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Bayesian road estimation using on-board sensors
Ángel F. García-Fernández, Lars Hammarstrand, Maryam Fatemi, Lennart Svensson

Abstract—This paper describes an algorithm for estimating
the road ahead of a host vehicle based on the measurements
from several on-board sensors: a camera, a radar, wheel speed
sensors and an inertial measurement unit. We propose a novel
road model that is able to describe the road ahead with higher
accuracy than the usual polynomial model. We also develop a
Bayesian fusion system that uses the following information from
the surroundings: lane marking measurements obtained by the
camera, leading vehicles and stationary objects measurements
obtained by a radar-camera fusion system. The performance of
our fusion algorithm is evaluated in several drive tests. As ex-
pected, the more information we use, the better the performance
is.

Index Terms—Information fusion, camera, radar, unscented
Kalman filter, road geometry.

I. INTRODUCTION

Active safety systems on vehicles are becoming more and
more advanced and nowadays they are able to assist the driver
in complicated scenarios [1]. These systems use noisy obser-
vations from on-board sensors, such as radar and camera, to
perceive the current traffic situation. Based on this description,
the system detects dangerous situations and makes decisions
on how to assist by means of warnings or autonomous inter-
ventions. While some older systems mainly focus on keeping
track of other vehicles [2], knowing the geometry of the road
has become important to handle more complex situations, e.g.,
higher speeds and earlier interventions [3], [4].

Systems for estimating the geometry of the lane markings
in relation to the host vehicle using a camera sensor have
been around for a while [5]–[7]. However, extracting road
geometry information from a camera sensor, typically mounted
on the windscreen of the vehicle, will always suffer from poor
effective resolution of the lane markings at far distances due to
the projection of the roughly horizontal road onto the vertical
camera sensor. Accurate estimation of the road at long ranges
is of importance in highways due to the possible high speed
of the vehicles. Therefore, in order to be able to attain a high
enough accuracy at these distances, information coming from
a different kind of sensor must be used.

Other systems estimate the road using a radar or lidar sensor.
Radars and lidars can estimate object positions located at close
and long ranges with high precision. This information can be
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used to estimate the shape of the road. For example, in [8]–
[10], the road is estimated using stationary object detections
from a radar and in [11], [12] from a lidar. In road safety
systems, radars are more commonly used than lidars due to
their longer range and better performance in bad weather [11].
However, in clear weather conditions, the camera can obtain
quite detailed information for close range that radars and lidars
cannot obtain, e.g., lane markings.

To overcome the drawbacks of camera and radar sensors,
camera-radar fusion systems have been developed [13]–[15].
In [13], [14], measurements from the leading vehicles are
taken into account to estimate the road. However, the described
systems are not complete as they do not use radar measure-
ments from the stationary objects such as barriers. In [15], the
system uses lane marking measurements and measurements
from the barriers but measurements from leading vehicles are
not taken into account.

In this paper, we present an algorithm for estimating the
road ahead of a host vehicle using the observations of the
lane markings, leading vehicles and barriers that the on-board
camera and radar sensors provide. To the authors’ knowledge,
such an integrated approach to estimate the road has not
been proposed in the existing literature. The algorithm uses
the Bayesian framework, in which the road is modelled as
a random variable, to fuse the information from all these
measurements. In this approach, the road estimate is obtained
using an approximation to the posterior probability density
function (PDF), i.e., the PDF of the road conditioned on all
past measurements up to the current time.

Other novelties of our paper are in the road model. When
fusing information from the leading vehicles, the road is
usually described by third-degree polynomial or constant cur-
vature models [13], [14]. These models, which are based on
a clothoid approximation, cannot estimate the road accurately
at far distance in important cases, e.g., if a straight road is
followed by a sharp curve at a relatively far range [14]. There-
fore, the model itself prevents these systems from performing
properly in such cases. The model we propose in this paper
is based on sampling a continuous curve and describes the
road using the curvature at the sampled points. This model
is capable of describing any kind of road for a sufficiently
small sampling distance. In addition, the Bayesian framework
requires some prior knowledge about the road. In our case,
we use the fact that in most roads curvature does not change
abruptly [16]. This can be easily incorporated in our road
model. Another contribution of this paper in road modelling is
that we use an extended road model in which the barriers are
also considered in the posterior PDF. Apart from the intrinsic
interest of active safety systems in knowing the barriers, the
extended road model makes it easier for the fusion system to
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Table I: Radar specifications

Parameter Value
Frequency 76.5 GHz

Accuracy in range 0.5 m
Accuracy in range rate 0.12 m/s

Accuracy in angle 0.5º

Table II: Camera specifications

Parameter Value
Resolution 640 x 480 (VGA)
Frame rate 10 Hz

use the information from the stationary object measurements
to estimate the road.

In short, fusing the information coming from the lane mark-
ings, stationary objects and leading vehicles as well as using
a road model that can represent any kind of road allows the
system we present in this paper to improve the performance of
other systems previously reported in the literature, especially,
at far distance.

The rest of the paper is organised as follows. We describe
our system and pose the road estimation problem in Section
II. The road model and the theoretical solution to the problem
are provided in Section III. The process and measurement
models we use are given in Section IV. Section V explains how
the theoretical solution to the problem is approximated. We
provide some experimental results showing the performance
of our algorithm in Section VI. Finally, conclusions are drawn
in Section VII.

II. PROBLEM FORMULATION AND SYSTEM DESCRIPTION

This paper is concerned with the problem of estimating the
geometry of the road ahead of a host vehicle equipped with
a set of sensors. In our case, the host vehicle is fitted with
a radar sensor in the grill and a camera sensor behind the
windscreen. Some specifications of these sensors provided by
the supplier are given in Tables I and II. The radar is able
to detect objects up to approximately 200 m and the camera
information is typically able to describe the lane markings up
to 60 m. In addition, data from internal sensors, such as wheel
speed sensors and inertial measurement unit, are available. The
camera sensor is capable of detecting the left and right lane
markings and gives a description of their shape while the radar
sensor detects and tracks other vehicles as well as stationary
objects on the side of the road, e.g., guard rails and barriers.

The objective is to accurately describe the geometry of the
road at the current time up to 200 m in front of the host vehicle
using all the relevant observations from the on-board sensor
system. The focus is put on describing highway type roads
having relatively sharp curves. The work is limited to only
one road, i.e., exits or forks in the road are not included in
the models. Slopes are not explicitly considered either as is
usually the case [10], [13], [17], [18] so the road is represented
as a plane curve. The reason why slopes are not taken into
account despite their importance in some scenarios is that the
on-board sensors of our vehicle do not provide information
about slopes. If we wanted to include slope information, we
would need sensors that provide this kind of information, e.g.,
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Figure 1: Illustration of the coordinate systems and the geometry
of the road. The figure shows two Cartesian coordinate systems,
the fixed global one given as (xg, yg) and the moving local one
attached to the host vehicle denoted as

(
xlk, y

l
k

)
. The so-called

curved road coordinate system (lk, nk) is also represented.

a stereo vision camera [19]. Furthermore, it is assumed that
there exists a basic fusion system like the one described in
[20] to handle asynchronous sensor data and estimate the host
vehicle state.

We define needed notation in Section II-A. The observations
from the aforementioned sensors are described in more detail
in Section II-B. In Section II-C, we conclude by mathemati-
cally defining the estimation problem that is to be solved.

A. Road geometry definition and coordinate systems

In order to describe the geometry of the road we must first
define what we mean by road geometry. In this paper we use
the following definition:

The geometry of the road is the shape of the
middle of the host vehicle lane.

As such, we assume that there is a parameterisation of the
geometry of the road at time k given by road state vector
rk, which will be defined in Section III. Vector rk describes
the shape (geometry) of the middle of the host vehicle lane
in the local Cartesian coordinate system

(
xlk, y

l
k

)
. The local

coordinate system is attached to the middle of the rear axel
of the host vehicle with one axis parallel to this axel as
shown in Figure 1. Note that this local coordinate frame
moves with the host vehicle. We denote the position and
orientation of the host vehicle in a fixed global coordinate
system (xg, yg) as

[
xhk , y

h
k

]T
and ψh

k , respectively, where
T stands for transpose. In this paper, we also use the so-
called curved road coordinate system (lk, nk) [17] in which
a point is represented by its longitude lk on the road and its
normal distance nk to the road. Time index k will be used
throughout this paper to refer to a time instance tk for which
the k-th measurement in total (from any of the sensors) was
made. As the sensors are asynchronous, the time between two
measurements Tk = tk − tk−1 is not constant but known.
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Figure 2: Measurements from the sensors: The host vehicle
and its local coordinate system are represented in black. The
red and green lines represent the lane marking (polynomial)
measurements. The blue dots without an arrow represent the
stationary objects detected by the camera/radar. The blue dot with
an arrow represents a moving object with its heading detected
by the camera/radar. The blue line represents the true road. The
lane markings are unable to estimate the curve accurately but we
can use the information of the stationary and moving objects to
do it.

B. Observations

The observations of the road geometry come from two dif-
ferent types of sensors: a lane tracking camera sensor detecting
the lane markings on the road and a radar-camera fusion
system observing vehicles and stationary objects (guard rails
and barriers). Figure 2 shows a typical set of measurements
from the radar and camera sensors. In the following sections
we present these observations in more detail.

1) Lane marking measurement: The lane tracking camera
delivers lane marking measurements roughly every 100 ms.
After some pre-processing, our system receives the coefficients
zlk =

[
l0k, l

1
k, l

2
k, l

3
k

]T
and zrk =

[
r0
k, r

1
k, r

2
k, r

3
k

]T
of two third

order polynomials describing the shape of the lane markings
to the left and right of the host vehicle, respectively. The
polynomials are given in the local coordinate system

(
xlk, y

l
k

)
.

2) Object measurements: The host vehicle is equipped with
a radar-camera fusion system that detects and tracks other
vehicles as well as stationary road side objects that reflect
radar energy, e.g., guard rails. The observations are delivered
every 25 ms in two vectors, one for vehicles and one for
stationary unclassified objects with a total maximum of 64
items. We denote these vectors zok and zsk, respectively. This
segmentation is performed based on the speed over ground
and camera classification.

For each observed vehicle i, a measurement zo,ik =[
xik, y

i
k, φ

i
k, v

i
k

]T
is reported by the sensor where

[
xik, y

i
k

]T
is the position in the local coordinate frame and φik is the
heading angle relative to the heading of the host and vik is the
speed in that direction. Similarly, for the stationary unclassified

objects, the sensor gives a measurement zs,ik =
[
xik, y

i
k

]T
that

is the position of the stationary radar detection. It should be
noted that these observations are already filtered by the radar-
camera system and we therefore do not include vehicle states
in our state vector.

C. Estimation problem

The main objective of this paper is to estimate rk at time
step k given the measurements up to time step k. We pursue
this aim using the Bayesian approach in which the variables
of interest are modelled as random variables. In this approach,
inference is done by recursively approximating the posterior
PDF p (rk |z1:k ) of the road state rk given the sequence of
measurements z1:k, which denotes all the measurements from
the lane tracker and the radar-camera fusion system up to the
current time k.

III. STATE PARAMETERISATION AND THEORETICAL
SOLUTION

In Section III-A, we introduce the extended road model,
which includes the road geometry and the barriers. In Section
III-B, we indicate how the estimation problem indicated in
Section II-C is solved theoretically. Some assumptions about
our model and a brief discussion is given in Section III-C.

A. Road model

Our model of the road ahead of the vehicle is illustrated
in Figure 3. It consists of M samples of a continuous
2-D curve that has been sampled with sampling distance
∆. The sampled curve is parameterised in the local co-
ordinate system and is described at time step k by vec-
tor rk =

[
y1
k, ϕk, c

2
k, c

3
k, ..., c

M−1
k

]T
where y1

k is the lat-
eral offset between the host vehicle and the road, ϕk is
its initial heading and cik is the sampled curvature, which
is a concept explained in the Appendix, at the ith point.
Given rk, we can obtain the position vector of the road

pk =
[(

p1
k

)T
,
(
p2
k

)T
, ...,

(
pM
k

)T ]T
where pi

k =
[
xik, y

i
k

]T
is the position of the ith sampled point of the road at
time k. It should be noted that p1

k =
[
0, y1

k

]T
, p2

k =[
∆ cosϕk, y

1
k + ∆ sinϕk

]T
and

pi
k = gp

(
pi−2
k ,pi−1

k , ci−1
k

)
for i ≥ 3 (1)

where gp (·) is given by (25) in the Appendix. The function
that relates pk and rk is denoted as pk = g (rk). It should
be noted that we can obtain rk given pk and that the length
of the road is (M − 1) ∆. We introduce this model based
on curvature because of the importance of curvature in road
design. We will use the prior knowledge we have about
curvature in roads to model the prediction step in Section IV-A.

In order to utilise stationary road side detections from the
radar to estimate rk, we propose to include a description of the
road side barriers, which is also illustrated in Figure 3. In this
paper we assume that, if a barrier exists, it is parallel to the
road. As a result, the barrier state at time k is parameterised by
vector bk =

[
elk, b

l
k, e

r
k, b

r
k

]T
where elk = 1 if the left barrier
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Figure 3: Road model with left barrier and prediction step: The road is a curve sampled with distance ∆. The road is characterised by
the initial offset y1k, initial heading ϕk and the curvatures at the next points. It is represented as a grey line. The left barrier is assumed
to be parallel to the road and characterised by the initial offset blk. It is represented as a dashed grey line. The augmented road position
vector pa

k is represented by circles. At time step k+ 1, the local coordinate system moves. In order to obtain the parametrisation of the
road required in rk+1, we have to do a change of coordinates and interpolate the road. The road position vector pk+1 is represented by
squares. Note that we have one point less in pk+1 than in pa

k as required.

exists and zero otherwise, blk is the lateral offset (in the local
coordinate system) from the center of the host vehicle lane to
the left barrier, and equivalently for erk and brk for the right
barrier.

B. Posterior PDF

Instead of approximating p (rk |z1:k ) directly, we approxi-
mate the joint posterior PDF p (rk,bk |z1:k ) of the extended
road model that accounts for the barriers. This makes it easier
to take into account the radar measurements from the barriers.

Every time we receive a measurement, the posterior PDF is
calculated in two steps: prediction and update [21]. The predic-
tion step uses the transition density p (rk+1,bk+1 |rk,bk ) and
the Chapman–Kolmogorov equation to calculate the predicted
PDF at the next time step

p (rk+1,bk+1 |z1:k ) =

ˆ
p (rk+1,bk+1 |rk,bk )

p (rk,bk |z1:k ) drkdbk (2)

The update step uses Bayes’ rule, the predicted PDF and the
likelihood p (zk+1 |rk+1,bk+1 ) to calculate the posterior

p (rk+1,bk+1 |z1:k+1 ) ∝p (zk+1 |rk+1,bk+1 )

p (rk+1,bk+1 |z1:k ) (3)

where ∝ means “is proportional to”. Therefore, in order to
solve the problem, we need to model the transition density and
the likelihood for each kind of measurement. This is equivalent
to providing the process and measurement equations, which
are given in Section IV. Besides, we also need to approximate
(2) and (3) as they do not admit a closed-form expression in
general. This is explained in Section V.

C. Assumptions and discussion

The first important assumption we make in this paper is that
we know the difference phl

k between the host vehicle pose
(position and heading) at time k + 1 and the host vehicle
pose at time k in the local coordinate system at time k as in

[10]. This is equivalent to saying that, given the host pose at
time k and the measurements of the internal sensors (wheel
speed sensors and inertial measurement unit), the uncertainty
of the host pose at time k+ 1 is negligible in the sense that it
does not make a big difference in road estimation to consider
phl
k a random variable or a known parameter. This uncertainty

is actually quite low as the internal sensor measurements of
the velocity, yaw rate and lateral acceleration produce a very
accurate estimate of phl

k [22]. Therefore, this assumption is
reasonable.

It should be noted that lower errors could be achieved by
modelling ph

k as a random variable and including it in the state
vector. However, the computational burden of this approach is
considerably higher than the method explained in this paper.
This option is rather similar to simultaneous localisation and
mapping (SLAM) [23]. However, SLAM aims to estimate the
global map (the global road for a static observer) which is not
our objective.

The second important assumption we make is that we con-
sider the inputs to our systems, i.e., lane marking observations
(zlk, zrk), moving object observations zok and stationary object
observations zsk as independent measurements of a sequence
of underlying vectors rk k = 0, ...,∞. That is, we do not take
into account that these observations are already the output of
the filtering algorithms carried out in the radar-camera sensor.
As we do not have access to the details of these filtering
algorithms (as this was done by the sensor provider), we
treat them as independent measurements. Despite the invalidity
of this assumption, road estimation is greatly improved with
respect to the lane marking measurements due to the fusion
of all these kinds of information. It should be noted however
that higher performance is expected if we design robust
fusion schemes that account for unknown correlations of the
observations along time, for example, following the ideas put
forward in [24]. Nevertheless, this is beyond the scope of this
paper.
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IV. PROCESS AND MEASUREMENT MODELS

In this section, we introduce the process and measurement
equations used in (2) and (3).

A. Process equation

Most roads are built such that there are not abrupt changes
in their curvature [16], [25]. Therefore, given the curvature at
a certain point, the curvature at a nearby point is expected
to be close. How similar it is depends on the road type,
i.e., roads with higher speed limit have smoother changes
in curvature. We use this prior knowledge in our Bayesian
framework as it can be easily modelled as a Markov random
process characterised by

ci+1
k = cik + wc,i+1 (4)

where wc,i+1 is a sequence of independent zero-mean Gaus-
sian noises with variance σ2

c . It should be noted that σ2
c

depends on the type of road so it should be chosen accordingly.
The model is valid to represent roads with sharp bends by
making σ2

c high enough.
The process equation, which is a characterisation of the

transition density in (2), includes a transformation of the road
state vector rk and the barrier state vector bk due to the
change of the local coordinate system. We assume that the
host vehicle moves a distance lower than ∆ from time step
k to k + 1. First, we add a component to the state vector rk
with the curvature of the next point (located at a distance ∆
from the last point). The augmented state vector is represented
as rak=

[
rTk , c

M
k

]T
=
[
y1
k, ϕk, c

2
k, c

3
k, ..., c

M−1
k , cMk

]T
. Note that

the prior knowledge we have about cMk given rk is modelled
by (4).

In order to account for modelling errors, it is convenient
to add process noise to the transformation. Moreover, due to
the fact that different measurements are taken asynchronously,
the process noise covariance matrix is proportional to the time
difference between measurements. Thus, the process equation
for the road is modelled by

rk+1 = fk+1 (rak) + wr
k+1 (5)

where fk+1 (·) is a nonlinear transformation to be described
in the rest of the section, wr

k+1 is a sequence of independent
zero-mean Gaussian process noise with covariance matrix
Qr

k+1 = Tk+1Q̃
r where Tk+1 is the time difference between

the measurement at time k + 1 and the measurement at time
k and Q̃r is a reference covariance matrix.

We proceed to describe fk+1 (·), which consists of the
composition of several functions. The procedure is illustrated
in Figure 3. The road position vector of the augmented road

is pa
k = ga (rak) =

[(
p1
k

)T
,
(
p2
k

)T
, ...,

(
pM
k

)T
,
(
pM+1
k

)T ]T
.

We denote as pa
k+1|k = f̃k+1 (pa

k) where f̃k+1 (·) is the func-
tion that makes the change of coordinates of the augmented
road position vector pa

k, expressed in the local coordinate
system at time k, to the augmented road position vector pa

k+1|k
in the local coordinate system at time k + 1. Thus, function

f̃k+1 (·) is a translation followed by a rotation applied to each
point of the road:

pa
k+1|k =f̃k+1 (pa

k)

=
[
f̆Tk+1

(
p1
k

)
, ...., f̆Tk+1

(
pM+1
k

)]T
(6)

where

f̆k+1

(
pi
k

)
=Θ

(
−ψh

k+1 + ψh
k

)[
pi
k −

([
xhk+1, y

h
k+1

]T − [xhk , yhk ]T)] (7)

where Θ (α) is a rotation matrix with angle α and[
xhk , y

h
k , ψ

h
k

]T
is the host state at time k.

To obtain the road position vector pk+1 we need to inter-
polate pa

k+1|k because the first point in pk+1 must have a
coordinate of the form [0, y]

T as required by our road model,
which is described in Section III-A. We use linear interpolation
and the function is denoted as pk+1 = i

(
pa
k+1|k

)
, which can

be transformed to the road state rk+1 using g−1 (·). In short,
the prediction step for the road state is illustrated in Figure 3
and can be written as

rk+1 = g−1
(
i
(
f̃k+1 (ga (rak))

))
+ wr

k+1 (8)

If the left barrier exists, the process equation for the barrier
is

blk+1 = blk cos
(
ψh
k+1 − ψh

k

)
+ wb

k+1 (9)

where wb
k+1 is a sequence of independent zero-mean Gaussian

process noise with variance Qb
k+1 = Tk+1Q̃

b where Q̃b is a
reference variance. The right barrier has an analogous process
equation.

B. Measurement equations

In this section, we introduce the measurement equation for
the different types of observations: lane markings, moving
objects and stationary objects.

1) Lane markings: The road state represents the middle of
the host vehicle lane. The middle of the lane at a given distance
is the average of the left and right lane markings at a given
distance. Therefore, the average of the measured polynomials
(left and right lane markings), whose coefficients are given by(
zlk+1 + zrk+1

)
/2, is a direct measurement of the road, see

Figure 2.
We recall that the road state rk+1 can be transformed into

a road position vector pk+1, where the distance between con-
secutive points is ∆. There is only one third order polynomial
that passes through four points. Therefore, if we sample four
points from the averaged lane marking polynomials, we keep
the information of the measurement. If these four points are
selected such that the distance between consecutive points is
∆, represented in vector pl

k+1, then, we are observing the first
four positions of pk+1 plus measurement noise. Therefore, we
assume that

pl
k+1 = g4 (rk+1) + ηl

k+1 (10)

where g4 (·) represents the function that takes the first four
points of function g (·) and ηl

k+1 is a zero-mean Gaussian
measurement noise with covariance matrix Rl.
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2) Moving objects: The assumption we make to get infor-
mation about the road from other vehicles’ measurements is
the following:
• M1 If a vehicle is not changing lane, its heading is

roughly parallel to the road.
This assumption was also made in [13]. Thus, if a moving
object measurement comes from a leading vehicle that is not
changing lane with position

[
xik+1, y

i
k+1

]T
and heading φik+1,

the measurement equation is modelled as

φik+1 = φrk+1

(
xik+1, y

i
k+1, rk+1

)
+ ηmk+1 (11)

where ηmk+1 is the measurement noise which is zero-mean
Gaussian with variance Rm and φrk+1

(
xik+1, y

i
k+1, rk+1

)
is

the heading of the road in the road interval that is the closest
to the vehicle position.

We explain how φrk+1 (·) is calculated in the following. We
recall that the road can be represented as the position vector
pk+1. We calculate the two consecutive points of this vector

that are the closest to
[
xik+1, y

i
k+1

]T
. Let

[
xjk+1, y

j
k+1

]T
and[

xj+1
k+1, y

j+1
k+1

]T
denote these points, then

φrk+1

(
xik+1, y

i
k+1, rk+1

)
= arctan

(
yj+1
k+1 − y

j
k+1

xj+1
k+1 − x

j
k+1

)
(12)

In practice, we have to determine whether a measurement
comes from a vehicle that meets M1, i.e., we have to detect if a
vehicle is likely to follow the road or not. The measurements
of the vehicles that are not deemed to follow the road are
discarded and hence not used in the estimation of the road
geometry. This is addressed in Section V-C.

3) Stationary objects: If the ith stationary measurement
zs,ik+1 comes from the left barrier (the argument for the right
barrier is analogous), zs,ik+1 is an observation of the barrier at
the longitude lik+1 on the road of this observation, which is
assumed to be known, plus measurement noise1. As the barrier
is modelled as parallel to the road, i.e., it is described in the so-
called road coordinate system, we think it is more convenient
to use a measurement noise that is described in this coordinate
system rather than the local coordinate system. Therefore, the
measurement equation is modelled as

zs,ik+1 = plb
k+1

(
lik+1, rk+1,bk+1

)
+ B

(
lik+1, rk+1

)
ηb
k+1

(13)
where plb

k+1

(
lik+1, rk+1,bk+1

)
is the position of the left

barrier at the longitude lik+1 along the road of the given mea-
surement, B

(
lik+1, rk+1

)
is a rotation matrix that performs

a rotation with an angle that is the heading of the road at
longitude lik+1 and ηb

k+1 is the measurement noise which has
a zero-mean Gaussian PDF with covariance Rs. It should be
noted that B

(
lik+1, rk+1

)
is used as ηb

k+1 is the measurement
noise in the road coordinate system and the observation
is given in the local coordinate system. The transformation
plb
k+1

(
lik+1, rk+1,bk+1

)
can be easily performed using linear

1It should be noted that lik+1 depends on rk+1 and zs,ik+1 but we assume
that once it is calculated, it is a fixed parameter in the measurement equation
(13) for simplicity.

interpolation in the road intervals and the angle of rotation of
B
(
lik+1, rk+1

)
is found with a similar equation as (12).

In practice, we have to determine whether a measurement
belongs to the right barrier, left barrier or is an outlier. This
practical issue among others are addressed in Section V-D.

V. CALCULATION OF THE POSTERIOR PDF
APPROXIMATION

Once we have introduced the road model and the process
and measurement equations, we proceed to approximating the
posterior PDF, which is given by (2) and (3), in a recursive
fashion.

The posterior approximation of the extended road we pro-
pose is a Gaussian hierarchical model of the form

p (rk,bk |z1:k ) ≈N
(
rk; rk|k ,Σk|k

)[
δ
(
elk − 1

)
plkN

(
blk; b

l

k|k ,
(
σl
k|k

)2
)

+δ
(
elk − 0

) (
1− plk

)][
δ (erk − 1) prkN

(
brk; b

r

k|k ,
(
σr
k|k

)2
)

+δ (erk − 0) (1− prk)] (14)

where rk|k and Σk|k denote the mean and covariance matrix
of the road at time k conditioned on the current and past
measurements, δ (·) is the Kronecker delta, plk and prk are the
probabilities that the left and right barriers exist, respectively,
b
l

k|k , σl
k|k , b

r

k|k , σr
k|k are the mean and standard deviation

of the PDF of the left and right barriers conditioned on the
current and past measurements. For simplicity, we assume that
if a barrier exists, its state is independent of the road state and
the other barrier state. Also, in the implementation, we assume
that plk and prk can only take values 0 and 1.

In the rest of the section, we assume that p (rk,bk |z1:k )
is given by (14) and provide an approximation to
p (rk+1,bk+1 |z1:k+1 ) with the same Gaussian hierarchical
model. The prediction step, in which (2) is approximated,
is explained in Section V-A. The update step, in which (3)
is approximated, is explained in Section V-B for the lane
markings, in Section V-C for the moving object measurements
and in Section V-D for the stationary object measurements.

A. Prediction step

The posterior of rak, which is needed to perform the pre-
diction step as indicated by (8), can be obtained using the
posterior of rk, see (14), and the road transition model, which
is given by (4):

p (rak |z1:k ) =N

(
rak;
[
rTk|k , c

M−1
k

]T
,

[
Σk|k ξk|k
ξTk|k ξlk|k + σ2

c

])
(15)

where cM−1
k represents the last component of rTk|k , ξk|k is the

last column of Σk|k and ξlk|k is the last component of ξk|k .
In the implementation, we calculate a Gaussian approxima-

tion to the predicted density

p (rk+1 |z1:k ) ≈ N
(
rk+1|k ; rk+1|k ,Σk+1|k

)
(16)
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where rk+1|k and Σk+1|k are obtained applying the unscented
transformation to the PDF (15) and the nonlinear function
(8) [26]. The prediction step for the barriers can be done
analytically using (9).

B. Update step: lane markings

Before addressing the update step itself, first, we indicate
how we detect lane changes of the host vehicle based on
lane marking measurements and how the filter takes them into
account.

1) Lane change detection: Lane marking measurements
allow us to detect lane changes of the host vehicle easily.
In this subsection, we indicate how we detect lane changes
and how this affects our filter. Every time we receive a lane
marking measurement, before doing the update step, we follow
these steps.

First, we estimate the width W of the lane by calculating
the difference between the zero order coefficients of the
polynomials that represent the left and right lane markings,
see Section II-B1. We recall that the zero order coefficient is
an accurate measurement of the lateral distance to the left
and right lane markings, respectively. Second, we estimate
the y component of the middle of the current lane at time
k + 1, which is the average of the zero order coefficients
of the left and right polynomials and is denoted as yl,1k+1.
If the host vehicle does not change lanes, the y component
y1
k+1|k of the middle of the predicted lane, which is the first

component of rk+1|k , is expected to be close to yl,1k+1. If the
host vehicle changes lanes, the difference between yl,1k+1 and
y1
k+1|k is roughly the width of the lane. Therefore, we use the

following detection rule

yl,1k+1 − y
1
k+1|k > 0.8W → LC to the left

yl,1k+1 − y
1
k+1|k < −0.8W → LC to the right

where LC stands for lane change and the threshold is set to
0.8 times the width of the lane because it provides excellent
results in the test drives.

If we change lanes, we account for the lane change in the
predicted density by using rk+1|k ± [W, 0, 0, ..., 0]

T instead of
rk+1|k in (16) and b

l

k|k ∓W instead of b
l

k+1|k in the predicted

density of the left barrier where b
l

k+1|k is the predicted left
barrier. The upper sign in ± and ∓ is used if we change to
the left and the lower sign if we do it to the right. The same
procedure is performed for the right barrier.

2) Update: We use the unscented Kalman filter (UKF) [26]
to approximate the posterior using the measurement equation
(10).

It can also happen that we only get one lane marking
measurement. In this case, we use the last estimate of the lane
width W , which was obtained the last time we got both lane
marking measurements, to create a measurement equation of
the form (10). Now, the nonlinear measurement function must
account for a displacement of ±W/2, where the sign depends
on the lane marking we get, in the normal direction of road.

C. Update step: moving object measurements

The moving object measurements mainly come from other
vehicles. However, we only consider those measurements that
come from vehicles that meet Assumption M1. Therefore, for
every moving object measurement, we include an outlier de-
tection step so that we only consider the useful measurements.
We recall from Section II-B2 that moving object measurements
have position, heading and speed components.

First, we only consider the measurements whose speed
is higher than a threshold (we use 5 m/s). Otherwise, they
are likely to be outliers as we assume the host vehicle is
on a highway. Second, we perform gating [27]. Gating is
a widely used technique to detect outliers and works as
follows. If the Mahalanobis distance between the measurement
and the predicted measurement using the variance of the
predicted measurement, which are calculated using the UT
and (11), is higher than a threshold (we use 1.5), then the
measurement is deemed an outlier and is not considered in the
update step. Finally, we build a measurement equation stacking
measurement equation (11) for each measurement that meets
Assumption M1. The update is then carried out using a UKF.

D. Update step: stationary object measurements

Each stationary object measurement is a position vector
zs,ik+1 that contains the coordinates of the ith stationary object
in the local coordinate system, see Section II-B2. In practice, a
large number of stationary object measurements come from the
barriers. Therefore, these measurements can be used to update
the extended road state, which includes the barrier states, using
the measurement equation (13). However, we should decide
which ones of these measurements were originated in the
barriers and which ones are outliers. Barrier measurements
have the following characteristics that are taken into account
in our filter:
• S1: They tend to appear around a line that is parallel to

the road (middle of our lane). This is due to the fact that
barriers are usually parallel to the road.

• S2: They do not appear isolated. That is, there are usually
several barrier measurements in close proximity. This
stems from the fact that the barrier is an extended object
so several detections are expected.

Prior to explaining how we initialise and update the barrier
state, we perform the following steps to determine what
measurements are to the left of the road (candidates for
updating the left barrier) and which ones to the right. Every
time we receive stationary object measurements, we describe
the position zs,ik+1 in the road coordinate system, i.e., using the
longitude lk+1 on the road and distance nk+1 to the road [17].
This is represented by the transformation

zsr,ik+1 = m
(
zs,ik+1, rk+1

)
(17)

where zsr,ik+1 =
[
lik+1, n

i
k+1

]T
and m (·) is the function that

represents the transformation2. It should be noted that rk+1 is

2The mapping of m (·) can be easily done using linear interpolation
between the points that represent the road.
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a random variable with PDF given by (16). Therefore, zsr,ik+1

is another random variable whose PDF is approximated as a
Gaussian using the UT drawing sigma points from (16).

If nik+1 > 0, the stationary object is located to the left of the
road, otherwise, it is located to the right. Therefore, using the
Gaussian PDF of zsr,ik+1, we can easily calculate the probability
that the stationary object is to the left or the right of the road. If
one of these probabilities is higher than a threshold (we use 0.7
in the filter), then, we consider that this point is a candidate
to initiate or update the right or left barrier. Otherwise, we
discard it as it is not clearly on any side of the road.

1) Barrier initialisation: We recall from (14) that the
barrier state is the lateral offset from the middle of our lane to
the barrier and that the barrier is assumed to be parallel to the
road. The posterior PDF of the barrier state is approximated as
Gaussian with a certain mean and variance. If a barrier has not
been initiated (existence probability equal to zero), we check
the following conditions to initiate it.

1) We require at least four measurements on a given side
of the road. This is necessary to meet S2.

2) The variance of the component nik+1 of a given measure-
ment must be lower than a threshold (we use 0.32 m2).
This is necessary as we need to be sure about the
distance at which the measurements are located to meet
S1. If a measurement is not accurately located in the
road coordinate system, it is better not to consider it for
the initialisation.

3) We remove the isolated measurements, i.e., those which
do not have another measurement at a distance lower
than ∆. We do this to meet S2.

4) We apply an outlier detection step to select the valid
measurements for initialisation. That is, all the valid
measurements must be located within a distance around
the average distance to the road of all the valid mea-
surements. To do this, we take all the measurements
and calculate the mean distance to the road (using the
mean of nik+1). Then, we calculate the square error
between the mean distance d̄ and the distances for every
measurement. If the maximum of these errors is higher
than a threshold (we use 0.32 m2 ), we remove the corre-
sponding measurement. This procedure is repeated until
the maximum is not removed. This step is necessary to
ensure that the valid measurements meet S1.

5) Finally, if there are at least four valid measurements after
Step 4, we initiate the barrier. The barrier is initiated
with mean d̄ and variance σ2

ini = 0.12 m2.
2) Update: Among all the stationary object measurements,

we check if there are outliers, i.e., measurements that do not
come from one of the barriers. To this end, we use a two-
step procedure. First, we use gating [27] with measurement
equation (13). That is, if the Mahalanobis distance between
the measurement and the predicted measurement using the
variance of the predicted measurement, which are calculated
using the UT and (13), is higher than a threshold (we use
3), then, the measurement is an outlier. Second, among the
measurements that have passed the gating test, we discard
those which appear isolated to take S2 into account. More
specifically, if there is a measurement whose distance to its

closest measurement is higher than ∆, it is discarded. The
remaining measurements are the valid barrier measurements.

Finally, we build the measurement equation stacking mea-
surement equation (13) for each valid barrier measurement.
The update is then carried out using a UKF.

3) Barrier removal: There are two reasons why we delete
a barrier, i.e., we set its existence probability to zero. The first
reason and most usual one is that the barrier does not exist
in the current stretch of road ahead of the host vehicle. What
we do in this case is to delete the barrier if the barrier has
not been updated for a certain time. In our implementation,
we use 0.5 s, which corresponds to 20 stationary measurement
updates, see Section II-B2.

Another motive to delete a barrier is that there is a pos-
sibility that the filter might not be tracking the barrier but
another extended object approximately parallel to the road.
For example, there are cases where a barrier has been initiated
because some stationary object measurements meet S1 and S2
but these measurements do not correspond to a barrier but
something similar, e.g., a fence outside the road. A way to
detect that the filter is not working properly is to monitor the
stationary objects on the left and right hand side of the road,
i.e., the objects between the middle of our lane and the left
barrier and the right barrier. We track the longitude on the road
and normal distance to the road of these objects. If the number
of stationary objects that have appeared in the current stretch
of road at roughly the same normal distance is higher than a
threshold (we use 3), it is an indication that the true barrier is
not what the barrier filter is indicating and we should delete
the right or left barrier depending on the side of the road this
has happened. At the next time step, the filter is expected to
initiate the barrier properly.

E. Filter initialisation

The filter is initialised when we get a lane marking measure-
ment with left and right lane markings for the first time. Then,
we use a Gaussian prior with mean r0|0 = 0 and covariance
matrix Σ0|0 and perform the update as explained in Section
V-B2.

We also want to mention that in practice we should monitor
the performance of the filter to ensure that it does not diverge.
This can be done following the ideas in [28, Chap. 7]. Finally,
a summary of the filter steps is given in Table III.

VI. EXPERIMENTAL RESULTS

The objective of this section is to assess the performance
of our filter at estimating the road ahead at different distances
from the host vehicle in real driving conditions. That is, we
want to know the estimation error of the road position at
different distances ahead of our car: 20 m, 40 m, 60 m... up to
200 m. We also want to show how the error is affected by using
only the lane marking measurements, or considering stationary
and moving objects as well. It will be demonstrated that lane
marking measurements provide accurate estimates for close
range. However, for long range and especially for windy roads,
lane marking measurements do not provide accurate estimates
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Table III: Filter steps when we receive a measurement

• If the filter has been initialised
– Prediction step, see Section V-A
– Update step

∗ For lane marking measurements, see Section V-B
· Lane change detection
· Update with the lane markings

∗ For moving object measurements, see Section V-C
· Outlier detection step
· Update with valid measurements

∗ For stationary object measurements, see Section V-D
· If a barrier has not been initialised: Barrier initialisation step
· If a barrier has been initialised: Outlier detection step, update

with valid measurements and barrier removal step
• Else

– If we get a lane marking measurement, initialise the filter, see
Section V-E.

and performance can be greatly improved by accounting for
stationary and moving object measurements.

The main problem to calculate the road position error is
that the true road is not available, i.e., the coordinates of the
middle of our lane for the whole test drive. This is solved by
the ground truth analysis explained in Section VI-A.

A. Ground truth analysis

In this section, we explain the ground truth analysis (GTA)
tool we use. The GTA tool estimates the road the host vehicle
has driven on. Once the test drive has finished, per each time
step, we can calculate the error between our estimate of the
road ahead of the vehicle and the quite accurate estimate of
the GTA, which is regarded as the true road [28].

For a test drive, the GTA tool estimates the trajectory of
the host vehicle pose (host path) based on the internal sensor
measurements in the global coordinate system. This estimation
technique is known as dead-reckoning. Then, it estimates the
road position offset y1

k at distance 0 at time k based on the
lane marking measurements, see Section IV-B1. This estimate
of the road position is given in the local coordinate system at
time k. Using the host path estimate, the road position can be
estimated for the local coordinate system of any time step3.

The main drawback of this technique is that the error
of the dead-reckoning estimate of the host path increases
unboundedly with time. As a result, the estimated host path
of the whole test drive is not accurate and neither is the road
estimate. Nevertheless, the GTA estimate can be regarded as
the true road to estimate 200 m of road ahead of the host
vehicle under the following assumptions:
• G1: The road position offset estimate y1

k based on the
lane marking measurements is considered as the true road
position in the local coordinate system at time k.

• G2: The estimate of the host vehicle pose using dead-
reckoning is accurate if the host vehicle has moved less
than 200 m.

Assumption G1 is reasonable as measurement tests indicate
that the estimation error in the road position offset y1

k is around

3Equation (7) indicates how to perform a change of coordinate systems
between time steps k and k + 1.

5 cm, which can be considered negligible for our application.
Assumption G2 is met for modern internal sensors as the dead-
reckoning error is negligible up to 200 m for normal driving
conditions [22].

B. Results

We analyse and compare the performances of four different
versions of our filter. The first version only takes into account
the lane markings; the second, the lane markings and the bar-
riers; the third, the lane markings and other vehicles and; the
fourth, lane markings, barriers and other vehicles altogether.
It is clear that if more information from the sensors is used,
performance is expected to improve. In Section VI-B1, we
analyse one interesting drive test thoroughly while in Section
VI-B2 we analyse the averaged results over several drive tests.

It should be noted that the widely used polynomial model,
which is based on the approximation of a clothoid, is reason-
ably accurate up to 60 m for usual road curves [14]. However,
it cannot model reasonably sharp curves for distances longer
than 60 m or situations in which the road is straight but
followed by a sharp bend. In addition, as indicated in [29], it is
a poor parameter space due to large sensitivity to coefficient
errors and, consequently, it is not adequate for multisensor
fusion. As the aim of our paper is to estimate the road
ahead of the host vehicle up to 200 m using a multisensor
fusion algorithm, the polynomial model is not suitable for our
purpose and we have not implemented it.

Nevertheless, we want to recall that neither of the state-of-
the-art road geometry algorithms mentioned in the introduction
fuse information from the lane markings, barriers and leading
vehicles. The way we use the lane markings and leading
vehicles is based on the same ideas as the algorithm in [13],
i.e., lane markings measurements are given by a third degree
polynomial and the heading of the vehicles is roughly parallel
to the road. Therefore, the version of our algorithm that does
not consider the barriers can be seen as an adaptation of [13]
to our fusion system, which works under the assumptions
mentioned in Section III-C, and road model based on sampled
curvatures. It is demonstrated in the rest of this section that
using the barrier information can lower the estimation error
remarkably. This certainly underscores the importance of our
work.

We use the following filter parameters:

• The model parameters are: ∆ = 20 m, M = 11.
• The process equation parameters are: σ2

c = 4 ·
10−8∆ m−2, Q̃r is a diagonal matrix with variance
0.12 m2/s for the offset element, (0.5π/180)

2
rad2/s for

the heading element and 10−5 m−2/s for the curvature
elements.

• The measurement equation parameters are: Rm =

(3π/180)
2

rad2, Rs = diag

([
(1.2)

2
, (1.2)

2
]T) (

m2
)

and Rl = diag
([
σ2
x, σ

2
y, σ

2
x, 2σ

2
y, σ

2
x, 4σ

2
y, σ

2
x, 8σ

2
y

]T)
where σ2

x = 10−6 m2, σ2
y = 0.052 m2 and diag (a)

represents a diagonal matrix with diagonal entries given
by a.
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Figure 4: True road in the global coordinate system as estimated
by the GTA tool. The red dots denote the position on the road
of the host vehicle every 20 seconds.

• Initialisation parameters: We use the prior mean r0|0 = 0.
The covariance matrix Σ0|0 is obtained using a variance
0.12 m2 for the offset element, (0.5π/180)

2
rad2 for

the angle element and 10−8 m−2 for the first curvature
element. The rest of the components of Σ0|0 , which
correspond to curvature elements, are obtained using (4).
The offset and angle elements are independent of the
curvature elements.

The process equation parameters have been adjusted such that
they approximately describe the kind of roads we consider
in the drive tests. This can be done with the GTA tool by
analysing how the curvature changes with distance. The lane
marking measurement covariance matrix has been selected
such that it corresponds to the error estimated by the GTA tool
in several drive tests. Parameters ∆ and M have been selected
to cover 200 m with a reasonable computational complexity.
The lower ∆ is selected, the higher M should be to cover
the same distance. This increases the model accuracy and the
computational burden. The rest of the parameters have been
tuned to obtain a reasonably good performance.

1) Single drive test: The drive test we use to show the
performance of our filter is 200 s long. The road is a highway
with relatively sharp bends and its GTA estimate is shown in
Figure 4.

First, we show the error (Eucledian norm) of the road
position at a distance of 200 m along time for the first 100
seconds of test in Figure 5 (a). In this figure, when the error is
zero, it means that the host vehicle performed a lane change in
the next 200 m and, therefore, there is no ground truth at 200
m for that time instant and the error cannot be calculated. We
also show the road curvature and host vehicle speed in Figures
5 (b) and (c). In general, the algorithm that accounts for
lane markings, barriers and vehicles has the lowest error and
the one which only uses information from the lane markings
has the highest error. We can divide the road into two time

intervals according to Figure 4 and 5 (b): Curvy interval from
time 0 s to time 80 s and straight interval from time 80 s
to 100 s. In the curvy interval, accounting for barriers and
vehicles implies a significant improvement in performance
with respect to only using the lane markings. This is due to the
fact that lane markings can only estimate the road accurately
in close range if the road is turning, especially, because they
use polynomial approximations and the difficulty of projecting
horizontal shapes (lane markings) on a vertical plane (the
camera). In the straight interval, there is not a substantial
difference among the filters. According to Figure 5 (c), the
host vehicle slows down as it enters the first curve and after
then, it speeds up to reach roughly 80 km/h.

We analyse more thoroughly the effect of taking into
account the barriers and leading vehicles on performance. The
output of the filter and the camera view at around time 40 s
is shown in Figure 6. The lane marking measurements fail to
provide an accurate estimate of the road. Nevertheless, if we
use the measurements from the barriers and leading vehicles
as explained in this paper, the filter is able to estimate the road
accurately in this difficult situation.

Now, we study the performance of the filters averaged over
time. To this end, we show the root mean square error of
the road position against distance averaged over time for the
different information fusion strategies in Figure 7. Lowest
error is achieved if we use the lane markings, barriers and
leading vehicles. The algorithm that only uses lane markings
roughly provides the same results as the others up to distances
of 80 m. However, at far distances (from 100 m to 200 m), the
improvement of using other types of information is meaningful
as the averaged error of our filter is much lower than the error
of the filter that only uses the lane markings.

Our implementation, in which the code is not optimised for
maximum speed, has been done in Matlab. We used a laptop
with an Intel Core i5 processor at 2.67 GHz to obtain the
computation times. The average running times of the different
parts of the fusion algorithm are broken down as follows:
prediction (7 ms), update with lane markings measurements
(4 ms), update with stationary object measurements (60 ms),
update with moving object measurements (7 ms). It is clearly
the update with stationary objects the part of the algorithm
with highest computational burden.

Finally, in Table IV, we show the change of the position
error for different filter parameters. As can be seen in the
first column of Table IV, we increase and decrease 10% the
process and measurement noise parameters. This implies a
change in the position error, which is indicated by an interval.
The error can decrease and this is indicated by a minus sign.
The changes in the short range are basically negligible as they
are always lower than 2%. The changes in the long range
are more important, especially if we change the stationary
object measurement covariance matrix (14%). On the whole,
the filter behaves quite well when we change its parameters
in a reasonable range.

2) Average results on multiple drive tests: In this section,
we show the performance of our algorithm averaged over time
in different drive tests. The drive tests are sorted into two
groups: 1) roads without sharp curves and 2) roads with sharp
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Figure 5: (a) Error of the road position at 200 m, (b) curvature
of the road and (c) speed against time for the first 100 s of the
test drive. At the time instants when the error is zero is means
that there is no ground truth available and the error cannot be
computed.
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Figure 6: Example of the filtering process (a) Representation of
the filter output at around time 40 s (b) camera view at that
time. The blue solid line represents the true road. The big blue
dot represents the host vehicle position. The blue dots represent
the stationary object measurements. The blue dots with an arrow
indicate the leading vehicles positions and headings. The red
dashed line represents the estimate of the filter accounting for
lane markings, barriers and leading vehicles. The red ellipses,
which could be confused by lines, are the 9− σ ellipses [30] of
the covariance matrix of the road position elements (which are
located every ∆ = 20 m). The green lines represents the state
of the barriers. The red solid line represents the lane marking
measurement (average of left and right polynomial) taken at
that time. The black dashed line and black ellipses represent
the estimate of the filter only accounting for lane markings.
Accounting for barriers and leading vehicles allows us to estimate
the road accurately if the host vehicle is entering a sharp bend.

Table IV: Change in percentage of the position error averaged
over time for different filter parameters

Short range (0-80 m) Long range (100-200 m)
(1± 0.1)Rl (−0.1, 0.4) (−2.2, 6.4)
(1± 0.1)Rs (0, 2) (0.1, 14)
(1± 0.1)Rm (−0.1, 0.1) (0.2, 0.3)
(1± 0.1)σ2

c (0.36, 0.4) (4.3, 6.2)

(1± 0.1) Q̃r (−0.1, 0.4) (−0.1, 4.8)
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Figure 7: Root mean square error of the road position against
the distance averaged over time for the drive test in Figure 4.
Accounting for lane markings, barriers and leading vehicles leads
to a high improvement in performance at far distances.

curves. In our tests, roads of type 1 have curves with curvatures
lower than 9·10−4 m−1 while roads of type 2 have curves with
curvatures in the range

(
1.25 · 10−3 m−1, 1.5 · 10−3 m−1

)
. As

indicated in this paper, our algorithm is expected to signifi-
cantly improve the estimation of the lane markings especially
if the road has sharps curves. Nevertheless, we want to show
that performance also increases for roads that do not have these
kinds of curves. The results for roads of type 1 are obtained
in 6 drive tests in which we have removed parts of the roads
where there were exits as our filter does not take them into
account. Each of the drive tests lasts around 200 s and the
average speed of the host vehicle is 111 km/h. The root mean
square error of the road position against distance averaged over
time is shown in Figure 8. The more information we take into
account, the lower the error is. However, the improvement in
performance is minor.

The results for roads of type 2 are obtained in 3 drive tests.
Each of them lasts around 200 s and the average speed of the
host vehicle is 107 km/h. Even though roads of type 2 have
sharper bends, the average speed of the host vehicle is just
slightly lower than on roads of type 1. The root mean square
error of the road position against distance averaged over time
is shown in Figure 9. In this case, taking into account lane
markings, barriers and vehicles implies an important decrease
in the error at far distances. This shows the benefits of our
fusion algorithm for this kind of road.

VII. CONCLUSIONS

We have developed a road model that is able to describe
any kind of road and is therefore not limited as the polynomial
model. Our model also captures the prior knowledge we have
about roads in a simple fashion. Based on this model, we
have developed a Bayesian filter that is used to fuse the
information coming from different objects (lane markings,
leading vehicles and barriers) to estimate the road ahead of
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Figure 8: Root mean square error of the road position against
the distance averaged over time for roads of type 1 (without
sharp bends). Taking into account lane markings, barrier and
vehicles slightly increases the performance with respect to the
lane markings.
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Figure 9: Root mean square error of the road position against
the distance averaged over time for roads of type 2 (with sharp
bends). Taking into account lane markings, barrier and vehicles
considerably increases the performance with respect to the lane
markings for far distance.

the vehicle accurately. We are able to estimate the road ahead
of the vehicle more precisely than traditional methods based
on lane marking estimation using a camera. This is evident at
far distance in highways with relatively sharp bends.

The future lines of work are manifold. It is of interest to
develop a model that accounts for exits and other kinds of
roads. If GPS measurements and maps are available, we would
like to make use of this knowledge to improve the estimate of
the road.

Another important improvement can be made if our system
used the camera to obtain information from the barriers as in
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[31]. This would help us detect barriers with higher accuracy.
As a result, the overall performance of the filter could be
highly improved especially in cases where barrier detection
from radar measurements is difficult.

We also aim to develop a filtering algorithm that takes into
account that the sensor outputs are already filtered as discussed
in Section III-C.

APPENDIX

In this appendix, we provide some notions about curvature
and sampled curves. Let us assume a curve is parameterised
by C := [x(t), y(t)]

T
t > 0 where t is the arc length. The

signed curvature at a given point is defined as [32]

c(t) =
x′(t)y′′(t)− y′(t)x′′(t)(
(x′(t))

2
+ (y′(t))

2
)3/2

(18)

where x′(t) is the derivative of x(t) and x′′(t) is the second
derivative of x(t).

If we sample this curve using a sampling distance ∆, the
sampled curve is C∆ := [xi, yi]

T
i ∈ N ∪ {0} where

xi =x(i∆)

yi =y(i∆)

The curvature of the sampled curve can be approximated
using finite differences to approximate the derivatives. The
approximation of the derivatives are

h′x,i =
xi − xi−1

∆
(19)

h′y,i =
yi − yi−1

∆
(20)

h′′x,i =
xi−1 − 2xi + xi+1

∆2
(21)

h′′y,i =
yi−1 − 2yi + yi+1

∆2
(22)

where h′x,i ≈ x′(i∆), h′y,i ≈ y′(i∆), h′′x,i ≈ x′′(i∆) and
h′′y,i ≈ y′′(i∆). Therefore, the sampled curvature is

ci =
h′x,ih

′′
y,i − h′y,ih′′x,i((

h′x,i
)2

+
(
h′y,i
)2)3/2

(23)

It should be noted that curve C∆ can also be defined by the
first two points [x0, y0]

T
[x1, y1]

T and the sampled curvatures
ci i = 1, 2, 3, 4, ...at the following points. Given the points
[xi−1, yi−1]

T , [xi, yi]
T and the curvature ci, [xi+1, yi+1]

T can
be calculated using (19)-(23) and the fact that the distance
between consecutive points is ∆

(xi+1 − xi)2
+ (yi+1 − yi)2

= ∆2 (24)

Then

[xi+1, yi+1]
T

= gp

(
[xi−1, yi−1]

T
, [xi, yi]

T
, ci

)
(25)

where function gp (·) is defined by

xi+1 =xi +

−aih′y,i ±
√
a2
i

(
h′y,i
)2 − bi (a2

i −
(
h′x,i

)2
∆2
)

bi
(26)

yi+1 =yi +
h′y,i (xi+1 − xi) + ai

h′x,i
(27)

ai =∆2cib
3/2
i (28)

bi =
(
h′x,i

)2
+
(
h′y,i
)2

(29)

There are two solutions for [xi+1, yi+1]
T using (26)-(27). The

right solution is the one that makes the scalar product of
[xi+1 − xi, yi+1 − yi]T and [xi − xi−1, yi − yi−1]

T positive.
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