, if phosphorylation is linked to protein degradation, it is 

conceivable that the differences in protein stability between HIF-1α and HIF-2α at 21% O2 

could be explained by the different phosphorylation status of the HIFα ODDD. 

 

4.14.1.2. N-Terminal Transactivation Domain 
Before obtaining PTM data, I hypothesised that the NTAD would undergo extensive PTM 

changes due to its role in coordinating HIFα specific gene targeting. However, the opposite 

was observed, where a distinct lack of all PTMs was found in this domain, even though 

~100% of the NTAD was observed by MS for both HIFα isoforms. Infact, HIF-1α  only had 1 

PTM identified: K532 methylation, and HIF-2α had 4 phosphorylations identified: T517, 

T528, S543 and T559, making the NTAD the least dense PTM containing domain of both 

HIFα isoforms. Since the NTAD is the region of least sequence homology between HIFα 

isoforms, it is likely sequence/structural differences within this domain explains the 

differential gene targeting seen by HIFα isoforms, rather than PTM status. However, future 

more in-depth analyses of different PTMs may highlight a significant role of PTMs in the 

NTAD, as PTMs could be at low stoichiometric levels, considering the multiple different 

PTMs of K532 acetylation, ubiquitination and methylation (identified here). 

 

4.14.1.3. Proline hydroxylation sites 
Potentially the most interesting observation from the PTM discovery data is the 

identification of HIF-2α phosphorylation sites in 21% O2 that neighbour all of proline 

hydroxylation sites, including a potentially novel site (P576). The proline hydroxylation sites 

are within highly conserved domains between HIFα isoforms, and consists of an LAP motif. 

However, HIF-2α has single amino acid variations in both of the canonical proline 
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hydroxylation sites that are phosphorylated: (HIF-1α/HIF-2α), P402-A403/P405-T406 and 

P564-M561/P531-T528. Therefore it is feasible that the size and charge differences of HIF-

2α phosphorylated threonine residues, to HIF-1α alanine and methionine residues, could 

explain the 21% O2 protein stability observed by HIF-2α; due to blocking of PHD binding, 

thus removing the hydorxylation and degradation pathway. This would be fairly easy to 

investigate through mutational analysis and western blotting techniques. However, as 

mentioned, shotgun proteomics approaches mean it is undeterminable whether each site 

co-exists or are mutually exclusive, therefore further investigation is required such as by 

‘Middle-down’ approaches. 

 

4.14.2. Binding partner analysis 
The binding partner discovery work presented here will be highly insightful for a 

targeted/hypothesis driven approach. The discovery analysis performed by this study has 

generated a huge quantity of novel data for potential binding partners that may regulate 

HIFα isoforms both O2 dependently and independently. However, IP makes it is impossible 

to determine whether these identified binding partners are the result of direct or indirect 

interactions to the HIFα protein. Thus, without a specific characteristic/hypothesis to filter 

identified proteins, data analysis is difficult to draw meaningful conclusions from. Future 

studies investigating binding partners could easily adopt a cross linking and MS analysis 

strategy to identify peptides that crosslink, and thus must interact (Sutherland et al., 2008), 

to determine direct and indirect binding partners. Additionally, the data presented here 

could be used in network mapping to investigate how proteins interact with each other 

through known interactions (Szklarczyk et al., 2015, Szklarczyk et al., 2017 & Shannon et al., 

2003). Global categorisation, through GO annotation enrichment, and O2 depenecy of 

binding partners was investigated in this study. 

 

4.14.2.1. GO annotation enrichment 
Although it is clear that O2 tension has a significant effect on the binding partner profile of 

both HIFα isoforms, with ~66% of all HIF-1α proteins and a >10 fold increase of HIF-2α 

proteins, GO annotation enrichment analysis was relatively unuseful. The GO annotations 

categorise proteins broadly, thus a single protein is part of multiple GO terms. Hence if a 

specfic protein complex is significantly enriched it can result in multiple different GO 

annotations that consist primarily of identical proteins, as observed here with proteasomal 

proteins. Combined with the strict filtering applied, the vast majority of GO annotations 

that were plotted for Figure 4.18 to Figure 4.21 are identical, yet categorically contain 
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different proteins due to analysis of 21% or 1% O2 only binding partners. Hence, although 

useful for categorising proteins based on function/pathway, manually mining all GO 

annotations (both significant and non-significant) for specific queries will be of greater use, 

as done for kinases and mitochondrial proteins here. 

 

4.14.2.2. O2 dependent protein binding 
Two separate approaches were applied to identify binding partner differences induced by 

O2 tension: an MS/MS driven identification and filtering approach (Proteome Discoverer) 

and a label free quantification (LFQ) approach (MaxQuant). Both strategies have their own 

advantages and disadvantages, with Proteome discoverer providing greater confidence in 

O2 tension classification, by requiring MS/MS and determination of primary sequence, 

while MaxQuant is able to analyse the overlap group (both O2 tensions) for statistically valid 

fold changes. Therefore, further analysis of data can be done in combination of both O2 

dependent outputs and GO annotations when extracting information. This identified some 

interesting observations. 

 

4.14.2.3. Mitochondrial proteins 
It is clear from our data that there is significant enrichment of mitochondrial proteins for 

both HIFα isoforms. It could be argued that upon organelle lysis mitochondrial proteins are 

Co-IP’d in a HIFα specific manner, hence not removed by background subtraction although 

endogenously do not interact, thus are artefactual in nature. However, recent publications 

have shown that HIF-1α may have a sub-population of total protein localised into these 

sub-cellular compartments, although functional aspects are unknown. Therefore, in 

combination of data provided here, it will be interesting to see how the field develops. 

Since many transporter proteins into mitochondria are enriched in 1% O2, it could be 

theorised that HIFα is transported into the mitochondria to upregulate genes of the 

oxidative phosphorylation pathway in an attempt to maximise the efficiency of the limited 

available O2.  

 

4.14.2.4. Kinases 
As a specific focus of this chapter was on phosphorylation, we investigated bound protein 

kinases. However, as stated previously, it is unknown whether these directly bind HIFα or 

are secondary indirect binding partners. Due to the transient nature of kinase function, it is 

likely that many kinases that phosphoylate HIFα will not have been identified. The majority 

of kinases identified are novel HIFα interactors and are generally cell cycle regulators, 
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suggesting an important role of HIF in correct cell cycle progression. It is known that HIF is 

important for cell cycle progression (Goda et al., 2003, Koshiji et al., 2004, Kaidi et al., 2007, 

& Hubbi et al., 2013), however the exact mechanism of regulation is unknown. Therefore, 

the identification of many cell cycle dependent kinases could aid in unravelling this system. 

 

4.14.2.5. PHDs 
Considering the primary regulatory pathway of HIFα proteins, through proline 

hydroxylation, it is highly interesting that we identify novel interactions with additional 

proline hydroxylase enzymes (P4HA1, P4HA2, P4HB, P3H1, P3H2 & P3H3). The biological 

significance of this is unknown, especially considering they are ER/golgi specific localised, 

however the identification of novel proline hydroxylation events in HIF-2α (P137 and P206) 

could suggest a functional importance. 

 

4.14.3. Concluding remarks 
Overall, this chapter contains a significant quantity of novel data for HIF-1α and HIF-2α O2 

dependent and independent regulation, through PTM and binding partner based regulatory 

pathways. However, it is important to consider that the HIF overexpression used might 

have resulted in some artefactual data. We strongly argue that this dataset is the most 

biologically relevant yet, compared to published studies which use fragment based 

approaches, in vitro assays or HIFα proline mutants that are oxygen insensitive, bypassing 

the main regulatory pathway. With the identification of these vast numbers of PTMs and 

binding partners future studies will be needed to validate the findings on endogenous HIFα 

proteins (if suitable antibodies are available), potentially in combination with targeted MS 

techniques (that can result in 100 fold increases to sensitivity). Future studies could also 

investigate how PTM status may change as a function of the severity of the hypoxic 

conditions within the same cell line, or different cell lines, to investigate the full complexity 

of HIFα regulation. 
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5. Chapter 5: PTM 
functional 
characterisation 
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5.1. Introduction: 
Following my discovery of multiple new PTMs, the next step is to functionally characterise 

some of these potentially interesting PTMs, determined from the analyses in Chapter 4, to 

investigate their roles as HIF regulators. Since there was a specific focus on 

phosphorylation, and robust statistical analysis was performed to aid in the confident 

localisation of this PTM, sites of phosphorylation were chosen for initial characterisation 

experiments. 

 

Because phosphorylation is generally dynamic and the regulators that promote/inhibit 

phosphorylation of these identified sites are currently unknown, it is difficult to investigate 

the role of the PTM of interest endogenously. Additionally, phosphorylation is likely to 

occur at a stoichiometric ratio below the levels of total protein (Mann et al., 2002), thus 

complicating the functional analysis and compromising the ability to draw conclusions. Site 

directed mutagenesis (SDM) is a method used to introduce a site-specific mutation into 

DNA that can result in an amino acid change. Using this approach, it is possible to mutate a 

PTM site into residues that mimic or prevent phosphorylation. Figure 5.1 shows an example 

of serine phosphorylation, which introduces a negative charge, hence mutation to aspartic 

acid (a permanently negatively charged amino acid) can mimic the functional characteristics 

of the protein in a completely phosphorylated state. Conversely, mutation of the serine to 

an alanine removes the potential for phosphorylation at a specific site, hence allowing 

investigations of the protein in a completely unphosphorylated state.  
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Figure 5.1: Schematic view of Serine phosphorylation and phospho –mimetic and –null mutations.  

All amino acids are labelled and boxed region highlights the functional group of amino acids. 

 

5.2. Aims:  
The aims of this chapter was to functionally characterise a selection of phosphorylation 

sites identified from Chapter 4. A site-directed mutagenesis (SDM) protocol had to be 

implemented, which could reliably mutate single sites while limiting the risk of random 

mutations through PCR amplification. Once the SDM protocol was optimised, mutational 

strategy used the traditional phospho -mimetic (serine->aspartic acid, threonine->glutamic 

acid) and -null (serine/threonine->alanine) mutations, unless there was a guided mutation 

inferred from evolutionary analysis (Chapter 4). Analogous mutational analysis of HIFα is a 

common strategy to investigate regulatory mechanisms (Table 1.2 & Table 1.3, example 

Mylonis et al., 2008). Once mutants were created, an initial functional screening of mutants 

was performed through a HIF-dependent luciferase-based transcriptional assay. We further 

characterised, Serine-31 (S31) mutations by a range of biochemical techniques to identify 

their regulatory roles. 
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5.3. Site Directed Mutagenesis (SDM) 
aaaioptimisation:  

SDM is a method used to mutate specific DNA bases, which can result in an amino acid 

substitution in the protein sequence (missense mutation). The most common SDM 

technique uses overlapping primers that contain the mutation, thus creating full-length 

mutant plasmid in a single PCR reaction (Quikchange, Agilent, Liu et al., 2008). However, 

even the highest fidelity polymerases can result in random mutagenesis. A random 

mutation rate of ~0.1% is known for the KOD polymerase used here (McInerney et al., 2014 

& Manufacturers notes). Thus, PCR amplification of the whole HA-Clover-HIFα plasmids (~9 

kBp) could potentially result in 9 random mutations per SDM experiment. These mutations 

are incorporated randomly within the plasmid, therefore it is likely that different random 

mutations will occur for each different SDM plasmid. Problematically, the random 

mutagenesis could occur within the plasmid regulatory regions, such as the strong CMV 

promoter where single base pair mutations can result in large gene expression level 

changes (Alper et al., 2005). Thus, random mutagenesis could significantly affect protein 

expression levels, resulting in the false conclusion that the mutation of interest has a 

protein stability role. Hence, this SDM strategy would require sequencing of the whole 

plasmid to ensure that only the desired mutation is present. 

 

MEGAprimer is a SDM technique that limits the PCR reaction length to the gene of interest 

only, depicted in Figure 2.4. Initially, a primer in the flanking gene region and a mutagenic 

primer are used in a PCR reaction to create a mutated DNA fragment (the MEGAprimer). 

The mutated MEGAprimer is then used with a second flanking primer to amplify the full 

length gene, which is then reintegrated into the vector backbone by restriction digest and 

ligation (Sarkar et al., 1990). We created flanking primers that allow SDM independently of 

HA-Clover-HIFα gene, but rather dependent on the mutagenic primer created. Because the 

vector backbone comes from the WT digested plasmid there is no risk of random 

mutagenesis between SDM plasmids outside of the PCR fragment, hence sequencing is only 

required of the HIFα gene (~2.5 kBp).  

 

Using the optimised SDM protocol, I made phospho –mimetic and –null mutations for HIF-

1α: S31 and S786, and HIF-2α: S345, T528 and S581. For serine and threonine 

phosphorylation, mimetic mutations to aspartic acid and glutamic acid were used 

respectively, due to the extra carbon in the side chain of threonine and glutamic acid to 
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mimic space-charge effects. For all phosphorylation null mutations, except S31, Alanine was 

used as a non-charged nor modifiable analogue. In the case of S31, evolutionary analysis 

identified that all bony fish (Osteichthyes) had a non-phosphorylatable glycine residue at 

position 31 (Chapter 4, section 4.7.1.1), thus serine 31 was mutated to glycine. Once 

cloned, all plasmids were sequenced through the Clover and HIFα genes to ensure that only 

the mutation of interest was present. 

 

5.4. HIF dependent luciferase assay 
Due to the number of mutants and conditions to be tested (2 different mutants for all 5 

sites selected, plus WT and endogenous controls at 1% O2 and 21% O2) we initially used a 

HTP HIF dependent luciferase assay to measure transcriptional function. As HIFα proteins 

are canonically regulated by stability, it is important to note that this assay cannot provide 

information on whether the transcriptional effects observed are due to alteration of 

transcriptional activity, transactivation or protein stability. The assay uses a plasmid 

encoding the luciferase gene under the regulation of three HRE repeats (HRE-Luciferase, 

Coulet et al., 2003). Therefore, the luciferase gene is only transcribed and translated into 

protein if active HIF dimers are present. Thus, luminometry readings of the mutants, in 

comparison to the WT counterpart, allows an initial assessment of the functional effects 

induced by a mutation. 

 

Cells were transfected as described for HRE-luciferase assays using the ‘low’ expression 

level model designed to maintain O2 dependent regulation (Chapter 3). As phosphorylation 

sites under investigation were identified at a 4 hr time point in either 1% or 21% O2, these 

conditions were repeated for initial screening (Figure 5.2).  
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Figure 5.2: Luciferase transcriptional assay of HIFα SDM mutants.  
Cells were co-transfected with 0.5 µg HRE-Luciferase plasmid (Addgene #26731) alongside 50 ng of the stated 
HA-Clover-HIFα plasmid (low expression level model) per 200,000 cells in a 35 mm plate. Cells were incubated 
with transfection mix for 18 hr before media change and incubating in 1% or 21% O2 for 4 hr. Cells were then 
lysed and luminometry readings taken using a BMG Labtech FLUOstar Omega plate reader. Readings were 
normalised against luciferase working solution only readings. Data present for n=2 biological replicates +/- 
standard deviation. 

 

It is important to consider that for endogenous readings it is impossible to distinguish the 

relative effects of HIF-1α and HIF-2α without using knockdown controls. These readings 

were thus primarily used to ensure the assay and hypoxic incubation were working 

correctly. A clear observation from Figure 5.2 is that hypoxia induced an ~1.5 fold 

transcriptional increase of all HA-Clover-HIF-1α plasmids, whilst on HA-Clover-HIF-2α 

plasmids, hypoxia had a very mild transcriptional induction. For comparison, endogenous 
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HIF had an ~5 fold luciferase signal increase induced at 1% O2. The weak hypoxic induction 

of HA-Clover-HIF-2α plasmids could be a result of the low exogenous expression model 

saturating HRE-luciferase binding sites (similar to HA-Clover-HIF-1α at a high expression 

level Figure 3.12). However, this explanation is unlikely since WT readings for HA-Clover-

HIF-1α and HA-Clover-HIF-2α are <1.1 fold different, and a ~1.8 fold greater response is 

observed with HA-Clover-HIF-2α T528 mutants. Alternatively, this could suggest that the 

lack of hypoxic induction in early hypoxia could reflect HIF-2α specific characteristics, such 

as HIF-2α being known to become active in prolonged hypoxia (as reviewed by Koh et al., 

2012). 

 

Because this experiment was for preliminary screening to identify a specific mutant set to 

further focus on, only 2 repeats were performed, thus statistical analysis could not be done. 

From Figure 5.2, the HIF-1α S786 mutations had very little effect on transcriptional 

function, mimicking the WT control within a 1.15 fold difference at both O2 tensions. 

Conversely, the S31D phospho-mimetic mutation of HIF-1α dramatically reduced the 

transcriptional activity by ~5 fold, compared to the WT HIF-1α protein. However, the S31G 

phospho-null mutation is <1.2 –fold different to the WT HIF-1α controls. These data suggest 

that S31 phosphorylation inhibits the transcriptional activity of HIF-1α. Based on structural 

analysis (Figure 4.4), we hypothesised that this transcriptional inhibition could be due to a 

reduced ability of HIF-1α to bind DNA in a phosphorylated state, likely due to charge 

repulsion with the DNA backbone. 

 

A similar, but less pronounced, decrease in luciferase signal was observed with the HIF-2α 

S345D phospho-mimetic mutation compared to the WT HIF-2α (Figure 5.2). An ~40% 

decrease in luciferase signal was observed for S345D in both O2 conditions (Figure 5.2), 

suggesting a possible analogous role of phosphorylation at HIF-2α S345 to HIF-1α S31 in 

causing the decrease in transcriptional activity. However, based on structural analysis 

(Figure 4.8) we hypothesised that HIF-2α S345 phosphorylation might regulate 

transcriptional activity by the reduced ability to bind HIF-1β. 

 

Considering that the T528 and S581 mutations were selected based on their close proximity 

to the known proline hydroxylation site (P531) and a potentially novel hydroxylation site 

(P576), it is interesting that the mutation of these sites to either their phospho-mimetic 

(glutamic acid and aspartic acid respectively) or phospho-null (alanine) mutations both 

resulted in an increase in transcriptional activity by ~50%. Our initial hypothesis was that 
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phosphorylation at a site in such close proximity to the proline hydroxylation sites may 

block the function of PHD enzymes, thus increasing protein stability and luciferase signal. 

However, these data could suggest a dual role for the hydroxyl group of serine/threonine 

residues, for example, the unmodified hydroxyl group of the serine/threonine could be 

required for effective targeting of PHDs and subsequent proline hydroxylation. Hence, 

mutation to the phospho-null alanine residue also inhibits this degradation of HIF-2α, thus 

increasing luciferase signal. Where phosphorylation (aspartic acid/glutamic acid) prevents 

PHD binding, thus also increasing luciferase signal 

 

5.5. Exploring the mechanism of HIF-1α S31 
aaaiphosphorylation-induced transcriptional 
aaaiinhibition 

As stated, the luciferase assay, does not allow the determination of whether the observed 

results are because of direct transcriptional effects, or through alteration of protein 

stability or change in binding partners/transactivation. Therefore, we first determined 

whether S31 mutations affected protein stability Figure 5.3 (A)). Figure 5.3 (A) shows that 

there is no significant difference in protein stability between WT, S31G and S31D HA-

Clover-HIF-1α. Normalisation against the β-actin control shows that the S31D and S31D 

mutations are ~1.4 fold and ~1.2 fold more intense than the WT protein (based on 

densitometry analysis, data not shown). Hence the transcriptional inhibition of S31D is not 

due to a decrease in protein level. 
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 Figure 5.3: Biochemical assessment of WT HA-Clover-HIF-1α and S31 phospho –mimetic (S31D) and -null 
(S31G) mutations.  
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To check if transcriptional efficiency is chronically reduced by S31D mutation, rather than a 

transient effect, two strategies were employed: 1) A low expression model time course over 

24 hr of 1% O2 incubation (Figure 5.3 (B)) and 2) a large overexpression using the high 

expression model (Figure 5.3 (C)). Both Figure 5.3 (B) and (C) show conclusively that S31D 

dramatically reduces the luciferase signal, to levels comparative to the non-transfected 

endogenous control, while the S31G mimics the WT overexpression profile. For 

comparison, after 24 hr incubation at 1% O2 using the low expression levels, the HIF-1α WT 

and S31G proteins were ~5 fold greater, and significantly different, to the S31D mutation. 

The S31D mutant does not significantly differ from the endogenous control. Using the high 

expression level, the HIF-1α WT and S31G proteins resulted in an >50 fold increase in 

luciferase response compared to the S31D. To ensure the S31D mutation had a 

physiological effect on endogenous target gene expression, Real-Time quantitative PCR (RT-

qPCR) was performed on the following hypoxia inducible genes: GLUT-1, PHD2 (EGLN1), 

VEGF and PHD3 (EGLN3) (Figure 5.3 (D)). Figure 5.3 (D) shows that the HIF-1α S31D 

mutation results in a statistically significant reduction in expression of both GLUT-1 and 

VEGF in comparison to the WT control (P-value <0.05), to levels that are comparable of the 

non-transfected control. However, no significant difference was observed in the mRNA 

levels of PHD2 and PHD3 with HIF-1α S31D compared to the WT control. 

 

Overall, the data presented here suggest that the phosphorylation of HIF-1α at position 

S31, inferred from S31D mutation, completely inhibits the transcriptional function of HIF-1α 

in a protein stability independent manner. However, the potential mechanism for the 

transcriptional inhibition is unknown and could be explained by: 1) the impairment of 

binding to known essential cofactors, such as HIF-1β. 2) The impairment of binding to a 

novel binding partner. 3) Differential localisation, such as nuclear exclusion, or 4) direct 

DNA binding inhibition through charge repulsion. These scenarios are explored below. 

 

5.5.1. Investigating S31 binding partners 
To investigate how the binding partners were altered by S31 phosphorylation (exploring 

both scenarios (1) and (2) above), the WT, S31D or S31G plasmids were expressed at the 

low expression level and immunoprecipitated for analysis of their binding partners(Figure 

5.4), as in Chapter 4.  
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Figure 5.4: Visual depiction of binding partner differences between HA-Clover-HIF-1α WT, S31D and S31G. 
IPs were performed using HeLa cells transfected with the low level expression model of indicated plasmid. Data 
represents binding partners only identified in both replicates post background subtraction. Numbers reflect 
total number of proteins in each segment, circles and overlaps scaled respective to number. A) Venn diagram of 
WT, S31D and S31G binding partners. B) Venn diagram of S31D and S31G binding partners. 
 

As Figure 5.4 (A) shows, ~70% of the total number of proteins identified were common 

between the WT, S31D and S31G HIF-1α proteins. A list of protein identifications for each 

HIF-1α protein is provided in appendix 5. Importantly, HIF-1β was identified as a binding 

partner for all HIF-1α mutants. Similar to the experiments presented in chapter 4, FIH-1 and 

CBP/p300 were not identified in any sample. Thus, it does not appear that the reduced 

transcriptional function of S31D is the result of failing to form the active transcription 

complex. 

 

Therefore, the data was analysed for potentially novel binding partner changes induced by 

phosphorylation. It is highly likely that the expressed WT HIF-1α protein will be in an 

unknown state of equilibrium between S31 phosphorylated and unphosphorylated protein 

forms. Thus, if S31 phosphorylation is responsible for promoting, or inhibiting, the 

interaction with an essential unknown binding partner, the WT dataset would preclude its 

identification. Hence a focused analysis was performed, comparing HIF-1α S31D and S31G 

binding partners only (Figure 5.4 (B)). Theoretically, direct comparison of the S31D and 

S31G will identify binding partner differences arising as a function of phosphorylation, 

allowing me to hypothesise the functional role played by phosphorylation. A list of all 

mutant specific proteins is presented in Table 5.1. 
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Table 5.1: Binding partner differences between S31D and S31G.  
Identifications were present in two biological replicates post background subtraction, using HeLa cells 
transfected with indicated plasmids at low expression levels upon 4 hr incubation at 1% O2. 
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Figure 5.5: GO pathway enrichment analysis of S31D vs S31G.  
Identities from Table 5.1 used in DAVID GO annotation analysis, Biological process and Molecular function 
annotations filtered for only. A Fishers exact test was performed, plotted annotations are of a Benjamini-
Hochberg adjusted P-Value < 0.01. Left hand side = S31D only proteins identified, right hand side = S31G only 
proteins identified. 
 

Table 5.1 contains >150 different proteins. To identify functional protein categories and 

signalling pathways associated with these unique binding partners, the data were analysed 

through Gene Ontology enrichment analysis using DAVID (Figure 5.5, Dennis et al., 2003), 

as performed in chapter 4. Figure 5.5 shows that more functional categories were 

significantly enriched for in S31G IPs. However further investigation found that multiple 

annotations consisted of the same proteins and were categorically labelled as different GO 

terms, similar to previously discussed in Chapter 4. Interestingly, S31G has three 

significantly identified annotations for GTP related proteins (GTP binding, small GTPase 

signal transduction and Ras protein signal transduction) equating to 10 different proteins 

S31D S31G 
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(Table 5.2). These GO annotations, and related proteins, were not identified in S31D even 

when relaxing stringency of confidence. Thus, this data suggests that unphosphorylated S31 

(S31G) is associated with a GTP signalling cascade that is essential to trigger HIF-1α 

dependent transcription, and is blocked by S31 phosphorylation (S31D). 

 

Table 5.2: Identified GTP binding proteins that bind specifically to S31G, and not S31D.  
Table includes the UniProt accession code, Gene Name and description of protein. 

 

The downstream regulation post Ras signalling (reviewed by: Downward, 2003) includes 

many protein kinases known to influence HIF-1α activity, including ERKs (Minet et al., 

2000), GSK3β (Flügel et al., 2012) and mTOR (Land et al., 2007). Therefore, it is possible that 

a Ras-dependent pathway promotes HIF-1α dependent transcription through secondary 

phosphorylation sites. This possibility was not explored due to the poor sequence coverage 

by MS analysis in the neighbouring region of HIF-1α, as discussed in Chapter 4. Additionally, 

it is possible that the Ras-dependent signalling pathway that interacts with HIF-1α is 

indirect and results in the modification or transactivation of a novel HIF-1α binding partner, 

in turn promoting HIF signalling; these options remain to be explored. 

 

Although the binding partners comparison, between S31G and S31D mutants, revealed 

some interesting potential upstream signalling mechanisms, it did not provide a definitive 

explanation for the functional mechanism underpinning the transcriptional inhibition 

induced by a phospho-mimetic mutant of S31 phosphorylation (S31D). The role of S31 

phosphorylation in HIF-1α nuclear localisation and direct DNA binding were further 

explored. 
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5.5.2. S31 phosphorylation and Nuclear localisation 
The third hypothesis was explored by confocal microscopy to visualise the correct nuclear 

localisation (Figure 5.6 (A)). For nuclear localisation studies, the high expression level of HA-

Clover-HIFα was used for WT, S31D and S31G plasmids. Figure 5.6 (A) shows that, whilst 

highly overexpressed, the WT HIF-1α protein remained exclusively expressed in the nucleus 

as a homogenous distribution. The same observation was observed for both HIF-1α S31D 

and S31G mutants, thus mis-localisation of the S31D phospho-mimetic mutant is not 

responsible for the transcriptional inhibition observed, under these conditions. 
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Figure 5.6: Nuclear localisation and DNA binding efficiency characteristics of HIF-1α S31 WT, S31D and S31G. 
HeLa cells transfected with either WT, S31G or S31D HA-Clover-HIF-1α plasmids at the high expression level. A) 
Nuclear localisation analysis, Microscopy analysis at 63X magnification with images taken at brightfield and 488 
nm fluorescence excitation using a Zeiss LSM 780 microscope. B) DNA binding efficiency, determined through 
CHIP and RT-qPCR analysis of the KDM2A HRE promoter. Ct(NT) = Negative control using the HA-Clover only 
plasmid. A Student t-test was performed, * = P-value < 0.01, NS = not significant. Data of n=3 biological 
replicates +/- standard error. Performed by Dr Michael Batie, from the Prof Rocha group. 

 

5.5.3. Direct DNA binding inhibition 
The ability of WT, S31D and S31G HA-Clover-HIF-1α proteins to bind DNA was measured by 

Chromatin Immunoprecipitation (CHIP) (Figure 5.6 (B)), experiments performed by Dr 

Michael Batie, from the Prof Rocha group). The high expression level of HA-Clover-HIF-1α 

was used to exacerbate functional differences observed, because it is known that the S31D 
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mutant protein maintains its transcriptional inhibition at high expression levels (Figure 5.3 

(C)). 

 

Analysis of the KDMA2 HRE promoter was used as a well-known HIF-1α regulated promoter 

(Batie et al., 2017), which works well for HIF-CHIP experiments. CHIP analysis (Figure 5.6 

(B)) shows that the WT HA-Clover-HIF-1α resulted in a significant ~4 fold greater DNA 

binding signal at the KDMA2 promoter than compared to the HA-Clover only (Ct(NT)), and 

anti-mouse, off-target antibody negative controls (P<0.01). The S31G mutant shows a 

similar DNA binding pattern as the WT, consistent with the luminometry and qPCR 

experiments, but exhibited large variability (Figure 5.6 (B)). The S31D mutation resulted in 

almost identical DNA binding signal to the negative control, and was significantly different 

to the WT plasmid (P<0.01). These data are consistent with the luciferase reporter assays 

and RT-qPCR data. Additionally, the DNA binding with HIF-1α S31D was not significantly 

different to either of the negative controls performed (HA-Clover only and anti-mouse IPs), 

highlighting how little DNA was bound to HIF-1α S31D. 

 

Overall, these data suggest that phosphorylation at S31, as determined using the S31D 

phospho-mimetic mutation. It was determined that S31D prevents active HIF dimers from 

binding to DNA, and therefore inhibits transcriptional activation, without affecting HIF-1α 

protein stability, the HIF-1α - HIF-1β binding interactions or nuclear localisation. Combined 

with the identification that the S31D mutant lacked GTPase proteins, it is possible that an 

unknown GTP dependent pathway has a role in promoting the association of HIF – DNA 

through an unknown mechanism, either directly or indirectly. 

 

5.6. Discussion 
In this chapter we used a SDM protocol to specifically create phospho -mimetic and –null 

mutants of identified phosphorylation sites from Chapter 4. Of the mutants generated, the 

HIF-1α S31 phospho-mimetic mutation (S31D) exhibited the greatest disruption to a 

luciferase based transcriptional assay, and thus was further characterised. S31 has 

previously been identified as a phosphorylation site for PKA when using recombinant HIF-

1α fragments in an in vitro kinase assay (Bullen et al., 2016). Using a S31 phospho-null 

mutation of the fragment, to an alanine residue, Bullen et al., 2016 determined that there 

were no effects on protein stability when expressed in human cancer cells lines, and this 

mutant was not investigated further. This is in agreement with our data which show that 
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the stability of full-length HIF-1α is not affected by the S31G phospho-null mutation. 

However, data presented in Chapter 4 suggests a potential role in DNA binding, thus 

regulating transcription in a manner that is independent of protein stability, this was not 

investigated by Bullen et al., 2016. 

 

Interestingly, the phospho-mimetic aspartic acid mutation was completely transcriptionally 

inactive while the phospho-null glycine mutations resulted in generally marginal sub-level 

expression in all luciferase and RT-qPCR experiments, but exhibited large variations in 

measurement. A potential explanation for variability could be that a mutation to a glycine 

residue creates a consensus sequence for neighbouring PTM sites that experience PTM in a 

cell cycle dependent manner. Hence, the variation in cell cycle stage of cultured cells could 

explain the increased variability observed. This could be investigated by the use of cell cycle 

stalling agents, such as hydroxyurea, nocodazole, mimosine or thymidine blocking (Jackman 

et al., 2001, Bostock et al., 1971 & Koc et al., 2004), prior to hypoxic incubation and gene 

transcription. 

 

Investigating a potential cause of transcriptional inhibition by HIF-1α S31D by binding 

partner analysis identified that 10 separate GTPase proteins were specifically purified with 

the phospho-null HIF-1α S31G mutant, suggesting a phosphorylation induced lack of 

GTPase binding. From data presented here, there are two equally valid mechanisms that 

could explain the GTPase and DNA binding inefficiency correlation: 1) GTPases are essential 

for loading of active HIF onto the DNA, through unknown mechanisms. Consequently 

phosphorylation at HIF-1α S31 prevents GTPase binding and subsequent DNA binding. 2) 

Active HIF associates with the DNA together with GTPase proteins stabilising/activating 

transcription. The reduced DNA binding resulting from HIF-1α S31 phosphorylation thus 

simultaneously decreases GTPase protein binding. 

 

There is emerging evidence that a class of GTPase proteins (Rho GTPases) have a regulatory 

role in gene expression by promoting secondary interactions within the nucleus (Phuyal et 

al., 2019). Cdc42 is a rho GTPase protein identified here as a binding partner for the non-

phosphorylatable HIF-1α S31G mutant. Cdc42 is a well characterised protein, known to 

have multiple roles as an activator of various cell signalling pathways involved with cellular 

polarity (Melendez et al., 2011 & Etienne-Manneville, 2004). Thus, it is possible that Cdc42 

activates HIF-1α in a S31 non-phosphorylated state (S31G) for DNA binding by direct 
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mechanisms or indirectly, through a secondary protein interactors becoming activated 

(such as a kinase). Such a role in hypoxia based signalling has not yet been identified. 

 

The major constituents of the GTPases identified to bind S31G and WT HIF-1α are the Ras-

related Rab proteins. Rab proteins are known for their intracellular organisation roles, 

targeting proteins to specific membrane bound organelles (Hutagalung et al., 2011 & 

Wandinger-Ness et al., 2014). Rab32, Rab1 and Rab10 are involved with mitochondrial 

fission and ER vesicle formation respectively, an interesting observation due to the large 

quantity of mitochondrial and ER specific proteins identified in Chapter 4 (>10% of all 

proteins). Rab5 has roles in nuclear-cytoplasmic shuttling of effector proteins (such as PI3K) 

or sequestration of proteins to regulate gene expression, rather than direct protein binding 

(Schwartz et al., 2007 & Wandinger-Ness et al., 2014). Since Rab proteins can 

simultaneously act as scaffolds (Wandinger-Ness et al., 2014), and the fact that it is 

impossible to determine whether binding partners identified by Co-IP are direct or indirect, 

it is possible that a novel HIF binding partner may utilise Rab proteins for nuclear shuttling 

and activation. Thus, if the novel protein was blocked from interacting with HIF-1α by S31 

phosphorylation it could explain the loss of transcriptional function and the Rab protein 

binding. It would be interesting to investigate how Rab protein known-down experiments 

could influence the hypoxic response. 

 

Although the HIF-1α S786 mutations seemed to have no overall effect on transcription, it is 

possible that the luciferase assay failed to identify a transcriptional effect due to the nature 

of the experiment. HIF-1α S786 is situated within the CTAD which is essential for p300/CBP 

binding, and is functionally involved with chromatin remodelling for gene expression 

(reviewed by Chan et al., 2001). Therefore, it is possible that if p300/CBP binding is 

inhibited that endogenous gene expression regulation may be affected, while extra-nuclear 

plasmid DNA (not included in the chromatin and devoid of histone proteins) could remain 

unaffected. Thus, analysis of the S786 mutants through RT-qPCR should be performed 

before disregarding functional transcriptional outcomes. 

 

The HIF-2α S345 was selected because crystal modelling predicted a potential role in HIF-1β 

binding. HIF-2α S345 phospho-null mutation (S345A) had no effect on transcriptional 

response compared to WT, while a phospho-mimetic (S345D) mutation resulted in a large 

decrease in luciferase response. This could suggest that HIF-2α S345 phosphorylation 

weakens the HIF-1β binding strength, as predicted from modelling, thus limiting the 
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transcriptional efficiency of the HIF-2α protein by failure to form the active dimer. This 

could be investigated relatively simply through IP and western blotting for HIF-1β, however 

due to time restraints was not investigated further here.  

 

It is interesting that mutation to phospho –null, or –mimetic mutations of either HIF-2α 

T528 or S581 phosphorylation sites, which neighbour LAP proline hydroxylation sites, 

resulted in ~1.5 fold increase in transcription. One hypothesised explanation is that the 

hydroxyl group of the threonine/serine residue in an unmodified form is an essential 

component of a motif to target a secondary modification that results in the reduced 

transcriptional efficiency, through either protein stability or transactivation. Thus, mutation 

to a charged (glutamic acid/aspartic acid) or hydrophobic (alanine) residue abolishes the 

inactivating secondary PTM, hence stabilising HIF-2α transcriptional signal independently of 

physiochemical properties introduced by phosphorylation. With the creation of HIF-2α 

T406 phospho -mimetic (T406E) and -null (T406A) mutants, neighbouring the remaining 

known proline hydroxylation site, it will be interesting to investigate whether similar 

observations are identified to T528 and S581 mutations. We hypothesise that the increased 

HIF-2α transcription observed by these mutations, are due to protein stability, therefore 

multi-site mutational analysis may have synergistic effects. Thus, it is possible that the 

phosphorylation pattern of the HIF-2α T406/T528/S581 sites in 21% O2 (Chapter 4) could 

explain the observed 21% O2 stability of HIF-2α, while HIF-1α is rapidly degraded.  

 

Overall, using S31 as an example, this chapter highlights how a single PTM can dramatically 

alter the functional status of the HIFα proteins. In the context of drug development, HIF 

targeting in tumour progression is a major research interest with current approaches using 

HTP screening techniques to identify novel drugs (reviewed by Semenza, 2003 & Masoud et 

al., 2015). Problematically, the functional aspect of drug-based inhibition is lost and can 

lead to drugs with various side effects. A more targeted approach is preferable but requires 

mechanistic understanding of essential signalling pathways that regulate the hypoxic 

response, so that drugs can be designed to bind to specific regions of the protein, or the 

regulatory enzyme for specific functions and/or modifications to be altered. Thus with ~100 

different novel PTMs identified, it is not only exciting for the field of hypoxia regulation, but 

also in the future investigation of therapeutics.  
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6. Chapter 6: Final 
discussion 
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6.1. Final discussion 
This thesis describes the development and utilisation of tools to investigate the regulation 

of HIFα proteins by hypoxia in an unbiased manner. I was able to identify an in-depth 

phosphorylation map (~25 phosphorylation sites) for each of the HIF-1α and HIF-2α 

proteins, with the majority of phosphorylation sites identified being novel. Furthermore, an 

open PTM search (all possible PTMs) identified a potential further 25 PTMs per HIFα protein 

(additional to phosphorylation) including acetylation, methylation and irreversible cysteine 

oxidative modification. Combined with domain and evolutionary analysis of ~250 different 

vertebrate species, we were able to identify several interesting aspects from isoform 

differences and evolutionary conservation/variation, which we used to guide the 

investigation of potentially interesting phosphorylation sites (discussed in Chapter 4). Using 

mutational analysis, I determined that HIF-1α S31 phosphorylation inhibits transcriptional 

activity, independent of protein stability mechanisms, but rather through preventing the 

ability to bind to DNA. Additionally, I was able to identify many more binding partners of 

HIFα proteins than previously defined and evaluated their O2 dependent binding by label-

free quantification proteomics approaches. I used GO annotation enrichment analysis to 

identify O2 dependent cellular processes interacting with HIFα proteins to further 

understand the cellular processes that regulate these. There are several points to consider 

to guide future experimentation, discussed below. 

 

6.1.1. Novelty of the approach 
We have overexpressed full length HA-Clover tagged proteins to investigate the HIFα PTM 

status and binding partners. Such a strategy has the obvious drawback that HIFα expression 

is under a strong, exogenous CMV promoter and thus lacks endogenous DNA based 

regulatory mechanisms. Additionally, it is well-documented that purification tags, 

particularly larger tags such as GFP/Clover (~27 kDa, approximately 25% of the HIFα protein 

size), can influence protein function/localisation (Weill et al., 2019). However, it is 

important to consider that countless studies have utilised GFP tagging of proteins to 

investigate protein function by proteomics and microscopy techniques (Trinkle-Mulcahy et 

al., 2008, Lipinszki et al., 2014, Kubitscheck et al., 2000 & Soboleski et al., 2005), including 

for HIFα protein investigation (Jiang et al., 2001, Mylonis et al., 2006, Mylonis et al., 2008, 

Kalousi et al., 2010, Bagnall et al., 2014 & Taylor et al., 2016). These studies still constituted 

an ideal starting point to elucidate cellular functional mechanisms of HIF signalling. 
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To ensure physiological relevance of the experimental system, we have used microscopy 

and transcriptional assays to confirm that HA-Clover-HIFα proteins had the correct nuclear 

localisation and were functionally active as transcription factors. Thus, in comparison to 

previous studies using recombinant fragment-based in vitro assays to determine PTMs in a 

targeted approach (Table 1.2 & Table 1.3), my methodology provided a much more 

biologically relevant representation of the HIFα signalling systems. 

 

One important focus of this thesis was to identify molecular features that could explain the 

observed differences between HIFα isoforms, such as sub-nuclear localisation and O2 

dependent stability. A discovery proteomics approach was adopted, primarily focusing on 

phosphorylation because of the availability of enrichment tools. However, from this study 

and other published studies, it is clear that HIFα proteins are subjected to multiple other 

types of PTM. Antibody based enrichment strategies are available for other PTMs. Whilst 

they are less easy to adopt than the TiO2 phosphorylation enrichment used in this study, 

they permit the enrichment of other PTMs, and thus could be used to provide a full in-

depth PTM map of HIFα proteins. This will allow the field to fully decipher the regulatory 

pathways of HIFα.  

 

In total, ~50 PTMs have been identified in this study for both HIF-1α and HIF-2α, which is of 

a similar order to the number of PTMs identified for endogenous p53. p53 has 86 different 

characterised PTMs and ~20 other PTMs have been identified in HTP MS studies (data 

obtained from PhosphoSitePlus (Hornbeck et al., 2015 & Hornbeck et al., 2012)). Therefore, 

although validation of the HIFα PTMs on endogenous proteins will be vital, this study 

provides an essential starting point to further understand HIFα regulation and its 

implication in signalling networks. 

 

Interestingly, few of the previously identified HIFα PTMs were identified in our dataset, 

thus posing an intriguing question for the hypoxia field: has the previously used 

methodology generated high rates of false positive data for both PTM identification and 

binding partner discovery? Two arguments could provide an explanation to the apparent 

discrepancy: 1) cell line specific regulatory mechanisms, and 2) the ‘hypoxia’ conditions 

used. Bracken et al., 2006 have shown that the protein expression levels and transcriptional 

profiles of HIFα isoforms vary considerably between cell lines, O2 tension used and whether 

hypoxia mimicking agents are used (specifically the iron chelator DFX). Hence the multiple 

different cell lines used, combined with different hypoxia conditions (many publications 
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using different hypoxia mimicking drugs, at different concentrations and for different 

incubation times), could explain some of the differences observed. Therefore, further 

experimentation following this study should: 1) validate the data in a range of cell lines and 

conditions, 2) investigate the dynamics of PTMs and binding partners, and 3) functionally 

characterise the hypoxia regulatory network.  

 

6.1.1.1. Validation of data 
Due to the discovery nature of these experiments, and the enormous quantity of cells 

required to obtain sufficient amount of HIFα proteins for robust MS analysis of the 

complete protein sequence, combined with a lack of good antibodies for IP, analysis of 

endogenous proteins would have been infeasible. However, now that the PTMs have been 

identified it will be possible to determine the exact m/z ratio of specific modified peptides 

and use a targeted MS approach (selective reaction monitoring (SRM)), increasing 

sensitivity up to 100 fold (Lange et al., 2008). Thus, theoretically, endogenous HIFα could be 

used to validate identified PTMs. Furthermore, an SRM pipeline could simultaneously be 

easily applied to previously published PTM sites by the in silico determination of proteolytic 

peptides and respective m/z ratios. However, for endogenous protein IP this would require 

the development of better antibodies, particularly for HIF-2α. Alternatively, CRISPR/Cas9 

technology could be used to insert a tag of interest into the genome, therefore maintaining 

endogenous expression mechanisms. 

 

6.1.1.2. Expanding the regulatory network 
It will be of interest to repeat the discovery proteomics aspect in different cell lines to 

investigate whether different cell lines have different HIFα signalling pathways. This could 

be further extended into investigation of hypoxia time courses and severity of hypoxia 

treatment. For example, prolonged (chronic) hypoxia is known to downregulate HIF-1α and 

promote HIF-2α signalling (Koh et al., 2012 & Uchida et al., 2004). Hypoxia severity is an 

interesting question, because cultured cells incubated under prolonged physiological levels 

of O2 (3-5%) are known to stabilise HIF-1α (Carrera et al., 2014). Therefore, it may be 

possible to compare regulatory mechanisms from a more endogenous regulation system to 

hypoxic cancers with 0.5-1.5% O2 (Table 1.1). Additionally, it will be interesting to 

investigate O2 independent mechanisms of HIFα stabilisation, such as in response to Insulin-

like Growth factor signalling (IGF2, Feldser et al., 1999), Epidermal growth factor receptor 

signalling (EGFR, Peng et al., 2006) or inflammation (Palazon et al., 2014), which all have 

varying downstream effects. 
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6.1.2. HIF-1α versus HIF-2α 
From the PTM data obtained here, there are several noticeable patterns of interest 

(discussed in Chapter 4). The most striking observation is the possible role of 

phosphorylation in the O2 dependent degradation for both HIFα isoforms. It is clear that the 

HIF-1α ODDD is hyperphosphorylated, particularly in 21% O2 (4.7.2). Considering emerging 

evidence of the requirement of other PTMs for the efficient proline hydroxylation and 

degradation (Lee et al., 2017), it is possible that phosphorylation contributes to the O2 

dependent degradation of HIF-1α. Conversely, we predict that the phosphorylation status 

of HIF-2α may be, in some part, responsible for its O2 dependent stability. We find that for 

HIF-2α, there is a phosphorylation site adjacent to both canonical proline hydroxylation 

sites, and a novel third LAP motif. We further showed that mutation of any of these sites 

resulted in ~1.5 fold increase in transcriptional output. However, this requires further 

investigation, and evaluation of protein stability. 

 

It is important to consider that utilising a ‘Bottom-Up’ proteomics approach makes it is 

impossible to understand the co-regulation of PTM sites, unless identified on the same 

proteolytically generated peptide. Therefore a ‘Middle-Down’ proteomics approach could 

be adopted, where a minimally cleaving protease is used to produce large peptides of ~10 

kDa in size (Cristobal et al., 2017). This will allow the determination of combinations of 

PTMs before investigating PTMs using multi-site mutational analysis. This is particularly 

important when considering the potential roles of HIF-1α ODDD hyperphosphorylation, 

where multiple sites may co-exist and provide a degree of synergism between PTMs, 

therefore complicating the identification of functional roles by single site mutational 

analysis. However, multi-site mutational analysis of so many sites will likely result in off 

target effects, as structural and polarity changes in amino acids could have additive effects. 

Therefore, it will be important to investigate the co-existence of PTMs in a combinatorial 

fashion to define the PTM pattern and identify the mutants required for multi-site analysis. 

 

To investigate the binding partners we decided not to include benzonase, a DNA digesting 

enzyme, because DNA and long non-coding RNAs (lncRNA) are known to regulate binding 

partner interactions (reviewed by Siggers et al., 2014 & Schmitz et al., 2016). Recent data 

identifies that a lncRNA has an important role in stabilising HIF-1α protein, by preventing 

PHD2 binding (Chen et al., 2019). However, there is a possibility that chromatin DNA bound 

to HIF will Co-IP, resulting in the identification of proteins which do not interact with active 
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HIF but rather are associated with DNA. Therefore, the IP experiments could be repeated in 

the presence of benzonase to identify protein interactions that do not require DNA 

scaffolding mechanisms. Although this study is the first discovery style experiment for HIF 

binding partners, it was reliant on overexpression with a large IP tag. Therefore, it could be 

argued that the rate of false positive binding partners identified could be high, even though 

measures were taken for background subtraction. We were able to use the low level 

expression (near endogenous levels) to detect binding partners of mutants (5.5.1). 

Therefore, with optimisation and scaling, it will be easily possible to IP endogenous HIF-1α 

(and HIF-2α if an adequate antibody is found) for the detection of protein interactors of 

endogenous proteins. If further experiments are performed to identify endogenous HIFα 

binding proteins, they should strongly consider a reversible crosslinking IP strategy (Smith 

et al., 2011), because many protein interactors will be stimuli specific and highly transient, 

particularly when considering modifying enzymes. Such a strategy, will allow to obtain a 

more in-depth interactor map. 

 

The fact that >100 proteins (~10% of all proteins) identified for both HIFα isoforms were 

mitochondrial in nature is interesting. The validity of this discovery is supported by a 

number of published studies demonstrating a sub-population of HIF-1α localised in 

mitochondria (Briston et al., 2011, Concolino et al., 2018 & Thomas et al., 2019). 

Additionally, it has been shown that mitochondria have a role in the stabilisation of HIFα 

proteins through the development of ROS, and may act as a secondary O2 sensing 

mechanism to PHDs (Guzy et al., 2005 & Chandel et al., 1998). Overall, this could raise an 

interesting question: does HIF have a role in regulating mitochondrial DNA? Indeed, when I 

searched the mitochondrial DNA (UniProt accession: NC_012920, Andrews et al., 1999) we 

identified 20 putative HRE promoter sequences ((A/G)CGTG, Schödel et al., 2011). Using an 

annotated gene map of mitochondrial DNA will provide initial insight to whether these 

identified HREs are in proximity to functional genes, and may be HIF regulated, or whether 

they are intronic in nature. This will be an interesting avenue to pursue. It is likely that 

fluorescent tagging for live cell microscopy, previously used to investigate sub-cellular 

localisation, will struggle to identify HIFα in mitochondria as they may likely be below the 

limit of detection. Therefore, a proteomics approach that employs sub-cellular fractionation 

to purify mitochondria before lysis, potentially coupled with an SRM targeted approach, 

could be used for validation. 
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6.1.3. Evolutionary analysis 
Our evolutionary analysis was performed on HIFα sequences from vertebrates only, for 

reasons explained in Chapter 4, including the fact that invertebrate species do not have 

specialised O2 delivery systems. However, more advanced invertebrate species do infact 

have complex O2 delivery systems including dense vasculature networks and haemoglobin 

based O2 transport systems, for example in crab and squid species (Birk et al., 2018 & Alter 

et al., 2015). Although these ‘HIF-1α’ proteins are larger than human HIFα (~1000 vs ~850 

residues) they are much smaller than insect HIFα proteins (~1500) and could reflect the 

evolution of developing specialist O2 delivery systems. A more directed approach to 

investigating HIF-1α evolution could potentially be adopted by combining a knowledge 

based, selective inclusion of invertebrate species, especially considering that very early 

invertebrate jellyfish species have HIF-1α homologs (Wang et al., 2014). Additionally, the 

bHLH and PAS domains are common domains in many proteins, therefore it would be of 

interest to investigate how the respective domains have evolved between proteins to 

identify potential regulatory differences and PTM sites of interest. 

 

From the sequence alignments performed here, it is clear that both HIFα isoforms are 

highly evolutionarily conserved, highlighting their functional importance. However, the 

inhibitory domain is poorly conserved between isoforms and among vertebrate species, 

generally only conserved within families. Interestingly, Bony fish species show extensive 

variation in this region, with all species, except for hypoxia tolerant Carp, missing the first 

~50 residues, which is serine/threonine rich in human with 15 different residues. 

Unfortunately, from our study this serine/threonine rich region was unanalysable by MS, 

even using multiple different proteases, therefore it would be of interest to investigate this 

further using different proteolytic strategies to identify if phosphorylation has a significant 

role here. The inhibitory domain could possibly be viewed as an evolutionary ‘hot pocket’ 

for mutations, to both distinguish between HIFα isoforms and provide slightly altered 

function between phylogenetic families.  

 

6.1.4. Outlook and future perspective 
Whilst we have discovered many novel PTMs and binding partners in this work, it has posed 

many new questions, including: 1) The functional meaning of the PTMs and interactions 

identified. 2) Whether the PTM status may be transient/dynamic and its robustness as a 

result of different hypoxic incubations/treatments and cell lines. 3) The potential role of 

HIFα in mitochondria, and 4) The accuracy and relevance of previously used methodologies 
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to study HIF PTM status and regulatory roles. Overall it appears that the canonical proline 

hydroxylation pathway is not the only pathway to act on HIFα. However, unravelling the 

functional outcomes post PTM will require extensive further work. The results of further 

characterising HIFα regulation/signalling might make it possible to target hypoxic cells in 

tumours in a selective manner, by inhibiting (or promoting) modifying enzymes. If this can 

be achieved, it would prevent the blanket inhibition of HIF signalling, which is likely to have 

various side effects for hypoxic adaption elsewhere in the body.  

 

Finally, our data suggest that the signalling pathways regulating HIF function may be orders 

of magnitude more complex than the current understanding, opening up multiple avenues 

for further work to fully understand the cellular adaption to hypoxia.  
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