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Abstract 

Age-related muscle loss is characterised by reduction in the number of 

myofibres and motor neurons and an additional weakening of the remaining 

fibres, causing reduction in muscle mass and function. Studies associate 

premature muscle wasting with influences during early stages of development, 

including maternal malnutrition. The aim of this study was to examine whether 

protein-deficient females produce offspring with a reduced number of muscle 

fibres and altered neuromuscular homeostasis and whether this can be rescued 

by optimisation of the nutrition in early postnatal stages of development. Female 

Thy1-YFP16 mice, expressing yellow fluorescent protein (YFP) only in neuronal 

cells, were fed either a normal (20%) or a low-protein (5%) diet. Newborn pups 

were then cross-fostered to different lactating dams (maintained on either a 

normal or a low-protein diet), within 24 h after birth and maintained on those 

diets at post-weaning stages until 3 months of age.  

Mice born from dams on 20% diet but introduced to a 5% diet (NLL) 

postnatally show significant reduction in muscle function (strength). Muscle fibre 

size and number was not affected by dietary reduction of protein, but protein 

restriction postnatally resulted in reduced muscle function. Mice on a low 

protein diet postnatally displayed structural abnormalities at neuromuscular 

junction. To examine how the changes in both muscle force and NMJ 

morphology may be controlled, specific microRNA expression levels were 

investigated in muscle and nerve from offspring. Two candidate microRNAs, miR-

128 and miR-133a were selected for further investigation due to their reduced 

expression levels in mice on a low protein diet postnatally and their involvement 

in skeletal muscle and motoneuron cells. Bioinformatic analysis for miR-128 and 

miR-133a indicated several predicted target genes involved in key metabolic 

pathways in skeletal muscle and neuron cell function and maintenance.  

Gain- and loss-of-function of miR-128 was performed in vitro, using C2C12 as 

a model of skeletal muscle cells and NSC-34 cells as a model of α-motoneuron 

cells.  Both inhibition and overexpression of miR-128 in C2C12 cells resulted in 

reduced proliferation and increased cell death, and increased mitochondrial 

toxicity, while in NSC-34 cells only cell death was increased but proliferation 

remained unaffected. Overexpression of miR-128 resulted in no phenotypic 

changes in C2C12 myotubes but reduced the length of axonal outgrowth in NSC-

34 cells. MiR-133a overexpression increased proliferation and reduced cell 

death. Inhibition of miR-133a had the most profound effect on C2C12 myotube 

phenotype and axonal length of NSC-34 cells. Quantitative PCR analysis of miR-

128 predicted target genes of interest revealed changes in gene expression of 

Nrf-1, Pdgfrα, Cox-I, Cox-IV, Grb-2 and Park-2 genes following transfections with 

miR-128 in C2C12 and NSC-34 cells. Western blot analysis, however, showed that 

changes in these predicted target genes on a protein level in both C2C12 and 

NSC-34 cells were not significant. Analysis of Nrf-1 and Cox-IV in TA muscle of 
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mice from the NLL group showed no differences in the expression levels of these 

transcripts. However, Nrf-1 and Grb-2 were significantly upregulated in the 

sciatic nerve of mice from the NLL group.  

To summarise, our data show that maternal protein restriction plays a crucial 

role in neuromuscular development of the offspring.  This could be regulated 

through microRNA-128 and -133a. In vitro, miR-133a and miR-128 affected 

muscle and nerve cell phenotype. These gene expression changes were similar to 

those observed in vivo. These data indicate the potential role of microRNAs as a 

novel mechanism of neuromuscular development and potentially maintenance, 

following dietary alterations in early stages of development.  
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1 Introduction 

Ageing is characterised by frailty due to increased muscle wasting and 

reduced muscle function (Faulkner et al. 2007). Age-related decline in muscle 

mass and function, known as sarcopenia, occurs progressively between the ages 

of 50-80 years in humans, and it is accompanied by a loss of muscle fibre and 

motor unit number and additional weakening of the remaining ones (Lexell et al. 

1988; Marzetti et al. 2009). A number of studies have focused on influences that 

occur at early stages of development and their effect on skeletal muscle 

development and function. Such influences can be genetic/biochemical or 

environmental/dietary.  

 

1.1 Skeletal muscle physiology and function 

Skeletal muscle comprises approximately 40% of the total body mass and up 

to date there are 640 named skeletal muscles in the adult human body (Marieb 

and Hoehn, 2010). Skeletal muscles are attached to the bones directly or 

indirectly (via tendons) and control human body movement (Martini, 2006). The 

main functions of skeletal muscles are the generation of body movement, the 

maintenance of body position and posture, the support of soft tissues, the 

safeguarding of entrances and exits in the body, the maintenance of body 

temperature, regulation of metabolism and the storage of nutrients (Martini, 

2006).  

 

1.1.1 Skeletal muscle structure and organisation 

Skeletal muscle consists of 3 types of connective tissue, the epimysium 

surrounding the entire muscle and separating from surrounding tissues; the 

perimysium, which divides the muscle into compartments called fascicles; the 

endomysium, a delicate layer of connective tissue that surrounds the individual 

muscle cells, called muscle fibres and hosts a network of capillaries, satellite cells 

and nerve fibres (Figure 1.1.1) (Martini, 2006).  
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Skeletal muscle fibres are multinucleated, post-mitotic cylindrical cells and a 

characteristic striated morphology (reviewed in Frontera and Ochala, 2015). 

Striations have a dark zone (A band) and a lighter zone (I band). Striations are 

formed when the A bands of each myofibril within a single fibre is aligned with 

the A bands of neighbouring myofibrils (Martini, 2006).  Each muscle fibre 

comprises of hundreds of myofibrils, which are mainly composed of myosin and 

actin filaments. Myosin filaments (or thick filaments) and actin filaments (or thin 

filaments) are organised into bundles within the myofibrils, called myofilaments 

(reviewed in Frontera and Ochala, 2015).  Myofilaments are subsequently 

organised into repeating functional units known as sarcomeres, which are 

approximately 2 μm in length. Interactions between the thin and thick filaments 

in each sarcomere are responsible for skeletal muscle contractions (Martini, 

2006). Between the sarcolemma and the basal lamina of the skeletal muscle fibre 

a population of muscle stem cells, known as satellite cells in a quiescent state in 

mature myofibres (Mauro, 1961). Following muscle injury, satellite cells become 

activated and re-enter the cell cycle and give rise to a myogenic progeny of 

muscle-progenitor cells known as myoblasts, which later differentiate into 

mature muscle fibres (Olguín and Pisconti, 2012). A small number of satellite 

cells do not undergo differentiation but remains in a stem cell state, in order to 

maintain the pool of satellite cells on myofibres (Olguín and Pisconti, 2012). 

Activation and proliferation of satellite cells depends on the expression of muscle 

regulatory transcription factors (MRFs), including MyoD and Myf-5, which are 

not expressed when satellite cells are in their quiescent state, while terminal 

differentiation into myofibres is achieved by expression of myogenin (Olguín and 

Pisconti, 2012).  
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Figure 1.1.1 Schematic representation of the skeletal muscle structure and 

organisation  

 

1.1.1.1 Skeletal muscle fibre composition 

Skeletal muscle function is closely associated with the fibre type composition 

within the muscle. Skeletal muscle fibres in mammalian adult skeletal muscle are 

separated into 3 categories depending on the myosin ATPase activity and myosin 

heavy chain composition: type I fibres (or MyHC I), type IIa fibres (or MyHC IIa), 

type IIb fibre (or MyHC IIb) and type IIx fibre (or MyHC IIx) (Schiaffino et al. 

1989). MyHC IIb is found only in small mammals, but this isoform is not seen in 

human skeletal muscle (reviewed in Choi, 2014). Classification of the different 

fibre isoforms depends also on the speed of shortening following contraction, 

the contractile characteristics and force production following stimulation from 
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the motoneuron, degree of fatigability and metabolic pathways being prevalent 

(oxitative or glycolytic) (reviewed in Frontera and Ochala, 2015).  

Type I fibres or slow-twitch fibres have a smaller diameter than the type II 

fibres, with the speed of contraction and force generation being much slower 

than type II fibres (hence slow-twitch) but they are able to maintain contraction 

much longer, making them fatigue-resistant (Martini, 2006). Type I fibres have a 

high network of capillaries and high concentration of myoglobin and 

mitochondria, providing them a high supply of oxygen which is utilised for 

aerobic metabolism and increased ATP production (hence they are also known as 

oxidative fibres) (Martini, 2006).  

Type II fibres or fast-twitch fibres have a larger diameter than the type I fibres 

and they respond very quickly to neuronal stimulation in order to contract 

(hence called fast-twitch). They have relatively small number of mitochondria 

therefore, the amount of ATP production is limited (Martini, 2006). Because type 

II fibres generate very powerful contractions very quickly and due to the 

mitochondria and the ATP produced are limited, type II fibres are susceptible to 

fatigue. These fibres use glycogen for energy source for force production hence 

they are known as glycolytic fibres (Martini, 2006). In rodents, type II fibres are 

separated into type IIa, type IIb and type IIx/d. In humans, type IIa and type IIx, 

but not type IIb isoform, are expressed in skeletal muscle (Smerdu et al. 1994). 

Interestingly, type IIa fibres, present features of both type I and type IIb fibres, as 

they use both oxygen and glycogen for their metabolism and force generation, 

and they seem less susceptible to fatigue than type IIb fibres (Burke et al. 1971; 

Peter et al. 1972). Type IIx/d was discovered later by Schiaffino et al. and they 

resembled similar contractile properties with type IIa and type IIb fibres but their 

resistance to fatigue was intermediate of that seen in type IIa and type IIb 

(Schiaffino et al. 1989; Larsson et al. 1991). Force generation by different fibre 

types follows the pattern: type I < type IIa < type IIx < type IIb, with type IIb fibres 

being the strongest (Martini, 2006). 
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In rodents, muscles are classified into slow- or fast-twitch muscles according 

to their fibre type composition. Soleus (SOL) has a high percentage of type I 

fibres and it is easily noticeable from its red colour. Extensor digitorum longus 

(EDL) anterior tibialis (TA) muscle are composed almost exclusively of type II 

fibres (Figure 1.1.1.1) (reviewed in Schiaffino and Reggiani, 2010; Augusto et al. 

2014).  

 

Figure 1.1.1.1 Fibre type distribution in TA and SOL muscles of adult mice 

following immunofluorescent staining for myosin heavy chain (MyHC) isoforms 

(from Sakellariou et al. 2016).  

 

1.1.1.1.1 Skeletal muscle fibre composition during development 

Fibre type composition in skeletal muscles during development is fluid and 

varies between different muscles. In developing skeletal muscles two more 

isoforms of MyHC are evident, the neonatal (NN) and the embryonic (EMB) 

isoforms, which are predominant during early days of development (Pette and 

Staron, 2000). Moreover, in all muscles a small amount of type I fibre has been 

recorded in all muscles (Agbulut et al. 2003). In EDL muscles fibre type isoforms 

start shifting mainly at postnatal day 7 (P7), with type II isoforms (IIa, IIb and 

IIx/d) slowly replacing the embryonic and neonatal isoforms. By P49, EDL muscle 

is composed almost exclusively of type II fibres (Agbulut et al. 2003). For SOL, 
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gastrocnemius (GTN) and plantaris muscles, fibre type shift is mainly observed at 

P14. Like in EDL, GTN and plantaris muscles is only composed of type II isoforms 

at P49, while SOL muscle is composed of type I fibres and type IIa and IIx fibres 

(Agbulut et al. 2003).  

 

1.1.1.2 Skeletal muscle physiology: The neuromuscular junction (NMJ) 

Muscle contraction depends on the communication between the skeletal 

muscle fibre and the nervous system, which occurs at the neuromuscular 

junction site (NMJ). The neuromuscular junction is the synaptic connection 

between the axon of a motoneuron and a skeletal muscle fibre (Levitan and 

Kaczmarek, 2015). The neuromuscular junction comprises of three main 

components: the pre-synaptic motor nerve terminal, the synaptic space, known 

as synaptic cleft and post-synaptic muscle membrane or motor end plate 

(Verschuuren et al. 2016). In humans and rodents, a neuromuscular junction is 

formed when an α-motoneuron from the lumbar region of the spinal cord 

extends its axon through the peripheral nerve, innervating a muscle fibre. All the 

axons branching from a single α-motoneuron and the skeletal muscle fibres they 

innervate comprise a single motor unit (Fox, 2001). The organisation of a motor 

unit and the morphology of the neuromuscular junction in rodents are shown in 

Figure 1.1.1.2.  
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Figure 1.1.1.2 Innervation of the skeletal muscle and the organisation of a motor 

unit. Schematic (top) from Fox (2001). Images of neuromuscular junction from 

Vasilaki et al. (2016). Neuromuscular junction morphology on individual skeletal 

muscle fibres, presynaptic motor nerve terminal (green), motor end plate (red) 

and skeletal muscle fibres (contrast) observed using a confocal microscope.   

 

1.1.1.2.1 Development of NMJ 

NMJ development is a multistep process that in rodents it starts during 

embryonic development until the NMJ structure matures fully during late post-
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natal/early adulthood stage of development. In rodents, NMJ formation starts 

with the formation of aneural AChR clusters across the length of the muscle fibre 

prior to the arrival of the nerve terminal of the motoneuron, at day E11-12 

(reviewed in Li et al. 2012). At day E13-14, motoneuron axons innervate the 

muscle fibres, inducing the formation of new AChR clusters, leading to dispersion 

of the non-innervated sites (reviewed in Li et al. 2012). This redistribution of 

AChR clusters does not require synaptic or contractile activity (Anderson and 

Cohen, 1997). Newly AChR clusters formed from day E16 are firstly seen as 

plaques with an oval shape that are innervated by more than one axon (multiple 

innervation) (Marques et al. 2000). From day E16 until late postnatal stages 

(P21), the AChR plaques become perforated and gradually from branches, 

adopting a more complex “pretzel”-like morphology, while they are innervated 

only by one axon (reviewed in Li et al. 2012). The maturation of the morphology 

for each NMJ varies temporally, as during early postnatal period there is a 

variation in the shape of NMJs, with some still having the appearance of the 

embryonic plaque shape while others have visible signs of perforation (Marquez 

et al. 2000). Maturation of the synaptic area was also accompanied by an 

increase in its overall size, which was visible during the second postnatal week 

(Balice-Gordon and Lichtman, 1993). AChR-rich areas enlarged along with 

expansion of space between those areas, but no increase in AChR-rich areas was 

noted. This observation suggests the increase in the overall synaptic territory 

from the compact plaque-shape sites seen during embryonic development, 

where AChR clusters were more distributed more densely (Balice-Gordon and 

Lichtman, 1993).  

AChRs also undergo changes during development. AChR is a transmembrane 

nicotinic receptor that acts as an ion channel, mediating neuromuscular signal 

transmission (Missias et al. 1996). AChR are comprised of five homologous 

subunits, giving the receptor a barrel-like shape (Lindstrom, 1997). In 

mammalian skeletal muscle during development, AChR pentamer consist of four 

different type of subunits with the following stoichiometry: α2βγδ (Missias et al. 

1996). There are two sites for ACh binding located between α1-γ and α1-δ 
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subunits (Figure 1.1.1.2.1) (Lindstrom, 1997). Following postnatal development, 

foetal γ subunit substituted by ε subunit, resulting in the following AChR 

stoichiometry: α2βεδ (Missias et al. 1996). Although subunits α β δ are present in 

AChR throughout mammalian development, in rodents, subunit γ is present only 

during early stages of development and during denervation while subunit ε is 

evident late in development and only at the synaptic AChRs (Lindstrom, 1997). In 

humans, subunit γ expression is downregulated but not completely abolished, 

from 31 weeks of gestation and it is maintained at low levels through adulthood 

(reviewed in Webster, 2014).  

 

 

Figure 1.1.1.2.1 The organisation of muscle acetylcholine receptor (AChR). 

Subunit γ is replaced by subunit ε following postnatal development 

(redrawn/adapted from Lindstrom, 1997).  

 

1.1.1.2.2 The neuromuscular junction (NMJ): α-motoneurons 

Motoneuron cells on the spinal cord are organised into longitudinal columns 

across the rostrocaudal axis (Landmesser, 1978). Specifically, α-motoneurons are 

located on the ventral horn of the spinal cord, and they belong to the class of 

lower motoneuron in the central nervous system (CNS) (reviewed in Stifani, 

2014). α-motoneurons have a large cell body and a characteristic neuromuscular 
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ending (pretzel shape) (reviewed in Stifani, 2014). These motoneurons serve a 

key role in muscle force generation, as they are excited monosynaptically, and 

therefore responding quicker to stimuli (Eccles et al. 1960). α-motoneurons are 

divided into three categories, based on the type of muscle fibre they innervate: i) 

Slow-twitch, fatigue-resistant (SFR), ii) Fast-twitch, fatigue-resistant (FFR) and iii) 

fast-twitch, fatigable (FF) (Burke et al. 1973). SFR α-motoneurons innervate slow-

twitch (type I) muscle fibres, they have a significantly lower conduction velocity 

compared to FF and FFR α-motoneurons and they process the smallest cell body 

and the lowest degree of complexity in relation to FF and FFR α-motoneurons 

(reviewed in Kanning et al. 2010). FFR α-motoneurons innervate fast-twitch, 

fatigue-resistant (type IIa) muscle fibres and their characteristics are between 

the FF and SFR α-motoneurons, in terms of body size, complexity and conduction 

velocity (reviewed in Stifani, 2014). Finally, FF α-motoneurons innervate fast-

twitch-fatigable (type IIb/x) muscle fibres and have the highest conduction 

velocity and degree of complexity, as well as largest cell body (reviewed in 

Kanning et al. 2010).  

 

1.1.1.2.3 The neuromuscular junction (NMJ): the synaptic site  

Skeletal muscle contraction can only occur following successful neuronal 

signal transmission from the α-motoneuron to the skeletal muscle fibre at the 

neuromuscular junction (Martini, 2006). In rodents, the neuromuscular junction 

has a characteristic “pretzel”-like shape, with multiple branching points (Figure 

1.1.1.2.3). However, the morphology of the neuromuscular junction can vary 

between vertebrate species (Fox, 2009). A recent study from Jones et al. (2017) 

provided extensive evidence on the morphological differences of the NMJ 

between mice and humans across their lifespan. Variations in NMJ morphology 

can also be evident between different muscle groups and different species of the 

same animal group (i.e. Drosophila melanogaster) (Jones et al. 2017; Campbell 

and Ganetzky, 2012).  
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Figure 1.1.1.2.3 The neuromuscular junction (NMJ) on the EDL muscle of an adult 

mouse (3 months old). The pre-synaptic nerve terminal and post-synaptic motor 

end plate overlap perfectly for efficient signal transmission, giving the NMJ this 

“pretzel”-like shape (further details provided in Chapter 3, Section 3.3.4).  

 

Despite the morphological variations, NMJs have three distinct components: i) 

the pre-synaptic nerve terminal, ii) the synaptic space and iii) the motor end 

plate (Verschuuren et al. 2016).  

The presynaptic nerve terminal comprises of the unmyelinated axonal cone of 

an α-motoneuron, whose myelinated axon is extended through the peripheral 

nerve (Fox, 2009). The unmyelinated axonal cone of the motoneuron is divided 

into branches, which reside in close proximity with the skeletal muscle fibre 

membrane (Fox, 2009). The pre-synaptic nerve terminal is separated from the 

motor end plate by synaptic cleft, a 12-20 nm space that accommodates the 

neurotransmitters for a short period after their release from the nerve terminal 

(Savtchenko and Rusakov, 2007). The postsynaptic membrane is folded into 

junctional folds that can be up to 1 μm in depth (reviewed in Sanes and 

Lichtman, 1999). AChR clusters are located at the shoulders of the junctional fold 

crests, at a density of 10,000/μm2 or higher, and this concentration of AChR falls 

1000-fold in extrasynaptic sites (Salpeter et al. 1988). At the deepest end of the 

junctional folds are the sodium channels and the neuronal cell-adhesion 

molecule (N-CAM) (reviewed in Sanes and Lichtman, 1999). Formation of AChR 

clusters depends heavily on two key molecules, agrin and muscle-specific kinase 

(MuSK). Agrin secreted by motoneuron cells triggers the activation of MuSK, via 

Pre-synaptic 

nerve terminal 
NMJ Post-synaptic motor 

end plate 
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binding to its receptor, low-density lipoprotein (LDL) receptor–related protein 4 

or Lrp4 (reviewed in Li et al. 2017). Activation of the agrin-Lrp4-MuSK complex 

causes AChR cluster formation via recruitment of rapsyn and activation of 

downstream signalling pathways (Verschuuren et al. 2016).  

 

1.1.2 Skeletal muscle contraction 

1.1.2.1 Pre-synaptic signal transmission for muscle contraction 

When the pre-synaptic plasma membrane depolarises following an action 

potential, voltage-gated calcium channels (VGCCs) open up and Ca2+ flows into 

the nerve terminal (Verschuuren et al. 2016). There, Ca2+ binds to synaptotagmin 

located on the synaptic vesicles and triggers the release of the neurotransmitters 

they carry, including acetylcholine (ACh), via exocytosis (Südhof and Rizo, 2011). 

When the exocytosis is complete, the synaptic vesicles are recycled and refilled 

with neurotransmitters, ready to be released. Exosome recycling is regulated via 

multiple pathways (Südhof and Rizo, 2011).  

Upon release from exosomes, ACh (and other neurotransmitters) diffuse 

across the synaptic cleft and are then bound to the ACh receptors (AChR), which 

are tightly clustered on the post-synaptic folds of the motor end plate of the 

muscle fibre (Verschuuren et al. 2016). Following binding, AChR ion channel 

opens up causing local depolarisation, known as the end plate potential. When 

the end plate potential reaches a certain threshold, the voltage-gated sodium 

channels open up sending this action potential across the muscle fibre triggering 

its contraction (Verschuuren et al. 2016). 

 

1.1.2.2 Skeletal muscle fibre activation and contraction 

The theory of skeletal muscle force generation was first described by Huxley 

and Niedergerke, 1954. According to this theory, also known as the sliding 

filament theory, the sarcomere length shortens disproportionally when the 
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muscle contracts, with the I band and H zone of the sarcomere being subjected 

to shortening of their length. However, the length of the A band of the 

sarcomere does not change, but what changes is the degree of overlap between 

the thick (myosin) and thin (actin) filament. Hence, sarcomere contraction does 

not depend on changes in A band length but on the level of sliding between the 

thin and thick filaments, an observation that gave the name to this theory 

(Huxley and Niedergerke, 1954). 

Force generation depends on a number of factors including muscle size and 

architecture, innervation, the space between myofilaments and the number of 

formed myosin-actin cross bridges (reviewed in Frontera and Ochala, 2015). 

Muscle force is normalised to muscle size is called specific force and it is used as 

an indicator of muscle quality. During ageing and disease, as well as during 

denervation, muscle force appears to decline (reviewed in Frontera and Ochala, 

2015).  

Muscle force generation involves the two major proteins, myosin and actin. 

Myosin is the major components of the thick filaments combined with titin, 

which is responsible for the maintenance of the alignment between thick and 

thin filaments (Martini, 2006). Thin filaments are mainly composed of actin along 

with tropomyosin and troponin. Actin in thin filaments is in the form of F actin, 

which consists of molecules of G actin and has a twisted conformation (Martini, 

2006). G actin molecules contain active sites for binding of myosin, which under 

resting conditions is inhibited by the tropomyosin-troponin complex (Martini, 

2006). Upon muscle contraction, Ca2+ is released and binds to troponin 

receptors, triggering a conformational change of the troponin-tropomyosin 

complex and releasing the actin receptors, allowing binding with myosin 

molecules. This interaction between myosin and actin filaments during muscle 

contraction is known as cross-bridges (Martini, 2006). When ATP is available, it 

binds to the active site of the myosin head and it is hydrolysed by the local 

ATPases into ADP+Pi. The Pi molecule forces myosin to pass the actin filament 

following the generation of a power stroke, which results in force generation 

(reviewed in Frontera and Ochala, 2015). The rate of ATP consumption by 
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ATPases in the myosin heads determines the speed of contraction (Bárány 1967). 

When ATP is no longer available, the troponin-tropomyosin complex interaction 

with actin filaments is restored and the muscle stops contracting (Figure 1.2.2.2).  

Consumption of ATP depends on various factors including the number of 

myosin heads and the number of cross-bridges formed between myosin and 

actin filaments. The rate at which ATP is consumed reflects the myosin heavy 

chain isoform expression (reviewed in Frontera and Ochala, 2015). Muscle 

contraction occurs only under the control of the nervous system, when the 

action potential arriving at the neuromuscular junction (NMJ) of each skeletal 

muscle fibre causes release of Ca2+ (Ashley and Ridgwey, 1968).  

 

Figure 1.1.2.2 Schematic representation of the sarcomere structure and 

organisation (adapted/redrawn from Martini, 2006).  
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1.2 Regulation of neuromuscular physiology and function in development and 

ageing or disease 

1.2.1 Lifestyle and dietary influences on neuromuscular physiology 

Epidemiological studies suggest that environmental influences such as 

nutrition during perinatal life may result in detrimental and long-lasting effects. 

Restriction of maternal food intake (50% of daily food intake) during gestation 

and lactation period resulted in 54% reduction in the body weight of the 

offspring in rats (Beermann, 1983). Later studies revealed similar effect of 

maternal nutrition in the birth weight and postnatal muscle growth of the 

mammalian offspring. A study by Bee (2004) demonstrates how fibre type 

distribution in skeletal muscle is influenced by different maternal feeding 

regimen in pigs, whereas muscle fibre area is directly influenced by birth weight. 

Maternal undernutrition in beef has been linked to growth and productivity of 

the offspring, which develop metabolic syndromes later in life (Funston et al. 

2010). In sheep, maternal undernutrition contributes to the rise of metabolic 

diseases later in life, such as glucose intolerance and insulin insensitivity (Costello 

et al. 2008, 2013).  On a cellular level, maternal suboptimal nutrition pre- and 

postnatally reduce myogenic frequency and function in muscle stem cells, 

leading to impairment in repair mechanisms and reduction in skeletal muscle 

mass (Woo et al. 2011). Furthermore, substantial maternal undernutrition during 

gestation and insufficient maternal nutrient supply can impair myogenesis due to 

impairmed growth hormone-insulin-like growth factor (GH-IGF) axis, 

subsequently affecting the growth of mammalian skeletal muscle fibres (Rehfeldt 

et al. 2011). 

A high-saturated fat diet during early developmental stages has been linked to 

development of type II diabetes, obesity and other metabolic disorders later in 

life mammals (Yang et al. 2012). Early exposure to a high-saturated-fat diet in 

rats inhibits the development of skeletal muscle by repression of the expression 

of myogenic genes via Wnt/β-catenin signalling, leading to aberrant muscle 

development (Yang et al. 2012).  
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In terms of protein, maternal high-protein diet has been linked with the 

regulation of offspring's transcriptome, with long-lasting effect. A study by Oster 

et al. (2012) in pigs showed short- and long-term effects of a high-protein diet on 

transcriptional regulation of genes involved in cell cycle regulation, energy and 

nucleic acid metabolism and growth factor signalling pathways in the offspring. 

Their findings show that maternal protein supply regulates programming of the 

offspring's genome; while piglets under a high-protein diet during early postnatal 

stages showed signs of growth retardation obvious at birth and permanently 

altered development and responsiveness to the common environment of the 

transcriptome (Oster et al. 2012).  

Maternal protein-deficient diet can lead to the development of metabolic 

diseases during adulthood. Results from a study from da Silva Aragão et al. 

(2014) show that maternal malnutrition can alter metabolic flexibility long-term 

in skeletal muscle of the offspring of rats born from normal or protein-restricted 

dams, throughout pregnancy and lactation. Their data further suggest that 

metabolic inflexibility can lead to the development of metabolic disorders 

associated with malnutrition in early life (da Silva Aragão et al. 2014). Another 

study from Toscano et al. highlighted the effects of a protein-deficient diet 

during gestation on the biomechanical properties of skeletal muscle of offspring. 

Rats born from a dam fed a low-protein diet demonstrated muscle wasting and 

diminution of maximum twitch and tetanic tension on the EDL and SOL muscle. 

Additionally, muscle fibre type proportions were altered in EDL and SOL muscle 

of 25- and 90-days old pups (Toscano et al. 2008). These data demonstrated the 

effect of low-protein intake in the structure and function of skeletal muscle, 

which could significantly compromise posture and locomotion of the offspring 

(Toscano et al. 2008). 

Exposure to a low-protein diet pre-natally has been shown to have 

detrimental effects in the development of cognition and memory. Rats exposed 

to a protein-deficient diet at neonatal stages demonstrated reduced expression 

of brain-derived growth factor (BDNF) mRNA, a key neurotrophin necessary for 

neurogenesis, synaptic plasticity and cell survival (Marwarha et al. 2017). A study 
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from Gallagher et al. revealed reduction in mitochondrial complex IV activity of 

rats subjected to a low-protein diet during gestation (Gallagher et al. 2005). Low-

protein diet during gestation and at early postnatal stages has been associated 

with reduction neuronal stem cell number in the brain of mice, with concomitant 

uncontrollable upregulation of stem cell differentiation, resulting in memory 

deficits (Gould et al. 2018). A study from Chen et al. (2009) showed that low-

protein diet pre-natally followed by normal-protein diet postnatally resulted in 

shortened lifespan of the offspring. Interestingly, mice born from a mother on a 

normal diet pre-natally but subjected to a protein-deficient diet postnatally 

demonstrated slow growth but had an extended lifespan (Chen et al. 2009). 

Furthermore, protein-deficient diet at early stages of development had an 

impact on key metabolic pathways regulating lifespan, such as IGF-1 signalling 

(Chen et al. 2009). Additionally, a study by Sharma et al. 2015 provides evidence 

of the regulation of small RNA biogenesis by low-protein diet and their influence 

in embryonic gene expression.  

Although several studies have focused on the effect of a low-protein diet on 

muscle mass and function, there is no study up-to-date focusing on the effects of 

a protein-deficient diet immediately after birth, during lactation and later on in 

life, in both the muscle fibres and motoneurons.  

 

1.2.1.1 Skeletal muscle fibre regulation during exercise 

Exercise training can influence fibre type transition in skeletal muscle, as a 

mechanism of adaptation to the energy requirements during different types of 

exercise. Resistance training caused an increase in type IIa fibres with a parallel 

decrease in type IIb fibres in skeletal muscle (Staron et al. 1990; Heather et al. 

1991). High-intensity endurance exercise increased type I and type IIa fibres and 

decreased type IIb fibres in plantaris and EDL muscle of rats (Green et al. 1984). 

Similar results were also recorded in previous studies in human skeletal muscle 

following endurance training (Baumann et al. 1987). This transition in fibre types 
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in skeletal muscle following different exercise regimes highlights the adaptability 

of skeletal muscle in conditions of different metabolic and energy demands.  

 

1.2.1.2 Dietary influences regulating skeletal muscle fibre composition 

Nutrient availability has a key role in fibre type determination in skeletal 

muscle. Diets high in fat and sugar content caused the greatest shift of slow-to-

fast fibre types in SOL while resveratrol treatment had the opposite effect in 

plantaris muscle (Hyatt et al. 2016). This great effect of high fat/high sugar diet 

on SOL is supported by previous studies showing the increased sensitivity of 

oxidative muscles to insulin resistance (Koerker et al. 1990). Interestingly, a long-

term high-fat diet increases type IIx fibres in EDL muscle but the same is not 

observed with short-term high-fat diet (Eshima et al. 2017).  

Caloric restriction has been shown to attenuate the effects of ageing on fibre 

type composition in slow and fast muscles (Faitg et al. 2019). A reduction of 40% 

on caloric intake in adult rats was shown to preserve fibre type composition 

(Joseph et al. 2013). A short-term 20% caloric restriction in rats had no positive 

effect in age-related atrophy of type IIb fibres (Mckiernan et al. 2004).  

Supplementation or restriction of protein has been associated with changes in 

mammalian skeletal muscle morphology. Moderate protein restriction 

upregulates the expression of MyHC I and IIa in skeletal muscles of mammals but 

such change is not observed with a low-protein diet or in MyHC IIb and IIx/d 

expression levels (Li et al. 2016a). High-protein diet has been associated with 

fast-to-slow fibre transformation in rats, due to increased oxidative properties of 

skeletal muscle induced by high-protein dietary content (Nakazato and Song, 

2008).  
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1.2.2 Genetic/biochemical influences of neuromuscular physiology and 

function 

Genetic factors that can affect neuromuscular development and ageing 

include genetic diseases such as spinal muscular atrophy (SMA). SMA is an 

autosomal recessive disease that is associated with loss of motoneurons, leading 

to skeletal muscle denervation and subsequent muscle weakness (Pearn, 1978). 

A study from Martínez-Hernández et al. (2014) showed differences in the 

percentage of fast and slow myosin in foetal skeletal muscle samples of SMA 

patients compared to the control samples. Moreover, their findings showed an 

increase in satellite cell number in postnatal atrophic fibres of SMA patients, 

indicating abnormal myogenesis (Martínez-Hernández et al. 2014). 

Biochemical factors include but are not limited to hormonal signalling such as 

growth and thyroid hormone signalling. Hormonal signalling has a key role in 

proper neuromuscular development. Hormonal deficiencies during pre-natal 

stages of development can result in abnormalities of foetal tissues, including 

skeletal muscles (Fowden et al. 1998, 2006). Glucocorticoids are also central 

mediators of skeletal muscle tissue programming and development during pre-

natal stages of development, due to their responsiveness to environmental cues 

that affect skeletal muscle cell differentiation in utero, with consequences later 

in life (reviewed in Fowden and Forhead, 2009). Furthermore, experiments 

undertaken in pigs showed that the expression patterns of growth hormone 

receptor (GHR) during foetal development along with the percentage of GHR in 

skeletal muscle during gestation suggest the involvement of the growth hormone 

(GH) in foetal muscle growth (Schnoebelen-Combes et al. 1996). Thyroid 

hormone has the potential to regulate muscle fibre type specification in skeletal 

muscle during early postnatal development (Russell et al. 1988). Imbalances in 

thyroid hormone levels result in muscle weakness and a myopathic phenotype 

(Lee et al. 2014).  
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1.2.2.1 Pathophysiological conditions regulating skeletal muscle fibre switch 

Fibre type isoforms in skeletal muscles can shift to different types or form 

hybrid isoforms under certain physiological conditions. Examples of such 

conditions include ageing, pathophysiological conditions and exercise. Fibre type 

transition tends to follow a fast-to-slow or slow-to-fast transition, which is 

reversible and sequential: MyHC I ↔ MyHC IIa ↔ MyHC IIx/d ↔ MyHC IIb 

(Pette and Staron, 2000). During this transition, hybrid fibres with a combination 

of MyHC isoforms may form, due to slow protein turnover of MyHC (reviewed in 

Schiaffino and Reggiani, 2011). 

Fibre type transitions have been widely observed in certain pathophysiological 

conditions. A well-studied example includes conditions characterised by 

imbalances in thyroid hormone. Thyroid hormone regulates the transition of 

muscle fibre isoforms from neonatal to adult fast MyHC independently of 

innervation (Russell et al. 1988). This transition is delayed during hypothyroidism 

but accelerated during hyperthyroidism (d’Albis et al. 1990). In adult skeletal 

muscle, thyroid hormone overexpression during hyperthyroidism induces a slow-

to-fast type transition in the direction of MyHC I ↔ MyHC IIa ↔ MyHC IIx/d ↔ 

MyHC IIb. The opposite direction is observed under hypothyroidism conditions 

were absence of thyroid hormone drives a fast-to-slow fibre type transition 

(reviewed in Schiaffino and Reggiani, 2011). Recent studies have shown that 

thyroid hormone regulation of fibre type isoforms is achieved via control of 

muscle-specific microRNA expression (Zhang et al. 2014).  

Neurological conditions can also influence fibre type shifting in skeletal 

muscles. One such example is Huntington’s disease, which seems to induce a 

reduction in type IIb isoform with a concomitant increase in type IIx in EDL 

muscle of mice. Transition of type IIa to type I fibres was also observed in the 

SOL muscle of those mice, highlighting the effect of the neurodegenerative 

disease in both fast and slow muscles (Hering et al. 2016). Fibre type switching 

has also been recorded during ALS disease with muscle fibre transitioning from 



47 
 

fast to slow. Moreover, hybrid fibres have been observed in muscles of ALS 

(Baloh et al. 2007).  

 

1.2.3 Neuromuscular morphology and function during ageing  

1.2.3.1 Skeletal muscle fibre switch during ageing 

Fibre type changes occur in skeletal muscles during ageing. In fast muscles, 

such as EDL and TA, a transition of type IIb fibres to type IIx is observed (Larsson 

et al. 1993). In slow muscles such as SOL, type IIa fibres switch to type I during 

ageing (Larsson et al. 1995). Muscle fibre atrophy in fast muscles during ageing is 

observed in all type II fibre types, while type IIb fibres appeared to be more 

preferentially lost during ageing (Lexell et al. 1988; Sakellariou et al. 2016). This 

susceptibility of type IIb fibres with ageing might be due to neuronal changes 

resulting in specific denervation of those fibres (Suzuki et al. 2009). Loss of type 

IIb fibres with ageing results in reduction of type II fibre proportion in aged 

muscles (reviewed in Schiaffino and Riggani, 2011). However, the arrangement of 

the different fibre types changes during ageing in humans and rodents, with 

different fibre types tending to group together, as a potential result of 

denervation-reinnervation process (Kanda and Hashizume, 1989; Lexell and 

Downham, 1991).  

 

1.2.3.2 Morphological and functional regulation of NMJs during ageing and 

disease 

NMJs can exhibit morphological and structural alterations during ageing or 

disease. Several changes at the NMJ were characterised by Valdez et al. (2010) in 

ageing mice. These changes include partial or complete denervation of the post-

synaptic site, multiple innervation, fragmentation of the AChR areas, axonal 

swelling, innervation beyond the receptor area and thin axons at the pre-

synaptic site (Valdez et al. 2010). Moreover, NMJ synaptic area enlargement and 
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increased complexity and fragmentation have been recorded in old mice (Rudolf 

et al. 2014).  

Fragmentation of the synaptic site has been observed in ageing mice and in 

adult animal models of muscle disorders, including the mdx mice, which develop 

the characteristics of muscular dystrophy (Pratt et al. 2015). Similar findings on 

NMJ fragmentation on ageing and mdx mice were also reported from other 

groups (Lyons and Slater, 1991; Rudolf et al. 2014). Fragmentation was also 

evident at NMJs of mice following tourniquet-induced injury (Tu et al. 2017). 

Fragmentation of NMJs may also occur following damage in the soma of the 

neuron, injury of the peripheral nerve and during ageing (Kuromi and Kidokoro, 

1984; Apel et al. 2009; Valdez et al. 2010). This morphological change in NMJ 

could be due to muscle fibre degeneration and regeneration; however, the exact 

impact of fragmentation on neuromuscular transmission is not clear yet (Pratt et 

al. 2015).  

NMJ denervation (partial or complete) has been widely studied both in ageing 

animals and during musculoskeletal defects. Similar to fragmentation, 

denervation of the synaptic site may occur as a result of muscle fibre 

degeneration-regeneration cycle (Pratt et al. 2015). However, denervation may 

result in muscle fibre atrophy and motoneuron cell death in ageing mice and 

mice with amyotrophic lateral sclerosis (ALS). In these conditions, the affected 

motoneuron cells do not have the capacity to quickly regenerate their axons and 

re-innervate the muscle fibre (Valdez et al. 2014). Similar results are seen in 

SOD1-/- mice, which have been widely used as a model or accelerated muscle 

ageing (Fisher et al. 2011). Interestingly, a study from Chai et al. (2011) provides 

evidence that NMJ denervation may be independent of motoneuron defects in 

geriatric mice.  

Under certain conditions, NMJ morphology might adopt a plaque-shaped 

conformation, similar to that seen during early stages of NMJ maturation. Such 

conditions include spinal muscular atrophy (SMA). In a study by Kong et al. 

(2009), mice with SMA exhibited delayed maturation of NMJs, which presented 
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the characteristic plaque formation, in comparison with the control mice. SMA 

mice also showed abnormal neurotransmission due to impairments in synaptic 

vesicle release and therefore release of neurotransmitters (Kong et al. 2009).  

Apart from morphological abnormalities, NMJ function and motor unit 

potential may also be impaired during ageing and disease, including SMA, ALS 

and Duchene muscular dystrophy (DMD) and myasthenia Gravis (MG). Although 

these conditions may have different underlying mechanisms, they might share 

some common factors. In humans, lowest motor unit potential is recorded in 

older men with sarcopenia, compared to healthy young men (Piasecki et al. 

2018). Smaller size of motor unit potential has also been associated with 

increased possibility of frailty in humans, independently of age or body mass 

index (Swiecicka et al. 2019). Impaired NMJ function is usually attributed to 

mutations of genes expressing key proteins for AChR clustering. Agrin proteolysis 

has been shown to destabilise NMJs resulting in a sarcopenia-like phenotype in 

mice (Bütikofer et al. 2011). Inhibition of MuSK, agrin and Lrp4 signalling from 

has also been observed in patients with MG, who presented increased level of 

antibodies against these proteins in their plasma (reviewed in Li et al. 2017). 

Interestingly, overexpression of these proteins can prove beneficial in mice 

expressing these diseases (reviewed in Li et al. 2017). Improvement of NMJ 

function and morphology in mice has been evident following exercise and caloric 

restriction (Rudolf et al. 2014; Valdez et al. 2010).  

 

1.3 Key signalling pathways controlling cell function and survival in skeletal 

muscle and neurons 

Skeletal muscle and neuronal function and survival are regulated by key 

signalling pathways, whose dysregulation may be accounted for cell dysfunction 

during ageing or disease. Such pathways include: i) IGF-1/AKT/PI3K/mTOR 

pathway, ii) FoxO signalling, iii) autophagy/mitophagy pathway and iv) 

neurotrophin pathway.   
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IGF-1/AKT/PI3K/mTOR pathway has the capacity to control protein synthesis 

and reduce protein degradation in skeletal muscle. Inhibition of this pathway has 

been associated with muscle wasting, as IGF-1 declines with age but counteracts 

the characteristics of sarcopenia when reactivated (reviewed in Larsson et al. 

2018). Recent studies focus on IGF-1’s role in ameliorating progression of 

neurodegenerative diseases such as ALS, when injected into the muscle of mice 

(Dodge et al. 2008). Another important player regulating protein synthesis and 

protein breakdown is the mammalian target of rapamycin (mTOR), which is 

activated by Akt long with other downstream factors (Schiaffino et al. 2013). 

mTOR binds with other proteins to form two distinct complexes, mTORC1 and 

mTORC2 (Schiaffino et al. 2013). mTORC1 has been identified as a key regulator 

of the autophagy process via phosphorylation of the mammalian autophagy-

initiating kinase Ulk1 in a nutrient-dependent manner (Hosokawa et al. 2009; 

Kim et al. 2011). mTORC1 also controls protein synthesis via phosphorylation of 

key substrates including S6-kinase (S6K) (reviewed in Yang and Guan, 2007). In 

addition to protein synthesis and degradation, mTOR has been shown to control 

mitochondrial respiration and gene expression through YY1-PGC1α complex, via 

direct interaction of transcription factor Yin Yang 1 (YY1) with mTORC1 complex 

in mice (Cunningham et al. 2007). Whole-body knockout of mTOR in mice is 

lethal while muscle-specific knockout of mTOR results in severe myopathy and 

metabolic abnormalities, including impaired mitochondrial respiration, resulting 

in premature death at postnatal stages (Risson et al. 2009).  

FoxO acts downstream of the AKT/PI3K signalling and as a family of 

transcription factors it controls expression of genes involved in cell proliferation, 

survival, differentiation, oxidative stress (Paik et al. 2009). FoxO family comprises 

of four members: FoxO1, FoxO3, FoxO4 and FoxO6 and in muscle they regulate 

muscle atrophy and fibre type specification (reviewed in Xu et al. 2016). FoxO3 in 

particular, is involved in activation of muscle atrophy genes, including atrogin-1, 

and in the regulation of autophagy process (reviewed in Schiaffino and Reggiani, 

2011). FoxO signalling is also involved in the regulation of neurogenesis and 

neuronal stem cell proliferation and renewal (Paik et al. 2009).  
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Mitophagy is a quality control system for mitochondrial maintenance and 

function. Dysfunctioning mitochondria are targeted by autophagosomes and 

delivered to the lysosomes for degradation (reviewed in Yoo and Jung, 2018). 

Autophagy-related protein LC3 and mitophagy-related proteins PINK1 and Parkin 

are critical for selected removal of damaged mitochondria (reviewed in Larsson 

et al. 2018). Dysfunction of autophagy/mitophagy process has been associated 

with ageing phenotype in skeletal muscle due to inability of the cells to discard 

damaged mitochondria. Mice with muscle-specific deficiency in autophagy 

present all normal characteristics of sarcopenia including increased muscle 

wasting, NMJ fragmentation and muscle fibre denervation, leading eventually to 

premature death (reviewed in Larsson et al. 2018).  

Neurotrophin signalling has been widely studied on its role in regulating 

neuronal survival and function, but an increasing number of studies highlight the 

role of neurotrophins in skeletal muscle development and function (reviewed in 

Sakuma and Yamaguchi, 2011). The most studied neurotrophins in skeletal 

muscle include the brain-derived growth factor (BDNF), glial-derived growth 

factor (GDNF), nerve growth factor (NGF) and neurotrophins-3 and -4/5 (NT-3, 

NT-4/5). The expression of BDNF in skeletal muscle of rodents varies between 

different cell types and at different developmental stages (Mousavi and Jasmine, 

2006). BDNF expression levels are highly dependent on physiological and 

pathological conditions, such as exercise in healthy humans and patients with 

multiple sclerosis (Gold et al. 2003). BDNF, along with NT-4, has been shown to 

inhibit agrin-induced AChR clustering on myotubes in vitro (Wells et al. 1999). 

Recent studies have shown a decrease in BDNF levels in the brains of neonatal 

rat offspring following maternal low-protein diet (Marwarha et al. 2017). GDNF 

expression levels have been detected in both motoneuron cells and skeletal 

muscle of humans and rodents (Suzuki et al. 1998; Nguyen et al. 1998). 

Overexpression of GDNF has been associated with hyperinnervation of skeletal 

muscle fibres of mice during neonatal stages of development (Nguyen et al. 

1998). GDNF has also been shown to cause enhanced neurotransmitter release 

from motoneuron to skeletal muscle fibres through NMJs in neonatal mice, 
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highlighting its structural and functional role in maintaining NMJ plasticity in 

neonatal mice (Ribchester et al. 1998). The role of NT-4/5 is diverse and depends 

on the organism species and the stage of postnatal growth; however, studies 

have associated NT-4/5 expression with fibre type conversion, motoneuron 

survival, NMJ formation and neurotransmitter release via binding to tyrosine 

kinase receptors TrkB and p75NTR (also known as NGFR) (reviewed in Sakuma and 

Yamaguchi, 2011). Interestingly, NT-3 has not been associated with regulation of 

skeletal muscle morphology in chickens (Wells et al. 1999). However, NT-3 has 

been associated with improved skeletal muscle reinnervation, following 

peripheral nerve injury in rats (Simon et al. 2001). NGF has been associated with 

improved skeletal muscle regeneration of mdx mice (Lavasani et al. 2006). 

Phenotypic knockout of NFG in mice leads to skeletal muscle atrophy and a 

dystrophic phenotype in adult mice (Ruberti et al. 2000). Additionally, increased 

levels of NGF were recorded in muscle biopsies of patients with ALS, but such 

increase was not observed in skeletal muscle of old rats (reviewed in Sakuma and 

Yamaguchi, 2011).  

 

1.3.1 Mitochondrial bioenergetics   

Mitochondria are the “powerhouses” of the cells, providing the necessary 

energy for the cell’s metabolic activities to occur. Mitochondria regulate cell 

processes including apoptosis, signal transduction, energy production and 

metabolism (Li et al. 2013). Energy production is mainly achieved by oxidative 

phosphorylation (OXPHOS), which is the primary function of the mitochondria (Li 

et al. 2013). The term “oxidative phosphorylation” refers to the process by which 

mitochondria utilise electrons released following oxidation of substrates, which 

are transported through enzymes in the mitochondrial inner membrane to drive 

phosphorylation of ADP to ATP (Figure 1.3.1) (reviewed in Chaba et al. 2014). 
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Figure 1.3.1 Mitochondrial oxidative phosphorylation (OXPHOS) electron 

transport system (ETS) (adapted/redrawn from Matroeni et al. 2017).  

 

Electrons are transported through the inner mitochondrial membrane via four 

enzyme complexes (complex I, II, III and IV), three of which pump H+ to the 

intermembrane space (complexes I, III and IV). This system is known as the 

electron transport system (ETS) or electron transport chain (ETC) (reviewed in 

Gnaiger, 2009). Substrates from nutrient metabolism, such as malate and 

pyruvate, enter the tricarboxylic acid (TCA) cycle, where NADH is produced and 

subsequently reduced to NAD+ by Complex I, which pumps H+ generated from 

this reaction into the intermembrane space of the mitochondria (reviewed in 

Chaba et al. 2014). Complex II or succinate dehydrogenase (SDH) is the only 

enzyme that participates in both the TCA cycle and in ETS. Within the TCA cycle, 

complex II converts succinate to fumarate with subsequent release of electrons. 

These electrons are used by complex II within the ETS to reduce FADH2 to FAD, 

with further release of electrons into the ETS. Complex II is not a proton pump, 

and it is the second entry point (after complex I) to the ETS (Rutter et al. 2010). 
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Complex III converts ubiquinone to ubiquinol via oxidation, pumping generated 

H+ into the mitochondrial intermembrane space, while the electrons enter the 

cytochrome C carrier (reviewed in Chaba et al. 2014). Finally, complex IV, the 

largest enzyme of the ETS, known as cytochrome C oxidase (COX) received 

electrons from cytochrome C and uses them for the conversion of O2 to H2O, 

using H+ present in mitochondrial cytosol (reviewed in Chaba et al. 2014). The 

OXPHOS system contains the enzymes of the ETS plus Complex V or ATPase 

synthase, which uses the H+ dispensed in the intermembrane space to convert 

ADP to ATP (reviewed in Jonckheere et al. 2012).  

The enzymes of the electron transport chain are often seen in the form of 

large complexes, known as supercomplexes. Three main supercomplexes have 

been observed between complex I, III and IV: i) Complexes I + III + IV (known as 

the respirasome), complexes I + III and complexes III + IV (Lapuente-Brun et al. 

2013). The respirasome (Complex I + III + IV) is most abundant in mammals; 

however complex IV is found mostly a monomer and not part of a supercomplex, 

while complex II is the only enzyme that does not form supercomplexes 

(reviewed in Chaba et al. 2014).  

Each enzyme of the respiratory chain is comprised of different subunits, which 

are encoded by both nuclear and mitochondrial genes. Specifically, complex IV is 

comprised of 13 subunits, 3 of which are encoded by genes in the mitochondrial 

DNA (mt DNA) (subunits I, II, II) and the rest 10, including subunit IV, is encoded 

by genes located in the nuclear DNA (Dhar et al. 2008). The expression of those 

genes is regulated by two transcription factors, nuclear respiratory factor 1 (NRF-

1) and nuclear respiratory factor 2 (NRF-2) in both rats, mice and humans (Dhar 

et al. 2008).  

 

1.3.1.1 Mitochondrial dysfunction during ageing and disease   

Mitochondrial dysfunction can have a detrimental effect on cell function and 

survival. During ageing, mitochondrial function and mitochondrial enzyme 

activity decline. This is also accompanied by an accumulation of mutations in 
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mtDNA (Short et al. 2005). Accumulation of mitochondrial mutation has been 

linked to increase in reactive oxygen species (ROS) production, leading to 

reduction in OXPHOS (reviewed in Wallace, 1999). Mitochondrial mutation 

number in neurons is elevated in patients with neurodegenerative disorders, 

including Alzheimer’s and Huntington’s disease and these mutations are 

accompanies by an increase in oxidative damage (reviewed in Wallace, 1999). 

Mitochondrial dysfunction and decline in ATP production have been associated 

with reduction in mtDNA copy number with age (Short et al. 2005).  

Mutation or inhibition of genes encoding mitochondrial proteins has also 

been responsible for mitochondrial dysfunction during ageing and disease. 

Deficiency of MnSOD, a mitochondrial protein with antioxidant properties, 

causes substantial reduction in complexes II and III activity in skeletal muscle of 

mice, inhibiting the ETS (reviewed in Wallace, 1999). Age-related decline in 

complexes I, III and IV during ageing in skeletal muscle and brain of mice is 

believed to be associated with mutations in the mtDNA gene transcripts 

encoding subunits of these complexes (Feuers, 1998). These results are 

supported further by the absence of age-related decline in complex II activity, 

whose subunits are all encoded by genes in nuclear DNA (reviewed in van 

Remmen and Richardson, 2000). Specifically, decline in complex IV activity with 

ageing has been observed in the brain, the synaptic mitochondria and skeletal 

muscle (reviewed in van Remmen and Richardson, 2000). Complex IV is believed 

to be a key player in cell metabolic control, signalling and survival due to its 

position as the terminal enzyme in the ETS (reviewed in Arnold 2012). Complex 

IV defects may be attributed to inhibition of genes encoding its subunits, due to 

silencing of the transcription factors, such as NRF-1, controlling their expression 

(Dhar et al. 2008). Increased mitochondrial stress and damage beyond protein 

level can trigger several pathways including mitochondrial degradation via 

mitochondrial autophagy (mitophagy) (reviewed in Yoo and Jung, 2018).  

Regulation of molecular mechanisms can be tissue-specific, but it may also occur 

simultaneously and in multiple tissues. Factors that have the capacity to control 
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multiple signalling pathways concomitantly in different tissues include small, 

non-coding RNA molecules, such as microRNAs.  

 

1.4 Control of gene expression by microRNAs 

1.4.1 MicroRNA biogenesis, processing and port-transcriptional control of 

gene expression 

MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules of 

approximately 20-22 nucleotides in length, that have the ability to control gene 

expression mainly by direct binding to the 3’-untranslated region (UTR) region of 

their mRNA transcript (Ambros, 2001; Lagos-Quintana et al. 2002). The first 

miRNAs, lin-4 and let-7, were discovered in Caenorhabditis elegans (C. elegans), 

where mutants of these two miRNAs caused temporal deregulation of lavae 

development (Lee et al. 1993, Reinhart et al. 2000). Lin-4 and let-7 did not 

encode for any proteins and produced very small transcripts in length from 

precursor RNA molecules with a distinguished hairpin structure (Ambros, 2001). 

A later study on let-7 revealed the conservation of this miRNA, both in length and 

sequence between species (Pasquinelli et al. 2000).  

MicroRNA genes are distributed across the genome and are found either as 

clusters (polycistronic) or as independent units on intergenic regions, intronic 

sequences of transcriptional units or exonic sequences of non-coding genes 

(Figure 1.4.1; reviewed in Fazi and Nervi, 2008). Polycistronic miRNA genes 

generate pri-miRNA transcript processed by endonuclease RNase III Drosha, 

forming a complex with DiGeorge Syndrome Critical Region 8 (DGCR8) protein 

(Drosha/DGCR8 complex), producing multiple pre-miRNAs with a characteristic 

70-90 nt hairpin-shaped stem-loop structure (Lee et al. 2003). Pri-miRNA 

transcripts generated by independent units (intergenic, intronic/exonic) are also 

processed by Drosha/DGCR8, generating a 70-90 hairpin-shaped pre-miRNA 

transcript, which is then exported from the nucleus (Fazi and Nervi, 2008). 

Certain intronic miRNAs are processed in a Drosha-independent manner, 

escaping the canonical pathway of pre-miRNA biogenesis and producing pre-
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miRNA transcripts known as miRtrons (reviewed in Westholm and Lai, 2011). 

miRtrons are shorter in length than the canonical pri-miRNAs and are generated 

by intron splicing and debranching by lariat debranching enzyme (Ldbr), before 

they enter the canonical pathway of pre-mRNA processing (Ruby et al. 2007).  

Pre-miRNAs are actively exported from the nucleus into the cytosol by 

exporting-5 (Yi et al. 2003). There, pre-miRNA is recognised by enzyme Dicer and 

its partner TAR (HIV) RNA binding protein (TRBP) (Dicer/TRBP complex) and 

cleaved near the terminal loop, producing a miRNA/miRNA* duplex with 2 nt 

overhand at both 3’-ends (Bernstein et al. 2001; Hutvagner et al. 2001; reviewed 

in Starega-Roslan et al. 2011). miRNA/miRNA* duplex is loaded onto the 

Argonaute (Ago) protein of the miRNA-induced silencing complex (RISC) 

complex, where the least thermodynamically stable strand at the 5’ end is 

retained by the RISK complex (“guide” strand) while the other strand 

(“passenger” strand) is usually degraded, although in some cases it is functional 

(Schwarz et al. 2003). The “guide” strand bound to the RISC complex (mature 

miRNA) binds to the 3’UTR region of the target mRNA transcripts via a 

complementary sequence known as the “seed” region (2-7 nucleotides in length 

at the 5’ end of the miRNA) and represses their expression or inhibits their 

translation (or both) (Doench et al. 2004).  
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Figure 1.4.1 The canonical pathway of microRNA biogenesis and processing 

(redrawn from Fazi and Nervi, 2008).   

 

Post-transcriptional gene repression (or in some cases activation) by miRNAs 

occurs mainly by deadenylation and subsequent degradation or translational 

repression of the target mRNA as seen in Figure 1.4.2 (reviewed in Filipowicz et 

al. 2008). mRNA degradation occurs by rapid removal of the poly-(A) tail causing 

destabilisation of the mRNA transcript and decapping, which then leads to mRNA 

decay occurring in the P-bodies (Wu et al. 2006; Eulalio et al. 2007). Degradation 

of target mRNA is also seen of miRNA-AGO2 to the mRNA target site, where 

AGO2 acts as an endonuclease, cleaving the mRNA at the centre (Meister et al. 

2004).  Translational repression of the target mRNA can occur via three different 

mechanisms: repression of translation initiation or repression of post-initiation 
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steps (reviewed in Filipowicz et al. 2008). Translational repression at the 

initiation step is observed when miRNA binds to the m7G cap in the 3’UTR, 

preventing the binding of transcription factors such as elF4E (Humphreys et al. 

2005; Pillai et al. 2005). Translational repression at the initiation step can also 

take place by eLF6 recruitment to the RISC complex, which binds to the 60S 

ribosomal subunit, preventing it from joining the 40S subunit and therefore 

stalling the translation process (Chendrimada et al. 2007). Post-initiation 

translational repression occurs when the ribosomes “drop off” prematurely, 

terminating the translation process prematurely and leaving the nascent 

polypeptide incomplete (Petersen et al. 2005).  

Under certain conditions and in specific tissues or cell types, miRNAs have the 

potential to induce upregulation of post-transcriptional regulation. A study from 

Vasudevan et al. (2007) provides evidence on how a well study microRNA, let-7, 

can induce increased translation of its mRNA targets during cell cycle arrest but 

repress the translation of those mRNA targets during cell proliferation. Based on 

this evidence, they propose a novel role of microRNA function which oscillates 

between repression and activation of the targeted mRNAs during difference 

stages of cell cycle (Vasudevan et al. 2007).   
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Figure 1.4.2 Mechanisms of miRNA-mediated post-transcriptional gene 

repression (redrawn from Filipowicz et al. 2008).  

 

 

1.4.2 MicroRNA-128: regulation of key mechanisms in skeletal muscle and 

neurons  

MicroRNA-128 (miR-128) is an intronic miRNA encoded by miR-128-1 and 

miR-128-2 genes located on the introns of R3HDM1 gene (chromosome 2q21.3) 

and RCS gene (chromosome 3p22.3) respectively (Bruno et al. 2011). These 

genes are conserved among human, mouse and rat genome (Megraw et al. 

2010). Following processing, both miR-128-1 and miR-128-2 yield a mature 

microRNA identical in the sequence, called miR-128 (reviewed in Li et al. 2013).  

miR-128 is a brain-enriched microRNA that plays a key role in neuronal 

development and maintenance (reviewed in Ching and Ahmad-Annuar, 2015). 

miR-128 has also been studied extensively in relation to cancer and 

tumorigenesis. Increased levels of miR-128 were found in patients with acute 
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leukaemia and have been considered as a biomarker for prognosis and diagnosis 

of this type of cancer (Zhu et al. 2011). Despite its abundance in the brain and in 

various types of cancer, miR-128 was also found to be highly expressed in 

skeletal muscle tissue (Motohashi et al. 2013).  

 

1.4.2.1 Role of miR-128 in skeletal muscle 

Increased levels of miR-128 expression were recorded in brain and TA muscle 

in adult mice (Motohashi et al. 2013). miR-128 has also been shown to regulate 

the proliferation and differentiation of muscle side population (SP) cells, a 

distinct population of muscle stem cells with multipotent characteristics, which 

do not express the muscle satellite cell marker, Pax7 (Motohashi et al. 2012). In 

their study in 2013, Motohashi et al. demonstrated the regulation of insulin 

signalling pathway by miR-128, through direct targeting of Insr (insulin receptor), 

Isr-1 (insulin receptor substrate-1) and Pi3kr1 (phosphatidylinositol 3-kinases 

regulatory 1) mRNA, inhibiting their expression. Inhibition of miR-128 in vitro, 

resulted in hypertrophy of the cultured myotubes and increase of IRS-1 and AKT 

proteins, while administration of antisense miR-128 in vivo resulted in increased 

skeletal muscle mass in 4 weeks old mice (Motohasi et al. 2013). Results from 

this study show that miR-128 is capable of promoting skeletal muscle 

hypertrophy in vivo and in vitro, following inhibition of its expression levels. 

Further studies have shown miR-128 directly targeting myostatin (Mstn) gene 

transcript in C2C12 cells, while stalling their proliferation and promote their 

differentiation into myotubes (Shi et al. 2015). In vivo experiments showed 

increased expression of miR-128 accompanied by a significant decrease in MSTN 

protein levels in the skeletal muscle of 8-weeks old mice (Shi et al. 2015). 

Another study has shown correlation of miR-128 with ATP levels during myoblast 

differentiation. Specifically, increased levels of miR-128 were in agreement with 

increased ATP levels at Day 4-8 post-differentiation of C2C12 cells (Siengdee et 

al. 2015). Furthermore, miR-128 increased levels in C2C12 myotubes were 

accompanied by up-regulation of the expression levels of genes involved in 
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mitochondrial energy metabolism, including Cox6a2 (Seingdee et al. 2015). 

Cox6a2 gene encodes one of the subunits of Complex IV of the mitochondrial 

respiratory chain and inhibition of this gene has been shown to decrease 

mitochondrial activity and promote muscle-fibre type switching, protecting mice 

against high-fat diet-induced obesity (Quintens et al. 2013). miR-128 has also 

been implicated in skeletal muscle stress response by directly targeting the v-Maf 

avian musculoaponeurotic fibrosarcoma oncogene homolog G (MAFG) gene 

transcript and therefore controlling biochemical pathways associated with 

oxidative stress (Caggiano et al. 2017). In line with previous studies, Dai et al. 

(2016) demonstrate the ability of miR-128 to regulate bovine satellite cell 

proliferation and differentiation in skeletal muscle via direct targeting and 

inhibition of Sp1 transcript. Similar results were obtained from studies in 

cardiomyocytes, where inhibition of miR-128 resulted in increased proliferation 

of postnatal cardiomyocytes cells; the opposite results were seen with tissue-

specific overexpression of miR-128 in neo-natal mice (Huang et al. 2018).  

 

1.4.2.2 Role of miR-128 in neuronal cells 

The abundance of miR-128 expression in the brain and central nervous system 

(CNS) has made it an ideal candidate for investigation of the mechanisms it 

regulates. miR-128 has the capacity to determine neuronal progenitor cell fate in 

vivo and in vitro by directly targeting Pcm1, which controls proliferation and 

neurogenesis of NPC cells in the developing cortex of mice (Zhang et al. 2016). 

Overexpression of miR-128 in vitro and in utero enhanced neuronal 

differentiation of NPC cells but inhibited their proliferation, by supressing the 

translation of Pcm1 mRNA (Zhang et al. 2016). Spatial as well as temporal 

regulation of miR-128 expression is important for the regulation of neuronal 

development in the cortex of mouse embryo (Franzoni et al. 2015). In their 

study, Franzoni et al. (2015) have demonstrated how inhibition of miR-128 

caused excessive migration of neuronal cells in the upper layer of the cortex. 

Two more studies have demonstrated the role of miR-128 in neuronal excitability 
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in mice. The first study from Tan et al. (2013) highlighted the modulation of 

motor behaviour by miR-128 through regulation of neuronal signalling pathways 

and neuron excitability. Specifically, they demonstrated the effect of miR-128 

inhibition on neuronal motor hyperactivity in adult neurons, resulting in seizure 

and a Parkinson’s-like phenotype in mice (Tan et al. 2013). An inverse 

relationship was observed between neurons overexpressing miR-128 and motor 

activity, which appeared decreased and was accompanied by a reduction in ERK2 

activation (Tan et al. 2013). Similar data were shown in a later study from 

McSweeney et al. (2016), where inhibition of miR-128 in neuronal cells in vitro 

caused increased neuronal hyperactivity.  

Apart from direct targeting of specific mRNAs, miR-128 has been shown to 

control gene expression in developing neurons by controlling nonsense-

mediated decay (NMD) process. NMD mediates degradation of mRNA transcripts 

and inhibition of this process has been associated with impaired 

neurotransmitter signalling and synaptic vesicle cycling at the neuromuscular site 

(Long et al. 2010). miR-128 disrupts NMD by direct targeting of one of its genes, 

Upf1, causing disruption in NMD pathways and subsequent upregulation of the 

mRNA transcripts regulated by NMD for degradation (Bruno et al. 2011).  

Several studies have focused on the association of miR-128 with 

neuropsychiatric disorders, due to its ability to regulate neuronal cell behaviour 

and fate. Of particular interest is the interaction of miR-128 with Arpp21, as miR-

128 gene is located within an intron of the longest isoform of Arpp21 gene, 

which it also targets (Megraw et al. 2010). Deregulation of Arpp21 expression 

has been associated with several neurological syndromes, including but not 

limited to Alzheimer’s, epilepsy and anxiety (reviewed Ching and Ahmad-Annuar, 

2015).  
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1.4.2.3 Role of miR-128 in cell senescence, metabolism and cancer 

Aside from its role in skeletal muscle and CNS, miR-128 has been shown to be 

involved in regulating cell senescence, cholesterol metabolism and various forms 

of cancer biology. miR-128 promotes cell senescence by direct targeting of Bmi-

1, which results in inhibition of cancer cell growth by increased intracellular ROS 

levels (Venkataraman et al. 2010). Several studies have reported miR-128 as a 

tumour suppressive microRNA, as downregulation of its expression levels is seen 

in various types of cancer, such as glioblastoma, medulloblastoma and acute 

myeloid leukaemia (reviewed in Feliciano et al. 2010).  A study from 

Papagianakopoulos et al. (2012) highlighted miR-128 tumour suppressive 

properties by targeting and repression of Egfr and Pdgfrα genes, involved in the 

receptor tyrosine kinase (RTK) signalling. Cell apoptosis in embryonic kidney stem 

cells was induced by repression of Bcl-2-associated X protein (Bax) gene through 

direct targeting by miR-128 (Adlakha and Saini, 2011). BAX, a member of the Bcl-

2 family, is translocated under stress conditions from the cytosol to the outer 

membrane of the mitochondria, creating pores and impairing mitochondria 

respiration, leading the cells to apoptosis (Adlakha and Saini, 2011). Findings 

from the study by Lian et al. (2018) are also in line with these findings. 

Specifically, Lian et al. have demonstrated the regulation of colorectal cancer cell 

apoptosis during overexpression of miR-128, which supresses the expression of 

its direct target sirtuin-1 (Sirt-1), leading to accumulation of intracellular ROS 

(Lian et al. 2018). Apart from its pro-apoptotic properties, miR-128 has also been 

associated with the regulation of cholesterol homeostasis. Upregulation of miR-

128 was associated with decreased expression of genes involved in cholesterol 

metabolism by repression of genes involved in cholesterol efflux (Aldakha et al. 

2013). Whether miR-128 retains similar properties under the effect of dietary 

protocols altering cholesterol balance, remains to be investigated.  
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1.4.3 MicroRNA-133a: regulation of key mechanisms in skeletal muscle and 

neurons  

MicroRNA-133a belongs to a family of microRNAs expressed specifically in 

muscle tissue and are therefore known as “myomiRs” (reviewed in van Rooij et 

al. 2008). miR-133a gene is clustered with miR-1 gene on chromosome 2 

(seprated by 9.3 kb) and on chromosome 18 (separated by 2.5 kb) in mice (Chen 

et al. 2005). Both miR-1 and miR-133a are expressed as a bicistronic transcript 

specifically in cardiac and skeletal muscle tissue (Chen et al. 2005). miR-133a-1 

and miR-133a-2 (chromosomes 18 and 2 respectively) have an identical 

sequence which only differs in the last 2 nucleotides at the 3’ end of miR-miR-

133b (reviewed in van Rooij et al. 2008). This similarity in miR-133 sequences can 

prove challenging in functional studies.  

 

1.4.3.1 Role of miR-133a in cardiac and skeletal muscle 

The role of microRNA-133a (miR-133a) in muscle development and function 

has been extensively studied, since its tissue-specific expression was reported by 

Lagos-Quintana et al. (2002). miR-133a has been identified as a key regulator of 

skeletal muscle and cardiac muscle cell proliferation and differentiation in vitro 

and in vivo. In their study, Chen et al. (2005) identified miR-133a as an inducer of 

myoblast proliferation in C2C12 cells. Temporal regulation and level of miR-133a 

expression was also proven essential, as increased miR-133a levels in 

malformations of cardiac tissue during development (Chen et al. 2005). 

Furthermore, Chen et al. (2005) identified serum response factor (Srf) gene, a 

key player in proliferation and differentiation of skeletal muscle, as a direct 

target of miR-133a. Expression levels of miR-133a are higher during 

differentiation of C2C12 myotubes but levels are not detectable in C2C12 

myoblasts, implying that its expression is induced during differentiation in vitro 

(Rao et al. 2006). Furthermore, findings from Rao et al. (2006) demonstrated the 

regulation of miR-133a expression by MyoD and myogenin in C2C12 myotubes, 

which is in line with findings from previous findings from Chen et al. (2006). 
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Inhibition of miR-133a in C2C12 myotubes appeared affect myotube elongation 

and morphology rather than differentiation process, as seen with other myomiRs 

(Kim et al. 2006). Expression of miR-133a in C2C12 myotubes was suppressed 

with addition of FGF which is a key component of ERK/MAPK pathway 

(Sweeetman et al. 2008). During early development, miR-133a expression is also 

regulated by MEF-2 enhancer on a transcriptional and post-transcriptional level 

in skeletal and cardiac muscle of mice (Liu et al. 2007). Regulation of myogenesis 

in vitro also occurs through repression of uncoupling protein -2 (UPC-2) gene, 

which is a direct target of miR-133a (Chen et al. 2009b). Repression of Upc-2 

expression in C2C12 cells resulted in attenuated proliferation and enhanced 

myoblast differentiation, highlighting further the key role of miR-133a in the 

regulation of myogenesis (Chen et al. 2009b).  

Three studies focused on the effect of gain- and loss-of function of miR-133a 

in skeletal muscle fate and disease. A study from Huang et al. (2011) revealed 

direct targeting of Igf1r transcript by miR-133a. Gain- and loss-of-function 

experiments showed suppression of Igf1r expression in C2C12 myotubes 

following overexpression of miR-133a; however supplementation of IGF-1 (ligand 

of IGF-1R) in C2C12 cells resulted in upregulation of miR-133a expression (Huang 

et al. 2011). The findings from this study indicate regulation of miR-133a 

expression via IGF-1 mediated feedback loop in modulation of myogenesis, 

suggesting that miR-133a could be a promising therapeutic target for skeletal 

muscle diseases (Huang et al. 2011). A second study from Deng et al. (2011) 

investigated the effect of miR-133a overexpression in mdx mice, a model of 

Duchene muscular dystrophy. miR-133a expression levels were significantly 

increased in the skeletal muscle of those mice; however, transgenic mice 

overexpressing miR-133a in skeletal muscle demonstrated normal muscle 

development and function (Deng et al. 2011). Interestingly, a third study from Liu 

et al. (2011) demonstrated the effect of miR-133a deletion in vivo, adult-onset 

centronuclear myopathy in fast-twitch muscle fibres, impaired mitochondrial 

function and fibre type switching in mouse skeletal muscle. miR-133a was also 
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implicated in the regulation of fibre type conversion through modulation of 

thyroid hormone action in skeletal muscle (Zhang et al. 2013).  

Further studies have focused on the role of miR-133a in the regulation of 

myogenesis via modulation of different pathways. In their study, Zhang et al. 

(2012) indicated Sp-1 transcript as a direct target of miR-133a, inducing mitotic 

arrest in C2C12 myoblasts and inhibiting proliferation. Moreover, miR-133a was 

identified as a repressor of ERK1/2 signalling pathway activity, by directly 

targeting two components of this signalling pathway, Fgfr1 and Ppp2ac 

transcripts (Feng et al. 2013). Repression of ERK1/2 signalling resulted in 

repressed cell proliferation and promotion of cell differentiation (Feng et al. 

2013). Inhibition of miR-133a in chick embryos led to an increase in the 

expression levels of the target genes BAF60a and BAF60b transcripts, impairing 

the timing of myogenic differentiation (Goljanek-Whysall et al. 2014). Foxl2 

transcript was also identified as a direct target of miR-133a, regulating skeletal 

muscle differentiation in vitro through a different mechanism than the ones 

previously described (Luo et al. 2015). A recent study from Mok et al. (2018), also 

implicated Hedgehog pathway modulation via miR-133a in the regulation of 

myogenesis at embryonic stages.  

 

1.4.3.2 Role of miR-133a in neuron cells 

Despite its specific expression in skeletal and cardiac muscle, recent studies 

have associated changes in miR-133a expression following neuronal alterations 

and injury. Expression levels of known target genes of miR-133a were 

significantly altered in rats 7 days following traumatic spinal cord injury (SCI), 

suggesting a possible relationship between miR-133a and injury responses at the 

spinal cord (Yunta et al. 2012). These findings are in line with previous evidence 

from Nakanishi et al. (2009) showing an upregulation of miR-133a expression 

levels just 24 hours after spinal cord injury in mice. Interestingly, during early 

embryonic development, miR-133a appears to have an inhibitory role in stem 

cell differentiation to neuron cells, by suppression of neuronal genes involved in 
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neuronal cell fate specification in vitro (Ivey et al. 2008; Izarra et al. 2017).  

Recent study by Hoye et al. (2017) has shown the potential role of miR-133a in 

motoneuron cells, with a number of its target genes showing increased 

expression levels in those cells during postnatal growth. In the context of 

neuromuscular junctions, expression of miR-133a does not seem to be 

significantly altered after 10 days of denervation in TA muscle of ALS mouse 

model (Williams et al. 2009).  

In recent years, microRNAs have been of particular interest due to their potential 

of controlling multiple signalling pathways in many different tissues 

simultaneously, making them a high-throughput mechanism of gene expression. 

This is of particular importance in the field of skeletal muscle development and 

ageing where multiple events occur simultaneously.  

 

1.5 Hypothesis 

Pre- and/or early postnatal protein restriction adversely affects the 

homeostasis of muscle fibres and/or neuromuscular junctions and this is, at least 

partially, regulated by modified microRNA-target interactions in muscles and 

nerves of the offspring. Therefore, manipulation of microRNA expression may 

serve as a tool for restoration of neuromuscular morphology and function during 

dietary protein restriction.  

 

1.6 Aims 

The aims of this study were to:  

i) Determine the effects of protein-deficient diet during pre- and postnatal 

stages of development in skeletal muscle and neuromuscular junctions of 

12-week old mice (Chapter 3) 
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ii) Identify changes in expression levels of microRNAs, selected based on their 

function, in skeletal muscle and peripheral nerve of 12-week old mice on a 

protein-deficient diet pre- or postnatally (Chapter 4) 

iii)  Identify predicted target genes of microRNAs with potential role in 

regulating neuromuscular homeostasis and differentially expressed in 

muscle and/or nerve of 12-week old mice on a protein-deficient diet pre- or 

postnatally using in silico analysis (Chapter 4) 

iv) Investigate the effect of gain- and loss-of-function of miR-128 and miR-133a 

in skeletal muscle cell phenotype in vitro (Chapter 5) 

v) Investigate the effect of gain- and loss-of-function of miR-128 and miR-133a 

in motoneuron cell phenotype in vitro (Chapter 6) 

vi) Investigate the expression levels of miR-128 predicted target genes and their 

protein content in skeletal muscle and motoneuron cells in vivo and in vitro 

(Chapter 7) 
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2 Materials and Methods 

2.1 Animals 

In this study female and male C57BL/6 Thy1-YFP16 transgenic mice were used 

(The Jackson Laboratory; Thy-1 YFP-16, Stock# 003709). These mice express 

yellow fluorescent protein (YFP) in the motor neurons and sensory neurons at 

high levels (with no expression in non-neuronal cells and no apparent toxic 

effects) allowing the visualisation of motor neurons and muscle innervation from 

mid-gestational stages without the use of antibody staining (Vasilaki et al. 2016). 

This provides a novel approach in the assessment of structural alterations in 

motor neurons and neuromuscular junctions (NMJs) in muscle using fluorescent 

microscopy.  

All experiments were performed in 12-week old mice, allowing the 

examination of the effect of a protein-deficient diet until the end of postnatal 

period. All mice were housed in the Biomedical Services Unit at the University of 

Liverpool under a control environment and subjected to 12 h light-12 h dark 

cycle.  

Two weeks prior mating, nulliparous female mice where introduced to either 

a control diet (20% Crude Protein W/W ISO’ (P), Code 829206, Special Diet 

Services, Essex, UK) or a low protein diet (5% Crude Protein W/W ISO’ (P), Code 

829202; Special Diet Services, Essex, UK) and maintained in those diets 

throughout the study. Both diets will be isocaloric but differ in the amount of 

casein as previously described (Chen et al. 2009; Appendix, Table A6). After 

acclimation to the chow, breeders were placed together and maintained in those 

diets throughout the study.  
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Figure 2.1.1 Experimental design (N) 20% diet (L) 5% diet. Group N: Control mice 

produced from dams fed on normal chow. Group L: Mice produced from dams 

maintained on a low protein diet. Group N-N: Mice produced from dams 

maintained on a normal protein diet and fed postnatally by a dam maintained on 

a normal diet. Culled and analysed at weaning (21 days). Group N-L: Mice 

produced from dams maintained on a normal protein diet but fed postnatally by 

a dam maintained on a low diet. Culled and analysed at weaning (21 days). 

Group L-N: Mice produced from dams maintained on a low protein diet but fed 

postnatally by a dam maintained on a normal diet. Culled and analysed at 

weaning (21 days).  Group N-N-N: Control mice produced from dams fed on 

normal protein chow, fed postnatally by a dam maintained on a normal diet until 

weaning and maintained on a normal diet until 3 months of age. Group N-L-L: 

Control mice produced from dams fed on normal protein chow, fed postnatally 

by a dam maintained on a low diet until weaning and maintained on a low diet 

until 3 months of age. Group L-N-N: Mice produced from dams fed on low 
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protein chow, fed postnatally by a dam maintained on a normal diet until 

weaning and maintained on a normal diet until 3 months of age.    

Newborn pups born from either a mother on a normal protein diet (M(N)) or 

a protein-deficient diet (M(L)) were cross-fostered to a different lactating dam 

maintained either on a normal or a low-protein diet, within 24 hours after birth, 

generating the following 3 groups: NN, NL, LN. (Figure 2.1.1). Pups were culled 

either at weaning (21 days) by cervical dislocation or were weaned onto either 

the deficient or the control diet until 12 weeks of age, generating 3 groups: NNN, 

NLL, LNN. Group N-N-N represents the control group with mice produced from 

dams fed on normal protein chow, lactated postnatally by a dam maintained on 

a normal diet until weaning and maintained on a normal diet until 12 weeks of 

age. Group N-L-L represents mice produced from dams fed on normal protein 

chow, fed postnatally by a dam maintained on a low-protein diet until weaning 

and maintained on a low-protein diet until 12 weeks of age. Group L-N-N 

represents mice produced from dams fed on low-protein chow, fed postnatally 

by a dam maintained on a normal diet until weaning and maintained on a normal 

diet until 3 months of age. 

A more detailed explanation for the keys of each group is shown in Figure 2.1.2 

using “NLL” as an example key. 
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Figure 2.1.2 Schematic illustration of the key name that has been used to distinct 

separate mice in the different experimental groups based on their protein diet 

they were under at different time points and up until 12 weeks of age. 

 

2.2 EDL muscle force measurements 

At 12 weeks of age, mice were collected and anaesthetised via intraperitoneal 

(IP) injections of ketamine hydrochloride (66 mg/kg) and medatomidine 

hydrochloride (0.55 mg/kg).  

Following successful anaesthesia of the mouse, the distal level of the tendon 

of the EDL muscle was exposed and secured to the lever arm of a servomotor 

(Aurora Scientific). The knee of the hindlimb was fixed and bipolar platinum wire 

electrodes were placed across the exposed peroneal nerve. Optimal length (Lo) 

of the EDL muscle was recorded using serial increments of 1 Hz stimulation and 

set at the length that generates the maximal force. To determine the Po, EDL 

muscle was electrically stimulated to contract at Lo with optimal stimulation 

voltage (8–10 V) every 2 min for 300 ms with 0.2 ms pulse width. The frequency 

of stimulation was then increased from 10 to 50 Hz and followed by 50 Hz 

increments to a maximum of 300 Hz. When the maximum force of the EDL 

muscle reached a plateau, despite the increase of the stimulation frequency, Po 

was recorded.  

 

2.3 Tissue collection and preparation 

Reagents: 

• 10% neutral-buffered formalin (NBF) (Cat# HT501128; Sigma Aldrich, 

Dorset, UK) 

• Tissue preservative solution: 

o 0.01 M phosphate buffered saline buffer solution (PBS) (Cat# 

P4417; Sigma Aldrich, Dorset, UK) 
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o 0.1% w/v NaN₃ (Cat# S2002; Sigma Aldrich, Dorset, UK) 

Protocol: 

Mice were sacrificed by cervical dislocation. Body weight of the mice was 

recorded immediately following culling and muscle from both lower hindlimbs 

and both sciatic nerves were isolated and their weight was recorded. Following 

dissection, tissues were processed accordingly. Samples were then stored at -

80oC or 4oC until used. The fur of the mouse was removed from the rest of the 

body which was then fixed with 10% NBF for 24 h before stored in 0.1% PBS-

NaN₃.  

 

2.4 Neuromuscular junction (NMJ) staining 

Reagents: 

• α-bungarotoxin Alexa Fluor™ 594 Conjugate (Cat# B13423; Molecular 

Probes, Life Technologies Ltd, UK) 

• 0.01 M phosphate buffered saline buffer solution (PBS) (Cat# P4417; 

Sigma Aldrich, Dorset, UK) 

• 0.1% w/v NaN₃ (Cat# S2002; Sigma Aldrich, Dorset, UK) 

• 0.1% v/v Triton X-100 (Cat# X100; Sigma Aldrich, Dorset, UK) 

• 0.04% v/v Tween-20 (Cat# P1379; Sigma Aldrich, Dorset, UK) 

Protocol:  

To visualise acetylcholine receptors (AChRs) in Thy1-YFP16 mice, EDL muscles 

were stained as described previously (Valdez et al. 2010). Fixed EDL muscles 

were immersed into 0.1% PBS-Triton X-100 solution for 30 min, for 

permeabilisation of the tissue. Muscles were then stained 1:500 Alexa 594-

conjugated α-bungarotoxin (α-BTX) for 30 min in the dark at room temperature 

(RT). Finally, the muscles were washed once in 0.04% PBS-Tween-20 solution for 

30 min in the dark at RT, before placed into 0.1% PBS-NaN₃ for long term 

preservation.  
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2.5 Visualisation and analysis of NMJs 

To perform NMJ structural analysis, maximum intensity multichannel images 

were generated from confocal z-stacks using Nikon Ni-E Elements software 

(Nikon, Tokyo, Japan). Merged images from each muscle were then montaged 

into a single image file using ImageJ software (Image Processing and Analysis in 

Java; National Institutes of Health, Bethesda, MD, USA). AChR innervation (motor 

end plate) was defined as co-localisation of the presynaptic terminal (green) with 

fluorescently labelled AChRs (red).  NMJ structural changes were scored and 

divided into 3 main groups: Normal, partially or completely denervated and 

morphologically abnormal NMJs. NMJs classified as normal when presenting a 

“pretzel”-like morphology and full colocalisation between the presynaptic 

terminal (nerve; green) and the AChR clusters (red). Partially denervated NMJs 

were defined as those with the motor end plate not completely apposed by the 

nerve (pre-synaptic end) terminal. Fully denervated NMJs were those with no 

presence of presynaptic terminal in the junction leaving all motor end plate 

unoccupied. Morphologically abnormal NMJs were considered those with full 

colocalisation but were presenting morphological characteristic outside of the 

“pretzel-like” shape of the NMJs. Morphologically abnormal NMJs were divided 

into 3 subgroups: limited branching; limited folds or “branches” of the receptor 

area, fragmentation; irregularly formed NMJ sites with “open” formation, 

discontinuous to the oval “pretzel-like” shape, small size; NMJs with considerably 

smaller size compared to normal neighbouring ones. Examples of such NMJs are 

shown in Figure 2.5. Criteria for structural classifications of NMJs were adjusted 

from Valdez et al. 2010.  
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Figure 2.5 Structure of NMJs in mouse EDL muscle. A) Normal “pretzel-like” NMJ 

structure, branching and co-localisation of motor end plate (AChRs; red) and pre-

synaptic end terminal (nerve; green) being evident, B) Partially denervated NMJ, 

motor end plate not apposed by a pre-synaptic end terminal in the majority of 

the junction, C) Fragmented NMJ, lack of “pretzel-like” shape, structure appears 

“broken” in two separate parts, D) Limited/defective branching, periphery of 

NMJ is present but branching in the centre is very limited, E) Limited 

branching/small size NMJ, pre- and post-synaptic terminals are present but 

structure is not fully formed, F) Small size of NMJ in comparison with a 

neighbouring normal size NMJ.   
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2.6 Histology and gelatine embedding  

Reagents: 

• Sucrose solution: 

o 0.01 M phosphate buffered saline buffer solution (PBS) (Cat# 

P4417; Sigma Aldrich, Dorset, UK) 

o 30% w/v sucrose (Cat# S9378; Sigma Aldrich, Dorset, UK) 

• Gelatine solution: 

o 0.01 M phosphate buffered saline buffer solution (PBS) (Cat# 

P4417; Sigma Aldrich, Dorset, UK) 

o 7.5% (w/v) porcine-derived gelatine solution (Cat# G1890; Sigma 

Aldrich, Dorset, UK) 

o 15% (w/v) sucrose (Cat# S9378; Sigma Aldrich, Dorset, UK) 

o 0.1% (w/v) NaN₃ (Cat# S2002; Sigma Aldrich, Dorset, UK) 

• Optimal Cutting Temperature (O.C.T.) compound (Cat# KMA-0100-00A; 

CellPath, Powys, UK) 

• Isopentane (Cat# 15711819; Fisher Scientific, Loughborough, UK) 

• Liquid Nitrogen (LN2) 

Protocol: 

Gelatine embedding is a method commonly used to provide rigidity to fragile 

tissues and preserve their structure during preparation and cryosectioning (Gill 

et al. 2016). It is also used as a method of preservation of samples but also serves 

as a mold for sample positioning prior to sectioning (Fan et al. 2015). Sucrose 

incubation of fixed tissues ensures dehydration of tissues, forcing H2O molecules 

out of the tissue, preventing crystal formation and cryo-damage of the tissue. 

Gelatine embedding provided a stable structure for whole muscle tissue to be 

positioned transversely on the cork before snap-freezing. 

Tissues embedded in gelatin were then vertically aligned on cork disks, were 

covered in O.C.T mounting medium and frozen in isopentane cooled in LN2. 
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Samples remained immersed in ice-cold isopentane for a minimum of 30 sec 

before covered with foil and stored at -80oC until cryosectioning.  

Prior to sectioning, tissues were placed inside the cryostat chamber for 30 min 

to allow acclimatisation of tissue samples to the cryostat temperature. Cryostat 

(Leica 1890) was set to -22oC and sectioning thickness was set at 12 μm. Sections 

were collected on gelatine coated slides and left to air-dry overnight before 

stained the following day.  

 

2.7 Gelatine-coating of glass slides for tissue sections 

Reagents: 

• 1 g porcine-derived gelatine (Cat# G1890; Sigma Aldrich, Dorset, UK) 

• 0.19 g Chromium (III) Potassium Sulfate (KCr(SO₄)₂) (Cat# 1010360250; 

Merck, Dorset, UK) 

• 0.5 g NaN3 (Cat# S2002; Sigma Aldrich, Dorset, UK) 

• dH2O 

Protocol: 

Gelatine powder was dissolved in 200 mL of dH2O at 45oC on a heating 

magnetic stirrer. When fully dissolved, chromium (III) potassium sulfate and 

NaN3 were added. Solution was stirred at 45oC until all the components were 

homogenised in the solution. Gelatine solution was then filtered in a clean glass 

baker using a filter paper and poured into a histo-staining glass pot and covered 

to avoid dust accumulation in the solution. Microscopy slides were immersed 

into the solution for 3-5 sec and were positioned vertically and let to dry 

overnight at RT and covered to protect from dust attaching on them. Slides were 

stored into a slides’ box until used. The remaining gelatine solution was 

transferred back in the bottle and stored at 4oC until future use.  
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2.8 Transverse muscle sections staining  

Reagents: 

• Wheat germ agglutinin (WGA) – fluorescein (5 μg/mL) (Cat# FL-1021-5; 

Vector Laboratories Ltd., Peterborough, UK) 

• 4′,6-diamidino-2-phenylindole (DAPI) – hard set (Cat# H-1500; Vector 

Laboratories Ltd., Peterborough, UK) 

• Ice-cold methanol (MetOH) (Cat# 34860; Sigma Aldrich, Dorset, UK) 

• 0.01 M phosphate buffered saline buffer solution (PBS) (Cat# P4417; 

Sigma Aldrich, Dorset, UK) 

• 0.04% v/v Tween-20 (Cat# P1379; Sigma Aldrich, Dorset, UK) 

Protocol: 

Muscle sections were retrieved from -20oC and left to air-dry at RT for aprox. 

10 min. Sections were fixed with ice-cold MetOH for 10 min at RT before washed 

2x 5 min with PBS-Tween-20 (0.04%). Muscle sections were incubated in 300 μL 

of 1:1000 WGA diluted in 0.01M PBS solution for 10 min in the dark at RT. 

Following staining slides were washed 2x 5 min with PBS-Tween-20 (0.04%) 

before mounted with hard-set DAPI. The slides were left to set overnight in the 

dark at RT before being imaged.  

 

2.9 Confocal microscopy 

Fluorescence images were obtained using a C1 Nikon Eclipse Ti confocal laser 

scanning microscope (Nikon, Tokyo, Japan) equipped with a 405 nm excitation 

diode laser, a 488 nm excitation argon laser, and a 543 nm excitation helium–

neon laser. Slides were kept in the dark at all times. Consecutive images were 

acquired using 20x objective and were stitched into a single high-resolution 

image using Adobe Photoshop CS6.  
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2.10 Image analysis of EDL and TA muscle sections 

Image analysis of EDL and TA transverse muscle sections was performed using 

ImageJ software ((Image Processing and Analysis in Java; National Institutes of 

Health, Bethesda, MD, USA). All analyses were performed semi-automatically, 

using the “Tissue Cell Geometry Stats” macro created by the Institute for 

Research in Biomedicine, University of Barcelona (Barcelona, Spain) 

(http://adm.irbbarcelona.org/image-j-fiji#TOC-Automated-Multicellular-Tissue-

Analysis).  

Individual images acquired from different areas of the muscles were stitched 

together to create a montaged multichannel image of the whole muscle section 

using Adobe Photoshop. Images were imported into ImageJ software, split into 

individual channels and only the channel with the muscle fibre membrane stain 

(green) was used for the analysis. Image was converted to 8-bit file and “Tissue 

Cell Geometry Stats” plugin was selected for the analysis of the muscle fibres. 

Parameters were set as follows: default parameters were selected, “Light 

background” was deselected, “Noise tolerance” was set between 10-23, 

depending on the quality of each section, output type as “Segment particles” and 

“Preview point selection” was maintained. Following merging/segmentation of 

the muscle fibres and calculation of the number and size of the fibres in the 

image, further processing was performed to exclude any selections that were not 

fibres (vessels, gaps etc.). All files generated from the image analyses were saved 

accordingly.  

 

2.11 In silico analysis of predicted gene targets of miR-128 and miR-133a  

Bioinformatic analysis of the predicted target genes of miR-128 and miR-133a 

was performed using three databases: TargetScanMouse7.1, STRING and KEGG 

database.  

 

 

http://adm.irbbarcelona.org/image-j-fiji#TOC-Automated-Multicellular-Tissue-Analysis
http://adm.irbbarcelona.org/image-j-fiji#TOC-Automated-Multicellular-Tissue-Analysis
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TargetScanMouse7.1 (http://www.targetscan.org/mmu_71/)   

In order to investigate the predicted target genes for miR-128 and miR-133a, 

TargetScanMouse7.1 database was used. MiR-128 and miR-133a were selected 

from the list of broadly conserved microRNA families and a full list of predicted 

target genes was obtained. For certain gene targets, the name was imported in 

the appropriate section of the home page. A list of all the microRNAs and their 

equivalent target sites (conserved and/or poorly conserved) were obtained. A 

number of predicted target genes of interest was selected for further analysis. 

 

STRING (Version 10.5; https://string-db.org/)  

The full list of predicted target genes of each microRNA as obtained from 

TargetScanMouse7.1 was imported into STRING database (Version 10.5), in order 

to investigate the interactions between the predicted target genes on a protein 

level. Each protein (derived from a gene transcript) was depicted as a node, 

which was connected to neighbouring nodes. Disconnected or individual nodes 

were excluded from the network analysis. Interactions between the nodes were 

assessed based on degree of confidence (low=0.150, medium=0.400, high=0.700, 

highest=0.900). Information obtained was used for illustration of the network 

using CytoScape software.  

 

KEGG (https://www.genome.jp/kegg/)  

Following network analysis on a protein level, selected predicted target genes, 

which demonstrated strong interactions on a protein level (degree of confidence 

set to “highest” (0.900)), were imported into KEGG Pathway database in order to 

investigate the signalling pathways they are involved in and/or share. KEGG 

Reference number (KO number) was imported into KEGG Mapper tool, and 

“Search&Color Pathway” was selected. The KO number was imported in the box 

followed by background (bg) colour and foreground (fg) colour. An example of 

such import is: “K15290 brown,yellow”. When all proteins have been imported, 
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“uncoloured diagrams were selected in order to obtain coloured items only for 

the proteins of interests in the pathways. Pathways of interests were selected 

from the list of all the pathways were one or more of the proteins of the list are 

involved in. Proteins encoded from predicted target genes were coloured in cyan 

(miR-128) or orange (miR-133a), depending on the microRNA by which they were 

targeted. 

 

2.12 RNA isolation from tissue and cell samples  

Reagents: 

• TRIzol reagent (Cat# 15596026; Invitrogen, Paisley, UK) 

• Liquid Nitrogen (LN2) 

• Nuclease-free H2O (Part of Cat# 218073; QIAGEN, Manchester, UK) 

• Iso-amyl alcohol:chloroform 25:1 (Cat# 25666; Sigma Aldrich, Dorset, UK) 

• Isopropanol (Cat# 59304; Sigma Aldrich, Dorset, UK) 

• Ethanol (EtOH) (Cat# 51976; Sigma Aldrich, Dorset, UK) 

Protocol:  

Muscles and nerves were ground in LN2 in pestle and mortar and transferred 

into 1 mL of TRIzol. Prior to RNA isolation, TRIzoL samples were allowed to stand 

at RT for 5 min before addition of 200 μL of chloroform. Samples were shaken 

vigorously for 20-30 sec and let to stand at RT for 5 min. Samples were 

centrifuged at 12,000 x g for 10 min at 4oC and incubated for 5 min at RT. 

Following incubation, approximately 250 μL of aqueous phase containing the 

RNA were collected and transferred into a new Eppendorf tube. To achieve RNA 

precipitation, the aqueous phase collected was mixed with 500 μL of 100% 

isopropanol and mixed by manual inversion of the tubes for 10-15 sec. Samples 

were incubated at RT for 25-30 min and then centrifuged at 21,100 x g for 30 min 

at 4oC. Following centrifugation, the supernatant was discarded and pellet was 

left to dry for 5 min before washed in 250 μL of 70% EtOH. Samples were 

incubated for 30 min at RT before centrifuged at 21,100 x g for 5 min at 4oC. 
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Supernatant was discarded and samples were centrifuged again at 21,100 x g for 

5 min at 4oC for the remaining EtOH residues to be collected at the bottom of the 

tubes and be discarded. Any excess EtOH was left to evaporate at RT for a 

maximum of 5 min. Finally, RNA pellet was resuspended in 10 μL RNase-free H2O 

and placed immediately on ice to avoid degradation. RNA concentration and 

purity were estimated according to the 260/280 and 260/230 ratio recorded 

using Nanodrop2000 (ThermoFisher).  

 

2.13 First strand cDNA synthesis  

Reagents: 

For microRNA cDNA synthesis: 

• miScript HiSpec Buffer (5x) (Part of Cat# 218161; QIAGEN, Manchester, 

UK) 

• miScript Nucleics Mix (10x) (Part of Cat# 218161; QIAGEN, Manchester, 

UK) 

• miScript Reverse Transcriptase mix (Part of Cat# 218161; QIAGEN, 

Manchester, UK) 

• RNase-free H2O (Part of Cat# 218161; QIAGEN, Manchester, UK) 

For mRNA cDNA synthesis:  

• SuperScript™ II Reverse Transcriptase kit (Cat# 18064014; Invitrogen, 

Paisley, UK) 

o 200 U/mL Superscript II reverse transcriptase  

o 5x First-strand Buffer  

o 100 mM Dithiothreitol (DTT) 

• 50 μM Random hexamers (Cat# N8080127; Invitrogen, Paisley, UK) 

• 10 mM Deoxynucleotides (dNTP’s) mix: 

o 100 mM Deoxynucleotide Set (Cat# DNTP100; Sigma Aldrich, 

Dorset, UK) 

o RNase-free water (Part of Cat# 218161; QIAGEN, Manchester, UK) 
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• 40 units/μL RiboLock RNase inhibitor (Cat# EO0381; Invitrogen, Paisley, 

UK) 

• RNase-free water (Part of Cat# 218161; QIAGEN, Manchester, UK) 

Protocol: 

cDNA synthesis for microRNA and mRNA was performed using 100-200 ng 

RNA from tissues or cells using the T100 Thermocycler (BioRAD, Hertfordshire, 

UK). Each cDNA required a different RT reaction mix, using the reagents and 

volumes as shown in the table below:  

 

Table 2.13 Reagents used for cDNA synthesis of microRNAs and mRNAs. 
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For microRNAs, one-step cDNA synthesis was performed using RTscript enzyme 

according to the diagram bellow:  

Figure 2.13.1 cDNA synthesis protocol for microRNAs. Each reaction containing 

RNA template, RNAse-free H2O and RT reaction mix was placed in the 

Thermocycler and cDNA synthesis was performed according to the steps shown.  

 

For gene transcripts, two-step cDNA synthesis was performed using Superscript II 

enzyme, according to the following protocol:  

Figure 2.13.2 cDNA synthesis for gene transcripts (mRNA), in a two-step 

protocol. Addition of RT mix occurs between 1st and 2nd step of cDNA synthesis, 

before samples are placed back in the Thermocycler.  
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 Following cDNA synthesis, all sample were diluted 1:10 with 180 μL of RNase-

free H2O and stored at -20oC until used for quantitative PCR (qPCR).  

 

2.14 Primer design 

Primers for qPCR on mRNA transcripts were designed using the NCBI primer 

blast tools.  

For target genes from miR-128 and -133a, the following parameters were used 

during primer design:  

 

Table 2.14 Parameters used for primer design. 

 

From the list of candidate primer pairs, those with repeated base a T as an 

ultimate base or with 3 or more G/C bases at 3’ end were disregarded. Primer 

pairs with low self-complementarity, Tm difference less than 1oC were preferred 

and no non-specific binding to other target sequences were preferred.  

 

2.15 Quantitative Polymerase Chain Reaction (qPCR) 

Reagents: 

For microRNA expression analysis: 

• cDNA (microRNA, 10x diluted)  
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• SsoAdvanced Universal SYBRGreen Supermix (Cat# 1725271; BioRAD, 

Hertfordshire, UK) 

• microRNA primers (QIAGEN, Manchester, UK) 

• Universal primers (Part of Cat# 218073; QIAGEN, Manchester, UK) 

For mRNA expression analysis:  

• cDNA (mRNA, 10x diluted)  

• SsoAdvanced Universal SYBRGreen Supermix (Cat# 1725271; BioRAD, 

Hertfordshire, UK) 

• mRNA primers (Sigma Aldrich, Dorset, UK) 

Protocol:  

Primers, cDNA and SsoAdvanced SybrGreen Supermix were added in each well 

of a 96-well plate (BioRAD Hertfordshire, UK), according to the following table:  

 

Table 2.15.1 Volumes of reagents per reaction in a qPCR run for microRNA and 

mRNA.  
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Each cDNA sample was loaded 3 times to create technical replicates. Each 

plate contained a no-template control (NTC) triplicate, containing all the 

components of a reaction (Table 2.15.1), but lacking the cDNA template. NTCs 

served as a negative control to assess genomic contamination, secondary 

structures of primers or primer dimers. Following loading of reagents and 

template, plates were sealed, centrifuged for 5 sec and placed into the BioRAD 

CFX Connect™ Real-Time PCR Detection System (BioRAD Hertfordshire, UK).  

Expression relative to SNORD-61 or RNU-6 for microRNAs and 18S or β2-

microglobulin for mRNA transcripts was calculated using the delta delta Ct (ddCt) 

method. The qPCR conditions for each run are shown on the table below:  

 

Table 2.15.2 qPCR conditions for microRNAs and mRNAs. 

 

All qPCR runs were assessed using a melt curve to ensure detection of a single 

product and assess formation of primer dimers and/or contamination. Melt 

curves were generated following the end of the 40th cycle of the qPCR run. Melt 

curve conditions for both microRNA and mRNA qPCR runs were: 95oC for 10 sec, 

65-95oC, with 0.5oC increments for 5 sec each and plate read at 95oC for 50 sec.  

 

2.16 Cell culture of muscle and nerve cells 

Reagents: 

For C2C12:  

• Growth Media (GMC2C12): 
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o Dulbecco’s Modified Eagle’s Medium with high glucose (Cat# D5671; 

Sigma Aldrich, Dorset, UK) 

o 10% v/v foetal bovine serum (FBS) (Cat# 10100147; Sigma Aldrich, 

Dorset, UK) 

o 1% v/v GlutaMax (Cat# 35050061; Gibco, Paisley, UK) 

o 1% v/v penicillin–streptomycin (Cat# P4333; Sigma Aldrich, Dorset, 

UK) 

• Differentiation Media (DMC2C12): 

o Dulbecco’s Modified Eagle’s Medium with high glucose (Cat# D5671; 

Sigma Aldrich, Dorset, UK) 

o 2% v/v horse serum (HS) (Cat# 26050-070; Sigma Aldrich, Dorset, UK) 

o 1% v/v GlutaMax (Cat# 35050061; Gibco, Paisley, UK) 

o 1% v/v penicillin–streptomycin (Cat# P4333; Sigma Aldrich, Dorset, 

UK) 

• Growth Media (GMNSC-34): 

o 1:1 mixture of Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture 

F-12 Ham with L-Glutamine (Cat# D8437; Sigma Aldrich, Dorset, UK) 

o 10% v/v foetal bovine serum (FBS) (Cat# 10100147; Sigma Aldrich, 

Dorset, UK) 

o 1% v/v penicillin–streptomycin (Cat# P4333; Sigma Aldrich, Dorset, 

UK) 

• Differentiation Media (DMNSC-34): 

o 1:1 mixture of Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture 

F-12 Ham with L-Glutamine (Cat# D8437; Sigma Aldrich, Dorset, UK) 

o 3% v/v foetal bovine serum (FBS) (Cat# 10100147; Sigma Aldrich, 

Dorset, UK) 

o 1% v/v penicillin–streptomycin (Cat# P4333; Sigma Aldrich, Dorset, 

UK) 

Protocol: 

In vitro experiments were performed using C2C12 myotubes as a model of 

myofibres and NSC-34 cells as a model of motoneuron cells.  
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C2C12 cell line is a subclone cell line of skeletal muscle cells originally derived 

from the C2 cell line isolated from mdx mice (Yaffe and Saxel, 1977). NSC-34 is a 

hybrid cell line created by fusion of neuroblastoma mouse cells and motoneuron-

enriched embryonic mouse spinal cord cells (Egget et al. 2000).  

Prior to plating, cells were centrifuged at 1,500 rpm for 5 min to discard 

freezing media containing DMSO, and cell pellet was resuspended in pre-warmed 

20% FBS growth media (GMC2C12, GMNSC-34) for 24 h to aid attachment of the cells. 

Following 24 h, media was replaced with 10% FBS growth media (GMC2C12, GMNSC-

34) and was renewed every 48 h. All cells were cultured in T75 cell culture flask 

and differentiated in 6- and 12-well flat-bottom plates (Costar), in a humidified 

incubator at 37oC with 5% CO2. 

Differentiation of C2C12 cells was induced when cells reached 90% 

confluency. Confluent cells were cultured in differentiation media (DMC2C12) for 

7-10 days before staining. Fusion of cells and formation of myotubes was visible 

from Day 2 post differentiation.   

For cell differentiation, NSC-34 cells were cultured in differentiating media 

(DMNSC34), as described by Egget et al. 2000. To successfully induce 

differentiation and allow development of axonal projections, cells were 

introduced to differentiation media when they reached a confluency of 60-80%. 

 

2.17 Cell passaging 

Reagents: 

• Dulbecco’s Phosphate Buffered Saline (DPBS) (Cat# D8537; Sigma Aldrich, 

Dorset, UK) 

• TrypLE Express (Cat# 12604013; Gibco, Paisley, UK)  

Protocol: 

For cell dissociation from a T75 flask, media was discarded and cells were 

washed 1-2 times for 10 sec each with 3mL of DPBS followed by incubation with 
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2 mL TrypLE for 20 sec. TrypLE was discarded and flasks were incubated at 37oC 

for 3 min. Following incubation, cells were immediately collected from the flasks 

using growth media and the flask was washed several times to ensure collection 

of maximum number of cells. Cells were transferred to a sterile falcon tube and 

diluted accordingly before being plated into a new flask or plate.   

 

2.18 Preparation of tissue culture plates for cell imaging 

Reagents:  

• Laminin, 1 mg/mL (Cat# 114956-81-9; Sigma Aldrich, Dorset, UK) 

• Dulbecco’s Phosphate Buffered Saline (DPBS) (Cat# D8537; Sigma Aldrich, 

Dorset, UK) 

Protocol:  

Cells to be stained and imaged were plated in 12-well plates coated with 

laminin according to a standard protocol (Soriano-Arroquia et al. 2017). Laminin 

working solution was prepared in 1x DPBS in 5 μg/mL concentration. In each 

well, 500 μL of laminin solution were added and plate was incubated in a 

humidified incubator at 37oC with 5% CO2 for 30-60 min. Following incubation, 

laminin solution was removed from the wells carefully to avoid contact with the 

bottom of the well.  All wells were washed with DPBS and cells were immediately 

seeded onto the plate, to prevent laminin from drying out.   

 

2.19 Seeding of C2C12 and NSC-34 cells 

Reagents:  

• Dulbecco’s Phosphate Buffered Saline (DPBS) (Cat# D8537; Sigma Aldrich, 

Dorset, UK) 

• TrypLE Express (Cat# 12604013; Gibco, Paisley, UK) 

• Growth medium (GMC2C12, GMNSC34) 

• 0.4% Trypan Blue (Cat# T8154; Sigma Aldrich, Dorset, UK) 
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Protocol:  

Cells were dissociated from the T75 flasks using TryPLE enzyme (Section 2.17). 

Following incubation, TryPLE was inactivated with growth medium and cells were 

centrifuged at 1,500 rpm for 5 min. Following centrifugation, the supernatant 

was discarded and the cell pellet was resuspended in 10 mL growth medium. 

Immediately after resuspension, 10 μL of cell suspension was mixed 1:1 with 

trypan blue stain and 10 μL of the mixture were placed in a Neubaeur 

haemocytometer. When observed under a microscope, dead cells appear blue 

(stained with Trypan Blue) whilst live cells appear unstained. Live cell number 

was recorded from each of the 4 corner squares (Figure 2.19). Following counts, 

cells per volume unit was calculated and an appropriate amount of cell 

suspension was diluted in growth media (GMC2C12, GMNSC34) before being added 

to flat-bottom plates (Costar). For cell imaging, cells were plated in 12-well plates 

pre-coated with laminin (Section 2.18). For C2C12, 1 mL of cell suspension was 

plated in each well of a 12-well plate to achieve confluency before inducing 

differentiation. For NSC-4 cells, 10,000 cells/well (2,632 cells/cm2) were plated to 

achieve optimum confluency for neuronal differentiation.  

 

Figure 2.19 Standard gridline of an Improved Neubaeur haemocytometer. A-D 

squares represent the areas where cell number was recorded.  
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2.20 Cell harvesting for RNA and protein isolation 

Reagents: 

• Dulbecco’s Phosphate Buffered Saline (DPBS) (Cat# D8537; Sigma Aldrich, 

Dorset, UK) 

• TrypLE Express (Cat# 12604013; Gibco, Paisley, UK)  

• TRIzol reagent (Cat# 15596026; Invitrogen, Paisley, UK) 

Protocol: 

Cells plated on a 6-well plate were rinsed once with pre-warmed PBS and 

were incubated with 300 μL of TryPLE for 3 min in a humidified incubator at 37oC 

with 5% CO2. TryPLE was inactivated by dilution with 600 μL of PBS and cells from 

each well were collected into a separate pre-chilled Eppendorf tube. The wells 

were washed with additional 600 μL of PBS to collect remaining cells and added 

to the respective tubes, which were immediately placed on ice. Following 

collection of all samples, cells were centrifuged at 21,100 x g for 5 min in a pre-

cooled centrifuge at 4oC. For RNA samples, supernatant was discarded and cell 

pellet was resuspended in 1mL TRIzoL reagent. Protein samples were frozen 

without further processing. All samples were stored at -20oC until used for RNA 

isolation or protein extraction. For each transfection condition, 6 wells were used 

for either RNA or protein expression analysis, whilst each well represents a 

biological replicate (n number).   

 

2.21 Cell transfections with miR-128 and miR-133a 

Reagents:  

For miR-128: 

• Lipofectamine 2000 (Cat# 11668027 ; Invitrogen, Paisley, UK) 

• 5 nmol miScript miR-128-3p mimic (Cat# MSY0000140; QIAGEN, 

Manchester, UK) 



95 
 

• 5 nmol miScript miR-128-3p inhibitor (Cat# MIN0000140; QIAGEN, 

Manchester, UK) 

• 5 nmol miScript Inhibitor Negative Control (Cat# 1027271; QIAGEN, 

Manchester, UK) 

• Dulbecco’s Modified Eagle’s Medium with high glucose (Cat# D5671; 

Sigma Aldrich, Dorset, UK) 

• Differentiation Media (DMC2C12, DMNSC34) 

For miR-133a:  

• microRNA inhibitor negative control (Scr) (100 μM; Dharmacon, Colorado, 

USA)  

o Sequence:  

– Antisense: 5’-Fl-mA*mC*mUmCmAmCmCmGmAmCmAmGmC 

mGmUmUmGmAmA*mU*mG*mU*mU-Cholesterol-3’  

– Sense: 5'mC(*)mA(*)mGmUmAmCmUmUmUmUmGmUmGmU 

mAmGmUmA(*)mC(*)mA(*)mA-Cholesterol-3' 

• microRNA-133a mimic (miR) (100 μM; Dharmacon, Colorado, USA) 

o Sequence:  

– Antisense: 5’-UUUGGUCCCCUUCAACCAGCUG-3’FITC  

– Sense: 5’-Chol-GCUGGUAAAAUGGAACCAAAU-3’ 

• microRNA-133a inhibitor (AM) (100 μM; Dharmacon, Colorado, USA) 

o Sequence: 5’-Fluorescein-mC*mA*mGmCmUmGmGmUmUmGm 

AmAmGmGmGmGmAmCmC*mA*mA-mA*-3’Chol 

o - phsophorthioate bonds 

o m -  2’-O-methyl bonds 

Protocol:  

Transfections of miR-128 mimic and antagomir were performed using 

Lipofectamine 2000. 24 h following seeding, plates were retrieved from the 

incubator and the media was discarded. For each well of a 6-well plate 1 mL of 

pre-warmed DMEM media was added and for each well of a 12-well plate 500 μL 

of DMEM was added. DMEM media containing no additives was used to avoid 
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interference of additive solutions with the transfection reagents. Cells were 

incubated for 40-50 min with DMEM media in a humidified incubator at 37oC 

with 5% CO2. In the meantime, lipofectamine working solution was prepared for 

each of the negative control (Scr; scrambled), miR mimic (miR) and miR inhibitor 

(AM; antagomiR) (Table 2.21.1). Lipofectamine was added to DMEM media with 

no FBS or Pen/Strep and left to incubate for 5 min. Following incubation, 

lipofectamine solution was added drop-by-drop to each working solution of Scr, 

miR and AM in 1:1 volume, to a final of 500 μL/well for a 12-well plate and a 1 

mL/well for a 6-well plate.  

 

Table 2.21.1 Reagents used for miR-128 mimic and antagomir transfections. 

Same concentrations and volumes were used for both C2C12 and NSC-34 cells.  

 

 

Lipofectamine 2000 was incubated with Scr/miR/AM for 30 min at RT. Next, 

plates were retrieved from the incubator, media was discarded and 1 mL of 

transfections solution was added in each well of a 6-well plate and 500 μL of the 

transfection solution was added in each well of a 12-well plate. For control cells, 

DMEM was added in the same volume as the transfection solutions. Cells were 

incubated with the transfection solution for 5-6 h in a humidified incubator at 

37oC with 5% CO2 before media was replaced with differentiation media 

(DMC2C12, DMNSC34). For C2C12 cells, transfection protocol was repeated on Day 3 
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and Day 5 post-seeding, to enhance efficiency of transfection in myotubes. NSC-

34 cells were transfected 24 h following seeding of the cells.   

For miR-133a, transfection protocol did not require Lipofectamine, as the Scr, 

miR and AM reagents were cholesterol conjugated. For cells to be transfected 

with miR-133a, differentiation media (DMC2C12, DMNSC34) was added to the wells 

24 h following cell seeding for NSC-34 cells and 3 days following seeding for 

C2C12 (signs of myotube formation). Transfection reagents were added directly 

on the wells according to Table 2.21.2:  

 

Table 2.21.2 Reagents used for miR-133a mimic and antagomir transfections. 

Same concentrations and volumes were used for both C2C12 and NSC-34 cells.  

 

 

Cells were collected for RNA and protein isolation 48 h post transfections. For 

imaging, C2C12 cells were stained 7 post transfections while NSC-34 were 

stained 10 days following transfections.  

 

2.22 Immunostaining of C2C12 and NSC-34 cells 

Reagents:  

• Dulbecco’s Phosphate Buffered Saline (DPBS) (Cat# D8537; Sigma Aldrich, 

Dorset, UK) 

• Block 1 solution: 
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o 0.1% v/v Triton-X100 (Cat# X100; Sigma Aldrich, Dorset, UK) 

o 10% horse serum (HS) (Cat# 26050-070; Sigma Aldrich, Dorset, UK) 

o DPBS (Cat# D8537; Sigma Aldrich, Dorset, UK) 

• Block 2 solution:  

o 0.05% v/v Triton-X100 (Cat# X100; Sigma Aldrich, Dorset, UK) 

o 10% horse serum (HS) (Cat# 26050-070; Sigma Aldrich, Dorset, UK) 

o DPBS (Cat# D8537; Sigma Aldrich, Dorset, UK) 

• Methanol (MetOH) (Cat# 34860; Sigma Aldrich, Dorset, UK) 

• DAPI (Cat# MBD0015; Sigma Aldrich, Dorset, UK) 

For C2C12:  

• Anti-MyHC 1ry Ab (Cat# MF20-c 2ea; Developmental Studies Hybridoma 

Bank) 

• Goat Anti-Mouse Alexa Fluor 488 Conjugate, 2ry Ab (Cat# A-10680; 

Invitrogen, Paisley, UK) 

For NSC-34: 

• Anti Beta-III Tubulin, Alexa Fluor 488 Conjugate (Cat# AB15708A4; 

Millipore, Middlesex, UK) 

Protocol:  

Cells were retrieved from the incubator and the media was aspirated. Wells 

were rinsed 1-2 times with DPBS and cells were then fixed with MetOH for 10-15 

min. For C2C12, cold MetOH was used for 10 min while for NSC-34 cells MetOH 

at RT was used for 15 min for cell fixation, to prevent cell detachment during 

fixation. Following fixation, 500 μL of DPBS was added to the wells containing 

MetOH and then the solution was discarded. Mixing of MetOH with DPBS prior 

to removing it from the wells prevents cells from drying out quickly. Cells were 

rinsed 1-2 times with PBS followed by addition of 500 μL of Block 1 solution for 

1-2 h at RT. Following blocking, cells were washed once with PBS for 5 min 

followed by incubation with Block 2 solution containing the primary antibody 

(Ab) (MF-20, 1:1000, β-III Tubulin, 1:400). Cells were covered in foil and allowed 



99 
 

to incubate at 4oC overnight. Following incubation with primary Ab, cells were 

retrieved from 4oC and left at RT for approximately 1 h. Staining solution was 

removed from wells and stored at 4oC until future use. Cells were washed 2-3 

times for 5 min with DPBS.  

For C2C12, 500 μL of anti-mouse Alexa Fluor - 488 2ry Ab solution (1:1000 in 

Block 2) was added to each well and left to incubated in the dark at RT for 1-2 h 

on a rocker at low speed.  

Cells were washed 1-2 times with DPBS for 5 min before 500 μL of DAPI stain 

(1:1000 in PBS) was added to each well and left to incubate for 15 min. DAPI 

staining solution was removed from wells and stored at 4oC until future use and 

cells were washed 1 time with DPBS. Finally, 1 mL of DPBS was added to each 

well and plate was sealed with Parafilm to avoid evaporation. Imaging of cells 

took place the following day.  

C2C12 cells were placed on a rocker at low speed during staining while NSC-34 

cells were left on a flat surface as rocking would cause detachment of cells.  

 

2.23 Image analysis of C2C12 and NSC-34 cells 

For C2C12: 

Following immunostaining, cells were imaged under the Nikon Ti Live Cell 

imaging microscope under x20 magnification. Images were analysed using 

ImageJ Software (Image Processing and Analysis in Java; National Institutes of 

Health, Bethesda, MD, USA). The diameter of each myotube was measured from 

three different points across the length of the myotube (each end and the centre 

of myotube). The average value of the three diameter measurements was 

calculated, in order to determine the diameter of each myotube. Nuclei present 

in each of the myotubes were counted manually and were recorded in order to 

determine fusion index. Threshold value expressed as a % was determined using 

the “threshold” function. Threshold value determined the % of “empty area” 
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over the “green area” on each field of view, providing an indication of how much 

area is occupied by MF20+ stained (green) cells (myotubes).  

 

For NSC-34: 

Immunostained NSC-34 cells were imaged using the Nikon Ti Live cell imaging 

microscope under x20 magnification. Z-stack images were acquired and analysed 

using ImageJ Software (Image Processing and Analysis in Java; National Institutes 

of Health, Bethesda, MD, USA). Z-stack images were segmented into single 

channels and the “green” channel (B-III tubulin+) was used for axonal tracing of 

NSC-34 cells. Images were then converted to 8-bit image files and the “simple 

Neurite Tracer” plugin was used from “Plugins” > “Segmentation” drop down 

menu. Axonal length, branching point were recorded. For NSC-34 cells to be 

considered as differentiated, axonal length should be equal or longer than 2x the 

diameter of the cell body of the neuron (Chai et al. 2011).  

 

2.24 Sample preparation for protein extraction 

Reagents:  

• Dulbecco’s Phosphate Buffered Saline (DPBS) (Cat# D8537; Sigma Aldrich, 

Dorset, UK) 

• 1% SDS (Cat# L3771; Sigma Aldrich, Dorset, UK) 

• Protease inhibitors (Cat# A32955; ThermoFisher, Paisley, UK) 

Protocol: 

Cell pellets were obtained from -20oC and left to thaw on ice. Cell pellets were 

centrifuged at 21,100 x g for 5 min in a pre-cooled centrifuge at 4oC and the 

supernatant was discarded. Cell pellet was resuspended in 50 μL of 1% SDS 

containing protease inhibitors Cells were sonicated on ice for 3x 5 sec and 

centrifuged briefly before used for bicinchoninic acid assay (BCA).  
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2.25 Determination of protein concentration by bicinchoninic acid assay (BCA) 

Reagents:  

• Bicinchoninic acid (BCA) solution (Part of Cat# BCA1; Sigma Aldrich, 

Dorset, UK, Dorset UK) 

• Copper sulphate (Part of Cat# BCA1;Sigma Aldrich, Dorset, UK, Dorset UK) 

• 1 mg/ml protein standard solution (Cat# P0834; Sigma Aldrich, Dorset, 

UK) 

• dH2O 

Protocol: 

BCA assay was performed on a 96-well plate. In order to determine protein 

concentration of the cell samples, a standard curve of known protein 

concentration samples was generated. Sample concentrations used for the 

standard curve are shown in Table 2.25:   

 

Table 2.25 Concentration of standard curve samples used for protein 

determination in BCA assay.  

 

 

Each standard was added in a duplicate in a volume of 20 μL per well. The 

average value was calculated from the values of the duplicate and was used to 

plot the standard curve. Protein samples from cells were added on the plate in 

triplicates, in 1:19 dilution, to a final volume of 20 μL per well. Copper sulphate 

solution was diluted 50x with BCA solution and a volume of 200 μL from this 

mixture was added in each well. The plate was incubated at 37oC for 30 min 

followed by the measurement of the absorbance at 570 nm using a 

spectrophotometer (BMG laboratories, Buckinghamshire, UK). Protein 
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concentration for each sample was calculated based on the standard curve 

values.  

 

2.26 Estimation of the protein content of samples using SDS-PAGE and 

western blotting techniques 

2.26.1 Polyacrylamide gel preparation 

Reagents:  

• 30% acrylamide solution (Cat# EC-890; Protogel, National Diagnostics, 

USA) 

• ProtoGel Resolving Buffer (4X) (Cat# EC-892; Protogel, National 

Diagnostics, USA) 

• ProtoGel Stacking Buffer solution (Cat#  EC-893; Protogel, National 

Diagnostics, USA) 

• 10% ammonium persulphate solution (APS) (Cat# A3678; Sigma Aldrich, 

Dorset, UK, Dorset UK) 

• NNN’N-tetramethylethylene-diamine (TEMED) (Cat# T9281; Sigma 

Aldrich, Dorset, UK) 

• dH2O 

• Ethanol (EtOH) (Cat# 51976; Sigma Aldrich, Dorset, UK) 

Protocol: 

The polyacrylamide gel was prepared in two stages. First, 12% of acrylamide 

concentration gel (resolving) was prepared as described in Table 2.26.1 and 

poured between 2 gel plates (8 x 10 cm) with 1.5mm spacers at a volume of 8 

mL. Approximately 300 μL of EtOH was added at the top of the gel to disrupt any 

bubbles formed and create an even top surface on the gel. When the resolving 

gel was set, EtOH was discarded and the top of the gel was washed 3 times with 

dH2O to discard any EtOH residues. Excess H2O was removed using blot papers. 

Stacking gel at 4% acrylamide concentration was prepared according to 

instructions in Table 2.26.1. Stacking gel was added until the top edge of the 
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glass plates and 1.5 mm-thick 12-well comb was secured at the top of the plates, 

to allow sample loading. Gels were stored at 4oC overnight until used the 

following day. 

Table 2.26.1 Volumes of reagents for resolving and stacking gel preparation.  

 

 

2.26.2 SDS-PAGE for protein samples 

Reagents: 

• Pre-stained protein marker (8-260 kDA) (Cat# 928-60000; Chameleon 

Duo, LI-COR Biosciences, Ltd., UK) 

• Protein Loading Buffer Blue (5x) (Cat# EC-886; National Diagnostics, USA) 

• Running buffer (1x): 

o 10x Tris/Glycine/ SDS (w/v) solution (Cat# EC-870; National 

Diagnostics, Hull, UK) 

o dH2O 

Protocol: 

Protein samples were retrieved from -20oC and thawed on ice. Samples were 

diluted with dH20 to yield a 20 μg protein sample. Following dilution, 2 μL of 5x 

protein loading buffer was added to each sample to a final volume of 10 μL. 
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Samples were heated to 95oC for 10 min and centrifuged at 21,000 x g briefly and 

kept on ice until loaded on the gel.   

Polyacrylamide gels were loaded into a tank and filled with running buffer 

diluted 1:10 with dH2O, to produce a 1x running buffer solution. The comps were 

removed from the gels and 3 μL of protein ladder was loaded followed by 10 μL 

of protein samples in each neighbouring well. The lid was placed over the tank 

with the electrodes connected to a gel electrophoresis power supply, and the 

power was set to 20 mA per gel. Gels were allowed to run until the lowest ladder 

(8 kDa) reached the bottom of the gel.  

 

2.26.3 Western blotting 

Reagents: 

• Anode 1 buffer, pH 10.4:  

o 0.3 M Tris (Sigma Aldrich, Dorset, UK)  

o 20% MetOH (Cat# 34860; Sigma Aldrich, Dorset, UK) 

• Anode 2 buffer, pH 10.4:  

o 25 mM Tris (Sigma Aldrich, Dorset, UK)   

o 20% MetOH (Cat# 34860; Sigma Aldrich, Dorset, UK) 

• Cathode buffer, pH 7.6:  

o 40 mM 6-amino n hexanoic acid (Sigma Aldrich, Dorset, UK)  

o 20% MetOH (Cat# 34860; Sigma Aldrich, Dorset, UK) 

• Ponceau S stain (Sigma Aldrich, Dorset, UK) 

Protocol: 

Proteins were transferred from the acrylamide gel to a nitrocellulose 

membrane (Cat# 10600002; GE Healthcare Life Sciences, Buckinghamshire, UK) 

using a semi-dry trans-blot system (Trans-Blot SD Semi-Dry Transfer Cell; BioRAD, 

Hertfordshire, UK). The acrylamide gel was removed from the glass plates, the 

stacking gel was discarded and the resolving gel was placed on the nitrocellulose 

membrane soaked in Anode II buffer, and sandwiched as shown in Figure 2.26.3. 
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The current was set to 100 mA per gel for 1 h to achieve good protein transfer. 

Following transfer, nitrocellulose membrane was stained with Ponceau S stain to 

confirm equal loading and transfer of all proteins.   

 

 

Figure 2.26.3 Schematic showing the semi-dry transfer set-up system for transfer 

of proteins from the SDS-PAGE gel to the membrane.  

 

2.26.4 Processing of nitrocellulose membrane and protein detection 

Reagents: 

• 0.005% v/v PBS-Tween-20 (PBS-T) solution  

• Blocking solution:  

o 5% milk powder 

o 0.005% PBS-T 

• Primary antibody (1ry Ab) solution:  

o 1% milk powder  

o 0.005% PBS-T 

• Secondary antibody (2ry Ab) solution:  

o 3% milk powder  

o 0.005% PBS-T 

• Antibodies (Table 2.26.4) 
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Protocol:  

Following confirmation of protein transfer and amount by Ponceau S, the 

nitrocellulose membrane was washed with ddH2O followed by PBS, until 

Ponceau S was removed from the membrane. The nitrocellulose membrane was 

then blocked with 10 mL of blocking solution for 1 h at RT. Following blocking, 

the membrane was washed 3x 5 min with PBS-T before incubated with the 

appropriate 1ry Ab solution overnight at 4oC. Following overnight incubation, the 

membrane was left to equilibrate at RT for approximately 15 min and then 

washed 3x 5 min with PBS-T before incubated with the appropriate 2ry Ab 

solution for 1 h at RT. The membrane was then washed 3x 5 min with PBS-T and 

imaged using a LI-COR Odyssey CLx imaging system (LI-COR, Cambridge, UK).   

 

Table 2.26.4 List of antibodies (1ries and 2ries) used for detection of proteins on 

nitrocellulose membranes. 

 

 

 

2.26.5 Data analysis of Western blot experiments 

Following imaging of the membrane, the intensity of the bands was recorded 

using ImageJ software (Image Processing and Analysis in Java; National Institutes 
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of Health, Bethesda, MD, USA). The intensity of the bands was normalised to the 

intensity of the Ponceau S bands from the entire sample, which has been 

described as a more reliable method for accurate protein quantification (Aldridge 

et al. 2008; Eaton et al. 2013; Li and Shen, 2013; Taylor and Posch, 2014).  

 

2.27 Proliferation assay 

Reagents: 

• Cell Counting Kit – 8 (CCK-8) solution (Cat# 96992; Sigma Aldrich, Dorset, 

UK) 

• Growth Media (GMC2C12) (Section 2.16) 

• Growth Media (GMNSC34) (Section 2.16) 

• Transfection reagents (Section 2.21) 

Protocol: 

C2C12 and NSC-34 cells were plated as previously described into a 96-well 

plate in 1,000 cells/well (3,125 cells/cm2) confluency. Cells were incubated in 

growth media (GMC2C12, GMNSC34) at 37oC and 5% CO2 for 24 h to allow proper 

attachment. The plates were then retrieved from the incubator and transfected 

with miR-128 (Scr, mimic, AM) or miR-133a (Scr, mimic, AM), according to the 

protocol in Section 2.21. After 6 h of transfection, media was replaced to 3% FBS 

in both C2C12 and NSC-34 cells to ensure survival and prevent over-proliferation 

until the assay was performed. The plates were then retrieved from the 

incubator 48h following transfections and a known number of viable C2C12 or 

NSC-34 cells were plated (Table 2.27) for preparation of a standard curve. Plates 

were incubated for 4-6 h to allow attachment of newly plated cells. Following 

incubation, the plates were retrieved from the incubator and 10 μL of CCK-8 

reagent were added in each well. The plates were left to incubate for 3 h in the 

dark at 37oC and 5% CO2. Following incubation, the plates were retrieved from 

the incubator and the absorbance was measured at 450 nm using a microplate 
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reader. The number of cells following transfections with miR-128 and miR-133a 

was calculated using the standard curve.  

 

Table 2.27 Known number of viable cells plated in each plate for the generation 

of a standard curve.  

  

 

2.28 Cytotoxicity assay 

Reagents: 

• CytoTox 96® Non-Radioactive Cytotoxicity Assay kit (Cat# G1780; 

Promega, Southampton, UK)  

• Passive Lysis 5x Buffer (Cat# E1941; Promega, Southampton, UK) 

• 1 M acetic acid (Cat# A6283; Sigma Aldrich, Dorset, UK) 

• 100 μM H2O2 (Cat# H1009-100mL; Sigma Aldrich, Dorset, UK)  

• Growth Media (GMC2C12) (Section 2.16) 

• Growth Media (GMNSC34) (Section 2.16) 

• Transfection reagents (Section 2.21) 

Protocol: 

NSC-34 and C2C12 cells were plated as previously described into a 96-well 

plate at a 2,000 cells/well (6,250 cells/cm2) confluency and incubated in growth 

media (GMC2C12, GMNSC34) at 37oC and 5% CO2 for 24 h to ensure good 

attachment. Both C2C12 and NSC-34 cells were then retrieved from the 

incubator and transfected with miR-128 (Scr, mimic, AM) or miR-133a (Scr, 

mimic, AM) as previously described (Section 2.21). Additionally, 12 wells with 

cells (C2C12 or NSC-34) in each plate were used for transfections with 

lipofectamine-conjugated Scr (6 wells) and cholesterol-conjugated Scr (6 wells). 

These wells were incubated with 100 μM H2O2 in 3% FBS media (100 μL/well of 
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GMC2C12 or GMNSC34) following 6 h of transfections, to serve as a positive control 

for maximum cell cytotoxicity. The rest of the wells were incubated only in 3% 

FBS media (100 μL/well of GMC2C12 or GMNSC34) following 6 h of transfections. 

Plates were then placed in an incubator for 48 h at 37oC and 5% CO2. Following 

incubation, plates were retrieved from the incubator and 50 μL aliquots from all 

wells were transferred to a new 96-well plate, according to manufacturer’s 

instructions. Each well was then supplemented with 50 μL of CytoTox 96® 

Reagent and plates were then incubated for 30 min at RT in the dark. Following 

incubation, 50 μL of 1 M acetic acid was added in each well to stop the reaction 

and the absorbance was recorded at 490 nm using a microplate reader.  

For Maximum lactate dehydrogenase (LDH) Release Control, 6 wells were 

used per plate for both C2C12 and NSC-34 cells and 20 μL of Passive Lysis 5x 

Buffer were added to these wells 45 min before transfer of aliquots on to fresh 

plates.   

 

2.29 Mitotoxicity assay 

Reagents: 

• Mitochondrial ToxGlo™ Assay (Cat# G8000; Promega, Southampton, UK) 

• 20 μM Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) (Cat# C2759; 

Sigma Aldrich, Dorset, UK): 

o Diluted in 100 mM DMSO to produce a 20 mM stock solution 

• Dimethyl sulfoxide (DMSO) (Cat# D4540; Sigma Aldrich, Dorset, UK) 

• Growth Media (*GMC2C12) (Section 2.16):  

o DMEM (Cat# D5671) replaced by DMEM/low glucose media (Cat# 

31885049; Gibco™, ThermoFisher, Paisley, UK)   

• Growth Media (*GMNSC34) (Section 2.16):  

o DMEM (Cat# D5671) replaced by DMEM/low glucose media (Cat# 

31885049; Gibco™, ThermoFisher, Paisley, UK) 

• Transfection reagents for miR-128 (Section 2.21) 
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Protocol:  

C2C12 and NSC-34 cells were plated as previously described into a 96-well 

plate (opaque walls/clear flat bottom) at a confluency of 2,000 cells/well (6,250 

cells/cm2) and 3,000 cells/well (9,375 cells/cm2) respectively. Cells were 

incubated in growth media (GMC2C12, GMNSC34) at 37oC and 5% CO2 for 24 h to 

ensure good attachment. Both C2C12 and NSC-34 cells were then retrieved from 

the incubator and transfected with miR-128 (12 wells for each: Scr, mimic, AM) 

as previously described (Section 2.21). Extra wells were left untreated in both 

plates, in order to use as positive and negative control. Following 6 h of 

transfections, media was replaced to 3% FBS growth media (*GMC2C12, *GMNSC34) 

and left to incubate for 48 h according to the protocol. From each transfection 

group (Scr, miR, AM), 6 wells were treated with CCCP in order to induce 

mitophagy. Control wells were also treated with DMSO, to use as vehicle control 

for CCCP. Both plates were then retrieved from the incubator following 

transfections and 20 μL of 5x Cytotoxicity reagent was added to each well. Both 

plates were allowed to incubate at 37oC for 30 min in the dark before 

fluorescence was measured using a fluorescence plate reader equipped with a 

rhodamine 110 filter set. Plates were left to equilibrate for 10 min at RT before 

the addition of 100 μL of ATP Detection Reagent in each well. Luminescence was 

then recorded using a microplate luminometer (Promega). Cytotoxicity and 

mitotoxicity were expressed as fold-change of each well divided by the average 

absorbance value of the Scr wells.  

 

2.30 Statistical Analysis 

All statistical analysis was performed with Graphpad 5 software (San Diego, 

USA). One-way ANOVA followed by a Dunnett’s post-hoc analysis was performed 

for comparison of groups with the control group (NNN for in vivo experiments 

and Scr-transfected cells for in vitro experiments). Chi-squared (χ2) test was 

performed for detection of significant changes in data distributions. Data were 
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represented as mean ± SEM. N number represents animals for in vivo studies and 

wells for in vitro studies. 
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3.1 Introduction 

Age-related sarcopenia is characterised by loss of skeletal muscle mass and 

function (Faulkner et al. 2007). Loss of muscle mass and function is linked to loss 

of skeletal muscle fibres and motor neurons, with an additional weakening of the 

remaining muscle fibres (Marzetti et al. 2009). These physiological changes 

during ageing have been associated with influences that occur early in life. 

Longitudinal studies provide a link between individual birth weight and muscle 

function later in life, providing evidence that early development may affect 

muscle mass and function during ageing (Sayer et al. 2006).  

Maternal nutrition has been strongly associated with pre- and postnatal 

growth in both rodents and humans. Specifically, suboptimal nutrition during 

gestation has been linked to reduction in body weight and impaired muscle 

growth in mice (Beermann, 1983; Rehfeldt et al. 2011). Lower birth weight of the 

offspring has been linked to maternal undernutrition in humans (Victora et al. 

2008). Maternal low-protein nutrition during gestation and lactation can cause 

long-term metabolic changes in the skeletal muscle of the offspring (da Silva 

Aragão et al. 2014). Skeletal muscle wasting, reduction in EDL muscle forces and 

change in muscle fibre type proportion in EDL and SOL muscles has been 

demonstrated in rats born from dams on a protein-deficient diet (Toscano et al. 

2008).   

Preliminary studies from our laboratory indicate that mice born from dams 

maintained on a normal protein diet but fed postnatally by a foster dam 

maintained on a low-protein diet (NL) demonstrated significant reduction in 

body size, body weight, muscle weight and length and muscle fibre size at 21 

days of age days of age when compared with pups from dams maintained on a 

normal protein diet throughout the in utero and postnatal periods (NN) (Figure 

3.1 A-F). Moreover, mice born from dams maintained on a low-protein diet but 

fed postnatally by a dam maintained on a normal diet (LN) demonstrated 

significant reduction only in the EDL muscle length, compared to the control 

group (NN) (Figure 3.1 E). 
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Figure 3.1 The effects of reduced protein intake in utero or postnatally on A) 

body size and B) total body weight (g) of 21-day old mice. *represents significant 

differences compared with NNN (control) group, ***P ≤0.001 (mean ± SEM; 

n=11-12, One-Way ANOVA with Dunnett’s post-hoc analysis). C) Transverse 

section of EDL muscle from 21-day old mice (NN, NL, LN) stained with WGA 

(green) and DAPI (blue) and visualised under a confocal microscope, Scale bar: 

100 μm, Magnification: x20, Section thickness: 12 μm, D) EDL muscle weight 

(mg), E) EDL muscle length (mm), F) EDL fibre size (expressed as Ferret’s 

diameter) of 21-day old mice (NN, NL, LN). *represents significant differences 

compared with NNN (control) group *P ≤0.05, **P ≤0.01, ***P ≤0.001 (mean ± 

SEM; n=4-6, One-Way ANOVA with Dunnett’s post-hoc analysis). Keys for NN, NL 

and LN explained in detail in Chapter 2, Section 2.1.   

 

The aim of this study was to examine whether these changes associated with 

low protein intake during gestation or lactation persist during early adulthood 

and whether these changes affect muscle mass, function and/or motor neuron 

dysregulation, as well as molecular changes in skeletal muscle. 

 

 

3.2 Methods 

3.2.1 Mice preparation 

Groups of mice were weaned at 21 days old onto either the deficient diet or 

the 20% protein control diet to produce the three following groups: NNN; NLL; 

LNN (Chapter 2, Section 1). Mice were maintained until 12 weeks of age. Prior to 

culling, EDL force measurements were conducted as described in Chapter 2, 

Section 2.2, in order to determine the maximum force generated by the EDL 

muscle in these mice. 
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3.2.2 Isolation and preparation of EDL muscles from 12-week old mice for 

histological analyses and NMJ imaging 

EDL muscles from the left limb of 12-week old mice were dissected following 

culling and processed as described in Chapter 2, Section 2.3. The EDL muscle 

from the right limb of those mice was dissected, mounted on a silgard-coated 

dish using surgical pins and fixed with 10% NBF for 1 h at RT (Chapter 2, section 

2.3). Following, fixation, EDL muscles were rinsed twice with PBS and stored in 

0.1% PBS-NaN₃ until used for staining and imaging of neuromuscular junctions 

(NMJs) (described in Chapter 2, Sections 2.4, 2.5). For determination of muscle 

fibre size, EDL muscles were sectioned using a cryotome (Leica 1890) at 12 μm 

thickness. EDL sections were mounted on Superfrost Plus slides (Thermofisher) 

and sections allowed to air-dry for a minimum of 1 h at RT prior to staining. EDL 

muscle sections were stained with WGA and DAPI, according to protocol 

described in Chapter 2, Section 2.8. Image acquisition was performed using a 

Nikon Ti Confocal Microscope (Chapter 2, Sections 2.9) and image analysis was 

performed as described in Chapter 2, Section 2.10. For NMJ visualisation and 

scoring, pre-fixed EDL muscles were stained with Alexa Fluor-594 α-

bungarotoxin, according to protocol described in Chapter 2, Section 2.4. Image 

acquisition was performed using a Nikon Eclipse Ni-E Intravital confocal 

microscope (Nikon, Tokyo, Japan) and images were processed and scored as 

described in Chapter, Section 2.5.   

 

3.2.3 First Strand cDNA synthesis and real-time qPCR analysis of marker genes 

in TA muscle of 12-week old mice  

TA muscles from the right limb of 12-week old mice were dissected following 

24 h whole-body fixation and were grounded in a mortar using LN2. When fully 

grounded, TA muscles were immersed in TRIzol and were prepared for RNA 

isolation using phenol-chloroform method, as described in Chapter 2, Section 

2.12. RNA concentration and purity were recorded using NanoDrop2000 

(Thermofisher Scientific). First Strand cDNA synthesis was performed using 



117 
 

SuperScript™ IV VILO™ Master Mix (Cat# 11756050, Invitrogen, Paisley, UK) 

according to manufacturers’ protocol. In each cDNA reaction, 100 ng of RNA was 

used (5 ng/μL). cDNA reaction volume was diluted 1:10 to a final volume of 200 

μL and stored at -20oC until used for qPCR. Real-time qPCR was performed 

according to the protocol in Chapter 2 Section 2.15. Gene expression analysis 

was performed according to the delta-delta Ct method (ddCt), using 18S as the 

housekeeping gene. Primer sequences are shown in Table 3.2.3 below: 

 

Table 3.2.3 Primer sequences of the gene transcripts.  

Gene name Primer sequences (5’ – 3’) 
 Forward Reverse 

Atrogin-1 GCAGAGAGTCGGCAAGTC CAGGTCGGTGATCGTGAG 

FoxO-3 AGTGGATGGTGCGCTGTGT CTGTGCAGGGACAGGTTGT 

MuSK GCCTTCAGCGGGACTGAG GAGGCGTGGTGACAGG 

MyHC I TTGTGCCGTAGGAATGTGGG CCTTTCTCGGAGCCACCTTG 

MyHC IIa CTCCAAGGACCCTCTTATTTCCC ACTGCTGAACTCACAGACCC 

MyHC IIb GAGGCAATCAGGAACCTTCGG TGTGTGTCCTTCAGCATTCCC 

MyHC IId/x AAGTTTGGACCCACGGTCG CAGTGAGAGAGCCTGCCTTTA 

18S CGGCTACCACATCCAAGGAAGG CCCGCTCCCAAGATCCAACTAC 
 

 

3.2.4 Statistical Analysis 

Statistical analysis was performed using Graphpad 5 (Graphpad Software, San 

Diego, USA). Statistical comparisons from physiological and histological analyses 

were performed using One-way ANOVA with Dunnett’s post-hoc analysis, using NNN 

as the control group. Data were represented as mean ± SEM. N number represents 

animals used in each group. 
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3.3 Results 

3.3.1 The effect of pre- or postnatal protein-deficient diet on body and 

muscle weight of 12-week old mice  

Total body and muscle weights of 12-week old mice subjected to a protein-

deficient diet (5% protein) either pre- or postnatally is shown in Figure 3.3.1.1. 

Body weight of mice on a protein-deficient diet postnatally (NLL) was 

significantly lower compared with mice on a normal diet (NNN) (Figure 3.3.1.1 

A). Muscle weight of EDL and TA muscle showed no significant changes between 

the three experimental groups (Figure 3.3.1.1 B, C), although the weight of SOL, 

GTN and Quad muscles was significantly reduced in NLL mice (Figure 3.3.1.1 D-

F). No visible difference in the body size was observed upon collection of the 

animals. 

Ratio of skeletal muscle weight in relation to total body weight of NNN, NLL 

and LNN mice is shown in Figure 3.3.1.2. The ratio of EDL, TA, SOL, GTN and 

Quad muscle weight to total body weight showed no significant changes 

between the three groups, despite changes of individual muscle weight observed 

previously.  
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Figure 3.3.1.1 Total body and muscle weight of 12-week old mice. (A) Total body 

weight (g) and (B-F) muscle weight of EDL (B), TA (C), SOL (D), GTN (E) and 

Quadriceps (F) muscles (mg) isolated from 12-week old mice subjected to a 

protein-deficient diet (5% protein) pre- or postnatally.  *represents significant 
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differences compared with NNN (control) group, *P ≤0.05, **P ≤0.01, ***P 

≤0.001 (mean ± SEM; n=5-14; One-Way ANOVA with Dunnett’s post-hoc 

analysis).  

  

Figure 3.1.1.2 Muscle-to-body weight ratio of 12-week old mice. Ratios body to 

A) EDL, B) TA, C) SOL, D) GTN and E) Quad muscles from 12-week old mice 
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subjected to a protein-deficient diet (5% protein) pre- or postnatally, expressed 

as a %.  NNN was used as the control group for statistical comparisons (mean ± 

SEM; n=5-14; One-Way ANOVA with Dunnett’s post-hoc analysis). 

 

3.3.2 The impact of protein-deficient diet during pre- or postnatal stages of 

development on skeletal muscle force generation in 12-week old mice 

Maximum force of EDL muscle, correlation between muscle force versus EDL 

muscle weight and body weight of 12-week old mice are shown in Figure 3.3.2. 

Maximum force of EDL muscle was significantly lower only in the NLL group, 

compared to the control (NNN), but the specific muscle force showed not 

differences between the groups (Figure 3.3.2 A, B). Correlation analysis for 

maximum force versus total body weight indicated a week correlation between 

the two, with Pearson’s coefficient (R) <0.5 (Figure 3.3.2 B). However, 

correlation analysis for maximum force and EDL muscle weight showed a 

significant but moderate correlation, with Pearson’s coefficient (R) just above 0.5 

(Figure 3.3.2 C). (Figure 3.3.2 C). 
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Figure 3.3.2 EDL muscle forces in 12-week old mice. A) Maximum force of EDL 

muscle (mN) of 12-week old mice and B) Specific tetanic force of EDL muscle 

(Specific Force (mN/mm2)) of 12-week old mice, *represents significant 

differences compared with NNN (control) group, **P ≤0.01 (mean ± SEM; n=5-

14; One-Way ANOVA with Dunnett’s post-hoc analysis). C) Correlation of 

maximum muscle force (mN) versus total body weight (g) and D) Correlation of 

maximum force (mN) versus EDL muscle weight (mg) of 12-week old mice, R ≥ 

0.25 indicates a week correlation between the two variables, R ≥ 0.50 indicates a 

moderate correlation between the two variables (n=21; Pearson’s correlation 

analysis).  

 

 

3.3.3 Histological examination of the EDL muscle in 12-week old mice 

following a 5% protein diet pre- or postnatally 

Histological analyses of EDL muscle are shown in Figure 3.3.3.1. EDL fibre size 

showed no significant differences between the three groups (Figure 3.3.3.1 C).  

EDL fibre number was significantly lower in both NLL and LNN mice compared to 

the control group (Figure 3.3.3.1 B). Distribution curves for EDL fibre size for all 

three groups were plotted, in order to assess whether fibre sizes follow similar 

distribution patterns across all experimental groups. Distribution of the EDL fibre 

sizes was similar between the three groups, with no significant shift been 

recorded (Figure 3.3.3.2)  
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Figure 3.3.3.1 Histological examination of the EDL muscle of 12-week old mice. 

A) Transverse sections of EDL muscle from 12-week old mice stained with WGA 

(green) and visualised under a confocal microscope. Scale bar: 200 μm, 

Magnification: x20, Section thickness: 12 μm. B) EDL fibre number and C) EDL 

fibre size in 12-week old mice. *represents significant differences compared with 
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NNN (control) group, *P ≤0.05, **P ≤0.01 (mean ± SEM; n=4-8, One-Way 

ANOVA with Dunnett’s post-hoc analysis). Representative images shown.  

 

Figure 3.3.3.2 Myofibre distribution analysis of EDL muscle, expressed as a 

percentage of total muscle fibres analysed in EDL muscle of 12-week old mice 

(mean ± SEM; n=4-6, Chi-square test).   

 

3.3.4 Assessment of NMJ integrity in 12-week old mice following a low-

protein diet pre- and postnatally  

Images and analysis of NMJ morphology in EDL muscles of 12-week old mice 

following a low-protein diet pre-or postnatally is shown in Figure 3.3.4.1 and 

Figure 3.3.4.2. Analysis of NMJ images revealed the presence of morphological 

abnormalities in NLL and LNN, rather than denervation (partial or complete) of 

the synaptic site (Figure 3.3.4.1). Individual NMJs where subsequently scored 
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Significant differences in the number of NMJs with morphological abnormalities 

were recorded in NLL compared to the control group (NNN) (Figure 3.3.4.2 A). 
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NMJs with morphological abnormalities in all three groups were then scored and 

subdivided into fragmented, small in size or with limited/defective branching 

(Chapter 2, Section 2.5). The proportion of NMJs with small size, fragmented or 

defective branching was higher in NLL mice compared to the control group 

(NNN) (Figure 3.3.4.2 B-D).  

 

Figure 3.3.4.1 Characterisation of NMJs in EDL muscle of 12-week old mice on a 

normal or a protein-deficient diet pre- or postnatally. The pre-synaptic terminal 

expressing YFP (green) and the post-synaptic end plate stained with α-

bungarotoxin (red) show perfect overlap. A number of NMJs in NLL and LNN mice 

show morphological aberrations (arrow) in comparison with the “pretzel” shape 

seen in the control group. Scale bar: 50 μm, Magnification: x60. Representative 

images shown.  
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Figure 3.3.4.2 Classification of NMJs changes in EDL muscle of 12-week old mice 

on a normal or a protein-deficient diet pre- or postnatally. A) NMJs were divided 

into 3 main categories: normal (N), morphologically abnormal (MA) and 

denervated (partial or complete) (D) and expressed as a percentage of the total 

number of NMJs scored per muscle. B-D) Scoring of NMJs with morphological 

abnormalities into 3 sub-categories: fragmented (B), with limited/defective 

branching (C) or with small synaptic area (D) *represents significant differences 

compared with NNN (control) group, *P ≤0.05, **P ≤0.01, ***P ≤0.001 (mean ± 

SEM; n=3, One-Way ANOVA with Dunnett’s post-hoc analysis). 
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3.3.5 Gene expression analysis of marker genes for muscle fibre isoforms, 

muscle atrophy and NMJ formation in TA muscle of 12-week old mice 

following a low-protein diet pre- and postnatally 

Expression analysis of genes involved in determination of myosin heavy chain 

isoforms in TA muscle of 12-week old mice are shown in Figure 3.3.5.1. 

Expression levels of MyHC-IIa revealed significant increase in gene expression 

levels in NLL group, compared to the control group (NNN) (Figure 3.3.5.1 B). 

Expression levels of MyHC-I (Figure 3.3.5.1 A), MyHC-IIb (Figure 3.3.5.1 C) and 

MyHC-IId/x (Figure 3.3.5.1 D) showed no significant differences between the 

groups. However, the sample variation and the small N number did not allow a 

definitive conclusion to be drawn.   

Expression levels of Atrogin-1, MuSK and FoxO-3 genes are shown in Figure 

3.3.5.2. Analysis of Atrogin-1 expression levels showed significant increase in 

expression levels both in NLL mice and LNN, compared to the control group 

(NNN) (Figure 3.3.5.2 A). On the contrary, MuSK and FoxO-3 expression levels 

revealed no differences between the groups (Figure 3.3.5.2 B, C).  
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Figure 3.3.5.1 Expression analysis of MyHC isoforms in TA muscle of 12-week old 

mice following a low-protein diet pre- or postnatally. Relative expression levels 

of A) MyHC-I, B) MyHC-IIa, C) MyHC-IIb and D) MyHC-IId/x. *represents 

significant differences compared with NNN (control) group, *P≤0.05 (mean ± 

SEM; n=3-7, One-Way ANOVA with Dunnett’s post-hoc analysis). 
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Figure 3.3.5.2 Expression analysis of A) Atrogin-1, B) MuSK and C) FoxO-3 genes 

in TA muscle of 12-week old mice following a low-protein diet pre- or 

postnatally. *represents significant differences compared with NNN (control) 

group, *P≤0.05 (mean ± SEM; n=4-7, One-Way ANOVA with Dunnett’s post-hoc 

analysis). 
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lactation were subjected to a normal or a low-protein diet after weaning, until 12 

weeks of age (NNN, NLL, LNN mice; Chapter 2, Section 2.1). Assessment of body 

and muscle physiology and function in mice subjected to a protein-deficient diet 

was performed in order to investigate whether changes seen during gestation or 

lactation stages (21-day old mice) persist until early adulthood (preliminary data, 

Figure 3.1). This assessment would also indicate in which developmental stage 

dietary modifications play a crucial role in skeletal muscle wasting. Data collected 

from 12-week old mice showed a reduction in total body weight and muscle 

strength, accompanied by reduction in the muscle weight of specific skeletal 

muscles of the lower limbs. However, the reduction in maximum force 

generation of the EDL muscle was not accompanied by a reduction in its specific 

force. Therefore, the reduction of the maximum force may be attributed to the 

morphological alterations seen at the NMJs rather than changes in muscle fibre 

number. No structural differences were observed in muscle fibre size, but 

noticeable differences in the morphology of the NMJs and muscle fibre number 

were recorded. Quantitative expression analysis of marker genes involved in 

regulation of muscle mass and function revealed changes in the expression levels 

of those genes in mice on a protein-deficient diet. These changes could indicate 

the potential impact of dietary protein restriction early in life in the regulation of 

molecular mechanisms of muscle composition, muscle morphology and function 

and NMJ maintenance. 

  

3.4.1 The effect of low-protein diet pre- or postnatally on body and muscle 

mass, muscle size and muscle function of 12-week old mice 

Analysis of total body weight and maximum force generation in EDL muscle 

showed significant decline of both only in mice on a low-protein diet at postnatal 

stages of development (NLL) (Figure 3.3.2). Similar reduction was seen in the 

weight of SOL, GTN and Quad muscle in NLL mice but no changes were recorded 

in the weight of EDL and TA muscle of NLL mice, compared to the control group 
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(NNN) (Figure 3.3.1.1). Muscle weight of mice from the LNN group showed no 

differences, compared to the control group (NNN) (Figure 3.3.1.1).  

The reduction in body weight in 12-week old mice on 5% protein diet 

postnatally highlights the systemic effect of dietary interventions and the 

important role of nutrients during development. Changes in body weight 

following restriction of nutrients have been previously reported in both mice 

(Yang et al. 2014; Chen et al. 2009) and humans (reviewed in Soliman et al. 

2014). In terms of protein restriction in humans, several cases of malnutrition 

due to suboptimal protein intake have been recorded in infants even in 

developed countries with wide range of adverse effects (Tierney et al. 2010). 

Several studies have highlighted the link between body weight and muscle 

function, where muscle strength was assessed. Specifically, in humans low body 

weight early in life has been associated with reduced muscle function later in life 

(Sayer et al. 2004). In mice, early life protein restriction has been linked to lower 

body and organ weight and changes in the expression of key proteins associated 

with muscle function and maintenance (Chen et al. 2009). Data from this study 

showed significant reduction in the muscle weight in SOL, GTN and Quad muscle 

(composed of type I and type II muscle fibres) but not in EDL and TA muscles 

(composed predominantly of type II muscle fibres). However, correlation analysis 

of EDL muscle weight compared with the maximum force showed a link between 

lower muscle weight and reduced maximum muscle force (Figure 3.3.2 D). 

Similar results were obtained from correlation analysis between body weight and 

maximum muscle force. Specific muscle force showed no differences between 

the three groups, indicating that maximum muscle force generation in NLL mice 

may be reduced due to morphological alterations seen at the synaptic site rather 

than intrinsic muscle mechanisms. These data indicate that individual muscle 

weights may not show significant differences between the groups, but they could 

be directly associated with lower maximum force generation from the muscle. 

Absence of significant differences in mice in the LNN group suggests that pre-

natal protein restriction does not have a direct impact on skeletal muscle weight 

and force generation during adulthood.  
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3.4.2 The effect of maternal protein restriction on muscle physiology 

Histological analysis of the EDL muscle was necessary in order to assess any 

potential effect of maternal protein restriction in skeletal muscles of the 

offspring. EDL muscle has a high percentage of fast-twitch muscle fibres (MyHC 

type II isoforms) (Augusto et al. 2004), which are preferentially lost during 

ageing. Therefore, this muscle is ideal for measurement of the contractile 

properties of skeletal muscle in mice. Morphological analysis of the EDL muscle 

showed no differences in muscle fibre size. However, significant reduction in EDL 

fibre number was recorded in NLL and LNN mice (Figure 3.3.3.1). This reduction 

in fibre number of NLL mice at 12 weeks of age may be the result of preferential 

loss of smaller muscle fibres at earlier stages of development. It is interesting 

that we did not see a significant reduction in the weight of the EDL muscles in 

this group given this finding. However, it is possible that the muscles of these 

mice have gained bulk via other sources such as fat infiltration, which was not 

examined in this thesis. Furthermore, the small size of the EDL muscle makes it 

technically challenging to detect changes in its weight between the three 

experimental groups.  

Mice from the LNN group also had a significant reduction in myofibres 

number at 12 weeks of age (Figure 3.3.3.1). It is possible that the loss of muscle 

fibre size in mice from the NLL and LNN group would be due to different 

mechanism involved, as suggested by qPCR data. Distribution analyses of the 

fibre size in EDL muscle showed no significant shift in the fibre size distribution 

(Figure 3.3.3.2). Again, the lack of a significant reduction in the weight of the EDL 

muscles may be due to bulk gained via other sources such as fat infiltration. In 

order to determine whether that is indeed the case, further investigation is 

required.  

Previous studies have demonstrated a strong link between muscle force and 

muscle physiology in terms of muscle fibre size and number. Weaker muscles 

have been associated with reduced number of muscle fibre size and/or number, 

one of the main characteristics of sarcopenia (reviewed in Doherty, 2008). 
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Recent studies have demonstrated a reduction in muscle strength during early 

ageing but in the absence of muscle atrophy, suggesting that reduction in the 

muscle force may be a predecessor of physiological changes seen in the muscle 

at later stages (Chan et al. 2010). Although loss of muscle function without 

changes in muscle physiology has not been frequently reported, other factors 

may be equally responsible for a reduction in muscle strength. Examples of such 

factors include changes in MyHC isoforms, affecting the contractile properties of 

the muscle (Barany, 1967), innervation and signal transmission at the synaptic 

site of the muscle (Sheth et al. 2018), changes in the levels of ROS (Palomero et 

al. 2013), mitochondrial content (Short et al. 2005) and changes in key molecular 

mechanisms regulating muscle mass and function (reviewed in Jackman and 

Kandarian, 2004).  Molecular changes of critical molecules for skeletal muscle 

mass and function, the structure and morphology of synaptic sites and 

mitochondrial homeostasis were further investigated in our study. 

 

3.4.3 Physiological changes at the neuromuscular junction site in 12-week old 

mice on a protein-deficient diet 

To elucidate the mechanisms causing a reduction in muscle force generation 

in 12-week old mice on a protein-deficient diet postnatally, assessment of the 

structure of the NMJ was assessed. Firstly, NMJs were categorised into normal, 

morphologically abnormal or denervated (partial or complete) in order to 

examine whether changes in structure and morphology would be as severe as 

those seen in diseases (Lyons and Slater, 1991; Pratt et al. 2015) or during ageing 

(Vasilaki et al. 2016). Scoring of NMJs showed a significantly higher proportion of 

morphologically altered NMJs in the NLL group compared to the control group; 

although perfect overlap between the pre-and post-synaptic site was evident in 

the majority of NMJs (Figure 3.3.4.1). Moreover, partial denervation in a small 

number of NMJs in both NLL and LNN groups was noted but their proportion was 

below 5% of total NMJs scored and presented no significant differences 

compared to the control group (NNN) (Figure 3.3.4.2). This small proportion of 
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partially denervated NMJs was not surprising, considering that evidence of 

complete denervation in the muscle is not common in young/adult mice not 

affected by a severe condition such as muscular dystrophy, in which more 

striking physiological effects are also noted (Lyons and Slater, 1991).  

Since significant differences in the NMJs with morphological abnormalities 

were recorded in the NLL group, subsequent scoring of those NMJs was 

performed. Three subcategories of morphological abnormalities were generated 

based on fragmentation of the synaptic components, limited or defective 

branching and small synaptic surface area. Similar criteria for NMJ scoring have 

been used in previous studies (Valdez et al. 2010) although the NMJ phenotype 

was much more severe than the one seen in our study. Data collected showed a 

significant increase in the proportion of the NMJs in all three subcategories in 

mice from the NLL group, compared to the control (NNN) group (Figure 3.3.4.2).  

Collectively, results from the NMJ scoring indicate alterations in the 

morphology of the NMJ site but very little evidence of partial denervation and no 

visible impairments in the overlap of the pre- and post-synaptic components 

were recorded. Although defects in the NMJs have been previously reported to 

impact skeletal muscle function, such defects are usually quite striking, including 

partial or fully denervated NMJs or lack of overlapping of the junction 

components (reviewed in Tintignac et al. 2015). These aberrations have been 

recorded in mice models with severe muscle defects (Lyons and Slater, 1991; 

Fischer et al. 2011) and during ageing (Vasilaki et al. 2016). Alterations in the 

morphology of the NMJs such as the ones seen in this study may be the results of 

delayed development. Small NMJ size and limited branching in the synaptic site 

similar to that observed in mice from the NLL group has been recorded in several 

studies examining the developmental stages and maturation of NMJs in mice 

(Slater, 1982; reviewed in Shi et al. 2012). Assuming that mice from the NLL 

group exhibit delayed development, this would align with the small proportion of 

partially denervated NMJs and any fragmentation seen which may be the result 

of NMJ remodelling rather than a deficit. Indeed NMJ remodelling in mice during 

postnatal stages of development includes branching elimination, parts of 
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unoccupied AChR clusters and along with structural other structural changes 

(Balice-Gordon and Lichtman, 1993; Marques et al. 2000). It is noteworthy that 

recent studies performing functional tests in muscle fibres occupied by an 

abnormal NMJ (e.g. fragmented) showed that such abnormalities per se do not 

affect the contractile properties of the skeletal muscle fibre (Willadt et al. 2016). 

However, there are studies showing a close association between NMJ 

morphology and muscle function in mice following injury (Tu et al. 2017). Here, 

we advocate that the NMJ structural alterations observed in this study may be 

the result of underlying dysregulation in molecular mechanisms due to maternal 

protein restriction. This would result in a phenotype agreeing with delayed 

development in mice from the NLL group. Unlike the NMJ phenotype observed in 

mice from the NLL group, no significant changes in NMJ structure where seen in 

12-week old mice from the LNN group, compared to the control. This is in line 

with the normal force generation of the EDL muscle of these mice. As such, pre-

natal protein restriction does not result in aberrations of NMJ morphology during 

adulthood. 

 

3.4.4 The impact of protein-deficient diet on molecular mechanisms of 

skeletal muscle morphology, muscle atrophy and NMJ formation in TA 

muscle of 12-week old mice 

In order to examine the hypothesis that protein restriction could have an 

effect on molecular mechanisms in the muscle during development, quantitative 

analysis of gene expression was performed for genes associated with muscle and 

NMJ physiology and function. Isolated RNA from TA muscle of 12-week old mice 

was used for cDNA synthesis and qPCR for the following genes: MyHC type I, IIa, 

IIb and IId/x isoforms, Atrogin-1, FoxO-3 and MuSK. 

Relative expression analysis of MyHC type IIa isoform in TA muscle revealed a 

significant upregulation in gene expression levels in the NLL group compared to 

the control group. Expression levels of MyHC type I, type IId/x and type b showed 

no significant differences between the groups. Increased intragroup variability in 
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gene expression levels along with a low n number for each group were important 

restrictions for accurate estimation of the gene expression levels of these gene 

transcripts (Figure 3.3.5.1).  

Several studies have established the TA muscle as a MyHC type IIb-rich muscle 

similar to the EDL in adult mice (Augusto et al. 2004) with MyHC type IId/x being 

the second most abundant isoform, followed by type IIa. During development, 

the composition of a skeletal muscle changes, with some MyHC isoforms being 

replaced. Specifically, the EDL muscle is predominantly composed by MyHC type 

IIb fibres at the age of 21 days, when MyHC type IIa is still present. By 90 days of 

age, the EDL muscle is devoid of the type IIa isoform and is composed almost 

exclusively of type IIb fibres and in smaller proportion type IId/x (Agbulut et al. 

2003). Very similar composition has also been observed in TA muscle, with MyHC 

type IIb being more abundant in adult mice (Augusto et al, 2004). Changes in 

muscle fibre composition in terms of MyHC isoforms can have an impact on the 

contractile properties of the muscle. Knockout mice for MyHC IIb or IId/x show 

distinct differences in muscle force generation (Acakpo-Satchivi et al. 1997). 

Other studies have shown that adult mice lacking of MyHC IId expression 

demonstrated an increase in the expression of MyHC IIa isoform, potentially 

acting as a compensatory mechanism (Santorius et al. 1998). Although MyHC IIa 

and IId/x fibres generate less force than type IIb fibres, upregulation of MyHC 

type IIa expression in mice from the NLL group might be a compensatory 

mechanism or an indicator of developmental defect in the TA muscles of those 

mice. However, it is possible that this level of overexpression may not be 

sufficient to recover muscle force in these mice. In order to examine whether this 

is indeed the case and whether these data are consistent in both EDL and TA 

muscles, immunofluorescent staining in transverse sections of those muscles 

would be necessary. Quantification of myofibres of different MyHC isoforms 

would provide an indication of potential shifts between different isoforms or the 

presence of hybrid myofibres in these muscles.   

In addition to the expression patterns of MyHC isoform genes, differences in 

the expression levels of genes involved in muscle atrophy and synapse formation 
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were also investigated (Figure 3.3.5.2). Relative gene expression of Atrogin-1 in 

TA muscle showed a significant increase in the expression levels in mice from 

both the NLL and LNN group. Atrogin-1 is a muscle-specific gene highly expressed 

during skeletal muscle atrophy (Gomez et al. 2010) but lower expression levels 

have been reported in aged mice with sarcopenia (Edström et al. 2006). 

Upregulation of this gene in mice of the NLL and LNN groups does agree with the 

reduction in muscle fibre number in the EDL muscle of these mice, but it may 

also be an early indicator of the tendency of those muscle fibres to undergo 

atrophy, a phenotype that could be studied later on in adult life. In terms of 

synaptic formation, expression levels of MuSK gene showed no significant 

differences between the groups. During postnatal development in mice, MuSK 

activation plays a fundamental role in NMJ maintenance and maturation in vivo 

(DeChiara et al. 1996; Hesser et al, 2006). Taken into account the structural 

changes seen in NMJ morphology in this study, it is possible that molecular 

changes in MuSK gene my have not yet been evident. In order to assess the 

molecular changes underlying the morphological alterations seen in NMJs, it 

would be important to examine the expression levels of additional genes, 

including AChR-α, AChR-ε and AChR-γ subunit genes. Upregulation in gene 

expression of the AChR-γ gene may indicate possible damage at the NMJ site, 

including denervation (Valdez et al. 2014). AChR-γ subunit is gradually 

substituted by AChR-ε subunit during NMJ maturation at early stages of 

development (Missias et al. 1996). Therefore, analysis of the expression level of 

the two AChR isoforms would be a useful tool to access whether delayed 

development or NMJ denervation/remodelling occurs in mice of the NLL group.  

All things considered, reduction of EDL muscle force seen only in NLL mice 

might be the combined result of myofibres loss and defective NMJs. Myofibre 

loss in LNN mice but normal NMJ structure might be insufficient for reduction in 

EDL muscle force. Examination of MyHC isoforms and AChR subunits would 

provide a more collective explanation on the effect of the protein-deficient diet 

during early life.  
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4.1 Introduction 

MicroRNAs are important regulators of gene expression, controlling the 

expression of multiple transcripts in more than one tissue. Data from our lab 

show that several microRNAs have been associated with the regulation of 

skeletal muscle and nerve homeostasis, including miR-181, miR-199 and miR-

378. MiR-181 has been identified as a key microRNA for the establishment of 

skeletal muscle phenotype during muscle development, with expression levels 

being upregulated in the muscle during differentiation (Naguibneva et al. 2006). 

MiR-181a, a member of miR-181 family, has been shown to regulate Sirt-1 

expression on a protein level in skeletal muscle cells regulating myotube size 

(Soriano-Arroquia et al. 2016). MiR-181d, another member of miR-181 family, 

has been identified as negative regulator of axonal outgrowth and elongation 

(Wang et al. 2015). Studies have shown that miR-378 expression is positively 

regulated by MyoD during muscle cell differentiation (Gagan et al. 2011). Mice 

lacking of miR-378 expression show resistance to obesity induced by a high-fat 

diet and enhanced mitochondria metabolism (Carrer et al. 2012). MiR-199a 

expression has been induced in several model organisms of muscular dystrophy, 

including mdx mice (Alexander et al. 2013). Moreover, miR-199a was identified 

as a regulator of myogenesis via negative regulation of several factors of the 

WNT signalling pathway (Alexander et al. 2013). Ablation of miR-199a gene has 

been linked to reduced mTOR activity and induction of neurodevelopmental 

pathophysiology (Tsujimura et al. 2015), while miR-199b has been associated 

with attenuation of acute spinal cord injury (Zhou et al. 2016).  

Expression of microRNAs may often be tissue specific with some microRNAs 

being more abundantly expressed in certain tissues and under certain conditions. 

Examples of such microRNAs are miR-128 and miR-133a, which are highly 

expressed in skeletal muscle.  

MicroRNA-128 is expressed at high levels in the central nervous system, 

specifically the brain, and in skeletal muscles (Lee et al. 2008). Increased levels of 

miR-128 have also been reported during development (Franzoni et al. 2015). 

Studies have shown that miR-128 is an important regulator of neurogenesis and 
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neuronal differentiation (Zhang et al. 2016; reviewed in Li et al. 2013). Expression 

levels of miR-128 increase gradually in mice during postnatal development and 

peak during adulthood (Tan et al. 2013). The role of miR-128 appears to be more 

versatile, as it is has also been described as a tumour suppressor. A study from 

Papagiannakopoulos et al. has demonstrated the tumour suppressive role of 

miR-128 by direct targeting of EGFR and PDGFRa, both interacting with RTKs 

(Papagiannakopoulos et al. 2012). Another study has identified Irs1, Insr, and 

Pi3k1r, components of Insulin signalling/Akt pathway as direct target genes of 

miR-128 (Motohashi et al. 2013). These findings are in agreement with studies 

showing pathways in cancer, neurotrophin signalling, MAPK and insulin signalling 

pathway as highly enriched pathways with miR-128 target genes (Motohashi et 

al. 2013; Ching and Ahmed-Annuar, 2015).  

Unlike miR-128, microRNA-133 belongs to a conserved family of microRNAs 

known as “myomiRs” and it is specifically and highly expressed in skeletal and 

cardiac muscle (Chen et al. 2006). Expression of miR-133 is closely regulated by 

myogenic factors MyoD and SRF, which subsequently regulates skeletal muscle 

cell proliferation and differentiation (Chen et al. 2006; Rao et al. 2006). 

Regulation of myoblast proliferation and differentiation by miR-133 has been 

observed via ERK1/2 signalling pathway (Feng et al. 2013). Moreover, a study 

from Deng et al. revealed an upregulation in the expression of miR-133a, a 

member of miR-133 family, in skeletal muscle of mdx mice at one month of age 

(Deng et al. 2011). This study also reported that both skeletal and cardiac muscle 

development in mdx mice overexpressing miR-133a was not compromised (Deng 

et al. 2011). Although, miR-133 and specifically miR-133a has been studied 

extensively on muscle in vitro and in vivo, there is not much evidence of its 

involvement in motoneuron cell survival and function. Hoye et al. have identified 

enrichment of miR-133a in motoneurons of mice, similar to that of miR-218, 

known as “motomiR” (Hoye et al. 2017). Moreover, their data supports that miR-

133a may play a functional role in the regulation of postnatal motoneuron fate 

(Hoye et al. 2017).  
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The aim of this chapter was to assess the expression levels of candidate 

microRNAs in skeletal muscle and peripheral nerve of 12-week old mice that 

have been subjected to either a normal or a protein-deficient diet pre- or 

postnatally for functional studies. Data collected from this chapter was used for 

microRNA gain- or loss-of-function experiments and identification of potential 

target genes in muscle and nerve in vitro (Chapters 5-7). 

 

 

4.2 Materials and methods 

4.2.1 cDNA synthesis and qPCR for microRNAs 

Protocols for cDNA synthesis and qPCR for microRNAs have been described in 

detail in Chapter 2. Briefly, for first strand cDNA synthesis, 100 ng of RNA isolated 

from TA and SN tissues was used. RNA template, RNase-free H2O and cDNA 

reaction mix containing RT enzyme were added to a final volume of 20 μL, as 

shown in Chapter 2, Section 2.13 (Table 2.13). cDNA synthesis protocol for 

microRNAs is described in Chapter 2, Section 2.13 (Figure 2.13.1). Following 

cDNA synthesis, reaction volume was diluted 1:10 to a final volume of 200 μL and 

was either used immediately for qPCR or stored at -20oC until future use. For 

qPCR on microRNAs, each cDNA sample was run in triplicate, with a final reaction 

volume of 11.4 μL. Reagents for each qPCR reaction sample are shown in Chapter 

2, Section 2.15 (Table 2.15.1). Protocol for qPCR run on microRNAs is described 

in Chapter 2, Section 2.15 (Table 2.15.2). Quantification of microRNA expression 

was performed using the delta delta Ct (ddCt) method (Livak and Scmittgen, 

2001). Relative expression of microRNAs was normalised to SNORD-61 or RNU-6 

housekeeping gene. MicroRNA ID numbers are shown on the table below:  
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Table 4.2.1 Primer IDs used in qPCR for each microRNA tested in TA and SN of 

12-week old mice.  

microRNA ID 

miR-128 MIMAT0000140 

miR-133a MIMAT0000145 

miR-199a MIMAT0000230 

miR-199b MIMAT0004667 

miR-181a MIMAT0000660 

miR-181d MIMAT0017264 

miR-378a MIMAT0003151 

 

4.2.2 Identification of miR-128 and miR-133a predicted target genes and 

investigation of their role in metabolic processes  

Predicted target genes of miR-128 and miR-133a were investigated using 

TargetScanMouse 7.1 (http://www.targetscan.org/mmu_71/). Both miR-128 and 

miR-133a are within the conserved families of microRNAs among different 

organisms, with identical mature sequences. The list of predicted target genes 

was obtained for each microRNA, and a number of predicted target genes of 

interest associated with skeletal muscle physiology and NMJ formation, 

morphology and function was selected. The selected predicted target genes 

were imported into STRING database (Version 10.5; https://string-db.org/). Each 

gene was illustrated as a node connected with one or more neighbouring nodes. 

Disconnected nodes were excluded from the network. Interactions between the 

nodes were assessed based on degree of confidence (low=0.150, medium=0.400, 

high=0.700, highest=0.900). Network was illustrated using CytoScape Software, 

based on the information obtained from STRING Database. To evaluate the role 

of each gene in specific biochemical processes, Kyoto Encyclopaedia of Genes 

and Genomes (KEGG) Pathway database was used 

(https://www.genome.jp/kegg/). KEGG Reference number (KO number) for each 

protein encoded by each predicted target gene of interest was obtained and 

http://www.targetscan.org/mmu_71/
https://string-db.org/
https://www.genome.jp/kegg/
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imported into KEGG Mapper. Signalling pathways containing all or a number of 

those target genes were shown. Following selection of signalling pathway of 

interest, proteins encoded from predicted target genes were coloured in cyan 

(miR-128) or orange (miR-133a), depending on the microRNA by which they were 

targeted.  

 

4.2.3 Statistical analysis 

Statistical analysis of qPCR results was performed using Graphpad 5 

(Graphpad Software, San Diego, USA). Data analysis was performed using One-

Way ANOVA with Dunnett’s post-hoc analysis, using NNN as the control group. 

Data are represented as mean ± SEM. N Number represents animals used. 

 

 

4.3 Results 

4.3.1 Expression levels of candidate microRNAs in TA muscle and sciatic nerve 

of 12-week old mice on a low-protein diet in pre-or postnatal stages of 

development 

Analysis of the expression levels of candidate microRNAs is shown in Figures 

4.3.1. and 4.3.2. Expression of miR-199a, -199b, -181a, -181d and -378 appeared 

upregulated in the TA muscle of NLL mice compared to the rest of the groups, 

but the P value was 0.2242, 0.1234, 0.0667, 0.0831 and 0.0658 respectively  

(Figure 4.3.1). Analysis of the expression levels of miR-128 in TA muscle revealed 

a significant reduction of miR-128 levels in both NLL and LNN mice (Figure 4.3.2 

A). Interestingly, miR-133a levels were significantly lower only in the TA muscle 

of NLL mice, with the LNN mice recording a P value of 0.051 (Figure 4.3.2 B). 

Despite the significant differences recorded in the TA muscle, miR-128 and -133a 

levels in the SN showed no differences between the three experimental groups 

(Figure 4.3.2 C, D). Based on this data, miR-128 and miR-133a were selected for 

further analysis.  
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Figure 4.3.1 Expression levels of candidate microRNAs in TA muscle of 12-week 

old mice subjected to a normal or a low-protein diet pre- or postnatally. 

Quantitative PCR analysis of microRNA A) miR-199b, B) miR-199a, C) miR-181a, 

D) miR-181d and E) miR-378. Expression relative to RNU-6 is shown. NNN serves 
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as control group for statistical comparison, (mean ± SEM; n=3-7, One-Way 

ANOVA with Dunett’s post-hoc analysis).  

 

 

Figure 4.3.2 Expression levels of microRNAs miR-128 and miR-133a in (A, B) TA 

and (C, D) SN of 12-week old mice subjected to a normal or a low-protein diet 

pre- or postnatally. Expression relative to SNORD-61 is shown. *represent 

significant differences compared with the NNN (control) group, (mean ± SEM; 

n=3-7, One-Way ANOVA with Dunnett’s post-hoc analysis).   
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4.3.2 Identification of predicted target genes of miR-128 and miR-133a using 

TargetScanMouse 7.1 database 

The predicted target genes of miR-128 and miR-133a were investigated using 

TargetScanMouse 7.1 database. From the pool of the predicted target genes 

(>1000) for miR-128 recorded from TargetScan, only a 19 of those genes were 

selected to be further investigated (Table 4.1.2.1). Similarly, 16 selected 

predicted target genes for miR-133a are shown in Table 4.1.2.2, as selected from 

a pool of target genes (>600) recorded using TargetScan. These genes are 

involved in key pathways regulating NMJ integrity and signalling as well as 

muscle mass and function. Seed sequence of the miR-128 in the 3’UTR of the 

predicted target gene was the following: 5’–CACUGUGA–3’. Seed sequence for 

miR-133a in the 3’UTR of the predicted target gene was the following: 5’–

GGACCAAA–3’. Each candidate predicted target genes had at least one 

conserved seed region on the 3’UTR, with some target genes having seed 

regions, which were poorly conserved across the species. A number of predicted 

target genes (shown in red) may be targeted by both miR-128 and miR-133a on 

at least one seed region (often poorly conserved) (Appendix, Table A1 and A2). 
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Table 4.3.2.1 List of the selected miR-128 predicted target genes as recorded using TargetScanMouse 7.1. Ensembl ID and seed region in 3’UTR 

are shown. Genes marked in red may also be targeted by miR-133a.  

miR-128 predicted target genes (TargetScan)         

      Seed region (in the 3'-UTR) 

Name Gene Ensembl ID Conserved Poorly conserved  
nerve growth factor receptor (TNFR superfamily, member 16) Ngfr ENSMUST00000000122.6 272-279 N/A  

nerve growth factor receptor (TNFRSF16) associated protein 1 Ngfrap1 ENSMUST00000178632.2 28-34 N/A  

growth factor receptor bound protein 2 Grb2 ENSMUST00000106497.2 1695-1701 N/A  

platelet derived growth factor receptor, alpha polypeptide Pdgfra ENSMUST00000000476.9 2852-2858 2398-2404 

son of sevenless homolog 1 (Drosophila) Sos1 ENSMUST00000068714.5 3529-3535 446-452, 1727-1433, 1477-1483 

growth factor receptor bound protein 2-associated protein 1 Gab1 ENSMUST00000034150.8 1198-1204 N/A  

insulin receptor Insr ENSMUST00000091291.4 207-213 3851-2858 

insulin receptor substrate 1 Irs1 ENSMUST00000069799.2 230-237 N/A  

F-box protein 32 (atrogin-1) Fbxo32 ENSMUST00000022986.6 4341-4347 N/A  

forkhead box O1 Foxo1 ENSMUST00000053764.5 415-421 N/A  

forkhead box O4 Foxo4 ENSMUST00000062000.4 228-234 N/A  

sirtuin 1 Sirt1 ENSMUST00000120239.2 744-750 N/A  

neural cell adhesion molecule 1 Ncam1 ENSMUST00000114476.2 1028-1035 586-592, 612-627, 2169-2175 

neurocan Ncan ENSMUST00000002412.8 3181-3187 865-871 

synaptosomal-associated protein 25 Snap25 ENSMUST00000028727.5 407-713, 1159-1165 N/A  

synaptotagmin I Syt1 ENSMUST00000105276.2 1460-1467, 1692-1698 N/A  

nuclear respiratory factor 1 Nrf1 ENSMUST00000115212.2 N/A 1232-1239, 1603-1609 

nuclear factor, erythroid derived 2, like 2 (Nrf-2) Nfe2l2 ENSMUST00000102672.4 60-66 N/A  

parkin RBR E3 ubiquitin protein ligase Park2 ENSMUST00000191124.1 N/A 715-722 



148 
 

Table 4.3.2.2 List of the selected miR-133a predicted target genes as recorded using TargetScanMouse 7.1. Ensembl ID and seed region in 

3’UTR are shown. Genes marked in red may also be targeted by miR-128. 

miR-133a predicted target genes (TargetScan)         

      Seed region (in the 3'-UTR) 

Name Gene Ensembl ID Conserved Poorly conserved  
clathrin, light polypeptide (Lca)  Clta ENSMUST00000107846.4 94-101 N/A 

synaptotagmin I  Syt1 ENSMUST00000105276.2 1606-1612, 2246-2252 N/A 

vesicle-associated membrane protein 2  Vamp2 ENSMUST00000117780.1 1378-1384 N/A 

regulating synaptic membrane exocytosis 1  Rims1 ENSMUST00000115273.3 1777-1784 N/A 

unc-13 homolog A (C. elegans)  Unc13a ENSMUST00000030170.9 2204-2211 N/A 

adaptor-related protein complex 2, mu 1 subunit  Ap2m1 ENSMUST00000007216.8 254-260 N/A 

complexin 2  Cplx2 ENSMUST00000026985.8 4109-4115 N/A 

Braf transforming gene  Braf ENSMUST00000002487.9 5803-5810 N/A 

insulin receptor  Insr ENSMUST00000091291.4 1063-1069 N/A 

fibroblast growth factor 1  Fgf1 ENSMUST00000117566.2 353-360 N/A 

paired box 7  Pax7 ENSMUST00000030508.8 2128-2134, 3326-3332 1970-1976 

GRP1 -associated scaffold protein  Grasp ENSMUST00000000543.4 275-282 N/A 

myosin IXb  Myo9b ENSMUST00000168839.2 569-576 235-241 

myosin, heavy polypeptide 1, skeletal muscle, adult (MHC II d/x) Myh1 ENSMUST00000124516.2 22-28 N/A 

translocase of outer mitochondrial membrane 20 Tomm20 ENSMUSG00000093904 N/A 3889-3896 

nuclear respiratory factor 1 Nrf1 ENSMUST00000115212.2 457-463 N/A 
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4.3.3 Protein interactions of predicted target genes of miR-128 and miR-133a 

using STRING Database 

 

The interactions between the predicted target genes of miR-128 and miR-

133a were examined on a protein level, in order to determine whether they are 

involved in biological processes associated with skeletal muscle and NMJ 

formation and function. Interactions were investigated using STRING database 

(Version 10.5) and were illustrated using CytoScape software. Interactions of 

predicted target genes of miR-128 shown in Figure 4.3.3.1 are depicted 

according to the level of confidence, with the weakest interactions marked with 

green lines and the strongest with red. Same pattern of interaction is also shown 

for miR-133a predicted target genes (Figure 4.3.3.2). Examination of the 

interactions between the predicted target genes of both microRNAs indicated 

strongest relationship between a cluster of target genes, which could potentially 

be involved in the same metabolic process. For miR-128, the predicted target 

genes with strongest interactions are: Syt1, Grb2, Gab1, Sos1, Ngfr, Ngfrap1, 

Pdgfra, Isr1, Insr, Foxo1, Foxo4, Sirt1 and Atrogin1 (Figure 4.3.3.1). For miR-133a, 

strongest interactions were observed between the following target genes: Clta, 

Ap2m1, Vamp, Syt1, Cplx2, Rims1 and Unc13a (Figure 4.3.3.2).  
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Figure 4.3.3.1 Interactions of predicted target genes of miR-128 using CytoScape 

software. Green lines indicate the weakest interactions (confidence level <150) 

and red lines indicate the strongest interactions (confidence level ≥ 0.900). 

Interactions were drawn based on the combined scored of interactions recorded 

on STRING database. 

 

Figure 4.3.3.2 Interactions of predicted target genes of miR-133a using 

CytoScape software. Green lines indicate the weakest interactions (confidence 

level <150) and red lines indicate the strongest interactions (confidence level ≥ 

0.900). Interactions were drawn based on the combined scored of interactions 

recorded on STRING database. 
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4.3.4 Investigation of predicted target gene involvement in signalling 

pathways using KEGG PATHWAY Database 

 

Involvement of predicted target genes of miR-128 and miR-133a in key 

signalling pathways was investigated using KEGG PATHWAY Database. Target 

genes from both microRNAs appear to be involved in 4 signalling pathways: 

synaptic vesicles cycle, neurotrophin, FOXO and longevity signalling pathway 

(Figure 4.3.4 A-D). Predicted target genes of miR-128 are shown in cyan colour 

and those of miR-133a are shown in orange. Additional predicted target genes to 

those described in Section 4.3.3 are also involved in each of those signalling 

pathways. One such example is the Cacna1a gene, encoding VGCC protein in the 

synaptic vesicle cycle, which is a predicted target gene of miR-128 (Figure 4.3.4 

A). Exclusion of multiple predicted target genes from the analysis performed 

previously was decided, taking into consideration factors including, but not 

limited, to strength of interactions with other predicted target genes, relevance 

to skeletal muscle and/or NMJ physiology and function and novelty of the 

predicted target (not previously published as a direct target of the miR). 

It is noteworthy that miR-133a target genes are mostly involved in the 

synaptic vesicle cycle, while a group of miR-128 predicted target genes (Grb2, 

Gab1, Sos1, Insr, Irs1) appear in more than one signalling pathway (Figure 4.3.4 

B-D). Furthermore, FoxO signalling and longevity regulating pathway are also 

influenced by dietary restriction (Figure 4.3.4 C, D).  
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Figure 4.3.4 Involvement of predicted target genes of miR-128 and miR-133a in signalling pathways. A) Synaptic vesicle cycle, B) Neurotrophin 

signalling pathway, C) FoxO signalling pathway and D) Longevity regulating pathway. Predicted target genes shown on a protein level are 

highlighted as cyan (miR-128) or orange (miR-133a) depending on the microRNA by which they are targeted. Signalling pathways adapted from 

KEGG PATHWAY database. 
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4.4 Discussion 

The aim of this Chapter was to examine the expression levels of candidate 

microRNAs in skeletal muscle and peripheral nerve of 12-week old mice 

subjected to a normal or a low-protein diet at pre- or postnatal stages of 

development, for functional studies. Identification of candidate microRNAs with 

altered expression patterns in muscle and/or nerve may be responsible for 

changes of signalling molecules on an mRNA level. As such, genes targeted by 

microRNAs with dysregulated expression pattern, are predicted to have a 

downstream implication on the regulation of signalling pathways they are 

involved.  Quantitative qPCR analysis from RNA isolated from muscle and nerve 

of 12 weeks old mice showed differences in the expression of miR-128 and miR-

133a. Investigation of predicted target genes for both microRNAs indicated 

interaction between a group of genes involved in key signalling pathways, which 

control muscle:nerve cross-talk, muscle physiology and function and lifespan.  

  

4.4.1 Expression of candidate microRNAs in muscle and nerve of 12-week old 

mice on a normal or protein-deficient diet pre- or postnatally 

Quantitative PCR analysis of candidate microRNAs in TA muscle revealed no 

changes in the expression level of miR-199a, -199b, -181a, -181d and -378 in NLL 

mice. In contrary, expression analysis of miR-128 showed significant 

downregulation in the expression levels in TA muscle of both NLL and LNN mice, 

but no changes in miR-128 expression were observed in SN. Similarly, miR-133a 

was significantly downregulated in TA muscle of NLL mice, but not LNN mice 

where P value = 0.051. As seen with miR-128, expression of miR-133a in SN was 

not significantly different between the three experimental groups.  

Data obtain from qPCR analysis suggest that a protein deficient diet at pre- or 

postnatal stages of development may have the potential to alter molecular 

mechanisms, such as microRNA expression. Specifically, altered microRNA 

expression appears to be tissue-specific, as both miR-128 and miR-133a show 
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significant differences in the expression levels in TA muscle but not in SN, which 

could indicate muscle-specific changes important for NMJ alterations or other 

mechanisms. 

It is not surprising that miR-133a expression is affected in muscle but not in 

peripheral nerve, as miR-133 family is widely known as “myomiRs” due to high 

expression levels in skeletal muscle (reviewed in Horak et al. 2016). Involvement 

of miR-133 isoforms has been widely investigated in muscle in vivo (Chen et al. 

2006; Deng et al. 2011; Zhang et al. 2014) and in vitro (Zhang et al. 2012; Feng et 

al. 2013). Studies have also examined the role of this microRNA in NMJ integrity 

during ageing (Valdez et al. 2014). Although there is some evidence of miR-133b 

involvement in functional recovery and regeneration of axons following 

peripheral nerve or spinal cord injury (Wu et al. 2011; Yu et al. 2011), the role of 

miR-133a in peripheral nerve has not been extensively investigated.  Moreover, 

recent studies have shown increased expression of miR-133a in mouse spinal 

cord (Bak et al. 2008).  

In contrast with miR-133a, miR-128 is mostly abundant in the CNS in mice (He 

at al. 2012). Higher expression of miR-128 has been recorded during 

development (Franzoni et al. 2015) and in cancer (reviewed in Li et al. 2013; Yu 

et al. 2017). Although a brain-enriched microRNA, miR-128 expression levels in 

skeletal muscle are the highest following those observed in CNS (Motohashi et al. 

2013; Lek Tan et al. 2013). Recent studies carried out in vitro have highlighted 

the role of miR-128 in key signalling processes regulating skeletal muscle 

physiology in primary mouse myoblasts (Motohashi et al. 2013) and C2C12 

myoblasts (Shi et al. 2015). In combination with our qPCR data from TA muscle of 

NLL and LNN mice showing downregulation of miR-128 expression levels, miR-

128 is a promising candidate microRNA to investigate further in this study.  
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4.4.2 Investigation of miR-128 and miR-133a predicted target genes and their 

interactions using TargetScanMouse 7.1 and STRING database 

Detailed information on miR-128 and miR-133a was obtained from miRBase. 

Mature microRNAs were identified as mmu-miR-128-3p and mmu-miR-133-3p 

accordingly. These two mature miRs were used in TargetScanMouse database to 

identify the list of predicted target genes. In total, 1097 predicted target genes 

carrying conserved sites for miR-128 binding were identified while 616 predicted 

target genes carrying conserved sited for miR-133 were identified. For miR-128, 

19 predicted target genes were selected, of which 2 genes (Nrf1, Park2) were 

carrying only poorly conserved sites for miR-128 binding (Table 4.1.2.1). The rest 

17 genes were carrying either only a conserved site or both conserved and 

poorly conserved sites. Similarly, for miR-133, 16 predicted target genes were of 

interest and only 1 of those (Tomm20) was carrying only a poorly conserved site 

for miR-133 binding (Table 4.1.2.2), while the rest were carrying a conserved 

only or both conserved and a poorly conserved site. Interestingly, miR-128 and 

miR-133 share 13 of the predicted target genes of interest, with each miR 

targeting either conserved or poorly conserved sites on the same gene transcript 

(Appendix, Table A1 and A2).   

For miR-128, from the 19 predicted target genes only 17 are shown in the 

network as 2 genes (Ncam1 and Ncan) showed no interactions with the rest of 

the gene transcripts. Strongest interactions were recorded between the 

following transcripts: Syt1, Grb2, Gab1, Sos1, Ngfr, Ngfrap1, Pdgfra, Isr1, Insr, 

Foxo1, Foxo4, Sirt1 and Atrogin1. Gene transcripts Irs1 and Insr have been 

established as direct targets of miR-128, resulting in alterations in Irs1/Akt insulin 

signalling during myogenesis (Motohashi et al. 2013). Gene transcript Grb2 has 

been implicated in NMJ homeostasis (Gingras et al. 2016) while Sos1 and Pdgfra 

mutations have been associated with severe embryonic phenotype and skeletal 

defects (Wang et al. 1996; Fantaouzzo and Soriano, 2014). Previous studies have 

shown that Ngfr (also known as p75NTR) and Ngfrap1 (also known as NADE or 

Bex3) are able to induce neurotrophin-mediated apoptosis of neuronal cells even 

during normal development in mice (Mukai et al. 2002). However, it has been 
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suggested that Ngfr may have a more diverse role depending on the interactions 

with other neurotrophin receptors (reviewed in Chen et al. 2009). Atrogin-1 gene 

transcript (also known as Fbxo31) has been a well-established gene associated 

with muscle atrophy (Botine et al. 2001; Gomes et al. 2001; reviewed in Yang et 

al. 2015) and upregulation of this gene has been reported in the cartilage and 

chondrocytes of osteoarthritic mice (Kim et al. 2017). Transcription of Atrogin-1 

is closely dependent on activation of FoxO activation (Botine et al. 2001; Gomes 

et al. 2001). In contrary, Sirt-1 is capable of blocking FoxO activity leading to 

inhibition of muscle atrophy (Lee and Goldberg, 2013).  

Network analysis for miR-133 predicted target genes revealed strongest 

interactions between the following genes: Clta, Ap2m1, Vamp2, Syt1, Cplx2, 

Rims1 and Unc13a. Clta gene transcript encodes protein clathrin and along with 

AP2 (adaptor protein 2, encoded by Ap2m1) it forms a protein complex coating 

the outer surface of the vesicles during clathrin-mediated endocytosis (reviewed 

in Owen et al. 2004).  Syt1 gene transcript, predicted target of both miR-128 and 

miR133, encodes synaptotagmin 1 (SYT-1) protein, involved in calcium-

dependent neurotransmitter release and synaptic vesicle endocytosis (Poskanzer 

et al. 2003; Yao et al. 2011). Interestingly, Syt-1 is highly expressed in the brain 

during development and mutations in Syt-1 gene have been associated with 

neurodevelopmental disorders in humans (Baker et al. 2018). Another 

component of Ca2+-dependent exocytosis, complexin 2 protein (encoded by Cplx-

2 gene) is essential for normal neurological function. Mice lacking of complexin 2 

develop cognitive abnormalities and motor deficits (Glynn et al. 2003). Vamp-2 

gene (also known as Syb2) is a component of the protein complex SNARE, 

required for efficient neurotransmission via synaptic vesicles (Liu et al. 2015). 

Studies in mice have shown that even moderate alteration on Vamp2 expression 

could impair neurotransmission (Koo et al. 2015). Moreover, Vamp2 homozygous 

knock-out mice did not survive following birth and they exhibited profound 

changes in their body shape but no developmental abnormalities (Schoch et al. 

2001). Release of neurotransmitters through exocytosis also requires the 

proteins Rims1 and Unc13a (Kaeser et al. 2012). Knock-out mice for Rim1α 
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isoform manifested dysregulated presynaptic plasticity while depletion of both 

Rim1α and Rim1β isoform in mice resulted in increased lethality in early 

postnatal life (Kaesar et al. 2008). Similarly, deficiency of Unc13 in mice results in 

immediate paralysis and death at birth. Despite the severe phenotype the NMJ 

site of these mice display no apparent morphological alterations, however the 

number of the sites and the motoneurons they originate from are substantially 

altered (Varoqueaux et al. 2005).  

Evidence from previous studies suggest that a number of the predicted target 

genes of interest showing strong interactions may have an impact on metabolic 

mechanisms and neuromuscular communication. This was further investigated 

by exploring the metabolic processes those genes are involved at.  

 

4.4.3 Signalling pathway analysis of miR-128 and miR-133 predicted target 

genes using KEGG PATHAWAY Database 

In order to elucidate the impact of altered expression of miR-128 and miR-

133a, metabolic pathway analysis was performed using KEGG Pathway Database. 

Assessment of metabolic pathways was used for the prediction of potential 

dysregulation of key mechanisms due to imbalances on specific protein 

molecules, caused by altered levels of their gene transcript in a tissue.  

A number of predicted target genes of miR-128 and miR-133 showed strong 

interactions, as seen in Figures 4.3.3.1 and 4.3.3.2. When those predicted target 

genes were further investigated using KEGG Pathway database, most of them 

appeared to participate in the same metabolic pathway. Some of those genes 

were also seen in more than one metabolic pathway. Specifically, for miR-133, all 

the predicted target genes with strong interactions are involved in the synaptic 

vesicle cycle, shown in Figure 4.3.4 A. Furthermore, 2 more predicted target 

genes from miR-128 are also seen in the synaptic vesicle cycle, Snap25 and 

Cacna1a (also known as VGCC). It is noteworthy that Syt1 is a predicted target 

gene with preferential conserved binding sites for both miR-128 and miR-133a as 
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seen in TargetScanMouse database. These data suggest that downregulation of 

the predicted target genes, due to overexpression of miR-133, may impede 

endocytosis of the vesicles or inhibit the formation of the SNARE complex and 

therefore the fusion of the vesicles and release of neurotransmitters (reviewed in 

Jan and Fasshauer, 2012). Downregulation of the proteins in SNARE complex may 

lead to neurodegeneration similar to that seen during ALS while deletion of these 

proteins (Liu et al. 2015). In contrast, downregulation of miR133 could potentially 

result in overexpression of these proteins. One example from published data is 

the overexpression of Munc-18 protein, part of SNARE complex, which has been 

linked to schizophrenia-related behaviour in mice (Urigüen et al. 2013). Although 

several studies have demonstrated the adverse effects of SNARE proteins 

downregulation in mice, there is not much evidence for overexpression of those 

proteins. Therefore, the implications of a potential upregulation in the gene 

transcript in the case of downregulation of specific microRNAs can only be 

speculated.    

Contrary to miR-133, miR-128 predicted target genes with the strongest 

interactions in the network are seen in several different metabolic pathways. 

Previous studies have shown the association of predicted target genes of miR-

128 with pathways in cancer, MAPK pathway and neurotrophin pathway among 

others (Ching and Ahmad-Annuar, 2015). In line with these data, KEGG analysis 

shows that a number of the target genes of interest were involved in the 

neurotrophin signalling pathway (Figure 4.3.4 B). A study from Motohashi et al. 

has identified Irs1, Insr, and Pi3kr1 (subunit of PI3K) gene transcripts as direct 

targets of miR-128 (Motohashi et al. 2013). Among the predicted target genes 

seen in the neurotrophin pathway is also Pdpk1 gene encoding PDK, a master 

kinase responsible for the phosphorylation and therefore activation of AKT. 

Although complete lack of PDK in mice results in lethality at embryonic stages, 

lower protein levels have been linked to smaller body size during development 

(Lawlor et al. 2002). Of particular interests were the predicted target genes Ngfr 

(encoding p75NTR), Ngfrap1 (encoding NADE), Grb-2, Gab-1 and Sos-1. NGFR, 

predicted target of miR-128 and miR-133, is a lower affinity receptor for binding 
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of certain neurotrophins and pre-neurotrphins, including NGF and BDNF 

(reviewed in Chen et al. 2009). NGFR expression differs between organisms and 

increased expression levels have been noted during development or in 

pathological conditions associated with neural cell death (reviewed in Chao, 

2003). Increased levels of expression during development have been associated 

with regulation of neuronal innervation of target cells and subsequent 

elimination of neuronal cells that failed to innervate their target (reviewed in 

Majdan and Miller, 1999). The role of NGFR during development in conjunction 

with our data of miR-128 downregulation and NMJ morphology observed in 

Chapter 3 could agree with the hypothesis that NLL mice may exhibit a 

developmentally delayed NMJ phenotype. NGFR has been previously described 

to induce cell apoptosis via activation of NADE protein (encoded by Ngfrap1) 

following binding of NGF to the NGFR-NADE complex (Mukai et al. 2002). While 

Ngfr and Ngfrap1 encode proteins involved in cell death, the role of Grb-2, Gab-1 

and Sos-1 appear to be different. Gab-1 protein expression in both skeletal 

muscle and Schwann cells in peripheral nerves has been associated with 

postnatal NMJ maturation (Young Park et al. 2017). Moreover, Grb-2 and Sos-1, 

involved in Ras signalling, mediate cell survival, proliferation and differentiation 

(Mazzon et al. 2018). Specifically, recent studies show enrichment of Grb-2 at the 

post-synaptic site of the NMJ, and the importance of Grb-2 in the formation of 

AChR clusters (Gingras et al. 2016). Collectively, miR-128 predicted target genes 

within the neurotrophin signalling pathway are involved in cell apoptosis or cell 

survival. In the event of upregulation of those gene transcripts due to 

downregulation of miR-128, we speculate that the balance between 

neurotrophin-mediated cell survival/apoptosis could shift, but towards which 

direction requires further investigation.   

Predicted targets Grb-2, SOS-1, Insr, Irs-1, Pdpk1 and Pi3k isoforms (Pik3r1, 

Pik3ca) are also involved in FOXO signalling pathway, along with some miR-133 

target genes (Figure 4.3.4 C). Central protein molecules of FOXO signalling 

pathway, FOXO-1, FOXO-4 and Sirt-1 are also predicted target genes of miR-128. 

Interestingly, Sirt-1 gene transcript is targeted by both miR-128 and miR-133a, 
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and carries a conserved seed sequence for preferential binding of miR-133 (as 

seen in TargetScanMouse). A study from Lee and Goldberg (2013) shows that 

Sirt-1 levels fall dramatically following food deprivation only in Type II-rich 

skeletal muscles such as TA and EDL, contributing to increased muscle atrophy. 

Sirt-1 can promote deacetylation of FOXO proteins and therefore trigger muscle 

wasting, but overexpression of Sirt-1 has been reported to inhibit FOXO activity 

and protect the muscle from atrophy. This dual role of Sirt-1 makes it a crucial 

regulator of skeletal muscle atrophy (Lee and Goldberg, 2013). On the other 

hand, Atrogin-1 gene transcript itself is amongst the predicted target genes of 

miR-128. Gomez et al. have previously reported a dramatic upregulation of 

Atrogin-1 mRNA levels in GTN muscle following fasting, when compared to 

mRNA levels of other tissues such as brain and liver (Gomez et al. 2001). 

Although the selected miR-128 predicted targets appear to be most prevalent in 

FOXO signalling pathway, a few predicted target genes of miR-133 are also 

found. FoxG1 gene transcript, encoding FOXG1 protein, is one of the predicted 

target genes of miR-133, carrying a binding site for preferential binding of miR-

133 (as seen in TargetScanMouse). This protein appears to act independently of 

the rest of FOXO components, as seen in Figure 4.3.4 C. FoxG1 acts as a 

transcription factor crucial to the regional subdivision of the developing brain 

(Boggio et al. 2016). Although complete depletion of FoxG1 is lethal, mutations 

have been associated with neurodevelopmental disorders (Boggio et al. 2016), 

while overexpression of FOXG1 has been linked to autism (Mariani et al. 2015). 

Apart from its localization to the nucleus, FOXG1 can also translocate to the 

mitochondria, controlling energy biogenesis and other mitochondrial functions 

(Pancrazi et al. 2015).  

Gene transcripts Insr, Irs-1, Pi3k isoforms (Pik3r1, Pik3ca), FoxO-1, FoxO-4 and 

Sirt-1 appear also appear in Longevity regulation pathway. This is of no surprise 

considering that major metabolic pathways are involved in the regulation of 

longevity, including but not limited to insulin pathway, PI3K/AKT, FOXO, mTOR, 

AMPK and p53 signalling pathways (Figure 4.3.4 D). Gene transcripts not seen in 

the rest of the pathways are Ulk1, Rps6kb (encoding S6K) and Ppargc1a 
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(encoding PGC-1a). PGC-1a is a transcription factor which may act either 

antagonistically or in cooperation with FOXO molecules, depending on the tissue 

and the function it is involved (Lee and Goldberg, 2013). PGC-1a expression 

appears to be partly regulated by Sirt-1, acting as an inhibitor of muscle atrophy 

by inhibition of FOXO activity (Sandri et al. 2006). Studies have reported 

involvement of PGC-1a in mitochondria biogenesis and function (reviewed in 

Fernandez-Marcos and Auwerx, 2011), fatty acid oxidation (Vega et al. 2000) and 

the formation of type-I (or slow-twitch) muscle fibres in skeletal muscle (Lin et al. 

2002).  Thus, PGC-1a has been reported as anti-ageing factor, promoting 

longevity (Reviewed in Satoh and Imai, 2004). ULK1 protein in its phosphorylated 

form is involved in the regulation of autophagy in response to starvation (Lee and 

Tournier, 2011). ULK1 is regulated either by mTOR or by AMPK, depending on the 

nutrient availability (Kim et al. 2011). ULK1 interacts directly with mTOR during in 

conditions of high-nutrient availability (Hosokawa et al. 2009). However, during 

starvation, Ulk1 is activated via phosphorylation by AMPK, activating autophagy 

process (Kim et al. 2011). Activation of autophagy via AMPK-mediated 

phosphorylation and activation of ULK1 is necessary for stem-cell renewal and 

pluripotency and any disruption to this process may compromise the role of ES 

cells (Gong et al. 2018). Disruption of ULK1 phosphorylation via AMPK during 

starvation conditions may also impair mitochondrial biogenesis and cell survival, 

thus affecting energy biogenesis (Egan et al. 2011). Due to its nutrient-dependent 

activation, autophagy may be a potential target mechanism in our study, being 

differentially regulated in mice on a protein-deficient diet at different stages of 

development. S6K, which is involved in the regulation of protein synthesis, is a 

kinase also dependent on phosphorylation for its activation, mainly via mTOR 

(Zhang et al. 2014). Studies have shown the role of S6K in the regulation of 

protein synthesis and force generation in skeletal muscles, without causing an 

increase in skeletal muscle mass (Marabita et al. 2016). Interestingly, mice 

lacking of S6K have lower body weight and smaller size (Shima et al. 2016). 

Moreover, whole body S6K1-/- mice demonstrated increased lifespan, with 

female mice also showing an increase in the maximum lifespan greater than the 

male mice (Selman et al. 2009).   
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Overexpression of several proteins involved in the longevity pathway appears 

to have a beneficial effect on mouse lifespan and act as anti-ageing mechanisms. 

An example of such proteins is IRS-1, which was elevated in the skeletal muscle 

of mice following a low-protein diet postnatally, implying improved insulin 

sensitivity in those mice (Chen et al. 2009). Evidence gathered from previously 

published studies highlighting some protein molecules (e.g. S6K, ULK-1) which 

could potentially explain the phenotype observed in NLL mice and LNN mice. 

However, due to sample processing prior to use in experimental analysis it was 

not possible to investigate the levels of certain molecules any further. Whether 

alterations in the levels of these proteins and their gene transcripts may occur 

due to protein-deficient diet and/or dysregulation of miR-128 and miR-133 

expression remains unknown and needs to be further investigated. 
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5.1 Introduction 

MicroRNAs often show tissue-specific or tissue-enriched expression. In 

skeletal muscle tissue, two examples of such microRNAs are miR-128 and miR-

133a.  

In a study from Lee et al. microRNA-128 shows highest expression levels in 

skeletal muscle tissue (Lee et al. 2008). MicroRNA-128 has been described as a 

regulator of skeletal muscle development via targeting of myostatin in C2C12 

cells (Shi et al. 2015). Direct target genes of miR-128 also regulate myogenesis 

through insulin signalling/AKT pathway (Motohashi et al. 2013). Furthermore, 

miR-128 has been associated with the maintenance of quiescent state of muscle 

side population (SP) cells, a distinct type of muscle stem cells, as well as with the 

regulation of the differentiation of those cells in multiple cell types (Motohashi et 

al. 2012). Although some studies provide strong evidence of miR-128 

involvement in skeletal muscle development, the exact role of miR-128 in 

differentiated skeletal muscle cells has not been described.  

MicroRNA-133, also known as one of the “myomiRs” is specifically expressed 

in skeletal and cardiac muscle (Chen et al. 2006). Previous studies have 

demonstrated the regulation of skeletal muscle cell proliferation and 

differentiation by miR-133 either regulation of its expression levels from 

myogenic factors such as MyoD (Chen et al. 2006; Rao et al. 2006) or via 

regulation of Erk1/2 signalling pathway (Feng et al. 2013). In vivo studies have 

shown increased expression levels of miR-133 in the skeletal muscle of mdx 

mice; However, suppression of miR-133 function had no effect on skeletal 

muscle development and function (Deng et al. 2011). A study from Chen et al. 

2009 demonstrated the regulation of myogenic fate via direct targeting of UCP2 

by miR-133a, a member of the uncoupling proteins family involved in the 

inhibition of muscle differentiation and promotion of myoblast proliferation 

(Chen et al. 2009).  

Although many studies have investigated the role of miR-128 and miR-133a in 

skeletal muscle development, the implication of those two microRNAs in 
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terminal differentiation and maintenance of skeletal muscle cells has not been 

fully explored. Furthermore, investigation of the role of these two microRNAs in 

C2C12 myoblast and myotube cell behaviour could provide further 

understanding on the mechanisms involved in loss of myofibres and reduced 

muscle force in 12-week old mice on a low-protein diet pre- or postnatally. The 

aim of this chapter was to investigate the effect of gain- and loss-of-function of 

miR-128 and miR-133a in C2C12 cell proliferation, viability, mitotoxicity and 

differentiation. Results of these studies will provide an insight on the impact of 

imbalances in the expression levels of miR-128 and miR-133a in adult skeletal 

muscle in vivo.  

 

 

5.2 Methods 

5.2.1 Culture and differentiation of C2C12 cells 

C2C12 cells were retrieved from LN2 and thawed in a 37oC water bath until 

there was no ice present in the vial. Cell suspension from the cryovial was mixed 

with 3 mL of pre-warmed growth media (Chapter 2, Section 2.16) and 

centrifuged immediately at 1,500 rpm for 5 min to discard freezing media 

containing DMSO. The supernatant was discarded and the cell pellet was 

resuspended in 10 mL of growth media (GMC2C12) and plated into a T75 flask 

(Corning). The cells were then incubated in a humidified incubator at 37oC with 

5% CO2 until they became confluent. When 70-80% confluency was reached, the 

cells were passaged 1:10 into fresh T75 flasks as described in Chapter 2, Section 

2.17.  

For C2C12 cell differentiation, cells were seeded into a 12-well plate at a 

confluency of 50,000 cells/well (13,158 cells/cm2), to be used for cell imaging 

following transfections (Chapter 2, Section 2.19).  The remaining cells were 

seeded into three 6-well plates, to be used for RNA and protein isolation 

following transfections with scrambled sequence, miR-128 mimic, AM-128, miR-
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133a mimic and AM-133a. Plates were incubated in GMC2C12 until fusion of 

myoblasts was evident and first signs of myotube formation were observed. Cells 

from all plates were then transfected according to the protocol in Chapter 2, 

Section 2.21. Following 48 h of transfections, C2C12 cells were harvested for RNA 

and protein isolation, as described in Chapter 2, Section 2.20. C2C12 myotubes at 

Day 7-11 of differentiation were stained for imaging and determination of their 

phenotype as described in Chapter 2, Section 2.22.  

 

5.2.2 Image analysis of C2C12 myotubes following transfections with miR-128 

and miR-133a 

Differentiated C2C12 cells were immunostained with MF20 antibody (myosin 

heavy chain II) and DAPI following transfections with either miR-128 or miR-133a 

as described in Chapter 2, Section 2.22. Cells were imaged using a Nikon Ti Live 

cell imaging microscope under x20 magnification. Myotube diameter, myotube 

area, nuclei per myotube and fusion index were analysed using ImageJ software 

(Chapter 2, Section 2.23).  

 

5.2.3 Assays for cell proliferation, viability and mitochondrial toxicity 

following transfections with miR-128 or miR-133a 

C2C12 cells were seeded on 96-well plates for use in proliferation, viability 

and mitotoxicity assays. For proliferation and viability, C2C12 cells were plated as 

described in Chapter 2, Section 2.27 (for proliferation assay) and Section 2.28 

(for cytotoxicity assay). Cells were allowed to incubate for 24h following plating 

before they were transfected with scrambled sequence, miR-128 mimic, AM-128 

or scrambled sequence (cholesterol conjugated), miR-133a mimic, AM-133a. 

Both proliferation and cytotoxicity assay were performed 48h following 

transfections. Experimental protocol and analysis of the data obtained from both 

assays were performed according to manufacturer’s instructions. Mitotoxicity 

assay was performed as described in Chapter 2, Section 2.19, following 
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transfection of C2C12 with scrambled, miR-128 mimic and AM-128. 

Interpretation of data was performed following the manufacturer’s instructions. 

Values recorded following measurement of fluorescence absorbance indicated 

the potential cytotoxic effect of miR-128 in C2C12 myoblasts, fluorescence 

measurement was followed by measurement of luminescence, which indicated 

the potential mitotoxic effect of miR-128 in C2C12 myoblasts. To determine 

whether miR-128 is a mitotoxic compound, fold-changes in mitotoxicity were 

assessed in comparison with the cytotoxicity values recorded. 

 

5.2.4 Statistical Analysis 

Statistical analysis was performed using Graphpad 5 (Graphpad Software, San 

Diego, USA). Analysis of the data was performed using One-Way ANOVA, with 

Dunnett’s post-hoc analysis, using scrambled-treated cells as the control group 

Distribution data were analysed using Chi-square (χ2) test. Data collected from 

mitotoxicity assay were analysed using Two-Way ANOVA, with Bonferroni post-

hoc analysis. Data from the cytotoxicity and mitotoxicity assays were presented 

as fold-changes compared to the control (scrambled-treated cells) group. Data 

were represented as mean ± SEM. N number represents wells used per 

transfection condition. 

 

 

5.3 Results 

5.3.1 The effect of miR-128 gain- and loss-of-function on C2C12 myotube 

phenotype 

C2C12 myotubes transfected with scrambled sequence (control), miR-128 

mimic (miR-128) and miR-128 inhibitor (AM-128) and stained with MF20 and 

DAPI are shown in Figure 5.3.1.1 A. C2C12 myotubes transfected with miR-128 

mimic (miR-128 overexpression) showed formation of a network of long and 

uniform myotubes, with nuclei fused within the myotubes seen spread across 
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the length of the cells. C2C12 myotubes transfected with AM-128 (miR-128 

inhibitor) appeared to be fewer in number and they displayed a circular-like 

morphology rather than an elongated morphology similar to that seen in miR-

128 transfected cells. Several occurrences of C2C12 with spherical appearance 

(arrows) rather than a long tube-like morphology were observed, which also 

appeared to have more nuclei/myotube. Analysis of C2C12 myotube diameter 

revealed no changes in myotube width following miR-128 overexpression or 

inhibition (Figure 5.3.1.1 B). Assessment of myotube area revealed a slight 

increase in the number of MF20-positive myotubes within each field of view, 

following overexpression of miR-128 (P=0.058; Figure 5.3.1.1 C).  Furthermore, 

C2C12 fusion index is higher following overexpression and inhibition of miR-128, 

when compared to the control (Scr) group (Figure 5.3.1.1 D). 

Distribution analyses of C2C12 myotube diameter and number of nuclei 

present per myotube are shown in Figure 5.3.1.2. Myotube diameter analysis 

indicated that the number of C2C12 myotubes transfected with miR-128 was 

higher in the diameter range of 20-40 μm, but no significant shift in the size 

distribution was recorded (Figure 5.3.1.2 A). Distribution analysis of the number 

of nuclei on myotubes of different diameter range revealed a proportional 

increase in the number of nuclei per myotubes with increase in of their diameter 

in all groups (Figure 5.3.1.2 B).  
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Figure 5.3.1.1 Gain- and loss-of-function of miR-128 in C2C12 myotubes. A) 

C2C12 myotubes transfected with Scr, miR-128 or AM-128 as indicated; myotube 

formation was established with myosin heavy chain and nuclei immunostaining 

(MF20=Green; DAPI=Blue). B) Myotube diameter of transfected C2C12 myotubes 

with ≥2 nuclei. C) Quantification of total C2C12 myotube area expressed as a 

percentage of total area per field of view. D) Fusion index of C2C12 cells, 
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expressed as a % of nuclei in within the myotubes to total nuclei counted in each 

field of view. *represent significant differences compared with the Scr (control) 

group, *P≤0.05, *** P≤0.001 (mean ± SEM; n=3-4; One-Way ANOVA with 

Dunnett’s post-hoc analysis). Representative images shown.  
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Figure 5.3.1.2 Distribution analysis of A) myotube diameter and B) number of 

nuclei in C2C12 myotubes transfected with Scr, miR-128 and AM-128. *represent 

significant differences compared with the Scr (control) group (mean ± SEM; n=3; 

Chi-square test). 

 

5.3.2 The effect of miR-133a gain- and loss-of-function on C2C12 myotube 

phenotype 

C2C12 myotubes transfected with miR-133a mimic (miR-133a) and miR-133a 

inhibitor (AM-133a) are shown in Figure 5.3.2.1 A. Myotubes transfected with 

miR-133a mimic (miR-133a) appeared to be thinner in diameter compared to 

those transfected with miR-133a inhibitor (AM-133a). Myotube analysis showed 

a significant increase in the diameter of myotubes (Figure 5.3.2.1 B) and a larger 

area occupied by myotubes per field of view following transfection with AM-

133a, in comparison to the control group (Scr) (Figure 5.3.2.1 C). Fusion index of 

C2C12 myotubes transfected with miR-133a or AM-133a revealed no significant 

difference compared to the control group (Scr) (Figure 5.3.2.1 D).  

Examination of myotube diameter distribution revealed the prevalence of 

myotubes with diameter ≤30 μm in miR-133a transfected cells compared to the 

rest of the groups, but no significant shift was observed in diameter distribution 

between the groups (Figure 5.3.2.2 A). Similarly, myotube nuclei distribution 

showed no differences between the groups, indicating a proportional 

relationship between number of myotube nuclei number and myotube diameter 

(Figure 5.3.2.2 B). 
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Figure 5.3.2.1 Gain- and loss-of-function of miR-133a in C2C12 myotubes. A) 

C2C12 myotubes transfected with miR-133a or AM-133a as indicated; myotube 

formation was established with myosin heavy chain and nuclei immunostaining 

(MF20=Green; DAPI=Blue). B) Myotube diameter of transfected C2C12 myotubes 

with ≥2 nuclei. C) Quantification of total C2C12 myotube area expressed as a 
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percentage of total area per field of view. D) Fusion index of C2C12 cells, 

expressed as a % of nuclei in within the myotubes to total nuclei counted in each 

field of view. *represent significant differences compared with the Scr (control) 

group, *P≤0.05, ***P≤0.001 (mean ± SEM; n=3; One-Way ANOVA with 

Dunnett’s post-hoc analysis). Representative images shown.  
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Figure 5.3.2.2 Distribution analysis of A) Myotube diameter and B) Number of 

nuclei in C2C12 myotubes transfected with miR-133a and AM-133a. Scr served as 

control for statistical comparison (mean ± SEM; n=3; Chi-square test). 

 

5.3.3 The effect of gain-of-function and loss-of-function of miR-128 and miR-
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CCK-8 proliferation assay analyses from C2C12 myoblasts following miR-128 
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reduced compared to the control (Scr) group (Figure 5.3.3 A). Similarly, both 
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Figure 5.3.3 CCK-8 proliferation assay of C2C12 myoblasts following transfection 

with miR-128 or miR-133a. A) C2C12 myoblast number following transfection 

with Scr, miR-128 or AM-128. B) C2C12 myoblast number following transfection 

with Scr, miR-133a or AM-133a. *represents significant differences compared 

with the Scr (control) group, **P≤0.01, ***P≤0.001 (mean ± SEM; n=6; One-

Way ANOVA with Dunnett’s post-hoc analysis). 

 

5.3.4 The effect of gain-of-function and loss-of-function of miR-128 and miR-

133a in C2C12 myoblast viability 

Analyses of CytoTox 96 assay on C2C12 myoblast following transfection with 

miR-128 or miR-133a is shown in Figure 5.3.4. C2C12 viability was determined 

based on cell death (expressed as % cytotoxicity) following transfections with 

either miR-128 or miR-133a. C2C12 myoblast cell death was significantly higher 

following both overexpression and inhibition of miR-128 (miR-128, AM-128) 

compared to the Scr transfected cells (Figure 5.3.4 A, C). Cell death in C2C12 

myoblasts transfected with miR-133a mimic was significantly lower compared to 

the rest of the groups (Figure 5.3.4 B, D).  
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Figure 5.3.4 CytoTox96 cytotoxicity assay of C2C12 myoblasts following 

transfection with miR-128 or miR-133a. A) C2C12 cell death expressed as fold-

change in cytotoxicity following transfection with Scr, miR-128 or AM-128, using 

Scr as the control group. B) C2C12 cell death expressed as fold-change in 

cytotoxicity following transfection with Scr, miR-133a or AM-133a, using Scr as 

the control group. *represents significant differences compared with the Scr 

(control) group, *P≤0.05, **P≤0.01, ***P≤0.001 (mean ± SEM; n=6; One-Way 

ANOVA with Dunnett’s post-hoc analysis). 
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5.3.5 The effect of miR-128 gain-of-function and loss-of-function on C2C12 

myoblast mitochondrial toxicity 

Data obtained from mitochondrial ToxGlo mitotoxicity assay following 

transfections of C2C12 cells with miR-128 is shown in Figure 5.3.5. Comparison 

of the fold-change observed in the cytotoxicity of the C2C12 cells showed 

significant increase following transfection of cells with miR-128 and AM-128. On 

the contrary, the fold-change of the ATP levels of the C2C12 following 

transfection with miR-128 and AM-128 was significantly decreased, indicating 

decreased production of ATP and therefore an increase in mitochondrial toxicity. 

These data indicate that miR-128 and AM-128 act as mitototoxicant compounds 

inducing necrosis of C2C12 myoblast. 

 

Figure 5.3.5 Mitochondrial ToxGlo two-stage mitotoxicity assay of C2C12 

myoblasts following transfections with miR-128. The first step measures 

dying/dead cells, whilst the second step measures ATP produced. C2C12 cell 

death expressed as cytotoxicity indicated as fold-change following transfection 

with Scr, miR-128 or AM-128, using Scr as the control group. C2C12 

mitochondrial toxicity following transfection with Scr, miR-133a or AM-133a 
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expressed as fold-change, using Scr as the control group. Scr served as the 

control for statistical comparison, *statistical comparison with Scr values in 

cytotoxicity, #statistical comparison with Scr values in mitotoxicity *,#P≤0.05, 

**,##P≤0.01, ***,###P≤0.001 (mean ± SEM; n=6; Two-Way ANOVA with 

Bonferroni’s post-hoc analysis). 

 

 

5.4 Discussion 

This chapter focused on the effect of gain- and loss-of-function of miR-128 

and miR-133a in C2C12 cells. Findings from these experiments could serve as a 

useful tool to understand the mechanism affected during overexpression or 

inhibition of these two miRs in vitro and in vivo. Data collected from image 

analyses following transfection of C2C12 with either miR-128 or miR-133a 

appeared to have a different effect on the cell behaviour, suggesting a different 

mechanism involved during myogenesis and differentiation. The main findings 

can be summarised in the table below: 

 

Table 5.4 Summary of the main findings following miR-128 and miR-133a 

overexpression and inhibition in C2C12 myoblasts and myotubes. ↑ indicates 

increase in the specific phenotype/function, ↓ indicates reduction in the specific 

phenotype/function, − indicates no change in the specific phenotype/function.  

 miR-128 AM-128 miR-133a AM-133a 

Proliferation ↓ ↓ ↑ ↑ 

Cell death ↑ ↑ ↓ − 

Mitochondrial toxicity ↑ ↑ N/A N/A 

Myotube diameter − − − ↑ 

Myotube area − − − ↑ 

Cell fusion ↑ ↑ − − 
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5.4.1 Overexpression and inhibition of miR-128 in differentiated C2C12 

myotubes  

Image analysis of C2C12 myotubes transfected with Scr, miR-128 mimic or 

AM-128 showed no significant difference in myotube diameter, myotube area or 

number of nuclei per myotube between the groups. However, differences were 

observed in the fusion index of the C2C12 myotubes at Day 7 of differentiation. 

Specifically, cell fusion was increased in C2C12 myotubes transfected with miR-

128 and AM-128, compared to the scrambled-treated myotubes (Figure 5.3.1 D).  

Furthermore, it was evident that myotubes overexpressing miR-128 showed a 

“healthier” phenotype, with their nuclei spread across the length of the myotube 

as opposed to round cell phenotype with multiple fused nuclei. Unlike miR-128, 

myotubes transfected with AM-128 as well as those transfected with Scr 

sequence appeared to have a round shape, with their nuclei concentrated at the 

ends of the tube or in the centre. The formation of those round-shaped 

myotubes could be attributed to myotube detachment from the plate’s surface 

due to cell death or due to disruption in their attachment factors. A study from 

Schoneich et al. (2015) shows that Bcl-2 is likely to control myotube apoptosis at 

early stages but not at late stage of differentiation (Day6). Another explanation 

would be that inhibition of miR-128 could impact negatively terminal 

differentiation.  Although there is no evidence in current literature of such an 

effect of miR-128 on terminal differentiation of C2C12, there are studies showing 

that inhibition of certain microRNAs after the onset of differentiation may affect 

myogenesis (Goljanek-Whysall et al. 2012). A study from Dai et al. shows 

overexpression of miR-128 inhibiting skeletal muscle cell differentiation via 

direct targeting of SP1 gene while the opposite was observed with inhibition of 

miR-128 (Dai et al. 2016). Specifically, in their study Dai et al. show the formation 

of myotubes following overexpression of miR-128 but at a later time-point 

following transfection (Dai et al. 2016). Taken these data into consideration, it is 

possible that miR-128 overexpression may actually stall or delay the formation of 

myotubes rather than completely abolishing it. Therefore, the myotubes 

observed in miR-128 overexpression in Figure 5.3.1.1 A could have a “healthier” 
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phenotype due to their formation later during transfections. In contrary, 

inhibition of miR-128 could have resulted in formation of myotubes earlier 

during transfections, resulting in faster utilisation of the growth factors in the 

media due to increased metabolic rate and therefore myotube apoptosis at an 

earlier time point. Considering the fusion index data and the time of 

transfections (Day 3 post-differentiation), it is also possible that miR-128 

overexpression may prevent the fusion of more nuclei, while inhibition of miR-

128 may promote hyperfusion, resulting in these circular shapes in the 

myotubes. Similar morphology in C2C12 myotubes as the one observed in AM-

128 treated cells has been previously reported following treatment of myotubes 

with rotenone. Specifically, treatment of myoblasts with rotenone (inhibitor of 

mitochondrial complex I) did not cause detachment or cell death at Day 3 of 

differentiation, but a round-shaped morphology of those cells was observed 

(Grefte et al. 2015). Interestingly, increased expression of miR-128 in C2C12 

myotubes was detected at Day 4 of differentiation and was positively correlated 

with increased levels of ATP (Siengdee et al. 2015).  

Despite the lack of significant differences in the myotube diameter of miR-128 

transfected C2C12 myotubes, distribution analysis of myotube diameter was 

performed. Myotubes were separated in different diameter ranges allowing the 

estimation of the number of myotubes falling within each diameter range. 

Although no significant difference was observed in the distribution between the 

different groups, it was evident that myotubes overexpressing miR-128 were 

mostly within the 20-30 μm (Figure 5.3.1.2 A). Interestingly, miR-128 inhibition 

caused a slight shift of the distribution, with those myotubes being more 

abundant in number in the 30-40 μm diameter range. These data collectively 

suggest that inhibition of miR-128 could cause some hypertrophy in a portion of 

transfected myotubes, which may not be obvious when the average diameter is 

taken into consideration. In this case, these data are in agreement with that 

been previously shown (Motohashi et al. 2013).  

In order to examine whether these differences in the diameter distribution 

could be due to hypertrophy of the myotubes independently of the myoblast 
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fusion, distribution nuclei per myotube size for each myotube counted was 

plotted (Figure 5.3.1.2 A). Analysis revealed a linear relationship between the 

number of nuclei and the increase in the size range, suggesting that the number 

of cells fused to form myotubes was proportional to the diameter of the 

myotubes.  

 

5.4.2 Overexpression and inhibition of miR-133a in differentiated C2C12 

myotubes  

Analysis of C2C12 myotube images revealed a significant increase in myotube 

diameter following inhibition of miR-133a (AM-133a), although the opposite was 

not observed in cells overexpressing miR-133a (Figure 5.3.2.1 A, B). Significant 

increase following inhibition of miR-133a was also observed in total myotube 

area but no differences were observed in the fusion index of those cells (Figure 

5.3.2.1 C, D). These observations suggest that inhibition of miR-133a may cause 

myotube hypertrophy, however overexpression of miR-133a does not cause 

atrophy but instead inhibits hypertrophy.  

Distribution analysis of myotube diameter showed the highest number of 

myotubes in miR-133a with a diameter under 30 μm, in comparison with the 

AM-133a, where the number of myotubes is higher from diameter sizes >60 μm 

(Figure 5.3.2.1 A). Despite those differences in peak numbers, Chi-square test 

showed no significant differences in the diameter distribution between the 

groups. Distribution analysis of the number of nuclei per myotube showed a 

parallel relationship across all groups (Figure 5.3.2.1 B). These data reveal that 

the number of fused cells resulting in mature myotubes was the same across the 

different diameter ranges in all the groups. Therefore, miR-133a may have a role 

in hypertrophy of myofibres rather than myogenesis through extra fusion of cell. 

Moreover, these data on myotube hypertrophy and fusion index indicates that 

hypertrophy of myotubes may be independent of cell fusion. This is in line with a 

study from McCarthy et al. (2011) showing that satellite cells are not required for 

muscle fibre hypertrophy in mice. However, the number of myotubes in each 
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diameter distribution appears to shift slightly, with larger myotubes being 

present in AM-133a wells in comparison with the rest of the groups. Previous 

studies have shown that miR-133a expression is downregulated in skeletal 

muscle showing hypertrophy (Ge and Chen, 2011). Furthermore, a study from 

Huang et al. indicated that miR-133a overexpression can supress IGF-1R post-

transcriptionally in C2C12 cells (Huang et al. 2011). Suppression of IGF-1R may 

result in inhibition of IGF-1/Akt pathway, resulting in skeletal muscle atrophy 

(reviewed in Hitachi and Tochida, 2014). Despite these findings, Boettger et al. 

argue that manipulation of microRNAs in miR-133 family may have a distinctive 

phenotype in skeletal muscle. They support the notion that lack of miR-133b in a 

knockout mouse model may be rescued by other microRNAs of miR-133 family 

such as miR-133a (Boettger et al. 2014). In order to support this as the case in 

our study, further investigation is required including sequencing experiments or 

qPCR analysis to establish the levels of expression of other miRs of the miR-133 

family during inhibition of miR-133a. Although, many studies have described the 

role of miR-133a in skeletal muscle proliferation and differentiation in vitro and 

in vivo, there is not much evidence on the effect of miR-133a inhibition in 

terminal differentiation of C2C12 myotubes.  

 

5.4.3 The effect of miR-128 overexpression and inhibition on C2C12 cell 

proliferation, cell death and mitochondrial toxicity 

Overexpression and inhibition of miR-128 in C2C12 myoblasts caused 

significant reduction in the cell number as seen from the proliferation assay, 

indicating that proliferation rate of C2C12 is impaired (Figure 5.3.3 A). Reduction 

in the cell number seen in the proliferation assay is accompanied by significantly 

increased rate of cell death, as observed by the increased levels of C2C12 

cytotoxicity, compared to the control group (Scr) (Figure 5.3.4 A). In order to 

evaluate whether this increase in the cell death is the results of underlying 

mitochondrial dysfunction, a mitotoxicity assay was performed in C2C12 

myoblasts following transfections with miR-128. Analysis of the mitotoxicity data 
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showed a significant increase in the cytotoxicity following overexpression and 

inhibition of miR-128 and a parallel decrease in ATP levels of those two groups 

compared to the control (Figure 5.3.5). Increase in cytotoxicity with parallel 

decrease in ATP levels indicated that overexpression and inhibition of miR-128 

had a mitotoxic effect. Therefore, cell death occurring following transfections of 

myoblasts with miR-128 or AM-128 might be due to mitophagy. 

Overexpression of miR-128 in C2C12 myoblasts has been previously 

associated with inhibition of cell proliferation rate (Motohashi et al. 2013). 

Overexpression of miR-128 has been associated with reduction in proliferation 

rate of other cell types including muscle side population (SP) cells and 

cardiomyocytes (Motohashi et al. 2012; Huang et al. 2018). There seems to be no 

study indicating the role of miR-128 in the regulation of cell death. However, the 

data from the cytotoxicity assay indicate that overexpression of miR-128 is 

associated with increased cell death. This could be due to impaired cell 

metabolism, which would also explain the reduction in cell proliferation. 

Impairment of mitochondrial metabolism could result in mitochondrial 

dysfunction, leading to cell death via necrosis (Lemasters et al. 1991).  In order to 

assess whether the increase in the cell death was due to mitochondrial 

dysfunction, a mitotoxicity assay was performed. Results indicated that miR-128 

acts as a mitotoxin, therefore the increased cell death could be due to 

mitophagy. The same results were recorded following C2C12 myoblast 

transfections with AM-128, indicating that both overexpression and inhibition of 

miR-128 could result in mitophagy but possibly via different pathways. Similar 

role of miR-128 in proliferation of satellite cells was recorded in a previous study 

where both overexpression and inhibition of miR-128 resulted in stalling of cell 

proliferation, but via the regulation of different proteins (Dai et al. 2016). 

Therefore, miR-128 expression could be regulated by a feedback mechanism 

maintaining its levels for normal cell behaviour. This would be in line with recent 

findings from Gabisonia et al. (2019) showing that miR-199 expression can 

stimulate cardiac repair in pigs following myocardial infraction, but the levels of 

miR-199 need to be to be tightly regulated. This study also demonstrates that 
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uncontrolled levels of miR-199 can result in cardiac arrhythmia and sudden death 

(Gabisonia et al. 2019).  

 

5.4.4 The effect of miR-133a overexpression and inhibition on C2C12 cell 

proliferation and cell death  

Proliferation rate of C2C12 myoblasts following transfections with miR-133a 

showed a significant increase in the cell number following both overexpression 

and inhibition for miR-133a (Figure 5.3.3 B). C2C12 cell death rate appeared to 

be significantly reduced only after overexpression of miR-133a, which is in line 

with the increased proliferation rate (Figure 5.3.4 B). Furthermore, inhibition of 

miR-133a causes no difference in the rate of cell death in C2C12 myoblasts. This 

could be possible if inhibition of miR-133a could have triggered the endogenous 

cell overexpression of other miR-133 family members, providing protection 

against cell death. This could also explain the increase in the cell number 

observed following treatment of C2C12 myoblasts with AM-133a, which could be 

the result of activation of different cellular mechanisms by other members of the 

miR-133 family.  

Previous studies on the involvement of miR-133a in myoblast proliferation 

have been controversial. A study from Chen et al. shows the positive regulation 

of myoblast proliferation by miR-133, and inhibition of proliferation with miR-

133 inhibition (Chen et al. 2006). More studies support these findings, showing 

promotion of myoblast proliferation by miR-133 (Kim et al. 2006). However, miR-

133 has been shown to inhibit myoblast proliferation via ERK1/2 pathway (Feng 

et al. 2013). A study from Zhang et al. supports the negative role of miR-133 in 

myoblast proliferation, by inducing G1 phase arrest (Zhang et al. 2012).  Despite 

the extensive studies on miR-133 and muscle cell fate, there has been limited 

evidence on the specific effect of miR-133a in myoblast behaviour, in comparison 

with other members of the miR-133 family (e.g. miR-133b, miR-133c). A study 

from Liu et al. (2011) shows that deletion of miR-133a in vivo does not cause 

changes in the skeletal muscle of mice until after 4 weeks of age (Liu et al. 2011). 
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However, Liu et al. state that the absence of a phenotype with deletion of miR-

133a in skeletal muscle might be due to expression of miR-133b, which is not 

detected in the heart muscle of those mice; hence the phenotype in cardiac 

muscle is more severe (Liu et al. 2011).  

Phenotypic analysis of C2C12 myotubes following manipulation of miR-128 

and miR-133a expression revealed differences in the effect of miR-128 and miR-

133a in C2C12 differentiation, proliferation, survival and mitochondrial function. 

Therefore, miR-128 and miR-133a have an impact on C2C12 behaviour and 

differentiation via the control of separate mechanisms. Future approaches will 

involve the assessment of proliferation and viability of C2C12 cells with more 

sensitive techniques, such as Ki67 or BrdU and acridine orange/ethidium 

bromide (AO/EB) staining.  
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Gain- and loss-of-function of miR-
128 and miR-133a in NSC-34 cells 
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6.1 Introduction 

Multiple microRNAs have been shown to be involved in neuronal 

development and regulation of the central nervous system and have been 

carefully investigated in several neuronal cell types. One such cell type, the α-

motoneurons located in the spinal cord and lower brain stem, are often cultured 

in vitro using spinal cord explants (Nurcombe et al. 1984; Arnold et al. 2012). 

Such a technique can often be costly and time-consuming. An alternative in vitro 

model of motoneuron-like cells, known as NSC-34 cells, is a hybrid cell line which 

has been widely used for neuronal cell-based assays (Cashmann et al. 1992; 

Eggett et al. 2000; Matusica et al. 2008).   

MicroRNA-128 is abundantly expressed in the central nervous system and 

specifically the brain (Lee et al. 2008). During development, miR-128 expression 

levels control neuronal morphology and excitability (Franzoni et al. 2015). 

Despite being a key regulator of neuronal development, miR-128 levels appear to 

show the highest expression levels during adulthood (Tan et al. 2013). A study 

from Tan et al. has identified miR-128 as a suppressor of ion channel expression 

as well as signalling molecules involved in the ERK pathway (Tan et al. 2013). 

MicroRNA-128 has also been discussed in studies focusing on cognitive function 

and neuropsychiatric disorders (reviewed in Ching and Ahmed-Annuar 2015). 

Specifically, predicted target genes of miR-128 have been shown to be involved 

in neurotrophin signalling, MAPK and insulin signalling pathway (reviewed in 

Ching and Ahmed-Annuar, 2015).  

Unlike miR-128, miR-133 has not been studied as extensively in neuron cells. 

Known as a “myomiR”, miR-133 has been investigated in relation to 

neuromuscular interactions in vivo (Valdez et al. 2014), however there is limited 

evidence for its involvement in neuronal cell behaviour and function. Hoye et al. 

have identified increased levels of miR-133a in mouse motoneurons, similar to 

those of known motomiRs such as miR-218 (Hoye et al. 2017). Interestingly, in 

their study Hoye et al. support the possibility that miR-133a may have a 

functional rather than a morphological role in regulating motoneuron fate 

postnatally (Hoye et al. 2017).  
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The aim of the work was to assess the effect of gain- and loss-of-function of 

miR-128 and miR-133a on motoneuron cell function and morphology using NSC-

34 cell line. Furthermore, the potency of the two microRNAs in controlling cell 

proliferation, viability and mitochondrial toxicity specifically in motoneurons was 

investigated. Results from this study could provide a novel explanation for the 

involvement of the two microRNAs in regulation of motoneuron cell fate and 

function. 

 

 

6.2 Methods 

6.2.1 Cell culture and differentiation of NSC-34 cells 

NSC-34 cells were recovered from LN2 and thawed either at RT or in a 37oC 

water bath until there was no ice visible. Cell suspension was collected from the 

cryovial, mixed with 3 mL of pre-warmed growth media (GMNSC-34; Chapter 2, 

Section 2.16) and centrifuged immediately at 1,500 rpm for 5 min to discard 

freezing media containing DMSO. The cell pellet was then resuspended in 10 mL 

of growth media (GMNSC-34) and plated into a T75 flask (Corning). Cells were then 

incubated in a humidified incubator at 37oC with 5% CO2, and media was 

replaced every two days until cells reach 70-80% confluency. When 70-80% 

confluency was reached, cells were passaged 1:4 into fresh T75 flasks in a total 

volume of 10 mL cell suspension, as described previously in Chapter 2, section 

2.17.  

For immunostaining and characterisation of the phenotype, NSC-34 cells were 

seeded into a 12-well plate pre-coated with 5 μg/mL laminin (Chapter 2, Section 

2.18), at a confluency of 50,000 cells/well (13,158 cells/cm2). Cells were left to 

differentiate for 7-11 days following transfections, in order to develop axonal 

projections. The remaining cells were plated into three 6-well plates, for use in 

RNA and protein isolation following transfections. All plates were incubated in 

GMNSC-34 for 24 h to allow appropriate attachment on the cell surface and were 
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then used for transfections with miR-128 or miR-133a according to the protocols 

in Chapter 2, Section 2.21). Following 48 h of transfections, NSC-34 cells from the 

6-well plates were harvested for RNA and protein isolation, according to the 

protocol described in Chapter 2, Section 2.20. NSC-34 cells plated in 12-well 

plates were left to differentiate in DMNSC-34 until Day 11-12 post-transfections 

before being stained for imaging and assessment of phenotypic changes (Chapter 

2, Section 2.22).  

 

6.2.2 Image analysis of NSC-34 differentiated cells (NSC-34D) following 

transfections with miR-128 and miR-133a 

NSC-34 cells were immunostained with Anti-Beta-III Tubulin antibody and 

DAPI following successful differentiation, as described in Chapter 2, Section 2.22. 

Images of cells were acquired using a Nikon Ti Live cell imaging microscope under 

x20 magnification and the axonal length of differentiated NSC-34 cells was 

analysed using ImageJ software (Chapter 2, Section 2.23).  

 

6.2.3 Plate assay for NSC-34 cell proliferation, viability and mitochondrial 

toxicity following transfections with miR-128 or miR-133a 

NSC-34 cells were plated on 96-well plates (Costar) pre-coated with 5 μg/mL 

laminin and used for proliferation, viability and mitotoxicity assays. For 

proliferation and viability, NSC-34 cells were seeded according to the instruction 

in Chapter 2, Sections 2.27 (for proliferation assay) and Chapter 2, Section 2.28 

(for cytotoxicity assay). Cells were left to incubate in GMNSC-34 for 24 h following 

plating and were subsequently transfected with scrambled sequence, miR-128 

mimic, AM-128, miR-133a mimic and AM-133a, as previously described (Chapter 

2, Section 2.21). Both proliferation and cytotoxicity assay were performed 48 h 

following transfections according to manufacturer’s instructions. Data analysis 

was performed as indicated in the manufacturer’s protocol. Mitotoxicity assay 

was conducted as described in Chapter 2, Section 2.19, following transfection of 
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NSC-34 cells with scrambled sequence, miR-128 mimic, AM-128. Data 

interpretation was performed according to manufacturer’s instructions. The 

cytototoxic effect of miR-128 was assessed using the values recorded from the 

fluorescence absorbance. The mitotoxic effect of miR-128 was assessed using the 

values of LDH and ATP release recorded from luminescence measurement of 

NSC-34 cells. To determine whether miR-128 is a mitotoxic compound, fold-

changes in mitotoxicity were assessed in comparison with the cytotoxicity values 

recorded.  

 

6.2.4 Statistical Analysis 

Statistical analysis was performed using Graphpad 5 (Graphpad Software, San 

Diego, USA). Data analyses of axonal length, proliferation and cytotoxicity assay 

were performed using a One-Way ANOVA, with Dunnet’s post-hoc analysis, using 

Scr as the control group. Data from the mitotoxicity assay were analysed using a 

Two-Way ANOVA, with Bonferroni post-hoc analysis. Data from cytotoxicity and 

mitotoxicity assays were presented as fold-changes compared to the control 

(Scr) group. Data were represented as mean ± SEM. N Number represents wells 

used per transfection condition. 

 

 

6.3 Results 

6.3.1 Phenotype changes in NSC-34 cells following gain-of-function and loss-

of-function of miR-128  

NSC-34 cells transfected with miR-128 mimic (miR-128) and miR-128 inhibitor 

(AM-128) are shown in Figure 6.3.1 A. NSC-34 cells transfected with miR-128 

mimic and imaged after 11 days of differentiation demonstrated distinct 

differences in the axonal length and confluency compared to the rest of the 

groups (Figure 6.3.1 A). Indeed, analysis revealed a significant decrease in the 
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axonal length of the NSC-34D cells transfected with miR-128 mimic in comparison 

with the control group (Scr) (Figure 6.3.1 C). The transfection process did not 

appear to have an impact on the axonal length of the cells, as seen from 

comparison between untreated cells (Control) and transfection control (Scr) 

(Appendix, Figure A.14). 

 

Figure 6.3.1 MicroRNA-128 gain- and loss-of-function in NSC-34D phenotype. A) 

Differentiated NSC-34 cells (NSC-34D) transfected with Scr, miR-128 or AM-128 as 

indicated; NSC-34D cells were stained with Alexa Fluor 488 B-III Tubulin (Green) 

and DAPI (Blue) for the visualisation of the nuclei. B) Axonal length of NSC-34D 

after 11 days of differentiation. *represent significant differences compared with 

the Scr (control) group. *P≤0.05 (mean ± SEM; n=3; One-Way ANOVA with 

Dunnett’s post-hoc analysis). Representative images show.  
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6.3.2 Phenotype changes in NSC-34 cells following gain-of-function and loss-

of-function of miR-133a  

NSC-34 cells transfected with miR-133a mimic (miR-133a) and miR-133a 

inhibitor (AM-133a) and differentiated for 11 days are shown in Figure 6.3.2 A. 

Overexpression or inhibition of miR-133a did not seem to have an apparent 

effect on the axonal length or number of NSC-34D cells following 11 days of 

differentiation (Figure 6.3.2 A). Analysis of the axonal projections revealed a 

significant increase in the length of the axons of the NSC-34D transfected with 

AM-133a compared to the control group (Scr) (Figure 6.3.2 C). Interestingly, 

axonal length of NSC-34D treated with Scr showed a significant reduction when 

compared to non-transfected (Control) cells (Appendix, Figure A.15). 

 

Figure 6.3.2 MicroRNA-133a gain- and loss-of-function in NSC-34D phenotype. A) 

Differentiated NSC-34 (NSC-34D) cells transfected with Scr, miR-133a or AM-133a 
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as indicated; NSC-34D cells were stained with Alexa Fluor 488 B-III Tubulin 

(Green) for and DAPI (Blue) for the visualisation of the nuclei. B) Axonal length of 

NSC-34D after 11 days of differentiation. *represent significant differences 

compared with the Scr (control) group. *P≤0.05 (mean ± SEM; n=3; One-Way 

ANOVA with Dunnett’s post-hoc analysis). Representative images shown.  

 

6.3.3 Proliferation rate of NSC-34 cells following gain-of-function and loss-of-

function of miR-128 and miR-133a 

Analysis of the CCK-8 proliferation assay on NSC-34 cells following 

manipulation of miR-128 or miR-133a expression are shown in Figure 6.3.3. 

Transfection of miR-128 and AM-128 had no effect on the proliferation of NSC-34 

cells compared to the Scr-treated cells (Figure 6.3.3 A). Similar results were 

obtained from analysis of the proliferation rate of NSC-34 cells following miR-

133a and AM-133a transfection, when compared to Scr-treated cells (Figure 

6.3.3 B). 

 

Figure 6.3.3 CCK-8 proliferation assay of NSC-34 cells following manipulation of 

miR-128 or miR-133a expression. A) NSC-34 number following transfection with 

miR-128 or AM-128. B) NSC-34 number following transfection with miR-133a or 

AM-133a. Scr served as control group for statistical comparison, (mean ± SEM; 

n=6; One-way ANOVA with Dunnett’s post-hoc analysis). 
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6.3.4 The effect of miR-128 and miR-133a gain-of-function and loss-of-

function on NSC-34 viability 

The viability of NSC-34 cells was determined by a CytoTox96 cytotoxicity assay 

following manipulation of miR-128 and miR-133a expression as shown in Figure 

6.3.4. NSC-34 cell viability was assessed based on the rate of cell death 

(expressed as fold-change in cytotoxicity). Transfection did not seem to affect 

the viability of NSC-34 cells, as no differences were observed in the cytotoxicity 

between Scr-treated cells and non-transfected (Control) cells (Appendix, Figure 

A.16).  Overexpression of miR-128 led to a significant increase in cytotoxicity, 

compared to the control group (Scr) (Figure 6.3.4 A). However, miR-133a and 

AM-133a transfection had no impact on NSC-34 cell viability (Figure 6.3.4 B). 

 

Figure 6.3.4 CytoTox96 cytotoxicity assay of miR-128 and miR-133a on NSC-34 

cell for the determination of NSC-34 cell death. A) NSC-34 cell cytotoxicity 

following transfection with miR-128 or AM-128. B) NSC-34 cell cytotoxicity 

following transfection with miR-133a or AM-133a. *represent significant 

differences compared with the Scr (control) group. *P≤0.05. (mean ± SEM; n=6; 

One-way ANOVA with Dunnett’s post-hoc analysis). 
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6.3.5 Mitochondrial toxicity following miR-128 and miR-133a gain-of-function 

and loss-of-function in NSC-34 cells 

Results obtained from mitochondrial ToxGlo mitotoxicity assay analysis 

following transfections of NSC-34 cells with miR-128 are shown in Figure 6.3.5. 

Changes in cytotoxicity following overexpression or inhibition of miR-128 were 

not significantly higher compared to the control group. Similarly, fold-changes 

recorded in ATP release following overexpression or inhibition of miR-128 did not 

reveal a significant reduction compared to control group (Scr). These findings 

indicate that miR-128 does not act as a mitochondrial toxin. 

 

Figure 6.3.5 Mitochondrial ToxGlo two-stage mitotoxicity assay of NSC-34 

neuronal cells following manipulation of miR-128 expression. The first step 

measures dying/dead cells, whilst the second step measures ATP produced. NSC-

34 cell death (cytotoxicity) indicated as fold-change following transfection with 

Scr, miR-128 or AM-128. NSC-34 mitochondrial ATP release following 

transfection with Scr, miR-133a or AM-133a expressed as fold-change. Scr served 
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as the control group for statistical comparison (mean ± SEM; n=6; Two-Way 

ANOVA with Bonferroni’s post-hoc analysis). 

 

 

6.4 Discussion 

In this chapter, gain- and loss-of-function of miR-128 and miR-133a were 

investigated in NSC-34 cells. The aim was to understand the mechanism affecting 

motoneuron cell behaviour following the dysregulation of miR-128 and miR-133a 

expression in vivo and in vitro. The main findings from this chapter are 

summarised in the table bellow: 

 

Table 6.4 Summary of the main findings following miR-128 and miR-133a 

overexpression and inhibition in NSC-34 cells. ↑ indicates increase in the specific 

phenotype/function, ↓ indicates reduction in the specific phenotype/function, − 

indicates no change in the specific phenotype/function.   

 

 

6.4.1 MicroRNA-128 gain- and loss-of-function effects on the phenotype of 

differentiated NSC-34 (NSC-34D) cells   

Image analysis of NSC-34 cells following 11 days of differentiation showed 

significant reduction in axonal length of NSC-34D following overexpression of 
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miR-128 (miR-128) (Figure 6.3.1 C). Overexpression of miR-128 appeared to have 

an impact on the overall cell number present per field of view suggesting a 

possible impact on either cell viability or proliferation. Unlike the rest of the 

groups, miR-128 transfected cells showed very little to no signs of “networking” 

with the neighbouring cells and lack of formation of “mesh-like” structure usually 

seen in untransfected differentiated cells (control) or scrambled-transfected 

cells.  

MicroRNA-128 is known as a brain-enriched microRNA due to its high levels of 

expression in the brain and during development in mice (Franzoni et al. 2015). 

Previous studies have shown that a dysregulation of miR-128 can play a 

significant role in the development of neurological disorders (reviewed in Ching 

and Ahmad-Annuar, 2016). Specifically, inhibition of miR-128 expression has 

been associated with increased neuronal excitability and seizures in mice 

(McSweeney et al. 2016; Tan et al. 2013). Overexpression of miR-128 results in 

inhibition of neuronal responsiveness and suppression of motor activities in mice 

(Tan et al. 2013). This is in line with the phenotype recorded in our study 

following overexpression or inhibition of miR-128 in NSC-34 cells. The special and 

temporal versatility of miR-128 expression has been previously investigated in 

vivo (Franzoni et al. 2015). Both increased and decreased levels of miR-128 in 

vivo have been linked to the rise of diseases such as cancer and psychiatric 

disorders (reviewed in Ching and Ahmad-Annuar, 2016). Moreover, previously 

published data in vitro highlight the effect of inhibition and overexpression of 

miR-128 in regulating cell proliferation via two different mechanisms (Dai et al. 

2016). Collectively, these data demonstrate the need for a tight regulation in the 

levels of miR-128 expression, as both up- and down-regulation of its expression 

levels may have a negative effect in vivo and in vitro.  Furthermore, in order to 

assess whether the function of the NSC-34 cells is impaired during gain- or loss-of 

function of miR-128, further in vivo experiments are required.   
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6.4.2 MicroRNA-133a gain- and loss-of-function effects on the phenotype of 

differentiated NSC-34 (NSC-34D) cells   

Analysis of differentiated NSC-34 images following transfections with AM-

133a revealed a significant increase in the axonal length of NSC-34 cells following 

11 days of differentiation (Figure 6.3.2 C). Interestingly, miR-133a overexpression 

did not seem to have an impact in the axonal length of NSC-34 cells, compared to 

the control group (Scr). Unlike miR-128, miR-133a did not seem to cause such 

severe phenotype changes, since NSC-34 cells sprouted axons during 

overexpression and inhibition of miR-133a.  

MiR-133a is a “myomiR”, highly expressed in skeletal and cardiac muscle. Its 

involvement in neuronal behaviour and morphology has not been extensively 

studied. Previous studies have shown changes in miR-133a expression levels 

following spinal cord injury (reviewed in Li et al. 2016). Most importantly, miR-

133a along with miR-218, a well-known “motomiR”, has been associated with 

motoneuron fate determination postnatally. A study from Hoye et al. showed 

several target genes of miR-133a being downregulated specifically in 

motoneuron cells suggested a more distinctive functional role of miR-133a in 

motoneurons (Hoye et al. 2017). MicroRNA-133a has also been found to be 

elevated in human in vitro models during neuronal differentiation (Pallocca et al. 

2014). Furthermore, overexpression of miR-133a in vitro has been shown to 

decrease the expression of neuronal marker genes during neuronal 

differentiation (Izarra et al. 2017). All things considered, miR-133a has been 

associated with neuronal cell function and behaviour, specifically motoneuron 

cells. However, there is limited evidence on the effect of miR-133a in 

motoneuron function and differentiation in vitro and in vivo. It is possible that 

miR-133a, may have a more significant role in cell function rather than the 

phenotype determination of the motoneurons, hence the effects we saw in the 

NSC-34 cells are not as profound as those seen with miR-128.  
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6.4.3 The effect of miR-128 overexpression and inhibition on NSC-34 

proliferation rate, cell viability and mitochondrial function 

Data analysis from proliferation assay of NSC-34 cells following transfections 

with miR-128 showed no significant differences in the cell number between the 

three groups (Figure 6.3.3 A). Although some studies are in support of the 

protective effect of miR-128 in neuronal cell proliferation (Zhou et al. 2018), 

other studies provide evidence of inhibition or reduction in the rate of cell 

proliferation with miR-128 overexpression (Zhang et al. 2016). Taken into 

consideration our data showing no difference in cell proliferation, it is possible 

that miR-128 could target different mechanisms in different neuronal cell types 

or act in a dose-dependent manner. Results obtained from the cytotoxicity assay 

measuring rate of cell death revealed a significant increase in NSC-34 cell death 

rate following overexpression of miR-128 (Figure 6.3.4 A), which could explain 

the lower number of cells seen during imaging. A study from Guidi et al. 

identified the downregulation of the TMSB10 gene, acting as an anti-apoptotic 

factor in chicken embryonic motoneurons, when miR-128 is overexpressed in 

neuronal cells (Guidi et al. 2010). In order to examine whether this increase in 

the cytotoxicity is due to an underlying mitochondrial dysfunction, a mitotoxicity 

assay was performed following manipulation of miR-128 expression in NSC-34 

cells. This assay records cell death (cytotoxicity) and ATP release from cells, and a 

comparison of those two variables determine whether the microRNA under 

investigation acts as a mitochondrial toxin on the cells. Unlike in C2C12, neither 

the cytotoxicity nor the mitotoxicity data obtained from the assay revealed any 

significant differences in miR-128 transfected NSC-34 cells. It is noteworthy 

though that both cytotoxicity and mitotoxicity fold-changes show the same 

pattern as that seen in C2C12 (Chapter 5, Section 5.3.5). The lack of significant 

difference changes in cell death and ATP release as seen in this assay indicates 

that miR-128 does not act as a mitotoxin in NSC-34 cells. In order to identify the 

exact molecular mechanism resulting in increased cell death following 

overexpression of miR-128 in NSC-34 cells, further experiments need to be 

conducted specifically in motoneuron cells. Such experiments may include, but 
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not limited to, proteomics analysis in order to identify whether proteins involved 

in cell death may be overexpressed following transfections with miR-128 or AM-

128.  

 

6.4.4 The effect of miR-133a overexpression and inhibition on NSC-34 

proliferation rate and cell viability  

Analysis of data obtained from the proliferation assay showed no effects of 

miR-133a overexpression or inhibition on NSC-34 cell number (Figure 6.3.3). 

Similar results were also obtained from the cytotoxicity assay performed 

following overexpression or inhibition of miR-133a (Figure 6.3.4). Taken into 

consideration that miR-133a is predominantly a skeletal muscle microRNA and 

the levels of its expression are very low in neuronal cells, it is not surprising that 

the change of its expression has no impact on proliferation or viability of NSC-34 

cells. Association of miR-133a with motoneuron cells has only been described by 

Hoye et al. supporting the role of miR-133a as functional in determining 

motoneuron cell fate (Hoye et al. 2017). Few other studies have associated miR-

133a in neuronal cell differentiation. Members of the miR-133 family have been 

shown to play a role in NMJ formation and function (Valdez et al. 2014). 

However there is very limited evidence to support the exact role and mechanism 

of miR-133a in motoneuron cell phenotype and behaviour. 

Analysis of the phenotype of NSC-34 cells following manipulation of miR-128 

and miR-133a expression showed differences in the effect of the two microRNAs 

in NSC-34 cells. Therefore, the two microRNAs are likely affecting motoneuron 

cell behaviour via different mechanisms.  
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 Chapter 7 

Analysis of predicted target genes 
of miR-128 in muscle and nerve in 

vitro and in vivo 
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7.1 Introduction 

MicroRNAs control gene expression via inhibition of translation and/or 

degradation of the mRNA transcript resulting in reduced protein expression 

(reviewed in Fazi and Nervi, 2008). Certain microRNAs have been proposed to 

induce upregulation of their mRNA targets and proteins under certain conditions 

(Orang et al. 2014). Some microRNAs may also control expression levels of their 

target genes indirectly via repression of mRNA degradation mechanisms. One 

such example is microRNA-128 which has been associated with repression of 

nonsense-mediated decay in neural cells, resulting in upregulation of certain 

mRNA transcripts (Bruno et al. 2011). MicroRNA-128, a brain-enriched 

microRNA, is highly expressed in CNS and skeletal muscle tissue (Lee et al. 2008). 

Previously published data and the bioinformatics analysis presented in Chapter 4 

indicate that miR-128 may control the expression of several genes involved in 

key biochemical pathways in muscle and motoneurons. Specifically, predicted 

target genes of miR-128 are involved in neurotrophin signalling, MAPK and 

insulin signalling pathway (reviewed in Ching and Ahmed-Annuar, 2015). 

A number of genes has been predicted to interact with miR-128 in muscle and 

nerve cells and tissues. Cytochrome c oxidase subunit I and IV genes (COX-I and 

COX-IV respectively) are major components of the mitochondrial electron 

transport chain and play a key role in energy production (reviewed in Gnaiger, 

2009). NRF-1 is a transcription factor that has been associated with the 

regulation of the gene expression of all cytochrome c oxidase subunits, including 

COX-I and COX-IV (Dhar et al. 2008). Parkin-2 (Park-2) gene is linked to the 

removal of dysfunctioning mitochondria and regulation of mitochondrial activity 

(Narendra et al. 2008; Leduc‐Gaudet et al. 2019). TOM-20 is localised in 

mitochondrial membrane and is a marker of mitochondrial content (Billing et al. 

2010). PDGFRα has been associated with hypertrophy of skeletal muscle fibres 

via interaction with PI3K/AKT pathway (Sugg et al. 2017). PDGFRα expression is 

also necessary during embryonic stages and neuronal myelination (Oumesmar et 

al. 1997). GRB-2 and Gab-1 are essential for NMJ morphology and axonal 

myelination in peripheral nerve (Park et al. 2017; Gingras et al. 2016). SOS-1 
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forms a complex via binding with GRB-2 activation the RAS/ERK pathway 

following binding of growth factors to the upstream receptors (Findlay et al. 

2013). SIRT-1 is capable of promoting de-acetylation of FoxO proteins, inhibiting 

the expression of atrophy-related genes (Lee and Goldberg, 2013). 

The aim of this chapter was to assess the effects of miR-128 gain- and loss-of-

function on the expression levels of predicted target genes associated with 

mitochondrial quality and quantity, skeletal muscle hypertrophy and 

neurotrophin signalling in C2C12 and NSC-34 cells. Furthermore, the levels of 

predicted target genes most likely directly regulated by miR-128, were assessed 

in vivo, in TA muscle and SN of 12-week old mice subjected to a low-protein diet 

pre- or postnatally. 

 

 

7.2 Methods 

7.2.1 First-strand cDNA synthesis and real-time qPCR analysis of miR-128 

predicted target genes in cell and tissue lysates  

For cell lysates: 

C2C12 and NSC-34 cells were harvested as described in Chapter 2, Section 

2.20 and stored in -20oC until RNA isolation. Prior to RNA isolation, cell samples 

were retrieved from -20oC and left at RT for 5 min. RNA isolation was performed 

as described in Chapter 2, Section 2.12. Following RNA isolation and 

determination of RNA concentration and integrity using the NanoDrop2000 

(Thermofisher Scientific), RNA samples were used for first strand cDNA synthesis 

using SuperScript™ II Reverse Transcriptase (Chapter 2, Section 2.13). Following 

completion of cDNA synthesis, cDNA reaction volume was diluted 1:10 to a final 

volume of 200 μL and stored at -20oC, until used for real-time qPCR.  
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For tissue lysates: 

TA muscle and SN isolated from 12-week old mice were ground in a mortar 

using LN2 and prepared for RNA isolation as described in Chapter 2, Section 2.12.  

RNA concentration and purity were recorded using NanoDrop2000 

(Thermofisher Scientific). First Strand cDNA synthesis was performed using 

SuperScript™ IV VILO™ Master Mix, according to manufacturer’s protocol (Cat# 

11756050, Invitrogen, Paisley, UK). Following cDNA synthesis, each sample was 

diluted 1:10 to a final volume of 200 μL and stored at -20oC until used for qPCR.  

 

For real-time qPCR: 

Real-time qPCR in cell and tissue samples was performed according to the 

protocol in Chapter 2, Section 2.15. Analysis of the data collected following 

completion of qPCR runs was performed according to the delta-delta Ct method 

(ddCt). For qPCR runs in cell samples, b2 microglobulin was used as the 

housekeeping gene and 18S was used as housekeeping gene for qPCR runs in 

tissue samples. Primer sequences were designed according to the instructions 

outlined in Chapter 2, Section 2.14 and shown in Table 7.2.1 bellow:   

Table 7.2.1 Primer sequences of miR-128 predicted target genes of interest. 

Gene name Primer sequences (5’ – 3’) 
 Forward Reverse 

Gab-1 (1) CAGAGTCCCAGCGGAGC TCTTCCACGCATAACGCTTC 

Gab-1 (2) GCGCACTGAAAGAAGGTCG CTTCCACGCATAACGCTTCA 

Pdgfrα-2 GGAACCTCAGAGAGAATCGGC CATAGCTCCTGAGACCCGCTG 

Cox-I CACTAATAATCGGAGCCCCA TTCATCCTGTTCCTGCTCCT 

Cox-IV TTCTTCCGGTCGCGAGCAC GCTCTGGAAGCCAACATTCTGC 

Grb-2 CGGAAGCTAGGTTGCTCTGT ACACAATGCCACCCGTGA 

Nrf-1 TTACTCTGCTGTGGCTGATGG CCTCTGATGCTTGCGTCGTCT 

Park-2 CAAGGACACGTCGGTAGCTT ACAGGGCTCCTGACATCTG 

Sirt-1 GATGACAGAACGTCACACGC ACAAAAGTATATGGACCTATCCGC 
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Sos-1 CCGTGTGTGCCTTTCTTTGG AGAACCTCTTGATGTCCGGC 

Tomm-20 AGTCGAGCGAAGATGGTGG GCCTTTTGCGGTCGAAGTAG 

β2 microglobulin TAAGCATGCCAGTATGGCCG TGTCTCGATCCCAGTAGACG 

18S CGGCTACCACATCCAAGGAAGG CCCGCTCCCAAGATCCAACTA 

 

 

7.2.2 Quantification of the protein levels of miR-128 predicted target genes 

following manipulation of miR-128 levels in C2C12 and NSC-34 cells 

Cell lysates from C2C12 and NSC-34 cells were used for protein extraction and 

determination of protein concentration using BCA assay (Chapter 2, Section 2.24 

and Section 2.25). Protein expression was quantified using western blotting 

technique, as described in Chapter 2, Section 2.26. Data analysis for 

quantification of proteins of interest was performed according to instructions in 

Chapter 2, Section 2.26.5.  

 

7.2.3 Statistical Analysis 

Statistical analysis was performed using Graphpad 5 (Graphpad Software, San 

Diego, USA). Data analysis relative gene expression analysis and protein 

quantification analysis was performed using One-Way ANOVA with Dunnett’s 

post-hoc analysis, using NNN as the control group for statistical comparisons. 

Data are represented as mean ± SEM. N number represents animals used per 

group for molecular analysis in tissue samples. N number represents wells used 

per transfection condition for molecular analysis in cell lysate samples. 
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7.3 Results 

7.3.1 Changes in the expression profile of miR-128 predicted target genes 

following transfections of miR-128 in C2C12 cells 

Relative gene expression of miR-128 predicted target genes of interest 

following transfections with miR-128 in C2C12 cells are shown in Figure 7.3.1.1 

and Figure 7.3.1.2. Expression of Gab-1, isoforms 1 and 2, was not affected 

following overexpression or inhibition of miR-128 (Figure 7.3.1.1 A, B). 

Additionally, no differences in the expression levels were recorded for Tomm-20 

(Figure 7.3.1.1 E), Sirt-1 (Figure 7.3.1.2 B) and Grb-2 (Figure 7.3.1.2 C) genes. 

Significant upregulation in the gene expression level was recorded in Cox-IV and 

Park-2 genes following overexpression of miR-128, when compared to Scr (Figure 

7.3.1.1 C, Figure 7.3.1.2 F). Gene expression levels were significantly 

downregulated for Pdgfrα-2 following miR-128 overexpression (Figure 7.3.1.1 D) 

and Sos-1 and Nrf-1 only after inhibition of miR-128 (Figure 7.3.1.2 A, F). 

Interestingly, Cox-I expression levels were significantly downregulated following 

both overexpression and inhibition of miR-128 (Figure 7.3.1.2 E), consistent with 

the mitotoxicity data previously described (Chapter 5, Section 5.3.5).  
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Figure 7.3.1.1 Relative expression of miR-128 predicted target genes following 

transfections with miR-128 in C2C12 cells. A) Gab-1, isoform 1, B) Gab-1, isoform 

2, C) Park-2, D) Pdgfrα-2, E) Tomm-20 expression levels.  *represent significant 

differences compared with the Scr (control) group. *P≤0.05, **P≤0.01, *** 

P≤0.001 (mean ± SEM; n=6; One-Way ANOVA with Dunnett’s post-hoc analysis). 
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Figure 7.3.1.2 Relative expression of miR-128 predicted target genes following 

transfections with miR-128 in C2C12 cells. A) Sos-1, B) Sirt-1, C) Grb-2, D) Nrf-1, 

E) Cox-I and F) Cox-IV expression levels.  *represent significant differences 
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compared with the Scr (control) group, *P≤0.05, **P≤0.01 (mean ± SEM; n=6; 

One-Way ANOVA with Dunnett’s post-hoc analysis). 

 

7.3.2 Changes in the expression levels of miR-128 predicted target genes 

following manipulation of miR-128 levels in NSC-34 cells  

Analysis of the expression level of miR-128 predicted target genes of interest, 

following transfection of NSC-34 cells with miR-128, are shown in Figure 7.3.2.1 

and 7.3.2.2 Expression levels of Cox-I gene was significantly decreased in NSC-34 

cells following overexpression of miR-128 (Figure 7.3.2.2 A). Moreover, 

expression levels of Nrf-1, Grb-2 and Pdgfrα-2 were significantly increased 

following inhibition of miR-128, when compared to control group (Scr) (Figure 

7.3.2.2 C-E). Interestingly, Cox-IV expression levels were significantly increased 

following both overexpression and inhibition of miR-128 in NSC-34 cells (Figure 

7.3.2.2 B). Sirt-1 and Tomm-20 expression levels were unaffected by miR-128 

transfections (Figure 7.3.2.1 A, B).  

 

Figure 7.3.2.1 Relative expression of miR-128 predicted target genes following 

overexpression or inhibition of miR-128 in NSC-34 cells. A) Sirt-1 and B) Tomm-20 

expression levels. Scr served as the control group for statistical comparison. 

(mean ± SEM; n=6; One-Way ANOVA with Dunnett’s post-hoc analysis). 
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Figure 7.3.2.2 Relative expression of miR-128 predicted target genes following 

overexpression or inhibition of miR-128 in NSC-34 cells. A) Cox-I, B) Cox-IV, C) 

Nrf-1, D) Grb-2 and E) Pdgfrα-2 expression levels.  *represent significant 

Cox-I

Scr miR-128 AM-128
0

30

60

90

120

150

*

Experimental groups

R
e

la
ti

v
e

 g
e

n
e

 e
s

p
re

s
s

io
n

A. Cox-IV

Scr miR-128 AM-128
0.0

0.3

0.6

0.9

1.2

1.5

* *

Experimental groups

R
e

la
ti

v
e

 g
e

n
e

 e
s

p
re

s
s

io
n

B. 

Nrf-1

Scr miR-128 AM-128
0.00

0.05

0.10

0.15

0.20

0.25

*

Experimental groups

R
e

la
ti

v
e

 g
e

n
e

 e
s

p
re

s
s

io
n

C. Grb-2

Scr miR-128 AM-128
0.00

0.02

0.04

0.06

0.08

0.10

0.12

**

Experimental groups

R
e

la
ti

v
e

 g
e

n
e

 e
s

p
re

s
s

io
n

D. 

Pdgfr-2

Scr miR-128 AM-128
0.00

0.02

0.04

0.06

0.08

0.10

*

Experimental groups

R
e

la
ti

v
e

 g
e

n
e

 e
s

p
re

s
s

io
n

E. 



215 
 

differences compared with the Scr (control) group. *P≤0.05, **P≤0.01 (mean ± 

SEM; n=6; One-Way ANOVA with Dunnett’s post-hoc analysis). 

 

7.3.3 Protein expression levels in C2C12 and NSC-34 cells following 

overexpression or inhibition of miR-128 

Data collected from analysis of protein expression in C2C12 cells following 

overexpression or inhibition of miR-128 are shown in Figure 7.3.3.1 – 7.3.3.4. 

Protein levels of LC-3 I and LC-3 II (recruited during autophagy/mitophagy 

process) were quantified using Ponceau S stain as an internal control (Figure 

7.3.3.1 A). The ratio of LC-3 II/I protein expression revealed no significant 

differences following miR-128 transfections (Figure 7.3.3.1 B). Same results were 

obtained from analysis of LC-3 II/I ratio in NSC-34 cells following miR-128 

transfections (Figure 7.3.3.2). Protein levels of NRF-1 were also unaffected by 

miR-128 transfections both in C2C12 and NSC-34 cells (Figure 7.3.3.3, Figure 

7.3.3.4 B). Similar results were observed for protein expression levels of COX-IV 

in NSC-34 cells, which remained unaltered following overexpression and in 

inhibition of miR-128 (Figure 7.3.3.4 C).  
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Figure 7.3.3.1 Quantification of protein levels of LC-3 following overexpression or 

inhibition of miR-128 in C2C12 cells. A) Blots LC-3 (I) and LC-3 (II), normalised to 

Ponceau S stain used as internal control for total protein concentration B) Ratio 

of LC-3 II/I, in order to determine the presence of autophagy/mitophagy in 

transfected cells. Scr served as the transfection control for statistical comparison. 

(mean ± SEM; n=3; One-Way ANOVA with Dunnett’s post-hoc analysis). 
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Figure 7.3.3.2 Quantification of protein levels of LC-3 following overexpression or 

inhibition of miR-128 in NSC-34 cells. A) Blots of LC-3 (I) and LC-3 (II) isoforms, 

normalised to Ponceau S stain used as internal control for total protein levels B) 

Ratio of LC-3 II/I, in order to determine the presence of autophagy/mitophagy in 

transfected cells. Scr served as the control group for statistical comparison. 

(mean ± SEM; n=3; One-Way ANOVA with Dunnett’s post-hoc analysis). 

 

 

M Scr miR-128 AM-128 

Po
n

ceau
 Stain

 

NSC-34 Lysates 

LC-3 (I) 
LC-3 (II) 

15 kDa 

A. 

LC-3

Scr miR-128 AM-128
0.4

0.6

0.8

1.0

1.2

Experimental groups

L
C

-3
 I
I/
I 
R

a
ti

o

B. 

50 

15 

30 
25 

38 

125 
160 

90 
70 

230 
kDa 



218 
 

Figure 7.3.3.3 Quantification of protein levels of NRF-1 following inhibition or 

overexpression of miR-128 in C2C12 cells. A) NRF-1 protein blot, normalised to 

Ponceau S stain used as internal control for total protein concentration B) 

Protein levels of NRF-1. Scr served as the transfection control for statistical 

comparison. (mean ± SEM; n=3; One-Way ANOVA with Dunnett’s post-hoc 

analysis).  
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Figure 7.3.3.4 Quantification of protein levels of NRF-1 and COV-IV following 

overexpression or inhibition of miR-128 in NSC-34 cells. A) NRF-1 protein blot, 

normalised to Ponceau S stain used as internal control for total protein 

concentration B) Protein levels of NRF-1. Scr served as the control group for 

statistical comparison. (mean ± SEM; n=3; One-Way ANOVA with Dunnett’s post-

hoc analysis). 
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7.3.4 Expression levels of miR-128 predicted target genes in TA muscle and 

sciatic nerve of 12-week old mice 

Relative gene expression analysis of miR-128 predicted target genes in TA 

muscle and SN of 12-week old mice are shown in Figure 7.3.4. Expression levels 

of NRF-1 and COX-IV in TA muscle showed no significant differences between the 

three groups (Figure 7.3.4 A, B). Expression of COX-IV in SN was also similar 

between the three groups, without significant changes being observed (Figure 

7.3.4 D). However, relative expression levels of NRF-1 and GRB-2 were 

significantly increased in SN of NLL mice compared to the control group (NNN) 

(Figure 7.3.4 C, E).  
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Figure 7.3.4 Relative expression levels of miR-128 predicted target genes in TA 

and SN of 12-week old mice. A) NRF-1 in TA, B) COX-IV in TA, C) NRF-1 in SN, D) 

COX-IV in SN, E) GRB-2 in SN. 18S was used as a housekeeping gene for 

normalisation of expression levels of the genes of interest. *represent significant 

differences compared with the NNN (control) group. *P≤0.05, **P≤0.01, *** 
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P≤0.001 (mean ± SEM; n=5-8; One-Way ANOVA with Dunnett’s post-hoc 

analysis). 

 

 

7.4 Discussion 

This chapter focused on the expression patterns of miR-128 predicted target 

genes in vitro and in vivo. Analysis of the data obtained provided an insight into 

the molecular mechanisms affected by the deregulation of miR-128 expression 

on a post-transcriptional and post-translational level. Several predicted target 

genes showed differences in the expression patterns in vitro and in vivo in 

muscle and neurons, but no differences at a protein level were detected. Data 

suggested that changes in mitochondrial dynamics occurs, consistent with 

previous data on ATP production (Chapters 5 and 6), but the mechanisms causing 

these changes is not entirely clear.  

 

7.4.1 The effects of miR-128 gain- and loss-of-function on the expression of 

predicted target genes in C2C12 and NSC-34 cells 

Following the analyses of miR-128 gain- and loss-of-function in C2C12 and 

NSC-34 cells, we investigated whether changes in genes relevant for muscle and 

nerve function or development are affected by changes in miR-128 expression. It 

is important to note the unusual effects of miR-128 inhibition and 

overexpression on muscle cell phenotype with both overexpression and 

inhibition of miR having similar effects on proliferation, viability and myotube 

size of C2C12 cells. Quantitative PCR analysis of miR-128 predicted target gene 

expression in C2C12 cells showed significant downregulation of Pdgfrα-2 gene 

following overexpression of miR-128 (Figure 7.3.1.1 D). This observation may 

indicate that Pdgfrα-2 transcript might be a direct target of miR-128 in C2C12 

cells. PGDFRα has been identified as a mediator of proliferation and survival of 

skeletal muscle during development (Fantauzzo and Soriano, 2018). 
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Downregulation of the Pdgfrα-2 gene could explain the reduction in cell 

proliferation and increase in cell death of C2C12 cells in Chapter 5, following 

overexpression of miR-128. PDGFR also plays an important role in regulating 

skeletal muscle hypertrophy via AKT/p70S6K pathway (Sugg et al. 2017). 

Interestingly, Pdgfrα-2 expression levels were significantly increased following 

inhibition of miR-128, while the opposite was not observed with overexpression 

of miR-128 in NSC-34 cells (Figure 7.3.2.2 E). PDGFRα is expressed in mouse 

motoneurons during embryonic stages and persists until adulthood (Oumesmar 

et al. 1997). PDGFRα knockout mice die at birth and exhibit defective 

myelination and tremor (reviewed in Funa and Sasahara, 2013). Therefore, 

upregulation of Pgdfrα-2 gene may have a neuroprotective role towards the NSC-

34 cells, however the link between the expression of this gene with miR-128 

remains to be established. 

Overexpression of miR-128 in C2C12 cells was accompanied by upregulation 

of Cox-IV and Park-2 gene transcripts (Figure 7.3.1.2 F, Figure 7.3.1.1 D). Park-2, 

encoding parkin (PARK-2) protein, has been associated with removal of the 

dysfunctional mitochondria (Narendra et al. 2008). Overexpression of the Park-2 

gene in skeletal muscle has been associated with muscle hypertrophy and 

improvement of mitochondrial enzyme activity (Leduc‐Gaudet et al. 2019). COX-

IV plays a central role in oxidative phosphorylation (OXPHOS) and mitochondria 

biogenesis (reviewed in Gnaiger, 2009). Specifically, COX-IV, like COX-I, is a 

subunit of cytochrome c oxidase, known as Complex IV, which is the terminal 

enzyme in the electron transport chain (Wong-Riley, 2013). Cox-IV is encoded by 

the nuclear DNA (Zeviani et al. 1987), unlike Cox-I which is encoded by the 

mitochondrial DNA (Anderson et al. 1981). Reduction of COX-IV has been 

associated with the dysfunction of cytochrome c oxidase activity and therefore 

mitochondrial dysregulation in various cell types (reviewed in Arnold, 2012).  

Increased expression of Cox-IV gene transcript could be an indicator of increased 

mitochondrial activity during overexpression of miR-128. However, in NSC-34 

cells, Cox-IV expression was upregulated following both overexpression and 

inhibition of miR-128 (Figure 7.3.2.2 B). This could either be due to expression of 
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different gene transcripts following overexpression or inhibition of miR-128 

(reviewed in Arnold, 2012), or due to indirect regulation of Cox-IV transcripts. 

Upregulation of Park-2 and Cox-IV in C2C12 cells imply that their expression is 

unlikely to be directly mediated by miR-128 overexpression; it is possible that the 

expression levels of these two gene transcripts are controlled indirectly by miR-

128. Another explanation is that miR-128 may regulate a different pool of target 

genes depending on its expression levels. A study from Shu et al. (2012) shows 

that miR-17-92 regulates a different subset of target genes in a dose-dependent 

manner, with implications for cell viability.   

Interestingly, overexpression and inhibition of miR-128 resulted in 

downregulation of Cox-I gene expression in C2C12 cells (Figure 7.3.1.2 E), but 

Cox-I gene was downregulated following miR-128 overexpression in NSC-34 cells 

(Figure 7.3.2.2 A). COX-I, like COX-IV, plays a crucial role in OXPHOS and electron 

transport chain in the mitochondria (reviewed in Gnaiger, 2009). Cox-I gene is 

encoded by mitochondrial DNA (Anderson et al. 1981; reviewed in Taylor and 

Turnbull, 2005); therefore, alteration in the gene expression levels might be a 

marker of changes occurring in the mitochondria. Similar to Cox-IV, 

downregulation for Cox-I mRNA could be associated with deregulated oxidative 

phosphorylation and altered mitochondrial activity. Downregulation of Cox-I 

gene expression in NSC-34 cells following miR-128 overexpression make it a 

promising candidate target for direct binding by miR-128. Reduction in Cox-I 

expression levels following inhibition of miR-128 in C2C12 cells, might signify the 

regulation of Cox-I gene expression by multiple mechanisms. The 

downregulation of Cox-I mRNA following overexpression and inhibition of miR-

128 in C2C12 is consistent with the reduction of ATP release seen in mitotoxicity 

assay in Chapter 5, Section 5.3.5. Therefore, it is possible that manipulation of 

miR-128 levels have a direct impact on the mitochondrial function, through 

control of genes encoding key enzymes of the mitochondrial electron transport 

chain. Increase in the levels of Cox-IV mRNA could also act as a compensation 

mechanism for the downregulation of Cox-I mRNA, as an attempt to restore or 
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maintain Complex IV integrity, during overexpression of miR-128 in C2C12 and 

NSC-34 cells. 

In addition to these findings, miR-128 inhibition but not overexpression 

significantly reduced the expression levels of Nrf-1 and Sos-1 transcripts in C2C12 

cells (Figure 7.3.1.2 D, A). The opposite was observed in NSC-34 cells, with Nrf-1 

expression levels being increased following inhibition of miR-128 (Figure 7.3.2.2 

C). Studies have shown that NRF-1 regulates the expression of all cytochrome c 

oxidase (Complex IV) subunits, including COX-I and COX-IV (Dhar et al. 2008). 

Although Cox-IV expression levels were not affected following inhibition of miR-

128 in C2C12 cells, it is possible that the reduction in Nrf-1 expression is 

responsible for the reduction of Cox-I gene expression levels following miR-128 

inhibition. Nrf-1 may have played a role in the increased expression of Cox-IV 

gene in NSC-34 cells, as both transcripts were upregulated following inhibition of 

miR-128. These data indicate the variable effect of miR-128 inhibition in C2C12 

and NSC-34 cells. Both cell types have a high demand for mitochondrial 

respiration and OXPHOS activity in order to ensure proper mitochondrial 

function and metabolic activity. However, skeletal muscle and neuronal cells 

have shown distinct differences in mitochondrial bioenergetics during ageing. A 

study from Li et al. (2013) showed that skeletal muscle mitochondria were more 

susceptible to the presence for mitotoxins (e.g. FCCP). Mitochondrial respiration 

in skeletal muscle cells following treatment with FCCP declined earlier and the 

decline was more severe compared to the neuronal cells (Li et al. 2013). 

However, when ATP content was measured, the decline in total ATP produced 

was more severe in neuronal cells. Overall, mitochondrial deterioration occurred 

earlier and was more severe in skeletal muscle cells, compared to neuronal cells, 

which could be associated with the earlier decline in skeletal muscle mass and 

function during ageing, in comparison with the cognitive decline (Li et al. 2013).  

 SOS-1 forms a complex with GRB-2, activating RAS/ERK pathway following 

FGF or EGF signalling (Findlay et al. 2013). Downregulation of Sos-1 mRNA could 

have an impact on RAS/ERK signalling resulting in changes to downstream 

processes. Aside from forming a complex with SOS-1, GRB-2 is an essential 
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component of AChR cluster formation (Gingras et al. 2016). Although miR-128 

overexpression had no impact on Grb-2 expression, inhibition of miR-128 

resulted in increased expression of this transcript in NSC-34 cells (Figure 7.3.2 E). 

Upregulation of Grb-2 gene could promote upregulation of GRB-2 protein levels 

resulting in increased activation of downstream pathways such as PI3K and RAS 

signalling pathways (reviewed in Reichardt, 2006).  

 

7.4.2 Changes in protein expression levels following miR-128 gain- and loss-

of-function in C2C12 and NSC-34 cells   

Protein levels of LC-3 and NRF-1 in C2C12 and NSC-34 cells showed no 

significant changes following overexpression or inhibition of miR-128 (Figure 

7.3.3.1-4). Despite the significant changes seen in the levels NRF-1 transcripts in 

both C2C12 and NSC-34 transfected cells, there was no observed effect of miR-

128 on NRF-1 protein levels. There are many parameters that could result in this 

difference between mRNA and protein expression. Protein levels depend on the 

rate of translation; therefore, abundance or inadequacy of mRNA transcript 

cannot automatically result in similar changes on a protein level. As a result, it is 

necessary to take into consideration any delays between transcription and 

translation process when comparing protein level changes with their respective 

mRNA transcript (reviewed in Liu et al. 2016). Another possibility is that despite 

the increase in the expression levels of Nrf-1 mRNA, there is no demand for new 

protein synthesis therefore the translation rate is not affected. Whether cell 

requirement for these protein increases, cells could undergo a “translation on 

demand” utilising the higher number of mRNA transcripts for increase of protein 

synthesis (reviewed in Liu et al. 2016). Absence of differences on a protein levels 

for NRF-1 and COX-IV could also be due to subtle changes seen on an mRNA 

detected via qPCR, which is a more sensitive method compared to protein 

quantification via Western Blot.  

Protein expression levels also depend on the protein turnover rate, which is 

regulated by autophagy mechanism. LC3 proteins (LC3 I and LC3 II) play a crucial 
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role in autophagy and mitophagy process, as they are necessary for expansion 

and closure of autophagosomes (reviewed in Chen et al. 2018).  During activation 

of autophagy, LC3 I is converted to LC3 II which is then recruited to 

autophagosome membrane (Tanida et al. 2008). LC3 proteins are also recruited 

during mitophagy, with dysfunctioning mitochondrial being discarded via 

phagocytosis (reviewed in Yoo and Jung, 2018). In order to measure activation of 

autophagy/mitophagy process, the ratio of LC3 II to LC3 I (LC3 II/I) was calculated 

following western blot analysis (Tanida et al. 2008). Western blot analysis of LC3 

II/I ratio showed no significant changes following overexpression or inhibition of 

miR-128 in C2C12 and NSC-34 cells (Figure 7.3.3.1-2). Therefore, protein 

degradation rate via autophagy does not seem to be affected by alterations in 

miR-128 expression levels. As such, protein turnover rate could be either 

regulated via a different mechanism or remain stable in miR-128 transfected 

cells. Taken into consideration the cell viability and mitotoxicity data from 

Chapters 5 and 6 in C2C12 and NSC-34 cells, absence of differences in LC 3 ratio 

could indicate cell death in the presence of dysfunctioning mitochondria, but 

without the recruitment of autophagosomes (reviewed in Palikaras and 

Tavernarakis, 2014).  

Despite the findings form the Western blot analysis, the low n number and 

the insufficient intensity of the band (potentially due to issues with the specific 

antibody binding or issues with sufficient protein loading) do not allow for solid 

conclusions to be drawn. Optimisation of antibody binding and protein loading or 

use of more sensitive techniques such as mass spectrometry or ELISA could 

provide more information about the levels of these proteins in C2C12 and NSC-

34 cells following manipulation of miR-128 expression. 

 

7.4.3 Expression of Nrf-1, Cox-IV and Grb-2 in TA muscle and SN tissue of 12-

week old mice 

Expression levels of Nrf-1 and Cox-IV mRNA levels showed no differences in 

the TA muscles of the three mouse groups (NNN, NLL, LNN) but Nrf-1 expression 
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was upregulated in SN of NLL mice (Figure 7.3.4 C). Significant upregulation of 

Grb-2 expression levels in SN of NLL mice was also recorded (Figure 7.3.4 E). 

MicroRNA-128 expression levels were significantly lower in NLL and LNN in TA 

muscle but no such differences were recorded in SN of those mice (Chapter 4, 

Figure 4.3.2 A, C). Together, these data indicate that Nrf-1 and Grb-2 are most 

likely not direct targets of miR-128, although this requires further investigation 

via 3’UTR reporter constructs. A possible scenario would be that Grb-2 and Nrf-1 

expression might be regulated independently of miR-128 as a response to the 

low-protein diet postnatally.  Considering the role of GRB-2 in the formation of 

AChR clusters at NMJs, it is possible that upregulation of its expression levels in 

NLL mice is a mechanism for repair of the defects at NMJ site or maturation of 

NMJ formation on a pre-synaptic level (discussed in detail in Chapter 3, Section 

3.3.5). Increase in Nrf-1 expression could be associated with increased 

mitochondrial activity in SN of NLL mice. Mitochondria located in Schwann cells 

of myelinated axons are essential for their development and maintenance 

(reviewed in Ino and Lino, 2017). Therefore, increase in mitochondria biogenesis 

may signify the presence of an injury or damage caused by insufficient protein 

intake. In the case of delayed neuronal development due to low protein intake, 

increase in mitochondria activity could be necessary for the development and 

sufficient myelination of the axons. In order to answer these questions, further 

analysis of the morphology of the SN and quantification of mitochondrial content 

is required.  

It is evident that miR-128 may control the expression of a number of 

transcripts differently in muscle and nerve in vitro and in vivo. Furthermore, miR-

128 may also control a different pool of target genes in a dose-dependent 

manner, with implications for cell viability. However, further investigation is 

required, in order to identify the transcripts directly targeted by miR-128 and 

what would be the implications in metabolic processes in vitro and in vivo. A 

method commonly used in order to assess direct mRNA target/miR-128 

interactions is via 3'UTR Luc/GFP reporter constructs.   
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Chapter 8 

General discussion  
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8.1 Discussion 

The present study examined the effect of low-protein diet at pre- and 

postnatal stages on the neuromuscular development and function in 12-week old 

mice. Furthermore, this study aimed to examine whether dietary protein 

restriction may alter the expression profile of microRNA molecules and therefore 

result in altered signalling of key metabolic pathways in skeletal muscle and 

motoneurons, using in vivo and in vitro approaches.  

The main findings of this study are:  

1. Pre- or postnatal protein restriction results in reduced muscle fibre 

number and increase of Atrogin-1 gene expression levels in 12-week old 

mice. Protein restriction only in postnatal stages resulted in reduced body 

weight and size, reduced weight of slow muscles or mixed muscles (but 

not in fast muscles), reduced maximum muscle forces without changes in 

specific force, and increase in morphological abnormalities of NMJs. 

Postnatal protein restriction was also accompanied by an increase in 

MyHC IIa expression levels in TA muscle.  

2. Expression levels of miR-128 were downregulated in 12-week old mice on 

a low-protein diet pre- or postnatally, but expression levels of miR-133a 

were supressed only in 12-week old mice on a protein-deficient diet 

postnatally. In silico analysis of predicted target genes for miR-128 and 

miR-133a revealed a number of genes involved in key metabolic 

pathways including neurotrophin signalling pathway, FoxO signalling 

pathway, synaptic vesicle cycle and longevity regulating pathway. A 

number of predicted target genes were associated with mitochondrial 

function. 

3. Gain- and loss-of-function of miR-128 in C2C12 cells resulted in increased 

fusion index, increased cell death, reduced myoblast proliferation and 

increased mitochondrial toxicity. miR-128 did not affect the diameter of 

terminally differentiated C2C12 myotubes following gain- and loss-of-
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function experiments. Gain-of-function of miR-128 in NSC-34 cells 

resulted in reduction of axonal length and increase in cell death, but had 

no effect in cell proliferation.  

4. Gain- and loss-of-function of miR-133a in C2C12 cells increased myoblast 

proliferation but had no impact on cell fusion. Overexpression of miR-

133a reduced cell death, while inhibition of miR-133a increased myotube 

diameter and myotube area. Overexpression of miR-133a does not induce 

atrophy but possibly inhibits hypertrophy of C2C12 myotubes. miR-133a 

plays a role in regulation of myotube hypertrophy but not myogenesis. 

Inhibition of miR-133a in NSC-34 cells increased axonal length but had no 

impact in cell death and proliferation.  

5. Gain-of-function of miR-128 resulted in increased expression of Park-2 

and Cox-IV transcripts and reduced expression of Cox-I and Pdgfrα 

transcripts. Loss-of-function of miR-128 lead to reduction in Cox-I, Nrf-1 

and Sos-1 transcripts in C2C12 myoblasts. Gain- and loss-of-function of 

miR-128 had no impact on NRF-1 and LC-3 protein content in C2C12 

myoblasts. Findings suggest divergent mechanisms of miR-128 leading to 

cell death when miR-128 levels dysregulated (too high or low).  

6. Gain- and loss-of-function of miR-128 resulted in increased expression of 

Cox-IV transcript in NSC-34 cells. Loss-of-function of miR-128 resulted in 

increased expression levels of Nrf-1, Grb-2 and Pdgfrα transcripts, while 

gain-of-function of miR-128 reduced the expression levels of Cox-I 

transcript in NSC-34 cells. Gain- and loss-of-function of miR-128 had no 

impact on NRF-1 and LC-3 protein content in NSC-34 cells. Nrf-1 and Grb-

2 expression levels were upregulated in the SN of 12-week mice from the 

NLL group only.   

 

In summary, dietary protein restriction postnatally has a negative impact in 

normal development, as seen in 12-week old mice, in line with previously 
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published data (Chen et al. 2009). Although 12-week old mice on a protein 

restricted diet pre-or postnatally seem to have similar muscle phenotype, muscle 

function and NMJ integrity is affected only by postnatal protein restriction. 

Furthermore, protein restriction appeared to have an impact on muscle weight 

of slow-twitch (SOL) or mixed-fibre-type (Quad, GTN) muscles, but no reduction 

in muscle weight was recorded in fast-twitch muscles (EDL, TA). Histological 

examination of the EDL muscle showed no apparent differences in the fibre 

crossectional area but a reduction if fibre number in both NLL and LNN groups of 

mice, indicating the role of dietary protein intake in muscle fibre number 

determination during development. Although the reduction in fibre number 

without accompanying differences in fibre sizes would be expected to have an 

impact on the muscle weight, such difference was not observed in the EDL 

muscle. One possible explanation for this phenomenon is that the protein-

deficient diet at pre- or postnatal stages of development may have resulted in 

water retention in fast-twitch muscles, such as the EDL and TA muscle, which 

could explain the absence of significant differences in the muscle weight 

between the three groups of mice. Previous studies have highlighted the effect 

of a protein-deficient diet early in life on the water retention and abnormal 

water and electrolyte distribution, resulting in growth abnormalities (Fiorotto et 

al. 1987). However, water retention has been reported to affect differently the 

fast-twitch and the slow-twitch muscles due to their different osmolality 

sensitivity (Farhat et al. 2018). However, due to the lack of evidence supporting 

water imbalances in our study, the role of water in the muscle weight and fibre 

number differences in fast-twitch muscles (EDL, TA) in comparison with the slow-

twitch or mixed fibre-type muscles (SOL, GTN, Quad) can only be speculated. In 

order to exclude the possibility that the reduction in fibre number in NLL and 

LNN groups is due to unintended selection of muscles belonging to a specific 

subgroup (muscles with lower weight), analysis of the body weight and muscle 

weight of the mice selected for histological examination were compared to the 

rest of the mice in each group (Appendix Section A7, Figure A19). Body weight 

and EDL muscle weight analysis confirm that the samples chosen for histological 

analysis did not present significant differences with the rest of the population in 
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each group. Therefore, we are confident that findings on body and muscle 

weight as well as muscle fibre number and size are real and not an unintended 

consequence of subgroup analyses. Furthermore, the differences recorded in the 

muscle force of the EDL muscle do not seem to be consistent with the 

differences in EDL fibre number analysis, which could indicate that reduction in 

muscle fibre number alone may not be sufficient to induce changes in the muscle 

strength. The reduction in the EDL muscle force may also be attributed to 

significant morphological changes seen at the NMJ site. Whether these 

morphological changes could also be due to or result in functional changes of the 

NMJ, remains currently unknown and requires further investigation with 

electrophysiology techniques. All things considered, the physiological differences 

observed between the NLL and LNN groups of mice highlight the possibility that 

protein restriction may modulate development via different mechanisms 

depending on the developmental stage it is introduced. Protein restriction seems 

to regulate the expression level of two microRNAs expressed in muscle, miR-128 

and miR-133a. These findings are supported by a recent study from Sharma et al. 

showing regulation of small RNA fragments following parental dietary protein 

restriction and their influence in embryonic development of the offspring 

(Sharma et al. 2015). In vitro analysis focusing on the manipulation of miR-128 

expression in skeletal muscle (C2C12) and motoneuron (NSC-34) cells indicates 

potential involvement of miR-128 in mitochondrial homeostasis and function, 

which may subsequently modulate cell survival and/or proliferation.  

Previously published data on miR-128 directly targeting transcripts of 

components of IGF-1 signalling pathway, Sirt-1 and Pdgfrα, along with the data 

from gene expression analysis on Grb-2, Nrf-1, Cox-I and Cox-IV, we propose the 

following: 

i) Regulation of skeletal muscle function occurs indirectly of miR-128 

expression via genes involved in NMJ formation (Grb-2) and 

potentially mitochondrial function (Nrf-1, Cox-I, Cox-IV) in 12-week 

old mice.  
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ii) miR-133a may have a role in regulation of genes involved in 

neurotransmission and axonal sprouting in neuronal cells while 

inhibition of miR-133a may induce hypertrophy in myotubes in vitro. 

The role of miR-133a in neuromuscular transmission in vivo needs 

further exploration.  

Downregulation of miR-128 expression levels in mice from both NLL and LNN 

groups are in line with upregulation of Atrogin-1 expression levels and reduction 

in EDL muscle fibre number of 12-week old mice. Despite the fibre loss, 

downregulation of miR-128 in 12-week old mice should increase the levels of its 

direct targets, Igf1, Igf1r, Sirt-1 and Pdgfrα, which would cause hypertrophy of 

the remaining EDL muscle fibres in NLL and LNN mice. Despite the potential 

effect of miR-128 following a low-protein diet pre- or postnatally, skeletal muscle 

function could be regulated indirectly of miR-128 via a different mechanism. 

Immature NMJ morphology (small area of synaptic site, limited branching and 

fragmentation) might be the result of slow growth of mice in the NLL group. This 

would be in line with the data from Chen et al. (2009) showing that mice on a 

normal diet pre-natally, but subjected to a protein-restricted diet postnatally 

displayed slow growth but increased lifespan. It is possible that slow growth may 

be attributed to decrease in ATP production from the mitochondria affecting 

both muscle function and neurotransmission, although this would need further 

investigation. Furthermore, the differences seen in the phenotype of mice of the 

NLL and LNN groups along with the reduction in miR-128 expression levels 

support the possibility that miR-128 may be regulated by a feedback mechanism 

involving different subset of genes controlling different aspects of cell behaviour 

and survival. Collectively, despite the significant reduction seen in miR-128 and 

miR-133a expression levels in skeletal muscle in vivo and taking into 

consideration the phenotype and gene expression changes seen in muscle and 

motoneuron cells in vitro, it remains unclear whether the difference in miR-128 

and miR-133a expression in the skeletal muscle of mice is a direct consequence 

of the protein-deficient diet. Furthermore, the reduction in miR-128 and miR-

133a levels may be the result of deregulation of molecular mechanisms directly 
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affected by the protein-deficient diet, which may differ depending on the 

developmental stage in which this diet was introduced. Therefore, the 

mechanisms affecting miR-128 and/or miR133a expression or the mechanisms 

affected by the downregulation of miR-128 and/or miR-133a expression might 

be different between the NLL and LNN groups of mice.  

 

8.2 Limitation 

Muscle and SN tissue samples from 12-week old mice used for molecular work 

in this study had been previously fixed with 10% NBF for 24 h. Fixation of this 

samples was a significant limitation towards investigating components of 

signalling pathways, such as FoxO, whose activity depends on post-translational 

modifications (acetylation, phosphorylation). Therefore, the exact effect of 

protein-restricted diet on these signalling pathways remains unknown. Tissue 

fixation was a limitation for detection of miR-128 and miR-133a in α-

motoneurons on the spinal cord via in situ hybridisation. Tissue fixation was an 

important factor for the absence of MyHC isoform assessment, as the staining 

for the different MyHC isoforms requires unfixed tissue samples. Despite the 

absence of experimental analysis of the protein expression levels, the gene 

expression levels of many these proteins was performed via qPCR, which is a 

more sensitive technique for the detection of even subtle changes in their 

expression level.   

Due to time restrictions, it was not possible to access the morphology of the 

SN and determine the degree of myelination and the number and size of axons. 

Although the morphology of the SN does not reflect the morphology and 

function of the motoneuron, it would provide important data on the efficiency of 

neurotransmission and/or motor unit number following dietary protein 

restriction.  

Analysis of miR-133a following gain- and loss-of function experiments was 

limited, due to challenges achieving sufficient inhibition of miR-133a in C2C12 
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and NSC-34 cells. Additionally, design of primers for miR-133a predicted target 

genes of interest proved challenging. Therefore, investigation of predicted target 

genes was mainly focused on miR-128. Optimisation of in vitro miR-133a 

inhibition and primer design for predicted target genes of interest is of future 

interest.  

Fixation of tissues in combination with limited financial support and time did 

not allow the investigation of the expression levels of specific proteins and their 

gene transcripts in vivo and in vitro. Transcriptomics and sequence analysis in 

vivo (in muscle and nerve) and in vitro (in C2C12 and NSC-34 cells following 

transfection experiments with miR-128 and miR-133a) could aid our 

understanding of the potential role of miR-128 and miR-133a following a low-

protein diet pre- or postnatally. Specifically, identification of potentially common 

genes showing similar expression patterns in vivo and in vitro could refine 

potential molecular mechanisms most likely being affected by a protein-deficient 

diet and whether they are directly associated with or controlled by miR-128 

and/or miR-133a. Additionally, proteomic analysis could reveal potential changes 

in the protein expression levels in vivo and in vitro, and whether these changes 

are in line the bioinformatics data, confirming the involvement of miR-128 and 

miR-133a in certain signalling pathways both in vivo and in vitro. Furthermore, 

protein expression changes in muscle and nerve both in vivo and in vitro would 

provide further explanation of the signalling pathways implicated in the 

physiological and functional changes seen in mice subjected to a low-protein diet 

pre- or postnatally.   

 

8.3 Future directions 

This study has provided some novel data on the effect of low-protein diet at 

pre- or postnatal stages of development on the neuromuscular physiology and 

function of adult mice and the potential molecular mechanisms involved.  
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In order to access whether reduction in skeletal muscle function is also 

attributed to fibre type distribution, immunofluorescent staining and analysis for 

different MyHC isoforms (type I, IIa, IIb, IIx/d) is necessary in both fast muscles 

(EDL, TA) and slow muscles (SOL).  

To understand the exact mechanism of neuromuscular regulation by miR-128, 

assessment of direct binding of the predicted target genes by miR-128 should be 

conducted using 3’UTR luciferase assay in C2C12 and NSC-34 cells, following by 

western blotting to access protein content changes following manipulation of 

miR-128 expression levels. Similar protocol should be followed for miR-133a as 

well, in both in vitro models. Whether a successful muscle:nerve co-culture 

model is available, gain- and loss-of-function of miR-128 and miR-133a should be 

tested, to examine the effect of the two microRNAs at the early stages of 

synaptic formation. This experiment would determine whether delayed 

development indeed occurs following protein-restriction prenatally. Motoneuron 

function could also be assessed using electrophysiology techniques, in order to 

determine whether manipulation of miR-128 and miR-133a expression has any 

effect on neurotransmission. These data could provide an additional explanation 

on the mechanism causing reduced muscle function in mice of the NLL group. 

Assessment of miR-128 and miR-133a levels in skeletal muscle and α-

motoneurons and their impact on signalling pathways in mice on a low-protein 

diet could also be investigated using high-throughput methods, including 

proteomics and RNA sequencing.  

In vivo assessment of α-motoneuron and SN integrity should be assessed 

following appropriate histochemistry techniques. As mentioned in Section 8.2, 

histological examination of the SN would provide valuable data on the 

myelination, axonal size and axon number. These data would indicate whether 

reduced muscle function in mice of the NLL group might also be attributed to 

defective neurotransmission due to disruption ion myelination and/or reduced 

motor unit number. Transverse section of the lumbar region of the spinal cord 

would allow the direct assessment of the size and number of motoneurons, as 

well as assessment of miR-128 and miR-133a levels via in situ hybridisation. 
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Expression of neurotrophic factors and mitochondrial markers could also be 

assessed by immunofluorescent techniques.  

In order to determine the quality and number of mitochondria, assessment of 

mitochondria respiration using muscle or neuronal tissue could be evaluated. 

Mitochondrial respiration can be measured using a Seahorse platform or an 

Oroboros O2k Oxygraph, using both cell and tissue samples. This instrument 

would allow the determination of mitochondrial respiration from both in vivo 

and in vitro models following miR-128 and miR-133a manipulation or tissues 

from mice on a protein restricted diet. This technique would allow the 

determination the determination of mitochondrial function and direct 

correlation of these data with data from mitochondrial marker assessment.  

Importantly, to investigate the impact of miR-128 and/or miR-133a in 

neuromuscular maintenance of 12-week old mice on a low-protein diet pre- or 

postnatally, in vivo gain- and loss-of-function experiments would be crucial. 

These experiments would determine whether miR-128 and/or miR-133a could be 

used as therapeutic targets for any defects occurring in muscle and nerve, 

following dietary protein restriction.   

In order to determine whether dietary protein restriction can contribute to 

premature ageing phenotype in muscle and nerve, maintenance of mice on a 

low-protein protocol until 22-24 months of age and assessment of their 

phenotype and neuromuscular function would be essential. Gain- and loss-of-

function of miR-128 and/or miR-133a in ageing mice would provide evidence on 

whether this approach could rescue neuromuscular phenotype only early in life 

or whether it could be used as a therapeutic tool for improvement of 

neuromuscular ageing.  
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A.1 Amplification curves and melt peaks of qPCR on TA muscle and SN in 12-

week old mice 

  

Figure A.1 Melt peaks of 18S and MyHC isoforms (I, IIa, IIb, and IId/x) qPCR in TA 

muscle of 12-week old mice. A) Amplification peak and B) melt peak of 18S gene, 

C) MyHC I, D) MyHC IIa, E) MyHC IIb and F) MyHC IId/x.  
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Figure A.2 Melt peaks of Atrogin-1, MuSK and FoxO-3 qPCR in TA muscle of 12-

week old mice. Melt peaks of A) Atrogin-1, B) MuSK and C) FoxO-3.  
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Figure A.3 Melt peaks of 18S and Grb-2, Nrf-1 and Cox-IV qPCR in SN of 12-week 

old mice. A) Amplification peak and B) melt peak of 18S gene, C) Grb-2, D) Nrf-1 

and E) Cox-IV.   
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Figure A.4 Amplification curve and melt peaks of SNORD-61, miR-128 and miR-

133a qPCR in TA muscle of 12-week old mice. A) Amplification curve of SNORD-

61 and melt peaks of B) SNORD-61, C) miR-128 and D) miR-133a.  
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Figure A.5 Amplification curve and melt peaks of SNORD-61, miR-128 and miR-

133a qPCR in SN of 12-week old mice. A) Amplification curve of SNORD-61 and 

melt peaks of B) SNORD-61, C) miR-128 and D) miR-133a.  

 

A.2 Predicted target genes of miR-128 and miR-133a with seed regions for 

binding of alternative miRs 

A.2.1 Predicted target genes of miR-128 with seed regions for miR-133a binding 

 

Table A.1 List of the selected miR-128 predicted target with seed regions 

targeted by miR-133a, recorded using TargetScanMouse 7.1. Ensembl ID and 

seed region in 3’UTR are shown.  

 

 

 

 

 

 

 

A.2.2 Predicted target genes of miR-133a with seed regions for miR-128 binding 

Table A.2 List of the selected miR-133a predicted target with seed regions 

targeted by miR-128, recorded using TargetScanMouse 7.1. Ensembl ID and seed 

region in 3’UTR are shown.  

 

 

 miR-128 predicted target genes (TargetScan)  
    miR-133a seed region (in the 3'-UTR) 

Gene Ensembl ID Conserved Poorly conserved  
Ngfr ENSMUST00000000122.6 N/A 925-932, 1404-1410 
Insr ENSMUST00000091291.4 1063-1069 N/A 

Fbxo32 ENSMUST00000022986.6 N/A 1195-1201, 3735-3741 
Foxo1 ENSMUST00000053764.5 N/A 1788-1794, 1812-1818 
Sirt1 ENSMUST00000120239.2 344-350 N/A 
Syt1 ENSMUST00000105276.2 1606-1612, 2246-2252 N/A 
Nrf1 ENSMUST00000115212.2 N/A 457-463 
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  miR-133a predicted target genes (TargetScan) 
    miR-128 seed region (in the 3'-UTR) 

Gene Ensembl ID Conserved Poorly conserved  

Syt1 ENSMUST00000105276.2 1460-1467, 1692-

1698 N/A 

Rims1 ENSMUST00000115273.3 N/A 1844-1850 
Cplx2 ENSMUST00000026985.8 N/A 5493-5500, 5584-5590 
Braf ENSMUST00000002487.9 N/A 4044-4051 
Insr ENSMUST00000091291.4 207-213 3851-3858 
Fgf1 ENSMUST00000117566.2 N/A 1016-1022, 1121-1127, 1593-

1599, 1749-1755, 3116-3122 
Pax7 ENSMUST00000030508.8 N/A 755-761 

Myo9b ENSMUST00000168839.2 N/A 870-876, 2893-2900 
Myh1 ENSMUST00000124516.2 N/A 763-769 
Nrf1 ENSMUST00000115212.2 N/A 1232-1239, 1603-1609 

 

 

A.3 Assessment of transfection efficiency of C2C12 and NSC-34 cells following 

manipulation of miR-128 or miR-133a expression 

 

Figure A.6 Amplification curve and melt peak of SNORD-61 in C2C12 and NSC-34 

cells following transfections with either Scr, miR-128 or AM-128. A) Amplification 
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curve and B) melt peak of SNORD-61 in C2C12 cells. C) Amplification curve and D) 

melt peak of SNORD-61 in NSC-34 cells. 

 

Figure A.7 Amplification curve and melt peak of miR-128 qPCR in C2C12 and NSC-

34 cells following transfections with either Scr, miR-128 or AM-128. A) 

Amplification curve and B) melt peak of miR-128 in C2C12 cells. C) Amplification 

curve and D) melt peak of miR-128 in NSC-34 cells. 
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Figure A.8 Transfection efficiency of miR-128 and AM-128 in C2C12 and NSC-34 

cells. Scr serves as the control for statistical comparison, **P≤0.01, ***P≤0.001 

(mean ± SEM; n=6; One-Way ANOVA with Dunnett’s post-hoc analysis). 
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Figure A.9 Amplification curve and melt peak of SNORD-61 and miR-133a in 

C2C12 (red) and NSC-34 (blue) cells following transfections with either Scr, miR-

133a or AM-133a. A) Amplification curve and B) melt peak of SNORD-61. C) 

Amplification curve and D) melt peak of miR-133a. 
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Figure A.10 Transfection efficiency of miR-133a and AM-133a in C2C12 and NSC-

34 cells. Scr serves as the control for statistical comparison, *P≤0.05, *** 

P≤0.001 (mean ± SEM; n=3; One-Way ANOVA with Dunnett’s post-hoc analysis). 
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A.4 Phenotypic analysis and comparison of C2C12 and NSC-34 untransfected 

cells in comparison with scrambled-treated cells, following manipulation of 

miR-128 and miR-133a expression experiments 

A.4.1 Analysis of C2C12 untransfected and scr-treated cells 

 

Figure A.11 Phenotype analysis of untransfected (control) and scrambled-

transfected (Scr) C2C12 myotubes, following manipulation of miR-128 expression 

experiments. A) Untransfected (control) and Scr C2C12 myotubes; myotube 

formation was established with myosin heavy chain and nuclei immunostaining 

(MF20=Green; DAPI=Blue). B) Myotube diameter of untransfected and Scr C2C12 

myotubes with ≥2 nuclei. C) Quantification of total C2C12 myotube area 

expressed as a percentage of total area per field of view, of untransfected 

(control) and Scr C2C12 myotubes. (mean ± SEM; n=3-4; Unpaired two-tailed t-

test with Welsh correction). Representative images shown. 
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Figure A.12 Phenotype analysis of untransfected (control) and scrambled-

transfected (Scr) C2C12 myotubes, following manipulation of miR-133a 

expression experiments. A) Untransfected (control) and Scr C2C12 myotubes; 

myotube formation was established with myosin heavy chain and nuclei 

immunostaining (MF20=Green; DAPI=Blue). B) Myotube diameter of 

untransfected and Scr C2C12 myotubes with ≥2 nuclei. C) Quantification of total 

C2C12 myotube area expressed as a percentage of total area per field of view, of 

untransfected (control) and Scr C2C12 myotubes. (mean ± SEM; n=3-4; Unpaired 

two-tailed t-test with Welsh correction). Representative images shown.  
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Figure A.13 CCK-8 proliferation and CytoTox96 cytotoxicity assay of 

untransfected (control) C2C12 myoblasts and C2C12 myoblasts transfected with 

scrambled negative control (Scr). C2C12 myoblast number in control group and 

scrambled-transfected group for A) miR-128 and B) miR-133a. C2C12 cell death 

expressed as fold-change in cytotoxicity in control group and scrambled-

transfected group for C) miR-128 and D) miR-133a. **P≤0.01 (mean ± SEM; n=6; 

Unpaired two-tailed t-test with Welsh correction). 
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A.4.2 Analysis of NSC-34 untransfected and scr-treated cells 

 

Figure A.14 Phenotype analysis of untransfected (control) and scrambled-

transfected (Scr) differentiated NSC-34 (NSC-34D) cells, following manipulation of 

miR-128 expression experiments. A) Untransfected (control) and Scr NSC-34D 

cells stained with Alexa Fluor 488 B-III Tubulin (green) for and DAPI (blue) and B) 

Axonal length of untransfected (control) and Scr NSC-34D after 11 days of 

differentiation. (mean ± SEM; n=3; Unpaired two-tailed t-test with Welsh 

correction). Representative images shown.  
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Figure A.15 Phenotype analysis of untransfected (control) and scrambled-

transfected (Scr) differentiated NSC-34 (NSC-34D) cells, following manipulation of 

miR-133a expression experiments. A) Untransfected (control) and Scr NSC-34D 

cells stained with Alexa Fluor 488 B-III Tubulin (green) for and DAPI (blue) and B) 

Axonal length of untransfected (control) and Scr NSC-34D after 11 days of 

differentiation. (mean ± SEM; n=3; Unpaired two-tailed t-test with Welsh 

correction). Representative images shown.  
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Figure A.16 CCK-8 proliferation and CytoTox96 cytotoxicity assay of 

untransfected (control) C2C12 myoblasts and NSC-34 cells transfected with 

scrambled negative control. NSC-34 cell number in control group and scrambled-

transfected group for A) miR-128 and B) miR-133a. NSC-34 cell death expressed 

as fold-change in cytotoxicity in control group and scrambled-transfected group 

for C) miR-128 and D) miR-133a. (mean ± SEM; n=6; Unpaired two-tailed t-test 

with Welsh correction). 
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A.5 Amplification curves and melt peaks of qPCR of predicted target genes 

following manipulation of miR-128 expression experiments in vitro 

 

Figure A.17 Melt peaks from qPCR analysis following manipulation of miR-128 

expression experiments.  
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Figure A.18 Melt peaks from qPCR analysis following manipulation of miR-128 

expression experiments.  
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A.6 Dietary information of normal and protein-restricted diet used for in vivo 

experiments 

Table A.3 Nutrient composition of 20% and 5% protein diet used for in vivo 

experiments 
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A.7 Comparison of muscle and body weight of muscles used for experimental 

analysis  
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Figure A.19 Total body weight and EDL muscle of 12-week old mice used for 

histological analysis in comparison with those not selected for experimental 

analysis. A) Total body weight (g) and B) EDL muscle weight (mg) used in 

histological analysis compared to those that were not selected for experimental 

analysis. (mean ± SEM; n=3-9; Two-Way ANOVA with Bonferroni post-hoc 

analysis). 

 

 


