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Gaussian MAP filtering using Kalman optimisation
Ángel F. García-Fernández, Lennart Svensson

Abstract—This paper deals with the update step of Gaussian
MAP filtering. In this framework, we seek a Gaussian approxima-
tion to the posterior probability density function (PDF) whose
mean is given by the maximum a posteriori (MAP) estimator.
We propose two novel optimisation algorithms which are quite
suitable for finding the MAP estimate although they can also
be used to solve general optimisation problems. These are based
on the design of a sequence of PDFs that become increasingly
concentrated around the MAP estimate. The resulting algorithms
are referred to as Kalman optimisation (KO) methods. We also
provide the important relations between these KO methods and
their conventional optimisation algorithms (COAs) counterparts,
i.e., Newton´s and Levenberg-Marquardt algorithms. Our sim-
ulations indicate that KO methods are more robust than their
COA equivalents.

Index Terms—Kalman filter, MAP estimation, Bayesian non-
linear filtering, optimisation

I. INTRODUCTION

In Bayesian filtering, we estimate the current state of a
Markov process based on a sequence of measurements up to
the current time. In this setting, knowledge of the probability
density function (PDF) of the current state given the measure-
ments up to the current time is of utmost importance as any
optimal estimator requires it. In theory, this PDF, which is
referred to as posterior PDF, can be calculated recursively in
two steps: prediction and update. The problem however is that
this recursion is analytically intractable in most nonlinear/non-
Gaussian systems and must be approximated.

In many cases, the posterior is unimodal and, consequently,
Gaussian approximations can be of high accuracy. As a result,
Gaussian approximations with low computational burden draw
considerable attention. In the Gaussian case, the prediction
step is relatively simple as it comes down to approximating
the first two moments of a random variable that undergoes a
transformation [1]. The update step is more difficult and there
are several options. In the next two paragraphs, we discuss
two of these alternatives.

The most extensively used choice in the update step is the
Kalman filter (KF). Even though the KF is most commonly
known in the filtering literature as the solution to the lin-
ear/Gaussian filtering recursion, the KF can also be applied to
obtain a Gaussian posterior approximation for nonlinear/non-
Gaussian systems [2]. In the KF update step, the posterior
mean and covariance matrix are approximated by the linear
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minimum mean square error (LMMSE) estimator and its mean
square error matrix, respectively. The KF is usually intractable
if the measurement function is nonlinear so approximations
to the KF have been developed, e.g., extended KF (EKF) [3],
unscented KF (UKF) [2], cubature KF (CKF) [4] or quadrature
KF (QKF) [5].

The biggest problem of the KF and its approximations
in a nonlinear update is that their performance is poor if
the measurement noise is low enough [6]. Therefore, in this
case, another kind of approximation should be sought, e.g.,
based on the maximum a posteriori (MAP) estimator. A
Gaussian posterior PDF approximation whose mean is the
MAP estimator and its covariance matrix is given by minus the
inverse Hessian of the log-posterior is asymptotically optimal
as the measurement noise tends to zero [7]. We refer to this
approach of approximating the posterior as Gaussian MAP
filtering and constitutes the focus of this paper. In the next
paragraphs, we explain usual algorithms to obtain the MAP
estimate, the novel algorithms we propose in this paper and the
benefits of using our methods in the Gaussian MAP filtering
framework.

The MAP estimate is the solution to an unconstrained opti-
misation problem. If the problem does not admit an analytical
solution, conventional optimisation algorithms (COAs) create
a sequence of vectors that should converge to the solution.
Algorithms of this type are, for example, Newton’s, steepest
descent, Gauss-Newton or Levenberg-Marquardt [8]. The most
well-known Gaussian MAP filter is the iterated EKF (IEKF),
which is based on the Gauss-Newton optimisation method [9].
In [10], the Levenberg-Marquardt (LM) method [8] is used
instead of Gauss-Newton to increase robustness. Other COAs
for Gaussian MAP filtering are discussed in [11].

Motivated by the fact that sigma-point methods (e.g. UKF
and CKF) generally outperform the EKF [2], several au-
thors have developed iterated sigma-point methods to find
the MAP estimate although with ad-hoc approaches. In [12],
sigma points are only used once to approximate the (usual)
KF moments. Then, the iteration to find the MAP estimate
corresponds to the IEKF iteration but changing the analytical
linearisation of the measurement function at the current MAP
estimate, used by the IEKF, by an ad-hoc linearisation that
mixes statistitical linear regression w.r.t. the prior [13] and an-
alytical linearisation at the current MAP estimate. The iterated
UKF (IUKF) in [14] requires several ad-hoc parameters and
conditions. In addition, the resulting iteration has the effect
of performing several corrections with the same measurement
even though we only observe it once. On the contrary, this
paper proposes two iterated sigma-point Gaussian MAP filters
with sound mathematical foundations. This is explained in the
following.
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Unconstrained optimisation problems can also be solved
based on the following fact: if a PDF is raised to a power
greater than one and renormalised, the resulting PDF becomes
increasingly concentrated on the mode(s) of the original dis-
tribution as the power increases [15]. This is the foundation of
some stochastic optimisation (SO) algorithms, e.g. simulated
annealing [16], [17], which are not of practical use in Gaussian
MAP filtering due to their high computational complexity.
In this paper, we propose two novel optimisation algorithms
which are based on convergent sequences of PDFs as in
SO. These sequences, which are based on the consecutive
application of Bayes’ rule have not been reported in the
literature yet. Importantly, we use a deterministic rather than
a stochastic approximation to these PDFs based on the KF
update [2]. This framework for optimisation is referred to as
Kalman optimisation (KO).

The first KO algorithm proposed in this paper can be applied
to any optimisation problem and is referred to as Newton KO
(NKO). The second KO algorithm, which is called Levenberg-
Marquardt KO (LMKO), is designed specifically for least
squares problems. An important contribution of this paper,
apart from the fact of designing NKO and LMKO, is that we
show the connections between NKO and LMKO and COAs.
In NKO, the mean of the sequence of PDFs is equivalent
to Newton’s method, but instead of using the gradient and
Hessian, we use the expected gradient and Hessian, while
accounting for the normalised expected square nonlinearities
and noise. In LMKO, the mean of the sequence of the PDFs
is equivalent to the LM method, but substituting the function
and its gradient by the expected function and gradient, while
accounting for both the expected square nonlinearities and
prior knowledge.

We want to clarify that connections between the linear
KF and Newton’s method are known [18]. However, as we
indicated before, we do not propose the use of COAs, such
as Newton’s method, to find the MAP estimate. Instead, we
develop two novel algorithms in the (nonlinear) KO frame-
work. Stochastic gradient methods do a form of averaging
of the gradient over the iterations, instead of averaging at
each iteration as in KO [17]. Nevertheless, they are applicable
in a different context, in which we can only evaluate noisy
versions of the function to optimise and its gradient. In
situations where it is time consuming to evaluate the function
of interest, it can be advantageous to provide a random model
for the function using, for example, Gaussian processes [19].
However, these methods have a high computational burden and
are not convenient for usual Gaussian MAP filtering problems,
in which the functions are fast to evaluate.

In practice, the KF moments of KO are approximated using
sigma-point methods [2], [4], [5]. It is quite convenient to
use NKO and LMKO instead of their COAs counterparts
to find the MAP because of two reasons. The first one is
mathematical simplicity: NKO does not require the calculation
of the Hessian, while Newton´s method does, and LMKO does
not require the calculation of the gradient, while LM does. The
second is robustness: sigma-point approximations of the KF
update step are known to be more robust than those based
on analytical linearisation [1]. These benefits are analysed

thoroughly in the paper and the excellent performances of the
algorithms are demonstrated via simulations in Section VII.

The rest of the paper is organised as follows. In the first
part of the paper, we only deal with optimisation problems
and propose two novel optimisation algorithms based on the
KF update. In Section II, we provide the general ideas behind
KO. Section III introduces the NKO and Section IV presents
the LMKO. The second part of this paper deals with the
application of NKO and LMKO to Gaussian MAP nonlinear
filtering update. In Section V, we explain how to approximate
the first two moments of the posterior based on the NKO and
LMKO output. In Section VI, we provide a local convergence
analysis of NKO and LMKO in this setting. Simulation results
are provided in Section VII. Finally, conclusions are drawn in
Section VIII.

II. OVERVIEW OF KALMAN OPTIMISATION

The objective of this section is to give a general idea of
Bayes’ rule optimisation (BO) and Kalman optimisation (KO).
The aim is to find the global minimum x̃? ∈ Rnx , which
is assumed to be unique, of a differentiable function f (·) :
Rnx → R

x̃? = arg min
x∈Rnx

f (x) . (1)

If x̃? cannot be calculated analytically, COAs create a se-
quence of vectors x̃0, x̃1, ..., x̃i that should converge to x̃?

[8]. BO and KO depart from this approach and use instead a
sequence of PDFs. First, we describe BO and then we proceed
to explain KO.

BO starts with an initial PDF

p0 (x̃) = N (x̃; x0,P0) (2)

where N (x̃; x0,P0) is the Gaussian PDF evaluated at x̃ with
mean x0 and covariance matrix P0. BO uses a convergent
sequence of PDFs π1 (·),..., πi (·) based on the successive
application of Bayes’ rule. In other words, in BO, we design
a sequence of likelihood functions lyi

i (·), where yi represents
the ith measurement, such that the jth PDF is

πj (x̃) ∝
j−1∏
i=0

lyi

i (x̃) p0 (x̃) (3)

where ∝ means “proportional to” and as j tends to infinity
this sequence converges to

c (x̃) = δ (x̃− x̃?) (4)

where δ (·) is the Dirac delta. This allows us to find x̃?.
By considering independent measurements given the state in
(3), we can iteratively approximate this sequence easily and
establish connections with COAs. In Sections III-A and IV-A,
we indicate how to create such sequence of likelihoods for
NKO and LMKO.

The sequence of PDFs given by (3) is usually intractable
to calculate analytically so approximations must be used. A
common and computationally efficient method to approximate
Bayes’ rule is to use the KF update [2]. The resulting method is
called KO, which creates a sequence p1 (·),..., pi (·) of Gaus-
sian PDFs that approximates π1 (·),..., πi (·). This sequence
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Figure 1: Illustration of KO. The minimum of the function is shown as
a red cross. Ten contour plots of the function f (·) around the minimum
are shown as black lines. The 3σ-ellipses of the PDF iteration are shown
as dashed blue lines.

also converges to c (·) under some assumptions, which depend
on the KO algorithm1. An illustrative KO sequence is shown
in Figure 1. The initial PDF is represented as the outer 3σ-
ellipse. As the iteration continues, the ellipses get smaller and
smaller around x̃?.

Due to their suitability, the main application of KO algo-
rithms is in the update step of Gaussian MAP filtering, as
will be thoroughly explained in Section V. In the update
step of Bayesian filtering, we combine a prior PDF and a
measurement to produce the posterior PDF. In Gaussian MAP
filtering, the posterior is approximated as a Gaussian with the
mean provided by the MAP estimate and a certain posterior
covariance matrix. In this set-up, we want to remark that KO is
mainly used to obtain the MAP estimate, which is the solution
of an optimisation problem, though KO implicitly provides an
approximation of the posterior covariance matrix, which will
be given in Section V. This is not the covariance matrix of the
ith PDF, which always tends to zero as shown in Figure 1. It
is also important to highlight that the sequence of PDFs (3) is
just an artificial construction to solve optimisation problems
and should not be confused with the sequence of PDFs of
Gaussian MAP filtering.

III. NEWTON KALMAN OPTIMISATION

The aim is to find the minimum x̃? of f (·). As Newton’s
method, NKO uses the fact that

∇f (x̃?) = 0 (5)

where ∇f (·) is the gradient of f (·). If f (·) has only one
stationary point, NKO should converge to the global minimum
as there is only one point that meets (5). If not, it should
also converge to the global minimum if it is initialized well
but, in general, it could converge to a local minimum, local

1The convergence properties of NKO and LMKO are addressed in Section
VI.

maximum or inflection point. Newton’s method also has the
same drawback [8].

This section is organised in the following manner. In Section
III-A, we explain how the sequence of PDFs given by (3) is
designed. In Section III-B, we explain the theoretical aspects
of NKO. We include a practical NKO algorithm in Section
III-C.

A. Bayes’ rule optimisation

In this section, we design a sequence of PDFs as in (3)
that converges to the minimum. The sequence of measurement
equations is

yi = ∇f (x̃) + ηi (6)

where yi ∈ Rnx and ηi ∈ Rnx is a sequence of inde-
pendent zero-mean Gaussian measurement noise with covari-
ance matrix β2

i I, β2
i > 0, which implies that lyi

i (x̃) ∝
N
(
yi;∇f (x̃) , β2

i I
)
. We select β2

i I as the noise covariance
matrix for convenience although more general approaches
might be possible. This way, we can easily ensure convergence
of BO and select its value properly in KO, as will be explained
in Section III-B1.

By fixing the measurement to yi = 0, the sequence of like-
lihood functions in (3) becomes l0i (x̃) ∝ N

(
0;∇f (x̃) , β2

i I
)
.

Setting the measurement to a value is a procedure that is
not based on purely Bayesian arguments. However, as is
explained in the following, it allows us to minimise f (·) by the
sequential application of Bayes’ rule, which is our objective.
The ith PDF of the BO sequence (3) becomes

πi (x̃) ∝ exp

−1/2 (∇f (x̃))
T ∇f (x̃)

i−1∑
j=0

1

β2
j

−1/2 (x̃− x0)
T

P−10 (x̃− x0)
)
. (7)

As indicated in Section II, we need to prove that this sequence
is progressively more concentrated around the minimum such
that it can be used for optimisation purposes. If βj is bounded,
as i increases 1/2 (∇f (x̃))

T ∇f (x̃)
∑i−1
j=0

1
β2
j

gets greater

and greater, the term 1/2 (x̃− x0)
T

P−10 (x̃− x0) becomes
negligible and (7) can be approximated as [7]

πi (x̃) ≈N (x̃; x̃?,Pq,i)

x̃? =arg min
x̃

(∇f (x̃))
T ∇f (x̃) ≈ arg max

x̃
log πi (x̃)

P−1π,i =− ∇2 log πi (x̃)
∣∣
x̃?

≈∇2
[
1/2 (∇f (x̃))

T ∇f (x̃)
] i−1∑
j=0

1

β2
j

where ∇2 stands for the Hessian and (∇f (x̃))
T ∇f (x̃) is

minimised for x̃ = x̃? because of (5). If
∑i−1
j=0

1
β2
j

tends to
infinity, Pπ,i → 0, so πi (·) tends to a Dirac delta located
on x̃? as in (4). It should be noted that convergence can be
attained in one update step by letting β2

0 → 0.
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B. Kalman optimisation

The sequence π1 (·),..., πi (·) is intractable to calculate in
general because a Bayesian update with measurement equation
(6) cannot be obtained in closed-form if ∇f (·) is nonlinear.
Nevertheless, Bayesian updates with nonlinear functions can
be approximated by the widely-used KF update, which ap-
proximates the updated PDF as Gaussian using the LMMSE
estimator [2]. This is the approach followed by NKO, which
uses a sequence p1 (·),..., pi (·) of Gaussian PDFs as an
approximation to π1 (·),..., πi (·). Given pi (·) with moments
xi and Pi, we approximate the corresponding updated PDF
pi+1 (·) with measurement equation (6) and yi = 0 using the
KF update. The first two moments xi+1 and Pi+1 of the PDF
at iteration i+ 1 are calculated as [2]

xi+1 = xi + ΨiS
−1
i (yi − yi)

∣∣
yi=0

(8)

Pi+1 =Pi −ΨiS
−1
i ΨT

i (9)

where Si = Φi + β2
i I and the KF moments are

yi =Ei [∇f (x̃)] =

ˆ
∇f (x̃) pi (x̃) dx̃ (10)

Φi =covi [∇f (x̃)]

=

ˆ
(∇f (x̃)− yi) (∇f (x̃)− yi)

T
pi (x̃) dx̃ (11)

Ψi =covi [x̃, ∇f (x̃)]

=

ˆ
(x̃− xi) (∇f (x̃)− yi)

T
pi (x̃) dx̃ (12)

where the subscript i in the moments indicate that they are
obtained w.r.t. pi (·).

1) On the selection of βi: In principle, it seems appropriate
to select βi as low as possible as the sequence (7) converges
faster. However, the KF update does not necessarily perform
well if the measurement noise is too low [6]. An indicator
of performance of the KF update is the Kullback-Leibler
divergence (KLD) Di of the KF approximation of the joint
PDF of the state and the measurement from the true joint
PDF. The lower the KLD is, the KF works better. We aim to
select βi such that it gives a small KLD and still allows for
reasonably fast convergence.

Let us first write ∇f (·) as

∇f (x) = Aix + bi + ni (x) (13)

where Ai = ΨT
i P−1i , bi = yi −Aixi, ni (·) represents the

nonlinearities of ∇f (·) and Ai and bi have been chosen by
statistical linear regression w.r.t. pi (·) [5]. Then, Di is given
by2 [6]

Di = log

(∣∣∣∣β2
i I + Ni

β2
i

∣∣∣∣) /2 (14)

where

Ni =Ei
[
ni (x̃) nTi (x̃)

]
= Φi −AiPiA

T
i . (15)

It is interesting to note that if Ni = 0, Di = 0, i.e., the
KF update provides the optimal solution. As Ni increases, β2

i

2There is a typo in Equation (23) of [6]. It should be divided by 2.

should increase to keep a given KLD so βi should depend on
Ni.

We denote the eigenvalues of Ni as λ1, ..., λnx
. Then,

Equation (14) becomes

Di =
1

2

nx∑
j=1

log

(
β2
i + λj
β2
i

)
.

By choosing

β2
i = Γβ max (λ1, ..., λnx) , (16)

we get

Di ≤ nx/2 log

(
Γβ + 1

Γβ

)
,

so we can ensure that the KLD is below a given value. The
higher Γβ , the lower Di so higher performance is expected at
the expense of slower convergence.

2) Relation to Newton’s method: In this section, we provide
the relation of NKO with Newton’s method. We can write [5]

Si =ΨT
i P−1i Ψi + Ni + β2

i I (17)

Substituting (17) into (8), we obtain

xi+1 =xi −Ψi

(
ΨT
i P−1i Ψi + Ni + β2

i I
)−1

Ei [∇f (x̃)] .

Under assumption
• A: Ψ−1i exists

we can write

xi+1 =xi −
(
ΨT
i P−1i +

(
Ni + β2

i I
)
Ψ−1i

)−1
Ei [∇f (x̃)] .

Using the properties of the Fourier-Hermite series [20], it can
be shown that

ΨT
i P−1i = Ei

[[
∇ (∇f (x̃))

T
]T]

= Ei
[
∇2f (x̃)

]
. (18)

Then, the NKO recursion can be written as

xi+1 =xi −
(
Ei
[
∇2f (x̃)

]
+
(
Ni + β2

i I
)
Ψ−1i

)−1
Ei [∇f (x̃)] .

(19)

The NKO recursion is the same as Newton’s method [8] but
changing the gradient and the Hessian by expected gradient
and expected Hessian and adding a term to the expected
Hessian that accounts for the nonlinearities and measure-
ment noise. It should be noted that due to (18), Assumption
A is equivalent to assuming that

(
Ei
[
∇2f (x̃)

])−1
exists.

Newton’s method assumes that
(
∇2f (x̃)

)−1
exists at the

iteration point so Assumption A is just a generalisation of
the assumption required by Newton’s.

3) EKF approximation: A usual approximation to the KF
moments (10)-(12) is the EKF. It linearises the measurement
function (6) around xi [3]. Taking into account that the Hes-
sian is the Jacobian of the gradient, the EKF approximations
to the KF moments become

yi =∇f (xi) (20)

Si =∇2f (xi) Pi

(
∇2f (xi)

)T
+ β2

i I (21)

Ψi =Pi

(
∇2f (xi)

)T
. (22)
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Using (8), the resulting iteration for the mean is

xi+1 = xi −
(
∇2f (xi) + β2

i I
)−1∇f (xi) . (23)

If β2
i = 0, the EKF approximation to NKO becomes

Newton’s method. In addition, if we select β2
i as indicated

in Section III-B1, Ni = 0 for the EKF approximation and
therefore β2

i = 0, so the EKF approximation to NKO becomes
Newton’s method. In this case, substituting (20)-(22) into (9),
we get that the updated covariance matrix is a zero matrix. This
implies that the EKF approximation is not good enough for the
covariance matrix if there are nonlinearities as we know that
we have not found the optimal point with total certainty. The
EKF could be applied anyway by selecting β2

i in a different
manner, not following the fundamental procedure suggested
in Section III-B1. However, the EKF approximation to the KF
moments is usually poor compared to sigma point methods
[2], [5]. Therefore, Newton’s method can be seen as NKO in
which the KF moments are approximated poorly and the noise
parameter β2

i is selected suboptimally. A better approximation
to the KF moments (10)-(12) and a proper selection of β2

i is
expected to outperform EKF and, therefore, Newton’s method.
Such an approximation is explained in the following section.

C. A practical NKO algorithm

In general, the KF moments (10)-(12) do not have an
analytical expression so they must be approximated. There are
a vast number of algorithms that approximate the moments
(10)-(12), e.g., the EKF, UKF, CKF or QKF. The UKF and
CKF are usually preferred over the QKF because the number
of sigma-points increases linearly with the dimension of the
state while in the QKF it increases exponentially. However,
their accuracy is lower than for QKF. While this might be
unimportant in some cases, the UKF and CKF do not work
well to perform NKO in the Gaussian MAP nonlinear filtering
examples of Section VII.

It is also important to notice that the sequence of covariance
matrices Pi gets smaller and smaller. Therefore, stability
issues can arise and the updated covariance matrix might not
be positive definite so a square root solution should be used
[21]. As a result, we propagate a sequence of matrices P

1/2
i

where Pi = P
1/2
i

(
P

1/2
i

)T
.

For the reasons mentioned above, we suggest using the
square root QKF [21]. How to calculate xi+1 and P

1/2
i+1

based on xi and P
1/2
i is explained in the following. Let{(

ξj , wj
)}m
j=1

denote the set of quadrature points and asso-
ciated weights. We build the following matrix and quadrature
points

Xi,j = P
1/2
i ξj + xi j = 1, ...,m (24)

Yi,j = ∇f (Xi,j) j = 1, ...,m (25)
W = diag ([

√
w1, ...,

√
wm])

where diag (·) stands for a diagonal matrix with the given
main diagonal. The approximated KF moments are [21]

yi ≈
m∑
j=1

wjYi,j (26)

S
1/2
i ≈ Tria ([Yi, βiI]) (27)

Ψi ≈ XiY
T
i (28)

where
Xi = [Xi,1 − xi, ...,Xi,m − xi] W (29)

Yi = [Yi,1 − yi, ...,Yi,m − yi] W (30)

and Tria (·) is a triangularisation algorithm using QR decom-
position described in [21]. The square root of Ni can be
written as

N
1/2
i ≈Yi −ΨT

i P−1i Xi (31)

and density pi+1 (·) is characterised by [21]

xi+1 = xi + Ki (yi − yi)|yi=0 (32)

P
1/2
i+1 =Tria ([Xi −KiYi, βiKi]) (33)

where Ki = ΨiS
−1
i . We stop the iteration if the ith PDF is

sufficiently concentrated around the optimal point, see Figure
1. In practice, we assess this by comparing the trace of current
covariance matrix with a threshold Γc. Finally, the steps of the
resulting algorithm can be found in Algorithm 1.

Algorithm 1 Steps of the NKO algorithm

Input: Initial parameters x0 and P
1/2
0 .

Output: MAP estimate x̃? = xi? . . i? is the number of iterations
- Set c = 0, i = 0 . c = 1 if convergence has been attained
while c = 0 do

- Calculate the quadrature points Xi,1, ...,Xi,m using (24).
- Calculate the transformed quadrature points Yi,1, ...,Yi,m

using (25).
- Approximate yi using (26).
- Calculate Xi and Yi using (29) and (30).
- Approximate Ψi and N

1/2
i using (28) and (31).

- Select β2
i using (16).

- Approximate S
1/2
i using (27).

- Calculate xi+1 and P
1/2
i+1 using (32) and (33).

if tr (Pi+1) < Γc then
- Set c = 1 and i? = i+ 1.

end if
- Set i = i+ 1.

end while

IV. LEVENBERG-MARQUARDT KALMAN OPTIMISATION

While NKO can handle general optimisation problems, in
this section we focus on least squares problems, e.g., MAP
estimation in Gaussian MAP filtering, which will be addressed
in Section V. The aim is to find the minimum x̃? of the
function

f (x) =
1

2
rT (x) r (x) (34)

where r (·) : Rnx → Rnr and nr ≥ nx.
This section is organised in the following way. Section IV-A

addresses Bayes’ rule optimisation while LMKO is explained
in Section IV-B. Our main motivation for studying these
least squares problems is to perform MAP estimation in the
update step of Bayesian filters as described in Section V.
When applied to this problem, LMKO allows for a simplified
implementation and we therefore postpone the description of
the practical aspects until MAP filtering has been addressed
in Section V.
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A. Bayes’ rule optimisation

The objective is to create a sequence of PDFs that converges
to the optimal point, see Section II. To do so, we create the
sequence of measurements

yi = r (x̃) + ηi (35)

where ηi is a sequence of independent zero-mean Gaussian
measurement noise with covariance matrix α2

i I and α2
i > 0.

We use the measurement equation (35) for yi = 0 so
l0i (x̃) ∝ N

(
0; r (x̃) , α2

i I
)
. The ith PDF of the BO sequence

(3) becomes

πi (x̃) ∝ exp

−1/2rT (x̃) r (x̃)

i−1∑
j=0

1

α2
j

−1/2 (x̃− x0)
T

P−10 (x̃− x0)
)
. (36)

As pointed out in Section II, we need to prove that this
sequence of PDFs is progressively more concentrated around
the minimum such that we can use it for optimisation purposes.
Using the same arguments as in Section III-A, as i increases
and assuming that αj is bounded, (36) can be approximated
as Gaussian with first two moments

x̃? =arg min
x̃

f (x̃)

P−1π,i =
[
∇rT (x̃)

(
∇rT (x̃)

)T
+∇2r (x̃) r (x̃)

]∣∣∣
x̃?

i−1∑
j=0

1

α2
j

.

If
∑i−1
j=0

1
α2

j
tends to infinity, Pπ,i → 0, so πi (·) tends

to a Dirac delta located on x̃? as in (4). It should be noted
that convergence can be attained in one update step by letting
α2
0 → 0.

B. Kalman optimisation

In KO, given pi (·) with moments xi and Pi, we approxi-
mate pi+1 (·) using the KF update with measurement (35). In
this case, the KF moments are

yi =

ˆ
r (x̃) pi (x̃) dx̃ (37)

Φi =

ˆ
(r (x̃)− yi) (r (x̃)− yi)

T
pi (x̃) dx̃ (38)

Ψi =

ˆ
(x̃− xi) (r (x̃)− yi)

T
pi (x̃) dx̃. (39)

and Si = Φi+α
2
i I. The recursion that comes from substituting

(37)-(39) into (8)-(9) is referred to as LMKO for reasons that
should be clear at the end of this section.

1) On the selection of αi: In principle, αi should
be selected as βi, see Section III-B1. That is, α2

i =
Γα max (λ1, ..., λnr ) where λ1, ..., λnr correspond to the
eigenvalues of the expected squared nonlinearities Ni of
r (·). The higher Γα, the higher accuracy is expected but
convergence is slower. For LMKO, it is quite convenient to
select Γα � 1. Equations simplify and the connection with
LM method is clearly established as will be seen in Section
IV-B2. If we select Γα � 1, we get

α2
i I + Ni =α2

iQiQ
−1
i + QiΛiQ

−1
i

=Qi

(
α2
i I + Λi

)
Q−1i

≈α2
iQiIQ

−1
i = α2

i I (40)

where Ni = QiΛiQ
−1
i is the eigendecomposition of Ni [3].

2) Relation to LM method: As done in Section III-B2 with
∇f (·), we decompose r (·) using statistical linear regression
w.r.t. pi (·) [5]

r (x) = Aix + bi + ni (x)

where Ai = ΨT
i P−1i , bi = yi−Aixi and ni (·) represents the

nonlinearities of r (·). It should be noted that, as in (18), Ai =

Epi [J (x̃)] where J (x̃) =
[
∇ (r (x̃))

T
]T

is the Jacobian of
r (x̃).

We can write the LMKO recursion as

xi+1 =xi −PiA
T
i

(
AiPiA

T
i + Ni + α2

i I
)−1

yi

Applying the matrix inversion lemma, we get

xi+1 =xi −
(
P−1i + AT

i

(
Ni + α2

i I
)−1

Ai

)−1
AT
i

(
Ni + α2

i I
)−1

yi. (41)

If α2
i is chosen as indicated in Section IV-B1, approximation

(40) is accurate. Therefore, (41) can be approximated as

xi+1 =xi −
(
α2
iP
−1
i + AT

i Ai

)−1
AT
i yi

=xi −
(
α2
iP
−1
i + Ei

[
JT (x̃)

]
Ei [J (x̃)]

)−1
Ei
[
JT (x̃)

]
Ei [r (x̃)] . (42)

Recursion (42) boils down to the LM algorithm if we
replace Pi by I and the expected values by the values
evaluated at xi. Thus, we can see (42) as a generalisation of
the LM algorithm that takes into account the prior knowledge,
which is given by Pi.

3) EKF approximation: The EKF approximation to the
moments (37)-(39) is

yi =r (xi) (43)

Si =JiPiJ
T
i + α2

i I (44)

Ψi =PiJ
T
i (45)

where Ji = J (xi). Substituting (43)-(45) into (8), and
applying the matrix inversion lemma, we get

xi+1 =xi −
(
α2
iP
−1
i + JTi Ji

)−1
JTi r (xi) . (46)

If Pi = I, (46) is the LM method recursion. In general,
(46) can be thought of as a generalisation of LM method that
accounts for prior knowledge. If α2

i → 0, then, the recursion
becomes

xi+1 =xi −
(
JTi Ji

)−1
JTi r (xi) (47)

which is the Gauss-Newton recursion. It can be checked that
for α2

i → 0, the updated covariance matrix is a zero matrix.
Recall that this also happened for the EKF approximation to
NKO, see Section III-B3. LM and Gauss-Newton methods can
converge to a local minimum instead of the global minimum.
Because of these relations, LMKO can also converge to a local
minimum instead of the global minimum.
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V. APPLICATION TO GAUSSIAN MAP FILTERING UPDATE

In this section, we apply NKO and LMKO to the update step
of Bayesian filtering using a Gaussian MAP approximation.
The aim is therefore to approximate the posterior PDF given
a measurement equation and a prior PDF using the MAP
estimate. The resulting filtering algorithms are referred to as
NKO filter (NKOF) and LMKO filter (LMKOF). As we only
consider the update step, we do not include the time index of
the filtering recursion to simplify notation3. As mentioned in
the introduction, the prediction step is out of the scope of the
paper. In practice, it can be done using the UKF prediction step
[2] so NKOF and LMKOF can be applied with linear/nonlinear
dynamics.

We write the state vector as x =
[
aT , bT

]T
, where a ∈

Rna , b ∈ Rnb and nx = na + nb, such that the measurement
equation is

z = h (a) + ξ (48)

where h (·) is the measurement function and ξ is the zero-
mean Gaussian measurement noise with covariance matrix R.
Equation (48) assumes additive Gaussian noise for simplicity.
Nevertheless, NKO and LMKO can be in principle generalised
for other types of measurement equations. We want to high-
light that the “artificial” measurements to find the MAP, used
in Sections II, III and IV, are represented by yi while the
actual measurement of the update step is z.

The prior p (·) is Gaussian with mean x and covariance
matrix Σ:

x =
[
(a)

T
,
(
b
)T ]T

(49)

Σ =

[
Σa Σab

ΣT
ab Σb

]
. (50)

The posterior q (·) is given by Bayes’ rule

q (x) =
l (z |a ) p (x)´
l (z |a ) p (x) dx

=qa (a) p (b |a )

where l (z |a ) = N (z; h (a) ,R) is the likelihood, which is
obtained using (48), and the posterior qa (·) of a is

qa (a) =
l (z |a ) p (a)´
l (z |a ) p (a) da

.

The aim is to approximate the posterior q (·) as a Gaussian.
To do this, we approximate qa (·) as a Gaussian

qa (a) ≈ N
(
a; ã?, P̃a

)
(51)

where ã? is the MAP estimate of qa (·) and P̃a is the posterior
covariance matrix approximation. The aim of the previous
decomposition of the state vector is to lower the dimensionality
of the optimisation problem and, therefore, the computational
burden.

We want to highlight that ã? corresponds to the final mean
of a KO sequence but P̃a is not the final covariance of a
KO sequence. The final covariance of a KO sequence always

3It should be noted that the measurement function and measurement noise
can depend on the current time step although it is not explicit in the notation.

tends to zero, see Figure 1, which means that the sequence of
PDFs of KO gets more concentrated around the MAP estimate.
Matrix P̃a is to be determined in Section V-B. Once qa (·) is
approximated, we calculate q (·) as indicated in Section V-C.

A. Calculation of the MAP estimate

For the measurement equation given by (48), the MAP
estimate of qa (·) can be found by minimising

f (a) =
1

2
(z− h (a))

T
R−1 (z− h (a))

+
1

2
(a− a)

T
Σ−1a (a− a) . (52)

The initial PDF we use in KO is

p0 (ã) = N (ã; a0,P0) (53)

where a0 = a and P0 = Σa. We use this PDF as we know
that the true value of a is in the region where (53) is high so
it makes sense to use this knowledge and look for the MAP
estimate ã? also in that region.

1) NKO: The application of NKO to MAP filtering directly
uses the algorithm explained in Section III-C. The gradient,
which we need in NKO as indicated by (6), is

∇f (a) = −H (a)
T

R−1 (z− h (a)) + Σ−1a (a− a)

where H (a) is the Jacobian of h (·) evaluated at a.
2) LMKO: The application of LMKO to MAP filtering

requires the writing of f (·) as in (34). We get that,

r (a) = T
[
(z− h (a))

T
, (a− a)

T
]T

(54)

where T is such that

TTT =

(
R−1 0

0 Σ−1a

)
so T can be obtain using Cholesky factorisation. We can apply
LMKO directly as explained in Section IV although, for this
problem, the recursion can be simplified. Instead of computing
the moments (37)-(39), we use the following moments

zi =Ei [h (ã)] (55)
Φz
i =covi [h (ã)] (56)

Ψz
i =covi [ã, h (ã)] . (57)

These are the usual KF moments, have a lower dimensionality
and can be easily approximated by the UT [2]. Performing a
similar analysis as in Section III-B2, the expected Jacobian of
h (·) and the expected squared nonlinearities of h (·) are

Hi =Ei
[(
∇hT (ã)

)T ]
= (Ψz

i )
T

Pi (58)

Nz
i =Φz

i − (Ψz
i )
T

P−1i Ψz
i . (59)

As indicated in Section IV-B1, LMKO selects α2
i based on the

expected squared nonlinearites of r (·). Using (54), we get

Ni =T

[
Nz
i 0

0 0

]
TT . (60)
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It is shown in Appendix A that the LMKO recursion when
α2
i is chosen as indicated in Section IV-B1, which is given by

(42), can be written as

ai+1 =a + Li (z− zi −Hi (a− ai))

− α2
i (I− LiHi) P̂iP

−1
i (a− ai) (61)

Pi+1 =Pi −Pi

(
α2
i P̌i + Pi

)−1
Pi (62)

where

P̂i =P0 − α2
iP0

(
Pi + α2

iP0

)−1
P0 (63)

Li =P̂iH
T
i

(
R + HiP̂iH

T
i

)−1
(64)

P̌i =P0 −P0H
T
i

(
R + HiP0H

T
i

)−1
HiP0. (65)

As explained in Section III-C, KO algorithms should use a
square root solution to improve numerical stability. Provided
that the sigma-point weights are positive, the update step of a
square root UKF is exactly the same as the square root QKF
explained in Section III-C but using different sigma-points and
weights. The resulting steps of LMKO for MAP filtering are
given in Algorithm 2.

Algorithm 2 Steps of the LMKO algorithm for MAP filtering

Input: Initial parameters a0 and P
1/2
0 .

Output: MAP estimate ã? = ai? . . i? is the number of iterations
- Set c = 0, i = 0 . c = 1 if convergence has been attained
while c = 0 do

- Calculate the UKF sigma-points Xi,1, ...,Xi,m according to
pi (·).

- Calculate the transformed sigma-points Zi,1, ...,Zi,m using
(48).

- Approximate zi as in (26).
- Create matrices Xi and Zi as in (29) and (30).
- Approximate Ψz

i and (Nz
i )

1/2 using the square root UKF as
in Section III-C.

- Calculate Ni using (60) and its positive eigenvalues
λ1, ..., λnz .

- Calculate α2
i = Γα max (λ1, ..., λnz ).

- Calculate Hi using (58), P̂i using (63) and Li using (64).
- Calculate ai+1 using (61).
- Calculate K1,i = P0H

T
i

(
R + HiP0H

T
i

)−1
.

- Calculate
P̌

1/2
i = Tria

([
P

1/2
0 −K1,iHiP

1/2
0 ,K1,iR

1/2
])

(see (65)).

- Calculate K2,i = Pi

(
α2
i P̌i + Pi

)−1
.

- Calculate
P

1/2
i+1 = Tria

([
P

1/2
i −K2,iP

1/2
i ,

√
α2
iK2,iP̌

1/2
i

])
(see (62)).

if tr (Pi+1) < Γc then
- Set c = 1 and i? = i+ 1.

end if
- Set i = i+ 1.

end while

B. Approximation of the posterior covariance matrix

In this section, we explain how NKO and LMKO approx-
imate the posterior covariance matrix P̃a in (51). We recall
that the posterior covariance matrix is not the same as the
covariance matrix at the final step of the KO iteration as
the latter always tends to zero, as will be proved in Section
VI. Gaussian MAP filters usually approximate the covariance
matrix of the posterior through the Hessian of f (·) [22] or
linearisation of the measurement function evaluated at ã? [9].

1) NKO: The NKO iteration directly provides an approx-
imation to the expected value of the Hessian of f (·). The
posterior covariance can be approximated as [22]

P̃a =
(
−Ei?

[
∇2 log (l (z |ã ) p (ã))

])−1
=
(
Ei?

[
∇2f (ã)

])−1
= Pi?

(
ΨT
i?
)−1

(66)

where i? denotes the step at which the KO iteration stops and
we have used (18).

If NKO is initialised properly, it converges to a minimum
but, otherwise, it can converge to a maximum or inflection
point of (52). Nevertheless, if P̃a is not positive definite,
NKO has not converged to a minimum of f (·) because of the
relation between P̃−1a and the Hessian [23]. This is quite useful
because the algorithm itself indicates if it has been successful.
If NKO does not locate the MAP estimate, we can repeat KO
with different initial conditions or apply a usual KF update at
this step. We can do the latter as the ultimate objective is to
approximate the posterior. In Section VII, we use the UKF for
this purpose although NKO hardly ever fails to find the MAP
estimate.

2) LMKO: If we use the Jacobian evaluated at ai in (65)
instead of the expected Jacobian Hi, matrix P̌i? , where i?

denotes the final step of the iteration, is the posterior covari-
ance matrix of the IEKF [9]. When the iteration converges,
the expected Jacobian is quite similar to the Jacobian at the
mean of the PDF. Thus, we can use P̃a = P̌i? .

C. Approximation of the posterior

If the state is partitioned as in (49), (50) and the measure-
ment is of the form (48), the posterior PDF approximation can
be written as [24]

q (x) ≈ N
(
x; x̃?, P̃

)
(67)

where x̃? =

[
(ã?)

T
,
(
b̃?
)T]T

,

P̃ =

[
P̃a P̃ab

P̃T
ab P̃b

]
,

and

b̃? = b + ΣT
abΣ

−1
a (ã− a) (68)

P̃ab = P̃aΣ
−1
a Σab (69)

P̃b = Σb −ΣT
abΣ

−1
a

(
Σa − P̃a

)
Σ−1a Σab. (70)

To sum up, the steps of the update phase of MAP Bayesian
filtering using NKOF and LMKOF are given in Algorithm 3.

VI. LOCAL CONVERGENCE OF THE ALGORITHMS

This section analyses the local convergence of NKO and
LMKO as i → ∞. It is shown that NKO and LMKO
asymptotically behave as Newton´s and Gauss-Newton recur-
sion, respectively. This implies that these algorithms have the
same properties of local convergence as Newton´s and Gauss-
Newton methods [8] although globally they are expected to
behave better due to the reasons mentioned previously, see for
example Section III-B3.
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Algorithm 3 Update step of LMKOF and NKOF
Input: Prior moments x and Σ.
Output: Posterior moments x̃? and P̃.

- Apply LMKO/NKO to calculate the MAP estimate ã? of qa (·)
with a prior given by (53).
if LMKOF then

- Calculate P̃a = P̌i? of qa (·) using (65) where i? is the
number of iterations.
else

- Calculate P̃a = Pi?
(
ΨT
i?
)−1

where i? is the number of
iterations.
end if
- Compute x̃? and P̃ using (68), (69) and (70).

A. NKO

In order to analyse the convergence, we focus on the NKO
recursion given by (19) and (9). Under Assumption A, it is
shown in Appendix B that

lim
i→∞

Pi = 0 (71)

Due to (71) and the fact that limi→∞N (x; x,Pi) =
δ (x− x) [25], for i sufficiently high

Ei [g (x)] = g (xi) (72)

where g (·) is a function of the state. For i sufficiently high, we
use (72) and obtain Ei [∇f (x̃)] = ∇f (xi), Ei

[
∇2f (x̃)

]
=

∇2f (xi) in (19). It can be easily checked that we also get
Ni = 0 in this case and therefore limi→∞ βi = 0. As a
result, if i is sufficiently high, the NKO recursion (19) behaves
as Newton´s method so both methods have the same local
convergence properties, such as rate of convergence [8].

B. LMKO

In order to analyse the convergence, we focus on the LMKO
recursion applied to MAP filtering, which is given by (61) and
(62). It is shown in Appendix C that

lim
i→∞

Pi = 0. (73)

Now, we calculate recursion (61) for i high enough. Because
of the way we select αi, (73) and the fact that in the limit Ni =
0, limi→∞ αi = 0 and limi→∞ P̂i = P0. For i sufficiently
high, we use (72) and get Ei

[(
∇hT (ã)

)T ]
=
(
∇hT (ai)

)T
.

Therefore, the recursion (61) for i high enough is equivalent to
the IEKF recursion, which is the Gauss-Newton method [9].

VII. SIMULATIONS

In this section, the performances of NKOF and LMKOF
are assessed in two examples. We are especially interested in
the case of low measurement noise as the posterior tends to
be Gaussian centered at the MAP estimate [7]. As a result,
the more accurately an algorithm finds the MAP estimate and
approximates the covariance matrix of the posterior, the more
accurate the posterior approximation is.

We have implemented KF-type (LMMSE-type) algorithms
such as the EKF, UKF and CKF; iterated KF-type (MAP-
type) algorithms such as the IEKF, (ad-hoc) IUKF [14] and

iterated Levenberg–Marquardt KF4 (ILMKF) [10]. We use the
following parameters for the algorithms. The UKF uses Ns =
2nx+1 sigma-points and the weight of the sigma-point located
on the mean is 1/3. The IEKF uses 30 iterations. The (ad-hoc)
IUKF in [14] is implemented with η = 0.8. The ILMKF uses
the LM method to obtain the MAP estimate and its parameter
is selected as in [26, Chap. 15]. The parameters of NKOF
are: three quadrature points per dimension and Γβ = 0.01. In
LMKOF, Γα = 10. Both filters use Γc = 10−4.

The main properties of the iterated algorithms used in the
paper are summarised in Table I. The entry “Behaves well
with increasing dimension” indicates that the computational
burden does not grow exponentially with the dimension of the
state. The NKOF does not behave well as it uses a quadrature
rule. The root mean square (RMS) error is obtained using 200
Monte Carlo runs, averaging over different realisations of the
measurements and the target states.

A. Passive target tracking

This example deals with passive target tracking with bear-
ing, bearing rate and Doppler rate measurements [14]. The

state vector at time k is xk =
[
xk,

·
xk, yk,

·
yk
]T

where[
xk, yk

]T
is the position vector and

[
·
xk,

·
yk
]T

is the velocity
vector. The process equation is

xk+1 = Fxk + Gvk (74)

where

F = I2 ⊗
(

1 τ
0 1

)

G = I2 ⊗
(

0.5τ2

τ

)
where Im is the m × m identity matrix, ⊗ is the Kronecker
product, τ is the sampling time, vk is the process noise that is
zero-mean Gaussian distributed with covariance matrix Q. It
should be noted that the indices of the iterations of the optimi-
sation algorithms in Sections II, III and IV use subscripts while
the time index of the state vector is a superscript. We recall
that the optimisation algorithms are performed at every update
step to calculate the MAP estimate and then the posterior is
approximated as indicated in Section V-C.

The measurement vector zk =

[
θk,
·
θk,

·
fk
]T

consist of

bearing θk, bearing rate
·
θk, and Doppler rate

·
fk , so the

measurement equation can be written as

θk = arctan

(
yk

xk

)
+ ξθ

·
θk =

·
ykxk − ·xkyk

(rk)
2 + ξ ·

θ

·
fk =

−
(
·
ykxk − ·xkyk

)2
(rk)

3
λ

+ ξ ·
f

4In [10], the ILMKF is called “the new iterated filter”.
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Table I: Properties of the iterated filtering algorithms

Property NKOF LMKOF IEKF ILMKF IUKF
Theoretically sound

√ √ √ √
×

Uses sigma-points
√ √

× ×
√

Derivative-free ×
√

× ×
√

Behaves well with increasing dimension ×
√ √ √ √

where λ is the wavelength, rk =

√
(xk)

2
+ (yk)

2 and ξθ, ξ ·
θ

and ξ ·
f

are independent zero-mean Gaussian distributed noises

with variances σ2
θ , σ2

·
θ

and σ2
·
f

. With this measurement function,

the partitioning in Section V is ak = xk and bk = �.
The prior PDF at time 0 is

p
(
x0
)

= N
(
x0; x0,Σ0

)
. (75)

We consider 120 time steps, τ = 0.5s,
Q = diag

([(
9m/s2

)2
,
(
2m/s2

)2])
, λ = 0.1m,

x0 = [800m,−50m/s, 300m, 10m/s]
T and

Σ0 =


σ2
x 0 ρσxσy 0

0 σ2
v 0 0

ρσxσy 0 σ2
y 0

0 0 0 σ2
v

 (76)

where σx = 500m, σy = 200m, ρ = 0.95 and σv = 100m/s.
We analyse three scenarios that differ in the measurement

noise variances. Scenario 1: σθ = 2 ·10−4rad, σ ·
θ

= 10−5rad/s
and σ ·

f
= 0.05Hz/s. Scenario 2: σθ = 2 · 10−6rad, σ ·

θ
=

10−5rad/s and σ ·
f

= 0.05Hz/s. Scenario 3: σθ = 2 · 10−6rad,

σ ·
θ

= 100.1rad/s and σ ·
f

= 10−3Hz/s.
The RMS position error and the normalised estimation error

squared (NEES) of the position in Scenario 1 are plotted in
Fig. 2. NKOF, LMKOF and ILMKF have roughly the same
performance, outperform the rest of the algorithms and are
consistent. IEKF performs well at the beginning but it diverges.
The IUKF, UKF and CKF perform better than EKF but are far
from the performance of the KO algorithms developed in this
paper. EKF has a high NEES and has not not been included
in Fig. 2(b).

The execution times in milliseconds of the Matlab imple-
mentation of the algorithms on a Intel Core i7 laptop are:
NKOF (830), LMKOF (81), IEKF (90), IUKF (1650), ILMKF
(45), UKF (15), EKF (10), CKF (15). Lowest computational
burden is achieved by LMMSE algorithms: EKF, CKF and
UKF. Among the iterated filters, ILMKF is the one with lowest
computational burden followed by LMKOF. NKOF requires
more computational burden. The much higher execution time
of the IUKF comes from the fact that it requires an average
of 113.78 iterations to converge while NKOF requires 4.01,
LMKOF 3.11 and ILMKF 2.78. In this scenario, NKOF always
converges, see Section V-B.

LMKOF and NKOF are not very sensitive to what pa-
rameters have been chosen. In LMKOF, we have analysed
performance with values of Γα between 10 and 1000. Per-
formance is practically unaltered although, the higher Γα is,
the more iterations are required to converge. For example, for
Γα = 1000, the average number of iterations is 5.55 instead
of 3.11, which are required for Γα = 10. For NKOF, we

have analysed values of Γβ between 0.01 and 10. Performance
remains unchanged but with Γβ = 10, NKOF performs 17.68
iterations on average rather than 4.01, which are done with
Γβ = 0.01.

In Scenario 2, ILMKF and LMKOF are the algorithms that
have better performance followed by NKOF. The NKOF does
not converge to a local minimum 5 times out of 120 · 200
optimisations (number of time steps multiplied by number
of Monte Carlo runs) so it converges over 99.99% of the
times, see Section V-B. As in Scenario 1, IEKF performs
well at the beginning but it diverges soon. IUKF has a high
error at the beginning but at the end of the simulation it
has the same error as NKOF. Finally in Scenario 3, LMKOF,
NKOF and IUKF are the algorithms that behave better while
ILMKF and IEKF diverge. The errors are lower in this scenario
mainly due to the much lower Doppler rate noise. NKOF
does not converge 6 times so it also converges over 99.99%
of the times. This scenario is analysed more deeply from an
optimisation perspective in Section VII-B. For Scenario 3, we
have performed several simulations with σ ·

θ
∈ (0.01, 10) rad/s

and the above-mentioned conclusions remain unaltered, i.e.,
ILMKF diverges while LMKOF and NKOF have the highest
performance.

To sum up, in this example, LMKOF is the algorithm with
highest performance on the whole followed by NKOF. ILMKF
also behaves quite well despite the fact that it diverges in Sce-
nario 3. Importantly, the increase in performance of LMKOF
does not imply a much higher computational burden compared
to other iterated approaches. In addition, LMKOF does not
require any Jacobian calculations, which makes the approach
less error prone and more convenient for practitioners than the
other iterated filters.

B. Optimisation problem in passive target tracking

In Scenario 3 of the passive target tracking example of the
previous section, ILMKF and IEKF diverge while LMKOF,
NKOF and IUKF perform well. This indicates that at some
time step, the KO algorithms proposed in this paper find
the MAP estimate accurately while Levenberg-Marquardt and
Gauss-Newton methods do not. Therefore, in this section, we
analyse Scenario 3 more thoroughly from a pure optimisation
perspective. That is, we focus on the update phase at one time
step and analyse the behaviour of the MAP filtering algorithms
to minimise the objective function, which is given by (52).

The parameters of the objective function we use are

xk = [437.81,−1.42, 2981.95, 8.356]
T

Pk =


2.991 5.571 11.732 3.485
5.571 20.438 3.453 1.276
11.732 3.453 79.855 23.95
3.485 1.276 23.95 9.739
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Figure 2: RMS position error (a) and NEES (b) against time for Scenario
1. Horizonal black lines indicate the 95% probability region. NKOF,
LMKOF, ILMKF provide the lowest errors and are consistent.

Table II: Number of iterations and objective function value of the
optimisation algorithms

NKOF LMKOF IEKF ILMKF IUKF
Iterations 5 8 30 6 105

Function value 8.42 8.42 5.67 · 104 5.67 · 104 8.55

zk = [1.42375, 2.30477,−0.52501]
T

where these parameters have been obtained from one Monte
Carlo run at k = 20. In Table II, we show the objective
function value that the optimisation algorithms attain as well
as the number of iterations they require to converge. NKOF
and LMKOF attain the lowest value among the analysed
algorithms. IUKF provides a slightly higher value. IEKF and
ILMKF converge to a point that is not the minimum.

C. Angle tracking

In this example, an airbone sensor at a constant height
observes a target moving along the ground. The sensor mea-
sures the azimuth and elevation of the target. The state vector
is the same as in Section VII-A. The target dynamics are
modelled with a nearly constant velocity model, i.e., the
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Figure 3: RMS position error against time (a) Scenario 2 (b) Scenario 3.
NKOF and LMKOF outperform a variety of widely used filters. In (a),
LMKOF works better as NKOF does not always converge to the MAP.
In (b), ILMKF diverges.

dynamic equation is (74) with G = I4 and vk is zero-mean
Gaussian distributed with covariance matrix:

Q = σ2
u

(
τ3/3 τ2/2
τ2/2 τ

)
⊗ I2

where σ2
u is the continuous-time process noise intensity. The

measurement equation is [27]

zk =

 arctan
((
yk − yk0

)
/
(
xk − xk0

))
arctan

(
h/

√(
xk − xk0

)2
+
(
yk − yk0

)2)
+ ξk

where h is the known height of the sensor,
[
xk0 , y

k
0

]T
rep-

resents the known position of the sensor at altitude h at
time k and ξk is a zero-mean Gaussian measurement noise
with variance R = diag

([
σ2
1 , σ

2
2

])
. With this measurement

function, the partitioning in Section V is ak =
[
xk, yk

]T
and

bk =
[
·
xk,

·
yk
]T

.
The prior PDF at time 0 is given by (75)-(76). The

parameters we consider are: σx = 1000m, σy = 2000m,
ρ = 0.1 and σv = 2m/s, σu = 0.01m/s3/2, x0 =
[15000m,−10m/s, 5000m, 10m/s]

T , τ = 20s and h =
10000m. The number of steps is 48 and the ownship moves
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Table III: Noise parameters for each scenario

1 2 3 4
σ1 (º) 4.5 · 10−4 4.5 · 10−4 4.5 4.5
σ2 (º) 4.5 · 10−3 4.5 4.5 · 10−3 4.5

−5000 0 5000 10000 15000 20000
0

0.5

1

1.5

2

x 10
4

x (m)

y 
(m

)

Figure 4: Scenario for the angle tracking example. The red line indicates
the ownship trajectory and the blue lines indicate the target trajectory for
each Monte Carlo run.

with the same parameters as in [11]. The scenario and the
trajectories used to evaluate the filters’ performances are
shown in Figure 4. We consider four scenarios that differ in
their noise parameters, which are provided in Table III. For
completeness, we have also included scenarios with relatively
high measurement noise to demonstrate the superiority of KF-
type algorithms in this case.

The RMS position error of the algorithms averaged over all
time steps are provided in Table IV. As expected, in Scenario
1, in which the measurements are rather precise, UKF and
CKF have much worse performance than Gaussian MAP filters
and NKO, LMKOF and ILMKF have the best performance. In
Scenario 2, NKOF, LMKOF and IEKF are superior to the rest.
In Scenarios 3 and 4, the UKF and CKF are the algorithms
with lowest error. Among the Gaussian MAP filters, LMKOF
is the best one and ILMKF does not perform well in Scenario
4. On the whole, LMKOF is the best Gaussian MAP filter
followed by NKOF.

VIII. CONCLUSIONS

In this paper, we have introduced the KO framework and
developed two algorithms within this framework, LMKO
and NKO. Both algorithms can be implemented using low-
computational complexity sigma-point methods, which makes
both of them quite suitable for Gaussian MAP filtering.
As demonstrated by numerical simulations, KO algorithms

Table IV: RMS position error of the algorithms in each scenario

1 2 3 4
NKOF 1.74 395.78 648.07 766.40

LMKOF 1.74 395.74 508.03 766.68
IEKF 1.97 395.75 528.93 766.70

ILMKF 1.74 403.84 508.03 1063.3
IUKF 2.01 733.13 1087.9 1515.2
UKF 31.02 423.76 322.63 757.84
CKF 28.84 437.13 328.35 757.82

applied to MAP filtering are more robust than the IEKF,
ILMKF and IUKF. In addition, for low measurement noise,
these new filters should outperform LMMSE-type solutions
such as EKF, UKF or CKF. On the whole, LMKO outperforms
NKO because it is a derivative-free method, behaves well
with increasing dimension and, if it converges, it converges
to a local minimum. On the contrary, NKO requires the
calculation of the derivatives, does not behave well with
increasing dimension and can converge to a stationary point.

We have also indicated important links between KO al-
gorithms and Newton’s and Levenberg-Marquardt methods.
These relations are very important as they provide considerable
insight into Kalman filtering. We have also shown that, in
the limit, LMKO and NKO behave as Gauss-Newton and
Newton’s methods, respectively. Therefore, they have the same
local convergence properties.

The analysis of the performance of the developed KO
algorithms in optimisation problems different from MAP es-
timation is an interesting line of future research.

APPENDIX A

In this appendix, we prove the LMKO recursion to cal-
culate the MAP, see Section V-A2. The procedure is quite
similar to the one explained in [10]. Here, the expected
Jacobian is written as Ji = −T

[
HT
i , IT

]T
and yi =

T
[
(z− zi)

T
, (a− ai)

T
]T

. The recursion for the mean, as-
suming that α2

i is selected as indicated in Section IV-B1, is

ai+1 =ai −
(
α2
iP
−1
i + JTi Ji

)−1
JTi yi

=
(
α2
iP
−1
i + JTi Ji

)−1 [
JTi (−yi + Jiai) + α2

iP
−1
i ai

]
=a +

(
HT
i R−1Hi + P−10 + α2

iP
−1
i

)−1[
HT
i R−1 (z− zi)−HT

i R−1Hi (a− ai)

−α2
iP
−1
i (a− ai)

]
=a + Li (z− zi −Hi (a− ai))

− α2
i (I− LiHi) P̂iP

−1
i (a− ai)

where Li is given by (64) and P̂i by (63) and P0 = Σa

according to (53). The recursion for the covariance matrix,
assuming that α2

i is selected as indicated in Section IV-B1, is

Pi+1 =Pi −PiJ
T
i

(
JiPiJ

T
i + α2

i I
)−1

JiPi

=Pi −
(
α2
iP
−1
i + JTi Ji

)−1
JTi JiPi

=Pi −
(
α2
iP
−1
i + HT

i R−1Hi + P−10

)−1(
HT
i R−1Hi + P−10

)
Pi

=Pi −Pi

(
α2
i P̌i + Pi

)−1
Pi

where P̌i is given by (65).

APPENDIX B

In this appendix we show (71).

Lemma 1. Under Assumption A, matrix ΨiS
−1
i ΨT

i > 0.

A matrix A ∈ Rn×n is A > 0 if xTAx > 0 for x ∈
Rn \ {0}. To prove Lemma 1, we have to check that

xTΨiS
−1
i ΨT

i x > 0 (77)
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for x ∈ Rn \ {0} under Assumption A.
As Si is a covariance matrix, it is positive definite and S−1i

is positive definite too. Then, it has a Cholesky decomposition

S−1i = S
−1/2
i

(
S
−1/2
i

)T
where S

−1/2
i is invertible and

positive definite. Then, (77) can be written as∥∥∥∥(S
−1/2
i

)T
ΨT
i x

∥∥∥∥2 > 0.

The norm of a vector is always positive unless the vector is

zero. In our case, if
(
S
−1/2
i

)T
ΨT
i x = 0, x = 0 because(

S
−1/2
i

)T
is invertible and, under Assumption A, ΨT

i is
invertible too. This proves Lemma 1.

Using (9), we get

xTPi+1x =xT
(
Pi −ΨiS

−1
i ΨT

i

)
x

xTPi+1x <xTPix. (78)

We also know that

xTPix > 0 ∀x 6= 0 (79)

because Pi is positive definite. Therefore, using (78) and (79),
we get that

lim
i→∞

xTPix = xT
(

lim
i→∞

Pi

)
x = 0∀x ∈ Rnx

which implies that limi→∞Pi = 0.

APPENDIX C

In this appendix we show (73).

Lemma 2. Matrix Pi

(
α2
i P̌i + Pi

)−1
Pi > 0.

The proof of Lemma 2 is as follows. As (65) is the update
equation of the covariance matrix for a Kalman filter with a
linear measurement [3], P̌i is positive definitive. As α2

i > 0
and Pi is positive definite, α2

i P̌i + Pi is positive definite and
so is its inverse. Then, we can use the same procedure as in
Appendix B to finish the proof of (73).

Ángel F. García-Fernández received the telecom-
munication engineering degree (with honours) and
the Ph.D. degree from Universidad Politécnica de
Madrid, Madrid, Spain, in 2007 and 2011, respec-
tively.
He is currently a Research Associate in the De-
partment of Electrical and Computer Engineering
at Curtin University, Perth, Australia. His main
research activities and interests are in the area of
Bayesian nonlinear inference and radar imaging.

Lennart Svensson was born in Älvängen, Sweden
in 1976. He received the M.S. degree in electri-
cal engineering in 1999 and the Ph.D. degree in
2004, both from Chalmers University of Technology,
Gothenburg, Sweden.
He is currently Associate Professor at the Signal
Processing group, again at Chalmers University of
Technology. His research interests include Bayesian
inference in general, and nonlinear filtering and
tracking in particular.

REFERENCES

[1] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for
the nonlinear transformation of means and covariances in filters and
estimators,” IEEE Transactions on Automatic Control, vol. 45, no. 3,
pp. 477–482, Mar. 2000.

[2] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, Mar.
2004.

[3] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice-Hall, 1993.

[4] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, June 2009.

[5] I. Arasaratnam, S. Haykin, and R. Elliott, “Discrete-time nonlinear
filtering algorithms using Gauss-Hermite quadrature,” Proceedings of
the IEEE, vol. 95, no. 5, pp. 953–977, May 2007.

[6] M. R. Morelande and A. F. García-Fernández, “Analysis of Kalman
filter approximations for nonlinear measurements,” IEEE Transactions
on Signal Processing, vol. 61, no. 22, pp. 5477–5484, Nov. 2013.

[7] A. M. Walker, “On the asymptotic behaviour of posterior distributions,”
Journal of the Royal Statistical Society. Series B (Methodological).,
vol. 31, no. 1, pp. 80–88, 1969.

[8] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 1999.
[9] B. Bell and F. Cathey, “The iterated Kalman filter update as a Gauss-

Newton method,” IEEE Transactions on Automatic Control, vol. 38,
no. 2, pp. 294–297, Feb. 1993.

[10] R. L. Bellaire, E. W. Kamen, and S. M. Zabin, “A new nonlinear iterated
filter with applications to target tracking,” in Proc. SPIE 2561, Signal
and Data Processing of Small Targets, 1995.

[11] M. Fatemi, L. Svensson, L. Hammarstrand, and M. Morelande, “A
study of MAP estimation techniques for nonlinear filtering,” in 15th
International Conference on Information Fusion, 2012, pp. 1058–1065.

[12] G. Sibley, G. Sukhatme, and L. Matthies, “The iterated sigma point
Kalman filter with applications to long range stereo,” in Proceedings of
Robotics: Science and Systems, 2006.

[13] T. Lefebvre, H. Bruyninckx, and J. De Schuller, “Comment on "a
new method for the nonlinear transformation of means and covariances
in filters and estimators" [and authors’ reply],” IEEE Transactions on
Automatic Control, vol. 47, no. 8, pp. 1406–1409, Aug. 2002.

[14] R. Zhan and J. Wan, “Iterated unscented Kalman filter for passive target
tracking,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 43, no. 3, pp. 1155–1163, July 2007.

[15] C.-R. Hwang, “Laplace’s method revisited: weak convergence of proba-
bility measures,” The Annals of Probability, vol. 8, no. 6, pp. 1177–1182,
Dec. 1980.

[16] A. Doucet and X. Wang, “Monte Carlo methods for signal processing:
a review in the statistical signal processing context,” IEEE Signal
Processing Magazine, vol. 22, no. 6, pp. 152–170, 2005.

[17] J. C. Spall, Introduction to stochastic search and optimization. John
Wiley & Sons, 2003.

[18] J. Humpherys and J. West, “Kalman filtering with Newton’s method
[lecture notes],” IEEE Control Systems Magazine, vol. 30, no. 6, pp.
101–106, Dec 2010.

[19] M. A. Osborne, R. Garnett, and S. J. Roberts, “Gaussian processes
for global optimization,” in International Conference on Learning and
Intelligent Optimizatio, 2009.

[20] J. Sarmavuori and S. Särkkä, “Fourier-Hermite Kalman filter,” IEEE
Transactions on Automatic Control, vol. 57, no. 6, pp. 1511–1515, June
2012.

[21] I. Arasaratnam and S. Haykin, “Square-root quadrature Kalman filter-
ing,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2589–
2593, June 2008.

[22] A. Gelman, J. B. Carlin, H. S. Stern, and D. B.Rubin, Bayesian Data
Analysis. Chapman & Hall/CRC, 2004.



14

[23] T. M. Apostol, Calculus. Volume II. John Wiley & Sons, 1969.
[24] F. Beutler, M. F. Huber, and U. D. Hanebeck, “Gaussian filtering using

state decomposition methods,” in 12th International Conference on
Information Fusion, July 2009, pp. 579–586.

[25] R. N. Bracewell, The Fourier transform and its applications. McGraw-
Hill, 2000.

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipies in C: The Art of Scientific Computing. Cambridge
University Press, 1992.

[27] S. Challa, M. R. Morelande, D. Musicki, and R. J. Evans, Fundamentals
of Object Tracking. Cambridge University Press, 2011.


