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Abstract—Cognitive Radio (CR) is aimed at increasing the
efficiency of spectrum utilisation by allowing unlicensed users
to opportunistically access licensed spectrum bands during the
inactivity periods of the licensed users. CR systems can benefit
from an accurate knowledge of the spectrum occupancy patterns
and their statistical properties. This statistical information can be
obtained by periodically monitoring (sensing) the idle/busy state
of the licensed channels. However, a reliable estimation of the
primary activity statistics may require long observations times.
This work proposes efficient methods to reduce the observation
time required to produce a reliable estimation of the primary
activity statistics. Furthermore, a method enabling CR users to
quantify the accuracy of the estimated statistics is also proposed.
Compared to other existing approaches, the proposed methods
can provide accurate estimations of the primary activity statistics
in significantly shorter observation times, thus allowing CR users
to quickly adapt to new unknown operating channels.

Index Terms—Cognitive radio, opportunistic spectrum access,
spectrum occupancy modelling, primary activity statistics.

I. INTRODUCTION

The Dynamic Spectrum Access (DSA) / Cognitive Radio

(CR) paradigm [1], [2] has the potential to improve the cur-

rently inefficient exploitation of the radio spectrum that results

from inflexible management policies. The basic underlying

idea of DSA/CR is to allow unlicensed (secondary) users to

opportunistically access allocated spectrum bands during the

inactivity periods of the licensed (primary) users.

Owing to the opportunistic nature of this spectrum ac-

cess paradigm, the performance of DSA/CR systems depends

on the spectrum occupancy patterns of the licensed users.

An accurate knowledge of such patterns and their statistical

properties can therefore be useful to DSA/CR systems. The

knowledge of the primary activity statistics can be exploited

to predict future trends in the spectrum occupancy [3], decide

the most convenient allocation of radio resources [4] and take

appropriate actions to optimise the system performance and

improve the overall spectrum efficiency [5].

The activity statistics of the primary channel are initially

unknown to the DSA/CR system but can be estimated based on

the sequence of spectrum sensing decisions, which can be used

to estimate the durations of individual idle/busy periods and

subsequently their moments, underlying distributions and other

relevant statistics [6]. Unfortunately, an accurate estimation

may require a long observation time until a sufficiently high

number of samples (i.e., observed period durations) is available

[7]. From a practical point of view, this means that a DSA/CR

system may need a long period of adaptation every time the

carrier frequency needs to switch to a new unknown radio

channel or spectrum band. During such period of adapta-

tion, advanced DSA/CR methods relying on primary activity

statistics may experience a degraded performance. Adequate

methods capable to shorten the observation time required to

obtain reliable statistical information of an unknown channel

can therefore help DSA/CR systems preserve the system per-

formance after a spectrum handover. In this context, this paper

proposes novel methods to estimate the activity statistics of a

channel based on spectrum sensing observations. Closed-form

expressions for the analysis, design and practical implemen-

tation of the proposed methods are derived and corroborated

with simulations. Compared to other existing approaches, the

proposed methods are able to produce statistically reliable

estimations within shorter observation times.

The rest of this paper is organised as follows. First, Section

II describes how primary activity statistics can be estimated

based on spectrum sensing observations based on the direct

calculation of the empirical distribution and the method of

moments. The proposed methods are presented in Section III

along with their corresponding analysis of required observation

time (sample size) and resulting accuracy. The performance of

the proposed methods is assessed and discussed in Section IV.

Finally, Section V summarises and concludes the paper.

II. ESTIMATION OF PRIMARY ACTIVITY STATISTICS

Without loss of generality, this work focuses on the estima-

tion of the distribution of idle/busy period durations. Other

relevant statistics such as the minimum, mean (and other

moments) or duty cycle can be derived from the estimated dis-

tribution. The distribution of period durations can be estimated

accurately provided that a sufficiently large set of samples is

available. The term sample is used in this work to refer to the

duration of an observed period, estimated from the sequence

of observed channel states (i.e., spectrum sensing decisions).

The duration of the channel idle/busy periods can be esti-

mated from spectrum sensing decisions as illustrated in Fig. 1.

DSA/CR users sense the channel with a finite sensing period

Ts (assumed to be shorter than the minimum period duration).

In every sensing event, a binary decision on the idle (H0)

or busy (H1) state of the channel is made. Every time the

observed channel state changes, the time interval elapsed since

the last state change is computed as shown in Fig. 1 in order
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Fig. 1. Estimation of period durations from spectrum sensing decisions.

to make an estimation T̂i of the real idle/busy period duration

Ti (i = 0 for idle periods, i = 1 for busy periods). Making use

of the observed period durations T̂i (i.e., samples henceforth),

the underlying statistical distribution can be estimated [6].

Various methods to estimate the distribution of the primary

period durations can be employed as investigated in [6]. Given

a set T̂i = {T̂i,n}Nn=1 of N observed period durations, an

estimation, F
T̂i
(T̂ ), of the original Cumulative Distribution

Function (CDF), FTi
(T ), can be computed as follows:

F
T̂i
(T̂ ) =

1

N

N∑

n=1

1
T̂i(T̂ ){T̂i,n} =

|T̂i(T̂ )|
N

(1)

where |T̂i(T̂ )| indicates the cardinality (number of elements)

of T̂i(T̂ ) = {T̂i,n : T̂i,n ≤ T̂ , n = 1, . . . , N} (the subset

of period durations lower than or equal to T̂ ), and 1A{x} is

the indicator function of subset A, which is equal to one for

the elements x ∈ A and zero otherwise. Since the estimated

period durations are integer multiples of the sensing period

(i.e., T̂i,n = kTs, k ∈ N
+), the distribution estimated in (1)

is discrete. As a result, the direct calculation of the empirical

CDF as shown in (1) may lead to significant estimation errors

since the distribution of the original periods, FTi
(T ), will

in general be continuous. The accuracy of this estimation

method was investigated analytically and experimentally in

[6] and it was shown that the estimated distribution may differ

significantly from the true distribution as a result of the limited

time resolution imposed by the use of a finite sensing period.

An alternative is to make an assumption on the underlying

distribution and then estimate its parameters based on statisti-

cal inference methods [6]. A commonly employed assumption

is that idle/busy periods are exponentially distributed, meaning

that the CDF of period durations, FTi
(T ), could be writen as:

FE
Ti
(T ) = 1− e−λE

i
(T−µE

i
), T ≥ µE

i (2)

where Ti represents the period type (i ∈ {0, 1}), T is the

period duration, and µE
i > 0 and λE

i > 0 are the location and

rate parameters, respectively. Field measurements, however,

have shown that the channel activity statistics of real systems

are more accurately described by means of the Generalised

Pareto (GP) distribution [8]–[10], whose CDF is given by:

FGP
Ti

(T ) = 1−
[
1 +

αGP
i (T − µGP

i )

λGP
i

] −1

αGP
i

, T ≥ µGP
i (3)

where µGP
i > 0, λGP

i > 0, αGP
i ∈ R are the location, scale

and shape parameters, respectively. These estimation strategies

TABLE I
PROPOSED DISTRIBUTION ESTIMATION METHODS

Method µ̃E
i λ̃E

i

MMK µi 1/(m̃i − µi)

VMK µi 1/
√
ṽi

MMU min
n

({T̂i,n}Nn=1
) 1/(m̃i − µ̃E

i )

VMU min
n

({T̂i,n}Nn=1
) 1/

√
ṽi

MV m̃i −
√
ṽi 1/(m̃i − µ̃E

i ) or 1/
√
ṽi

lead to a continuous estimated distribution, whose accuracy

depends on the suitability of the assumed distribution model

in describing the true distribution of period durations, FTi
(T ).

III. FAST ESTIMATION OF PRIMARY ACTIVITY STATISTICS

A. Proposed Methods

Based on the conclusions from previous work based on

field measurements [8]–[10], the work reported in [6] analysed

the estimation of the parameters µGP
i , λGP

i and αGP
i of the

model in (3) based on the Method of Moments (MoM)1. By

contrast, this work analyses the performance of MoM-based

methods under the assumption of exponentially distributed

period durations as described by the model in (2) and shows

the potential benefits of this alternative approach in terms of its

lower sample size required to produce an accurate estimation.

Based on the sample mean m̃i and sample variance ṽi of the

set of observed periods T̂i, given by [6, eqs. (21b) & (22)]2:

m̃i =
1

N

N∑

n=1

T̂i,n (4a)

ṽi =
1

N − 1

N∑

n=1

(
T̂i,n − m̃i

)2

− T 2
s

6
(4b)

an estimation µ̃E
i and λ̃E

i of the parameters of the model in (2)

can be made following various strategies (see Table I). When

the true minimum period duration µi = min(Ti) is known,

then µ̃E
i = µi and the rate parameter can be estimated from

the sample mean (Mean-based with Minimum Known, MMK)

or sample variance (Variance-based with Minimum Known,

VMK). If the true minimum period duration is unknown, it

can be estimated as µ̃E
i = min

n
({T̂i,n}Nn=1), and the rate

parameter can be estimated again based on the sample mean

(Mean-based with Minimum Unknown, MMU) or sample

variance (Variance-based with Minimum Unknown, VMU).

Alternatively, when the minimum period duration is unknown,

µE
i and λE

i can also be estimated solely from the sample mean

and sample variance (Mean- and Variance-based, MV).

1The main advantage of MoM-based approaches is that the distribution
parameters can be estimated from sample moments, which can be computed
recursively based on the last sample [11], while other inference methods in
general need the whole history of past observed period durations and therefore
have much larger memory requirements in practical implementations.

2As the values of the observed periods T̂i are affected by the finite sensing
period Ts, their sample moments are affected by Ts as well. A correction
factor T 2

s /6 is required in (4b) to minimise the impact of Ts on ṽi [6].



B. Required Observation Time (Sample Size)

This section provides closed-form expressions that can be

used to evaluate, for each of the estimation strategies shown

in Table I, the observation time required to produce a reliable

estimation of the underlying distribution of period durations,

assumed to be exponential as described by the model in (2).

The methods shown in Table I make an estimation of the CDF

based on the sample moments m̃i and ṽi. As the number N
of observed period durations (i.e., the sample size) increases,

the estimated sample moments become more accurate and the

estimated distribution converges asymptotically to the assumed

exponential CDF given by (2). For a finite sample size, the

sample moments have a certain estimation error, which also

affects the estimated distribution. The estimated distribution

F
T̂i
(T ) = 1−e−λ̃E

i (T−µ̃E

i ) can be considered to be reliable if

it differs from the assumed distribution model FE
Ti
(T ) in (2)

by no more than a predefined margin, which can be quantified

in terms of the Kolmogorov-Smirnov (KS) distance as [12, eq.

(14.3.17)]:

DKS
i = sup

T

∣∣∣FE
Ti
(T )− F

T̂i
(T )

∣∣∣

=
∣∣∣FE

Ti

(
TKS
i

)
− F

T̂i

(
TKS
i

)∣∣∣

=
∣∣∣e−λE

i (T
KS

i
−µE

i ) − e−λ̃E

i (T
KS

i
−µ̃E

i )
∣∣∣ (5)

where TKS
i is the value of the period duration T that max-

imises the absolute difference shown in (5), i.e., TKS
i = {T :

|FE
Ti
(T )− F

T̂i
(T )| = sup

T

|FE
Ti
(T )− F

T̂i
(T )|}.

The KS distance can be related to the sample size by

first obtaining TKS
i for each estimation method and then

expressing the parameter estimates µ̃E
i and λ̃E

i as a function

of m̃i and ṽi (as shown in Table I), whose maximum relative

errors are related to the sample size N as [7, eqs. (19) & (20)]:

εm̃i

r,max ≈
√
2 erf−1(ρ)

E(Ti)

[
1

N

(
V(Ti) +

T 2
s

6

)] 1

2

(6a)

εṽi

r,max ≈
√
2 erf−1(ρ)

V(Ti)

[
1

N

(
M4(Ti)−

N − 3

N − 1
[V(Ti)]

2

+
2N

3(N − 1)
T 2
sV(Ti) +

7N + 3

180(N − 1)
T 4
s

)] 1

2

(6b)

where ρ is the desired confidence interval, E(Ti) = µE
i +

1/λE
i , V(Ti) = 1/(λE

i )
2 and M4(Ti) = 9/(λE

i )
4 are the

mean, variance and fourth central moment of the period dura-

tions, respectively, assuming exponentially distributed periods.

For the methods where the minimum period is known (i.e.,

MMK and VMK), TKS
i can be found by computing the value

of T for which d[FE
Ti
(T )−F

T̂i
(T )]/dT = 0 and d2[FE

Ti
(T )−

F
T̂i
(T )]/dT 2 < 0, which yields:

TKS
i = µE

i +
lnλE

i − ln λ̃E
i

λE
i − λ̃E

i

(7)

The KS distance in (5) becomes maximum (i.e., worst possible

case) when m̃i = E(Ti)(1−εm̃i

r,max) for the MMK method and

when ṽi = V(Ti)(1 + εṽi

r,max) for the VMK method.

For the methods where the minimum period is unknown

(i.e., MMU, VMU and MV), it can be shown that TKS
i =

µE
i = µi and (5) then simplifies to DKS

i = 1− e−λ̃E

i (µi−µ̃E

i ).

In the case of the MMU and VMU methods, the estimated

minimum is related to the true minimum as µ̃E
i = ⌊µi/Ts⌋Ts

[6, eq. (7)], where ⌊·⌋ represents the floor operator. The KS

distance in (5) becomes maximum (i.e., worst possible case)

when m̃i = E(Ti)(1 − εm̃i

r,max) for the MMU method, ṽi =

V(Ti)(1−εṽi

r,max) for the VMU method, and m̃i = E(Ti)(1−
1
2ε

m̃i

r,max) and ṽi = V(Ti)(1 +
1
2ε

ṽi
r,max) for the MV method.

These results can be used to evaluate DKS
i as a function

of the sample size N for each estimation method by intro-

ducing the appropriate TKS
i , then expressing the parameter

estimates µ̃E
i and λ̃E

i as a function of m̃i and ṽi as shown

in Table I, and finally expressing the sample moments (m̃i

and ṽi) as a function of the population moments (E(Ti) and

V(Ti)) and relative errors (εm̃i

r,max and εṽi

r,max) as indicated in

each case, where the dependency on the sample size N is

included in εm̃i

r,max and εṽi

r,max as shown in (6). Notice that the

algebraic complexity of the final analytical result prevents the

derivation of a closed-form expression for N as a function

of DKS
i , which would be useful for a direct evaluation of

the observation time (i.e., sample size) required to achieve a

certain level of accuracy. However, by means of a numerical

evaluation of DKS
i in (5), which depends implicitly on N , the

desired result can be obtained numerically.

C. Accuracy of the Estimated Distribution

As discussed in Section II, the real period durations are

more accurately described by a generalised Pareto distribution

than an exponential distribution. Consequently, the assumption

of exponentially distributed periods leads to some error in the

estimated distribution (exponential), which can be quantified

in terms of the KS distance with respect to the true distribution

(generalised Pareto) as follows:

DKS
i = sup

T

∣∣FGP
Ti

(T )− FE
Ti
(T )

∣∣ (8)

=
∣∣FGP

Ti

(
TKS
i

)
− FE

Ti

(
TKS
i

)∣∣

=

∣∣∣∣∣

[
1 +

αGP
i (TKS

i − µGP
i )

λGP
i

] −1

αGP
i − e−λE

i
(TKS

i
−µE

i
)

∣∣∣∣∣

which represents the KS distance between (2) and (3). The

period duration T for which the maximum absolute difference

is attained (i.e., TKS
i ) can be calculated as the value of T

for which d[FGP
Ti

(T ) − FE
Ti
(T )]/dT = 0 and d2[FGP

Ti
(T ) −

FE
Ti
(T )]/dT 2 < 0. The resulting equation cannot be solved

analytically as a result of the presence of some non-polynomial

terms, however such terms can be approximated by their

corresponding second-order Taylor series centred about E(Ti),
which leads to the following tight approximation:

TKS
i ≈ E(Ti) + [E(Ti)− µi]× (9)

(
1− αGP

i

) 1

αGP
i

(
1 + αGP

i

) [
1−

√(
1 + αGP

i

) (
1 + 2αGP

i

)]

(
1− αGP

i

) 1

αGP
i

(
1 + αGP

i

) (
1 + 2αGP

i

)
− 1/e



The result in (8)–(9) can be used in the design of DSA/CR

systems to quantify the best estimation accuracy that can be

attained by the proposed estimation methods in Table I for a

particular operation scenario. Moreover, the result in (8)–(9)

can also be used by DSA/CR devices in a practical scenario

to determine the accuracy of the estimation provided by the

proposed methods. To this end, the parameters involved in (8)–

(9), which would be unknown in a real operation scenario, can

be evaluated based on their corresponding sample estimates

according to the considered estimation method (see Table I and

[6]). The resulting KS distance would then provide DSA/CR

devices with an estimation of the maximum deviation between

the so-far estimated distribution and the real one (assumed to

be GP). Based on this metric, DSA/CR devices would thus

be able to determine whether the distribution estimated with

the available sample set is accurate enough for a particular

application or if more samples (i.e., observed periods) would

be required to reach the desired level of accuracy.

IV. PERFORMANCE RESULTS

The performance of the proposed methods was evaluated

based on two aspects, namely the sample size required to

produce a reliable estimation (representative of the required

observation time) and the resulting estimation accuracy.

A. Required Observation Time (Sample Size)

For the evaluation of the first aspect (sample size required

to produce a reliable estimation assuming exponentially dis-

tributed periods), the analytical result in (5) was evaluated

numerically for each of the proposed methods and compared

with the counterpart results obtained from simulations, which

were obtained based on the following steps:

1) Generate a set {Ti,n}Nn=1 of N periods obtained as ran-

dom numbers drawn from an exponential distribution (2)

with the desired location (µE
i ) and rate (λE

i ) parameters.

2) From the sequence of periods obtained in step 1, de-

termine the sequence of idle/busy states (H0/H1) that

would be observed in the primary channel when a

sensing period Ts is employed by the DSA/CR devices.

3) Based on the sequence H0/H1 obtained in step 2,

compute, as depicted in Figure 1, the set {T̂i,n}Nn=1 of N
period durations that would be observed by the DSA/CR

system based on the spectrum sensing outcomes.

4) Based on the set {T̂i,n}Nn=1 obtained in step 3, estimate

the sample mean m̃i and sample variance ṽi of the set

of observed periods as indicated in (4).

5) Estimate the location (µ̃E
i ) and rate (λ̃E

i ) parameters of

the exponential model in (2) based on the sample mean

and sample variance obtained in step 4 for each of the

proposed methods as shown in Table I.

6) Evaluate the KS distance in (5) based on the true

parameter values from step 1 (µE
i , λE

i ) and the estimates

from step 5 (µ̃E
i , λ̃E

i ) for the considered sample size N .

The simulation process described above was repeated for

several values of the sample size parameter within the range

N ∈ [1, 104]. For each value of N , simulation steps 1–6 were

repeated for a total of 1000 iterations and the KS distance

Fig. 2. KS distance as a function of the sample size.

observed at the 99th percentile (i.e., ρ = 0.99) was selected.

The same confidence interval was employed in the numerical

evaluation of the analytical result in (5).

Fig. 2 evaluates (5) for the methods shown in Table I and

corroborates its validity with simulation results (parameters are

expressed in relative time units, t.u.). As it can be appreciated,

the shortest observation intervals (i.e., sample size values)

for a predefined KS distance are attained by the MMK and

VMK methods. The observation interval required by MMK

is lower than that required by VMK because it relies on a

lower-order sample moment (i.e., the mean, which is a 1st-

order moment, as opposed to the variance, which is a 2nd-

order moment), thus requires a lower sample size to provide

a similar estimation error [7]. This makes MMK a preferred

option compared to VMK. Unfortunately, MMK can only be

employed when the true minimum period µi is known. If µi is

unknown, other methods must be used. In general, the MMU

and VMU methods lead to a fixed and irreducible error that

is independent of the sample size and can be significantly

high, as shown in Fig. 2, depending on the particular relation

between the true minimum period µi and the employed sensing

period Ts. It can be shown that the estimation error of the

MMU and VMU methods can be zero when the sensing period

is an integer sub-multiple of the minimum period duration (i.e.,

Ts = µi/k, with k ∈ N
+). However, such ratio is unlikely

to occur in practice and the estimation error provided by the

MMU and VMU methods will in general be relatively high as

shown in the example of Fig. 2. A more convenient approach

when µi is unknown is the MV method, which guarantees a

reliable estimation when µi is unknown at the expense of a

higher observation interval compared to MMK.

If periods are assumed to be GP-distributed, the parameters

µGP
i , λGP

i and αGP
i of the model in (3) can be estimated based

on the sample minimum, mean and variance (MMV method)

if µi is known, or the sample mean, variance and skewness

(MVS method) if µi is unknown (see [6] for details). The

KS distance between the GP distribution estimated with these

methods and the model in (3) as a function of the sample



size have been included in Fig. 2 for comparison. As it can

be appreciated, the MMK and MV methods provide reliable

estimations within shorter observation intervals than their GP

counterparts (i.e., the MMV and MVS methods, respectively).

For instance, when the minimum period is known (i.e., either

MMK or MMV can be used), MMK requires N ≈ 2500
samples to achieve a target error DKS

i = 0.02 as opposed

to N ≈ 10000 samples required by MMV for the same level

of accuracy (i.e., MMK reduces the sample size required by

MMV by about 75%). Similarly, if the minimum period is un-

known (i.e., either MV or MVS need to be used), MV requires

N ≈ 750 samples to achieve a target error DKS
i = 0.10 while

MVS requires more than N ≈ 10000 samples for the same

level of accuracy (i.e., MV reduces the sample size required by

MVS by more than 90%). Therefore, the proposed estimation

methods can achieve a reliable estimation of the distribution

of period durations (under the assumption of exponentially

distributed periods) within significantly shorter observation

intervals than those required by the estimation methods studied

in [6] (under the assumption of GP-distributed periods).

B. Accuracy of the Estimated Distribution

For the evaluation of the second aspect (estimation accuracy

resulting from the assumption of exponentially distributed

periods), the analytical result in (8) was evaluated numerically

(to produce an exact result) and based on the approximation

of (9). The results are shown in Fig. 3 as a function of the GP

distribution shape parameter (αGP
i ). Note that the exponential

distribution in (2) is a particular case of the GP distribution

in (3) with µGP
i = µE

i , λGP
i = 1/λE

i and αGP
i = 0; therefore

the divergence between both distribution models is mainly

determined by the value of αGP
i . Real values of αGP

i for

common radio technologies in practical scenarios have been

observed to be within the range αGP
i ∈ [0, 0.25] [10], which

is the interval considered in Fig. 3. In general, the accuracy of

the proposed methods (in particular, MMK and MV) improves

as αGP
i decreases. When the true period durations can be char-

acterised by a GP distribution with αGP
i ≈ 0, then DKS

i ≈ 0,

meaning that MMK and MV lead to a nearly exact estimation

of the true primary activity statistics, as it is also the case of

MMV and MVS, but within significantly shorter observation

intervals as discussed earlier. The worst accuracy is obtained

for the upper bound of the interval (i.e., αGP
i ≈ 0.25), where

the maximum estimation error is DKS
i ≈ 0.06. Based on

these results, it can be concluded that the methods proposed in

this work are able to provide reasonably accurate estimations

of the primary activity statistics within significantly shorter

observation intervals, compared to other existing estimation

approaches, thus enabling DSA/CR systems to quickly adapt

to new unknown operating channels.

V. CONCLUSION

This work has proposed and analysed novel strategies to

estimate the activity statistics of an unknown channel in the

context of DSA/CR systems, along with a method enabling

DSA/CR devices to quantify the accuracy of the estimated

statistics. Compared to other existing approaches, the proposed

0 0.05 0.1 0.15 0.2 0.25

0

0.02

0.04

0.06

0.08

0.1

Fig. 3. KS distance as a function of the GP distribution shape parameter.

strategies can provide reliable and accurate estimations of the

primary activity statistics within significantly shorter observa-

tion times, thus allowing DSA/CR users to quickly adapt to

new unknown operating channels.
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