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Abstract I argue that the ten dimensional non-supersym-
metric tachyonic superstrings may serve as good start-
ing points for the construction of viable phenomenological
vacua. Thus, enlarging the space of possible solutions that
may address some of the outstanding problems in string phe-
nomenology. A tachyon free six generation Standard–like
Model is presented, which can be regarded as an orbifold of
the SO(16) × E8 heterotic–string in ten dimensions. I pro-
pose that any (2, 0) heterotic–string in four dimensions can
be connected to a (2, 2) one via an orbifold or by interpola-
tions and provide some evidence for this conjecture. It sug-
gests that any Effective Field Theory (EFT) model that cannot
be connected to a (2, 2) theory is necessarily in the swamp-
land, and will simplify the analysis of the moduli spaces of
(2, 0) string compactifications.

1 Introduction

String theory provides a viable framework to explore the
unification of all the fundamental matter and interactions.
While string theory produces a consistent theory of perturba-
tive quantum gravity, it accommodates consistently the gauge
and matter structures of the subatomic regime, including the
chirality property of the electroweak interactions. No other
contemporary theory achieves this feat. Yet it is expected that
the string character of this basic theory is only exhibited at
energy scales that are far removed from those accessible to
present day experiments. In that respect one would have to
rely on the effective, point-like, field theory limit of the string
construction in order to confront the theory with experiment.
For that purpose it is vital to be able to identify the smooth
effective field theory (EFT) limit corresponding to partic-
ular string theory vacua. To date this identification is only
possible in limited cases [1], and entail mostly the analysis
of various supergravity theories that are EFT limits of the
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corresponding string theories. The picture is murky in both
directions, as for the most part one does not know whether
an actual supergravity theory has an origin in a string con-
struction. Furthermore, while supersymmetry is a beautiful
theoretical construction, it is not clear whether nature makes
use of it. It is therefore important to explore alternatives from
the point of view of the worldsheet string theory.

To date investigation of non-supersymmetric string mod-
els were primarily conducted in the context of the tachyon
free SO(16) × SO(16) ten dimensional heterotic string the-
ory [2–21]. This construction can be obtained as an orbifold
of the ten dimensional supersymmetric E8 × E8 heterotic–
string, and can be connected to it by interpolations in a com-
pactified dimension [4,5]. It is well known that string theory
gives rise to additional vacua in ten dimensions that are tachy-
onic [2–4,6]. However, the tachyonic modes may be pro-
jected out by Generalised GSO projections. Therefore, from
the point of view of the worldsheet string theory, these string
vacua may serve as viable starting points for the construction
of phenomenological string models and offer novel perspec-
tives on some outstanding issues in string phenomenology.
Furthermore, they may reveal alternative symmetries to those
provided by spacetime supersymmetry. An example is the
Massive Boson–Fermion Degeneracy of [22–24].

In this paper I explore this possibility. For general refer-
ence I first examine the constructions of such models in ten
dimensions. The discussion then reverts to the construction
of phenomenological models in four dimensions that can be
regarded as compactifications of the ten dimensional vacua.
I present a six generation tachyon free model with standard–
like gauge group, as well as a three generation model that
does, however, contain two tachyonic states. I discuss the
reduction of the number of generations to three generations
and the prospect of generating such tachyon free models.

Additionally, the moduli spaces of (2, 0) heterotic–string
vacua is discussed. This class of compactifications is vast
with little understanding of the relation between the world-
sheet constructions and their smooth effective field theory
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limits. I conjecture that all (2, 0) heterotic–string vacua can
be related to those with (2, 2) worldsheet supersymmetry by
an orbifold or by an interpolation and offer some evidence
for this conjecture, as well as some counter arguments. If the
conjecture is correct it can serve as an enormous simplifying
tool for the analysis of the moduli spaces of (2, 0) string com-
pactifications. In the very least it can serve as a classifying
criteria between the vacua that can be regarded as descending
from (2, 2) vacua and those that do not.

2 Ten dimensional vacua

We start our discussion with the E8 × E8 heterotic–string in
ten dimensions. Its partition function is given by

Z+
10d = 1

τ2
4(ηη)8 (V8 − S8)

(
O16 + S16

) (
O16 + S16

)
, (1)
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O2n = 1
2

(
ϑn

3

ηn
+ ϑn

4

ηn

)
,

V2n = 1
2

(
ϑn

3

ηn
− ϑn

4

ηn

)
,

S2n = 1
2

(
ϑn

2

ηn
+ i−n ϑn

1

ηn

)
,

C2n = 1
2

(
ϑn

2

ηn
− i−n ϑn

1

ηn

)
(2)

In the following I omit the prefactor due to the uncompact-
ified dimensions. The ten dimensional SO(16) × SO(16)

heterotic–string is obtained by applying the orbifold projec-
tion

g = (−1)F+Fz1+Fz2 (3)

where F is the spacetime fermion number, taking S8 → −S8

and Fz1,z2 are the fermion numbers of the two E8 factors,
taking S1,2

16 → −S1,2
16 . The partition function of the SO(16)×

SO(16) heterotic–string is therefore given by

Z−
10d = [

V8
(
O16O16 + S16S16

)

− S8
(
O16S16 + S16O16

)

+O8
(
C16V 16 + V 16C16

)

− C8
(
C16C16 + V 16V 16

)]
. (4)

Examining the partition function in Eq. (4) it is noted that
the would–be tachyonic term, O8

(
C16V 16 + V 16C16

)
only

produces massive physical states. Upon compactifications to
lower dimensions, in general, tachyonic states will appear
in the spectrum, but may be projected in special cases. In
that respect, we may consider the ten dimensional tachyonic
vacua and similarly project the tachyons in special cases.

In the free fermion formulation [25–27] the vacua are
specified in terms of boundary condition basis vectors and

one-loop Generalised GSO (GGSO) phases. The E8 × E8

and SO(16) × SO(16) models are specified in terms of a
common set of basis vectors

v1 = 1 = {ψμ, χ1,...,6|η1,2,3, ψ
1,...,5

, φ
1,...,8},

v2 = z1 = {ψ1,...,5
, η1,2,3},

v3 = z2 = {φ1,...,8}, (5)

where I adopted the conventional notation used in the phe-
nomenological free fermionic constructions [28–54]. The
basis vector 1 is required by the consistency rules [25–27]
and generates a model with an SO(32) gauge group from the
Neveu-Schwarz (NS) sector. The spacetime supersymmetry
generator is given by the combination

S = 1 + z1 + z2 = {ψμ, χ1,...,6}. (6)

The choice of GGSO phaseC
[z1
z2

] = ±1 then selects between
the E8×E8 or SO(16)×SO(16)heterotic–string vacua in ten
dimensions. The relation in Eq. (6) dictates that in ten dimen-
sions the breaking pattern E8 × E8 → SO(16) × SO(16)

is correlated with the breaking of spacetime supersymmetry.
Equation (6) does not hold in lower dimensions.

To consider the tachyonic ten dimensional vacua we can
start with the E8×E8 partition function and apply the orbifold

g = (−1)F+Fz1 , (7)

the resulting partition function is now given by
(
V8O16 − S8S16 + O8V 16 − C8C16

) (
O16 + S16

)
, (8)

produces the partition function of the SO(16) × E8 non-
supersymmetric and tachyonic heterotic–string vacuum. It is
noted that the term O8V 16O16 in the partition function gives
rise to a tachyonic state in the vectorial 16 representation of
SO(16). All of the non-supersymmmetric tachyonic string
vacua in ten dimensions were classified in Refs. [2,3,6]. It
was further shown that all the ten dimensional vacua can
be connected by interpolations in lower dimensions or by
orbifolds [4,5].

In the free fermion construction all the ten dimensional are
specified in terms of boundary condition basis vectors and
GGSO phases [25–27]. The SO(16) × E8 vacuum is gen-
erated by the basis vectors {1, z1} from Eq. (5), irrespective
of the choices of the GGSO phases. Other ten dimensional
vacua can similarly be generated by replacing the z1 basis
vectors with z1 = {φ̄1,...,4} and additional similar zi basis
vectors with utmost two overlapping periodic fermions. All
these vacua are in principle connected by interpolations or
orbifolds along the lines of Ref. [4], and, in general, will con-
tain tachyons in their spectrum. Our interest here is rather
in the possibility of constructing tachyon free phenomeno-
logical vacua, starting from the tachyonic ten dimensional
vacua. The lesson to draw from the ten dimensional exercise
is that these models can be constructed by removing the ten
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dimensional vector S = 1 + z1 + z2 from the basis of the
phenomenological four dimensional models.

3 Lower dimensional constructions

We can similarly consider compactifications of either of the
models to lower dimensions, e.g. for the E8 × E8 heterotic–
string

Z+ = (V8−S8)

(
∑

m,n
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)⊗6
(
O16+S16

) (
O16 + S16

)
,

(9)

where for each circle,

piL,R = mi

Ri
± ni Ri

α′ (10)

and
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L q̄
α′
4 p2

R

|η|2 . (11)

In the case of one compactified dimension, the Z+ partition
function is

Z9d+ = (V8 − S8)�m,n
(
O16 + S16

) (
O16 + S16

)
. (12)

Applying the orbifold projection

g = (−1)Fz1+Fz2 δ, (13)

where δx9 = x9 + πR, in Z9d+ produces the Z9d− partition
function given by
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The partition function of the free fermion model {1, S, z1, z2},
with 1 + S + z1 + z2 = {y1, ω1 | ȳ1, ω̄1}, is given by
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In terms of the SO(2n) characters shown in Eq. (2) we have

Z+ = (V8 − S8)
(
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) (
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where the orbifold operation is [55]

a = (−1)F
int
L +Fξ1 ,

b = (−1)F
int
L +Fξ2 , (18)

where F int
L acts in the 9th dimension. The observation here

is that in lower dimensions we can couple the projection
of the spinorial states from the sectors z1 and z2 with an
action in an internal dimension, thus breaking E8 × E8 →
SO(16)×SO(16) without breaking supersymmetry. We can
similarly consider the compactifications to four dimensions
on an SO(12) lattice that corresponds to the enhanced lattice
at the free fermionic point. The two partition functions are
given by
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and are connected by the orbifold [56]

Z− = Z+/a ⊗ b, (21)

with

a = (−1)F
int
L +Fz1 ,

b = (−1)F
int
L +Fz2 . (22)
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where FL is the fermion number for the “left” component in
the expression of the internal lattice i.e., the nontrivial action
of this operator is FLS12 = −S12 and FLC12 = −C12. The
projection in (21) and (22) is defined at the free fermionic
point and can be generalised to an arbitrary point in the
moduli space. The important point to note is that all these
supersymmetric and non-supersymmetric vacua can be inter-
polated by compactifications to lower dimensional vacua
[19,20]. Reversing the order of the projections we can con-
sider them as compactifications of the non-supersymmetric
SO(16) × SO(16) heterotic–string that are connected by
interpolations to the supersymmetric vacua on the bound-
ary of the moduli space. Similar constructions and interpola-
tions can be implemented for the other ten dimensional string
vacua.

To construct phenomenological four dimensional vacua
that correspond to compactification of the ten dimensional
tachyonic vacua, we can investigate the phenomenological
free fermionic models. This class of heterotic–string models
correspond to Z2 × Z2 orbifold of six dimensional toroidal
lattices [57–60]. From the analysis of the ten dimensional
vacua we learn that the construction of the tachyonic ten
dimensional vacua amounts to removing the vector com-
bination S from the allowed combination of basis vectors.
To construct a non-supersymmetric phenomenological four
dimensional model, we can start with SO(16) × SO(16)

ten dimensional model and explore the compactifications to
four dimensions on Z2 × Z2 orbifolds. This was pursued
in Ref. [21], and a general discussion of the tachyonic pro-
ducing sectors was presented. In general, in addition to the
tachyon that arise in the Neveu–Schwarz 0 sector, the mod-
els contain numerous additional tachyon producing sectors.
Those were classified in Ref. [21]. For specific choices of the
GGSO phases, phenomenological tachyon free models can
be constructed [21]. The alternative is to explore compactifi-
cations of the ten dimensional tachyonic vacua. As discussed
in Sect. 2 this amounts to removing the vector S from the
additive group in these constructions.

Phenomenological free fermionic heterotic–string mod-
els were constructed by pursuing two methodologies. The
first, which is referred to as NAHE–based models, was fol-
lowed by using a common subset of boundary condition
basis vectors, the so-called NAHE-set [61,62], that was
first used in the construction of the flipped SU (5) (FSU5)
heterotic–string model [28] and subsequently employed in
the construction of the Standard-like Models (SLM) [29–
33]; Pati–Salam (PS) [34,35]; Left–Right Symmetric (LRS)
[36,37]; SU (4) × SU (2) × U (1) (SU421) [38,39]; mod-
els. The NAHE-set is a common set of five basis vectors,
{1, S, b1, b2, b3}, where S is the spacetime supersymme-
try generator, discussed above, and b1, b2 and b3 are the
three twisted sectors of the Z2 × Z2 orbifold. The different
phenomenological models are constructed by adding three

or four additional boundary condition basis vectors to the
NAHE-set [28–39]. The second method entails a systematic
classification of toroidal Z2 × Z2 orbifolds for the different
SO(10) subgroups. The method was initially developed for
the classification of vacua with an SO(10) GUT group [41–
44] and subsequently employed for the classification of PS
[47–49]; FSU5 [51,52]; SLM [53]; and LRS [54] models.
The method works with a fixed set of basis vectors and the
enumeration of the models is achieved by varying the inde-
pendent GGSO phases of the one-loop partition function, i.e.
the set of basis vectors that generate the SO(10) models is
given by

v1 = 1 =
{
ψμ, χ1,...,6, y1,...,6, ω1,...,6|
y1,...,6, ω1,...,6, η1,2,3, ψ

1,...,5
, φ

1,...,8
}

,

v2 = S = {ψμ, χ1,...,6},
v2+i = ei = {yi , ωi | yi , ωi }, i = 1, . . . , 6,

v9 = b1 =
{
χ34, χ56, y34, y56 | y34, y56, η1, ψ

1,...,5
}

,

v10 = b2 =
{
χ12, χ56, y12, y56 | y12, y56, η2, ψ

1,...,5
}

,

v11 = z1 =
{
φ

1,...,4
}

,

v12 = z2 =
{
φ

5,...,8
}

, (23)

where i = 1, . . . , 6 and the fermions which appear in
the basis vectors have periodic (Ramond) boundary condi-
tions, whereas those not included have antiperiodic (Neveu-
Schwarz) boundary conditions. Additional vectors are added
to the set in (23) to generate the models with the vari-
ous SO(10) subgroups [47–49,51–54]. The GGSO phases
C

[
vi
v j

]
with i > j span the space of vacua, corresponding to

2n(n−1)/2 string models.
The basis vector S coincides with the vector combination

in Eq. (6) and generates N = 4 spacetime supersymmetry,
with SO(44) gauge symmetry. The ei vectors break the gauge
symmetry to SO(32)×U (1)6 and maintain the N = 4 super-
symmetry. These vectors correspond to all possible internal
symmetric shifts of the six internal bosonic coordinates. The
vectors b1 and b2 corresponds to Z2 × Z2 orbifold twists.
They break the spacetime supersymmetry to N = 1, and the
gauge symmetry to SO(10)×U (1)3 × SO(16). Addition of
the basis vectors z1 and z2 breaks the hidden SO(16) gauge
group to SO(8) × SO(8).

The reduction of spacetime supersymmetry to N = 0 can
ensue by projecting the remaining supersymmetry from the S
basis vector. Setting c

[ S
vi

] = −δvi guarantees the existence of
N = 1 supersymmetry, and therefore the reduction to N = 0
is obtained by relaxing this condition. The products S ·ei = 0
and S · zi = 0 entail that the {ei , z1, z2} basis vectors act as
projectors on the S-sector. They can project all the gravitinos
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from the S-sector, hence inducing the breaking from N = 4
to N = 0 spacetime supersymmetry.

Non-supersymmetric NAHE-based models as well as
those models generated by the set in Eq. (23) can be repre-
sented as compactifications of the ten dimensional SO(16)×
SO(16) heterotic–string. Similar to the ten dimensional case
the untwisted tachyonic state is projected out by the basis vec-
tor S. However, unlike the case of the ten dimensional model,
the sectors that can produce additional tachyonic states pro-
liferate. In the context of the three generation free fermionic
models these sectors were classified in Ref. [21]. In gen-
eral, the construction of realistic non-supersymmetric models
without any tachyonic states is exceedingly hard. The reason
is precisely due to the proliferation of tachyon producing sec-
tors that arise due to the breaking of the string symmetries to
smaller symmetries. In the free fermionic construction this
is manifested by the larger number of independent basis vec-
tors that are required in the construction of the quasi–realistic
three generation models. Examples of rare tachyon free cases
can be found [21], and one can even search for such models
with suppressed cosmological constant [7–18].

As noted in the ten dimensional case compactifiations
of the ten dimensional tachyonic vacua amounts to remov-
ing the vector S from the set of basis vectors, e.g. the
set {1, z1, z2} produces a non supersymmetric model with
SU (2)6 × SO(12) × E8 × E8 or SU (2)6 × SO(12) ×
SO(16)× SO(16). In this case the untwisted tachyonic state
in general reappear. It is noted also that the left–moving vec-
tor bosons remain in the spectrum, and are projected out
by the additional NAHE-set basis vectors. We can start to
explore such models by starting with a reduced NAHE-set
that does not include the S-vector. This set is given by

ψμ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

1 1 1 1 1 1,…,1 1 1 1 1,…,1
b1 1 1 0 0 1,…,1 1 0 0 0,…,0
b2 1 0 1 0 1,…,1 0 1 0 0,…,0
b3 1 0 0 1 1,…,1 0 0 1 0,…,0

y3,...,6 ȳ3,...,6 y1,2, ω5,6 ȳ1,2, ω̄5,6 ω1,...,4 ω̄1,...,4

1 1,…,1 1,…,1 1,…,1 1,…,1 1,…,1 1,…,1
b1 1,…,1 1,…,1 0,…,0 0,…,0 0,…,0 0,…,0
b2 0,…,0 0,…,0 1,…,1 1,…,1 0,…,0 0,…,0
b3 0,…,0 0,…,0 0,…,0 0,…,0 1,…,1 1,…,1

(24)

The set of basis vectors in Eq. (24) produces a non super-
symmetric model with 96 multiplets in the 16 spinorial repre-
sentation of SO(10). The four dimensional gauge symmetry
is SO(10) × SO(6)3 × E8. The model contain an untwisted
tachyonic state in the vectorial 10 representation of SO(10).
This tachyonic state is entirely projected out in the FSU5 and
SLM type models, but not in the PS or LRS models. Similar

to the case of the non-supersymmetric models in Ref. [21],
whether or not a model contains tachyons is highly model
dependent. The model defined by the set of basis vectors

1 = {ψμ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3,

ψ̄1,...,5, φ̄1,...,8},
b1 = {ψμ, χ1,2, y3,...,6|y3,...,6, ψ

1,...,5
, η1}

b2 = {ψμ, χ3,4, y1,2, ω5,6|y1,2, ω5,6, ψ
1,...,5

, η2}
b3 = {ψμ, χ5,6, ω1,...,4|ω1,...,4, ψ

1,...,5
, η3}

α = {y1,...,6, ω1,...,6|ω1, y2, ω3, y4,5, ω6, ψ
1,2,3

, φ
1,...,4}

β = {y2, ω2, y4, ω4|y1,...,4, ω5, y6, ψ
1,2,3

, φ
1,...,4}

γ =
{
y1, ω1, y5, ω5|ω1,2, y3, ω4, y5,6, ψ

1,...,5

= 1

2
, η1,2,3 = 1

2
, φ

2,...,5 = 1

2

}
(25)

with the set of GGSO projection coefficients given by

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 b1 b2 b3 α β γ

1 1 −1 −1 −1 1 1 i

b1 −1 −1 −1 −1 −1 −1 1

b2 −1 −1 −1 −1 1 −1 1

b3 −1 −1 −1 −1 −1 1 1

α 1 1 −1 1 1 1 1

β 1 −1 −1 −1 −1 −1 −1

γ 1 1 −1 1 −1 −1 1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.
(26)

produces a tachyon free SLM model with

observable: SU (3)C×SU (2)L×U (1)C×U (1)L ×U (1)6

(27)

hidden: SU (5)H × SU (3)H ×U (1)2 (28)

observable and hidden gauge groups, where the hidden sector
gauge symmetry is generated by vector bosons that arise in
the Neveu–Schwarz sector and the sector ζ = 1+b1+b2+b3.
The model contains six chiral generations in the spinorial
16 representation of SO(10), decomposed under the gauge
group in Eq. (27), from the sectors b1, b2 and b3. The dou-
bling of the number of generations compared to the NAHE–
based models occurs because of the removal of the S projec-
tion, with the result that the chirality of the χ i j worldsheet
fermions in the sectors b1, b2 and b3 is not fixed and conse-
quently the number of generations is doubled. I discuss below
how this can be remedied. The model contains three pairs of
untwisted Higgs doublets h1, h̄1, h2, h̄2, h3, h̄3, that couple
to the twisted states from the sectorsb1,b2 andb3 and produce
a leading mass term for the top quark mass. Additional elec-
troweak Higgs doublet representation are obtained from the
sector b1 +b2 +α+β. In that respect, the flavour structure in
the model is similar to that of other NAHE–based Standard-
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like Models [63,64]. The untwisted Neveu–Schwarz sector
and the sectors β ± γ ; α ± γ ; α + β; b2 + b3 + β ± γ ⊕ ζ ;
b2 + b3 + α + 2γ ; b1 + b3 + α ± γ ⊕ ζ ; b1 + b3 + α + 2γ ;
b1 +b2 +α+2γ ; b1 +b2 +α+β, produce spacetime bosons,
whereas the sectors b1; b2; b3; b1 + 2γ ⊕ ζ ; b2 + 2γ ⊕ ζ ;
b3 + 2γ ⊕ ζ ; b2 ± γ ; b1 + b2 + b3 + 2γ , produce spacetime
fermions. Here the notation ⊕ζ denotes the states that trans-
form under the hidden non-Abelian group factors, that are
obtained from a given sector and the given sector ⊕ζ . The
U (1)1,2,3 symmetries are anomalous. Thus the model con-
tains one anomalous U (1) combination that can be canceled
by a generalised Green-Schwarz mechanism [65]. The entire
spectrum of the model will be presented elsewhere.

As discussed above the model defined by Eqs. (25, 26)
gives rise to six chiral generation due to the removal of the S
projection on the states from the sectors b1, b2 and b3. The
consequence is that the chirality of the worldsheet fermions
χ i j in these sectors is not fixed, hence doubling the number
of generations compared to the NAHE-based three genera-
tion models. This situation can be remedied by including a
basis vector that mimics the projection of the S vector, but
without generating spacetime gravitinos, which is achieved
by modifying the boundary conditions of the right–moving
worldsheet fermions in the basis vector S. An example of a
vector that achieves this feat is given by

S = {ψμ, χ1,...,6|φ1,4,5,6} (29)

with the choice of GGSO projection coefficients

C

[S
1

]
= C

[S
b1

]
= C

[S
b2

]
= C

[S
b3

]
= −C

[S
α

]

= −C

[S
β

]
= −C

[
α

S
]

= 1 (30)

the resulting model contains three generation of chiral
fermions from the sectors b1, b2 and b3. The vector S in
Eq. (29) does not give rise to any massless gravitinos and
therefore the model is non supersymmetric. Vector bosons
contributing to the hidden sector gauge group arise again
in the untwisted NS-sector and the ζ -sector, generating an
SU (3)×SU (2)×U (1)5 hidden sector gauge group, whereas
the observable gauge group coincides with the one in Eq.
(27). The model does, however, contain two tachyonic states
from the sector S + b1 + b2 + b3 + α + β + 2γ , that are
neutral under the observable gauge symmetry and charged
under the hidden sector gauge group. A systematic search
for similar tachyon free three generation models can be pur-
sued by using the free fermionic classification method with
or without a modified S sector and there is no a priori reason
to assume that they do not exist. The situation in that respect
is similar to the proliferation of gauge symmetry enhancing
sectors in these models, but typically there exist configura-

tions of free phases in which all the enhancing vector bosons
are projected out.

4 Connectedness of (2, 0) and (2, 2) string vacua

In Sect. 3 I argued that the ten dimensional tachyonic string
vacua may serve as good starting points for the construc-
tion of viable four dimensional string models. These are
not the traditional string vacua that are explored in Effec-
tive Field Theory (EFT) studies of string compactifications,
which are focused on the approximate supergravity limit of
the supersymmetric string models. As the basis vector S is
the generator of spacetime supersymmetry, these EFT limits
are those that would be characterised as effective limits of
string vacua that contain the basis vector S, in the different
ten dimensional string theories, e.g. in the Type II superstring
and heterotic–string. It is noted that the worldsheet perspec-
tive may afford alternative starting points for the exploration
of the phenomenological application of string theory.

The heterotic–string is particularly appealing from the
point of view of the Standard Model data, as it accommodates
the embedding of the chiral matter states in the spinorial 16
representation of SO(10). The supersymmetric string com-
pactifications in four dimensions may have (2, 2) worldsheet
supersymmetry or (2, 0), where the first case correspond
to heterotic–string vacua with E6 gauge symmetry in four
dimensions, whereas the second case correspond to vacua in
which the E6 symmetry is broken to SO(10) × U (1) and
its subgroups. While the moduli spaces of the (2, 2) string
theories, and their EFT limits, are fairly well understood [1],
that is not the case for those with (2, 0) worldsheet super-
symmetry. Understanding the moduli spaces of (2, 0) string
vacua and their EFT limits is an important problem in string
phenomenology. It is therefore of interest to explore whether
string theory can offer some guidance from a worldsheet per-
spective.

It is known that the ten dimensional vacua are con-
nected via orbifolds or by interpolations in lower dimen-
sions [4,5,66]. The interpolation among string vacua was
also studied in the context of four dimensional phenomeno-
logical string vacua [19,20]. It has further been proposed
that the different superstring theories can be seen to be con-
tained in the bosonic string [67]. In this section I propose that
all (2, 0) heterotic–string vacua can be connected to (2, 2)

heterotic–string vacua via orbifolds or via interpolations. I
present some evidence for this conjecture that stems from
the classification of fermionic Z2 × Z2 orbifolds and the
observation of spinor–vector duality in the space of these
compactifications. It should be noted that this claim is unex-
pected from the point of view of the effective field theory
description of string vacua. Indeed, some constructions have
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been presented that do not seem to have an underlying (2, 2)

structure [68].
We can again turn to the free fermionic models to seek

guidance. We can consider the extended NAHE–set basis
with the vectors {1, S, b1, b2, b3, z1} [69–71]. As discussed
above the subset {1, S, z1 = 1 + b1 + b2 + b3, z2} gener-
ates a model with N = 4 spacetime supersymmetry with
S0(12) × SO(16) × SO(16) or SO(12) × E8 × E8 four
dimensional gauge group, depending on the GGSO phase
C

[z1
z2

]
, corresponding to the partition functions in Eq. (19)

and (20), respectively. Applying the Z2 × Z2 twists pro-
duces a model with N = 1 spacetime supersymmetry and
SO(4)3 × SO(10)×U (1)3 or SO(4)3 × E6 ×U (1)2 gauge
symmetries. The untwisted internal moduli space is identi-
cal in the two cases and consists of three Kähler and three
complex moduli [72]. In the fermionic language the exactly
marginal operators corresponding to the moduli fields take
the form of worldsheet Thirring interactions [73–75]. The
untwisted moduli fields correspond to untwisted scalar fields
that parametrise this moduli space [72]. The vacuum with
the enhanced E6 symmetry has (2, 2) worldsheet symmetry,
whereas in the vacuum with SO(10) symmetry the right–
moving N = 2 worldsheet supersymmetry is broken. In the
E6 case the twisted sector produces 24 representations in the
27 representation of E6. In these models these states decom-
pose under E6 → SO(10) × U (1) in the following way.
The spinorial 16 representations are obtained from the sec-
tors b1, b2 and b3, whereas the vectorial 10 representations of
SO(10) are obtained from the sectors b j + z1, j = 1, 2, 3.
In addition to the vectorial 10 representations the sectors
b j + z1, j = 1, 2, 3 produce the 24 copies of: the SO(10)

singlets in the 27 representation of E6; an additional singlet
that correspond to the twisted moduli; and additional 8 E6

real singlets, giving a total of 32 real states. Correspondingly,
in the SO(10) models the (2, 2) worldsheet supersymmetry
is broken. The breaking is induced by the same GGSO phase
of the N = 4 spacetime supersymmetric vacuum, namely
C

[z1
z2

] = −1. The sectors b j still produce the 24 copies of the
16 spinorial representation of SO(10). However, the sectors
b j + z1 now produce 24 copies in the 16 vectorial represen-
tation of the hidden SO(16) gauge group. The total number
of physical states from the sectors b j ⊕ b j + z1 is therefore
preserved and is again 32. However, the simple identification
of the twisted moduli is obscured. The two models are, how-
ever, connected by the discrete map C

[z1
z2

] = +1 → −1 in
the fermionic worldsheet language. In the orbifold language
the map is between two distinct Wilson lines [76], i.e. it is
part of the N = 4 moduli space.

The Z2 × Z2 on the SO(12) lattice produces 24 fixed
points [57–60,69–71]. The Z2 × Z2 at a generic point in the
moduli space has 48 fixed. The number of 48 fixed points is
reduced to 24 by acting with a freely acting shift on the six
dimensional torus. The freely acting shift that reproduces the

SO(12) lattice at the free fermionic point is a generalisation
of the one given in Eq. (22), and involves a non-geometric
asymmetric shift of both the momenta and winding modes
[56]. This asymmetric shift correspond to the fact that the
SO(12) lattice is realised with a non-trivial antisymmetric
B–tensor field, at the free fermionic point in the moduli space
[57–60,69–71]. The moduli space correspond to the N = 4
moduli space, which is parametrised by the six dimensional
metric G, the anti–symmetric tensor B, and the Wilson lines
W .

A general classification of the Z2 × Z2 orbifolds with
SO(10) GUT symmetry using the free fermion methodol-
ogy was performed in [41–44]. Two relevant observation
were made. The first is that the enumeration of the vacua
with different numbers of generations only depends on the
GGSO phases of the subset of basis vectors that preserve the
N = 4 spacetime supersymmetry. Hence, the enumeration
only depends on the moduli fields of the N = 4 toroidal com-
pactifications. At this level the moduli space is connected by
continuous interpolations. The action of the Z2 × Z2 orb-
ifolds, which breaks N = 4 → N = 1 spacetime supersym-
metry, merely projects to different number of generations, but
the information is predetermined by the data of the N = 4
toroidal lattice. The Z2 × Z2 orbifold action also projects
some of the moduli fields. The transformations between the
different vacua at the N = 1 level are therefore discrete,
rather than continuous.

The second observation in the fermionic classification of
the Z2 × Z2 orbifolds is the existence of a global symme-
try in the space of (2, 0) string compactifications, under the
exchange of spinor and vector representation of the SO(10)

GUT group, dubbed spinor–vector duality [42–46,76]. This
duality can be interpreted as a discrete remnant of the
enhanced E6 symmetry, just as T –duality is a discrete rem-
nant of the enhanced symmetry at the self–dual point [77].
The vacuum at the E6 enhanced symmetry point, which pos-
sesses (2, 2) worldsheet supersymmetry, is self–dual under
the spinor–vector duality. The spectral flow operator of the
right–moving N = 2 worldsheet supersymmetry is the oper-
ator that mixes between the spinorial and vectorial SO(10)

states in the 27 representation of E6. In the SO(10) vacua, in
which the right–moving worldsheet supersymmetry is bro-
ken, the spectral flow operator induces the map between the
dual vacua. Now, from the point of view of the fermionic or
orbifold constructions, the order of the N = 4 deformation
Eq. (22), or the Z2 × Z2 orbifold, does not matter. Thus, the
(2, 0) vacua can be interpreted as orbifold deformations of
the (2, 2) vacua. It is further noted that this picture gener-
alises to string compactifications with interacting CFTs [78].
The existence of similar symmetries is expected to be a gen-
eral property of (2, 0) heterotic–string vacua with an SO(10)

GUT symmetry.
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String compactifications with (2, 0) worldsheet super-
symmetry, in general, do not need to possess an SO(10) GUT
symmetry. The right–moving gauge symmetry may remain
entirely unbroken; it can be broken to smaller subgroups; or
it can be realised as a higher level Kac–Moody algebra [79–
81]. In the case of the ten dimensional theories, it was argued
in [4] that all the ten dimensional theories are indeed con-
nected by interpolations or orbifolds. In the same vein, we
may hypothesise that the variety of four dimensional theo-
ries are similarly connected. Given that a large class descend
from the underlying N = 4 toroidal space, there exist an
uplift from the N = 1 theory to the N = 4 theory, which
is the inverse of the modding out procedure of the breaking
from N = 4 to N = 1. In the N = 4 theory, the moduli
space is continuous, so we expect that indeed all the (2, 0)

can be connected by interpolations or by orbifolds to the
(2, 2) theories. In the very least, we see that some classes
of (2, 0) compactifications, e.g. those with an SO(10) GUT
symmetry, can be seen to arise as deformations of those with
(2, 2) worldsheet supersymmetry, and investigation of their
moduli spaces can be facilitated by analysing this deforma-
tion. Furthermore, if we regard the SO(10) embedding of
the Standard Model spectrum as phenomenologically desir-
able, these cases are the ones that may be physically relevant.
Given that the spinor–vector duality extends to worldsheet
compactifications with interacting CFTs [78], gives reason
to hypothesise that the same structure extends, albeit in a
more intricate way, to string vacua with interacting internal
CTFs.

5 Discussion and conclusion

The validation of the Standard Model as providing viable
parametrisation of all sub-atomic observable phenomena,
reinforces the possibility that further insight into the Stan-
dard Model parameters can only be obtained by fusing it with
gravity. Among contemporary quantum gravity approaches,
string theory is unique because its internal consistency
requirements mandates the existence of the matter and gauge
structures that are the bedrock of the Standard Model. By that
string theory provide the arena to develop a phenomenolog-
ical approach to quantum gravity. However, given that the
string scale is far removed from experimentally accessible
scales, it is likely that string theory will only provide some
initial values for the Standard Model parameters, and their
confrontation with experimental data will be performed by
utilising effective field theory methods. An example of this
line of thought is the calculation of the top and bottom quarks
Yukawa couplings and the resulting prediction of the top
quark mass [82,83], which is obtained by evolving the string
extracted parameters to the experimentally accessible scale.
Relating string vacua to their effective field theory smooth

limit is therefore an important problem in string phenomenol-
ogy, which at present is only understood in limited cases
[1,84–86]. Improving the understanding of the effective field
theory limit of string vacua is therefore an important problem
in string phenomenology. To date relating string vacua to low
energy observables relies exclusively on the effective super-
gravity limit. An important question is therefore to explore to
what extent is supersymmetry a necessary component in the
construction of viable string models. Non-supersymmetric
non-tachyonic vacua were constructed in the past as com-
pactifications of the SO(16)×SO(16) heterotic–string in ten
dimensions. However, worldsheet string theory may offer the
alternative of staring with a tachyonic ten dimensional vac-
uum and projecting the tachyons with the GGSO projections.
In this paper, I constructed one such six generation model
with SLM gauge symmetry and discussed the reduction to
three generations. Such models are particularly interesting
from the point of view of the MSDS constructions that do
not utilise the S basis vector, which is common to the super-
symmetric and SO(16) × SO(16) constructions. Whether
an actual tachyon free three generation model can be con-
structed remains to be seen, but it is clear that if it exists, it
will have very special structure, rather than generic. Further-
more, the possibility to freeze all moduli, aside from the dila-
ton, in fermionic Z2 × Z2 orbifolds [87], offers the prospect
of a such a model that is not connected to a tachyonic point
anywhere in the moduli space.

Additionally, I proposed that from the worldsheet perspec-
tive all heterotic–string vacua with (2, 0) worldsheet super-
symmetry can be connected to those with (2, 2) via orbifolds
or interpolations. If correct, it will facilitate the understanding
of the moduli spaces of (2, 0) heterotic–string compactifica-
tions. The evidence relies on the connectivity of the N = 4
moduli space and the existence of global symmetries, such
as the spinor–vector duality, in the space to (2, 0) heterotic–
string compactifications. In the very least it can serve as a
useful classification criteria between (2, 0) vacua that can,
and those that cannot, be connected via orbifolds or inter-
polations to those with (2, 2) worldsheet supersymmetry.
An affirmative conclusion will support the suggestion [88]
that while string vacua are distinct from the point of view
of the low energy field theory, they are equivalent from the
string worldsheet point of view. From the worldsheet string
perspective different string vacua merely exchange massive
and massless states. The preservation of the total number of
massless states, distributed among the different group factors,
hints that the quantum gravity consistency requirements only
care about the total number of massless degrees of freedom,
rather than about the transformation properties under the low
scale effective field theory gauge group.
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