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Abstract. For the diagnosis and monitoring of retinal diseases, the
spatial context of retinal thickness is highly relevant but often under-
utilised. Despite the data being spatially collected, current approaches
are not spatial: they involve analysing each location separately, or they
analyse all image sectors together but they ignore the possible spatial
correlations such as linear models, and multivariate analysis of variance
(MANOVA). We propose spatial statistical inference framework for reti-
nal images, which is based on a linear mixed effect model and which
models the spatial topography via fixed effect and spatial error struc-
tures. We compare our method with MANOVA in analysis of spatial
retinal thickness data from a prospective observational study, the Early
Detection of Diabetic Macular Oedema (EDDMO) study involving 89
eyes with maculopathy and 168 eyes without maculopathy from 149 dia-
betic participants. Heidelberg Optical Coherence Tomography (OCT) is
used to measure retinal thickness. MANOVA analysis suggests that the
overall retinal thickness of eyes with maculopathy are not significantly
different from the eyes with no maculopathy (p=0.11), while our spa-
tial framework can detect the difference between the two disease groups
(p=0.02). We also evaluated our spatial statistical model framework on
simulated data whereby we illustrate how spatial correlations can affect
the inferences about fixed effects. Our model addresses the need of correct
adjustment for spatial correlations in ophthalmic images and to improve
the precision of association in clinical studies. This model can be poten-
tially extended into disease monitoring and prognosis in other diseases
or imaging technologies.
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1 Introduction

Diabetic Macular Oedema (DMO) is a consequence of diabetes that involves
retinal thickness changes in the area of the retina called the macula. Although the
macula is only approximately 5 mm in diameter, the densely pack photoreceptors
in the macula give rise to our central high acuity and colour vision. A healthy
macula plays an essential role for activities such as reading, recognizing faces
and driving. Macular disease can cause loss of central vision; DMO is the most
common cause of vision loss among people with diabetic retinopathy.

DMO is caused by an accumulation of fluid (oedema) in the macula thought
to be secondary to vascular leakage. It has been proposed that macular thickness
is associated with visual loss [9]. For measuring retinal thickness, OCT is now
widely used for the diagnosis and monitoring of DMO as it is able to produce
high-resolution cross-sectional images of the retina [12].

The macula is often divided into nine subfields as initially described by the
Early Treatment of Diabetic Retinopathy Study (ETDRS) research group [11].
These subfields comprise three concentric circles/rings with radii of 500, 1500
and 3000 pm subdivided into four regions (superior, temporal, inferior and nasal)
as shown in Fig. 1. These subfields are named by their location as the central
(CS), superior inner (SI), temporal inner (TI), nasal inner (NI), superior outer
(SO), temporal outer (TO), inferior outer (I0) and nasal outer (NO). OCT
measurements provide retinal thickness measurements for each of these nine
subfields.

The simplest approach to analyse retinal thickness in these nine subfields is to
analyse them separately in nine separate analyses. Sometimes only the measure-
ment of the central subfield is used and the other measurements are discarded.
However, this ignore the spatial context of measurements. If spatial dependency
between the measurements of different subfields is not analysed properly, it can
affect the precision of estimates and lead to inaccurate results in statistical tests.

A more complex approach is to properly spatially analyse the data [6]. Spa-
tial statistical model takes into account the spatial correlations [4] thus in our
data provides a means of incorporating spatial information from retinal thick-
ness measurements in different subfields into statistical analyses. It may provide
information of value in discriminating between disease states and for detection
of retinal disease [7]. It has already been applied widely in other medical imag-
ing contexts such as functional neuroimaging and cardiac imaging, where spa-
tial correlations are also captured in the model. For example, Bowman et al.
constructed a spatial statistical model for cardiac imaging from single photon
emission computed tomography (SPECT) [2], and Bernal-Rusiel et al. explored
the spatial structures in Magnetic Resonance Image (MRI) data in patients
with Alzheimer’s disease [1]. However, the application of spatial statistics to
ophthalmic images has not yet been extensively studied.

Another concern in the analysis of ophthalmic images is the unit of analysis
issue. Often, the correlation between two eyes from the same individual is ignored.
Treating the eyes as independent introduces spuriously small standard errors.
Although there is a continuing concern regarding this problem and methods [15,16]
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are available for adjusting the correlation between the two eyes, the majority of
studies do not take this into account when data from both eyes are available. This
methodological problem has not improved much over the past two decades [17].

In this paper, we aimed to present a new statistical spatial inference frame-
work for retinal images and to study the effect of the spatial correlations on
the analysis of the spatial data. This framework is based on a linear mixed
effect model with a spatial (Gaussian, autoregressive-1, exponential and spher-
ical) error structure for the analysis of OCT imaging data, where correlation
between eyes from the same patient and demographic data is adjusted in the
model. We conducted a simulation study to validate our model and study the
benefits of using a spatial modelling framework when spatial correlations exist.

The organization of the rest of the paper is as follows. The image dataset
and the statistical modelling framework are presented in Sect.2. In Sect. 3, we
present results from the real data set. Simulation setting and simulation results
are presented in Sect. 4. Discussion of our work and the conclusion are presented
in Sects.5 and 6.
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Fig. 1. Early Treatment of Diabetic Retinopathy (ETDRS) gird centred on the fovea
with the radii of the central circle being 500 jum, inner circle 1500 pm and outer circle
3000 pm and the nine sectors (also called subfields).
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2 Methods

2.1 Image Dataset

To illustrate the use of our proposed model, we apply it to retinal thickness mea-
surements from the Early Detection of Diabetic Macular Oedema (EDDMO)
study which is a prospective observational study conducted in the Royal Liv-
erpool University Hospital. This study was performed in accordance with the
ethical standards laid down in the Declaration of Helsinki, with local ethical and
governance approval.
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There were 150 participants with diabetes at their baseline visit in the study.
Self-reported ethnic background revealed that approximately 90% of the partic-
ipants were Caucasians. Participants with diabetes and co-existing pathologies
(intracranial lesions n =1, and ocular pathologies n=4) were excluded from the
analysis. A small number of participants did not have data collected from both
eyes. All participants were examined by an ophthalmologist with a slit lamp. All
the participants with diabetes had a dilated fundoscopy examination. Based on
examination findings, eyes of participants with diabetes were categorized into
two groups, either no maculopathy (MO) or maculopathy (M1). A summary of
the dataset stratified by clinical diagnosis based on slit lamp examination is
shown in Table 1. Retinal thickness measurements for both eyes were obtained
using Heidelberg Spectralis OCT. Although the measurements of both foveal
centre point thickness and central subfield mean thickness are available using
OCT, central subfield mean thickness is more commonly used in clinical research
when tracking center-involving DMO [3]. Therefore only central subfield mean
thickness (CS) is used in the statistical analysis in this paper.

Table 1. Number of eyes for the analysis of overall thickness of retina

MO | M1 | Total
Left eyes 91140 |131
Right eyes| 77|49 |126
Total 168 |89 |257

2.2 Statistical Model

Our spatial statistical model has the general form described in Eq. (1), which is
based on a linear mixed effect model with two-level of nested random effects.

In the model, Y;; is the response vector for sth individual in the nested
level of grouping, X;; is the fixed effect vector (e.g. age, age, sex, glycated
haemoglobin (HbAlc), axial length) associated with beta, b; is the first level of
random effects (e.g. individual level random effect) associated with Z;, and u;;
is the second level of random effects (e.g. eye level random effect nested within
each individual) associated with D;;.

Yz‘j :Xijﬁ + Zzbz + Dijuij + €ij, = ]., ...,m;j = ]., ey NG

bi NN(O,Gl), uij NN(OGQ) €ij NN(O,ES)

where the first level random effect b; is independent of the second level random
effect u;;, and €;; are within group error representing spatial correlation in the
images which is assumed to be independent of random effect.
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2.3 Spatial Dependency

The covariance matrix X for €;; can be decomposed to X = oi!l'lz-j where ¥, is
a positive-definite matrix which can be decomposed to ¥;; = A;;Ci;As5. Ayj is
a diagonal matrix and C; is correlation matrix with parameter . In our model,
A; is a identity matrix and it is easy to write that cor(e;jk, €,;/) = [Cijlpp -
The spatial dependency cor(e;;k. €ij ) is modelled with four different struc-
tures where the correlation is modelled as autoregressive-1 model, Gaussian
model, exponential model and spherical model where v can take the value of

Yayr Ygs Ves Vs respectively.
For the lag autoregressive model, the correlation function decreases in abso-

lute value exponentially with lag 6 (6 = 1,2,...) model has the form of

Sk’ = ’ng (2)

For spatial structured correlation, if d;,+ is denoted as the Euclidean distance
between location k and k. The Gaussian correlation has the form of,

sprr = eap(—Ygdiy ). (3)

the exponential model has the form of

Sgr' = exp(—Ygdps ), (4)
and the spherical model has the form of

Ser = 1= 1/2(3vedyge —72d3,). (5)

2.4 Statistical Inference

In a traditional mixed effect model defined by Laird and Ware [5], the maximum
likelihood estimator g for fixed effect 3 is as follows,

B=(XXX)'X' 2 NY - Zb) (6)
with the prediction b for random effect is obtained as follows,
b=(Z'3;'Z+G;") ' Z Z7HY — XBo) (7)

where Y|b ~ N(X8+Zb, X)), b ~ N(0,G) and Xy, Gy fp are given values in EM
algorithm during iterations. And the maximum likelihood estimator 6 for the
precision estimates which define the parameters in the overall covariance matrix
can be optimized through EM iterations or Newton-Raphson iterations [5].

If we describe a two level random effect model ignoring the spatial depen-
dency, which assume ¥;; in model (1) as a identity matrix. We will have

Y5 = X8+ Z7bi + Djjui; + €5, 1=1,..m;j=1,...,n;
(8)

e~ N(0,071)
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We define 6; as parameter in matrix G'; and #> as parameter in matrix Go. The
likelihood function for model (2) can be written as

L(ﬂ76705|y*) =

m nq . 9
T [ TL| [ o058, 020000 1 02 oton,ozy
=17 j=1

where p(-) is the probability density function. Using the same idea in [5], we
have the profiled log-likelihood for {(61,02]y). And the maximum likelihood esti-
mator 6 = (0y,65) can also be obtained via EM iterations or Newton-Raphson
iterations.

If we describe a two level random effect model with the spatial dependency as
shown in model (1), we use a linear transformation for y;; with y;; = (Ll'/igl/ 2)yz’-‘j.
Then the likelihood function for model (1) can be written as

L(3,0, U??’ﬂy) = H Hp(yijmv 0, 0'37 7)
i=1j=1
= [T T ptw;;18.0.02) w2 (10)
i=1j=1

= L(3,0.02y) [T [T 1=,

i=1j=1

Then Eq. (10) can be linked with Eq. (9), leading to a solution for all unknown
parameters in model (1).

2.5 Statistical Analysis

In our application for the analysis of the results from the EDDMO study, the
model used is described as follows,

Yijk Z.Tijkﬁ-l-bi +ui; + ek, t=1,..m;j =1, wunink=1,..,9

(11)
bi ~ N(0,0‘%), ’LLZ'j ~ N(O, O'%), €ij ~ N(0,0’f!p”)

where 3 is a vector, x5, are covariates for ith participant from j eye in sector
k, b; denotes the random effect for participant #, u;; denote the random effect
for j eye in participant ¢, m is the number of participant and maxn; = 2. After
statistical analyses, uncorrelated covariates such as sex, duration of diabetes and
duration of diabetes were deleted from the model. In the final model, the fixed
effect 3 and the predictor variable x;;;, used are follows,

zijkB = Bo + B x Age; + B2 * Diagnosis;;

12
+ Bk * Sectoryg + Bak) * Sectoryy * Diagnosisg; (12)
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where Age; is a continuous variable which represent the age for ith participant;
Diagnosis;; is a categorical variable represent the diagnosis for j eye from ith
participant, which include diabetic eye without maculopathy (baseline) and dia-
betic eye with maculopathy; Sector;;i, is a categorical variable from 1 to 9 which
represent the 9 sectors in ETDRS grid with central subfield (CS) thickness as a
baseline; Sector;;, * Diagnosis;; represent interaction term between sector and
diagnosis with CS*Healthy as baseline.

The mixed effect model with two levels of random effects was fitted using
the nlme-R package [10] and the spatial dependency W;; was fitted with struc-
tures as described in Sect.2.3. Missing observations were tested whether they
were missing at random and then handled using multiple imputation method
in mice-R package [13]. Likelihood ratio test and information criterion (Akaike
Information Criterion, AIC; Bayesian information criterion, BIC) were used to
compare the models and to find the best model for the inference.

3 Results

To get the visual insight into the data, we made pairwise visualisations of mean
profiles of retinal thickness measurements for all nine sectors at patients’ baseline
visits as shown in Fig. 2. This shows a large within group variability and suggests
a pattern for the mean profiles of retinal thickness over the nine sectors. The
mean retinal thickness profile of maculopathy group was consistently higher than
the no-maculopathy group as shown in Fig. 2.

No-maculopathy VS Maculopathy

8 —1 E i === No-maculopathy
o) ! i === Maculopathy
3 P :: /

S olcs st Tl I NI i/sO TO 10 NO

Overall Thickness
300 350 400
|

250

200

sectors

Fig. 2. Pairwise visualizations for mean profiles of retinal overall thickness over 9 sec-
tors at baseline visit
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Univariate MANOVA was performed and demonstrated that maculopathy vs
no-maculopathy eyes were not different in retinal thickness over the nine sectors
(p = 0.11 > 0.05). Then we considered the correlations between the two eyes and
the spatial correlation between the nine sectors in statistical analyses using our
model described in Sect. 2, which also allows heteroscedasticity between groups.
We investigated different spatial dependency structures described in Sect.2.3;
an exponential correlation structure was the most informative with the lowest
AIC and BIC.

With the two levels of random effects model and an exponential correlation
structure, we can detect the difference in the main effect of diagnosis between
the maculopathy and no-maculopathy groups (p = 0.0218 < 0.05, Table 2). The
effect size between groups is 4.4982 with standard error equals 1.9543. Moreover,
compared with other correlation structures mentioned in Sect. 2.3, an exponen-
tial correlation structure gives the best model with the lowest AIC and BIC.
However, we did not detect a shape effect, which is measured as the interac-
tion term between diagnosis and sector mathematically, between maculopathy
group and no-maculopathy group (p = 0.9715). In the final model as described
in Eq. (11), estimators for age, main effect for diagnosis, variance component
estimators for random effect and residuals, and heteroscedicity range are shown
in Table 2.

Table 2. Estimator for age, main effect, variance component estimators for random
effect and residuals, and heteroscedicity range in the final model

Estimate (Std. Err) | p value
Estimator for age G —0.2681 (0.0962) 0.0061*
Estimator for main effect | 3s 4.4982 (1.9543) 0.0218*
Variance component o1 15.9307
o) 7.9328
S| ds 22.5541
e 0.6620
Heteroscedicity range Maculopathy 1
among diagnosis group
No-maculopathy | 0.5790

*statistically significant with p < 0.05

We also found a negative correlation between age and the mean retinal thick-
ness profile (p = 0.0011). And we further used a likelihood ratio test to con-
firm the significance of the eye within patient random effect (u;;) in the model
(p = 0.0005).
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4 Simulation

We carried out a simulation study to check the performance of our final model
and to investigate the importance of incorporating spatial correlation in the sta-
tistical imaging analyses. We simplified the two-level of nested random effect
(11) into a one-level random effect model with spatial exponential correlation.
Covariates were chosen based on statistical analyses results from the EDDMO
study, including nine locations from the ETDRS grid and a negatively continu-
ous correlated risk factor (e.g. age in EDDMO). Only two disease groups (e.g.
maculopathy group versus no-maculopathy group) were considered in the simu-
lation as we are interested the effect of the spatial correlation and the power of
our model rather than the clinical outcomes. The aim of our simulation study
was to establish how well the spatial approach is able to estimate the risk factor

Table 3. Simulation studies: scenario 1: no correlation between simulated outcomes

Spatial approach using linear mixed
effect without correlation

Non-spatial approach using
linear regression

Risk factor | Diagnosis for Risk factor | Diagnosis for
main effect main effect

True —0.3 6.1 True —0.3 6.1

n=200 |G B2 n=200 |G B2

Estimates | —0.2997 6.1013 Estimates | —0.2999 6.1015
SE 0.0012 0.1549 SE 0.0013 0.1548
SD 0.0013 0.1449 SD 0.0013 0.1448
CP 95.5% 96.5% CP 98.5% 95.5%

SE, mean of standard error estimates; SD, Monte Carlo standard deviation of the
estimates across the simulated data; CP, coverage probability for the estimates.

Table 4. Simulation studies: scenario 2: moderate exponential spatial correlation
between simulated outcomes (7. = 0.5)

Non-spatial approach using
linear regression

Spatial approach using linear
mixed effect without correlation

Risk factor | Diagnosis for Risk factor | Diagnosis for
main effect main effect

True —0.3 6.1 True —-0.3 6.1

n =200 061 B n =200 51 o

Estimates | —0.3001 6.0590 Estimates | —0.3000 6.0585
SE 0.0056 0.6927 SE 0.0083 0.6927
SD 0.0077 0.6563 SD 0.0077 0.6569
CP 84.0% 96.0% CP 96.6% 95.9%

SE, mean of standard error estimates; SD, Monte Carlo standard deviation of the
estimates across the simulated data; CP, coverage probability for the estimates.
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and to test the difference between the diagnosis group in terms of the main effect
and the shape effect.

Sample size were chosen as n =200 participants with one eye per individual
where 70% of the eyes does not have maculopathy and 30% of the eyes have
maculopathy. In order to investigate how the spatial correlation can change
the statistical inferences, we set three simulation scenarios in this section, one
without correlation, one with a moderate (y. = 0.5) and the other with a high
correlation (7. = 0.1) structure between different locations. All the simulation
results in this section are based on 1000 Monte Carlo replications. The simulation
results including the true parameter values, sample size, Monte Carlo standard
deviation, the mean of standard error estimates, the coverage probabilities for
the estimates and the power to detect the shape effect are reported in Tables 3,
4,5 and 6.

In scenario 1 where no correlation exists between simulated outcomes, our
spatial approach performed the same as the non-spatial approach in terms of
the estimates when the sample size equals 200 (Table3). The estimates were
practically unbiased, the Monte Carlo standard deviation agreed with the mean
of standard error estimates, and the coverage probability was around 95%, which
is reasonable.

Table 5. Simulation studies: scenario 3: high exponential spatial correlation between
simulated outcomes (v, = 0.1)

Non-spatial approach using
linear regression

Spatial approach using linear
mixed effect without correlation

Risk factor | Diagnosis for Risk factor | Diagnosis for
main effect main effect

True —-0.3 6.1 True —-0.3 6.1

n =200 5 [ n =200 o Ba

Estimates | —0.3000 6.1180 Estimates | —0.3002 6.1120
SE 0.0056 0.6918 SE 0.0138 0.6927
SD 0.0170 0.7043 SD 0.0111 0.7033
CP 57.2% 95.1% CP 94.9% 95.1%

SE, mean of standard error estimates;

estimates.

Table 6. Power of detecting the difference in shape between groups in spatial approach

and non-spatial approach (p < 0.01)

SD, Monte Carlo standard deviation
of the estimates across the simulated data; CP, coverage probability for the

Detection of shape
effect p < 0.01

Non-spatial approach
using linear regression

Spatial approach using
linear mixed effect

No correlation 100% 100%
Moderate correlation 88.1% 95.3%
High correlation 88.9% 100%
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For comparison, Tables4 and 5 present the results based on moderate expo-
nential correlation where 7. = 0.5, and a high exponential correlation where
Yo = 0.1. In Table4, we can see a lower coverage probability in the non-spatial
approach compared with our spatial approach. When higher spatial correlations
exist, the coverage probability for the estimates of 1 is much worse (Table5).
Using our spatial approach, the estimates of the parameters were practically
unbiased with a reasonable coverage probability both in a moderate correlation
setting and a high correlation setting. As expected, when there is no correlation
between the simulated data as reported in Table6, the spatial approach and
the non-spatial approach were the same in detecting the shape effect (i.e. the
interaction term). However, our spatial approach performed much better in the
other two correlation settings.

5 Discussion

Rather than analysing only the retinal thickness in central subfield (a Welch’s
test with winsorized variances was performed for retinal thickness between
groups in central subfield, p=0.38 > 0.05), we proposed here a nested linear
mixed effect model to analyse spatially related data, generated from a study of
DMO. We showed that this approach is capable of incorporating spatial correla-
tions in images and the correlation between two eyes from the same patient, and
we found differences in mean retinal thickness between no-maculopathy versus
maculopathy group. We also showed an exponential spatial correlation between
sectors provides the best model. Simulations demonstrated that our spatial app-
roach is able to provide more accurate inference on the risk factor and has the
ability to detect the main effect and shape effect between diagnostic groups. A
further interesting study would be early detection of diabetic retinopathy to dis-
criminate between healthy eyes from eyes with retinopathy but without DMO,
which would be useful for clinicians in planning early treatment for patients.

Our approach can be applied to further investigate the spatial context of
other features [8] in images with other retinal diseases such as diabetic retinopa-
thy and central vascular occlusion with the aim of developing a flexible anistropic
spatial dependency structures which can be adapted to other medical images.
Moreover, it would be useful to predict the disease occurrence and the time of
occurrence by extending our spatial modelling into spatio-temporal modelling
which incorporates longitudinal images [14].

6 Conclusion

Spatially collected data from retinal images presents both important opportu-
nities and challenges for understanding, detecting and diagnosing eye disease.
We extend the standard analytic approach into spatial methods that adjust for
spatial correlations between the image sectors and correlation between eyes from
the same patients. Our simulation results confirmed the advantage of the spatial
modelling to provide more powerful statistical inference: power increases from
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88.1% to 95.3%, 88.9% to 100% for moderate or high spatial correlations. In
the future, the spatial approach has the ability to extend the model into pre-
diction or prognosis (i.e. the predictive modelling) and develop personal clinical
management and monitoring tool.
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