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1. Introduction

We begin our statement with the consideration of a simple one dimensional deterministic
time delay linear differential equation in R,{

dy(t) = αy(t)dt+ βy(t− r)dt, t ≥ 0,

y(0) = φ0, y(θ) = φ1(θ), θ ∈ [−r, 0], (φ0, φ1) ∈ R× L2([−r, 0];R),
(1.1)

where α, β ∈ R and r ≥ 0. From Bátkai and Piazzera [1], it is known that under the
condition α + β < 0, there exists a number r0 > 0 such that the null solution of (1.1) is
exponentially stable for all r ∈ [0, r0), while for r > r0, the null solution is exponentially
unstable. That is, the exponential stability of (1.1) is not sensitive to small delays in this
situation.

Now we consider a similar problem for stochastic systems. More precisely, let us study a
stochastic version of (1.1) in the following form{

dy(t) = αy(t)dt+ βy(t− r)dt+ σy(t)dw(t), t ≥ 0,

y(0) = φ0, y(θ) = φ1(θ), θ ∈ [−r, 0], (φ0, φ1) ∈ R× L2([−r, 0];R),
(1.2)

where r ≥ 0, α, β, σ ∈ R and w(t), t ≥ 0, is a standard real Brownian motion. If r = 0,
it is a well known fact that if α + β < σ2/2, then the null solution of (1.2) is exponentially
stable in the almost sure sense, i.e., the Lyapunov exponent of (1.2) satisfies

lim sup
t→∞

log |y(t)|
t

= α + β − σ2

2
< 0 a.s.

In addition to the condition α + β < σ2/2, it was shown by Bierkens [2] that the null
solution of (1.2) is exponentially stable in the almost sure sense if the delay parameter r > 0
is sufficiently small. Also, Appleby and Mao [3] obtained some similar results for some
nonlinear stochastic systems.

When we turn to consider an infinite dimensional system, the situation becomes com-
plicated. It was observed by Datko et al. [4] that small delays may destroy stability for a
partial differential equation. On the other hand, it is noticed that if some natural conditions
are imposed, a similar result to those as above in finite dimensional spaces could be true.
To state this, let us denote by L (X, Y ) the space of all bounded, linear operators from X
into Y where X and Y are arbitrary Banach spaces with their respective norms ‖ · ‖X and
‖ · ‖Y . If X = Y , we simply write L (X) for L (X,X). Consider the following deterministic
differential equation in a Hilbert space H,{

dy(t) = Ay(t)dt+ A0y(t− r)dt, t ≥ 0,

y(0) = φ0 ∈ H, y(θ) = φ1(θ), θ ∈ [−r, 0], φ1 ∈ L2([−r, 0];H),
(1.3)

where A generates a C0-semigroup etA, t ≥ 0, on H and A0 ∈ L (H). It was shown in
Theorem 7.5, [1] that if etA, t ≥ 0, is a norm continuous C0-semigroup, i.e., the mapping
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t → etA is continuous from (0,∞) to L (H), and the C0-semigroup generated by A + A0

is exponentially stable, then there exists r0 > 0 such that the null solution of (1.3) is
exponentially stable for all r ∈ [0, r0). In other words, the exponential stability property
is not sensitive to small delays in this situation. In particular, consider a linear partial
differential equation in H = L2(0, π),

dy(t, ξ) =
∂2

∂ξ2
y(t, ξ)dt+ αy(t− r, ξ)dt, t ≥ 0, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, t ≥ 0, y(0, ·) = φ0(·) ∈ L2(0, π),

y(θ) = φ1(θ) ∈ L2([−r, 0];L2(0, π)),

(1.4)

where r ≥ 0 and α ∈ R. Let A = ∂2/∂ξ2, which generates a norm continuous C0-semigroup
on H and A0 = αI, where I is the identity operator on H. If r = 0, it is well known that
when α < 1, the trivial solution of (1.4) is exponentially stable. If r 6= 0 and α < 1, we have
as above that the trivial solution of (1.4) is exponentially stable when r ∈ (0, r0) for some
r0 > 0.

We turn our attention to stochastic systems and consider their sensitivity problem of
exponential stability to small delays. As a motivation example, let r ≥ 0 and consider a
stochastic version of the delay partial differential equation (1.4),

dy(t, ξ) =
∂2

∂ξ2
y(t, ξ)dt+ αy(t− r, ξ)dt+ σ

∫ 0

−r
y(t+ θ, ξ)dθdw(t), t ≥ 0, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, t ≥ 0, y(0) = φ0 ∈ L2(0, π),

y0(·) = φ1(·) ∈ L2([−r, 0];L2(0, π)),

(1.5)
where α, σ ∈ R and w is a standard real Brownian motion. If r > 0, it was shown in [5] that
under the condition α − 1 < σ2/2, the pathwise exponential stability of the trivial solution
to (1.5) is not sensitive to small delays r > 0.

Now let us consider a time delay version of (1.5) of neutral type in the following form

d(y(t, ξ)− γy(t− r, ξ)) =
∂2

∂ξ2
(y(t, ξ)− γy(t− r, ξ))dt

+σ

∫ 0

−r
y(t+ θ, ξ)dθdw(t), t ≥ 0, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, t ≥ 0, y(0) = φ0 ∈ L2(0, π),

y0(·) = φ1(·) ∈ L2([−r, 0];L2(0, π)),

(1.6)

where γ ∈ R. In comparison with (1.5), the novelty of system (1.6) is that a delay term
appears under the differentiation and the second order derivative, i.e., Laplacian, operator
of (1.6) on one hand, and a time delay appears in the diffusion term on the other. Here we
want to know whether, in addition to some natural conditions on σ, γ, the trivial solution
of equation (1.6) can still secure its exponential stability, at least for sufficiently small delay
parameter r > 0. In [6], the answer was shown to be affirmative for the pathwise exponential
stability for a similar system to (1.6).
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In this work, we shall consider the sensitivity problem to small delays of exponential
stability in the mean square sense for such stochastic neutral functional differential equa-
tions as (1.6). The organization of this work is as follows. In Section 2, we first develop a
C0-semigroup theory of functional differential equations, which enables us to lift up stochas-
tic time delay systems into non time delay ones in the subsequent section. To justify the
stochastic stability for our systems, it is important to know when the associated “lift-up”
solution semigroups are exponentially stable. To this end, we distinguish in Section 3 be-
tween two kinds of the most popular delays, i.e., distributed and point delays, and treat
the corresponding systems separately. Last, we apply the results established in this work to
various examples to illustrate our theory.

2. Deterministic Neutral Systems

In the sequel, we shall focus on a class of norm continuous semigroups etA, t ≥ 0,
formulated by a variational approach. Precisely, let V be a separable Hilbert space and
a : V × V → R a bilinear form satisfying the so-called G̊arding’s inequalities

|a(x, y)| ≤ β‖x‖V ‖y‖V , a(x, x) ≤ −α‖x‖2V , ∀x, y ∈ V, (2.1)

for some constants β > 0, α > 0. In association with the form a(·, ·), let A be a linear
operator defined by

a(x, y) = 〈x,Ay〉V,V ∗ , x, y ∈ V, (2.2)

where V ∗ is the dual space of V and 〈·, ·〉V,V ∗ is the dual pairing between V and V ∗. Then
A ∈ L (V, V ∗). Moreover, it can be shown (see, e.g., [9]) that A generates a bounded,
analytic semigroup etA, t ≥ 0, on V ∗ such that etA : V ∗ → V for each t > 0 and for some
constant M > 0,

‖etA‖L (V ∗) ≤M for all t ≥ 0.

We also introduce the standard interpolation Hilbert space H = (V, V ∗)1/2,2, which is de-
scribed by

H =
{
x ∈ V ∗ :

∫ ∞
0

‖AetAx‖2V ∗dt <∞
}

with inner product

〈x, y〉H = 〈x, y〉V ∗ +

∫ ∞
0

〈AetAx,AetAy〉V ∗dt, x, y ∈ V ∗.

We identity the dual H∗ of H with H, then it is easy to see that

V ↪→ H = H∗ ↪→ V ∗ (2.3)

where the imbedding ↪→ is dense and continuous with

‖x‖2H ≤ ν‖x‖2V , ∀x ∈ V for some constant ν > 0. (2.4)
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Hence, 〈x,Ay〉H = 〈x,Ay〉V,V ∗ for all x ∈ V and y ∈ V with Ay ∈ H. Moreover, for any
T ≥ 0 it is well known that

L2([0, T ], V ) ∩W 1,2([0, T ], V ∗) ⊂ C([0, T ], H)

where W 1,2([0, T ], V ∗) is the Sobolev space consisting of all functions y : [0, T ] → V ∗ such
that y and its first order distributional derivative are in L2([0, T ], V ∗) and C([0, T ], H) is the
space of all continuous functions from [0, T ] into H, respectively.

Let r > 0 and T ≥ 0. For x ∈ L2([−r, T ], V ), we always write xt(θ) := x(t + θ) for any
t ≥ 0 and θ ∈ [−r, 0] in this work. Suppose that D1 ∈ L (V ), D2 ∈ L (L2([−r, 0], V ), V ),
F1 ∈ L (V, V ∗) and F2 ∈ L (L2([−r, 0], V ), V ∗). We introduce two linear mappings D and F
on C([−r, T ], V ), respectively, by

Dxt = D1x(t− r) +D2xt, t ∈ [0, T ], ∀x(·) ∈ C([−r, T ], V ),

and
Fxt = F1x(t− r) + F2xt, t ∈ [0, T ], ∀x(·) ∈ C([−r, T ], V ).

Both the mappings D and F have a bounded, linear extension to L2([−r, T ], V ) such that
for any x ∈ L2([−r, T ], V ),∫ T

0

‖Dxt‖2V dt ≤ C1

∫ T

−r
‖x(t)‖2V dt, C1 > 0, (2.5)

and ∫ T

0

‖Fxt‖2V ∗dt ≤ C2

∫ T

−r
‖x(t)‖2V dt, C2 > 0. (2.6)

LetH = H×L2([−r, 0], V ) and consider the following deterministic functional differential
equation of neutral type in V ∗,{

d(x(t)−Dxt) = A(x(t)−Dxt)dt+ Fxtdt, t ≥ 0,

x0 = φ1, φ = (φ0, φ1) ∈ H,
(2.7)

or its integral form x(t)−Dxt = etAφ0 +

∫ t

0

e(t−s)AFxsds, t ≥ 0,

x0 = φ1, φ = (φ0, φ1) ∈ H.
(2.8)

It is known (see [8]) that there is a unique solution x of (2.8) in [0, T ] such that

x ∈ L2([0, T ], V ) ∩W 1,2([0, T ], V ∗)

and the equation (2.8) is satisfied almost everywhere in [0, T ], T ≥ 0.
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Let x(t), t ≥ −r, denote the unique solution of system (2.8) with x0 = φ1, φ = (φ0, φ1) ∈
H. We define a family of operators S(t) : H → H, t ≥ 0, by

S(t)φ = (x(t)−Dxt, xt) for any φ ∈ H. (2.9)

The family t → S(t) is a strongly continuous semigroup on H. Moreover, we have (see [8])
the following result which completely describes the generator A of semigroup S(t) or etA,
t ≥ 0.

Theorem 2.1. The generator A of the strongly continuous semigroup S(t), t ≥ 0, is given
by

D(A) =
{

(φ0, φ1) ∈ H : φ1 ∈ W 1,2([−r, 0], V ), φ0 = φ1(0)−Dφ1 ∈ V, Aφ0 + Fφ1 ∈ H
}

and for each φ = (φ0, φ1) ∈ D(A),

Aφ = (Aφ0 + Fφ1, φ
′
1) ∈ H.

3. Stochastic Neutral Differential Equations

In this work, we are concerned about a class of infinite dimensional stochastic systems,
especially stochastic functional differential equations of neutral type. To this end, assume
that {Ω,F ,P} is a complete probability space equipped with some filtration {Ft}t≥0 and
K is a separable Hilbert space with the inner product 〈·, ·〉K . Let WQ(t), t ≥ 0, denote an
{Ft}t≥0-adapted, Q-Wiener process in K, defined on {Ω,F ,P} with covariance operator Q
satisfying that

E〈WQ(t), u〉K〈WQ(s), v〉K = (t ∧ s)〈Q(u), v〉K for all u, v ∈ K, (3.1)

where Q is a positive, self-adjoint and trace class operator on K. We introduce the subspace
KQ = Ran(Q1/2), the range of Q1/2, of K and let L2 = L2(KQ, H) denote the space of all
Hilbert-Schmidt operators from KQ into H.

To proceed further, we split this section into two parts. The first part concentrates on
the distributed delay case and the other concentrates on the point delay one.

3.1. Distributed Delays under Neutral Terms

Let A be a linear operator given as in (2.2). Consider the following retarded differential
equation of neutral type in space V ∗,

d
(
y(t)−

∫ 0

−r
G1(θ)y(t+ θ)dθ

)
= A

(
y(t)−

∫ 0

−r
G1(θ)y(t+ θ)dθ

)
dt

+

∫ 0

−r
A1(θ)y(t+ θ)dθdt+By(t)dWQ(t), t ≥ 0,

y(0) = φ0, y(θ) = φ1(θ), θ ∈ [−r, 0], (φ0, φ1) ∈ H = H × L2([−r, 0];V ),

(3.2)
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where G1(·) ∈ L2([−r, 0]; L (V )), A1(·) ∈ L2([−r, 0]; L (V, V ∗)), B ∈ L (H,L2) and WQ(·)
is a Q-Wiener process satisfying (3.1).

In association with (3.2), it is immediate by Theorem 2.1 that

Aφ =
(
Aφ0 +

∫ 0

−r
A1(θ)φ1(θ)dθ,

dφ1(θ)

dθ

)
, φ ∈ D(A),

and we further define a bounded, linear operator B : H → L2(KQ,H) by

Bφ(k) =
(
B
(
φ0 +

∫ 0

−r
G1(θ)φ1(θ)dθ

)
(k), 0

)
, φ ∈ H, k ∈ KQ.

By exploiting the standard lift-up method (see, e.g., Liu [8]), we can rewrite (3.2) as an
equivalent stochastic evolution equation without delay,{

dY (t) = AY (t)dt+ BY (t)dWQ(t), t ≥ 0,

Y (0) = φ ∈ H,
(3.3)

where

Y (t) =
(
y(t)−

∫ 0

−r
G1(θ)y(t+ θ)dθ, y(t+ ·)

)
, t ≥ 0

is the lift-up process of y(t), t ≥ −r. It can be easily shown that the stochastic exponential
stability of the null solution of (3.3) is equivalent to the corresponding exponential stability
of (3.2).

The following proposition which is taken from Theorem 2.2.2 in Liu [7] is important in
establishing the main results in this work.

Proposition 3.1. Suppose that Λ : D(Λ) ⊂ H → H generates a C0-semigroup etΛ, t ≥ 0,
on the Hilbert space H. For the linear stochastic evolution equation,{

dy(t) = Λy(t)dt+ Σy(t)dWQ(t), t ≥ 0,

y(t) = y0 ∈ H,
(3.4)

where Σ ∈ L (H,L2) and WQ(t), t ≥ 0, is a Q-Wiener process in K. If there exists a
constant γ > 0 such that

‖etΛ‖ ≤ e−γt, t ≥ 0, (3.5)

and ∥∥∥∫ ∞
0

etΛ
∗
∆(I)etΛdt

∥∥∥ < 1, t ≥ 0, (3.6)

then there exist positive constants M ≥ 1, µ > 0 such that

E‖y(t, t0)‖2 ≤M‖y0‖2e−µt, t ≥ 0,

where ∆(I) ∈ L (H) is the unique operator defined by the form

〈x,∆(I)y〉H := Tr{Σ(x)Q1/2(Σ(y)Q1/2)∗}, x, y ∈ H.

Here Tr{·} means the trace of operators.
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Now we are in a position to state one of the main results in this work.

Theorem 3.1. Suppose that 〈x,Ax〉V,V ∗ ≤ −α‖x‖2V for all x ∈ V and some constant α > 0.
Assume that the delay parameter r ∈ [0, 1] and for some 0 < λ < α,∫ 0

−r
e−2λν

−1θ
[
‖A1(θ)‖2 + 2(α−λ)2‖G1(θ)‖2 + 2(α−λ)‖A1(θ)‖‖G1(θ)‖

]
dθ < (α−λ)2, (3.7)

then we have the relation
‖etA‖ ≤ e−λν

−1t, t ≥ 0. (3.8)

Proof. We intend to find an equivalent inner product (·, ·)H to 〈·, ·〉H on H = H ×
L2([−r, 0];V ) such that

(Aφ, φ)H ≤ −λν−1‖φ‖H for all φ ∈ D(A).

To this end, define (·, ·)H by

(φ, ψ)H = 〈φ0, ψ0〉H +

∫ 0

−r
γ(θ)〈φ1(θ), ψ1(θ)〉V dθ, φ, ψ ∈ H,

where γ(·) is given by

γ(θ) = e2λν
−1θ

·
[
α− λ−

∫ 0

θ

e−2λν
−1τ
[
‖A1(τ)‖2 + 2(α− λ)2‖G1(τ)‖2 + 2(α− λ)‖A1(τ)‖‖G1(τ)‖

]
dτ

α− λ

]
,

θ ∈ [−r, 0].

From (3.7), it is immediate that γ(−r) > 0. Hence, it is easy to see that (·, ·)H satisfy all
the conditions of a valid inner product due to the fact that γ(θ) ≥ γ(−r) > 0 for θ ∈ [−r, 0].

Since 〈x,Ax〉V,V ∗ ≤ −α‖x‖2V for any x ∈ V , it follows for any φ ∈ D(A) that

(φ, (A+ λν−1)φ)H

=
〈
φ0, Aφ0 + λν−1φ0 +

∫ 0

−r
A1(θ)φ1(θ)dθ

〉
H

+

∫ 0

−r
γ(θ)〈φ1(θ), φ̇1(θ) + λν−1φ1(θ)〉V dθ

≤
〈
φ0, Aφ0 +

∫ 0

−r
A1(θ)φ1(θ)dθ

〉
V,V ∗

+

∫ 0

−r
γ(θ)〈φ1(θ), φ̇1(θ)〉V dθ

+ λ‖φ0‖2V + λν−1
∫ 0

−r
γ(θ)‖φ1(θ)‖2V dθ

≤ (λ− α)‖φ0‖2V + ‖φ0‖V
∫ 0

−r
‖A1(θ)‖ · ‖φ1(θ)‖V dθ +

1

2

∫ 0

−r
γ(θ)d‖φ1(θ)‖2V

+ λν−1
∫ 0

−r
γ(θ)‖φ1(θ)‖2V dθ.

(3.9)
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By using integration by parts, one can easily obtain for φ ∈ D(A) that

1

2

∫ 0

−r
γ(θ)d‖φ1(θ)‖2V

=
1

2
γ(0)‖φ1(0)‖2V −

1

2
γ(−r)‖φ1(−r)‖2V −

1

2

∫ 0

−r
‖φ1(θ)‖2V dγ(θ)

=
1

2
γ(0)‖φ1(0)‖2V −

1

2
γ(−r)‖φ1(−r)‖2V − λν−1

∫ 0

−r
‖φ1(θ)‖2V γ(θ)dθ

−

∫ 0

−r
‖φ1(θ)‖2V

[
‖A1(θ)‖2 + 2(α− λ)2‖G1(θ)‖2 + 2(α− λ)‖A1(θ)‖ · ‖G1(θ)‖

]
dθ

2(α− λ)
.

(3.10)

Substituting (3.10) into (3.9), we thus get for φ ∈ D(A) that

(φ, (A+ λν−1)φ)H

≤ (λ− α)‖φ0‖2V + ‖φ0‖V
∫ 0

−r
‖A1(θ)‖ · ‖φ1(θ)‖V dθ

+
1

2
(α− λ)

∥∥∥φ0 +

∫ 0

−r
G1(θ)φ1(θ)dθ

∥∥∥2
V
− 1

2
γ(−r)‖φ1(−r)‖2V

−

∫ 0

−r
‖φ1(θ)‖2V

[
‖A1(θ)‖2 + 2(α− λ)2‖G1(θ)‖2 + 2(α− λ)‖A1(θ)‖ · ‖G1(θ)‖

]
dθ

2(α− λ)
.

(3.11)

On the other hand, it is easy to see by the well-known Hölder’s inequality and assumption
r ∈ [0, 1] that∥∥∥φ0 +

∫ 0

−r
G1(θ)φ1(θ)dθ

∥∥∥2
V

≤ ‖φ0‖2V +
∥∥∥∫ 0

−r
G1(θ)φ1(θ)dθ

∥∥∥2
V

+ 2‖φ0‖V
∫ 0

−r
‖G1(θ)‖‖φ1(θ)‖V dθ

≤ ‖φ0‖2V +

∫ 0

−r
‖G1(θ)‖2‖φ1(θ)‖2V dθ + 2‖φ0‖V

∫ 0

−r
‖G1(θ)‖‖φ1(θ)‖V dθ.

(3.12)

By substituting (3.12) into (3.11), it follows immediately that

(φ, (A+ λν−1)φ)H

≤ −1

2
(α− λ)‖φ0‖2V + ‖φ0‖V

∫ 0

−r
‖φ1(θ)‖V

[
‖A1(θ)‖+ (α− λ)‖G1(θ)‖

]
dθ

−

∫ 0

−r
‖φ1(θ)‖2V

[
‖A1(θ)‖+ (α− λ)‖G1(θ)‖

]2
dθ

2(α− λ)
.

(3.13)

If ‖φ0‖V = 0, it follows from (3.13) that

(φ, (A+ λν−1)φ)H ≤ 0 for all φ ∈ D(A).
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If ‖φ0‖V 6= 0, we have from (3.13) and the assumption r ∈ [0, 1] that

(φ, (A+ λν−1)φ)H

≤ −‖φ0‖2V
2

∫ 0

−r

{(α− λ)

r
−

2‖φ1(θ)‖V
[
‖A1(θ)‖+ (α− λ)‖G1(θ)‖

]
‖φ0‖

+
‖φ1(θ)‖2V

[
‖A1(θ)‖+ (α− λ)‖G1(θ)‖

]2
(α− λ)‖φ0‖2V

}
dθ

≤ −‖φ0‖2V
2

∫ 0

−r

{
(α− λ)−

2‖φ1(θ)‖V
[
‖A1(θ)‖+ (α− λ)‖G1(θ)‖

]
‖φ0‖V

+
‖φ1(θ)‖2V

[
‖A1(θ)‖+ (α− λ)‖G1(θ)‖

]2
(α− λ)‖φ0‖2V

}
dθ

= − ‖φ0‖2V
2(α− λ)

∫ 0

−r

(
(α− λ)−

‖φ1(θ)‖V
[
‖A1(θ)‖+ (α− λ)‖G1(θ)‖

]
‖φ0‖V

)2

dθ

≤ 0.

(3.14)

Hence, we get the relation

(φ,Aφ)H ≤ −λν−1‖φ‖H for all φ ∈ D(A).

Further, it follows from Proposition 2.1.4 in Liu [5] that the C0-semigroup etA, t ≥ 0 is
exponentially stable.

Theorem 3.2. Suppose that all the conditions in Theorem 3.1 are satisfied and further
B ∈ L (H,L2(KQ, H)) in (3.2) with ‖B‖ := ‖B‖L (H,L2(KQ,H)). Assume that the following
relation holds:

λ >
‖B‖2ν

2

(
1 + ν

∫ 0

−r
‖G1(θ)‖2dθ

)
,

then the null solution of (3.2) is exponentially stable in the mean square sense.

Proof. From Theorem 3.1, we know that

‖etA‖ ≤ e−λν
−1t, t ≥ 0. (3.15)

That is, (3.5) is satisfied for the system (3.3). Let I denote the identity operator in H and
define a linear operator ∆(I) ∈ L (H) by the relation

〈φ,∆(I)φ〉H = Tr{B(φ)Q1/2(B(φ)Q1/2)∗}, φ ∈ H.

Then, by virtue of (3.15), we have∥∥∥∫ ∞
0

etA
∗
∆(I)etAdt

∥∥∥ ≤ ‖∆(I)‖
∫ ∞
0

‖etA‖2dt

≤
‖B‖2L (H,L2(KQ,H)) · ν

2λ
.

(3.16)
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On the other hand, for any φ ∈ H, we easily get by Hölder’s inequality that

‖B(φ)‖2L2(KQ,H)

=
∥∥∥B(φ0 +

∫ 0

−r
G1(θ)φ1(θ)dθ

)∥∥∥2
L2(KQ,H)

≤ ‖B‖2
[
‖φ0‖2H +

∥∥∥∫ 0

−r
G1(θ)φ1(θ)dθ

∥∥∥2
H

+ 2‖φ0‖Hν1/2
∫ 0

−r
‖G1(θ)φ1(θ)‖V dθ

]
≤ ‖B‖2

[
‖φ0‖2H + ν

∥∥∥∫ 0

−r
G1(θ)φ1(θ)dθ

∥∥∥2
V

+ 2‖φ0‖Hν
1
2

∫ 0

−r
‖G1(θ)‖‖φ1(θ)‖V dθ

]
≤ ‖B‖2

[
‖φ0‖2H + ν

∫ 0

−r
‖G1(θ)‖2dθ ·

∫ 0

−r
‖φ1(θ)‖2V dθ

+ 2ν
1
2‖φ0‖H

(∫ 0

−r
‖G1(θ)‖2dθ

) 1
2
(∫ 0

−r
‖φ1(θ)‖2V dθ

) 1
2
]

≤ ‖B‖2
[
‖φ0‖2H + ν

∫ 0

−r
‖G1(θ)‖2dθ ·

∫ 0

−r
‖φ1(θ)‖2V dθ

+ ‖φ0‖2Hν
∫ 0

−r
‖G1(θ)‖2dθ +

∫ 0

−r
‖φ1(θ)‖2V dθ

]
= ‖B‖2

(
1 + ν

∫ 0

−r
‖G1(θ)‖2dθ

)(
‖φ0‖2H +

∫ 0

−r
‖φ1(θ)‖2V dθ

)
= ‖B‖2

(
1 + ν

∫ 0

−r
‖G1(θ)‖2dθ

)
‖φ‖2H.

(3.17)

Therefore, it follows that

‖B‖L (H,L2(KQ,H)) ≤ ‖B‖

√
1 + ν

∫ 0

−r
‖G1(θ)‖2dθ. (3.18)

Substituting (3.18) into (3.16) and using the condition

λ >
‖B‖2ν

2

(
1 + ν

∫ 0

−r
‖G1(θ)‖2dθ

)
,

we obtain the desired relation ∥∥∥∫ ∞
0

etA
∗
∆(I)etAdt

∥∥∥ < 1.

Therefore, the conditions (3.5) and (3.6) in Proposition 3.1 are satisfied and the null solution
of (3.2) is exponential stability in mean square. The proof is thus complete.

Corollary 3.1. Let K = R, WQ(t) = w(t), a standard real Brownian motion, B ∈ L (H)
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and assume that the delay parameter r ∈ [0, 1]. Further, suppose that for some λ ∈ (0, α),

‖etA‖ ≤ e−αt,
‖B‖2L (H) · ν

2

(
1 + ν

∫ 0

−r
‖G1(θ)‖2dθ

)
< λ,∫ 0

−r
e−2λν

−1θ
[
‖A1(θ)‖2 + 2(α− λ)2‖G1(θ)‖2 + 2(α− λ)‖A1(θ)‖‖G1(θ)‖

]
dθ

< (α− λ)2, (3.19)

then the null solution of (3.2) is exponentially stable in the mean squarer sense.

Example 3.1. Consider the following stochastic functional evolution equation of neutral
type, 

d
(
y(t, ξ)−

∫ 0

−r
γy(t+ θ, ξ)dθ

)
= ∆

(
y(t, ξ)−

∫ 0

−r
γy(t+ θ, ξ)dθ

)
dt

+σy(t, ξ)dw(t), t ≥ 0, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0,

y(0, ·) = φ0(·) ∈ L2(0, π), y0(·, ·) = φ1(·, ·) ∈ L2([−r, 0];L2(0, π)),

(3.20)

where r ≤ 1, γ, σ ∈ R with σ 6= 0 and ∆ = ∂2/∂ξ2 is the Laplace operator.

Let V = H1
0 (0, π) ∩H2(0, π) and H = L2(0, π). If γ = 0, it is known (see, e.g., Liu [7])

that whenever
σ2

2
< 1, (3.21)

the null solution of (3.20) is exponentially stable in mean square.

If γ 6= 0, by virtue of Corollary 3.1, we have that if there exists 0 < λ < 1 (α = 1, on
this occasion) such that

σ2

2

(
1 +

∫ 0

−r
γ2dθ

)
≤ σ2

2
(1 + γ2) < λ < 1,

(e2λr − 1)[2(1− λ)2γ2]

2λ
< (1− λ)2, (3.22)

then the null solution of (3.20) is exponentially stable in the mean square sense. Now suppose
that (3.21) is true and let γ2, ε > 0 be so small that

σ2

2
(1 + γ2) + ε < 1,

then it may be verified that

λ :=
σ2

2
(1 + γ2) + ε < 1

12



with sufficiently small ε > 0 satisfies the first condition of (3.22). In this case, the second
inequality in (3.22) reduces, by letting ε→ 0, to

r <
1

σ2(1 + γ2)
ln

[
1 +

σ2(1 + γ2)

2γ2

]
. (3.23)

In other words, if σ2(1 + γ2)/2 < 1, i.e.,

|γ| <
√

2

|σ|

√
1− σ2

2
,

and r ∈ [0, 1] is so small, satisfying (3.23), then the null solution of (3.20) is exponentially
stable in the mean square sense.

3.2. Point Delays under Neutral Terms

In this subsection, we shall consider the following stochastic functional differential equa-
tion of neutral type in space V ∗,

d(y(t)−G2y(t− r)) =A(y(t)−G2y(t− r))dt+ A2y(t− r)dt

+

∫ 0

−r
By(t+ θ)dθdWQ(t), t ≥ 0,

y(0) = φ0, y(θ) = φ1(θ), θ ∈ [−r, 0], (φ0, φ1) ∈ H = H × L2([−r, 0];V ).

(3.24)

where A2 ∈ L (V, V ∗), G2 ∈ L (V ) and B ∈ L (V,L2(KQ, H)) with B(V ) ⊂ V .

To this end, let

Aφ =
(
Aφ0 + A2φ1(−r),

dφ1(θ)

dθ

)
, φ ∈ D(A),

and meanwhile we define

Bφ(k) =
(∫ 0

−r
Bφ1(θ)dθ(k), 0

)
, φ ∈ H, k ∈ KQ.

We can rewrite (3.24) as an equivalent stochastic evolution equation without delay,{
dY (t) = AY (t)dt+ BY (t)dWQ(t), t ≥ 0,

Y (0) = φ ∈ H,
(3.25)

where Y (t) = (y(t)−G2y(t− r), y(t+ ·)), t ≥ 0 is the lift-up process of y(t).

Theorem 3.3. Suppose that 〈x,Ax〉V,V ∗ ≤ −α‖x‖2V for all x ∈ V and some α > 0. Assume
further that for some 0 < λ < α,

e2λν
−1r
[
‖A2‖2 + 2‖G2‖(α− λ) + 2‖G2‖2(α− λ)2

]
< (α− λ)2, (3.26)

then
‖etA‖ ≤ e−λν

−1t, t ≥ 0. (3.27)

13



Proof. As before, we intend to find an equivalent inner product (·, ·)H to 〈·, ·〉H on H =
H × L2([−r, 0];V ) such that

(φ,Aφ)H ≤ −λν−1‖φ‖H for all φ ∈ D(A).

Define (·, ·)H by

(φ, ψ)H := 〈φ0, ψ0〉H +

∫ 0

−r
γ(θ)〈φ1(θ), ψ1(θ)〉V dθ, φ, ψ ∈ H,

where γ(θ) is given by

γ(θ) = e2λν
−1θ(α− λ), θ ∈ [−r, 0]. (3.28)

It can be verified that (·, ·)H satisfies the definition of a valid inner product due to the fact
that γ(θ) ≥ γ(−r) > 0 for θ ∈ [−r, 0]. For any φ ∈ D(A), it follows that

(φ, (A+ λν−1)φ)H

= 〈φ0, Aφ0 + λν−1φ0 + A2φ1(−r)〉H +

∫ 0

−r
γ(θ)〈φ1(θ), φ̇1(θ) + λν−1φ1(θ)〉V dθ

≤ 〈φ0, Aφ0 + A2φ1(−r)〉V,V ∗ +

∫ 0

−r
γ(θ)〈φ1(θ), φ̇1(θ)〉V dθ

+ λ‖φ0‖2V + λν−1
∫ 0

−r
γ(θ)‖φ1(θ)‖2V dθ

≤ (λ− α)‖φ0‖2V + ‖φ0‖V ‖φ1(−r)‖V ‖A2‖+
1

2

∫ 0

−r
γ(θ)d‖φ1(θ)‖2V

+ λν−1
∫ 0

−r
γ(θ)‖φ1(θ)‖2V dθ. (3.29)

where ‖A2‖ := ‖A2‖L (V,V ∗). Using integration by parts, one can derive for φ ∈ D(A) that

1

2

∫ 0

−r
γ(θ)d‖φ1(θ)‖2V

=
1

2
γ(0)‖φ1(0)‖2V −

1

2
γ(−r)‖φ1(−r)‖2V −

1

2

∫ 0

−r
‖φ1(θ)‖2V dγ(θ)

=
1

2
γ(0)‖φ1(0)‖2V −

1

2
γ(−r)‖φ1(−r)‖2V − λν−1

∫ 0

−r
‖φ1(θ)‖2V γ(θ)dθ. (3.30)

Substituting (3.30) into (3.29), we immediately obtain

(φ, (A+ λν−1)φ)H

≤ (λ− α)‖φ0‖2V + ‖φ0‖V ‖φ1(−r)‖V ‖A2‖+
1

2
(α− λ)‖φ0 +G2φ1(−r)‖2V

− 1

2
γ(−r)‖φ1(−r)‖2V , φ ∈ D(A). (3.31)
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On the other hand, it is immediate that

‖φ0 +G2φ1(−r)‖2V ≤ ‖φ0‖2V + ‖G2‖2‖φ1(−r)‖2V + 2‖φ0‖V ‖G2‖‖φ1(−r)‖V . (3.32)

Hence, from (3.32) and (3.31) we have for any φ ∈ D(A) that

(φ, (A+ λν−1)φ)H ≤ −
1

2
(α− λ)‖φ0‖2V + ‖φ0‖V ‖φ1(−r)‖V

[
‖A2‖+ (α− λ)‖G2‖

]
+

1

2
(α− λ)‖G2‖2‖φ1(−r)‖2V −

1

2
γ(−r)‖φ1(−r)‖2V

= −1

2
(α− λ)‖φ0‖2V + ‖φ0‖V ‖φ1(−r)‖V

[
‖A2‖+ (α− λ)‖G2‖

]
− 1

2
‖φ1(−r)‖2V

[
γ(−r)− (α− λ)‖G2‖2

]
.

(3.33)

If ‖φ0‖V = 0, it follows from (3.26) that

γ(−r)− (α− λ)‖G2‖2 >
‖A2‖2 + 2‖G2‖(α− λ) + ‖G2‖2(α− λ)2

α− λ
≥ 0. (3.34)

Combining (3.33) and (3.34), we thus have

(φ, (A+ λν−1)φ)H ≤ 0 for all φ ∈ D(A).

If ‖φ0‖V 6= 0, we have from (3.33) and (3.34) that for any φ ∈ D(A),

(φ, (A+ λν−1)φ)H = − ‖φ0‖2V
2

[
(α− λ)−

2‖φ1(−r)‖V
[
‖A2‖+ (α− λ)‖G2‖

]
‖φ0‖V

+
‖φ1(−r)‖2V

[
γ(−r)− (α− λ)‖G2‖2

]
‖φ0‖2V

]
≤ − ‖φ0‖2V

2

[
(α− λ)−

2‖φ1(−r)‖V
[
‖A2‖+ (α− λ)‖G2‖

]
‖φ0‖V

+
‖φ1(−r)‖2V

[
‖A2‖+ (α− λ)‖G2‖

]2
‖φ0‖2V (α− λ)

]
= − ‖φ0‖2V

2(α− λ)

(
(α− λ)−

‖φ1(−r)‖V
[
‖A2‖+ (α− λ)‖G2‖

]
‖φ0‖V

)2

≤ 0.

(3.35)

Hence, we obtain that

(φ,Aφ)H ≤ −λν−1‖φ‖H for all φ ∈ D(A).

Thus, the C0-semigroup etA, t ≥ 0, is exponentially stable.

By using a similar method to that in Theorem 3.2, we obtain sufficient conditions to
guarantee the exponential stability for the stochastic system (3.24).
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Theorem 3.4. Suppose that all the conditions in Theorem 3.3 are satisfied. Further, if

λ >
‖B‖2 · ν2

2
,

where ‖B‖ := ‖B‖L (V,L2(KQ,H)), then the solution of (3.24) is mean square exponential stable.

Proof. From Theorem 3.3, we know ‖etA‖ ≤ e−λν
−1t, t ≥ 0. That is, the condition (3.5) is

satisfied for the system (3.25). Define a linear operator ∆(I) ∈ L (H) by the relation

〈φ,∆(I)φ〉H = Tr{B(φ)Q1/2(B(φ)Q1/2)∗}, φ ∈ H.

From (3.27), it is easy to see that∥∥∥∫ ∞
0

etA
∗
∆(I)etAdt

∥∥∥ ≤ ‖∆(I)‖
∫ ∞
0

‖etA‖2dt ≤ ‖B‖
2 · ν

2λ
. (3.36)

On the other hand, for any φ ∈ H, we easily obtain

‖B(φ)‖2L2(KQ,H) =

∫ 0

−r
‖Bφ1(θ)‖2L2(KQ,H)dθ

≤ ‖B‖2
∫ 0

−r
‖φ1(θ)‖2Hdθ

≤ ‖B‖2ν
(
‖φ0‖2H +

∫ 0

−r
‖φ1(θ)‖2V dθ

)
= ‖B‖2ν‖φ‖2H. (3.37)

Thus, it is immediate that
‖B‖ ≤ ‖B‖

√
ν. (3.38)

Substituting (3.38) into (3.36) and using the condition λ > ‖B‖2 · ν2/2, we get immediately
that ∥∥∥∫ ∞

0

etA
∗
∆(I)etAdt

∥∥∥ < 1.

Therefore, the two conditions in Proposition 3.1 are satisfied for the stochastic system (3.24)
and the mean square exponential stability is thus obtained. The proof is complete now.

As an immediate consequence of Theorem 3.4, we have the following result.

Corollary 3.2. Let K = R, WQ(t) = w(t) and B ∈ L (H). If

‖etA‖ ≤ e−αt,
‖B‖2 · ν2

2
< λ < α,

0 < r <
1

2λν−1
ln

(α− λ)2

‖A2‖2 + 2‖G2‖(α− λ) + 2‖G2‖2(α− λ)2
, (3.39)

then the mild solution Y is exponentially stable in the mean square sense.
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Example 3.2. Consider the following linear neutral type stochastic delay partial differential
equation,

d(y(t, ξ)− γy(t− r, ξ)) =
∂2

∂ξ2
(y(t, ξ)− γy(t− r, ξ))dt

+ σ

∫ 0

−r
y(t+ θ, ξ)dθdw(t), t ≥ 0, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, t ≥ 0,

y(0, ·) = φ0(·) ∈ L2(0, π), y0(·, ·) = φ1(·, ·) ∈ L2([−r, 0];L2(0, π)).

(3.40)

where γ, σ ∈ R with σ 6= 0, V = H1
0 (0, π) ∩H2(0, π) and H = L2(0, π).

If γ = 0, it can be shown, similarly to Corollary 4.3.1 in Liu [7], that whenever

σ2

2
< 1, (3.41)

the null solution of (3.40) is exponentially stable in mean square.

If γ 6= 0, we impose the following condition on σ, γ,

σ2 < 2, |γ| <

√
1 + 2(1− σ2

2
)2 − 1

2− σ2
. (3.42)

Then it is easy to see from (3.42) that

2|γ|+ 2|γ|2
(

1− σ2

2

)
< 1− σ2

2
.

which immediately yields
1− σ2

2

2|γ|+ 2|γ|2(1− σ2

2
)
> 1.

On this occasion, it is easy to see that α in Corollary 3.2 is equal to 1. Hence, by virtue of
(3.39), if there exists λ > 0 such that

σ2

2
< λ < 1, 0 < r <

1

2λ
ln

1− λ
2|γ|+ 2|γ|2(1− λ)

, (3.43)

then the null solution of (3.40) is exponentially stable in the mean square sense. It may be
verified that λ := σ2

2
+ ε with ε > 0 sufficient small satisfies the first condition of (3.43). The

second condition in (3.43), by letting ε→ 0, reduces to

0 < r <
1

2σ2
ln

1− σ2

2

2|γ|+ 2|γ|2(1− σ2

2
)
. (3.44)
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In summary, in the case γ 6= 0 and σ2 < 2, we have that whenever

|γ| <

√
1 + 2(1− σ2

2
)2 − 1

2− σ2

and r is so small, satisfying (3.44), the null solution of (3.40) is exponentially stable in the
mean square sense. In other words, the mean square exponential stability of (3.40) is not
sensitive to small delays in this situation.
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