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ABSTRACT

Coastal trapped waves (CTWs) carry the ocean’s response to changes in forcing along boundaries and are

important mechanisms in the context of coastal sea level and the meridional overturning circulation.

Motivated by the western boundary response to high-latitude and open-ocean variability, we use a linear,

barotropic model to investigate how the latitude dependence of the Coriolis parameter (b effect), bottom

topography, and bottom friction modify the evolution of western boundary CTWs and sea level. For annual

and longer period waves, the boundary response is characterized bymodified shelf waves and a new class of leaky

slope waves that propagate alongshore, typically at an order slower than shelf waves, and radiate short Rossby

waves into the interior. Energy is not only transmitted equatorward along the slope, but also eastward into the

interior, leading to the dissipation of energy locally and offshore. The b effect and friction result in shelf and slope

waves that decay alongshore in the direction of the equator, decreasing the extent towhich high-latitude variability

affects lower latitudes and increasing the penetration of open-ocean variability onto the shelf—narrower conti-

nental shelves and larger friction coefficients increase this penetration. The theory is compared with observations

of sea level along the North American east coast and qualitatively reproduces the southward displacement and

amplitude attenuation of coastal sea level relative to the open ocean. The implications are that the b effect, to-

pography, and friction are important in determining where along the coast sea level variability hot spots occur.

1. Introduction

The propagation of waves along ocean boundaries

occurs as part of the oceanic adjustment to variability in

environmental forcing, such as wind stress or buoyancy.

Over a period of time, wave propagation enables changes

in forcing to be communicated over large distances along

boundaries and between the open ocean and coast. The

characteristics of these waves, often referred to as coastal

trapped waves (CTWs) because of their decaying away

from the boundary, are therefore important to oceanic

adjustment processes—for instance, regional sea level

(Hughes and Meredith 2006) and the meridional over-

turning circulation (Roussenov et al. 2008; Buckley and

Marshall 2016). CTWs are important to the transmission

of energy along boundaries and are relevant in the

context of energy dissipation at western boundaries

and the oceanic energy budget—for example, as a sink

of ocean-eddy energy (Zhai et al. 2010). An improved

understanding of the physics at boundaries is also recog-

nized as desirable to improve the dynamical justification
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for subgrid-scale parameterizations in ocean circulation

models (OCMs) (Deremble et al. 2017), which can have

significant effects on important oceanic features such as

Gulf Stream separation sensitivity to viscosity parame-

terization (Bryan et al. 2007).

At ocean boundaries, where the no normal flow con-

dition holds, variability in the open (interior) ocean or at

higher (poleward) latitudes results in an adjustment of

potential vorticity that manifests as waves propagating

along the boundary. The properties of these waves have

been explored in idealized settings for different boundary

geometries (vertical sidewall; sloping sidewalls), strat-

ification profiles, and frequencies (see Mysak 1980;

Huthnance et al. 1986; Hughes et al. 2019). In the fol-

lowing we restrict ourselves to variability at subinertial

frequencies, v , f, where f is the Coriolis parameter.

For vertical-sidewall boundaries, CTWs are typically a

series of barotropic and baroclinic Kelvin waves propa-

gating cyclonically around the ocean (boundary on the

right in the Northern Hemisphere). With the inclusion of

sloping sidewalls at the boundary, the modal structure

ceases to be separable in the horizontal and vertical. In

the barotropic limit, the modes evolve into shelf waves.

Wajsowicz and Gill (1986) showed friction to attenu-

ate Kelvin waves resulting in the decay of alongshore

amplitude. Brink and Allen (1978) applied bottom

friction to a barotropic model with a continental shelf

and slope and found the wave response to local along-

shore forcing to be damped and with a cross-shore phase

lag. The amplitude of this boundary response is associ-

ated with the energy flux at the boundary and is relevant

to energy dissipation and monitoring of the meridional

overturning circulation, as discussed in Kanzow et al.

(2009) and Marshall and Johnson (2013). Friction has

also been shown to promote the interior ocean contri-

bution to western boundary coastal sea level (Minobe

et al. 2017; Wise et al. 2018).

The theory of CTWs is based primarily on the assump-

tion that the Coriolis parameter is constant (f-plane

approximation), particularly for sloping sidewalls.

However, Miles (1972) found that the curvature of

Earth and changes in depth over a continental shelf

modify wave amplitude and phase speed at inertial

frequencies (v ’ f) (he used an inviscid barotropic

model). He also showed the wave amplitude to decay

with latitude, proportionally to f1/2, a result previously

obtained by Moore (1968) for equatorial Kelvin waves.

Johnson and Marshall (2002) identified the attenuated

Kelvin wave amplitude at western boundaries as a key

component in an ‘‘equatorial buffer’’ mechanism to

describe the transmission of thermohaline variability

around the Atlantic, with information transmitted

westward from the eastern boundary as long Rossby

waves, equatorward along the western boundary and

eastward at the equator. Allen and Romea (1980) also

showed that equatorial baroclinic disturbances could be

carriedpoleward along eastern boundaries asKelvinwaves

that change into barotropic shelf waves at midlatitudes.

Figure 1 illustrates the relevant western boundary infor-

mation pathways, with red denoting the wave types that

are the subject of this study.

Using a frictional reduced-gravity model, Marshall

and Johnson (2013) extended the vertical-sidewall, b-plane

theory to wave periods longer than a few months and

found that buoyancy anomalies could propagate along

western and eastern boundaries as short and long Rossby

waves, respectively. They found the western boundary

wave to dissipate virtually all its energy during propaga-

tion toward the equator, with no dependence on the value

of the dissipation coefficient.

While Marshall and Johnson (2013) demonstrated

the importance of the b effect and friction at western

boundaries, they noted that the inclusion of more re-

alistic bottom topography would modify the results. It

is our intention with this paper to use a simple model

FIG. 1. Schematic of the transmission of variability along

western boundaries and eastward at the equator. The shelf,

slope, and short Rossby waves (denoted in red) are the subject

of this study.
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to extend their investigation of the western boundary

response to the case in which the bottom topography

includes a continental shelf and slope. As we will see,

the boundary response is dependent on the evolu-

tion of CTWs that are lost in the vertical-sidewall

assumption—and the b effect and friction have inter-

esting effects on their behavior, including the addition

of a new class of leaky slope wave.

The paper is structured as follows. In section 2 we

formulate the problem and present wave solutions. In

section 3 we discuss the cross-shore structure of these

waves. Section 4 discusses the alongshore evolution and

energetics of waves excited by high-latitude forcing, and

section 5 continues this for forcing from the interior.

Section 6 applies the results to western boundary sea

level, and we conclude with implications and a summary

of the key points.

2. Formulation and solutions

We will be considering throughout a rectangular

section of the ocean between a high and low latitude

boundary (not reaching the equator) that stretches

from a western boundary coastline to a boundary

O(100) km offshore. For a coordinate system with x

in the zonal and y in the meridional direction, we

consider a straight western boundary coastline, ori-

ented along the y axis (meridionally) at x5 0, with the

equator at y 5 0 and larger y corresponding to higher

latitudes. Bottom topography h is taken to be uniform

alongshore, that is, independent of y, but variable in

the cross-shore direction, that is, h 5 h(x). Figure 2a

gives a schematic of the bottom topography with x5 xs
denoting the shelf break, x 5 xb the bottom of the

slope, and x5 xin the boundary with the interior. Note

that the boundary forcing (applied at the boundary

with the interior) is applied east of where the boundary

response has decayed. Depth at the shelf break and

bottom of the slope are denoted by Hs and Hb. We as-

sume that depth tends to zero at the coast and increases

monotonically away from the coast. For numerical

calculations we use fifth-order smoother-step func-

tions to define the shelf, slope and offshore portions

of h(x); that is,
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with h(x) ’ Hb east of the slope (x . xb).

In the following we consider solutions of the line-

arized, depth-integrated shallow water equations for

annual-to-decadal variability (v � f). The equatorial

b-plane Coriolis parameter, f 5 by, is used for

simplicity–the solution method is valid for a general

f(y), however. Assuming the flow to be bathymetri-

cally steered alongshore and with v/f � 1, we follow

FIG. 2. Schematic illustrating the coordinates and bottom

topography for (a) a continental shelf and slope and (b) a

sloping sidewall. The shelf break, slope bottom, and bound-

ary with the interior ocean are denoted by xs, xb, and xin,

respectively.
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Gill and Schumann (1974) (long-wave approxima-

tion) and allow the zonal momentum equation to be

in geostrophic balance while retaining the (linear)

bottom friction [as in Csanady (1978)] in the meridional

momentum equation,

2fhy1 gh
›~h

›x
5 0 and (2)

h
›y

›t
1 fhu1 gh

›~h

›y
52ry , (3)

with u5 (u, y) being the velocity, ~h5 ~h(x, y, t) being the

inverse barometer corrected dynamic topography (dy-

namic sea level), g being gravity, and r being the linear

friction parameter. For the continuity equation

›~h

›t
1

›(uh)

›x
1

›(yh)

›y
5 0, (4)

we begin by retaining the free-surface for discussion but

we ultimately follow Buchwald and Adams (1968) and

Gill and Schumann (1974) in making the rigid-lid ap-

proximation such that the continuity equation becomes

= � (uh) 5 0.

Taking the vertical component of the curl of the

momentum equations, (2)/h and (3)/h, and substitut-

ing in the continuity equation [Eq. (4)] gives the vor-

ticity relation

›2y

›t›x
1by2

f

h

�
›~h

›t
1 h0u

�
52

r

h2

�
›y

›x
h2 h0y

�
, (5)

where prime denotes d/dx. On the left hand side, the first

term relates to relative vorticity, the second to the ad-

vection of planetary vorticity, the third to stretching of

vorticity and the term on the right-hand side to vorticity

induced by bottom friction—a source such as wind stress

or a boundary condition could be included as an addi-

tional right-hand-side term. Alternatively, using Eqs. (2)

and (3) to rewrite in terms of ~h, a more useful quantity in

this context, we get

›3~h

›t›x2
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(6)

where Ld 5 (gh)1/2/f is the external Rossby radius of

deformation.

For the flat-bottom 1.5-layer vertical-sidewall scenario

with f 5 by, the terms involving h0 disappear and Ld can

be considered to be the internal Rossby radius Lint
d . As

discussed by Clarke and Shi (1991), below a critical

frequency, that is, for the low-frequency variability

considered here, the planetary vorticity term can come

into balance with the stretching and relative vorticity

terms, allowing Rossby waves at the boundary. Using

this model Marshall and Johnson (2013) found a buoy-

ancy anomaly to propagate along the boundary toward

the equator as a short Rossby wave at the classical

Kelvin wave speed c 5 (gh)1/2, multiplied by Lint
d /ds,

where ds 5 r/b.

Alternatively, for the sloping bottom with constant

f scenario, we retain the stretching terms involving h0

but lose the b term. The retained stretching terms are

the topographic equivalent of b; that is, the sloping

bottom topography establishes a potential vorticity

gradient. The balance between relative vorticity and

stretching due to the bottom topography gives rise to

shelf waves (topographic Rossby waves) (Salmon

1998, p. 73).

Wave solutions

In this study we are interested in the effect of

retaining the stretching due to bottom topography

terms, the advection of planetary vorticity b term and

the friction term for annual-to-decadal variability. To

this end, we simplify the model by making the rigid-

lid approximation. For this, as in Gill and Schumann

(1974), we assume that the Rossby radius of defor-

mation Ld is larger than the cross-shore scale of the

boundary response L, that is, Ld � L and that the

frequency of variability v is restricted by v � bL2
d/L.

This allows the first term in the continuity equation

[Eq. (4)], and therefore the third stretching term of

the vorticity equation [Eq. (6)], to be neglected. This

term is also small compared to the first stretching

term and the term on the right-hand side of Eq. (6).

With this approximation we have effectively filtered

out the barotropic Kelvin wave response.

For the boundary conditions, we assume some speci-

fied anomaly along the poleward and interior bound-

aries; that is, ~h5 ~hp at y 5 yp and ~h5 ~hin at x 5 xin,

where throughout we use subscripts and superscripts

‘‘p’’ and ‘‘in’’ to refer to poleward and interior, respec-

tively. The interior boundary condition is applied far

enough away from the coast such that the boundary

response has decayed west of it; that is, xin . L. We

consider ~hin as forcing due to the dynamics in the in-

terior ocean, where basin-scale Rossby waves domi-

nate the adjustment and hence ~hin can be thought of as

describing a long Rossby wave incident on the western

boundary. Similarly ~hp defines the forcing from a pole-

ward (higher latitude) region; see Fig. 3. As the coast is

approached, x / 0, and we have h / 0, which leads

to ry/ 0 from Eq. (3) and then ›~h/›x/ 0 from Eq. (2).

The boundary value problem can then be defined as
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›~h

›x
/ 0 at x/ 0, (8)

~h5 ~h
in
(y, t) at x5 x

in
, and (9)

~h5 ~h
p
(x, t) at y5 y

p
, (10)

and we seek solutions in the form ~h(x, y, t)5h(x, y)e2ivt.

The solution method, which to the authors’ knowl-

edge is somewhat novel and potentially useful, is de-

rived in appendix A. For clarity we simply state the

solution below.

The solution of Eqs. (7)–(10) is

h(x, y)5h
in
(y)2�

‘

j51

g
j
C

j
(x)Ain

j (y)

1�
‘

j51

a
j
C

j
(x)Ap

j (y) with (11)

Ap
j (y)5

 
y

y
p

!lj

and (12)

Ain
j (y)5

ðyp
y

dh
in

ds

�y
s

�lj
ds , (13)

where gj, aj, and lj are complex constants, Cj(x), A
p
j (y),

and Ain
j (y) are complex, and s is a dummy integration

variable. Given that ~h(x, y, t)5h(x, y)e2ivt, the real

part of Eq. (11) describes the adjustment at the

boundary as the summation of three sets of waves,

with subscript j denoting the wave mode number.

Note that throughout, we use RðÞ and IðÞ to denote

real and imaginary parts of complex numbers; that

is, z5RðzÞ1 iIðzÞ.
The first term in Eq. (11) is the incident long wave

from the interior, the second term is a set of waves ex-

cited by the incident wave from the interior, and the

third term is a set of waves excited by the poleward

forcing. For the second and third terms, Cj(x) defines

the jth wave mode’s cross-shore structure. Note that

the first two terms disappear when hin 5 0 and the third

term disappears when hp 5 0 (aj will be zero).

For our purposes it is enough to consider gj and aj as

constants that simply scale and phase shift eachwave, we

do not consider them further. The constants lj are the

eigenvalues of an eigenvalue problem and are depen-

dent on the topography, friction parameter, and fre-

quency of variability.

Each wave mode has a specific alongshore decay rate

and phase and we have ordered the modes according to

the decay rate, that is, themagnitude ofR(lj), where 0,
R(l1) , R(l2) , R(l3) , . . . , R(ln), for n / ‘. For
waves excited from poleward, this orders the modes

according to their alongshore decay rate, such that the

first wave mode j 5 1 propagates farthest.

Apart from where specified otherwise, we use the

parameter configuration defined in Table 1 for cal-

culations. The configuration has been chosen to be

somewhat representative of reality and we note the

friction parameter is small to investigate weak damping,

which helps elucidate the wave structures, though we

also explore stronger damping.

Note that our boundary wave assumption fails as we

approach the equator, where waves cease to be trapped

to the boundary. Context determines how close to the

equator this failure occurs. For example, in a purely

barotropic ocean we would expect an equatorial baro-

tropic Rossby radius to be the relevant scale (around

2000km in water that is 4 km deep). If, instead, we are

FIG. 3. Schematic illustrating the idealized domain, with vari-

ability imposed at the poleward boundary yp and at the interior

boundary xin between the latitudes yp and ye, where ye is equa-

torward of yp. The shelf break and slope bottom are denoted by xs
and xb. The arrows indicate the energy fluxes involved.

TABLE 1. Parameter configuration used throughout unless explicitly stated otherwise. The final three columns are the short Rossby

wavelength and the respective Rossby radii of deformation for shelf and open-ocean depths, with f 5 1024 s21.

v (s21) r (m s21) xs (km) xb (km) Hs (m) Hb (m) b (m21 s21) 2pv/b (km) (gHs)
1/2/f (km) (gHb)

1/2/f (km)

1027 (24 months) 0.000 02 100 130 100 4100 1.667 3 10211 37.7 310 2000
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considering the boundary processes to represent the

upper layer of a two-layer system, the situation is less

clear. Accordingly, we present results all the way to the

equator but caution that interpretation is uncertain

close to the equator.

3. Cross-shore wave structure

From Eq. (11), we note that the cross-shore structures

of the wave modes Cj(x) are the same irrespective of

whether they are excited by poleward or interior forcing.

In contrast to inviscid f-plane shelf waves, which only

propagate along the shelf, there is now a cross-shore

contribution to the phase, denoted by ux
j (x)5 arg[Cj(x)].

The cross-shore component of the wave amplitude is

jCj(x)j, where we use jj to denote the magnitude of a

complex number.

Figure 4 shows the real and imaginary parts of the first

nine wave modes, R(Cj) and I(Cj), j 5 1, 2, . . . , 9, each

normalized by maximum amplitude. The waves can be

classified into two classes of wave based on their domi-

nant characteristics. First, wave modes 1, 2, 6, and 9

decay on the shelf with little or zero amplitude off-shelf.

These waves are akin to topographically trapped f-plane

shelf waves (Robinson 1964; Huthnance 1975), where

the number of offshore nodes (zero amplitudes) in-

creases with mode number. Here the shelf waves are

subject to modification by the inclusion of bottom

friction and the b effect. We label this group of waves

(viscous) b-plane shelf waves. The second group of

waves, modes 3, 4, 5, 7, and 8, are by contrast charac-

terized by a significant offshore component where the

wavenumber is, to a first approximation, that of the

inviscid short Rossby wave,

d

dx
(ux

j )’2
b

v
, for x. x

b
. (14)

This is approximate because frictional damping will

also have a contribution. These waves have a structure

on the slope, for example, for higher mode slope waves

dux
j /dx; 1024 m21 on the slope, and we label this group

as ‘‘leaky slope waves.’’ Figure 4 also shows the imag-

inary parts of the waves, giving a sense of the zonal

phase lag, for example the westward phase propagation

of the short Rossby component of the waves, although

we do not discuss this further.

For the higher-mode-number waves that are not

shown, that is, j . 9, we find that each wave fits, with

increasing fidelity, into one or the other group, giving

essentially two sets of wave types: b-plane shelf waves

(1, 2, 6, and 9) and leaky slope waves (3, 4, 5, 7, and 8).

With this classification made, we note two points.

First, wave modes can be said to exhibit characteristics

from both types of wave (particularly lower modes),

however for the purposes of exploring boundary ad-

justment processes, it is helpful to group them by their

dominant characteristics. Second, we note that, while

the wavemodes shown in Fig. 4 are naturally specific to

the parameter regime we have chosen, the two wave

types, as described above, have been found to be

general within the scope of the parameter space used

in this study. It is worth noting, however, that as the

friction parameter is increased the short Rossby com-

ponent becomes damped and a Stommel-like frictional

boundary layer expands offshore instead. Beyond the

additional scenario of very-long-time-period variability,

v � r/H, an exhaustive parameter study is beyond the

scope of this paper. From here onward we will use mode

5 to represent the set of leaky slope waves and mode 6

to represent the set of b-plane shelf waves; we will also

include mode 1 in the discussion because it proves to

play a somewhat special role in the overall boundary

response.

In the following sections we will look at the along-

shore wave evolution and energetics for the cases of

poleward and interior variability.

4. Forcing from poleward

a. Alongshore evolution

When the waves are generated by variability from

higher latitudes, Eq. (11) reduces to

~h(x, y, t)5�
‘

j51

a
j
C

j
(x)Ap

j (y)e
2ivt and (15)

Ap
j (y)5

 
y

y
p

!R(lj)

exp[iI(l
j
) ln(y/y

p
)] , (16)

where Ap
j gives the alongshore wave evolution and we

have separated lj into real and imaginary parts to ex-

plicitly show the amplitude and phase components.

Preemptively assuming, for a moment, that R(lj) .
0 for all j, the relation in Eq. (16) describes the wave

amplitudes as decaying alongshore in the direction of

the equator (note that (y/yp) # 1). The physical limi-

tations of the model close to the equator are important

avenues for future research—that is, nonlinear effects

and stratification should become important; however,

for the solutions presented here we can make use of

the vorticity equation [Eq. (7)] to justify the above

assumption.

Separating variables in Eq. (7) by substituting

~h(x, y, t)5C(x)Ap(y)e2ivt yields the generalized eigen-

value problem
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(r2 ihv)C00 1 (hb2 ih0v)C0 52lh0C (17)

subject to C0 5 0 at x 5 0 and C 5 0 at x 5 xin. For

solutions of the form Cj 5 jCj(x)j exp[iuj(x)], substitu-

tion into Eq. (17) and taking the real parts gives

2R(l
j
)h0jC

j
j5 2vhjC

j
j0u0

j 1vhjC
j
ju00

j 1vh0jC
j
ju0

j

1bhjC
j
j0 1 rjC

j
j00 2 rjC

j
j(u0

j)
2
. (18)

Using integration by parts and the boundary conditions,

the right-hand side (RHS) of
Ð xin
0
[Eq. (18)]jCjj dx is # 0.

Given that the left-hand side (LHS) of
Ð xin
0 [Eq. (18)]jCjj dx

must also be # 0 and that
Ð xin
0 h0jCjj2 dx$ 0, it is true that

R(lj)$ 0. Hence all wave modes decay in amplitude in

the direction of the equator. Later we will argue to

further restrict this lower bound toR(lj)$ 1 such that

1 # R(l1) , R(l2) , R(l3) , . . . , R(ln), for n / ‘.
This implies that all modes have decayed to zero at the

FIG. 4. Cross-shore structure of the first nine wave modes, each normalized by its maximum amplitude jCj(x)jmax. Black corresponds to

the real part of the x dependent part of the solution,R[Cj(x)], and red corresponds to the imaginary partI[Cj(x)]. The dashed lines denote

the shelf break at x 5 xs 5 100 km and slope bottom at x 5 xb 5 130 km.
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equator and that, for example, mode 2 will decay far-

ther from the equator than mode 1.

The solid lines in Fig. 5 show the alongshore am-

plitude (y/yp)
R(lj) for the first nine wave modes, to-

gether with the value of R(lj). The first-mode decay is

approximately linear, R(lj) ’ 1, and the decay rate

increases as mode number increases. Figure 6a shows

the solution ~h(x, y, t) at time t 5 0 between two lati-

tudes yp and ye, where subscript e denotes equator-

ward, for j 5 1, 2, . . . , 1000 with the poleward-forcing

constant on the shelf and slope, hp521, such that y5 0

at yp on the shelf and slope. Note how the amplitude

decays on the slope in the direction of the equator as

fewermodes contribute to the boundary response and how

this effectively allows the interior amplitude, which in this

case is zero, to penetrate onto the slope at lower latitudes

(between the dashed lines: it is dark blue at the poleward

boundary and pale blue at the equatorward boundary).

We noted previously that lj are dependent on the

parameters h(x), r, and v. The dashed lines in Fig. 5

FIG. 5. Alongshore amplitude (y/yp)
R(lj) of the first nine wave modes, j5 1, 2, . . . , 9, where solid lines denote a shelf width of 100 km and

dashed lines denote a shelf width of 20 km; y 5 yp is 6000 km poleward of the equator at y 5 0.
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show the alongshore amplitudes when the shelf width

has been decreased to 20km (solid lines are for a shelf

width of 100 km). The alongshore amplitude decay rate

(in space and not time) increases for all modes except

mode 1. A relatively small increase in R(lj) can signif-

icantly shorten the length scale over which the wave

decays. Figure 7a compares R(lj) for the first 40 wave

modes for shelf widths of 100 and 20 km. As the shelf

width decreases, higher wave modes decay at increas-

ingly high latitudes and in effect become negligible for

the overall boundary response. The narrower shelf

width acts to filter out higher wave modes from the

boundary response. A narrower shelf also tends to de-

crease wave propagation speed [increasing the magni-

tudes ofI(lj)]. Hence slower wave propagation, and the

decay of the wave amplitude over a shorter alongshore

distance, result from a narrower shelf. This is consis-

tent with the results of Huthnance (1987), where an

f plane is used.

This result implies that a high-latitude pressure anomaly

propagates farther toward the equator when the shelf is

wider. It also suggests, as we will discuss in the following

section, that information from the interior ocean will give

a relatively larger contribution to the coast when the shelf

FIG. 6. (a) Sum of all wavemodes�‘
j ajCj(x)A

p
j (y), for a poleward forcing at yp that is constant on the shelf and slope hp521 and tends

smoothly to zero east of the slope. (b) Sum of all wave modes 2�‘
j gjCj(x)A

in
j (y) when forced by an interior representing a double gyre

(see dashed line hin in Fig. 10b, below). (c) Incident long wave from the interior plus the sum of waves shown in (b), i.e.,

hin 2�‘
j gjCj(x)A

in
j (y). In (a)–(c), time t 5 0, vertical dashed lines denote shelf break and slope bottom, and yp and ye are 6000 and

3000 km poleward of the equator, respectively.

FIG. 7. Semilog plots: (a) the first 40 R(lj) for two shelf widths; (b) the first 60 R(lj) for a sloping sidewall bottom topography (see

Fig. 2b) for three different sidewall gradients h0
w, i.e., Hb 5 4100m and xb 5 100 (solid), 30 (dashed), or 10 (dotted) km; and (c) the first

40 R(lj) for three different values of the friction coefficient r, with the standard shelf and slope configuration.
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is narrower. In Fig. 6a this would be seen as the shelf and

slope amplitudes decaying toward zero farther away from

ye, that is, greater penetration from the interior. Coastal

bathymetry is often represented coarsely in numerical

models and with a vertical wall in conceptual models.

These results suggest that the representation of bathyme-

try could be a source of difference between OCM simu-

lations of western boundaries.

The consequences of using a vertical sidewall can be

shown more explicitly by considering the decay rate of

waves for the case of a sloping sidewall at the boundary

(schematic Fig. 2b) when the gradient of the sloping

sidewall h0
w is increased. Figure 7b compares R(lj) for

the first 60 wave modes when the sloping sidewall has

three different gradients: h0
w 5 0.041, 0.137, and 0.41,

where a larger gradient equates to a steeper sidewall. As

the sloping sidewall steepens, the magnitudes of R(lj)

increase and fewer wave modes contribute to the

boundary response. Indeed in the steepest case (side-

wall depth 4100m and width 10 km), only the first five

modes are effectively contributing to the boundary

response.

An important exception to this dependency on bottom

topography is the mode-1 wave. For all sidewall gradi-

ents, R(l1) ’ 1. Decreasing the shelf width (steepening)

is compensated for by changes in the cross-shore wave

structure as frictional effects increase. In the steep slope

limit, where the sloping sidewall tends to vertical, all

modes except mode 1 are effectively ‘‘killed off’’ and a

single mode remains. In the absence of topographic ef-

fects, this mode decays alongshore proportionally to f

such that, as we will see, the zonal energy flux is constant

with latitude. This is consistent with Marshall and

Johnson (2013) who found only a single wave decaying

linearly alongshore in their vertical-sidewall model. The

reason mode 1 is so similar to the first baroclinic wave of

Marshall and Johnson (2013) is that the mode-1 wave is

effectively a rigid-lid version of the free-surface

wave, maintaining no horizontal divergence across

the domain. For low-frequency forcing, the first

baroclinic wave is, relatively, very fast (i.e., relative

to the time scale for forcing, the boundary adjust-

ment is quick and soon comes into equilibrium), here

with the rigid lid, mode 1 does this effectively in-

stantaneously. Note that this rigid-lid response can

be split across multiple modes. The important point

is that by filtering out higher wave modes from the

boundary response, the vertical sidewall is a limit

where the propagation of variability from higher to

lower latitudes is minimized.

The choice of friction parameter can affect the boundary

response in a similar fashion. Figure 7c comparesR(lj) for

the first 40modes for three values of the friction parameter

r, using the standard shelf configuration. Increasing the

friction parameter is found to increase the magnitudes

of R(lj) and therefore effectively decreases the num-

ber of modes contributing to the boundary response, as

described above. Once again mode 1 remains the ex-

ception with R(l1) ’ 1. Increasing the friction pa-

rameter is compensated for by an increase in the

boundary layer width. In the large friction limit, the

boundary layer width becomes large compared to

the width of the topography and higher modes are

killed off, leaving a single wave that decays propor-

tionally to f (topographic effects have become small).

As has been discussed by Deremble et al. (2017), the

dynamical justification for the subgrid-scale parame-

terization of viscosity in OCMs is somewhat opaque

and can be a source of inconsistency between simu-

lations, for example, Gulf stream separation point

(Bryan et al. 2007). The dependency of the waves on

the friction parameter r is a plausible mechanism for

some of this inconsistency. This issue is somewhat lost

in vertical-sidewall models, which already filter out the

higher wave modes. Indeed Marshall and Johnson

(2013) found the wave amplitude to be independent of

the friction parameter in their vertical-sidewall model.

These parameter sensitivities should also broadly ap-

ply to the f plane.

FromEq. (16) the alongshore phase component of the

waves is given by uy
j (y)5I(lj) ln(y/yp), which grows in

magnitude in the direction of the equator. For wave-

number duy
j /dy, slope waves are typically shorter than

shelf waves, with themode-5 slopewave of order 1026m21

and themode-6 shelf wave of order 1027m21, for example.

The mode-5 wave speed is therefore;0.01ms21, and the

mode-6 wave speed is ;0.1ms21. In general, the higher

the shelf or slope mode number is, the shorter the wave

becomes. Given that the amplitude decay distance is of

order 106m alongshore and of order 105m cross-shore, the

geostrophic assumption in Eq. (2) appears to be valid with

(v/f)(›y/›x)� 1. Modes 1 and 2 can be very long for weak

damping (;1029 to 10210m21). Increasing the friction

parameter or steepening the topography typically results

in slower wave propagation. The exception here is mode 1,

which, as we have noted, does not decay over shorter

length scales as damping or topographic steepness

increase. Instead, the mode-1 wavenumber tends to

becoming vanishingly small as damping increases

and the solution tends to a Stommel-like boundary

solution.

An interesting consequence of allowing f to change

with latitude is that waves no longer strictly prop-

agate equatorward. This can be shown from the

eigenvalue problem introduced in Eq. (17). For

solutions of the form Cj 5 jCj(x)j exp[iuj(x)],
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substitution into Eq. (17) and taking the imaginary

parts gives

2I(l
j
)h0jC

j
j5 2rjC

j
j0u0

j 1 rjC
j
ju00

j 2 h0vjC
j
j0

1 hvjC
j
j(u0

j)
2
2 hvjC

j
j00 1bhjC

j
ju0

j . (19)

Multiplying through by jCjj and integrating over x

then gives

2I(l
j
)

ðxin
0

h0jC
j
j2 dx5v

ðxin
0

h(jC
j
j0)2 dx

1v

ðxin
0

hjC
j
j2(u0

j)
2
dx

1b

ðxin
0

hjC
j
j2u0

j dx , (20)

where we have used integration by parts and the

boundary conditions to simplify. The first and second

terms on the RHS of Eq. (20) are $0, but the sign of

the third term depends on u0
j. Given that the integral

on the LHS is $ 0, the sign of I(lj) will depend on u0
j.

Hence wave propagation is strictly poleward [I(lj)$ 0]

if 1) u0
j # 0 for all x (westward phase propagation) and

2) the third term on the RHS is larger in magnitude

than the sum of the first and second terms on the

RHS. We have found these conditions can be met for

modes 1 and 2 when damping is weak, although this

may be a spurious artifact of the rigid-lid approxi-

mation, as noted above.

An important consequence of the latitude depen-

dence and parameter sensitivity of alongshore ampli-

tude and phase, is that phase speed is a potentially poor

measure of information propagation, amplifying a sim-

ilar conclusion by Marshall and Johnson (2013).

b. Energetics

The velocity at which energy flows at the boundary

can be considered as the velocity at which informa-

tion flows. We are therefore interested in the energy

flux of the boundary response. Multiplying the mo-

mentum and continuity equations [Eqs. (2), (3), and (4)]

by ru, ry, and rgh, respectively, and adding together the

three resulting equations gives the energy equation

h
›

›t

�
ry2

2

�
1= � rgh~hu52rry2 . (21)

In the steady state, the divergence of the energy flux

= � rgh~hu balances dissipation 2rry2 and we denote

the time averaged energy flux as rgh~hu5 ( ~Fx, ~Fy).

Using geostrophic balance for y and Eqs. (3) and (15)

for u and ~h, respectively, the divergent time-averaged

energy flux is

(Fx,Fy)52
rg2

4

��
r

f 2
›

›x
(jhj2)1 2hv

f 2
jhj2›u

›x

�̂
i

1 jhj2k̂3=

�
h

f

�	
, (22)

where a nondivergent part, k̂3=(jhj2h/f ), has been

excluded (Longuet-Higgins 1964). Written in this way,

the flux consists of a purely zonal component and a

component along h/f contours that is directed toward

the west and equator. Themeridional component, which

is always directed equatorward, is

Fy 52
rg2h0

4f
jhj2 . (23)

Figure 8a shows the meridional flux at each longitude

as a fraction of the total equatorward flux per meter of

latitude for the boundary response presented in Fig. 6a,

that is, for the sum of all wave modes. The energy flows

as a jet along the slope toward the equator—the steep

topographic gradient on the slope supports the strong

alongshore velocity and hence kinetic energy.

The zonal component of the flux is

Fx 52
rg2

4f 2

�
r
›

›x
(jhj2)1 2hvjhj2›u

›x
1 hbjhj2

�
, (24)

and Fig. 8b shows the fraction of total equatorward flux

at yp that is fluxed zonally across each longitude (m21 of

longitude). On the slope, the energy flows toward the

shelf break, whereas offshore of the slope, the energy

flow is toward the interior. The primary energy flow can

therefore be described as an equatorward jet along the

slope, which leaks out eastward into the interior. This is

very different from the meridional energy flow expected

of an f-plane, inviscid solution, in which the shelf waves

propagate along-shelf without decaying.

In general, the energy flux cannot be separated into

contributions from the individual wave modes because

of the interactions between waves. However, with each

mode satisfying the governing equations, it remains in-

sightful to consider the fluxes of the individual waves,

recalling that mode 6 represents b-plane shelf waves and

mode 5 represents leaky slope waves. Figures 9a–c show

the meridional fraction of total equatorward flux (m21)

for wave modes 1, 5, and 6, respectively. Figures 9a and

9c show that the shelf waves transmit energy equator-

ward along the shelf, whereas Fig. 9b shows that slope

waves transmit energy equatorward along the slope.

Figures 9d–f show, for the same three modes, the frac-

tion of total equatorward flux at yp that is fluxed zonally

across each longitude (m21) at two different latitudes, yp
and ye, where e denotes a latitude equatorward of yp.
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Figures 9d and 9f show that the shelf waves transmit

energy across the shelf, whereas Fig. 9e shows that the

leaky slope waves transmit energy from the slope onto

the shelf and into the interior. The dashed lines show that

the zonal flux decreases at lower latitudes formodes 5 and

6. With the amplitude of the shelf waves decaying on the

shelf, it is the leaky slope waves that are responsible for

the main energy pathway, shown as a schematic in Fig. 3.

Clearly the leaky slope waves are not topographically

trapped but instead radiate Rossby waves offshore,

which then decay as a result of dissipation. In the limit

of small dissipation, the open-ocean energy flux be-

comes the product of energy density and the group

speed of short Rossby waves.

The fluxes of the individual waves decrease at lower

latitudes according to

(Fx,Fy)} [(y/y
p
)2R(lj)22, (y/y

p
)2R(lj)21]. (25)

For mode 1, assumingR(l1)’ 1, the zonal flux is approx-

imately constant through all latitudes and the meridional

flux decreases approximately linearly to zero at the equa-

tor. As mode number increases, the zonal and meridional

fluxes both decay at lower latitudes at a higher, nonlinear,

rate. These rates increase when the friction parameter is

increased or when the width of the shelf is decreased.

Energy is lost to dissipation at an alongshore rateðL
0

ry2 dx5

ð
shelf

1

ð
slope

1

ð
off-slope

� �
= � gh~hu dx , (26)

where the zonal integral has been split into the shelf,

slope, and east-of-slope components. For shelf waves,

the integrals across the slope and offshore are small. The

slope waves, by contrast, dissipate energy on the slope

as well as off-slope. Hence along western bound-

aries the b effect and friction enable an additional

energy pathway and an increased dissipation rate,

with the effect that high-latitude variability has a re-

duced footprint at lower latitudes. Relative to a vertical-

sidewall model, more energy is fluxed equatorward

and there is less dissipation at higher latitudes; however,

FIG. 8. Energy fluxes for the full solutions shown in Figs. 6a and 6c: (a) meridional flux as a fraction of total

equatorward flux (m21 of latitude) for the case of poleward variability, (b) zonal flux as a fraction of total equa-

torward flux (m21 of longitude) at y / yp for the case of poleward variability, (c) meridional flux as a fraction of

total equatorward flux (m21 of latitude) for the case of interior variability, and (d) zonal flux at two different

latitudes as a fraction of total equatorward flux at y/ yp (m
21 of longitude) for the case of interior variability. In

(d), the zonal fluxes are taken at a high latitude (dotted curve) and lower latitude (solid curve), where jhinj 5 0.5.
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as the shelf width decreases or friction parameter in-

creases, more energy is dissipated at higher latitudes.

To readdress the issue of the lower bound ofR(lj), we

note that the alongshore dissipation rate of an individual

mode is }(y/yp)
2R(lj)22. In this case, allowing R(lj) , 1

implies that the rate of energy lost to dissipation in-

creases as latitude decreases, tending to infinity at the

equator. This would imply that effectively all energy is

lost precisely at the equator, which appears to be un-

reasonable. Although not a formal proof, taken together

with numerous calculations, we assume it is reasonable

to take R(lj) $ 1. As previously noted, our assumption

of wave trapping breaks down as f becomes small, and

we expect energy to leak into the equatorial waveguide

and propagate eastward.

5. Forcing from the interior ocean

a. Alongshore evolution

When the boundary waves are excited by variability in

the interior ocean, solution Eq. (11) reduces to

~h(x, y, t)5

"
h
in
(y)2�

‘

j51

g
j
C

j
(x)Ain

j (y)

#
e2ivt and (27)

FIG. 9. For the poleward-forcing case, themeridional flux as a fraction of total equatorwardflux (m21 of latitude) for

wave modes (a) 1, (b) 5, and (c) 6, respectively. (d)–(f) The corresponding zonal flux at two different latitudes as a

fraction of total equatorward flux at y/ yp (m
21 of longitude). For (d)–(f) the zonal fluxes are taken at a high latitude

(solid curves) and midlatitude (dashed curves). Vertical black dashed lines denote the shelf break and slope bottom.
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Ain
j (y)5

ðyp
y

dh
in

ds

�y
s

�R(lj)

e[iI(lj)ln(y/s)] ds , (28)

where s is a dummy integration variable. Here ~h is the

net response at the western boundary where the ex-

cited boundary waves are added to the incident long

wave hin. The coast will be insulated from variability in

the interior when the excited waves destructively in-

terfere with the incident long wave, that is, when

the sum of the excited waves cancels out the long

wave on the shelf. Figure 6b shows the sum of excited

waves when forced by a double-gyre interior (see

Fig. 10b), and Fig. 6c shows the net response. The

shelf is clearly insulated, particularly at higher lati-

tudes, but the alongshore wave amplitudes are impor-

tant in determining the extent to which the coastline is

insulated.

Consider first the case in which the interior amplitude

hin(y) increases linearly from latitude ye to latitude yp
such that hin(ye) , hin(yp) 5 0 and dhin/ds is constant

and can be taken outside the integral in Eq. (28). At each

latitude y between ye and yp, the excited wave ampli-

tudes result from a summation (integral) of the effects

poleward of y. For mode 1 this gives an alongshore

amplitude very roughly proportional to hin. For higher

modes, where R(lj) is larger, the amplitude is reduced

and concentrated farther poleward. Figure 10 shows this

clearly with the alongshore amplitudes for modes 1, 5, 6,

and 12 for two interior scenarios: linear (Fig. 10a) and

double gyre (Fig. 10b). In this manner, drawing on our

previous analysis, we can see that increasingR(lj), via a

decreased shelf width or increased friction parameter,

will lead to greater penetration of interior variability at

the coast (and at higher latitudes) because the amplitude

of the excited waves is reduced and concentrated farther

poleward and thus will interfere less with the incident

long wave.

Interestingly, unlike the amplitude of waves gen-

erated by poleward variability, the alongshore am-

plitude of waves excited by the interior depend on

both R(lj) and I(lj). The important point is that the

complex exponential cannot be taken outside the

integral in Eq. (28) so that at each latitude s, pole-

ward of y, the alongshore phase of the wave con-

tributes to the equatorward amplitude. The smaller

phase speed [larger I(lj)] of the slope waves relative

to the shelf waves results in their decaying relatively

farther poleward; for example, see modes 5 and 6

in Fig. 10.

b. Energetics with interior forcing

The energy flux of the net boundary response will now

include interactions between the excited waves and the

incident interior long wave. The long wave, by assump-

tion, has no meridional velocity and therefore does not

affect the longitudinal distribution of meridional flux

as a fraction of the total equatorward flux (see Fig. 8c).

The situation is different for the zonal fraction of the

energy flux, where the incident wave contributes a

westward flux. Figure 8d shows the zonal fraction of

the equatorward flux at yp for two different latitudes:

a high latitude where hin 5 20.5 (dotted line) and a

lower latitude where hin 5 0.5 (solid line). Clearly the

energy due to the incident wave penetrates onshore

to a greater extent at lower latitudes, although the

excited wave contribution is clearly visible.

The zonal and meridional fluxes of the individual

excited waves remain as given by Eqs. (24) and (23),

and the energy pathways of the waves remain as shown

in Fig. 9. The latitude dependency of the fluxes now

becomes

FIG. 10. Alongshore amplitude of waves excited by interior vari-

ability formodes 1, 5, 6, and 12, i.e.,Ain
j (y) for j5 1, 5, 6, and 12 for two

different interior amplitude profiles: (a) linear and (b) double gyre.
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(Fx,Fy)} (jAin
j j

2
/f 2, jAin

j j
2
/f ), (29)

implying that the alongshore decay rate of the energy

fluxes increases with mode number. Increasing the fric-

tion parameter or decreasing the width of the bottom

topography will increase the alongshore decay rate of

the fluxes of all modes, except mode 1.

The dissipation of shelf and slope waves excited by

forcing in the interior ocean is a mechanism by which

western boundaries can act as a sink of energy in the

ocean energy budget, and is consistent with the Rossby

‘‘graveyard’’ idea (Zhai et al. 2010). Energy incident

from the interior results in an equatorward jet of energy

on the slope and leakage of energy back toward the in-

terior as radiating short Rossby waves and also onto

the shelf (see schematic Fig. 3). Decreasing the width

of the shelf or increasing the friction parameter re-

duces the equatorward flux and increases dissipation

at high latitudes as the higher wave modes decay at

higher latitudes. While section 4 showed energy to be

dissipated poleward of the equator, it is quite clear

from the alongshore evolution of the waves that at the

lowest latitude of the latitude band of forcing (ye), a

proportion of the energy from the interior will remain.

At ye, the interior forcing has produced an anomaly he,

concentrated on the slope, that acts as a source of vari-

ability for latitudes equatorward of ye; the dynamics

equatorward of ye are as discussed in section 4.

6. Application to western boundary sea level

Hong et al. (2000) andMinobe et al. (2017) have shown

that western boundary sea level fluctuations can be

described in terms of interior forcing with surprising

skill using relatively simple models; for example, Hong

et al. (2000) showed the first long Rossby wave gen-

erated by decadal period wind stress curl variability in

the open ocean to contribute significantly to on-shelf

variability along the U.S. East Coast. Aspects of this

interior to coastal sea level relationship have been

highlighted recently (see, e.g., Sallenger et al. 2012; Ezer

et al. 2013; Thompson and Mitchum 2014; Higginson

et al. 2015; Ezer 2017; Calafat et al. 2018). Despite this

success, the physics remains less clear. The roles of to-

pography and friction are often hidden in complex nu-

merical models, statistical descriptions or idealizations.

We consider the coastal effect of long period sea level

change in the interior by considering v � r/H. In the

steady state limit, the boundary adjustment is assumed

to be fast relative to the variability in the interior; that is,

following the initial propagating boundary wave adjust-

ment, the interior sea level is represented at the bound-

ary as a series of ‘‘arrested’’ waves, as in Csanady (1978)

(note that all imaginary parts of the solution become zero,

and we are interested in the wave amplitudes).

Physically, for long period variability, friction acts as a

sink in the conservation of potential vorticity relation.

The effect of this in terms of sea level is made clearer by

extending Csanady’s (1978) heat conduction analogy

(to the b plane). Here, we write the vorticity relation

Eq. (7) in terms of sea level in the form of an advection–

diffusion equation:

2
›

›x

��
r

f 2

�
›h

›x

�
1

›
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�
h

f

�
›h

›x
2

›

›x

�
h

f

�
›h

›y
5 0, (30)

where r/f2 represents the analogous ‘‘diffusion’’ coeffi-

cient and h/f represents the analogous streamfunction of

an ‘‘advecting velocity’’ (which is the Long Rossby wave

speed if we multiply through by g). From this transport

equation, we know that, in the limit of small friction, r/ 0

(first term vanishes), the conservation of potential

vorticity must result in sea level contours following h/f

contours. For nonzero r, the compensating effect of

friction enables sea level contours to deviate from the

h/f contours and ‘‘bend’’ toward a zonal orientation.

This ‘‘bending’’ is more pronounced at lower latitudes

where f is smaller (r/f2 grows) but otherwise is not spa-

tially uniform because the frictional compensation de-

pends on how the flow interacts with the topography.

For further discussion of this analogy, see Wise et al.

(2018); for the transport streamfunction version, see

Welander (1968) and Becker and Salmon (1997).

a. Influence of interior sea level

Western boundary sea level is related to interior sea

level by

h(x, y)5h
in
(y)2�

‘

j51

g
j
C

j
(x)

ðyp
y

dh
in

ds

y

s

� �lj

ds , (31)

implying that boundary sea level is the interior sea

level modified by a series of (arrested) waves. Steeper

topography increases alongshore flow and increases

the frictional compensation, bending the sea level

contours zonally. Increasing the friction parameter

also increases frictional compensation and widens the

frictional boundary layer. In other words, there is an

increased dissipation of energy at higher latitudes

and a reduced equatorward flux of energy at lower

latitudes relative to the westward flux of energy. This is

represented by a reduction in magnitude of the second

term in Eq. (31) (higher mode waves have been killed

off), which implies that coastal sea level tends toward

interior sea level at lower latitudes.

Integrating the second term of Eq. (31) by parts gives
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��y
s

�lj�
ds , (32)

where we have used�‘
j gjCj 521 (see appendix B). At

x 5 0, this relation describes sea level at the western

boundary as a summation of weighted integrals of the

interior sea level. The weighting function (the derivative

part) acts to attenuate the interior sea level and displace

it equatorward.

The coastal sea level for a vertical-sidewall boundary,

found by Minobe et al. (2017) [second term in their Eq.

(14)], can be written as

h(y)52

ðyp
y

h
in
(s)

d

ds

�y
s

�
ds . (33)

Assuming that in the steep topography limit l1 / 1

and lj � 1 for j. 1, then the first (arrested) wave mode

of Eq. (32) differs fromEq. (33) only by a factor g1C1(0);

that is, if g1C1(0) 5 21 they are equivalent. Note that

Eq. (33) is also closely related to Eq. (9) in Hong et al.

(2000); in that case the topographic effect, and indeed

friction, are represented, implicitly, by tuning parame-

ters (their aN and aS). In Fig. 11a we show the vertical-

sidewall coastal sea level solution, the first-mode

solution from Eq. (32) at x5 0, and the full solution of

Eq. (32) at x5 0, in each case for the same interior sea

level anomaly, which is representative of subtropical

and subpolar gyres. The vertical-sidewall and mode-1

solutions differ by some factor, but the full solution

shows a coastal sea level that has been displaced far-

ther equatorward with greater attenuation. Consider

now Fig. 11b, where we have significantly increased the

friction parameter r. The solutions are now all equivalent,

which implies that the vertical wall solution is the large-

friction/small-topographic-width limit of Eq. (32). In

practical terms this suggests that an open-ocean sea level

anomaly, offshore of the North American east coast for

example, will be felt at the coast with a reduced south-

ward displacement and a reduced attenuation when the to-

pography is steeper (e.g., a narrow shelf and upper slope).

b. Influence of interior and poleward sea level

FromEqs. (15) and (16), western boundary sea level is

related to poleward sea level by

h(x, y)5�
‘

j51

a
j
C

j
(x)

 
y

y
p

!lj

, (34)

where the poleward sea level specifics are contained

within aj. Figure 12a shows sea level at the coast (x5 0)

when sea level is imposed on the poleward boundary for

two different shelf widths: 20 and 100 km, respectively,

as well as for a larger friction parameter (with 100-km-

width shelf). The imposed poleward boundary repre-

sents a sea level anomaly, poleward of the domain,

which is negative on the shelf relative to the interior

ocean. As expected from section 6a, Fig. 12a shows the

negative sea level on the shelf has a reduced influence on

lower latitude sea level when friction is increased or

when the topography is steepened.

The above explanations are well demonstrated by

looking at the combined effect of poleward Eq. (34)

and interior sea level Eqs. (31) or (32) on coastal sea

level using altimetry and tide gauge data along theU.S.

East Coast. For the forcing data, we use a 22-yr mean

(1993–2014 inclusive), AVISO altimeter-derived, mean

dynamic sea level (MDSL) [i.e., sea level relative to

the geoid—the ‘‘Ssalto/Duacs,’’ delayed mode, gridded

FIG. 11. Coastal sea level at the coast, x 5 0, in response to an

imposed interior sea level, hin, that represents a double-gyre inte-

rior. The model including a shelf and slope (full solution and first

wave mode only) is compared with the vertical-sidewall model for

two friction coefficients: (a) r5 0.0005, (b) r5 0.13. Here yp and ye
are 6000 and 2000 km poleward of the equator.
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absolute dynamic topography product using all available

satellites—note that the satellite community refers to

dynamic sea level as ‘‘dynamic topography,’’ although

Gregory et al. (2019) recommend limiting this usage to

refer to a calculation based on hydrographic density

measurements]. To force the model we use this MDSL

along the 1000-m depth contour between 418 and 258N
for our interior sea level, hin, and the MDSL at 40m,

418N, for the poleward sea level (which is relaxed

smoothly to the interior sea level). Figure 12b shows the

model coastal sea level [h(x 5 0, y)] relative to the al-

timetry MDSL along the 40-m depth contour and tide

gauges. Mean dynamic topography at tide gauges is

taken fromAndersen et al. (2018), using the EIGEN-6C4

geoid (Förste et al. 2014) (note that the point values at

tide gauges may show scatter because of limited knowl-

edge of the geoid at small scales). The offset between tide

gauge and satellite MDSL data is removed from the

tide gauges by subtracting the absolute difference in

the means of the 40m MDSL and the tide gauges. The

model compares well to observations. The southward

increase in interior sea level across 368N drives a

smaller increase at lower latitudes along the Florida

coastline. This penetration may be experiencing an

amplification as a result of the narrowing of the shelf

along Florida, boosting the frictional compensation and

bending sea level contours zonally, across h/f contours.

7. Conclusions

Waves at western boundaries are fundamental to

how the ocean adjusts to changes in wind and buoy-

ancy forcing. At low frequencies, we find that the

b effect, friction, and bottom topography result in

modified shelf waves and the appearance of a new class

of leaky slope wave. Slope waves propagate along the

continental slope and radiate damped short Rossby waves

into the interior, and without friction are not trapped.

Waves propagate alongshore typically at orders of 0.1–

0.01ms21, and amplitudes decay over thousands of kilo-

meters (shorter distances and slower for higher modes).

The latitude dependence and parameter sensitivity of

alongshore amplitude and phase make phase speed a

potentially poor measure of information propagation.

The leaky slopewaves are responsible for transmitting

energy (information) as a jet along the slope and

FIG. 12. (a)Modeled coastal sea level,h(x5 0, y), when forced by a 1-m negative sea level anomaly on the shelf at

418 latitude (anomaly relative to the deep ocean, hin 5 0). Shelf geometry and friction control the equatorward

propagation of information. The colors denote three model scenarios: black for shelf width 100 km and friction

r5 0.0005, blue for shelf width 20 km and friction r5 0.0005, and red for shelf width 100 km and friction r5 0.005.

Other parameters are as in Table 1. (b) Modeled coastal sea level, h(x 5 0, y), (black, blue, and red) along the

U.S. East Coast when forced by altimetry-derived MDSL at the northern and offshore (green) boundaries. The

model parameters are as in (a) but now with maximum depth of 1000m and slope width 6766m. MDSL along 40-

and 1000-m depth contours are 22-yr means from altimetry (AVISO). Model and observations qualitatively agree.
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eastward into the interior as damped short Rossby

waves. This additional energy pathway due to the in-

clusion of the b effect is crucial to shortening the

alongshore distance that the waves propagate. The

waves decay alongshore (equatorward) as energy is

dissipated at a rate that depends on latitude, the fric-

tion parameter and the bottom topography. As the

friction parameter increases or the width of the shelf

decreases, dissipation increases and the waves decay

farther poleward. Pressure information resulting from

high-latitude variability therefore propagates farther

equatorward when the friction parameter is small and

the shelf is wide. Conversely, interior variability pene-

trates onto the shelf to a greater extent (and at higher

latitudes) when the friction parameter is large and the

shelf is narrow. The limit of large friction is found to be

equivalent to a vertical-sidewall boundary, where all but

the first wave mode become negligible, implying that

representing the bottom topography in this way maxi-

mizes high-latitude dissipation, minimizes the equator-

ward energy flux and maximizes penetration from the

interior. These results follow naturally to long time pe-

riod variability where the waves become arrested and

represent the dynamic interior contribution to coastal

sea level, which can be represented by a weighted inte-

gral of interior sea level values poleward of the target

latitude, as in Minobe et al. (2017).

The simple model and analytic wave solutions provide

a physical description for the adjustment process at

western boundaries and the sensitivity of these waves

to parameter configuration is a plausible explanation

for some of the variation found between ocean circula-

tion models in western boundary simulations. We

note, however, that a number of important issues are not

accounted for and should be considered for context.

First, a more sophisticated model involving stratifi-

cation, mean flow and nonlinearities will modify the

boundary response. For example, medium and strong

stratification have been shown to induce a transition in

shelf waves toward internal Kelvin waves (Huthnance

1978) and we expect that stratification effects become

more important below the upper slope, complicating

the response (e.g., Huthnance 2004; Kelly and Chapman

1988; Chapman and Brink 1987). First indications are

that stratification can increase penetration (Wise et al.

2018), but more complete calculations are required to

understand the effect in more realistic cases.

Another consideration is the western boundary mean

flow. As discussed by Mysak (1980), a laterally sheared

alongshore mean flow will modify the background

potential vorticity, and waves (particularly short, slow

waves), can be advected by the current and poten-

tially amplified. Where the shear is comparable to f, a

divergence of sea level contours from h/f contours is

expected.

There are also a number of ways to represent friction.

One consideration is whether the friction parameter

varies with depth, that is, whether r 5 r(x). In that case

the ‘‘advection–diffusion’’ transport equation [Eq. (30)]

remains the same, implying that frictional compensation

simply increases where r is larger. Other alternatives

include nonlinear bottom friction or lateral friction. In

these cases the frictional compensation takes on higher

order forms and might amplify effects on the slope.

It is useful to make a few distinctions with respect to

eastern boundaries. Unlike the radiation of short Rossby

waves into the interior at western boundaries, Clarke and

Van Gorder (1994) show that friction and topography

(in a stratified model) allow low-frequency sea level sig-

nals to propagate poleward with decreasing amplitude,

while the cross-shore sea level gradient is small at low

latitudes and increases away from the coast at higher

latitudes. Clearly friction and topography have an impor-

tant influence at eastern boundaries, where information

propagates along the boundary away from the equator,

and into the ocean interior as long Rossby waves.

Topography and friction can be seen to modify the

coastal sea level signals associated with waves at both

eastern and western boundaries and accounting for these

effects at the western boundary leads to some surprising

results. Nonetheless, the western boundary waves can be

interpreted as a means of propagating energy equator-

ward along the boundary, with part of that energy being

dissipated by a combination of local friction and radiation

of short Rossby waves into the interior.
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APPENDIX A

Solution Method

The solution method below draws upon the integral

transform method for solving heat conduction prob-

lems detailed by Özıs̨ık (1993) applied to a problem

with nonconstant coefficients, extending the approach

of (Do 1984; Johnston and Do 1987; Johnston 1994).

Substituting ~h(x, y, t)5h(x, y)e2ivt into Eq. (7) yields
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›2h

›x2
1 b(x)

›h

›x
1 f (y)a(x)

›h

›y
5 0, with (A1)

a(x)5
h0

r2 ihv
, (A2)

b(x)5
hb2 ih0v
r2 ihv

, (A3)

and f(y) 5 by. This problem can alternatively be solved

by first separating variables and solving the eigen-

value problem in x (via a number of methods). The

method used below is particularly direct, obtaining

the eigenvalues and eigenfunctions simultaneously,

for a given frequency, from an explicitly defined

matrix without finite differencing or special differ-

entiation matrices. Other spectral methods (i.e.,

Kaoullas and Johnson 2010) may have greater effi-

ciency and accuracy.

We first substitute h(x, y) 5 f(x, y) 1 hin(y) to make

the boundary conditions at x 5 0 and x 5 xin homoge-

neous, and Eq. (A1) becomes

›2f

›x2
1 b(x)

›f

›x
1 f (y)a(x)

›f

›y
1 f (y)a(x)

dh
in

dy
5 0, (A4)

subject to ›f/›x / 0 at x / 0, f 5 0 at x 5 xin, and

f 5 hp(x) 2 hin at y 5 yp.

Defining an eigenvalue problem in Sturm–Liouville

form consistent with the x boundary conditions,

d2c

dx2
1 k2c(x)5 0, (A5)

subject to dc/dx 5 0 at x 5 0 and c 5 0 at x 5 xin. The

eigenfunction solutions (in our case considered in the

main text cj 5 cos(kjx), with kj 5 (j 2 1/2)p/xin for j 5
1, 2, . . .) form a complete set of basis functions with

the orthogonality conditionðxin
0

c
i
(x)c

j
(x) dx5cNd

i,j
, (A6)

where di,j is the Kronecker delta (cN5 xin/2 in our case).

A function on [0, xin] satisfying the boundary conditions

can be represented by

f(x, y)5�
‘

j

bf
j
(y)c

j
(x) and (A7)

bf
j
(y)5

1

cN

ðxin
0

f(x, y)c
j
(x) dx. (A8)

Substituting Eq. (A7) into the second and third terms

of Eq. (A4) gives

›2f

›x2
1 b(x)�

‘

j51

dc
j

dx
bf
j
1 f (y)a(x)�

‘

j51

c
j

d bf
j

dy

1 f (y)a(x)
dh

in

dy
5 0, (A9)

and taking the transform of Eq. (A9) with respect to

ci(x) (multiply through by ci, integrate over x, and di-

vide by cN) yields a set of equations dependent on

y only:

1

cN

ðxin
0

a(x)c
i�
‘

j51

c
j
dx

› bf
j

›y
1

"
2k2

i di,j 1
1

cN

ðxin
0

b(x)c
i�
‘

j51

dc
j

dx
dx

#
1

f (y)
bf
j
52

1

cN

ðxin
0

a(x)c
i
dx

dh
in

dy
, (A10)

where we have made use of Green’s theorem (see

Özıs̨ık 1993, p. 526) to get

1

cN

ðxin
0

c
i

›2f

›x2
dx52k2

i
bf
i
. (A11)

Equation (A10) is more usefully written as a matrix

equation

A
df̂

dy
1B

1

f (y)
f̂5b

dh
in

dy
, (A12)

where A and B are matrices and b is a vector and where

A
i,j
5

1

cN

ðxin
0

a(x)c
i
c
j
dx , (A13)

B
i,j
5diag(2k2

j )1
1

cN

ðxin
0

b(x)c
i

dc
j

dx
dx, and (A14)

b
i
52

1

cN

ðxin
0

a(x)c
i
dx , (A15)

with diag denoting a diagonal matrix. For matrices,

the first subscript index denotes the row and the

second denotes the column. The boundary condition

for Eq. (A12) is

cf
p
5

1

cN

ðxin
0

c
i
[h

p
(x)2h

in
] dx , (A16)

and solving with the integrating factor
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P(y)5 exp

�
2T

ðyp
y

1

f (s)
ds

�
, (A17)

where T 5 A21B, gives the solution

f̂5P21cf
p
2P21

ðyp
y

P(s)
dh

in
(s)

ds
dsA21b . (A18)

We recover f by substituting Eq. (A18) into Eq. (A7)

and recover h by adding hin, giving

h(x, y)5h
in
1c �

�
P21cf

p
2P21

ðyp
y

P(s)
dh

in
(s)

ds
dsA21b

�
,

(A19)

where c 5 [c1, c2, . . .]. The solution can be written as

a series. For a diagonalizable T, we have the eigen-

decomposition T 5 QLQ21, where L is diagonal with

each element lj being an eigenvalue ofT and the columns qj
ofQ being the corresponding eigenvectors of T. Then using

the identity exp(T)5 exp(QLQ21)5Q diag(elj)Q21 and

ordering the terms in the series by lj, the solution is

h(x, y)5h
in
(y)2�

‘

j51

g
j
C

j
(x)Ain

j (y)1�
‘

j51

a
j
C

j
(x)Ap

j (y) ,

(A20)

C
j
(x)5c(x) � q

j
, (A21)

Ain
j (y)5 exp

�
2l

j

ðyp
y

1/f (s) ds

�
3

ðyp
y

dh
in

ds
exp

�
l
j

ðyp
s

1/f (ŝ) dŝ

�
ds, and (A22)

Ap
j (y)5 exp

�
2l

j

ðyp
y

1/f (s) ds

�
, (A23)

where gj 5 (Q21A21b)j and aj 5 (Q21cfp)j are constants

and s and ŝ are dummy integration variables.

APPENDIX B

Weighted Integral of Interior Sea Level Formulation

Left multiplying Eq. (A12) by c � A21 gives

c � df̂
dy

1c � A21B
1

f (y)
f̂5c � A21b

dh
in

dy
. (B1)

Dividing Eq. (A9) through by f(y)a(x) gives an ex-

pression for c � df̂/dy into which substituting Eq.

(B1) gives

1

f (y)a(x)

"
›2f

›x2
1b(x)�

‘

j51

dc
j

dx
bf
j

#
1

dh
in

dy

5c � A21B
1

f (y)
f̂2c � A21b

dh
in

dy
. (B2)

If at y5 ypwe takef to be zero, then f̂j are also zero and

the first terms on both sides of Eq. (B2) become zero. This

result implies that c � A21b 5 21. Last, we have

�
‘

j

g
j
C

j
5c �QQ21A21b5c � A21b521: (B3)
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