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Abstract
Metalloproteinases remain important players in arthritic disease, in part
because members of this large enzymatic family, namely matrix
metalloproteinase-1 (MMP-1) and MMP-13, are responsible for the irreversible
degradation of articular cartilage collagen. Although direct inhibition of MMPs
fell out of vogue with the initial clinical disappointment of the first generation of
compounds, interest in other mechanisms that control these important
enzymes has always been maintained. Since these enzymes are critically
important for tissue homeostasis, their expression and activity are tightly
regulated at many levels, not just by direct inhibition by their endogenous
inhibitors the tissue inhibitors of metalloproteinases (TIMPs). Focussing on
MMP-13, we discuss recent work that highlights new discoveries in the
transcriptional regulation of this enzyme, from defined promoter functional
analysis to how more global technologies can provide insight into the enzyme’s
regulation, especially by epigenetic mechanisms, including non-coding RNAs.
In terms of protein regulation, we highlight recent findings into enzymatic
cascades involved in MMP-13 regulation and activation. Importantly, we
highlight a series of recent studies that describe how MMP-13 activity, and in
fact that of other metalloproteinases, is in part controlled by receptor-mediated
endocytosis. Together, these new discoveries provide a plethora of novel
regulatory mechanisms, besides direct inhibition, which with renewed vigour
could provide further therapeutic opportunities for regulating the activity of this
class of important enzymes.
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Introduction
Osteoarthritis (OA), affecting millions of people worldwide, 
is the most prevalent arthritic disease. The aetiology of the  
disease is complex and it has a number of risk factors but age  
predominates; in fact, in the UK, more than one in three adults 
over 45 years old have sought treatment for OA1. OA occurs 
in an insidious manner with distinct molecular pathways  
resulting in progressive cartilage loss, osteophyte formation, 
subchondral bone thickening and often a degree of synovial  
inflammation. There are currently no effective treatments which 
alter disease progression.

Although OA is a disease of the whole articulating joint, the  
proteolytic destruction of cartilage, especially of type II  
collagen, is a central and irreversible process that underpins 
OA. Cartilage is composed predominantly of type II collagen 
and the proteoglycan aggrecan. Collagen loss is particularly  
important because of its slow turnover, making this process  
essentially irreversible2. Collagens are defined by their unique 
triple-helical structure which limits their susceptibility to cleav-
age at a single site in the triple helix (PQG

775
↓

776
LAG) to a very  

specific group of proteinases3. With antibodies raised against 
the C-terminal neoepitopes generated by proteinase cleavage at 
this region, an increase in immuno-staining has been observed 
in aged cartilage and even more so in OA cartilage4–6. Along 
with this wealth of human data, recent strong evidence that this  
specific cleavage is essential in cartilage destruction comes from 
transgenic mice with mutated amino acids around the cleavage site 
in collagen (to PPG

775
↓

775
-MPG), which blocks proteolysis at the 

primary collagenase cleavage site. This mutation had no impact 
on normal collagen fibrillogenesis, but heterozygous collagen  
cleavage-resistant mice, when subjected to the surgically induced 
post-traumatic OA model, destabilisation of the medial menis-
cus (DMM), were highly protected7. In terms of the proteinases 
involved, it is well established that it is the matrix metallopro-
teinases (MMPs), especially the soluble collagenases MMP-1,  
MMP-8 and MMP-13, that are crucial for this destruction to 
occur, and prevailing dogma suggests that, in OA, MMP-13  
predominates3. Other MMPs such as MMP-2 and MMP-14 
have reported collagenolytic activity but their contribution to  
cartilage pathology is likely minor. MMP-3, MMP-9 and  
MMP-10 degrade other extracellular matrix (ECM) components 
but, in vivo, are unable to cleave native type II collagen. Again, 
the importance of MMP-13 in type II collagen cleavage is  
supported by the DMM-OA model when performed in  
Mmp13−/− mice. In this model, Mmp13−/− mice show less tibial 
cartilage erosion than do wild-type mice at 8 weeks post-
surgery8. Conversely, cartilage-restricted expression of a  
constitutively active MMP-13 in mice induces a joint pathology 
that strongly resembles OA9.

Mice deficient in MMP-13 are grossly indistinguishable from  
wild-type animals and have normal fecundity, and a normal  
lifespan and no overt phenotypic abnormalities10,11. However, 
when challenged, the mice do show increased collagen depo-
sition in the intima of aortic lesions12, whereas upon full- 
thickness cutaneous wounding, Mmp13−/− mice have delayed  
re-epithelialisation13. Together, these studies show that MMP-
13 has a role in atherosclerosis and would healing, highlighting 

a role for the enzyme beyond cartilage. In terms of skeletal  
development, histological analysis of developing Mmp13−/− 
animals shows an expanded growth plate, which is due to  
enlargement of the hypertrophic zone. The animals thus show 
a profound delay in development of the primary ossification  
centre, which begins to normalise after birth10,11. Interestingly, 
in skeletally mature animals, both the tibial and femoral growth  
plates of Mmp13−/− mice have focal regions of bony union,  
something unseen in wild-type littermates8. Many of the  
growth plate features of the Mmp13−/− mice are consistent with 
the human chondrodysplasia group metaphyseal anadysplasia 1  
(which includes Missouri-type spondyloepimetaphyseal  
dysplasia) and are caused by a mutation in MMP-13 and can 
improve spontaneously by early adolescence14–16.

Together, these observations highlight MMPs, and especially  
MMP-13, as critical players in cartilage collagen destruction. 
Moreover, MMP-13 can cleave a wealth of other matrix molecules, 
including type IV and IX collagen, perlecan, osteonectin and  
proteoglycans17. Given this, a large body of work and studies 
revolved around generating and testing chemical inhibitors of 
MMPs. However, selective targeting of MMPs, including the  
collagenases, represents a significant challenge as they exhibit 
a high degree of structural similarity across their active  
sites3,18. Indeed, owing to poor selectivity, many MMP inhibitors  
displayed off-target effects in clinical trials and had noticeable 
side effects, including joint arthralgia19. Thus, for a long period,  
MMP-13 inhibition has been out of vogue. However, recent  
developments are beginning to allow the prospect of selectively 
removing MMP-13 activity from OA cartilage, be it biologi-
cally, biochemically or genetically. In the following sections, we 
discuss recent publications characterising mechanisms of MMP  
regulation at these various levels and focus on MMP-13.

Regulation by MMP13 transcription
Evolution of MMP family members occurred via gene dupli-
cation predisposing commonalities in promoter sequence and  
regulation20. Many MMPs, especially those duplicated in the 
human chromosomal region 11q22, have well-defined promoter  
elements with a conserved TATA sequence at about -30 base 
pairs (bp) and an AP-1 binding site at about -70 bp21,22. MMP1 
and MMP13 also possess an ETS-domain transcription factor  
PEA3-binding site adjacent to the proximal AP-1 site21,22.  
Additional AP-1 sites are present in many MMP promoters.

For many years, it has been shown that numerous stimuli induce 
the expression of MMPs in cartilage, including pro-inflamma-
tory cytokines such as interleukin-1 (IL-1), IL-6, IL-17, and 
tumour necrosis factor alpha (TNFα) as well as pleiotropic 
cytokines such as oncostatin M (OSM) and growth factors23–27. 
Many of these cytokines and growth factors trigger intracellular 
signalling pathways, such as the extracellular signal–regulated 
kinase (ERK), Jun N-terminal kinase (JNK) and p38 mitogen- 
activated protein kinase (MAPK) pathways, causing expression 
and activation of AP-1 factors c-Jun and c-Fos and ETS  
transcription factor family members to directly induce MMP 
transcription28,29. Nuclear factor-kappa B (NF-κB) pathway  
activation of IκB releases p50(NF-κB1)/p65(RelA) to activate  
MMP gene expression28. However, even given this long-standing 
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knowledge, the mechanism by which these cytokines and tran-
scription factors directly impact on MMP expression has proven  
to be somewhat elusive.

Recently, the binding of c-Fos to the MMP13 proximal pro-
moter in articular chondrocytes was confirmed via chromatin 
immunoprecipitation (ChIP), but only transiently at an early 
time point (1 hour), inconsistent with the later MMP13 induction  
(6–24 hours)30. Instead, c-Fos was proposed to mediate induc-
tion of ATF3, which itself goes on to bind to the MMP13 proxi-
mal AP-1 site to regulate the gene30. In a subsequent study,  
Baker et al. describe how IL-1, combined with OSM, acts via 
protein kinase D3 (PKD3), downstream of protein kinase C  
(PKC) signalling, to regulate ATF3 expression and therefore  
MMP1 and MMP13 expression in chondrocytes31.

Toll-like receptor (TLR) agonists such as RNA/DNA and matrix 
components or fibronectin fragments also induce MMP expres-
sion through activation of MAPK and NF-κB pathways32–34. 
Previously, protein kinase R (PKR), which is activated by 
dsRNA, had been implicated in cytokine-mediated gene expres-
sion in chondrocytes35. Ma et al. now show that TNFα-induced  
phosphorylation of PKC is dependent on PKR which subse-
quently activates NADPH oxidase generation of reactive oxygen 
species and the ERK and NF-κB signalling pathways36. This  
ERK pathway activation also prevented the peroxisome prolif-
erator-activated receptor gamma (PPARγ)-mediated inhibition 
of MMP13, which has previously been described37. It remains  
unclear how TNFα activates PKR in chondrocytes, but  
interactions between TNF receptor-associated factor (TRAF) and 
PKR are known38. Separately, Ma et al. showed that advanced 
glycation products cause suppression of PPARγ levels to  
upregulate MMP13 expression36.

The IL-1 induction of MMP13 expression is also partially  
dependent on zinc transporter Zip8-mediated zinc influx39.  
Increased zinc induces MMP13 expression, and expression of 
other MMPs, mediated to some extent by Mtf1 although other 
transcription factors are also activated39. Mtf1 overexpression  
is able to induce MMP13 expression, but no direct interac-
tion with the MMP13 promoter was explored39. Stress-inducible 
nuclear protein 1 (Nupr1) was also recently implicated in the 
IL-1 induction of MMP-13 expression40. Elsewhere, Nupr1 was  
identified in combination with c-Jun at the MMP13 promoter41.

During endochondral ossification, MMP-13 expression is tightly 
restricted to chondrocytes of the lower zone of hypertrophic  
cartilage which also express type X collagen42. Examining 
what processes contribute to the hypertrophy of chondrocytes  
characteristic of OA, Bianchi et al. demonstrate that FGF23, 
which is upregulated in human OA cartilage, induces expression 
of MMP13 in chondrocytes via FGF receptor 143. α-Klotho 
acts as a co-receptor for FGF23 but was not required in this  
context; however, Chuchana et al. determined that treat-
ment of human chondrocytes with recombinant α-Klotho or  
α-Klotho–targeting small interfering RNA (siRNA) suppressed 
or induced MMP13 expression, respectively44. The mechanism 
was not examined, but elsewhere α-Klotho is reported to disrupt  
signalling pathways, including Wnt, transforming growth  

factor-beta (TGF-β) and insulin-like growth factor (IGF)44,45. The  
authors suggest a chondroprotective role for α-Klotho in OA, 
although more detailed in vivo experiments are needed44. Notch 
signalling plays a key role in skeletal development where it can 
regulate chondrocyte differentiation46. Notch may also play a 
role in OA development, and Sugita et al. showed that Hes1, a  
transcription factor and important target of Notch signalling, can 
directly induce MMP13 expression via binding to a regulatory  
element within intron 4 of the gene47.

Genomic enhancer regions can function across large distances 
and are emerging as key elements for transcriptional regulation  
in skeletal biology and development48. Gene expression is 
directed by the interplay of different enhancers and tissue- 
specific promoter elements, such as the osteoblast-specific  
element upstream of MMP13 transcription start site21. Previ-
ously, AP-1 ChIP-sequencing (ChIP-seq) identified a -20 κB 
IL-1–responsive enhancer regulating MMP13 expression in 
chondrocytes49. More recently, Meyer et al. used ChIP-seq to  
identify -10 κB and -30 κB upstream transcription factor  
binding enhancer sites required for vitamin D receptor and 
basal MMP13 expression, respectively, in osteoblasts50,51. Large  
consortia projects such as ENCODE and Roadmap have  
characterised the genomic landscape to identify the whereabouts 
of histone modifications and transcription factors in numerous 
cell types52. Until recently, the chondrocyte landscape remained 
unexplored, but Liu et al. now present ATAC-seq (assay for  
transposase-accessible chromatin using sequencing) mapping 
of accessible chromatin regions in chondrocytes53. From the  
reported data, transcription factor binding sites inferred by  
accessibility for MMP1 and MMP13 include C/EBP:AP-1, 
STAT3/4, NF1 and Fra153. These intriguing findings now require 
experimental validation.

Countering the induction of MMPs, anabolic growth factors  
such as TGF-β, IGF1, interferon gamma (IFNγ) and retinoic  
acid can repress the expression of MMP13, often by repression  
of intermediate transcription factor induction or activation or 
by direct competition for binding sites with AP-128,54,55. Santoro  
et al. recently showed that treatment of cells with recombinant 
serine proteinase inhibitor SERPINE2 (protease nexin-1) also  
inhibits IL-1–induced expression of MMP-13 as well as ERK 
and NF-κB pathway activation and c-Jun levels, although the  
mechanism of the SERPINE2 effect was not explored56.

Mechanical loading of cartilage in the form of compression,  
tension and shear also regulates MMP expression57. Overload-
ing causes upregulation of MMPs and cartilage degradation, 
whereas moderate physiological levels of loading on cartilage  
are considered critical for maintaining cartilage integrity58. 
In fact, moderate compression appears to repress MMP1 and  
MMP13 expression by upregulating mechanosensitive transcrip-
tional co-regulatory CITED259, the activation of which occurs 
via the primary cilia and subsequent ERK MAPK pathway  
activation60. However, the beneficial effect of physiological 
loading on cartilage may be mediated more by upregulating  
anabolic activity, as an assessment of the literature by Bleuel  
et al. implies that there is little downregulation of proteases under 
any loading conditions57.
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The role of epigenetic mechanisms, including histone modi-
fications and DNA methylation, in MMP expression is well  
documented61. Histone deacetylase (HDAC) inhibitors regulate 
both basal and cytokine-induced MMP expression, in general  
repressing the cytokine-induced expression of MMP1 and 
MMP1362,63. Previously, the class III HDAC SIRT1 has been 
demonstrated to promote cartilage anabolism and enhance  
chondrocyte survival in vitro and in vivo. Elayyan et al. extended 
their previous studies by examining the role of SIRT1 in catabolic 
chondrocyte gene expression64. IL-1 activated Wnt signalling 
and induced LEF1 levels to upregulate MMP13, processes 
that are counteracted by SIRT1 which directly represses LEF1  
expression, although the mechanism remains elusive64. GDF5  
plays a key role in joint development, and the GDF5 locus  
harbours polymorphisms associated with OA but its function 
in cartilage homeostasis is less well known65,66. Enochson et al. 
demonstrated that GDF5 also represses MMP13 expression in  
human articular chondrocyte pellets by inhibiting canonical 
Wnt signalling via DKK1 upregulation67. However, Ratnayake 
et al. were unable to identify a consistent MMP1 or MMP13 
response to GDF5 treatment in monolayer or micromass  
chondrocytes68.

DNA methylation at MMP13 proximal promoter CpGs 
has previously been shown to interfere with the binding of  
transcription factors CREB and HIF2α, thereby regulating 
gene expression69,70. RUNX2 is also able to trans-activate the  
MMP13 promoter, and Takahashi et al. reported that the  
upregulation of RUNX2 in OA correlated with reduced pro-
moter methylation, and they further confirmed a loss of meth-
ylation at numerous MMP13 proximal promoter CpGs—in line 
with the upregulation of MMP13 during OA71. DNA methylation 
arrays assessing changes in OA compared with undamaged or  
healthy control tissue have identified differentially methyl-
ated CpGs at both MMP13 and MMP1 loci72,73, although the  
functional consequences of these require testing.

MicroRNAs (miRNAs) post-transcriptionally regulate gene  
expression, and numerous miRNAs have postulated roles in  
skeletal biology and regulation of chondrocyte function74. 
MMP13 has a relatively short 3′ untranslated region (3′-UTR) 
with few predicted miRNA binding sites75. However, a number 
of miRNA interactions have been experimentally validated  
in vitro, including for miRNAs 27b-3p, 125b-5p and 140-5p76.  
Liang et al. also suggested that miR-140 targets MMP-13 as 
a result of 17-β-estradiol (E2) stimulation increasing miR- 
140-5p77. Liu et al. demonstrated that miR-136 might also tar-
get the MMP-13 3′-UTR in competition with a potential sponge  
circular RNA, circRNA-CER, although more evidence of these 
interactions is needed78. In a more detailed study, Meng et al.  
reported that miR-320 is regulated by IL-1 signalling and  
represses MMP13 expression directly79. Consistent with pre-
vious studies, miR-320 is also upregulated during chondro-
genesis which might contribute to the suppression of MMP13  
expression79. Two long non-coding RNAs—lncRNA-CIR 
(RP11-162L10.1) and GAS5—have also recently been shown 
to regulate the expression level of MMP13, although again  
further work is necessary to establish their mechanisms of  
action80,81.

Recent advances in MMP-13 protein regulation and 
inhibition
The MMP-13 protein is 54 kDa in size and has catalytic, linker 
and haemopexin domains. As described above, MMP-13 is one  
of only three soluble MMPs capable of triple-helical collagen 
cleavage with a strong preference for type II collagen82, although 
the mechanism by which this happens is not yet fully eluci-
dated. In recent years, crystal structures have revealed the mode 
of binding for the related collagenase, MMP-183,84, and the 
catalytic and haemopexin domain play essential roles in the  
interaction. Furthermore, novel exosites on MMP-13 which have  
provided insight into the mode of collagen binding have now been  
identified85.

Regulation of MMP-13 at the protein level is multifaceted and 
includes activation, endocytosis and inhibition. The activation 
of proMMPs is of central importance in effecting cartilage  
degradation86–89. An exciting field of research seeks to distin-
guish MMP-13 activity from total protein by using specific  
activity-based probes. Such probes can detect MMP-13  
activity in mice that have undergone DMM surgery and could 
provide a useful tool for detecting early changes in OA prior to  
significant histological damage90,91.

Identifying novel physiological activators of MMP-13 should be 
an important area of research, and the likely importance of serine  
proteinases in these processes was recently reviewed92. MMP-13 
can be activated directly by plasmin93, and although this pro-
teinase is not expressed by chondrocytes94, diffusion from 
the synovium should not be discounted. In vivo activators 
of MMP-13 may include other MMPs such as MMP-3 or  
MMP-1482,95. Indeed, the membrane-anchored serine protein-
ases matriptase and hepsin can both induce collagen release from 
human OA cartilage and, although neither can directly activate  
MMP-13, both are potent activators of MMP-394,96 and thus 
indirectly MMP-13. Jackson et al. demonstrated an increase in  
MMP-13 activity in cultures treated with activated protein C, 
although the authors suggested that this likely acts through an  
intermediary within OA cartilage matrix97.

The major endogenous inhibitors for metalloproteinases are the 
tissue inhibitors of metalloproteases (TIMPs). Four members 
are expressed in human tissues (TIMP1–4), and each exhib-
its a two-domain structure: an N-terminal domain containing a  
‘wedge-shaped’ ridge which binds to the metalloproteinase 
active site and a C-terminal domain which interacts with the  
haemopexin domain98. TIMP-3 in particular has been ascribed 
a chondroprotective role in cartilage, and aged mice deficient in 
this inhibitor exhibit increased cartilage collagen destruction99.  
TIMPs can be structurally engineered, and Lim et al. generated 
mutants of TIMP-3 which selectively inhibit a disintegrin and  
metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) 
and ADAMTS-5100. This may represent a strategy to harness 
the natural potency of TIMPs whilst improving selectivity for  
particular metalloproteinases.

In recent years, our understanding of the importance of  
endocytosis in regulating cartilage metalloproteinase levels has 
grown significantly. Low-density lipoprotein-related protein-1 
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(LRP-1) functions as an endocytic receptor, which has been 
shown to have a significant effect on the levels of metallopro-
teinases and their inhibitors in cartilage. Indeed, ADAMTS-5,  
ADAMTS-4, TIMP-3 and MMP-13 are endocytosed by LRP-1 
in chondrocytes101–105. Interestingly, MMP-13 bound LRP-1 
via its haemopexin domain at a site distinct to ADAMTS-5,  
ADAMTS-4 and TIMP3, which permits co-endocytosis with 
these proteins101. Intriguingly, proMMP-13 and active MMP-13  
bound to LRP-1 with similar dissociation constants. These data  
suggest that selected metalloproteinases, including MMP-13, 
are constitutively produced by chondrocytes but their rapid  
endocytosis by LRP-1 may explain why they are difficult to 
detect in healthy adult tissue101. LRP-1 shedding is increased in  
OA103, a process which involves ADAM17 and MMP-14104,  
inhibition of which may represent a novel targeting strategy to 
reduce proteinase levels (such as those of MMP-13) in cartilage. 
Interestingly, a different therapeutic strategy involves reducing 
TIMP-3 binding to LRP-1, thereby increasing its level in the 
ECM. TIMP-3 mutants engineered to resist endocytosis have  
prolonged chondroprotective activity106, and the chemical  
suramin, which binds to TIMP-3 and reduces its capacity to be 
endocytosed, has chondroprotective effects107.

As mentioned, selective MMP inhibition is a challenge due to 
the significant overlap of active site structural architecture. In 
the 1990s, a flurry of activity led to the development of MMP  
inhibitors for the treatment of cancer metastasis, which  
ultimately failed because of the broad range of MMPs which 
they targeted92. In fact, it is now recognised that a significant  
number of MMPs are considered ‘anti-targets’19 which must be 
avoided. The central importance of MMP-13 in the irreversible 
destruction of cartilage collagen means that it remains an 
attractive target for the treatment of OA, and new waves of  
inhibitors demonstrate remarkably improved selectivity when  
compared with the initial failed compounds. Indeed, many make 
use of the unusually large S1′ pocket in the MMP-13 active site,  
which is distinct amongst the MMPs. The latest advances and 
approaches in MMP-13 medicinal chemistry were recently  
reviewed elsewhere108. Of course, even very specific inhibitors 
could have adverse effects because MMP-13 has functions  
outside of cartilage (for instance, during wound healing)13.

Other methods outside of traditional small-molecule inhibition 
have also been explored. An interesting study by Naito et al.  
demonstrated the development of a novel MMP-13 neutralis-
ing antibody, which selectively binds the active MMP-13 and is 
highly selective over other MMPs109. Antibody technology is an 
effective method to selectively target MMP-13 and reduce off- 
target effects against other MMPs. Although antibody thera-
peutics have disadvantages over conventional small-molecule 
inhibitors (such as limited administration routes, difficulties pen-
etrating cartilage, and expense), they have proven successful for 
the treatment of rheumatoid arthritis and are being explored for 
other targets in OA110. We hypothesise that there is likely to be  
significant research in this area with respect to MMP-13 in the  
coming years.

Conclusions and future directions
In our view, MMPs, and especially the collagenases, are  
tractable targets for preventing cartilage destruction in OA. 
Although the initial wave of MMP inhibitors failed in the  
clinic, there does appear to be renewed interest both in terms of 
direct inhibition but also in targeting mechanisms of regulation 
as a therapeutic target, be it via activation or gene expression  
mechanisms. Here, we have summarised recent work examining 
such regulatory mechanisms and focussed on transcriptional and 
post-translational MMP-13 regulation.

In terms of gene regulation, we expect new discoveries on the 
mechanism of MMP regulation to be aided by the improvement 
and application of both genome-wide and single-cell technolo-
gies. Our current understanding of the role of DNA methylation 
in MMP-13 regulation, for example, has been limited either by  
the use of low-throughput technologies (such as pyrosequencing) to  
examine short genomic regions or by the limited presence of  
MMP-13 locus probes on current array-based systems. Whole 
genome methylation analysis will facilitate much better cover-
age of the MMP genomic locus, hopefully identifying  important 
regulatory regions in disease. Similarly, our knowledge of the  
chromatin status of chondrocytes has largely been imputed 
from other cells and tissues, based on data from large-scale  
consortia. ChIP-seq and ATAC-seq data from chondrocytes will 
likely provide insight into identifying key regulatory genomic 
features, and systematic genomic editing (using, for example, 
CRISPR/Cas9) will be needed to characterise the importance 
of these regions. Deactivated Cas9-fusion proteins are also  
proving invaluable in confirming the gene regulatory function 
of genomic loci. As with all regulatory networks, these com-
plex datasets will require integrated bioinformatics tools to fully  
delineate the mechanisms involved in MMP regulation and 
such a systems approach is beginning to identify underlying 
mechanisms involved in age-related changes in musculoskeletal  
tissues111. Interestingly, examining correlative gene expression 
programmes may also lead to further understanding of gene 
regulatory networks; with this in mind, SkeletalVis provides 
an accessible data portal for comparing cross-species skeletal  
transcriptomics data112.

Post-translational regulation of MMP-13 may also represent an 
attractive approach. Identifying crucial activators of MMP-13  
(or indeed other MMPs upstream of MMP-13) is important, as  
such proteinases may represent a novel and indirect method to  
limit collagen degradation. Proteinases do not act in isolation  
but rather are the culmination of complex proteolytic cascades, 
of which MMP-13 is the final effector. The evolving field of  
‘degradomics’ will likely prove essential for the deconvolu-
tion of such cascades and lead to the identification of novel 
proteinases or indeed new substrates for previously well-
described proteinases. The importance of endocytosis is also 
becoming clear. Catabolic metalloproteinases (including  
MMP-13) which are not removed efficiently from the extra-
cellular milieu by endocytic mechanisms are damaging, and  
efforts to ‘boost’ these mechanisms represent an interesting 
approach to reduce the proteolytic burden on cartilage.

Page 6 of 11

F1000Research 2019, 8(F1000 Faculty Rev):195 Last updated: 18 FEB 2019



MMP-13 expression and function are not limited solely to  
cartilage; thus, systemic delivery mechanisms to regulate  
MMP-13 activity, even with very specific inhibitors, may still 
elicit adverse effects. One intriguing possibility is delivery of  
anti-inflammatory or immunomodulatory compounds linked 
to other moieties that are released upon MMP-mediated  
cleavage113. For example, Vessillier et al. used immunomodula-
tory peptides fused via an MMP cleavage site to the latency- 
associated peptide of TGF-β1 to limit inflammation in the  
collagen-induced arthritis model114. This system elegantly uses 
pathologically active MMPs as the release mechanism, selec-
tively targeting the biologically active compound to the required 
tissue, thus theoretically allowing systemic delivery. Interest 
also remains in intra-articular injection as a delivery route for  
disease-modifying OA treatments but this has a number of short-
comings mainly pertaining to inadequate drug delivery because 
of the biochemical nature of cartilage115. However, improvements 
in intra-articular delivery have been reported with the advent 
of nanoparticles or nanocarriers. For example, nanoparticle- 
based intra-articular delivery of siRNA against NF-κB (p65 
and p100) was non-immunogenic and cartilage-penetrant and  
reduced chondrocyte death following a non-invasive murine  

model of joint injury116. Similarly, a single intra-articular  
injection an IGF1-conjugated nanocarrier reduced cell and 
aggrecan loss in a rat surgical model of OA117. Thus, a range of  
options are emerging to effectively target cartilage-derived 
MMP-13 activity specifically. Finally, although this review has  
focussed specifically on cartilage and mainly on MMP-13, many 
of the advancements are applicable to the large repertoire of  
metalloproteinases and the many development and disease- 
related pathways in which they play a role118.
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