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Abstract

Recoil Distance Doppler Shift measurements of 182Hg have been performed at the

University of Jyväskylä utilising the Köln plunger device. Lifetimes of excited

yrast states up to the 10+ state have been measured. The 2+, 4+, 6+, 8+ and 10+

states were found to have lifetimes of 41(3) ps, 35.7(15) ps, 8.2(5) ps, 2.9(3) ps and

1.2(3) ps respectively. The high collectivity of the states with Iπ ≤ 4+ indicate

their prolate deformed character. In 182Hg the 2+ yrast state was deduced to be

a strong admixture of the coexisting prolate and oblate structures.

Coulomb excitation measurements of 182,186Hg performed at REX-ISOLDE

using the MINIBALL HPGe array examine the quadrupole moment and tran-

sitional matrix elements associated to the 2+
1 , 2+

2 and 4+
1 states in 182Hg and

the 2+
1 state in 186Hg. The spectroscopic quadrupole moment of the 2+

1 state

in 182Hg measured -0.45 eb, indicating prolate deformed character. Conversely,

the 2+
1 state in 186Hg was found to be oblate from the spectroscopic quadrupole

moment of +1.74 eb. Transitional matrix elements for both 182Hg and 186Hg were

found to be in agreement with those from lifetime measurements.
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Chapter 1

Introduction

The periodic table of elements currently lists 118 elements based upon the number

of protons they possess. The elements are arranged in such a way as to group

certain elements with common properties together. For example, if one looks

to group 8 in the periodic table, elements known as the Nobel gases are listed.

These elements are all inert and contain a full outer electron shell configuration.

Elements listed in group 1 of the periodic table, the alkali metals, all contain an

outer electron shell housing a solitary electron and are extremely reactive with

water, forming hydroxides. It is the configuration of electrons into discrete shells

that predominantly give an element its chemical properties.

Each element listed in the periodic table has isotopes, nuclei possessing the

same number of protons but a differing number of neutrons. Approximately

300 of these isotopes are stable. This is only a small fraction of the 3000 plus

nuclei that have been observed in the laboratory and an even smaller fraction of

the number of predicted nuclei. Figure 1.1 shows observed and predicted nuclei

represented schematically in accordance to proton and neutron number much in

the same way as the periodic table. Just like the periodic table certain regions

of the nuclear chart have certain common observable properties. If one heads

towards the proton drip line, that is the theoretical line defined by the proton

separation energy being equal to zero one will observe the phenomenon of proton

emission. Going to the other side of the chart to the neutron drip line - defined

1
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Figure 1.1: Schematic representation of the nuclear chart. Shell closures are numbered
and indicated with a red line. [Pau]

by the neutron separation energy being equal to zero one will observe phenomena

such as neutron halos and neutron skins. When one looks in regions of the nuclear

chart where a nucleus lies near a closed proton or neutron shell, a so-called magic

number, a near-spherical shape to the nucleus will be observed. Analogous to

the electron configuration being the predominant factor in chemical properties,

it is the configuration of the nucleons in discrete energy shells that give a nucleus

certain observable properties and behaviours. Of particular interest in this thesis

is how the configuration of the constituent nucleons in the discrete energy shells

plays a significant role in the resulting macroscopic shape of the nucleus.

With radioactive ion beam facilities such as REX-ISOLDE now well estab-

lished a much larger proportion of these nuclei are accessible for experimental

study. This opens up the possibility to observe and study a wide range of nu-

clear phenomena, including shape coexistence, in regions of the nuclear chart

that were previously inaccessible and to test the nuclear models that predict such

phenomena.



Introduction 3

1.1 Nuclear Properties and Models

The atomic nucleus consists of subatomic particles know as protons and neutrons.

These particles are confined to a minuscule radius of ≈ 10−15 m. The proton

has a positive charge and the neutron is charge neutral. A strong nuclear force

must bind the nucleus together to overcome the repulsive effects of the Coulomb

interaction between protons.

It is understood that the strong nuclear force acts over a short range. With

the size of nuclei being so small and the effects of the strong force neglegable at

the atomic scale a short range force is the only reasonable conclusion. The size

of a nucleus can be estimated to be approximately R = R0A
1/3 which can give a

good estimate of the range of the strong nuclear force. R0 is taken to be 1.2 fm

and A represents the atomic number of the nucleus under consideration.

With the observation that the mass of an atomic nucleus is less than the sum of

its constituent parts, evidence for a saturated force can be inferred. The ‘missing

mass’ of the nucleus is equated to the binding energy of the nucleus. Binding

energy is defined as the energy required to separate the nucleus completely into

individual protons and neutrons. A plot of binding energy per nucleon as a

function of mass can be seen in many texts, for example [Kra88]. The well-

known plot reaches a maximum around 56Fe and then flattens to an approximate

value of 8 MeV. This is clear evidence that the strong nuclear force saturates. The

strong nuclear force would continue to increase with mass number if this were not

the case.

Evidence for a shell structure to the nucleus, comparable to the shell structure

of electrons in an atomic system, can be obtained from the separation energies

for different nuclei. The proton separation energy, S(p), is defined as the energy

required to remove one proton from the nuclear volume to infinity. Similarly the

neutron separation energy, S(n), is defined as the energy required to remove one

neutron from the nuclear volume to infinity. If one were to increase the number of

neutrons with respect to the number of protons for a certain nucleus S(n) would
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decrease and S(p) increase. If one were to decrease the number of neutrons with

respect to the number of protons for a certain nucleus S(p) would decrease and

S(n) increase. Certain numbers of protons and neutrons in a nucleus cause a

dramatic increase in separation energy. These numbers are 2,8,20,28,50,80,126

and are known as magic numbers and represent a full, closed shell.

The shell model has been most successful in predicting properties such as

level energies for nuclei near closed shells where a spherical nucleus is observed.

For nuclei in the mid-shell regions of the nuclear chart where more deformed

structures reside nucleon-nucleon interactions cannot be described by a mean field

approximation and the shell model breaks down. A macroscopic viewpoint must

be taken to describe the collective effects observed for these mid-shell nuclei. In

the proceeding sections properties and models relating to the onset of deformation

are discussed with the intention of leading to a discussion of shape coexistence in

the light mercury region of the nuclear chart.

1.1.1 Deformation

The general shape of a nucleus can be expressed in terms of spherical harmonics

according to the equation

R(θ, φ) = c(βλ)R0

[
1 +

λ=∞∑

λ=1

λ=λ∑

λ=−µ

αλµYλµ(θ, φ)

]
, (1.1)

where R(θ, φ) represents a radius vector from the origin to the surface, R0 is the

radius of a sphere which has equal volume to the nucleus. The factor c(βλ) ensures

volume conservation, αλµ is the deformation parameter and Yλµ(θ, φ) a spherical

harmonic of order λ, with λ classifying the multipole order. λ = 1 corresponds

to a dipole, λ = 2 corresponds to a quadrupole and λ = 3 corresponds to an

octupole. For quadrupole deformation Equation 1.1 becomes

R(θ, φ) = c(βλ)R0

[
1 +

2∑
µ=−2

α2µY2µ(θ, φ)

]
. (1.2)

When the principle axis are made to coincide with the nuclear axis the five coeffi-

cients reduce to two as a22 = a2−2 and a21 = a2−1 = 0. The standard parameters
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Figure 1.2: Resulting nuclear shapes for deformation parameters β and γ using the
Lund convention.[Pau]

to describe quadrupole deformation are thus

a20 = β cos γ

a22 =
1√
2
β sin γ (1.3)

where β is a measure of the deviation from the surface of a sphere and γ is a

measure of the deviation from axial symmetry.

A common convention to describe the range of shapes for λ = 2 in terms of

the β and γ variables is the Lund convention [ALL+76]. Figure 1.2 shows the

various shapes that result from quadrupole deformation and places them in the

(β - γ) plane. In this convention the relationship between β, γ and the nuclear

radii can be observed from the change in nuclear radius in Cartesian coordinates

as a function of β and γ. The increments along the three principle axis are defined

as

δR1 = R0

√
5

4π
β cos

(
γ − 2π

3

)
,

δR2 = R0

√
5

4π
β cos

(
γ +

2π

3

)
,

δR3 = R0

√
5

4π
β cos γ. (1.4)



6 CHAPTER 1

Or when taken together

δRk = R0

√
5

4π
β cos

(
γ +

2π

3
k

)
k = 1, 2, 3. (1.5)

From this convention it can be stated that if γ = 0, then R1 = R2. If R3 is then

less than R0 the nucleus will be oblate. If R3 is greater than R0 the nucleus will

be prolate.

1.1.2 Rotation

With a deformed nucleus rotation is a possible form of collective excitation. This

is not possible with a spherical nucleus as any rotation about an axis of symmetry

produces results which are indistinguishable. To a first approximation the energy

associated with rotational excitation of a nucleus can be calculated classically.

The classical formula for the energy of a rotating rigid body states

E =
1

2
=ω2 (1.6)

where = is the moment of inertia and ω the rotational frequency. With the

rotational frequency being related to the moment of inertia by the formula

ω =
I

= , (1.7)

where I is the total angular momentum, consisting of the rotational angular mo-

mentum, ~R of the nucleons about the axis of symmetry and the individual intrinsic

angular momentum of valance nucleons, ~J such that

I = ~R + ~J. (1.8)

Equation 1.6 then becomes

E =
I2

2= . (1.9)

For a quantum mechanical system I2 = ~2I(I + 1) so that Equation 1.9 becomes

E =
~2

2=I(I + 1). (1.10)
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This gives a characteristic pattern to the energy levels and a useful experimental

signature for rotational bands being the ratio of the E4+/E2+ ≈ 3.33.

For a spherical rigid body the moment of inertia is defined as

=rig =
2

5
MR2, (1.11)

where M is the mass of the rigid object and R the radius of the rigid object.

Allowing the nuclear radius to be R = R0A
1
3 the rigid moment of inertia for a

spherical nucleus is therefore

=rig =
2

5
A

5
3 mnR2

0, (1.12)

where R0 is 1.2 fm, A the number of nucleons and mn the mass of a nucleon.

Apply this to an ellipsoidal shape the moment of inertia can be expressed as

=(ε) ≈
(

1 +
3ε

4

)
=(sphere), (1.13)

where ε is the eccentricity of the ellipsoid. The moment of inertia defined in

the above equations is a static moment of inertia. With the nucleus being only

an approximation to a rigid body, the true values for the moment of inertia are

often considerably less than the rigid body value [Cas90]. The nucleus is usually

considered a rigid core surrounded by valence nucleons. With this description in

mind two moments of inertia must be defined to fully describe the rotation of the

nucleus. When one assumes maximum alignment on the x-axis so that Ix ≈ I

The kinematic moment of inertia can be defined as

=(1) =

(
dE

dIx

)−1

~2 = ~
Ix

ω
(1.14)

and the dynamic moment of inertia as

=(2) =

(
d2E

dI2
x

)−1

~2 = ~
dIx

dω
(1.15)

with the kinematic moment of inertia being due to the motion of the system and

the dynamic moment of inertia a response of the system to an external force. The
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transition energy in a rotational band can be related to the kinematic moment of

inertia through Equation 1.10 producing the relation

Eγ =
~2

2=(4I − 2) (1.16)

and the dynamic moment of inertia related to the difference in consecutive γ rays

though the equation

∆Eγ =
4~2

=(2)
. (1.17)

1.1.3 The Liquid Drop Model

With the knowledge that the nuclear force is a strong, attractive force within a

short range and repulsive at distances below∼ 0.7 fm analogies with the behaviour

of molecules in a liquid can be made. The Van der Waals interactions between

molecules in a liquid exhibit the same properties of a short range attractive force

with a repulsive core. This leads to the simplest collective nuclear model, the

liquid drop model. The liquid drop model reproduces certain nuclear properties

by comparing the nucleus to a non-rotating, charged liquid drop. A liquid drop in

the absence of external fields will adjust its shape to that of a sphere and minimise

the surface tension energy. The liquid drop is assumed to be incompressible and

therefore the density remains constant regardless of radius. The model assumes a

short range attractive force that becomes repulsive at shorter distances. Surface

nucleons are assumed to be less bound as the number of interacting neighbour

nucleons is diminished. The key result from this approximation to the nuclear

force is the semi empirical mass formula or the Weizsäcker formula for total

nuclear binding energy [Wei35]

B(Z, A) = avA− asA
2
3 − ac

Z2

A
1
3

− aA
(A− 2Z)2

A
+ δ(Z,A), (1.18)

where Z is the number of protons and A the total number of nucleons. Energy is

expressed in units of MeV. It can be seen that the first term on the right hand

side in the Weizsäcker formula represents the volume energy. As the nuclear

force saturates nucleons only interact with neighbouring nucleons causing the
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Figure 1.3: Binding energy as a function of A. Solid red line represents theoretical values
from the Weizsäcker formula whilst black circles represent experimentally obtained
values for binding energy.[Rea]

binding energy to be proportional to the nuclear volume. The second term is the

surface term. This corrects the volume term for the fact that not all nucleons

are surrounded equally. The number of nucleons near the surface of the liquid

drop will be proportional to the surface area and will be surrounded by fewer

nucleons than those nearer the centre. The third term that corrects the volume

term is the Coulomb term. As the protons in the nucleus are charged there is

an electrostatic potential that must be resolved. The Coulomb term must be

subtracted from the volume term to account for the natural repulsion that occurs

due to the protons having the same charge. The next term in the Weizsäcker

formula is the symmetry term. This term is a consequence of the Pauli exclusion

principle and is sometimes referred to as the isospin term. It expresses the charge-

symmetric nature of the nucleon-nucleon force which has the consequence that in

the absence of a Coulomb potential the most stable configuration for a nucleus

is N=Z. The final term in the Weizsäcker formula is the pairing term. Nucleons

prefer to form spin zero pairs in the same spatial state to minimise energy. An
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increase in binding energy occurs due to the overlap of the spatial wave functions.

This leads the nucleons to be in closer approximation and therefore within the

range of the nuclear force for a greater period of time. The value of δ is dependent

on the make-up of the nucleus and is different for odd-odd, even-even and odd-

even nuclei giving

δ =





+apA
− 4

3 even− even

0 even− odd

−apA
− 4

3 odd− odd

Even-even nuclei therefore have an increased stability due to the pairing term.

With the Weizsäcker formula being semi-empirical A and Z dependencies are

derived from theory but the coefficients are experimentally defined. Typical val-

ues for the coefficients are listed below

av ≈ 15.8 MeV

as ≈ 18.0MeV

ac ≈ 0.72MeV

aA ≈ 23.5MeV

ap ≈ 34MeV.

It can be seen in Figure 1.3 that with these coefficients the theoretical values are in

good agreement with experimental measurements. Some values deviate slightly

at certain mass values indicating a more fundamental description is required.

The values where the deviation is strongest are around values such as A=208,

A=132, A=100, A=56 etc. These are the masses of doubly magic nuclei i.e nuclei

with both closed proton and neutron shells. The binding energy plot therefore

indicates a shell-like structure to the nucleus. As this model is almost entirely

classical it is no surprise that quantised energy levels are not reproduced fully

with this method.
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1.1.4 The Nuclear Shell Model

Due to the limitations of the liquid drop model a new description and under-

standing of the nucleus is required. The shell model describes the nucleus as

a series of shells that nucleons occupy, much in the same way as electrons are

ordered in an atomic system. It attempts to explain the phenomena such as the

the discrepancy in binding energies and two particle separation energies observed

at certain nuclear masses. In short it attempts to explain the magic numbers.

The liquid drop model fails in this respect.

The shell model uses a mean field force to explain the nucleon interactions.

The basic assumption of the shell model is that a nucleon moves in a potential

which is the average of the effect of all other nucleons and varies smoothly. The

nuclear potential is then

Vi(ri) =

〈∑
j

V (rij)

〉
, (1.19)

where V is the potential of the interaction between nucleons of a distance rij

apart. The Hamiltonian therefore is of the form

H =
∑

i

Ti +
∑
ij

V (rij), (1.20)

where Ti is the associated kinetic energy of the interacting nucleons. The form

of the central potential in Equation 1.19 is of utmost importance to the shell

model. Several potentials have been used in an attempt to recreate the magic

numbers with varying success. Figure 1.4 shows the form of some of the potentials

used. The square well potential and the harmonic oscillator potential are both

successful in reproducing the first three magic numbers, 2, 8 and 20, though the

form of these potentials are both physically unreasonable for the description of

the nuclear potential. The square well potential has well understood solutions

but the potential has a much sharper edge than the actual nuclear potential.

The nuclear potential approximates the charge and matter distribution, falling

to zero beyond the mean radius. The harmonic oscillator potential on the other
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Figure 1.4: Forms of the potential used in the shell model. The square well, harmonic
oscillator and Woods-Saxon potentials are illustrated for the purpose of comparison.

hand is not sharp enough. A successful potential will be an intermediate between

the square well potential and the harmonic oscillator potential. An often used

potential is the Woods-Saxon potential which takes the form

V (r) =
−V0

1 + exp[(r −R0)/a]
, (1.21)

where R0 is the average nuclear radius and a the thickness of the diffuse nuclear

surface. The solutions from the Woods-Saxon potential closely approximate those

found with the harmonic oscillator potential, though the ordering of some levels

has changed giving a more realistic account of the experimentally observed or-

der. Figure 1.5 shows a comparison of levels obtained with each potential and

the magic numbers obtained. It can be seen that the Woods-Saxon potential

alone cannot reproduce the higher magic numbers. To fully reproduce the exper-

imentally observed magic numbers the form of the potential must be modified.

A spin-orbit effect much similar to the interaction in atomic physics that lifts

the degeneracy of electron levels is used, though in the case of the nucleus an

electromagnetic interaction does not cause this effect.

Levels in Figure 1.5 are labelled with j, the total angular momentum and l the
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Figure 1.5: Derived states using various shell model potentials [Fel53]. The evolution
to a more realistic result can be observed when the Wood-Saxon potential is used and
the spin-orbit interaction incorporated.
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orbital angular momentum. l takes its spectroscopic form and where the numbers

0,1,2,3,4,5 are represented by the letters s, p ,d ,f, g and h. The total angular

momentum, j is the sum of the coupling of the orbital angular momentum, l and

the intrinsic angular momentum of a nucleon, s. The Woods-Saxon potential

is modified to incorporate the spin-orbit interaction [May49, HJS49] that is a

consequence of this coupling and becomes

V (r) =
−V0

1 + exp[(r −R0)/a]
+ W (r)l · s, (1.22)

where W(r) is a function of the radial position. With the spin-orbit interaction

degeneracy of levels is lifted as the total angular momentum of a level, j can be l

±1
2
. The position of levels is also modified. The energy separation of these levels

is directly proportional to l and j + 1
2

states will lie lower in energy than j - 1
2

states. As can be seen in Figure 1.5 this gives rise to states with a higher value

of l at a lower energy than a state with a lower l value. These states are known

as intruder states. With the modification of level positions that the spin-orbit

interaction produces the experimental magic numbers can now be reproduced

using the modified Woods-Saxon potential. This model predicts the levels of light

nuclei close to these magic nuclei well. As one heads towards mid-shell nuclei the

model starts to falter. A modification of the shell model is then required.

1.1.5 The Nilsson Model

Since the shell model is unable to describe deformed nuclei far from closed shells,

a new model is required that incorporates a deformed nuclear potential. One

such model that incorporates such a potential is the Nilsson Model [Nil55] which

uses as its base a deformed harmonic oscillator potential. With z axial symmetry

the Nilsson Hamiltonian can be written as

H =
−~2

2m
52 +

m

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)− C · l · s−D · (l2 − 〈l2〉N). (1.23)

The l2 − 〈l2〉N reflects the flattening of the nuclear potential at the centre of the

nucleus. The coefficients C and D account for the strength of the l·s spin-orbit
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interaction and the l2−〈l2〉N term respectively and therefore control the shape of

the potential enabling the reproduction of the observed sequence of energy levels.

It is useful to express the one-dimensional oscillator frequencies, ωx,y,z in terms

of the deformation parameter ε so as

ω2
x = ω2

0

(
1 +

2

3
ε

)
,

ω2
y = ω2

0

(
1 +

2

3
ε

)
,

ω2
z = ω2

0

(
1− 4

3
ε

)
, (1.24)

where ω0 is the oscillator frequency in a spherical potential.

The asymptotic quantum numbers are often used to describe the Nilsson or-

bitals. The description of the Nilsson orbitals take the form

Ωπ [NnzΛ] (1.25)

where Ω is the projection of the single particle total angular momentum along

the axis of symmetry, N the principle quantum number, nz the oscillator quanta

projected along the z-axis, π the parity of the state and Λ the projection of the

orbital angular momentum along the z-axis. With Ω being the sum of Λ and Σ,

where Σ is the intrinsic single particle spin along the z-axis we can define Ω as

Ω = Λ± 1

2
, (1.26)

as Σ can only take values ±1
2
. We can determine the parity of a state, π from

the principle quantum number N using the relation

π = (−1)N . (1.27)

The principle quantum number N also allows the constraint of Λ to discrete

values. If N is odd then (nz + Λ) must also be odd. If N is even then (nz + Λ)

must also be even. A plot of the Nilsson orbits is shown in Figure 1.6, taken from

[SZF02]. It can be seen at ε = 0 the orbitals are 2j+1 degenerate. This degeneracy

is lifted with the onset of deformation. It is observed from this plot that for a
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Figure 1.6: Nilsson diagram for 50 ≤ Z ≤ 82 showing single particle energy versus
deformation.[Sch02]
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nucleus with prolate deformation low Ω orbits will have lower energies and high Ω

orbits will have higher energies. The converse being true for oblate nuclei. With

the projection of the total nuclear angular momentum along the axis of symmetry

being K, which is equal to Ω for a nucleus with a single valence nucleon, we can

denote the angle between the orbital plane and the axis of symmetry to be

θ = sin−1

(
K

j

)
. (1.28)

For high K values, θ changes greatly leading to rapid changes in energy as defor-

mation increases. This can lead to two orbits with the same quantum numbers

approaching each other. The Pauli exclusion principle ensures that no two Nils-

son levels with the same value of Ω and π can cross. As orbits with the same

values of Ω and π are driven closer together, due to the onset of deformation, the

Pauli exclusion principle cause the orbits to repel. At the inflection point wave

functions interact and strong multi-state mixing occurs.

1.2 Shape Coexistence and Collectivity in the

Hg Region

In certain regions of the nuclear chart a subtle re-arrangement of a few nucleons

close to the Fermi surface can have dramatic effects on the shape of the nucleus.

When nucleons close to the Fermi surface are promoted across a shell gap for

instance the nucleus will re-arrange itself and find a new minimum in the nuclear

potential that often corresponds to a different shape or a drastic change in defor-

mation. An often quoted experimental signature for such a phenomenom is the

appearance of low-lying 0+ states [WHN+92] on which the rotational bands of

the differing shapes are built. A recent example that typifies shape coexistence in

the Hg region of the nuclear chart is the case of 186Pb [AHD+00]. In this nucleus

the first two excited states have been assigned 0+ states. They are assumed to

be the band heads of oblate and prolate rotational configurations competing with

the spherical ground state of the nucleus. In the case of light Hg isotopes shape
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Figure 1.7: Plot of level energy vs deformation for 184Hg. Two distinct minima can be
seen at approximately -0.15 and 0.25, associated with the oblate and prolate configu-
rations. [Naz93]

Figure 1.8: Particle configuration for 182Hg. The left panel shows the microscopic
0p-2h configuration of the oblate structure of the ground state band. The right panel
shows the excitation of two protons across the Z=82 shell gap, leading to the 2p-4h
configuration of the prolate structure. Holes are represented in green, neutrons in blue
and protons in red.
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coexistence was first observed when isotope shift measurements revealed a sharp

change in energy between 187Hg and 185Hg [BHK+72]. Consequently this was

interpreted as being due to a change in nuclear shape from a weakly deformed

oblate band to a more deformed prolate band [FP75]. To further support this

case, charge radii measurements have revealed a weak oblate character for the

ground states of even mass Hg isotopes down to A=182 [UBD+86]. As one heads

towards the N=104 mid-shell Hg isotopes further evidence of a change in nuclear

shape is given in the form of the level energy sequences. Level energies built on

the weakly deformed oblate band remain roughly constant until in 188Hg when

intruder states from the prolate band cross the yrast line [JHM01]. α-decay stud-

ies of the light Hg isotopes have revealed 0+
2 intruder states for nuclei as neutron

deficient as 182Hg. These states have been interpreted as being of the same nature

as the mother Pb nuclei due to the α-decay hindrance factors. This has caused

the mid-shell Hg intruder structures to be interpreted as being due to the excita-

tion of protons across the Z=82 shell gap [WBD+94] and to the potential energy

surface associated with prolate structure [Naz93]. Figure 1.8 shows schematically

the oblate and prolate particle configurations predicted for the light Hg isotopes.

Lifetime measurements in the region lend support to the coexistence of nuclear

shapes in the isotope chain. Lifetime measurements of yrast states in 186Hg reveal

that the 2+ and 6+ yrast states have considerably different deformations. The

low-lying 2+ yrast state has a measured deformation of |β| ≈ 0.13 whilst the

6+ yrast state a value of |β| ≈ 0.27 [PDS73]. The isotope 184Hg shows similar

behaviour. Lifetime measurements of this nucleus [MRH+86] show that the yrast

2+ state has a deformation of |β| ≈ 0.15 and the subsequent 4+ and 6+ yrast

states a deformation of |β| ≈ 0.22 and |β| ≈ 0.28 respectively. If the potential

energy as a function of deformation has two minima, this transformation can

be simply explained. Lower yrast states would be confined to a potential well

located at a small deformation. Higher yrast states would be located at the second

minima where the deformation is greater. Figure 1.7 shows the case for 184Hg,

but can be seen as representative of the neutron deficient Hg isotopes. The 2+
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yrast state is located in the minima associated with a weak, oblate deformation

whereas the higher yrast states are located in the more deformed prolate minima.

As one descends the isotopic chain to the neutron midshell, it becomes unclear

as to whether the prolate or oblate 2+ state is yrast as the prolate intruder

states become lower in energy. It is an aim of this work to answer this. With

evidence to suggest shape coexistence in the light Hg region in abundance, it is of

great interest to obtain direct measurements of the nuclear shapes in the region.

This thesis reports the results of a method that allows direct, model-independent

measurements of nuclear shapes. This is the reorientation effect in Coulomb

excitation measurements, which has been used for over 50 years to obtain direct

measurements of nuclear shapes. With the advancement of facilities such as

REX-ISOLDE it is now possible to re-employ this powerful technique to heavier

radioactive nuclei. The Coulomb excitation of 182,184,186,188Hg will for the first

time give direct measurements of the electric quadrupole matrix elements in the

low-lying states of these nuclei. This will allow for the unambiguous assignment

of nuclear shape to the observed states in these nuclei.

1.3 Coulomb Excitation and Lifetime Measure-

ments

Two complementary techniques have been employed to obtain direct measure-

ments of the transition and quadrupole matrix elements in low-lying states of

light Hg isotopes. Lifetime measurements allow for the the transition matrix

elements of excited states to be obtained. This allows the magnitude of the de-

formation to be inferred, though no sign to the deformation can be assigned.

Coulomb excitation allows one to study a nucleus outside of the influence of the

strong nuclear force. The level excitation can be solely attributed to the influence

of the electromagnetic force, which is well understood [Ald75]. The bombarding

energy is set low enough so the colliding nuclei are far enough apart that there
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is no influence from the strong nuclear force. This allows for model-independent

analysis of the excited states, as the only nuclear properties entering into the

analysis are the static and dynamic electric multipole moments of the nuclei.

This enables the extraction of the sign of the quadrupole moment and allows for

the assignment of a shape to the excited nuclear state. One measures both the

static and dynamic multipole moments with Coulomb excitation. Lifetime mea-

surements provide a measurement of the dynamic multipole moment and a value

for the magnitude of the deformation. The two methods are complementary in

that they provide a check for each analysis.

1.4 Organisation of Thesis

Chapter 1 discusses basic concepts and models in nuclear physics and outlines

shape coexistence in the Hg region. Chapter 2 details the theory of Coulomb

excitation and the the methods used for lifetime measurements, namely the Re-

coil Distance Doppler Shift (RDDS) method and the Differential Decay Curve

Method (DDCM). Chapter 3, experimental techniques and facilities describes

the theory behind γ-ray spectroscopy and details the important aspects of the

REX-ISOLDE facility and Jyväskylä Accelerator laboratory. Chapters 4 and

5 detail the analysis techniques and results obtained for lifetime measurements

performed at Jyväskylä, and the Coulomb excitation experiment performed at

REX-ISOLDE, respectively. A discussion of the two sets of results and conclu-

sions are presented in Chapter 6.
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Chapter 2

Coulomb Excitation and Lifetime

Measurements

To fully understand and interpret the results presented in Chapter 4 and Chap-

ter 5 the relevant theory and techniques used to obtain the results are discussed

in this chapter. The first half of the chapter deals with the extensive theory

of Coulomb excitation and the experimental method itself. The second half of

this chapter discusses the experimental techniques, and the associated theory,

employed in lifetime measurements of excited nuclear states. Let us begin with

Coulomb excitation.

2.1 Coulomb Excitation

In this section the theoretical aspects of Coulomb excitation will be outlined

along with an overview of the experimental technique itself. A brief overview

of the classical theory of elastic scattering along with collision parameters in-

volved in inelastic scattering will be presented. As the experiment discussed in

Chapter 5 was performed at low, sub Coulomb barrier energies, a description of

safe Coulomb excitation will be given. Matrix elements and the importance of

the electric quadrupole moment are discussed in regards to determining nuclear

shape. A much more detailed description of the theories presented this section

23
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Figure 2.1: Trajectory of a particle undergoing Rutherford scattering. The impact
parameter, b, the centre of mass scattering angle, θ, and the distance between the
nuclear centre of masses, r, are indicated on the diagram. The distance of closest
approach, d, is also indicated along with the projectile and target radii, Rp and Rt,
respectively.

can be found in references such as [ABH+56, AS64, Ald75].

2.1.1 Rutherford Scattering

The nucleus consists of both neutral and charged particles. Because of this the

nucleus has a distribution of electric charge that means it can be studied by the

Coulomb scattering of charged particles. This may be via collisions of an elastic

or inelastic nature. An elastic scattering process conserves kinetic energy and is

known as Rutherford scattering. An inelastic scattering process does not conserve

kinetic energy as part of this energy is transferred to excite the nucleus into an

higher energy level. The scattering process, which is common to both elastic and

inelastic scattering, is shown schematically in Figure 2.1.

The interaction of the two particles will obey Coulomb’s Law, which is ex-

pressed in terms of the charge of the projectile, Zpe, the charge of the target,Zte,
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and the distance between the two interacting particles, r. The force experienced,

F, is therefore

F =
1

4πε0

ZpZte
2

r2
. (2.1)

The hyperbolic trajectory of the scattered particle shown in Figure 2.1 is a direct

result of the inverse square law that is embedded in Equation 2.1. If the projectile

nucleus approaches the target nucleus along a straight line in the absence of the

Coulomb force, the distance between the target and projectile nuclei would be

b, the impact parameter. With the Coulomb force diminishing as 1/r2, at large

distances the projectile particle has negligible Coulomb potential energy. The

incident particle’s total energy, Ep, can therefore be attributed to its kinetic

energy

Ep =
1

2
mv2, (2.2)

where m is the mass of the incident particle and v is its velocity. This equation

holds in non-relativistic circumstances when v ¿ c. The corresponding angular

momentum relative to the target nucleus is

| r×mv |= mvb. (2.3)

When passing close to the target nucleus the projectile reaches a minimum dis-

tance which depends upon the impact parameter b. The absolute minimum this

distance may be is shown in Figure 2.1 to be d and occurs in a head on collision

when b=0. In this case the projectile comes to rest before reversing its motion.

At this point all kinetic energy is exchanged for Coulomb energy

1

2
mv2 =

1

4πε0

ZpZte
2

d2
, (2.4)

where d is defined as the distance of closest approach. At intermediate points

along the trajectory the energy of the projectile is part kinetic, part Coulomb

potential energy.

As the Coulomb potential is symmetric, so to is the scattering process about

the beam axis. The scattering process is therefore independent of azimuthal angle

φ. This process does have a large dependence on the polar scattering angle θ.
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Using a classical treatment it can be shown that the differential scattering cross

section can be expressed in terms of the polar angle

dσR

dΩ
=

(
ZpZte

2

4πε0

)2 (
1

4Ep

)2
1

sin4( θ
2
)

(2.5)

Equation 2.5 is known as the Rutherford cross section. It can be seen that the

scattering cross section decreases with increasing scattering angle and projectile

energy whilst the nuclear charge increases the cross section. These relations play

an important part in target selection and the analysis discussed in Chapter 5.

2.1.2 Collision Parameters

The semi-classical approximation describes the motion of the colliding nuclei in

terms of classical hyperbolic orbits. The excitation process is dealt with in a quan-

tum mechanical framework. To justify the use of a semi-classical approximation

three collision parameters are considered and discussed below: the Sommerfeld

parameter, η, the adiabaticity parameter, ξ and the excitation strength parameter,

χ.

The Sommerfield Parameter

In Coulomb excitation the monopole-monopole interaction, ZpZte
2/r has a dom-

inant influence on the trajectory of the colliding particles. The strength of the

modification to the trajectory of charged particles caused by the Coulomb inter-

action is measured by the dimensionless Sommerfeld parameter, defined as the

ratio of half the distance of closest approach, d = ZpZte
2/~v, to the de Broglie

wavelength of the projectile at infinity, λ = ~/m0v

η =
d

2λ
=

ZpZte
2

~v
(2.6)

where Zpe and Zte are the projectile and target charge respectively, and v is the

relative velocity of target and projectile. If the Sommerfeld parameter is small

(η ¿ 1) the Coulomb field will not modify the wavefunction of the projectile

significantly and a plane wave approximation may be used. For energies below
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the Coulomb barrier the Coulomb force is sufficiently strong to keep the projectile

from the range of the strong nuclear force. Under this condition η À 1 and the

projectile can be considered to follow a classical trajectory. A semi-classical

approximation is therefore valid if η À 1. In the case of the light Hg isotopes

scattering on Cd discussed in Chapter 5 a typical value for η, assuming a value

of β ≈ 0.04c would be η ≈ 686.

The Adiabaticity Parameter

The semi-classical approximation neglects the fact that the projectile nucleus loses

energy to the target nucleus during the collision process. The excitation energy

is defined as ∆Eif = Ei − Ef and cannot be included in an accurate manner

due to the exact point of transfer being unknown. For the classical trajectory to

be valid it is important that this energy loss does not alter the hyperbolic orbit

significantly. It is therefore a condition of the semi-classical approximation that

∆Eif

Ecm

¿ 1, (2.7)

where Ecm is the centre of mass energy 1
2
m0v

2.

The excitation of an initial state |i〉 to a final state |f〉 though the influence of a

time dependent electromagnetic potential, V (r(t)) may only occur if the collision

time, τ , is shorter than, or of the same order of magnitude as the nuclear period,

∆t, characteristic of the transition. ∆t being defined as ~/∆Eif . The product of

the nuclear frequency, ∆Eif/~ and the collision time, τ , define the adiabaticity

parameter

ξ =
τ∆Eif

~
=

τ

∆t
. (2.8)

For a state |i〉 to be excited to state |f〉, the value of ξ must be of the order or

smaller than unity. We therefore have a condition for the validity of the semi-

classical approximation to hold of

ξ ≤ 1. (2.9)
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As the collision time can be estimated to be the time it takes for the projectile

to travel a distance of the order

d(θ) = a

(
1 +

1

sin
(

1
2
θ
)
)

, (2.10)

where d(θ) is the distance of closest approach for a centre of mass scattering

angle, θ. a is half the distance of closest approach in a head on collision and thus

defined as

a =
1

2
d =

1

2

ZpZte
2

m0ν2
. (2.11)

It can then be shown [Ald75] that the ratio of ∆Eif/Ecm can be written in terms

of the adiabaticity parameter, ξ and the Sommerfeld parameter, η giving

∆Eif

Ecm

=
2ξ

η
. (2.12)

If the conditions n À1 and ξ ¿ 1 are met then the condition described in

Equation 2.7 must also be fulfilled. It can be seen in Equation 2.12 that a large

value of η could allow for a value of ξ À 1 and still have the condition described

in Equation 2.7 fulfilled. However with large values of ξ the excitation probability

falls exponentially.

From Equation 2.12, a limit to the achievable excitation energy through

Coulomb excitation can be obtained. Assuming the condition that ξ ¿1, it can

be seen that the excitation energy limit is of the order of ∼1MeV for low-energy

Coulomb excitation experiments. In considering the work presented in Chapter 5,

a typical value for the adiabaticity parameter would be ξ ≈ 0.81 and is therefore

fully compliant with conditions described in Equation 2.9 and Equation 2.12.

The Excitation Strength Parameter

The magnitude of the excitation probability has a dependence on the strength

of the interaction. A measure of the multipole interaction strength is given by

the dimensionless quantity, the excitation strength parameter. This parameter,

dependent on the multipole order L, is defined in terms of the reduced matrix
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element,〈Ii||M(E2)||If〉 coupling the initial state |i〉 to the final state |f〉

χ(Mλ) =

√
16π(L− 1)!

(2L + 1)!!
· Zpe

aL~v
· 〈If ||M(E2)||Ii〉√

2Ii + 1
(2.13)

χ(ML) is a measure of the number of quanta exchanged during the collision to

the excited state. For lesser values of χ(ML) the probability that quanta are

exchanged remains small. For larger values of χ(ML) the state will be strongly

excited, provided ξ ≤1.

For certain multipole orders χ(ML) can be estimated using the approximation

χ(ML) ≈ V (r(t))τ

2~
(2.14)

where τ is the collision time and V(r(t)) is the time-dependent potential. Upper

limits for values of χ(ML) are listed below [Ald75]

χ(E1) ≈ 10

χ(E2) ≈ 10

χ(E3) ≈ 0.5

χ(M1) ≈ 0.1 (2.15)

It can be seen that the values of χ(ML) for higher multipole orders are two

orders of magnitude smaller, indicating that these higher multipoles result in

little excitation of the final state. As they are much less important than L =

1,2 multipoles they can, to a very good approximation be neglected in Coulomb

excitation calculations.

As χ(ML) measures the number of quanta of angular momentum transferred

during the collision process, another condition for the validity of the semi-classical

approximation can be gained. In order to continue to describe the trajectory of

the colliding nuclei in a classical manner the angular momentum transferred to

the target nucleus from the projectile, ∆l must be significantly lower than the

orbital angular momentum, l i.e ∆l ¿ l. This leads to the restriction

χ(L)

ητ
¿ 1. (2.16)
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If this is not fulfilled the transferred angular momentum will have a significant

effect on the trajectory of the nuclei and the semi-classical approach will no longer

be valid.

2.1.3 Safe Coulomb Excitation

With increasing energy comes increasing probability for Coulomb excitation. It

is therefore desirable to have the highest beam energy possible to increase the

chances of successful Coulomb excitation. To be confident that the process re-

mains purely electromagnetic, it must be ensured that the colliding particles

remain outside the range of the strong nuclear force. To ensure this condition the

distance of closest approach, 2a, defined in Equation 2.11, must exceed the sum

of the radii of the nuclei plus an addition safety distance ∆s.

2a > Rp + Rt + ∆s (2.17)

∆s accounts for the range of the nuclear force and the surface diffuseness of

the nuclear distribution. A review of experimental data on Coulomb-nuclear

interference effects [Cli86] found that the nuclear contribution occured at a level

of less than 0.1% when using a value of ∆s= 5 fm, when assuming a nuclear radius

given by R = 1.2A
1/3
i . Using this value of ∆s a “safe” Coulomb excitation criteria

can be obtained with regards to the distance of closest approach.

2a >
[
R0

(
A1/3

p + A
1/3
t

)
+ 5

]
(2.18)

with a value of R0 = 1.2 fm used in this work. The value of ∆s can now be used

to obtain a limit on the beam energy to ensure “safe” Coulomb excitation. The

Coulomb barrier can be defined by the following equation

Ecb =
1

4πε0

ZpZt

Rint

(
1 +

Ap

At

)
(2.19)

Rint being the interaction radius. The interaction radius for safe Coulomb exci-

tation must be defined using the values of ∆s and r0 given above

Rint = R0

(
A1/3

p + A
1/3
t

)
+ ∆s = 1.2

(
A1/3

p + A
1/3
t

)
+ 5 (2.20)
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taking 1/4πε0 = 1.44MeV·fm a limiting beam energy for safe Coulomb excitation

can be taken as

Escb = 1.44 · ZpZt

1.2
(
A

(1/3)
p + A

1/3
t

)
+ 5

(
1 +

Ap

At

)
MeV. (2.21)

For “safe” Coulomb excitation the main criteria is therefore that the lab energy

of the impinging beam is less than the energy defined by Equation 2.21. In the

case of the experiments discussed in Chapter 5, a beam energy of ∼ 515MeV

can be clearly seen to be ”safe”, as the limiting energy was in the region of ∼
825MeV.

2.1.4 First Order Perturbation Theory

First order perturbation theory allows a simple, yet comprehensive picture to be

obtained describing excitation amplitudes and probabilities for projectile Coulomb

excitation. In this description the differential Coulomb excitation cross section,
(

dσ
dΩ

)
n
, can be written in terms of the Rutherford cross section,

(
dσ
dΩ

)
R
, defined in

Equation 2.5, and the parameter Pn

(
dσ

dΩ

)

n

= Pn

(
dσ

dΩ

)

R

, (2.22)

where Pn is the probability of excitation to the state |n〉. With the excitation of

nuclear levels being described in a classical sense by the time-dependent electro-

magnetic field induced by the motion of the projectile passing the target nucleus,

the excitation amplitude can be found from the solutions of the time-dependent

Schrödinger equation

i~
∂

∂t
|ψ(t)〉 =

(
H

(p)
0 + H

(t)
0 + W (p, t)− ZpZt

r
· e2

4πε0

)
|ψ(t)〉, (2.23)

with H
(p)
0 being the ground-state projectile Hamiltonian, H

(t)
0 the ground state

target Hamiltonian and W(p,t) the electromagnetic interaction between target

and projectile. A quantum mechanical expansion of the electromagnetic interac-

tion between target and projectile can be expressed as the sum of three factors;
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a monopole-monopole interaction, WEE(p,t), a monopole-multipole interaction,

WEM(p,t) and a multipole-multipole interaction, WMM(p,t) leading to

W (p, t) = WE(p, t) + WEM(p, t) + WMM(p, t). (2.24)

The semi-classical approach to Coulomb excitation reduces the monopole-monopole

interaction to classical kinematics. This interaction does not contribute to the

excitation of the nucleus but rather determines the nuclear orbit. The multipole-

multipole interaction is weak with respect to the monopole-multipole interaction

and so can be neglected. The monopole-multipole interactions for heavy ion

collision can be strong, due to the strength being proportional to the respec-

tive electric monopole moment of either target or projectile nuclei allowing for

magnetic excitation to occur. It is therefore the solutions to a time-dependent

Schödinger equation with a monopole-multipole potential between target and pro-

jectile, V(r(t)), that determine the excitation probabilities, Pn. The solutions of

this equation, describing target and projectile excitation therefore take the form

i~
∂

∂t
|ψ(t)〉 = (H

(t)
0 + V (r(t))|ψ(t)〉, (2.25)

and

i~
∂

∂t
|ψ(p)〉 = (H

(p)
0 + V (r(t))|ψ(p)〉. (2.26)

The potential V(r(t)) can be expanded as a multipole series of electric and mag-

netic matrix elements [Ald75]

V (r(t)) =
∞∑

L=1,µ

4πZp(t)e

2L + 1
(−1)LSσL(t)M(σ,−L), (2.27)

where SσL(t) is the time-dependent collision function and M(σ,−L) is the mul-

tipole transition operator for electric or magnetic transitions. This allows for the

excitation probabilities to be directly linked to the transition matrix elements

of the studied nucleus. To aid in the solution of Equations 2.25 and 2.26 it is

assumed that collision and excitation occur much more rapidly than the decay

of the excited state. With collision times in the order of ∼ 10−20 - 10−19 seconds

[Cli86], the sudden approximation is valid as lifetimes of excited states in the
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nuclei studied in this thesis are of the order of picoseconds. Using this approxi-

mation and solving Equations 2.25 and 2.26 at time t = +∞, the time at which

collisions have ended, a solution can be obtained containing a sum of excitation

amplitudes, an = 〈n|ψ(+∞)〉 when assuming nuclear eigenstates |n〉 for n excited

states. The eigenvalues of these states are then defined by

H
(p)
0 |n〉 = E(p)

n |n〉,

H
(t)
0 |n〉 = E(t)

n |n〉. (2.28)

By summing and averaging over initial and final magnetic substates the prob-

ability of excitation to the energy state |n〉 is then Pn = |an|2 which has the

solution

Pn =

∣∣∣∣
1

i~

∫ +∞

−∞
〈n|V (r(t))|0〉ei∆Et/~dt

∣∣∣∣
2

(2.29)

with ∆E being the change in energy from initial to final state. By taking into

consideration the fact that ∆E is small in relation to the total energy and the

fact that the collision time is much shorter than the lifetimes of the excited states

then a simplification to Equation 2.29 can be performed giving

Pn =
∣∣∣〈n|e 1

i~{
∫ +∞
−∞ V (r(t))dt}|0〉

∣∣∣
2

. (2.30)

2.1.5 Coulomb Excitation Cross Section

So as one can evaluate the matrix element in Equation 2.29, and therefore deter-

mine the differential and absolute cross sections, a multipole expansion of V(r(t))

must be performed. Using the expansion of V(r(t)) shown in Equation 2.27 it

can be seen that V(r(t)) contains both electrostatic and magnetic components.

The Coulomb excitation cross sections arising from the electic and magnetic com-

ponents must be considered separately and are given for each order EL by

σEL =

(
Zp

~v
· e2

4πε0

)2

a−2L+2
0 B(EL; Ii → If )fEL(ξ) (2.31)

with

fEL(ξ) =

∫ θ2

θ1

dfEL(θ, ξ)

dΩ
· dΩ. (2.32)
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fEL(ξ) is the Coulomb excitation function for electric excitations and is integrated

over the solid angle covered by the particle detector, with θ1 and θ2 being the

minimum and maximum angles respectively.

Similarly, the excitation due to the magnetic interaction is determined by

σML =

(
Zp

~c
· e2

4πε0

)2

a−2L+2
0 B(ML; Ii → If )fML(ξ) (2.33)

with

fML(ξ) =

∫ θ2

θ1

dfML(θ, ξ)

dΩ
· dΩ (2.34)

and is the analogue of fEL(ξ) for the magnetic interaction. If one compares Equa-

tion 2.31 with Equation 2.33 a noticeable difference is the fact that the magnetic

interactions are suppressed by a factor of
(

v
c

)2
compared to the electric excita-

tions. With REX-ISOLDE able to supply beams with a maximum energy of ∼3

MeV/u, a maximum value of
(

v
c

)
would be ≈0.08, meaning the magnetic interac-

tions would be only 0.6% the strength of the corresponding electric interaction.

For this reason the electric excitations are by far the most dominant excitation

mechanism in the experiments described in Chapter 5.

From Equation 2.31 and Equation 2.33 it follows that in first order perturba-

tion theory the Coulomb excitation cross section is directly proportional to the

reduced transition probability

σML ∝ B(ML; Ii → If ). (2.35)

If one therefore measures the Coulomb excitation cross section a value of B(ML)

can be obtained. In the case of an E2 transition from a 0+ ground state to an

excited 2+
1 state the Coulomb excitation cross section would yield the B(E2; 0+

1 →
2+

1 ) value for the corresponding transition. From this value the magnitude of

the deformation parameter, β2 can be obtained allowing for a measure of the

quadrupole deformation. The lifetime of the excited state can also be deduced

from the measured Coulomb excitation cross section through the B(E2; 0+
1 → 2+

1 )

value. This will be discussed in § 2.1.6.
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2.1.6 Electromagnetic Transitions and the Quadrupole Mo-

ment

The electric quadrupole moment of a nucleus quantifies the extent to which the

nuclear charge distribution deviates from spherical symmetry. The spectroscopic

quadrupole moment Qs is defined as,

Qs = 〈I, M = I|Q̂|I, M = I〉, (2.36)

and the quadrupole operator is given by,

eQ̂s =

∫
ρe(r)r

2(3 cos2 θ − 1) · dτ, (2.37)

in terms of the charge-density distribution ρe(r). In the special case of a spherical

nucleus, then on average,

x2 = y2 = z2 = r2 cos2 θ =
r2

3
,

and thus the integrand in Equation 2.37 vanishes, therefore a spherical nucleus

has a quadrupole moment of zero.

The quantity Qs, frequently termed the spectroscopic quadrupole moment or

the static quadrupole moment, represents the diagonal element of the spherical

electric quadrupole tensor, given by,

eQ0 =

(
16π

5

)1/2
1√

2I + 1
〈II20|II〉〈I||M(E2; µ = 0)||I〉. (2.38)

The rotational model allows for the observed excitations of a deformed nucleus

to be explained in terms of a collective rotation involving all nucleons. It is

assumed that the transitional and static quadrupole moments are equal. The

reduced transitional matrix element is then related to the transitional quadrupole

moment, Qt by the relation

〈If ||m̂L||Ii〉 =

√
5

16π
·
√

2If + 1 · 〈IfKL0|Ii0〉Qt (2.39)

with m̂L being the electromagnetic multipole operator. Within this model one

can relate the static quadrupole moment, Qs to the reduced diagonal matrix
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element according to

〈I||m̂L||I〉 =

√
5

16π
·
√

2I + 1 · 〈IKL0|I0〉Qs (2.40)

The spectroscopic quadupole moment can also be defined in terms of the reduced

diagonal matrix element such that

Qs =

√
16π

5

1√
2I + 1

〈IIL0|II〉〈I||m̂L||I〉. (2.41)

The spectroscopic quadrupole moment measured in the laboratory frame of

the rotating nucleus is related to the intrinsic quadrupole moment Q0, which

would be observed in the frame of reference whereby the nucleus is at rest, ac-

cording to,

Q =
3K2 − I(I + 1)

(I + 1)(2I + 3)
·Q0. (2.42)

In even-even nuclei, the ground state band has K = 0 and therefore ±Q →
∓Q0; a prolate nucleus has a negative Q and positive Q0 value, whereas an oblate

deformation is characterised by a positive Q and negative Q0.

When a nucleus has undergone Coulomb excitation it is, by definition, in

an excited state. This excited state usually decays by an electromagnetic γ-ray

transition. The γ-ray transition probability for a transition from the final, excited

state, If to the initial state, Ii is given by

λ(L) =
1

τ
=

8π(L + 1)

~L[(2L + 1)!!]2

(
Eγ

~c

)2L+1

B (ML; Ii → If ) (2.43)

with L being the multipole index, τ the lifetime of the excited state, If , Eγ

the energy of the emitted γ-ray and B(ML; Ii → If ) the reduced transition

probability which is defined as

B (ML; Ii → If ) =
1

2Ii + 1
|〈If ||m̂L||Ii〉|2 (2.44)

with m̂L being the electromagnetic multipole operator. With the electromagnetic

multipole matrix elements that characterise the excitation from the initial state,

Ii to the final state If being the same as those that characterise the decay from

the final state to the initial state the cross section for Coulomb excitation to a
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particular state is the same as the decay constant for a γ-ray transition from the

excited state. The reduced transition probability for the downward transition can

therefore be written as

B(ML; If → Ii) =
2Ii + 1

2If + 1
B(ML; Ii → If )

=
1

2If + 1
|〈If ||m̂L||Ii〉|2. (2.45)

Equation 2.45 indicates that the B(E2) values are sensitive to the wavefunctions

of the initial and final states. As the electromagnetic operators are well known

direct information about the structure of the nuclear states can be obtained from

measurements of the absolute transition probabilities.

In the case of an electric quadrupole transition the reduced transition proba-

bility can be related to the intrinsic quadrupole moment, Q0 with the relation

B(E2; Ii → If ) =
5

16π
·Q2

0 · 〈IiK20|IfK〉2 (2.46)

The deformation of a nuclear state can be directly inferred from the size and sign

of the quadrupole moment. The Coulomb excitation cross section is influenced

by the quadrupole moment through the reorientation effect. This second order

process describes the effect that the size and sign of the quadrupole moment

has on the magnitude of the Coulomb excitation cross section. A quadrupole

moment that is positive will result in a positive diagonal matrix element and lead

to constructive interference with the first-order transition. This will increase the

observed Coulomb excitation cross section. Conversely a negative quadrupole

moment, that results in a negative diagonal matrix element will decrease the

Coulomb excitation cross section as there will be destructive interference with the

first order transition. A higher Coulomb excitation yield can then be expected

for a positive quadrupole moment. This effect can be observed in Figure 2.2
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Figure 2.2: The effect of differing quadrupole moments on the differential Coulomb
excitation cross section for a beam of 182Hg bombarding a target of 112Cd. The dashed
blue line represents the differential Coulomb excitation cross section for a quadrupole
moment f -1 eb; the dashed red line represents the differential Coulomb excitation cross
section for a quadrupole moment f +1 eb; the solid black line represents the differential
Coulomb excitation cross section for a quadrupole moment of 0 eb

which shows the differential Coulomb excitation cross section when a beam of

182Hg bombards a target of 112Cd and was calculated with the classical Coulomb

excitation code CLX. A value of +1 eb was used for the positive quadrupole

moment, whilst a value of -1 eb was used for the negative quadrupole moment. It

is clear that as the centre of mass angle increases there is an obvious difference

in cross section for differing values of quadrupole moment. It is this sensitivity

that is exploited in the experiments described in Chapter 5.

The shape of an axially symmetric deformed nucleus can be described in terms

of the quadrupole deformation parameter β2, which is related to the eccentricity

of an ellipse through the equation

β2 =
4

3

√
π

5

∆R

R0

. (2.47)

The intrinsic quadrupole moment, Q0 can be written in terms of the β2 parameter
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[LC88] through the equation

Q0 =
3√

π(2λ + 1)
· ZRλ

0βλ ∀ λ ≥ 2. (2.48)

By assuming a uniform charge distribution, the quadrupole moment for an E2

transition can be connected to the quadrupole deformation parameter β2 through

the formula

Q0 =
3√
5π

ZR2β2 (1 + 0.16β2) e, (2.49)

with Z the atomic number of the nucleus under consideration and R = R0A
1/3 the

nuclear radius. It can be seen from Equation 2.49 that the intrinsic quadrupole

moment, Q0 is directly proportional to the quadrupole deformation parameter β2.

A nucleus is labeled prolate in such a case where Q0 > 0 or Qs < 0 and oblate in

the case where Q0 < 0 or Qs > 0. For the special case of an E2 transition from

the first excited 2+ state to the 0+ ground state the reduced transition probability

can be related to the quadrupole deformation parameter by the equation

|β2| = 4π

3
·

√
B(E2; 0+

gs → 2+
1 )

R2
0Z

(2.50)

meaning that the modulus of the quadrupole deformation parameter and thus

the size of the deformation can be extracted solely from the reduced transition

probability. It should be noted that only the size of the deformation can be

extracted when using Equation 2.50. The sign of the deformation parameter

cannot be extracted solely from the reduced transition probability. For this a

measurement of the diagonal matrix element is required.

The reduced transition probability can also yield information on the mixing

of nuclear states. If the wavefunctions are expressed in terms of a simple set

of basis states that span the Hilbert space and are associated to the different

intrinsic structures, it is possible to extract the mixing amplitudes from the ex-

perimental measurements of the reduced transition probability with ease. The

reduced transition probability may be expressed as

B (E2; Ii → If ) =

[∑

jk

αi
jα

f
k〈j|E2|k〉

]2

(2.51)
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with j,k denoting the unperturbed states and αi
j and αf

k the corresponding or-

thonormal mixing amplitudes. It should be noted that
∑

j α2
j = 1. When using

a simple two band mixing scheme where the initial state i is assumed to be a

pure deformed state with a quadrupole moment of Qi
0, the final state assumed to

be mixed and interband transitions between unperturbed states forbidden then a

relationship between the reduced transition probability, the quadrupole moment

and the mixing amplitude can be obtained from Equation 2.52 and Equation 2.46

√
B (E2; Ii → If ) = αf

j

√
5

16π
〈IiK20|If0〉Qi

0 (2.52)

The simplistic approach allows for the extraction of the mixing amplitudes for a

given state purely from the measured electromagnetic properties. The two band

mixing scheme is the most simplistic and has been applied to 186Hg in [Dra94].

More complex mixing schemes have been developed to describe the observed level

structures and transition probabilities of the light, even-even Hg isotopes such as

those described in [WBD+94] using the interacting boson model. Alpha decay

hindrance factors have also been used [BBSD83] to obtain mixing factors in the

light Hg region.

2.1.7 Experimental Method of Coulomb Excitation

It has been shown in the previous sections that the reduced transition probability

and diagonal matrix elements that allow for the quadrupole moment, and there-

fore deformation, to be calculated, are related to the Coulomb excitation cross

section. The calculation of the cross section (and therefore the matrix elements)

in Chapter 5 relies on the excitation of both target and projectile nuclei. Matrix

elements are determined by measuring the γ-ray yield of the transition f → i

from the populated |f〉 state to the initial state |i〉 in coincidence with scattered

projectile nuclei or recoiling target nuclei. The Coulomb excitation yields for

both target and projectile are proportional to the integrated luminosity, L

L = NB

(
N

A

)

t

, (2.53)
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where NB is the number of incident beam particles and (N/A)t is the target

thickness. The Coulomb excitation cross section for the projectile nucleus, which

is the nucleus under investigation in the experiments described in Chapter 5, is

determined by exploiting the fact that the γ-ray yield from the target transitions

are proportional to the γ-ray transition yields from the projectile nucleus. This

allows the unknown Coulomb excitation cross section for the projectile nucleus

to be determined relative to the known Coulomb excitation cross section of the

target nucleus. The γ-ray yield is defined as the number of detected γ rays in the

germanium array. The following expressions define the γ-ray yield for the target

and projectile respectively

N t
γ = εt

γ ·W t
γ · σt

CE · L · εexp

Np
γ = εp

γ ·W p
γ · σp

CE · L · εexp (2.54)

with εγ the γ-ray detection efficiency and L the luminosity from Equation 2.53.

Experimental uncertainties are contained within the factor εexp. The Coulomb

excitation cross section, σCE is defined as

σCE =

∫ (
dσ

dΩ

)

CE

dΩ (2.55)

where the integral is taken over all solid angles covered by the particle detector.

The term Wγ is the angular distribution correction factor. Due to the number of

experimental uncertainties, an exact measure of the absolute cross sections are

unfeasable. It is therefore preferable to exploit the fact that the ratio of the pro-

jectile and target Coulomb excitation cross sections is proportional to the ratio of

the experimental γ-ray yields associated with the projectile and target nuclei. By

taking a ratio of the expressions listed in Equations 2.54 an expression for the un-

known Coulomb excitation cross section of the projectile nucleus can be obtained

in terms of the known Coulomb excitation cross section of the target nucleus and

the measured experimental γ-ray yields associated with the dexcitation of states

with the target and projectile nuclei.

σp
CE =

Np
γ

N t
γ

· εp
γ

εt
γ

· W p
γ

W t
γ

· σt
CE (2.56)
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By taking this ratio all systematic uncertainties associated with L and εexp have

been eliminated and the unknown cross section has been made obtainable with

the only required measurements being the experimental observed yields.

2.1.8 The GOSIA Analysis Code

The program capable of computing multiple Coulomb excitation yields, COULEX

[AW66], used the semiclassical approximation to determine expected yields result-

ing from heavy-ion Coulomb excitation. The main limitation of this code is that

it does not provide a method to determine matrix elements from measured exper-

imental quantities, but rather a set of yields based on the input matrix elements.

These matrix elements would be determined from a certain nuclear model, mak-

ing the code effectively model dependent. The Coulomb excitation analysis code

GOSIA [CCW83] provides a method of determining matrix elements directly from

experimental measurements. The code is based on the semi-classical treatment of

Coulomb excitation and performs a least-squared fit of matrix elements to exper-

imental data in a model-independent manner. The measured yields of observed

transitions in Coulomb excitation experiments are included in this least-squares

fit, along with any other known quantities such as lifetimes, branching ratios and

previously measured matrix elements. The following describes the main processes

involved in determining matrix elements with GOSIA from measured experimen-

tal γ-ray yields.

Yield Determination

The first major step in the analysis of Coulomb excitation data with GOSIA is

the determination of the integrated yields, representing the Coulomb excitation

cross section. GOSIA first of all calculates the point yields, yields corresponding

to a particular combination of particle scattering angle and γ-ray emission angle.

Equation 2.57 is solved for every transition of interest by integrating around the
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possible φp particle scattering angles and summing over spherical harmonics.

Ypoint(I → If ) =

∫

φp

d2σ(I → If )

dΩpdΩγ

dφp (2.57)

Calculations require initial matrix element values and angular attenuation fac-

tors, which describe the efficiency of the γ-ray detectors as a function of angle.

Matrix elements are required for the dominant multipole orders of the transition

of interest and for transitions linking the observed states to higher lying levels, to

account for unobserved feeding to the level of interest. Diagonal matrix elements

must also be defined.

Due to the γ rays emitted from excited nuclei being highly anisotropic, defin-

ing the location of the γ ray detectors is of great importance for the GOSIA χ2

fit. Introducing angular attenuation factors, Q, to the yield integration allows for

the probability of detecting a γ ray at a certain position to be determined. The

attenuation factor, Q, is defined as

Qk(Eγ) =
Jk(Eγ)

J0(Eγ)
, (2.58)

where

Jk(Eγ) =

∫ αmax

0

Pkcos(α) [εabs(α,Eγ)] sinαdα, (2.59)

Eγ the γ-ray energy, α the angle from the central axis of the HPGe detector, εabs

the absolute γ-ray efficiency and Pk the Legendre polynomials.

GOSIA accounts for the energy loss experienced when ions travel through a

thick target by means of incorporating stopping powers for the target material.

Integrating over the energy and scattering angles transforms the point yields

discussed earlier into yields that are comparable to the measured values. Taking

the point yields defined in Equation 2.57 the fully integrated yields, Yint(I → If )

are defined as

Yint(I → If ) =

∫ Emax

Emin

dE
1
dE
dx

∫ θpmax

θpmin

Ypoint(I → If )sin(θp)dθp (2.60)

with Emin and Emax being the minimum and maximum beam energies, θpmin
and

θpmax the minimum and maximum angles of the particle detector with respect to
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the beam axis. The integrated yields are expressed in units of mb/srad.mg/cm2

and so are a measure of the Coulomb excitation cross section for the transition

of interest.

χ2 Minimization and Fitting of Matrix Elements

The calculated yields that incorporate the energy loss of nuclei passing through

the target and the position of the HPGe detectors can be compared directly with

the measured experimental yields. Matrix elements are then varied by GOSIA to

find the optimum fit to the experimental data. The fitting procedure utilises a

least-squares calculation to test trial solutions based on a χ2 calculation. Optional

data such as lifetimes and branching ratios can be incorporated, along with their

experimentally determined error, to reduce the number of degrees of freedom. At

each step in the χ2 minimization values of these observables can be determined

and compared to the measured values. If one defines data from previous exper-

iments as dexp ± θd and the calculated values from the χ2 minimization as dcalc,

the full least-squares goodness of fit is given by

S =
∑

i

(
Y exp

i − Y calc
i

σexp
i

)2

+
∑

j

(
Y calc

j − u

u

)2

+
∑

k

(
dexp

k − dcalc
k

σd
k

)2

(2.61)

Optimal values of all free matrix elements are found by minimizing the value of

S. Errors on the matrix elements are found by determining the 1σ uncertainty

ranges on these values. Off-diagonal, or correlated errors, can also be computed

by GOSIA.

2.2 Lifetime Measurements

The lifetime of nuclear states range from 1015 years to below 10−15 seconds. It

comes as no surprise that with such a large range there are a number of methods

available to measure the lifetime of a nuclear state. For the experiments discussed

in Chapter 4 the expected lifetime for the excited states of the nuclei are in the

range of picoseconds. The appropriate method for measuring lifetimes is therefore
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Figure 2.3: Recoiling nuclei created after an incident beam impinges upon a stationary
target emit γ rays either before or after the stopper foil. The distance d impacts upon
the relative intensities of the γ rays emitted before the stopper, γf and the γ-rays
emitted when the nucleus has been fully stopped, γs.

the Recoil Distance Doppler Shift (RDDS) method and is discussed in detail in

the following sections.

2.2.1 The Recoil Distance Doppler Shift Method

The Recoil Distance Doppler Shift (RDDS) method [SW68] is the standard

method to measure lifetimes of excited nuclear states that are in the range of

∼10−12 - 10−8 s. The basic premise of this method relies on the fact that the

mean lifetime, τ , of the nuclear state is related to the time required by a recoil-

ing nucleus with a certain velocity v/c to travel a distance d. Recoiling nuclei

produced when a beam impinges upon a stationary target travel a distance d

before being stopped by the appropriately named stopper foil. Depending upon

the lifetime of the excited state, γ rays are either emitted in flight before the

nucleus reaches the stopper foil or after the nucleus has been stopped within the

stopper foil. Figure 2.3 illustrates the principles explained. When γ rays are

emitted before reaching the stopper foil they are subject to a Doppler shift while

the energy of the γ rays emitted when the nucleus has been stopped is not. The
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energy of the Doppler shifted γ rays is given by the equation

E = E0

[
1 +

v

c
cosθ

]
, (2.62)

where E0 is the energy of the γ ray emitted at rest and θ is the angle of the emitted

γ ray with respect to the direction of the velocity. It is therefore possible, when

detecting γ rays at an angle θ with respect to the recoil direction to distinguish

those emitted before reaching the stopper foil, γf , and those emitted when the

nucleus has been stopped by the foil, γs. The intensity of a γ-ray transition is

distributed between γf and γs. The intensity of the Doppler-shifted component

is given by the relation

If = I0

(
1− e−d/vτ

)
, (2.63)

while the intensity of the stopped component is given by

Is = I0e
−d/vτ . (2.64)

The mean lifetime, τ , of an excited state can be found from measurements of If

and Is. The fraction of the γ-ray intensity in the stopped component shows an

exponential dependence on the lifetime

Is

Is + If

= e−d/vτ . (2.65)

The mean lifetime can be found as a function of distance using this ratio if the

recoil velocity, v is known.

Equation 2.65 assumes that the excited state of interest is populated promptly

and that no side feeding occurs. To account for such feedings the Differential

Decay Curve method (DDCM)[DHvB89, PHD+92] is used and applied to the

RDDS measurements.

2.2.2 The Differential Decay Curve Method

The Differential Decay Curve method (DDCM) uses the intensities of the flight

and stopped components of the γ-ray transition to obtain the mean lifetime of the
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Figure 2.4: Schematic representation of feeding and depopulating transitions to a level
i where the DDCM will be used to obtain the mean lifetime, τ .

state of interest. The results discussed in Chapter 4 are from an experiment where

a degrader foil was used in place of the stopper foil. This allowed for the recoiling

nuclei to be detected in downstream detectors. In terms of a discussion on the

DDCM the stopped components in the following equations have been replaced

with “degraded components”.

If all direct feeding transitions to the level of interest are known the lifetime

of the excited state can be found by considering a single, first order differential

equation of quantities, which are obtained in the experimental measurements.

When measuring using multiple target to degrader distances, d, illustrated in

Figure 2.3, the mean lifetime of the excited state, τ is found using

τi(d) = −Rij(d)− bij

∑
h Rhi(d)

vdRij(d)/dt
, (2.66)

where Rij(d) is the intensity of the degraded component of the transition from

level i to level j, Rhi(d) the degraded component of the transition that directly

feeds i, the level of interest and bij the branching ratio of the transition from i

to j. An illustrative level scheme depicting transitions that feed and depopulate

the level of interest is shown in Figure 2.4. Rij is related to the decay constant
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λi through the formula

Rij(d) = bij

∫ ∞

t

ni(t)dt (2.67)

with ni(t) being the number of nuclei in a given state i. The values for the deriva-

tive
dRij(d)

dt
in Equation 2.66 are easily obtained from the measured decay curve

when fitting a smooth polynomial through the data points. In RDDS measure-

ments spectra are commonly obtained at multiple target-to-degrader distances,

allowing for the fully Doppler shifted components Is
ij(d), and the degraded com-

ponents Id
ij(d) to be obtained for the transition in various ratios. It is useful in the

analysis of such data to introduce the relative quantity Qij(d) which is defined as

Qij(d) =
Rij(d)

Rij(0)
=

Id
ij(d)

Id
ij(d) + Is

ij(d)
(2.68)

and can be obtained from measured quantities. Using Qij(d) Equation 2.66 can

be rewritten as

τi(d) = −Qij(d)− bij

∑
h[Jhi/Jij]Qhi(d)

vdQij(d)/dt
(2.69)

with Jhi is the relative intensity of the γ-ray transition from level h to level i

and Jij the relative intensity of the γ-ray transition from level i to level j. A

full description of the method and the derivations of formula quoted here can be

obtained from reference [DHvB89].



Chapter 3

Experimental Techniques and

Facilities

The following chapter gives an overview of techniques common to both experi-

ments discussed in Chapter 4 and Chapter 5 such as γ-ray spectroscopy and an

overview of the experimental facilities used to obtain the data analysed in Chap-

ter 4 and Chapter 5. The setup at the Jyväskylä accelerator laboratory will be

discussed in detail along with the Köln plunger, which was the unique aspect of

the experimental setup, to give context to the experiment performed to measure

lifetimes of excited states in the light Hg isotopes described in Chapter 4. The

REX-ISOLDE facility at CERN is described for the purposes of the Coulomb

excitation measurements described in Chapter 5.

3.1 Nuclear Production

Nuclei can be produced in a number of ways. Of interest for the purposes of this

thesis are two methods, which will be discussed separately. The method used

to produce the Hg nuclei that were used in the Coulomb excitation experiments

performed at REX-ISOLDE was the ISOL technique. The method employed to

produce the Hg nuclei at the Jyväskylä accelerator laboratory for the purposes

of the lifetime measurements was the fusion-evaporation technique.

49
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3.1.1 Isotope Separation On-Line

Isotope Separation On Line (ISOL) production of radioactive beams is now em-

ployed in many leading facilities such as TRIUMF and REX-ISOLDE. Before

describing the REX-ISOLDE facility in detail, it is the objective of this section

to give a general overview of the ISOL technique.

The production of nuclei through the ISOL technique usually starts with the

acceleration of light particles such as protons or α-particles. Such particles then

impinge upon a thick primary target, which in the case of the experiment de-

scribed in Chapter 5 was uranium-carbide. Upon impact a wide range of nuclei

are formed through three processes: spallation, fission and fragmentation. The

favoured process is largely dependent upon the energy at which the particles

bombard the primary target. Spallation requires high energies to take place, typ-

ically ≥500MeV. When particles of such an energy impinge upon the primary

target nucleons are knocked out or ‘boiled off’ due to the heat of the collision.

The target nuclei then produce a few large residual products and a large number

of free nucleons. It is then common for an ionising source to remove electrons

from the nuclei that have diffused through the primary target so as they can be

easily accelerated and steered. To reduce the number of species in an ionised

beam, the ions are separated by their charge-to-mass ratio. This produces, often

pure, beams of isotopes consisting of a single mass, A in a singly-charged ionised

state. It should be noted that though much is done to make the beam as pure

as possible contaminants from mass multiples in higher charged states are possi-

ble. After producing a single-species beam, the ions are then transported to the

experimental station as required, or post-accelerated.

3.1.2 Fusion Evaporation

Experiments described in Chapter 4 have employed a rather different technique

than that of ISOL production to obtain the relevent nuclei for experimental study.

Fusion evaporation reactions were employed to produced Hg nuclei in highly ex-
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Figure 3.1: Schematic representation of the various stages in a fusion evaporation
reaction along with typical time scales. [Pau]

cited states. In such reactions, target and projectile nuclei fuse to form a com-

pound nucleus with a high angular momentum and excitation energy. There are

several stages to such a reaction. These stages are highlighted in Figure 3.1.

With sufficient energy to overcome the Coulomb barrier, the colliding target and

projectile nuclei will fuse to form an intermediate compound nucleus. The com-

pound nucleus is formed in a highly excited state and is often rotating, giving the

compound nucleus a certain amount of angular momentum. The specific angular

momentum is characterised by the impact parameter b. After the formation of

the compound nucleus numerous decay channels become available so as energy

and angular momentum can be minimized. The nucleus may undergo fission or
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multi-fragmentation. The compound nucleus may also decay through particle

evaporation. Occurring approximately 10−19 seconds after the formation of the

compound state, light particles such as protons, neutrons or α-particles are emit-

ted from the system when they gain a sufficient amount of energy to overcome

the Coulomb barrier. Typically these light particles take 8-10MeV from the com-

pound nucleus, reducing the total energy and forming new residual nuclei. This

process takes little angular momentum from the system and is hindered when the

total energy of the system is below the particle evaporation threshold, ≈8MeV.

When particle evaporation is no longer energetically favoured, the residual nuclei

will decay by emitting γ rays. This process typically occurs 10−15 seconds after

the formation of the compound state. The decay occurs at first through statistical

or cooling γ rays. These are usually high-energy electric dipole γ-ray transitions

that take a large portion of energy away from the system but little angular mo-

mentum. As the nucleus approaches the yrast region γ-ray emission continues

through discrete low-energy transitions that carry a larger amount of angular

momentum away from the system. These transitions will be within, or near to

the yrast line and will continue until the nucleus reaches its ground state. It is

these discrete transitions that carry information on the structure of the nucleus

and are of importance to the work described in Chapter 4.

3.2 γ-Ray Spectroscopy and Related Topics

As a γ ray is uncharged it cannot be detected directly. The detection of γ rays is

therefore dependent on an interaction with the detector medium that transfers all

or part of the γ ray energy. The three primary interactions types of interaction,

photoelectric absorption, Compton scattering and pair production are discussed in

this section. Much has been written on these three topics and overviews can be

found in such publications as [Kno00]. Therefore only the main characteristics

of these three process are given. Related topics to γ-ray spectroscopy such as

selection rules and internal conversion are covered along with a brief introduction
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to Germanium detectors and arrays. This is intended to lead the reader into the

experimental setups discussed in §3.3 and §3.4.1.

3.2.1 Interaction With Matter

Photoelectric Absorption

Figure 3.2: Schematic representation of photoelectric absorption.

The process of photoelectric absorption is shown in Figure 3.2. During this

process an incident photon undergoes an interaction with an atom of the absorber

material such that the photon energy is converted and an atomic electron is

ejected by the atom. This ejected electron is known as a photoelectron and must

be bound to the atom to in order to conserve energy and momentum. The energy

of the photoelectron (Ee−) is given by,

Ee− = hν − Ebe (3.1)

where Ebe is the binding energy of the photoelectron. This process creates a

ionised absorber atom with a hole, which is quickly filled either through a rear-

rangement of the other electrons resulting in a cascade of X rays, or capture of a

free electron. The probability of the photoelectric process occurring depends on

both the atomic number of the absorber atom Z, and the energy of the incident

photon. The absorption probability can be approximated as:

τ ∝ Zn

E3.5
γ

(3.2)
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where n varies between 4 and 5 for a given energy region. This is derived from

empirical observations [Kra88]. The strong dependence on Z is why high Z mate-

rials such as lead are used for shielding. Photoelectric absorption is the prefered

mechanism of the three main interactions processes as all the energy of the inci-

dent photon is deposited in the detector. However, it is only dominant for low

energy photons (<200 keV) as the probability is inversely proportional to energy.

Compton Scattering

Figure 3.3: Schematic representation of Compton scattering.

The process of Compton scattering is shown in Figure 3.3. Here an incident γ ray

scatters from an electron in the absorber material at an angle θ to the incident

direction, and some portion of the γ-ray energy is relinquished to the electron.

Applying conservation of energy and momentum, the following expression can be

derived for the energy of the Compton scattered photon,

E
′
γ =

Eγ

1 + (
Eγ

m0c2
)(1− cosθ)

, (3.3)

where Eγ is the energy of the incident photon, E
′
γ is the energy of the scattered

photon, θ is the scattering angle and m0c
2 is the rest mass of the electron. The

expression for the energy of the scattering electron is given by

Te = Eγ − E
′
γ =

E2
γ(1− cosθ)

m2
0 + Eγ(1− cosθ))

. (3.4)
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The scattered photon is left with a range of possible energies which leads to the

production of a Compton continuum. If the incident γ ray deposits energy in the

detector via this method and then scatters out of the detector, only the energy

from the scattered electron will be detected. The continuum extends up to an

energy defined by the maximum energy transfer, where there is a sharp cut off

point known as the Compton edge.

Compton scattering is the most probable process for γ rays of intermediate en-

ergy (∼200 keV - 5MeV), the probability decreases rapidly for increasing energy.

The probability of Compton scattering per atom of absorber material depends

on the number of atoms available as scattering centres, and therefore increases

linearly with Z. The probability of Compton scattering at any given angle of θ

can be given by the Klein-Nishina formula [KN29] for the differential scattering

cross section dσ/dΩ:

dσ

dΩ
= Zr2

0

(
1

1 + α(1− cosθ)

)2 (
1 + cos2θ

2

)(
1 +

α2(1− cosθ)2

(1 + cos2θ)[1 + α(1− cosθ)]

)

(3.5)

where Z is the atomic number of the incident material, α is the photon energy

in units of the electron rest-mass energy (α = Eγ /m2
0 ) and r0 is the classical

electron radius, r0 = 2.818 fm. There is a strong tendency for high energy γ rays

to be forward scattered.
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Pair Production

Figure 3.4: Schematic representation of pair production.

The third interaction mechanism, known as pair production is shown in Fig-

ure 3.4. If the incident γ ray has an energy greater than 1.022MeV, twice the

rest mass of the electron, in the field of the atomic nucleus an electron-positron

pair can be created. Any remaining energy from the γ ray is distributed evenly

between the electron-positron pair. As the positron slows to thermal energies

by interaction with the absorbing material, annihilation can occur with one of

the atomic electrons. This produces two 511 keV γ rays, which are either ab-

sorbed or able to escape from the detector. If one of the 511 keV γ rays escape,

a single escape peak is observed at Eγ-m0c
2 and if both escape a double escape

peak at Eγ-2m0c
2. This process only becomes significant for high energy γ rays

(5-10MeV).

3.2.2 Selection Rules and Single-Particle Estimates

To study the properties of a nucleus it is the electromagnetic force that is often

used, rather than the strong nuclear interaction. The transition from a state Ii

to If in an excited nucleus results in an electromagnetic photon being produced.

This photon has an energy equal to the difference in energy between states Ii

and If , when the small recoil energy is neglected, and has a certain parity and
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multipole order associated to it. Selection rules govern which transitions are

allowed between certain states. The angular momentum selection rule governs

the allowed multipolarity of transitions between excited states. For an initial

state with spin Ii and a final state with spin If

|Ii + If | ≥ L ≥ |Ii − If |, (3.6)

where L is the multipole of the transition. For a pure γ-ray transition L 6= 0 due

to the intrinsic spin of the photon. Though a number of multipole transition are

possible, often lower order multipoles are favoured. This can be seen in Table 3.1

depicting transition rates and Weisskopf estimates. A stretched transition occurs

when a γ ray carries off the difference in angular momentum between the two

states.

The parity of the photon is determined by the following selection rules

π(ML) = (−1)L+1,

π(EL) = (−1)L. (3.7)

It therefore follows that no change in parity occurs for an even electric or odd

magnetic transition.

The interaction between the electromagnetic field and the nucleus causes a

change in nuclear state. The transition rate for the emission of a photon is given

by

Tif (ML) =
8π(L + 1)

~L((2L + 1)!!)2

(
Eγ

~c

)2L+1

B(ML : Ii → If ) (3.8)

where M represents electric or magnetic radiation, Eγ the energy of the emitted

photon, L the mulitpole of the transition and B(ML : Ii → If ) the reduced tran-

sition probability. The lifetime of an excited nuclear state is strongly dependent

on the multipolarity of the γ-ray transitions by which it can decay. By assum-

ing that a single nucleon changing from one shell state to another is responsible

for the observed transition an estimate can be obtained for the state’s half-life.

The Weisskopf estimates listed in Table 3.1 are the most common estimate used.
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Weisskopf Estimates

λ(E1) = 1.0× 1014A
2
3 E3 λ(M1) = 5.6× 1013E3

λ(E2) = 7.3× 107A
4
3 E5 λ(M2) = 3.5× 1013A

2
3 E5

λ(E3) = 34A2E7 λ(M3) = 16A
4
3 E7

λ(E4) = 1.1× 10−5A
8
3 E9 λ(M4) = 4.5× 10−6A2E9

Table 3.1: Weisskopf estimates for single-particle transition rates. λ(ML) are in units
of s−1 and E in units of MeV.

These estimates are not exact calculations of the transition rates, but do serve to

provide values that can be compared to experimental measurements.

The electromagnetic transitions between nuclear states may result from only

one or a few particles changing their state, or form a collective motion whereby

many particles within the nucleus change their state. It is from measuring tran-

sition probabilities that one can gain an insight into the magnitude of collective

motion within a certain nucleus. It is the general case that a large reduced tran-

sition probability is indicative of collective motion and a small reduced transition

probability is indicative of single particle behaviour. By comparing the observed

electromagnetic transition rates with the Weisskopf single-particle estimates the

degree of collectivity can be inferred. The collective transition rates listed in

Table 3.2 are shown in terms of the reduced transition probabilities. The ratio

of experimental B(ML) values to those predicted in Table 3.2 will allow for the

reduced transition probabilities to be expressed in Weisskopf units. This in turn

will be an approximation to the number of nucleons involved in the transition

and therefore an indication of collectivity.
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Collective Transition Rate Estimates

λ(E1) = 1.59× 1015B(E1)E3 λ(M1) = 1.76× 1013B(M1)E3

λ(E2) = 1.22× 109B(E2)E5 λ(M2) = 1.35× 107B(M2)E5

λ(E3) = 5.67× 102B(E3)E7 λ(M3) = 6.28B(M3)E7

λ(E4) = 1.69× 10−4B(E4)E9 λ(M4) = 1.87× 10−6B(M4)E9

Table 3.2: Collective transition rate estimates. λ(ML) are given in units of s−1, B(EL)
in units of e2fm2L, B(ML) in µ2

nfm2L+1 and E in MeV

3.2.3 Internal Conversion

A competing electromagnetic process to γ-ray emission is internal conversion.

In this process the excitation energy of the nucleus is transferred to an atomic

electron causing it to be emitted from the nucleus. The kinetic energy of the

electron, Te is thus given by the difference between the transition energy, ∆E =

Ei − Ef and the binding energy of the electron, Be

Te = ∆E −Be. (3.9)

Electrons in different atomic orbits will have different binding energies. It is

therefore possible that for a given transition there are several possible electron

energies. Consideration of Equation 3.9 shows that internal conversion can only

occur if the excitation energy exceeds the binding energy of the electron for the

particular shell it is frequenting. Conversion electrons are labelled by the shell in

which the originated. The K, L and M shells, used so often in atomic physics to

describe electron orbits, correspond to the principle quantum numbers n = 1,

2, 3,. Labelling of electrons as, for example, LI , LII and LIII takes into account

shell substructure and corresponds to electrons originating from the 2s1/2, 2p1/2

and 2p3/2 sub shells respectively. The internal conversion process is accompanied

by the emission of characteristic X-rays. The vacancy left in an atomic shell by

the emission of a conversion electron is filled by an electron form a higher shell.

It is the difference in energy of the two shells that correspond to the energy of the
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emitted X-ray. The probability of internal conversion relative to γ-ray emission

is given by the internal conversion coefficient, α, defined as

α =
Γe

Γγ

, (3.10)

where Γe is the internal conversion rate and Γγ is the γ-ray emission rate. The

total transition rate, Γt is therefore given by the sum of the internal conversion

rate and the γ-ray emission rate

Γt = Γe + Γγ = Γγ(1 + α) (3.11)

Internal conversion coefficients are dependent on three factors: the principle quan-

tum number n, the atomic number Z and the transition energy. The approximate

dependencies are summarised for the most relevent contributions in this work, E2

and M1 transitions

α(E2) ∝ Z3

n3E
9
2
γ

,

α(M1) ∝ Z3

n3E
3
2
γ

. (3.12)

The relations in Equation 3.12 show that internal conversion due to a magnetic

transition is often much larger than for an electric transition, for a given mul-

tipole order. It can be seen that internal conversion is most important when

considering low energy transitions in large-Z nuclei, with the largest contribution

coming from n=1 K shell electrons. Internal conversion has a strong dependence

on multipolarity. Equation 3.12 shows that for a transition of a given energy,

internal conversion due to a M1 component will be greater than that due to an

E2 component by a factor of E3
γ.

Observed γ-ray intensities must be corrected for internal conversion. Conver-

sion coefficients have been calculated and tabulated in a variety of publications,

though those of [RFAP78] have been used in this work.

3.2.4 Germanium Detectors

Energy resolution and efficiency is of great importance for γ-ray spectroscopy.

The material that has been employed in the experiments described in this work



Experimental Techniques and Facilities 61

Figure 3.5: Schematic representation of a High Purity Germanium detector.

for the purposes of γ-ray detection is High Purity Germanium (HPGe). HPGe

detectors are reverse biased p-n junction diodes. Any γ rays interacting with

the germanium will produce electron-hole pairs in the depletion region. The

electric gradient across this region causes the migration of electrons and holes

and therefore produces a detectable electric current. The use of reverse bias

maximises the depletion region and therefore increases the active region of the

detector.

To further enhance the active volume of a HPGe crystal the shape can be

modified. The most common crystal geometry is a closed-end coaxial with tapered

front end corners. This minimises areas of low electric field, which can occur at

sharp corners. Figure 3.5 shows a schematic representation of a typical HPGe

detector with an escape suppression shield.

HPGe detectors are cooled to 77 K using a cold finger extending from a LN2

dewar. With such a small band gap in Ge, thermal leakage current increases

rapidly with temperature. It is therefore important to operate HPGe detectors

at very low temperatures to reduce this effect.

A typical HPGe detector can achieve an energy resolution of ≈ 2.5 - 3.0 keV at
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1.3MeV. As the energy required to produce an electron-hole pair in Ge is much

lower than the typical energy of a γ ray it encounters a multiple of electron-hole

pairs are produced for each incident γ ray, lowering statistical fluctuations and

giving much higher resolution.

3.2.5 Compton Suppression

It is the feature of some, though not all, HPGe detectors to employ some form

of Compton suppression shield. Due to the finite size of a HPGe detector, some

γ rays may not impart all of their energy into the detector medium. γ rays

may Compton scatter out of the detector or pass through completely undetected.

Scattered γ rays will contribute to the total background and decrease detec-

tion efficiency. To counteract this effect, scintillators such as bismuth germanate

(BGO) are used in anti-coincidence with the HPGe detectors. Though BGO has

poor energy resolution it has excellent timing properties and is therefore an ideal

medium for coincidence detectors. If a γ ray is detected in the HPGe crystal and

in coincidence with the BGO shields then the signal will be rejected. This does

not effect photopeak efficiency significantly and reduces the Compton continuum.

This has the advantage of increasing the peak-to-total ratio. The increase can

be as much as ≈20% -50% in singles spectra [BFF+92]. One other advantage of

BGO as a suppression shield is its high density. A relatively small amount of the

material is required to fully stop a scattered γ ray. This becomes important if

one wishes to pack several detectors together closely to form an array.

3.2.6 Detector Arrays

To increase detection efficiency HPGe detectors are often mounted in arrays.

These arrays are designed to cover as much of the 4π solid angle as possible.

A measure of the quality of spectra obtainable with an array is given by the

resolving power R, which is defined as

R =

(
SEγ

∆Eγ

)
PT, (3.13)
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where SEγ is the average energy separation between γ rays in a cascade, ∆Eγ is

the full width at half-maximum (FWHM) of the measured γ rays and PT is the

peak-to-total ratio. It is clear that the peak-to-total ratio plays a significant part

in the resolving power of an array, though in practice it is difficult to increase.

A more controlable factor in the resolving power of an array is ∆Eγ, which has

four major contributing factors

• The intrinsic resolution of the detector system, ∆EI , which takes into account

the individual properties of the detector.

• Doppler broadening due to the opening angle of the detectors, ∆ED. Segmen-

tation of detectors can improve this quantity, as can clustering of detectors.

• Doppler broadening due to the angular spread of recoils, ∆ER. Improvements

can be made with kinematic corrections.

• Doppler broadening due to the velocity distribution of recoils, ∆EV .

The final energy resolution of the detector array is found from summation of these

four factors in quadrature

∆Eγ =
√

∆E2
I + ∆E2

D + ∆E2
R + ∆E2

V (3.14)

In order to resolve a peak in a given spectrum it must stand above the background

and be statistically significant. One way to help improve this is to be further

selective of the γ rays one lets into the spectrum. The use of ancillary devices

such as recoil separators can help reduce background further.

3.2.7 Recoil Separators

Recoil separators are designed to separate the nuclei of interest inflight from the

primary beam particles and other fusion-evaporation products. Magnetic and

electric fields separate the different products by their mass-to-charge ratio. In

a magnetic field the track of a charged particle is defined by the Lorentz force.

If a particle with electric charge q and mass m moves through a homogeneous
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Figure 3.6: The main differences between vacuum and gas-filled recoil separators. It
can be seen that vacuum separators have a higher resolution power, though are not as
efficient at transmitting ions to the focal plane.

magnetic field B with a velocity v then the particle track radius is defined as

ρ =
mv

qB
. (3.15)

Recoil separators can be run in vacuum mode or gas-filled mode (see Fig-

ure 3.6). In vacuum mode recoil separators, the spatial distribution of the recoils

is wide. It is therefore not possible to focus the recoils of interest through the sep-

arator without significant losses. Though only a few charge states can be guided

to the focal plane, an advantage of the vacuum mode is the high resolving power

obtainable. This can be advantages for many experiments.

To avoid the effect of broad charge state distribution, a recoil separator can be

filled with gas. In a gas-filled separator heavy ions undergo collisions that change

the initial charge state of the ion. The charge state of the ions tends towards a

mean value, qav. The ions then proceed along the same trajectory determined by

the average charge state. Defining the average charge to be

qav =
v

v0

Z
1
3 (3.16)

if v is in the range

1 <
v

v0

< Z
2
3 (3.17)

and substituting into Equation 3.15, an expression for the magnetic rigidity of
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the separator can be obtained

Bρ =
mv

qav

≈ 0.0227
A

Z
1
3

, (3.18)

where v0 is the Bohr velocity, 2.19×106 ms−1. The nuclei studied in Chapter 4

were Z=80 Hg nuclei and had an approximate velocity of 0.04c, hence the ap-

proximation is valid [GYL+88].

Equation 3.18 illustrates two important properties of gas-filled separators: the

magnetic rigidity is independent of velocity and of the initial charge distribution

of the particles. Due to this the spatial distribution of recoils after separation is

narrower and so the recoil collection efficiency is higher than in vacuum mode. A

disadvantage of gas-filled separators is the lack of mass resolving power. Typical

mass resolution for gas-filled separators is ≈10%, which is only enough to separate

the recoiling nuclei from the primary beam. Fortunately for the experiments

described in Chapter 4 this was all the resolving power required.

3.3 Jyväskylä Setup

Figure 3.7: Schematic representation of the experimental setup for lifetime measure-
ments performed at the University of Jyväskylä. The Köln plunger is located at the
target position of the JUROGAM array.
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Lifetime measurements of excited states in 182Hg were performed at the University

of Jyväskylä accelerator laboratory. The inhouse setup of the JUROGAM HPGe

array, the RITU gas-filled separator and the GREAT focal plane detector were

used in conjunction with the Köln plunger device. Figure 3.7 shows a schematic

representation of the experimental setup and how the pieces of equipment couple

together. In this section a description of each piece of equipment will be given

along with technical details.

3.3.1 JUROGAM HPGe Detector Array

Figure 3.8: The JUROGAM detector array at the University of Jyväskylä

In order to detect prompt γ rays from excited nuclear states JUROGAM HPGe

detectors are placed in a spherical array around the target position. This array

is located at the entrance to RITU, the gas-filled separator. JUROGAM con-

sists of 43 HPGe detectors, each with BGO Compton suppression shielding. A

combination of EUROGAM Phase I [BFF+92] and GASP type [Alv93] detectors

have been used to build the array. EUROGAM Phase I detectors have a typi-

cal diameter of 69 - 75 mm and a length ≥70 mm. GASP type detectors are of a

similar size, though slightly larger due to a thicker BGO shielding component.

The efficiency of JUROGAM detectors varies from 65% - 85% relative to a 3 x 3

inch NaI detector measuring 1332 keV γ rays at a distance of 25 cm. The energy
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JUROGAM Detector Positions

Position Number of Detectors Angle w.r.t. Beam Line

Ring 1 5 157.6◦

Ring 2 10 133.6◦

Ring 3 10 107.9◦

Ring 4 5 94.2◦

Ring 5 5 85.8◦

Ring 6 8 78.1◦

Table 3.3: The position and angles of the 43 HPGe detectors in the JUROGAM array.

resolution as FWHM is between 2.5 keV and 3.0 keV at 1332 keV. The standard

target chamber was replaced by the Köln plunger device, which is discussed in

§ 3.3.5.

The detector frame is based on an array of regular pentagons with the HPGe

detectors placed at differing angular positions with respect to the beamline. The

number of detectors at each position is summarised in Table 3.3. For the work

described in Chapter 4 detectors at angles close to 90◦ were unable to provide a

sufficiently large Doppler shift to perform lifetime measurements using the RDDS

method. Therefore only detectors in Ring 1 and Ring 2 were used in the analysis

of the data.
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3.3.2 The RITU Gas-Filled Separator

Figure 3.9: The Recoil Ion Transport Unit RITU in position at the University of
Jyväskylä.

The gas filled recoil separator RITU (Recoil Ion Transport Unit) [LÄE+95, Lei97]

provides the required separation of primary beam from the recoiling nuclei. The

separator consists of three quadrupole magnets (Q) and one dipole magnet (D) ar-

ranged in a QDQQ configuration with a total length of 4.8m. The first quadrupole

magnet is used to focus the recoil cone vertically, as the acceptance angle to the

dipole magnet is relatively small at 10 msr. The dipole magnet then separates the

beam particles from the recoiling nuclei as described in § 3.2.7. The remaining

quadrupole magnets focus the recoiling nuclei to the focal plane detectors. RITU

is filled with He gas with an approximate pressure of 1mbar. The high vacuum

beam line is separated from gas volume using either a differential pumping system

or a carbon foil. In the present work a carbon foil was used.

In the A∼180 mass region RITU provides a short separation time, which can

be of the order 0.5µs. and a transmission efficiency in the region of 10 - 30%.
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3.3.3 The GREAT Focal Plane Spectrometer

Figure 3.10: The GREAT focal plane spectrometer at the University of Jyväskylä.

The Gamma Recoil Electron Alpha Tagging (GREAT) spectrometer [PAA+03]

is a focal plane detector array designed primarily for tagging experiments. The

spectrometer has the ability to detect the implanted recoils and perform spatial

and temporal correlations of subsequent radioactive and electromagnetic decays

involving the emission of α particles, β particles, protons, γ rays, X-rays and

conversion electrons. The GREAT spectrometer, shown in Figure 3.10, consists

of a multiwire proportional counter (MWPC), two double-sided silicon strip de-

tectors (DSSDs), 28 PIN diodes, a planar Ge detector and a clover Ge detector

positioned behind the planar detector.

The MWPC located at the entrance of GREAT has two mylar windows mea-

suring 131 mm x 50mm acting as entrance and exit windows and is filled with

isobutane gas. Energy loss, timing and position signals are generated when re-

coils pass through the MWPC. Upon exiting the MPWC recoils are implanted

into two DSSDs, each with an active area of 60mm x 40mm and a thickness of

300µm. 60 vertical and 40 horizontal strips of 1mm width provide 4800 detector

pixels. This high granularity provides an estimated recoil efficiency of ≈80%.

The DSSDs provide a measurement of the energy of the implanted recoil as well
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as measurements of subsequent α, β or proton decays. Coupling the DSSD infor-

mation with the MWPC information allows for the clean separation of recoiling

fusion products from scattered beam particles. This allows for a much cleaner

spectrum through the employment of the recoil tagging technique. GREAT also

has the ability to detect conversion electrons and escaping α particles though the

use of an array of 28 silicon PIN diodes which are mounted in a box arrangement

around the DSSDs. With an active area of 120mm x 60mm x 15mm, a planar

Ge detector is mounted at the back of the DSSDs in order to detect x rays and

low-energy γ rays. High-energy γ rays can be detected at the focal plane by the

clover Ge detector mounted above the vacuum chamber housing the DSSDs and

PIN diodes.

3.3.4 Data Acquisition

To avoid the dead time associated with conventional data acquisition systems,

the triggerless Total Data Readout (TDR) system [LAB+01] has been employed.

Data from all detectors is read simultaneously and stamped with a global 100MHz

clock with a 10 ns accuracy. The front-end electronics of the TDR system are

commercial NIM/CAMAC units. Data is fed to the analogue-to-digital converter

(ADC) cards via shaping amplifiers and constant fraction discriminators (CFDs).

The ADC cards timestamp the data to within a 10 ns precision. A metronome

unit ensures all ADCs are synchronised. Events are then time ordered and sent to

the event builder, which uses the spatial and temporal information to reconstruct

events. The data is then formatted by the event builder for use in the online

sorting device GRAIN [Rah07].
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3.3.5 Köln Plunger Device

Figure 3.11: The Köln plunger device installed at the target position of JUROGAM.

The Köln plunger is a device used to perform RDDS lifetime measurements. In

the experiment discussed in Chapter 4 the plunger device was located at the target

position of JUROGAM. The position of the plunger can be seen in Figure 3.11.

At the heart of the plunger device is a chamber housing the target and degrader

foils (see Figure 3.12). Target and degrader foils are stretched and mounted on

conical support rings. These in turn are mounted to frames that are attached to

movable rods. The distance between target and degrader foil can be be set by

changing the position of the target foil. While the degrader foil position is fixed,

the position of the target foil can be changed using a commercial piezoelectric

device (Inchworm). Distances less than 200 µm are measured by a magnetic

transducer. Distances greater than 200 µm are measured using an optical system

attached to the Inchworm. A separate control system records the distance for

each experimental run. For short distances an automatic regulation system is

used based on the capacitance between target and degrader foils.
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Figure 3.12: Technical representation of the Köln plunger device focusing on the target
and degrader set up.

3.4 CERN ISOLDE Facility

Figure 3.13: Schematic layout of the ISOLDE hall at CERN. The REX linac and
MINIBALL spectrometer are located in the south-west corner of the diagram.

The experiments described in Chapter 5 were performed at the ISOLDE facility,

CERN. A schematic representation of the ISOLDE hall is given in Figure 3.13.

Radioactive isotopes are produced at ISOLDE through spallation, fragmentation
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or fission reactions. Protons with energies of 1.0 - 1.4GeV bombard the primary

target to produce numerous radioactive isotopes. The protons are provided by the

CERN PS Booster (PSB), which consists of four synchrotrons that can provide a

maximum proton beam intensity of 3.2x1013 p/pulse. Singly charged ions are then

extracted from the target-ion source and then accelerated to 60 keV and guided

to either of ISOLDE’s two isotope separators: the General Purpose Separator

(GPS) and the High Resolution Separator (HRS). The GPS has a mass resolving

power of m
∆m

≈ 2400 whilst the HRS has a mass resolving power of m
∆m

≈ 5000.

3.4.1 REX-ISOLDE Post Accelerator

The Radioactive beam EXperiment (REX) [HKS+98, KSE+03, CAB+04] at

ISOLDE is used for the post acceleration of radioactive isotopes. Beams of

singly-charged atoms are delivered to the Penning trap, REX-TRAP where they

are cooled and bunched. The bunches are then sent to REX-EBIS, an electron

beam ion source, where they are converted to highly charged ions. The highly

charged ions that satisfy the specified mass-to-charge ratio, A/q, are extracted as

ion bunches, mass separated and injected into the linear accelerator REX-LINAC

where they accelerated to an energy around 3.0 MeV/u.



74 CHAPTER 3

Charge Breeding

Figure 3.14: REX-TRAP (left) and REX-EBIS (right) in the ISOLDE hall CERN.

The charge breeding system at REX-ISOLDE comprises of REX-TRAP [SAB+02],

REX-EBIS [Wen02, WCF+03] and an achromatic A/q separator [RKS+99], which

guides the mass-separated beam towards the REX-LINAC. 60 keV 1+ ions deliv-

ered by ISOLDE enter the gas filled REX-TRAP and are retarded due to collisions

with the dipole-polarised buffer gas. This allows for the continuous injection of

ions in the trap. The cylindrical structure of REX-TRAP is located on a 60 keV

high voltage platform with a magnetic field of 3 Tesla provided by a supercon-

ducting solenoid bore. Such a strong magnetic field provides radial confinement

of ions within REX-TRAP, whilst a quadrupole electric potential provides lon-

gitudinal confinement of the ions. Further selectivity of the species of interest

is provided through sideband cooling [ABD+05], which couples the magnetron

and reduced cyclotron motions of the ions. After a typical accumulation and

cooling time of 20ms the ions are extracted from the trap in short bunches and

re-accelerated to 60 keV and injected into REX-EBIS for charge breeding. Trans-

mission through REX-TRAP is dependent upon the number of ions accumulated.

For an intensity of less than 105 ions per bunch an efficiency of up to 45% can be

reached. Efficiency decreases with increasing number of ions and can be as low

as 10% for intensities of 107 ions per bunch.
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REX-EBIS produces highly charged ions by bombarding ions sent from REX-

TRAP with mono-energetic 5 keV electrons. Current densities of around 150A/cm

are obtained by compressing a 0.2 A electron beam using a 2T magnetic field

created by a superconducting solenoid. For a certain operational frequency, the

breeding time can be varied. Varying the breeding time changes the charge state

distribution of the produced ions, allowing for certain A/q values to be opti-

mised. It is therefore possible to tune REX-EBIS to the optimal charge state of

the ions required for post-acceleration by the REX-LINAC. The beam extracted

from REX-EBIS has a typical bunch width of ∼100µs. As only one charge state

from the total charge state distribution is chosen by the A/q selector, the maxi-

mum breeding efficiency of REX-EBIS is about 30%. As the number of positively

charged ions that can be stored in REX-EBIS is around 2x1010 per breeding cy-

cle, REX-EBIS does not limit the intensity of the post-accelerator. The number

of desired nuclei produced is often several orders of magnitude smaller that the

residual stable gas ions bred in REX-EBIS. Mass separation of the beam extracted

from REX-EBIS is performed by a S-shaped separator with a mass resolution of

A/q
∆A/q

≈ 100 -150. The separator has a transmission efficiency of about 75-90%.

The chosen, highly charged radioactive ions are then sent to the REX-LINAC for

post-acceleration.
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REX Linac

Figure 3.15: REX-LINAC in situe at the ISOLDE hall CERN.

The REX-LINAC, shown in situ in Figure 3.15 and schematically in Figure 3.16,

consists of four resonant structures, each adjustable of a certain energy range. The

first stage of acceleration occurs when 5 keV ions from REX-EBIS are accelerated

to an intermediate energy of 300 keV/u by the RFQ structure. The IH structure

then further accelerates the ions to an adjustable energy of 1.1 - 1.2 MeV/u. The

final acceleration stages consist of three 7-gap resonators delivering energies in

the range of 0.8 - 2.25MeV/u, and a 9-gap resonator delivering the final, maxi-

mum energy of 3.0MeV/u. The resonance frequency of the 7-gap resonators is

101.28MHz, whist the 9-gap resonator has a frequency of 202.56MHz. The ratio

of the time over which the LINAC is on over the total time between EBIS pulses

is known as the duty cycle and is 10%.

The total transmission through REX-LINAC is in the order of 80%. When

considering the efficiencies of REX-TRAP, REX-EBIS and the A/q separator,

the overall efficiency of REX-ISOLDE is ≈5%. The overall efficiency is defined as

the ratio of the number of ions reaching the target to the number of ions delivered

by ISOLDE to the front of REX-TRAP.
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Figure 3.16: Schematic layout of the REX-LINAC [Rex]. The figure shows the acceler-
ating units of REX-LINAC, a bending magnet which guides the ions to one of the two
beam lines and the 65◦ beam line leading to the target position of MINIBALL.

3.4.2 MINIBALL HPGe Array

Figure 3.17: The MINIBALL array in situe at REX-ISOLDE.

The MINIBALL detector array consists of 24 individually encapsulated HPGe de-

tectors, each with 6-fold electronic segmentation. The detectors are encapsulated

with a 0.7mm aluminium casing and are arranged into 8 triple-cluster units. The

arrangement of the detectors in triple clusters allows for the implementation of

an addback procedure, where the individual energies in the three detectors can be

summed in the event of a γ ray depositing its energy in neighbouring crystals. The

individual cores provide a granularity of 24, whilst the electronic segmentation

brings the granularity to 144. Typical depletion voltages for MINIBALL HPGe

crystals are 2.5 -4̇.5 kV. Each triple-cluster is kept at LN2 temperature through

the use of a cold finger and an attached dewer containing LN2. The 8 triple cluster
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units are mounted to the supporting structure which consists of 6 semi-circular

arms, each with three adjustable mounting points as shown in Figure 3.17. The

movable supporting arms provide the ability to position the triple cluster units

in numerous ways and to obtain the optimum configuration for maximum solid

angle coverage. The clusters can also rotate on their own axis and the target-to-

detector distance can be modified, for further configuration options. Due to the

MINIBALL target chamber having a radius of 8.5 cm, the minimum target-to-

detector distance is approximately 9 cm. At such a distance the maximum solid

angle coverage is approximately 60% of 4π. The average γ-ray resolution of the

MINIBALL detector cores is 2.3 keV at 1.3MeV. For the MINIBALL segments

the resolution decreases slightly to 2.8 keV at 1.3 MeV.

3.4.3 CD Detector

Figure 3.18: The CD particle detector inside the MINIBALL target chamber.

In Coulomb excitation experiments particle detection techniques must be em-

ployed in order to identify target and projectile kinematics branches. Located

inside the MINIBALL target chamber and mounted 30.5 mm behind the mov-

able target wheel, a double-sided silicon strip detector is located. The segmented

Si detector [OCD+02] consists of 4 independent and identical quadrants and is

known as the CD detector. Each quadrant has 16 annular strips on the front side.

Each strip is 1.9mm wide with a pitch of 2.0 mm. The back side of the detector
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has 24 sector strips with a 3.4◦ pitch resulting in a total of 160 discrete detector

elements. The polar and azimuthal coordinates of impinging beam and target

nuclei can therefore be easily identified. With a target to detector distance of

30.5mm the resulting polar angle coverage of the CD detector in the laboratory

frame is 16.2◦ to 53.3◦. The polar and azimuthal resolution is approximately 2◦.

The CD detector has an outer radius of 42.5mm and an inner radius of 7.5mm.

An azimuthal range of 82◦ is covered by each quadrant resulting in a total active

area of 91%.

3.4.4 Data Acquisition

Figure 3.19: Electronics layout of the DAQ trigger generation.

The electronics setup and data acquisition system of MINIBALL is optimised

to record information necessary to perform γ-particle coincidences. Detectors

in the MINIBALL array are read out using digital XIA DGF4-C modules. The

CD detector is read out using CAEN V785 modules. A readout of all channels

in one quadrant is fed into a DGF running on the same 40MHz clock as that

of the MINIBALL DGFs. With each individual quadrant treated this way, the

CD detector can be regarded as four independent particle detectors. This allows

accurate γ-particle-particle coincidences to be determined in the event building

process, where a γ ray is required in coincidence with two particles - in opposing

CD quadrants. Readout of MINIBALL electronics is aligned to the pulse signal of

REX-EBIS. At the start of an EBIS pulse the ‘on beam’ window is opened. The

size of the window is typically 800 µs. After this time window closes a readout
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occurs. The ‘off beam’ window is opened for 8 ms after the start of the EBIS

pulse. An event in this window will force a second readout. Triggers arriving

within 10ms of the next EBIS pulse are rejected to ensure a clean ‘on beam’

window. If a readout is initiated the data stored onboard the buffers of the XIA

and CAEN modules are read out. For the CAEN V785 modules, the maximum

number of events that can be stored in the buffer is limited by hardware to 32. The

maximum number of events for the XIA DGF4-C modules can be set by software.

The basic layout of DAQ triggers is shown in Figure 3.19. A logical OR of all

channels of the MINIBALL array that detect a γ-ray event. This signal is used to

create a hardware coincidence window. If a particle OR arrives within this time

window a particle-γ coincidence event will be written, generating the particle-γ

coincidence trigger. If a particle OR arrives outside of this window but within the

4µs event-building time window, then these free particles are downscaled. The

particle setup of Figure 3.19 exists for all four quadrants of the CD with the same

common γ gate resulting in a total of 8 DAQ triggers.
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Lifetime Measurements of 182Hg -

Analysis and Results

4.1 Experimental Details

Lifetime measurements of excited states in 182Hg were performed at the Uni-

versity of Jyväskylä accelerator laboratory in September 2006 using the Recoil

Distance Doppler Shift (RDDS) method. Excited states of 182Hg were populated

in the fusion-evaporation reaction 96Mo(88Sr,2n)182Hg at an energy of 310MeV

with target thickness of 0.8mgcm−2. The reaction at this energy provided an

initial recoil velocity of v/c =4.4%. Typical beam currents were in the region of

2 pnA, limited by the heating of the stretched target and the counting rate of the

JUROGAM array. The standard target chamber of JUROGAM was replaced by

the Köln plunger device in order to perform RDDS lifetime measurements. The

low production cross section of 182Hg required that the selectivity of prompt γ

rays was high. The standard stopper foil was therefore replaced by a 1mgcm−2

Mg degrader foil. The fusion-evaporation residuals could therefore enter RITU

and be separated from the scattered beam according to their magnetic rigidity.

At the focal plane of RITU recoils were implanted into the GREAT spectrome-

ter. MWPCs were used to record energy loss and timing signals and two DSSD

detectors recorded the arrival time of the recoil and its subsequent decays.
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Figure 4.1: Time of flight vs energy loss in the MWPC. Residual fusion evaporation
products are on the left and circled with the gate used in the sort code. Scattered beam
particles are to the right of the residual fusion evaporation products.

4.2 Recoil Distance Doppler Shift Measurements

of 182Hg

The timing and energy loss signals of the MWPC were combined with the timing

information of the DSSDs in order to perform recoil gating. Thus prompt γ rays

recorded at the target position of the JUROGAM array were associated with the

recoils detected at the GREAT focal plane detector. All spectra produced in this

chapter used a recoil gate condition. The DSSDs have been used in conjunction

with the MWPC to produce a two-dimensional histogram of the time of flight of

recoils versus the energy loss recorded in the MWPC. For 182Hg this is shown in

Figure 4.1. Coincident recoil-gated γ rays recorded with JUROGAM detectors in

Ring 1 and Ring 2 (see Table 3.3) and the whole JUROGAM array were sorted

into two separate matrices for each target-to-degrader distance used. Fifteen

Target-to-degrader distances ranging from 15 µm to 3000µm were used for the

purpose of creating spectra showing the evolution from shifted to degraded for

each yrast transition. To illustrate the quality of spectra obtained, Figure 4.2

shows the total projected recoil-gated spectrum obtained from a γγ-coincidence
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Figure 4.2: The total projection from a recoil gated γγ coincidence matrix for the
target-to-degrader distance 3000µm. Yrast transitions in 182Hg used in the DDCM
analysis are labeled.

matrix using Ring 1 of JUROGAM and the whole JUROGAM array.

Spectra were produced for lifetime analysis from the γγ-coincidence matrices

by gating on the transition directly feeding the level of interest for each target-to-

degrader distance and projecting onto the axis of the Ring 1 or Ring 2 JUROGAM

detectors. An example of a gated spectrum obtained from a recoil gated γγ co-

incidence matrix is given in Figure 4.3. When gating directly above the level

of interest, uncertainties originating from the time behaviour of unobserved side

feeding are eliminated. It is usual in DDCM analysis to only gate on the fully

Doppler shifted component of the feeding transition. Due the shifted and de-

graded components being close in energy, it was necessary in this case to gate on

the entire feeding transition. This method has been shown to be consistent with

the standard method [DPS+03].

It can be seen in Figure 4.2 and Figure 4.3 that the lifetimes of excited yrast

states in 182Hg that are obtainable from this data set are for the 2+,4+,6+,8+ and



84 CHAPTER 4

0 100 200 300 400 500 600 700 800 900 1000
Energy (keV)

0

10

20

30

40

50

60

70

80

90

C
ou

nt
s

Figure 4.3: Projection of prompt γ rays in coincidence with the 351 keV 2+ → 0+

transition. The projection is obtained from a matrix of Ring 1 of JUROGAM and the
whole of JUROGAM at a target to degrader distance of 3000µm.

10+ states. Yrast transitions higher than the 12+ → 10+ were weakly populated

and lacked sufficient statistics for lifetime analysis. Lifetimes of states higher

in the yrast band than 10+ were unobtainable, as there was found to be no

degraded component to the transition even at the shortest target-to-degrader

distance. This suggests that the lifetimes of these high spin states are below the

sensitivity of RDDS measurements and are sub-picosecond. When gating on the

populating transition to the level of interest for each of the 15 target-to-degrader

distances, the evolution of the depopulating transition from fully Doppler shifted

to degraded can be observed and the intensities of the shifted Is and degraded

Id components obtained. For the depopulating transition of the 2+ yrast state

the evolution of the shifted and degraded components can be seen in Figure 4.4

and Figure 4.5. These Figures show the deconvoluted spectra for all 15 target-

to-degrader distances, for each individual gate, for both Ring 1 and Ring 2 of

JUROGAM. Table 4.1 and Table 4.2 list the shifted and degraded counts, Is
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and Id for the 2+ → 0+ transition at each target-to-degrader distance separately

for each JUROGAM ring used. Counts were obtained by fitting the shifted and

degraded components of the transition of interest using the IKP Köln package TV.

Energies of fitted peaks were normalised to the fully shifted 2+ → 0+ transition.

Appendix A Contains similar figures and tables corresponding to the deopulating

transitions of the 4+, 6+, 8+ and 10+ yrast states.
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Figure 4.4: Spectra showing the deconvolution of the fully Doppler shifted and degraded
components of the 351 keV 2+ → 0+ transition, gated on the populating 261 keV 4+ →
2+ transition when using Ring 1 of JUROGAM. Target-to-degrader distances are listed
in each panel, dashed lines indicate the degraded component whilst dotted lines indicate
the fully Doppler shifted component of the transition.
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351 keV 2+ → 0+ Transition JUROGAM Ring 1

Distance d (µm) Counts Is Counts Id

15 1±5 453±22

25 1±5 368±20

35 1±5 462±23

50 2±4 308±18

60 1±4 319±19

70 2±6 430±22

100 1±4 275±18

150 13±7 472±23

250 13±8 536±25

300 13±7 488±23

500 56±10 388±21

700 129±13 373±21

1000 215±16 309±19

2000 389±21 99±13

3000 420±22 24±8

Table 4.1: Summary of measurements of different target-to-degrader distances for the
351 keV 2+ → 0+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 5 JUROGAM
detectors at 157.6◦.
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Figure 4.5: Spectra showing the deconvolution of the fully Doppler shifted and degraded
components of the 351 keV 2+ → 0+ transition, gated on the populating 261 keV 4+ →
2+ transition when using Ring 2 of JUROGAM. Target-to-degrader distances are listed
in each panel, dashed lines indicate the degraded component whilst dotted lines indicate
the fully Doppler shifted component of the transition.
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351 keV 2+ → 0+ Transition JUROGAM Ring 2

Distance d (µm) Counts Is Counts Id

15 36±17 897±33

25 22±16 786±31

35 21±15 1064±36

50 31±14 681±29

60 19±13 692±29

70 19±14 908±34

100 25±14 618±28

150 15±12 862±33

250 12±9 1160±38

300 14±9 894±33

500 129±22 841±34

700 243±25 678±32

1000 547±32 546±31

2000 1029±39 150±24

3000 906±35 17±10

Table 4.2: Summary of measurements of different target-to-degrader distances for the
351 keV 2+ → 0+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 10 JUROGAM
detectors at 134.8◦.
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4.3 Lifetime Analysis Using the Differential De-

cay Curve Method

Figure 4.6: Decay curves of the lowest four yrast states in 182Hg extracted from data
recorded with Ring 1 of JUROGAM. Smooth lines are for the purpose of guiding the
eye only.

Decay curves measured with JUROGAM detectors at 158◦ and 134◦ were analysed

separately by means of the Differential Decay Curve Method (DDCM), details of

which are given in § 2.2.2. Distance normalisation was performed by normalising

the area of the degraded component (or fully Doppler-shifted component) of the

transition of interest to the sum of the areas of the fully Doppler shifted and

degraded components, as described in Equation 2.68. Sample decay curves, con-

structed from data using the 158◦ JUROGAM detectors, are given in Figure 4.6.

Decay curves for both degraded and fully Doppler-shifted components were anal-

ysed separately, resulting in multiple lifetimes for each level investigated. The

quoted lifetime is therefore an average of these values. An appropriate fit of the

normalised degraded and fully Doppler-shifted components in NAPATAU yielded

lifetimes for each investigated state. Figure 4.7 to Figure 4.11 show the fits and
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resulting lifetime values obtained from the measured decay curves using NAP-

ATAU. It is important to note that only the region of sensitivity, as defined in

§ 2.2.2, needs be to fitted to obtain values for the lifetimes of the excited states.

Values outside of this region have not necessarily been used in the fit, as can be

seen in these figures.

Lifetimes for excited states are obtained from Figure 4.7 to Figure 4.11 using

the DDCM. Shown in the middle panel of each figure is the decay curve associated

to the depopulating transition from the level of interest. The red data points in

the bottom panel represent the difference in intensity between the populating

and depopulating transitions to the level of interest. This relates directly to the

numerator on the right hand side of Equation 2.66. The solid blue line in the

bottom panel is the differntial of the decay curve of the populating transition.

This is of course relates directly to the denominator of Equation 2.66 and is found

by fitting smoothly connected polynomials to the derivative of the decay curve.

The lifetime at each point in the region of sensitivity is found by taking the ratio

of the derivative of the decay curve to the difference in intensities of the feeding

and depopulating transitions. This ratio is a direct measure of the lifetime at

each point. The weighted averages of each ratio obtained at points in the region

of sensitivity then result in the quoted value of τ .
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Figure 4.7: Lifetime plots generated from NAPATAU for data obtained with Ring 1
(left) and Ring 2 (right) of JUROGAM. The top panel shows the values of τ obtained
for three distances within the region of sensitivity. The mean value of τ is represented
a bold green line, whilst the upper and lower values are shown on the diagram as a feint
green line. The middle panel shows the normalised fully Doppler-shifted component of
the depopulating 2+ → 0+ transition, with the decay curve drawn in red. The bottom
panel represents the difference between the degraded components of the feeding 4+ →
2+ transition and the depopulating 2+ → 0+ transition. The solid blue line is the
derivative of the decay curve depicted in the middle panel, multiplied by τ .
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Figure 4.8: Lifetime plots generated from NAPATAU for data obtained with Ring 1
(left) and Ring 2 (right) of JUROGAM. The top panel shows the values of τ obtained
for three distances within the region of sensitivity. The mean value of τ is represented
a bold green line, whilst the upper and lower values are shown on the diagram as a feint
green line. The middle panel shows the normalised fully Doppler-shifted component of
the depopulating 4+ → 2+ transition, with the decay curve drawn in red. The bottom
panel represents the difference between the degraded components of the feeding 6+ →
4+ transition and the depopulating 4+ → 2+ transition. The solid blue line is the
derivative of the decay curve depicted in the middle panel, multiplied by τ .
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Figure 4.9: Lifetime plots generated from NAPATAU for data obtained with Ring 1
(left) and Ring 2 (right) of JUROGAM. The top panel shows the values of τ obtained
for three distances within the region of sensitivity. The mean value of τ is represented
a bold green line, whilst the upper and lower values are shown on the diagram as a feint
green line. The middle panel shows the normalised fully Doppler-shifted component of
the depopulating 6+ → 4+ transition, with the decay curve drawn in red. The bottom
panel represents the difference between the degraded components of the feeding 8+ →
6+ transition and the depopulating 6+ → 4+ transition. The solid blue line is the
derivative of the decay curve depicted in the middle panel, multiplied by τ .
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Figure 4.10: Lifetime plots generated from NAPATAU for data obtained with Ring 1
(left) and Ring 2 (right) of JUROGAM. The top panel shows the values of τ obtained
for three distances within the region of sensitivity. The mean value of τ is represented
a bold green line, whilst the upper and lower values are shown on the diagram as a feint
green line. The middle panel shows the normalised fully Doppler-shifted component of
the depopulating 8+ → 6+ transition, with the decay curve drawn in red. The bottom
panel represents the difference between the degraded components of the feeding 10+ →
8+ transition and the depopulating 8+ → 6+ transition. The solid blue line is the
derivative of the decay curve depicted in the middle panel, multiplied by τ .
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Figure 4.11: Lifetime plots generated from NAPATAU for data obtained with Ring 1
(left) and Ring 2 (right) of JUROGAM. The top panel shows the values of τ obtained
for three distances within the region of sensitivity. The mean value of τ is represented
a bold green line, whilst the upper and lower values are shown on the diagram as a feint
green line. The middle panel shows the normalised fully Doppler-shifted component of
the depopulating 10+ → 8+ transition, with the decay curve drawn in red. The bottom
panel represents the difference between the degraded components of the feeding 12+ →
10+ transition and the depopulating 10+ → 8+ transition. The solid blue line is the
derivative of the decay curve depicted in the middle panel, multiplied by τ .
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The final mean lifetime for each measured excited yrast state in 182Hg is listed

in Table 4.3. The final values for each excited state are averages of the values

obtained from the separate analysis of data obtained with detectors in Ring 1

of JUROGAM and Ring 2 of JUROGAM. By using the rotational model and

assuming a rotating quadrupole deformation, the absolute values of the transi-

tional quadrupole moments, Qt and the deformation parameters |β2| have been

extracted from the experimental B(E2)↓ values. Along with the mean lifetime

for each measured excited state, Table 4.3 lists B(E2)↓, Qt and |β2| values for

each measured yrast state in 182Hg.

Average Lifetime Values and Associated Parameters for 182Hg

Eγ (keV) Iπ τ (ps) B(E2)↓ (W.u) |Qt| (e.b) |β2|
351.8 2+ 41(3) 57(4) 4.17(14) 0.135(5)

261.4 4+ 35.7(15) 264(11) 7.53(16) 0.244(6)

333.1 6+ 8.2(5) 370(30) 8.5(3) 0.274(9)

414.0 8+ 2.9(3) 380(40) 8.4(5) 0.271(13)

487.4 10+ 1.2(3) 400(100) 9(1) 0.28(4)

Table 4.3: Average lifetime values and electromagnetic properties for measured yrast
states in 182Hg. γ-ray energies and values of Iπ are taken from [BHB+95]. A value of
k=0 is assumed.
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Chapter 5

Coulomb Excitation of 182,186Hg -

Analysis and Results

5.1 Experimental Details

In the Autumn of 2008 beams of 182,184,186,188Hg were provided by REX-ISOLDE

for Coulomb excitation measurements. A 1.4GeV proton beam was taken by

ISOLDE at a repetition rate of 1.2 s cycling with each of the 7/12 pulses of the

PSB supercycle, containing, on average, between 1.5 x 1013 and 2 x 1013 protons,

with a beam current of approximately 1.7 µA. Protons were delivered to the pri-

mary UC2 target producing the above mentioned Hg isotopes. Singly-charged Hg

isotopes were then charge bred by REX-EBIS to a charge state of q=+43 before

being post accelerated by REX-LINAC to energies of 2.85 MeV/u. Table 5.1 lists

the isotope intensities measured at the target position of MINIBALL for each Hg

isotope accelerated. Inside the MINIBALL target holder was housed 2mgcm−2

cadmium targets. For the Coulomb excitation of 182Hg, a 112Cd target was em-

ployed, whereas for the Coulomb excitation of 186Hg a 114Cd target was used.

For all cases, Coulomb excitation of the Hg isotopes was performed in inverse

kinematics.
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Isotope Intensities

Isotope Intensity (pps)

182Hg 4.9 x 103

184Hg 1.0 x 105

186Hg 2.5 x 105

188Hg 3.1 x 105

Table 5.1: Measured intensity at the target position of MINIBALL of the accelerated
Hg isotopes.

5.2 Efficiency Calibration

The Coulomb excitation cross section of the Hg isotopes is measured relative

to the Coulomb excitation cross section of the particular Cd target employed.

It is therefore imperative that an accurate efficiency calibration be performed

for the MINIBALL HPGe detectors. At the start of the experimental run, a

combined 152Eu and 133Ba source was placed at the target position of MINIBALL.

Such a combination allows for a wide range of energies to be considered, ranging

from 80.9 keV - 1408 keV. The relative efficiency curve shown in Figure 5.1 was

produced by normalising the 133Ba data to the 152Eu data.

Figure 5.1: Relative efficiency curve for the MINIBALL HPGe array. Data points are
obtained from 152Eu and 133Ba sources. The solid red line is a fitted function obtained
using RADWARE.
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Relative Efficiency Parameters

A B C D E F G

6.8 5.0 0 4.818 -0.496 -0.081 14.8

Table 5.2: Tabulated relative efficiency parameters obtained using RADWARE. Param-
eters describe the relative efficiency curve in Figure 5.1 and have been used in GOSIA
input file to correct raw yields.

After 100 iterations the fit converged with a χ2/d.o.f = 2.61. The evaluated

parameters of the relative efficiency curve were determined using EFFIT, a RAD-

WARE [Rad95] package. Listed in Table 5.2 are the parameters A - G. A,B and

C describe the efficiency curve at low energies such that

log(εγ) = A + B · log
(

Eγ

100 keV

)
+ C · log

(
Eγ

100 keV

)2

. (5.1)

D,E and F describe the efficiency at high energies such that

log(εγ) = D + E · log
(

Eγ

1 MeV

)
+ F · log

(
Eγ

1 MeV

)2

. (5.2)

The parameter G is an interaction parameter between the two regions, and de-

scribes specifically the turnover point.

5.3 Event Selection

182Hg Coincidence Window

True γ-particle-particle events were selected by means of inspecting the timing

spectra shown in Figure 5.2, observed following the radioactive beam reaction

112Cd(182Hg,182Hg∗) at 2.85MeV/u. It can be seen in Figure 5.2 that true co-

incidence events lie within a time window of ≈300 ns, ranging from -900 ≤ t ≤
-600. A time cut corresponding to events within this window was therefore imple-

mented in the sort code. Random coincidences were subtracted from the prompt

spectrum by defining a random time cut within the sort code. Figure 5.2 was

again used for the definition of this time window. A window of equal size to that
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Figure 5.2: Time difference between prompt γ rays and scattered particles in the reac-
tion 112Cd(182Hg,182Hg∗). The prompt(random) time window is depicted in red(blue).
Events lying outside these windows are labelled as downscaled events.

of the prompt window was created, ranging from -1200 ≤ t ≤ -900. Events within

the background window have their origin from γ rays being detected in random

coincidence with scattered particles observed in the CD detector, and therefore

are not associated with a true Coulomb excitation event. Coincidences occur-

ing outside of the defined background window are defined as downscaled events.

These originate from γ rays being detected in coincidence with elastic scattered

particles in the CD detector that have not undergone Coulomb excitation.

182Hg Particle Identification

As the reaction 112Cd(182Hg,182Hg∗) took place under inverse kinematics, the

scattered Hg particles are confined to somewhat of a boomerang shape, defined by

a maximum scattering angle of approximately 40◦ in the laboratory frame. To be

sure that prompt γ rays are assigned to the correct kinematics branch, a condition

was placed in the sort code requiring the detection of the corresponding scattered

112Cd particle to the scattered 182Hg particle in the CD detector. Figure 5.3

shows the theoretical kinematics for this reaction and depicts the angular region

that the CD detector covers. It can be seen that when a target and projectile are

required in the same event, the angular range that one is sensitive to for the 182Hg
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Figure 5.3: 112Cd(182Hg,182Hg∗) particle kinematics at an energy of 2.85MeV/u. 112Cd
is represented by the red kinematics branch. 182Hg kinematics branch is in blue. The
dashed section of the 182Hg branch represents the region that is observable when a
112Cd particle is required within the same event. Dashed black lines represent the CD
particle detector angular limits.

particles decreases. Though this limits the total centre-of-mass angular range that

the experiment is sensitive to, the increased accuracy in separating the kinematics

branches more than compensates. Figure 5.4 details the observed kinematics for

the reaction 112Cd(182Hg,182Hg∗) at 2.85MeV/u when the condition that both

target and projectile particles are detected within the same event is implemented.

A projection of each individual CD detector strip allowed particle energy gates

for each kinematic branch to be determined. If the kinematics branches could not

be separated then the strip was discarded and the data omitted, ensuring that γ

rays were cleanly assigned. Three distinct angular cuts were then defined using

neighbouring 112Cd particle energy gates. Table 5.3 defines the three angular

cuts in terms of centre-of-mass scattering angle, CD detector strip numbers and

laboratory angles covered.
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Figure 5.4: 112Cd(182Hg,182Hg∗) particle kinematics at an energy of 2.85MeV/u. The
condition that both target and projectile nuclei are detected within the same event is
implemented.

Angular Cuts For 182Hg

112Cd Strip Range 112Cd Lab Angle COM Angle

Low COM 1 - 4 45.4◦ - 53◦ 74◦ - 90◦

Med COM 5 - 9 32.73◦ - 42.868◦ 92.5◦ - 115◦

High COM 12 - 14 20.06◦ - 25.13◦ 130◦ - 140◦

Table 5.3: Angular cuts defined in terms of centre-of-mass scattering angle, 112Cd
laboratory angle and CD detector strip number. Note that the whole of the angular
coverage available from the CD detector could not be used due to kinematics branches
being inseparable in some CD detector strips. Cuts are named in terms of the COM
angular range they cover eg Low COM angular range, Medium COM angular range
and High COM angular range.
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186Hg Coincidence Window

True γ-particle-particle events were selected by means of inspecting the timing

spectra shown in Figure 5.5, observed following the radioactive beam reaction

114Cd(186Hg,186Hg∗) at 2.85MeV/u. It can be seen in Figure 5.5 that true co-

incidence events lie within a time window of ≈300 ns, ranging from -900 ≤ t ≤
-600. A time cut corresponding to events within this window was therefore imple-

mented in the sort code. Random coincidences were subtracted from the prompt

spectrum by defining a random time cut within the sort code. Figure 5.5 was

again used for the definition of this time window. A window of equal size to that

of the prompt window was created, ranging from -1200 ≤ t ≤ -900. Events within

the background window have their origin from γ rays being detected in random

coincidence with scattered particles observed in the CD detector, and therefore

are not associated with a true Coulomb excitation event. Coincidences occur-

ring outside of the defined background window are defined as downscaled events.

These originate from γ rays being detected in coincidence with elastic scattered

particles in the CD detector that have not undergone Coulomb excitation.
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Figure 5.5: Time difference between prompt γ rays and scattered particles in the reac-
tion 114Cd(186Hg,186Hg∗). The prompt(random) time window is depicted in red(blue).
Events lying outside these windows are labelled as downscaled events.

186Hg Particle Identification

As the reaction 114Cd(186Hg,186Hg∗) took place under inverse kinematics, the

scattered Hg particles are confined to somewhat of a boomerang shape, defined

by a maximum scattering angle of approximately 39.0◦ in the laboratory frame.

To be sure that prompt γ rays are assigned to the correct kinematics branch, a

condition was placed in the sort code requiring the detection of the corresponding

scattered 114Cd particle to the scattered 186Hg particle in the CD detector. As was

the case described in § 5.3, the angular range that one is sensitive to for the 186Hg

particles decreases but the ability to separate the kinematics branches increases.

Figure 5.6 details the observed kinematics for the reaction 114Cd(186Hg,186Hg∗)

at 2.85 MeV/u when the condition that both target and projectile particles are

detected within the same event is implemented.
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Figure 5.6: 114Cd(186Hg,186Hg∗) particle kinematics at an energy of 2.85 MeV/u. The
condition that both target and projectile nuclei are detected within the same event is
implemented.

Angular Cuts For 186Hg

114Cd Strip Range 112Cd Lab Angle COM Angle

Low COM 1 - 4 45.4◦ - 53.3◦ 74◦ - 90◦

Med COM 5 - 8 35.26◦ - 42.86◦ 96◦ - 110◦

High COM 10 - 13 22.59◦ - 30.19◦ 120◦ - 135◦

Table 5.4: Angular cuts defined in terms of centre-of-mass scattering angle, 114Cd
laboratory angle and CD detector strip number. Note that the whole of the angular
coverage available from the CD detector could not be used due to kinematics branches
being inseparable in some CD detector strips. Cuts are named in terms of the COM
angular range they cover e.g. Low COM angular range, Medium COM angular range
and High COM angular range.

A projection of each individual CD detector strip allowed particle energy gates

for each kinematic branch to be determined. If the kinematics branches could not

be separated then the strip was discarded and the data omitted, ensuring that γ

rays were cleanly assigned. Three distinct angular cuts were then defined using

neighbouring 114Cd particle energy gates. Table 5.4 defines the three angular

cuts in terms of centre-of-mass scattering angle, CD detector strip numbers and

laboratory angles covered.
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Figure 5.7: 182Hg γ-ray energy spectrum when considering the whole range of the
CD detector. The spectrum is the difference between prompt and random γ-particle-
particle coincidences as defined in § 5.3 and is Doppler corrected for 182Hg particles.

5.4 Spectroscopy of 182,186Hg and 112,114Cd Via

Coulomb Excitation

5.4.1 112Cd(182Hg,182Hg∗) Experimental Yields

The random-background subtracted, Doppler-corrected γ-ray energy spectrum

obtained when considering all the angular range of the CD detector is shown in

Figure 5.7. Only γ rays in coincidence with both a target and projectile nucleus

have been recorded within this spectrum. The 2+
1 → 0+

1 transition in 112Cd

can be observed at approximately 617.5 keV. The large FWHM is due to the

spectrum being Doppler corrected for 182Hg and not 112Cd. The yield for this

transition is taken from an identical spectrum that has been Doppler corrected

for 112Cd instead of 182Hg. This gives a much sharper lineshape for the 112Cd

transition, and therefore a more accurate measurement of the yield. Transitions
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112Cd(182Hg,182Hg∗) Experimental Yields - All CD Detector

Nucleus Eγ (keV) Iπi → Iπf Nγ

112Cd 617.52 2+
1 → 0+

1 768 ± 40

182Hg 351.8 2+
1 → 0+

1 3591 ± 81

182Hg 548.6 2+
2 → 0+

1 510 ± 39

182Hg 261.4 4+
1 → 2+

1 321 ± 33

182Hg 196.8 2+
2 → 2+

1 101 ± 29

182Hg 68 kα x-ray 1260 ± 53

Table 5.5: Experimental yields for the reaction 112Cd(182Hg,182Hg∗). All yields are
obtained from the spectrum in Figure 5.7 except the 112Cd 2+

1 → 0+
1 yield which was

obtained from an identical spectrum that was Doppler corrected for 112Cd.

observed belonging to 182Hg include the 2+
1 → 0+

1 transition at 351 keV, the

2+
2 → 0+

1 transition at 549 keV, the 4+
1 → 2+

1 transition at 262 keV and the

2+
2 → 2+

1 transition at 196 keV. This final transition is somewhat unfortunately

situated on the Compton continuum edge. Prominent X-ray peaks associated to

182Hg are also observed at energies of 68 kev and 80 keV. The enhanced nature

of these peaks suggest a strong E0 component to the 2+
2 → 2+

1 transition and

a contribution to the total X-ray yield from an unobserved 0+
2 → 0+

1 transition.

The fitted intensities of the observed transitions are listed in Table 5.5. When

applying the angular cuts, discussed in § 5.3, the data is split into three distinct

experiments corresponding to the angular ranges defined by the cuts. Figure 5.8

to Figure 5.10 depict the spectra obtained for each of these angular ranges when a

γ ray is recorded in coincidence with both a target and projectile nucleus detected

in the CD particle detector. The spectra again have the random background

coincidences subtracted and are Doppler corrected for 182Hg. All transitions

observed in Figure 5.7 are again observed, though obviously with less counts.

Table 5.6 to Table 5.8 list the fitted intensities for each observed transition in

each defined angular range.



110 CHAPTER 5

Energy (keV)
0 100 200 300 400 500 600 700 800

C
o

u
n

ts

0

20

40

60

80

100

120

140

160

180

Figure 5.8: 182Hg γ-ray energy spectrum when considering the Low COM angular
range. The spectrum is the difference between prompt and random γ-particle-particle
coincidences as defined in § 5.3 and is Doppler corrected for 182Hg particles.

112Cd(182Hg,182Hg∗) Experimental Yields - Low COM

Nucleus Eγ (keV) Iπi → Iπf Nγ

112Cd 617.52 2+
1 → 0+

1 186 ± 21

182Hg 351.8 2+
1 → 0+

1 936 ± 42

182Hg 548.6 2+
2 → 0+

1 89 ± 15

182Hg 261.4 4+
1 → 2+

1 80 ± 16

182Hg 196.8 2+
2 → 2+

1 26 ± 9

182Hg 68 kα x-ray 256 ± 17

Table 5.6: Experimental yields for the reaction 112Cd(182Hg,182Hg∗) when using the
Low COM angular range, as defined in Table 5.3. All yields are obtained from the
spectrum in Figure 5.8 except the 112Cd 2+

1 → 0+
1 yield which was obtained from an

identical spectrum that was Doppler corrected for 112Cd.
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Figure 5.9: 182Hg γ-ray energy spectrum when considering the Med COM angular
range. The spectrum is the difference between prompt and random γ-particle-particle
coincidences as defined in § 5.3 and is Doppler corrected for 182Hg particles.

112Cd(182Hg,182Hg∗) Experimental Yields - Med COM

Nucleus Eγ (keV) Iπi → Iπf Nγ

112Cd 617.52 2+
1 →0+

1 219 ± 22

182Hg 351.8 2+
1 → 0+

1 1210 ± 51

182Hg 548.6 2+
2 → 0+

1 149 ± 18

182Hg 261.4 4+
1 → 2+

1 105 ± 18

182Hg 196.8 2+
2 → 2+

1 31 ± 9

182Hg 68 kα x-ray 330 ± 20

Table 5.7: Experimental yields for the reaction 112Cd(182Hg,182Hg∗) when using the
Med COM angular range, as defined in Table 5.3. All yields are obtained from the
spectrum in Figure 5.9 except the 112Cd 2+

1 → 0+
1 yield which was obtained from an

identical spectrum that was Doppler corrected for 112Cd.
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Figure 5.10: 182Hg γ-ray energy spectrum when considering the High COM angular
range. The spectrum is the difference between prompt and random γ-particle-particle
coincidences as defined in § 5.3 and is Doppler corrected for 182Hg particles.

112Cd(182Hg,182Hg∗) Experimental Yields - High COM

Nucleus Eγ (keV) Iπi → Iπf Nγ

112Cd 617.52 2+
1 → 0+

1 82 ± 10

182Hg 351.8 2+
1 → 0+

1 510 ± 33

182Hg 548.6 2+
2 → 0+

1 103 ± 15

182Hg 261.4 4+
1 → 2+

1 74 ± 13

182Hg 196.8 2+
2 → 2+

1 12 ± 8

182Hg 68 kα x-ray 244 ± 16

Table 5.8: Experimental yields for the reaction 112Cd(182Hg,182Hg∗) when using the
High COM angular range, as defined in Table 5.3. All yields are obtained from the
spectrum in Figure 5.10 except the 112Cd 2+

1 → 0+
1 yield which was obtained from an

identical spectrum that was Doppler corrected for 112Cd.
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Figure 5.11: 186Hg γ-ray energy spectrum when considering the whole range of the
CD detector. The spectrum is the difference between prompt and random γ-particle-
particle coincidences as defined in § 5.3 and is Doppler corrected for 186Hg particles.

5.4.2 114Cd(186Hg,186Hg∗) Experimental Yields

The random background subtracted, Doppler corrected γ-ray energy spectrum

obtained when considering the whole angular range of the CD detector is shown in

Figure 5.11. Only γ rays in coincidence with both a target and projectile nucleus

have been recorded within this spectrum. The 2+
1 → 0+

1 transition in 114Cd can

be observed at approximately 558.4 keV. Again a large FWHM is observed for

the cadmium transition due to the spectrum being Doppler corrected for 186Hg

and not 114Cd. The yield for this transition is taken from an identical spectrum

that has been Doppler corrected for 114Cd instead of 186Hg. Transitions observed

belonging to 186Hg include the 2+
1 → 0+

1 transition at 405.33 keV and X-ray peaks

associated to 186Hg at energies of approximately 68 kev and 80 keV. The 4+
1 →

2+
1 transition at 402.66 keV lies in the tail of the 2+

1 → 0+
1 transition and is

unobserved. Due to the weak population of the 4+
1 state, little yield from this
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transition is expected. The fitted intensities of the observed transitions are listed

in Table 5.5.

114Cd(186Hg,186Hg∗) Experimental Yields - All CD Detector

Nucleus Eγ (keV) Iπi → Iπf Nγ

114Cd 558.4 2+
1 → 0+

1 583 ± 22

186Hg 405.3 2+
1 → 0+

1 1815 ± 41

186Hg 68 kα x-ray 68 ± 28

Table 5.9: Experimental yields for the reaction 114Cd(186Hg,186Hg∗). All yields are
obtained from the spectrum in Figure 5.11 except the 114Cd 2+

1 → 0+
1 yield which was

obtained from an identical spectrum that was Doppler corrected for 114Cd.

When applying the angular cuts, discussed in § 5.3, the data is split into three

distinct experiments corresponding to the angular ranges defined by the cuts. Fig-

ure 5.12 to Figure 5.14 depict the spectra obtained for each of these angular ranges

when a γ ray is recorded in coincidence with both a target and projectile nucleus

in the CD particle detector. The spectra again have the random-background

coincidences subtracted and are Doppler corrected for 186Hg. All transitions in

Figure 5.11 are again observed, though obviously with less counts. Table 5.10 -

Table 5.12 list the fitted intensities for each observed transition in each defined

angular range.
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Figure 5.12: 186Hg γ-ray energy spectrum when considering the Low COM angular
range. The spectrum is the difference between prompt and random γ-particle-particle
coincidences as defined in § 5.3 and is Doppler corrected for 186Hg particles.

114Cd(186Hg,186Hg∗) Experimental Yields - Low COM

Nucleus Eγ (keV) Iπi → Iπf Nγ

114Cd 558.4 2+
1 → 0+

1 253 ± 15

186Hg 405.3 2+
1 → 0+

1 778 ± 27

186Hg 68 kα x-ray 31 ± 21

Table 5.10: Experimental yields for the reaction 114Cd(186Hg,186Hg∗) when using the
Low COM angular range, as defined in Table 5.4. All yields are obtained from the
spectrum in Figure 5.12 except the 114Cd 2+

1 → 0+
1 yield which was obtained from an

identical spectrum that was Doppler corrected for 114Cd.
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Figure 5.13: 186Hg γ-ray energy spectrum when considering the Med COM angular
range. The spectrum is the difference between prompt and random γ-particle-particle
coincidences as defined in § 5.3 and is Doppler corrected for 186Hg particles.

114Cd(186Hg,186Hg∗) Experimental Yields - Med COM

Nucleus Eγ (keV) Iπi → Iπf Nγ

114Cd 558.4 2+
1 → 0+

1 219 ± 16

186Hg 405.3 2+
1 → 0+

1 696 ± 36

186Hg 68 kα x-ray 28 ± 17

Table 5.11: Experimental yields for the reaction 114Cd(186Hg,186Hg∗) when using the
Med COM angular range, as defined in Table 5.4. All yields are obtained from the
spectrum in Figure 5.13 except the 114Cd 2+

1 → 0+
1 yield which was obtained from an

identical spectrum that was Doppler corrected for 114Cd.
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Figure 5.14: 186Hg γ-ray energy spectrum when considering the High COM angular
range. The spectrum is the difference between prompt and random γ-particle-particle
coincidences as defined in § 5.3 and is Doppler corrected for 186Hg particles.

114Cd(186Hg,186Hg∗) Experimental Yields - High COM

Nucleus Eγ (keV) Iπi → Iπf Nγ

114Cd 558.4 2+
1 → 0+

1 151 ± 13

186Hg 405.3 2+
1 → 0+

1 485 ± 22

186Hg 68 kα x-ray 15 ± 11

Table 5.12: Experimental yields for the reaction 114Cd(186Hg,186Hg∗) when using the
High COM angular range, as defined in Table 5.4. All yields are obtained from the
spectrum in Figure 5.14 except the 114Cd 2+

1 → 0+
1 yield which was obtained from an

identical spectrum that was Doppler corrected for 114Cd.
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5.5 112Cd(182Hg,182Hg∗) GOSIA Analysis

5.5.1 Coulomb Excitation Yields

The electromagnetic properties of the low-lying states in the target nucleus 112Cd

are well known. This allows for the Coulomb-excitation yield of the 0+
1 → 2+

1

transition, which is proportional to the average integrated Coulomb-excitation

cross section, to be calculated with the analysis code GOSIA. A relative calcula-

tion of the Coulomb-excitation yields for the projectile nucleus, 182Hg, can then

be made which neglects experimental uncertainties such as absolute beam current

and data acquisition dead time.

112Cd Coulomb Excitation Yields

Figure 5.15: Low-lying levels in 112Cd considered in the analysis. Straight arrows
represent transitional couplings between states. Curly arrows represent diagonal self-
couplings due to the reorientation of the magnetic substates.

The Coulomb excitation yield for the 2+ → 0+ transition in 112Cd has been

calculated using GOSIA for the three angular ranges defined in Table 5.3. All

significant couplings, detailed in Figure 5.15, to the low-lying levels have been

included in the calculation.

The reduced matrix elements used in the analysis, and used for GOSIA input,

are listed in Table 5.13. The 〈2+
1 ||E2||0+

1 〉 has been taken from the weighted aver-

age of results obtained in [EKSB76, STSH85]. 〈2+
1 ||E2||2+

1 〉 is the weighted aver-

age of results published in [EKSB76, MPC+77]. 〈4+
1 ||E2||2+

1 〉 has been obtained

from a weighted average of results obtained in [MRSF65, JKB78]. 〈2+
2 ||E2||0+

1 〉
has been taken from [MMS+69].〈2+

1 ||E2||0+
2 〉 has been obtained from [LBC69]
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112Cd Matrix Elements

〈2+
1 ||E2||0+

1 〉 -0.696(3)

〈2+
1 ||E2||2+

1 〉 -0.62(6)

〈2+
1 ||E2||0+

2 〉 +0.38(6)

|〈2+
2 ||E2||0+

1 〉| 0.102(7)

〈2+
2 ||E2||0+

2 〉 0.0

〈2+
2 ||E2||2+

1 〉 -0.59(3)

〈2+
2 ||E2||2+

2 〉 0.0

〈4+
1 ||E2||2+

1 〉 +1.31(9)

〈4+
1 ||E2||2+

2 〉 0.0

〈4+
1 ||E2||4+

1 〉 0.0

Table 5.13: Reduced transitional and diagonal matrix elements for 112Cd for all signif-
icant couplings.

and 〈2+
2 ||E2||2+

1 〉 from [HAMD71]. As there are currently no published values

for 〈2+
2 ||E2||2+

2 〉, 〈4+
1 ||E2||4+

1 〉, 〈2+
2 ||E2||0+

2 〉 and 〈4+
1 ||E2||2+

2 〉 arbitary values were

used as input for GOSIA. It was found that these matrix elements had no sig-

nificant effect on the calculated yield for the 2+
1 → 0+

1 transition. The Coulomb

excitation yield has been calculated for each centre-of-mass range using the matrix

elements listed in Table 5.13 by integrating over the full target thickness. Uncer-

tainty on the calculated yields arise from the uncertainties on the experimental

values of the transitional and diagonal matrix elements. The upper limit on the

integrated yield is calculated using the most positive, and therefore least destruc-

tive, value of the diagonal matrix element and the upper limit of the transitional

matrix element. Similarly, the lower limit on the integrated yield is obtained by

using the lower limit of the transitional matrix element and the most negative,

and therefore least constructive value of the diagonal matrix element.

Due to the sign ambiguity in the triple product of E2 couplings between the

0+
1 , 2+

1 and 2+
2 states the values quoted in Table 5.14 are an average of two results.

One result is obtained when the sign of this triple product is positive, and the
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112Cd Integrated Coulomb Excitation Cross Sections

Iπ
i → Iπ

f σCE(112Cd) Low σCE(112Cd) Med σCE(112Cd) High

2+
1 → 0+

1 6.4 ± 0.2 6.7 ± 0.2 1.9 ± 0.1

4+
1 → 2+

1 0.06 ± 0.01 0.09 ± 0.02 0.022 ± 0.003

2+
2 → 2+

1 0.0029 ± 0.0001 0.0041 ± 0.0003 0.0014 ± 0.0002

Table 5.14: Integrated Coulomb excitation cross sections for transitions in 112Cd for
each COM range investigated (denoted by Low, Med, High referring to the ranges
defined in Table 5.3). Quoted values are averages of values obtained for both positive
and negative values of the triple product of matrix elements coupling the 0+

1 , 2+
1 and

2+
2 states and are given in units of mb/srad·mg/cm2.

interference is constructive. The other result used to obtain the average is found

when the sign of the triple product is negative, and the interference is destructive.

In reality it was found that there was little difference between the results obtained

for each sign of the triple product.

It is quite apparent from the calculated yields in Table 5.14 that very little

excitation to states other than the 2+
1 state will occur. The influence of higher

lying states on the yield of the 2+
1 → 0+

1 will therefore be negligible.

182Hg Coulomb Excitation Yields

By comparing the measured γ-ray intensities, Coulomb excitation yields to the

2+
1 , 2+

2 and 4+
1 states have been calculated relative to the 2+

1 → 0+
1 transition in

112Cd for the three defined centre-of-mass ranges using the method described in

§ 2.1.7 and a modified version of Equation 2.56 that incorporates the particular

γ-ray yield for the transition in 182Hg that is being investigated. γ-ray yields

listed in Table 5.6 to Table 5.8 along with the corresponding Coulomb excitation

yield to the 2+
1 state in 112Cd, listed in Table 5.14, have been used to calculate

the Coulomb excitation yields for 182Hg listed in Table 5.15. Efficiency correction

factors and angular correction factors have been incorporated into the results.

Values listed in Table 5.15 are average values, taking into account the constructive

and destructive interference of the triple product of E2 couplings between the 0+
1 ,
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182Hg Integrated Coulomb Excitation Cross Sections

Iπ
i → Iπ

f σCE(182Hg) Low σCE(182Hg) Med σCE(182Hg) High

2+
1 → 0+

1 23 ± 3 23 ± 3 6.6 ± 1.2

2+
2 → 0+

1 6.9 ± 1.2 6.6 ± 1.2 1.6 ± 0.3

4+
1 → 2+

1 3.1 ± 0.6 4.0 ± 0.8 1.2 ± 0.3

Table 5.15: Integrated Coulomb excitation cross sections for transitions in 182Hg for
each COM range investigated (denoted by Low, Med, High referring to the ranges
defined in Table 5.3). Quoted values are averages of values obtained for both positive
and negative values of the triple product of matrix elements coupling the 0+

1 , 2+
1 and

2+
2 states and are given in units of mb/srad·mg/cm2.

2+
1 and 2+

2 states. Due to the Coulomb excitation yield being determined from

a relative measurement, the uncertainty on the extracted yields are found from

three contributing factors; the error on the ratio of γ-ray energy efficiencies, the

statistical error on the ratio of measured γ-ray intensities and the uncertainties

arising from the errors on the 112Cd matrix elements.

5.5.2 Electromagnetic Matrix Elements of 182Hg

Utilising the measured yields listed in Table 5.15 a χ2 minimization was per-

formed using GOSIA. Resulting matrix elements and the corresponding B(E2)

and quadrupole moments are listed in Table 5.16 for transitions with observed

experimental yields. The listed matrix elements were treated as free variables

and allowed to vary in order to find the lowest value of χ2 for a set of matrix

elements that could reproduce the measured yield to within 1σ error bars. All

significant couplings between states up to the 6+
1 state in the ground state band

and the 4+
2 state in the intruder band have been included in the GOSIA fit to

account for feeding due to virtual excitation to higher lying states.

Lifetimes of the 2+
1 , 4+

1 and 6+
1 states [GPS+09], listed in Table 4.3, were

included as separate data points. B(E2) values for the 2+
1 → 0+

1 , 4+
1 → 2+

1 and

6+
1 → 4+

1 transitions were obtained from these measurements and included as
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182Hg Matrix Elements and Associated Parameters

〈I||E2||F〉 Value (eb) B(E2) or Qs (eb)

〈2+
1 ||E2||0+

1 〉 -1.34 ± 0.07 +0.36 ± 0.04

〈2+
1 ||E2||2+

1 〉 -0.6 ± 0.5 -0.5 ± 0.4

〈2+
2 ||E2||0+

1 〉 -1.06 ± 0.06 +0.23 ± 0.03

〈2+
2 ||E2||2+

2 〉 +1.2 ± 0.9 +0.9 ± 0.8

〈4+
1 ||E2||2+

1 〉 +3.7 ± 0.2 +1.5 ± 0.1

〈4+
1 ||E2||4+

1 〉 -3 ± 2 -2.4 ± 1.7

Table 5.16: Reduced transitional and diagonal matrix elements for 182Hg at the χ2

minimum and the corresponding B(E2) and Qs values.

starting points for the χ2 minimization. All other unknown matrix elements were

assigned random values by GOSIA each time a minimization was performed to

ensure no bias. χ2 minimizations were then performed until known lifetimes were

reproduced and the minimum value of χ2 found.

B(E2) values listed in Table 5.16 for the 2+
1 → 0+

1 and 4+
1 → 2+

1 transitions are

in agreement with those obtained from lifetime measurements listed in Table 4.3.

A value of Q2+
1

= -0.46± 0.4 eb implies the 2+
1 state is most probably prolate, a

conclusion in agreement with [GPS+09]. With a value of Q2+
2

= +0.9± 0.8 eb,

the 2+
2 state can be described as most probably oblate. The small magnitude of

these values suggest that these states are in fact strongly mixed. The 4+
1 state,

with a value of Q4+
1

= -2.4± 1.7 eb is again most probably prolate and belongs to

the same band and the 2+
1 state. The deformation of the 2+

1 , 2+
2 and 4+

1 states can

be inferred from the transitional matrix elements and the quadrupole moments.

Table 5.17 lists the β2 values for these states. The values of β2 for the 2+
1 and 4+

1

states listed in Table 5.17 are in agreement with those values listed in Table 4.3

obtained from lifetime measurements. A sign to the β2 value has been inferred

from the sign of the corresponding quadrupole moment.
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182Hg Deformation Parameters

β
2+
1

2 +0.139 ± 0.008

β
2+
2

2 -0.11 ± 0.01

β
4+
1

2 +0.25 ± 0.01

Table 5.17: β2 values for the 2+
1 , 2+

2 and 4+
1 states in 182Hg.

5.5.3 Shape Analysis of Low-Lying States in 182Hg

2+
1 state in 182Hg

The cross section of the 2+
1 → 0+

1 transition in 182Hg has been derived for the

three angular ranges defined in Table 5.3 relative to the 2+
1 → 0+

1 transition in

112Cd. Table 5.15 lists the mean value of the Coulomb-excitation cross section

in the three defined angular ranges along with the extreme ±σ values. Varying

the 〈2+
1 ||E2||0+

1 〉 and 〈2+
1 ||E2||2+

1 〉 manually allows for a loci of points that can

reproduce the extremes of the Coulomb-excitation cross section to be plotted.

This was done for each defined angular range, producing three independent loci

of points that reproduced the ±σ values of the Coulomb-excitation cross section.

Each angular range has a different sensitivity to the quadrupole moment, as can

be seen from Figure 2.2. The overlapping region of these bands therefore de-

fines the range of values for 〈2+
1 ||E2||0+

1 〉 and 〈2+
1 ||E2||2+

1 〉 that can reproduce the

measured Coulomb excitation cross section. This method provides a graphical

check to the GOSIA χ2 minimization that was discussed in § 5.5.2 Other signif-

icant couplings in the GOSIA calculation were set to the values obtained in the

minimization discussed in § 5.5.2. Lifetime data points were not included in the

calculation so as the matrix elements would be completely uninfluenced.
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Figure 5.16: Variation of the 〈2+
1 ||E2||0+

1 〉 as a function of 〈2+
1 ||E2||2+

1 〉 in 182Hg for
the three angular ranges defined in Table 5.3. The solid blue(red,green) lines represent
the extreme values of the matrix elements that reproduce the Coulomb excitation cross
section in the Low COM (Med COM, High COM) angular range. The horizontal
dashed black lines represent the experimental error values of 〈2+

1 ||E2||0+
1 〉 as derived

from lifetime measurements [GPS+09].

Figure 5.16 shows the resulting loci of points that reproduce the Coulomb-

excitation cross section for each defined angular range. It can be seen that the

overlapping region defines a range for 〈2+
1 ||E2||0+

1 〉 of ≈ -1.29 - -1.39 eb, in agree-

ment with the value obtained from the GOSIA χ2 minimization and the results

from lifetime measurements. The error bar being larger due to the lifetime data

points not being included. The range of 〈2+
1 ||E2||2+

1 〉 is ≈ -0.1 - 1.1 eb, again

in agreement with the GOSIA χ2 minimization. Figure 5.16 goes some way to

explaining the large error bar on 〈2+
1 ||E2||2+

1 〉. This can be attributed to the

sensitivity to the quadrupole moment in each of the defined angular ranges of the

differential Coulomb excitation cross-section being very similar.
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Figure 5.17: Variation of the 〈2+
2 ||E2||0+

1 〉 as a function of 〈2+
2 ||E2||2+

2 〉 in 182Hg for
the three angular ranges defined in Table 5.3. The solid blue(red,green) lines represent
the extreme values of the matrix elements that reproduce the Coulomb-excitation cross
section in the Low COM (Med COM, High COM) angular range.

As for the 2+
1 → 0+

1 transition in 182Hg, the Coulomb-excitation cross section

in the three defined angular ranges has been calculated relative to the 2+
1 → 0+

1

transition in 112Cd for the 2+
2 → 0+

1 . The ±σ values are again listed in Table 5.15.

By varying the 〈2+
2 ||E2||0+

1 〉 and 〈2+
2 ||E2||2+

2 〉 manually, the loci of points that

reproduce the ±σ values for the Coulomb excitation cross section have been

obtained for each defined angular range.

Figure 5.17 shows the resulting loci of points that reproduce the Coulomb-

excitation cross section for each defined angular range. The overlapping region

defines a range for 〈2+
2 ||E2||0+

1 〉 of ≈ -1.05 - -0.9 eb. This value agrees with

the result from the GOSIA χ2 minimization and has a larger error due to the

lifetime data not being included. The range of values for 〈2+
2 ||E2||2+

2 〉 obtained

from the overlapping region is ≈ +0.1 - +2.1. Agreement with the GOSIA χ2
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minimization is also achieved. The sensitivity to the quadrupole moment of the

Coulomb-excitation cross section for the 2+
2 state is again small. This can be

seen by the large overlapping region and the subsequently large error bars on the

diagonal matrix element.

5.6 114Cd(186Hg,186Hg∗) GOSIA Analysis

5.6.1 Coulomb Excitation Yields

The electromagnetic properties of the low-lying states in the target nucleus 114Cd

are well known. This allows for the Coulomb excitation yield of the 0+
1 → 2+

1

transition, which is proportional to the average integrated Coulomb excitation

cross section, to be calculated with the analysis code GOSIA. A relative calcula-

tion of the Coulomb-excitation yields for the projectile nucleus, 186Hg, can then

be made which neglects experimental uncertainties such as absolute beam current

and data acquisition dead time.

114Cd Coulomb Excitation Yields

Figure 5.18: Low-lying levels in 114Cd considered in the analysis. Straight arrows
represent transitional couplings between states. Curly arrows represent diagonal self-
couplings due to the reorientation of the magnetic substates.

The Coulomb-excitation yield for the 2+ → 0+ transition in 114Cd has been

calculated using GOSIA for the three angular ranges defined in Table 5.4. All

significant couplings, detailed in Figure 5.18, to the low-lying levels have been

included in the calculation. The reduced matrix elements used in the analysis,



Coulomb Excitation of 182,186Hg - Analysis and Results 127

114Cd Matrix Elements

〈2+
1 ||E2||0+

1 〉 +0.714(21)

〈2+
1 ||E2||2+

1 〉 -0.36(3)

〈2+
1 ||E2||0+

2 〉 +0.3000(9)

〈2+
2 ||E2||0+

1 〉 +0.091(3)

〈2+
2 ||E2||0+

2 〉 -0.17(4)

〈2+
2 ||E2||2+

1 〉 +0.684(20)

〈2+
2 ||E2||2+

2 〉 +0.92(5)

〈4+
1 ||E2||2+

1 〉 +1.35(4)

〈4+
1 ||E2||2+

2 〉 -0.35(7)

〈4+
1 ||E2||4+

1 〉 -0.95(11)

Table 5.18: Reduced transitional and diagonal matrix elements for 114Cd for all signif-
icant couplings.

and used for GOSIA input, are listed in Table 5.18. All matrix elements listed are

taken from [FBH+88]. The Coulomb excitation yield has been calculated for each

centre-of-mass range using the matrix elements listed in Table 5.18 by integrating

over the full target thickness. Uncertainty on the calculated yields arise from the

uncertainties on the experimental values of the transitional and diagonal matrix

elements. The upper limit on the integrated yield is calculated using the most

positive, and therefore least destructive, value of the diagonal matrix element

and the upper limit of the transitional matrix element. Similarly, the lower limit

on the integrated yield is obtained by using the lower limit of the transitional

matrix element and the most negative, and therefore least constructive value of

the diagonal matrix element.

Due to the sign ambiguity in the triple product of E2 couplings between the

0+
1 , 2+

1 and 2+
2 states the values quoted in Table 5.19 are an average of two results.

One result is obtained when the sign of this triple product is positive, and the

interference is constructive. The other result used to obtain the average is found

when the sign of the triple product is negative, and the interference is destructive.
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114Cd Integrated Coulomb Excitation Cross Sections

Iπ
i → Iπ

f σCE(114Cd) Low σCE(114Cd) Med σCE(114Cd) High

2+
1 → 0+

1 7.0 ± 0.4 5.3 ± 0.3 2.9 ± 0.2

4+
1 → 2+

1 0.09 ± 0.01 0.07 ± 0.01 0.061 ± 0.003

2+
2 → 2+

1 0.017 ± 0.003 0.014 ± 0.002 0.012 ± 0.002

Table 5.19: Integrated Coulomb ecitation cross sections for transitions in 114Cd for each
COM range investigated (denoted by Low, Med, High referring to the ranges defined
in Table 5.4). Quoted values are averages of values obtained for both positive and
negative values of the triple product of matrix elements coupling the 0+

1 , 2+
1 and 2+

2

states and are given in units of mb/srad·mg/cm2.

In reality it was found that there was little difference between the results obtained

for each sign of the triple product.

It is quite apparent from the calculated yields in Table 5.19 that very little

excitation to states other than the 2+
1 state will occur. The influence of higher

lying states on the yield of the 2+
1 → 0+

1 will therefore be negligible.

186Hg Coulomb Excitation Yields

By comparing the measured γ-ray intensities, Coulomb excitation yields to the

2+
1 state have been calculated relative to the 2+

1 → 0+
1 transition in 114Cd for the

three defined centre-of-mass ranges using the method described in § 2.1.7. γ-ray

yields listed in Table 5.10 - Table 5.12 along with the corresponding Coulomb

excitation yield to the 2+
1 state in 114Cd, listed in Table 5.19, have been used to

calculate the Coulomb excitation yields for 186Hg listed in Table 5.20. Efficiency

correction factors and angular correction factors have been incorporated into the

results. Values listed in Table 5.20 are average values, taking into account the

constructive and destructive interference of the triple product of E2 couplings

between the 0+
1 , 2+

1 and 2+
2 states. Due to the Coulomb excitation yield being

determined from a relative measurement, the uncertainty on the extracted yields

are found from three contributing factors; the error on the ratio of γ-ray energy

efficiencies, the statistical error on the ratio of measured γ-ray intensities and the
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186Hg Integrated Coulomb Excitation Cross Sections

Iπ
i → Iπ

f σCE(186Hg) Low σCE(186Hg) Med σCE(186Hg) High

2+
1 → 0+

1 16 ± 2 15 ± 2 5.6 ± 0.8

Table 5.20: Integrated Coulomb excitation cross sections for the 2+
1 → 0+

1 transition in
186Hg for each COM range investigated (denoted by Low, Med, High referring to the
ranges defined in Table 5.4). Quoted values are averages of values obtained for both
positive and negative values of the triple product of matrix elements coupling the 0+

1 ,
2+
1 and 2+

2 states and are given in units of mb/srad·mg/cm2.

uncertainties arising from the errors on the 114Cd matrix elements.

5.6.2 Electromagnetic Matrix Elements of 186Hg

Utilising the measured yields listed in Table 5.20 a χ2 minimization was performed

using GOSIA. The resulting matrix elements and the corresponding B(E2) and

quadrupole moments are listed in Table 5.21 for the 2+
1 → 0+

1 transition. Matrix

elements were treated as free variables and allowed to vary in order to find the

lowest value of χ2 for a set of matrix elements that could reproduce the measured

yield to within 1σ error bars. All significant couplings between states up to the 6+
1

state in the ground state band and the 4+
2 state in the γ band have been included

in the GOSIA fit to account for feeding due to virtual excitation to higher-lying

states.

Lifetimes of the 2+
1 , 4+

1 [PDS73] and 2+
2 [JZR+94] states were included as sepa-

rate data points. B(E2) values for the 2+
1 → 0+

1 , 4+
1 → 2+

1 and 2+
2 → 0+

1 transitions

were obtained from these measurements and included as starting points for the

χ2 minimization. All other unknown matrix elements were assigned random val-

ues by GOSIA each time a minimization was performed to ensure no bias. χ2

minimizations were then performed until known lifetimes were reproduced and

the minimum value of χ2 found. The B(E2) value for the 2+
1 → 0+

1 transitions

is in agreement with that of [PDS73]. A value of Q2+
1

= +1.7± 0.5 eb implies

the 2+
1 state is oblate, in contrast to the 2+

1 state in 182Hg which was found to
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186Hg Matrix Elements and Associated Parameters

〈I||E2||F〉 Value (eb) B(E2) or Qs (eb)

〈2+
1 ||E2||0+

1 〉 +1.2 ± 0.1 +0.3 ± 0.1

〈2+
1 ||E2||2+

1 〉 +2.1 ± 0.8 +1.7 ± 0.5

Table 5.21: Reduced transitional and diagonal matrix elements for 186Hg at the χ2

minimum and the corresponding B(E2) and Qs values.

186Hg Deformation Parameters

β
2+
1

2 -0.13 ± 0.02

Table 5.22: β2 value for the 2+
1 state in 186Hg.

be prolate. The deformation of the 2+
1 state can be inferred from the transitional

matrix element and the quadrupole moment. Table 5.22 lists the β2 value for the

2+
1 state.

The magnitude of β2 listed in Table 5.22 is of the same magnitude as that of

the 2+
1 state in 182Hg. The sign of the β2 value has been inferred from the sign of

the corresponding quadrupole moment.

5.6.3 Shape Analysis of Low-Lying States in 186Hg

2+
1 state in 186Hg

The cross section of the 2+
1 → 0+

1 transition in 186Hg has been derived for the three

angular ranges defined in Table 5.4 relative to the 2+
1 → 0+

1 transition in 114Cd.

Table 5.20 lists the mean value of the Coulomb excitation cross section in the

three defined angular ranges along with the extreme ±σ values. Using the same

method described in § 5.5.3, a graphical check to the GOSIA χ2 minimization

that was discussed in § 5.6.2 has been produced.
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Figure 5.19: Variation of the 〈2+
1 ||E2||0+

1 〉 as a function of 〈2+
1 ||E2||2+

1 〉 in 186Hg for
the three angular ranges defined in Table 5.4. The solid red(green,blue) lines represent
the extreme values of the matrix elements that reproduce the Coulomb excitation cross
section in the Low COM (Med COM, High COM) angular range. The horizontal dashed
black lines represent the 1σ values for 〈2+

1 ||E2||0+
1 〉 as derived from previous lifetime

measurements [PDS73].

Figure 5.19 shows the resulting loci of points that reproduce the Coulomb

excitation cross section for each defined angular range. It can be seen that the

overlapping region defines a range for 〈2+
1 ||E2||0+

1 〉 of ≈ 1.05 - 1.22 eb, in agree-

ment with the value obtained from the GOSIA χ2 minimization and the results

from lifetime measurements. The range of 〈2+
1 ||E2||2+

1 〉 is ≈ 1.1 - 3.2 eb, again

in agreement with the GOSIA χ2 minimization. Figure 5.19 goes some way to

explaining the large error bar on 〈2+
1 ||E2||2+

1 〉. This can be attributed to the

sensitivity to the quadrupole moment in each of the defined angular ranges of the

differential Coulomb excitation cross section being very similar.
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Chapter 6

Discussion

6.1 Collectivity in Neutron-Deficient Hg Isotopes

Figure 6.1: Experimental |Qt| values for yrast states up to Iπ = 8+ in 180,182,184,186,Hg.
Points have been slightly offset from the true value of A for clarity.

A transition from one nuclear shape to another can be inferred from |Qt| values.

Figure 6.1 depicts experimental |Qt| values for 180,182,184,186,Hg. |Qt| values for

180,182Hg have been taken from [GPS+09], |Qt| values for 184,186Hg have been taken

133
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Figure 6.2: Energy level systematics for Hg isotopes. Prolate bands are depicted in
red, oblate bands are depicted in blue.

from [MRH+86] and [PDS73] respectively. The low |Qt| values for the 2+ state in

all four isotopes indicates a transition from the weakly deformed oblate ground

state to a more deformed state. The |Qt| values from lifetime measurements

cannot state whether a change from an oblate to prolate structure has occurred.

When analysed in conjunction with Coulomb excitation data it can be concluded

that the |Qt| value for the 2+
1 state in 182Hg is indicative of a transition from

an oblate ground state to deformed prolate structure. Coulomb excitation data

for 186Hg leads to the conclusion that the 2+
1 state is oblate, and more strongly

deformed than the ground state. It is therefore clear that there is a transition

from an oblate 2+
1 state to a prolate 2+

1 state going towards lighter nuclei in the

isotopic chain. The |Qt| values in Figure 6.1 do not decrease with decreasing

valence neutron space as would be expected beyond the neutron mid shell. One

interpretation of this could be that the prolate intruder structure is mixing heavily

with the spherical vibrational structure, as identified in 172Hg [SGbuC+09].

The mixing amplitude of the 2+
1 state in 182Hg can be estimated using a simple

two-band mixing calculation using the |Qt| values. The lower collectivity of the
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2+
1 → 0+

1 transition compared to the other observed yrast transitions indicates

that the 2+
1 state is an admixture of prolate and oblate components. The weakly

deformed oblate ground state is mixing heavily with the intruding states, which

can be seen in Figure 6.2. An estimation of the mixing between the prolate

and oblate structures for the 2+
1 state was calculated using Equation 2.51. By

assuming the final state of the 4+
1 → 2+

1 transition is mixed and that the average

quadrupole moment of higher lying states relates to a pure rotational structure,

an 80% prolate contribution to the wavefunction is calculated. This is in good

agreement with band mixing calculations performed in [RBB+97], which predict

a 76% prolate contribution to the wavefunction of the 2+
1 state in 182Hg. The

same work calculates a 50% prolate contribution to the wavefunction of the 2+
1

state in 184Hg and a 8% prolate contribution to the wavefunction of the 2+
1 state

in 186Hg. The increasing prolate component as one decreases in neutron number

is in good agreement with the Coulomb excitation data which shows a dominant

oblate component to the wavefunction of the 2+
1 state in 186Hg and a mixed, but

predominantly prolate structure to the 2+
1 state in 182Hg.

It can be seen in Figure 6.1 that the |Qt| value of the 4+
1 state in 182Hg is

much higher than in 186Hg. Looking to the level systematics in Figure 6.2 this

can be accounted for by the prolate structure that reaches a minimum at A =182,

and is consistent with high collectivity at the neutron mid shell. At A=186 an

increase in level energies with decreasing neutron valence space indicates that it

is less collective than its lighter neighbour.

Figure 6.3 shows |Qt| values of 182Hg as a function of initial state spin along

with the |Qt| values for neighbouring Hg and Pb isotopes. Data for 180,182Hg

are taken from [GPS+09] whilst the data for the Pb isotopes are taken from

[GDM+06]. The near constant |Qt| values for the Iπ ≥ 6+ states in 182Hg indicates

there prolate structure. The slightly lower value for |Qt| of the 4+
1 state indicates

the mixed nature of the 2+
1 state in 182Hg. The high |Qt| values indicates collective

nature of 182Hg. Comparing the |Qt| values of the light Hg isotopes to the light

Pb isotopes in Figure 6.3, it can be concluded that the prolate bands of these



136 CHAPTER 6

Figure 6.3: Experimental |Qt| values for neutron deficient Hg and Pb isotopes.

nuclei are similar and the behaviour in the mass region consistent.

6.2 Composition of the 2+
2 → 2+

1 Transition and

the Effect on Matrix Elements

It is of interest to determine the E2, M1 and E0 components of the 2+
2 → 2+

1

transition. Though no unique solution can be found to this problem, due to

insufficient data, a set of solutions can be found describing the percentage com-

position that can account for the observed X-ray yield.

The observed X-rays in Figure 5.7 can not be accounted for by internal con-

version of the observed transitions alone. A strong E0 component to the 2+
2 →

2+
1 transition and an unobserved 0+

2 → 0+
1 E0 transition are likely to be the cause

of the enhanced X-ray peak. To investigate the composition of the 2+
2 → 2+

1

transition a γγ-coincidence matrix was produced. When gating on the 2+
1 → 0+

1

transition Figure 6.4 is obtained. In this spectrum the 68 keV Kα X-ray is visible,

along with the 196 keV 2+
2 → 2+

1 and the 262 keV 4+
1 → 2+

1 transitions. Table 6.1



Discussion 137

0 50 100 150 200 250 300 350 400 450 500
Energy (keV)

0

2

4

6

8

10

12

14

C
ou

nt
s

K   X-ray

4
+
1 1

2
+

2
+

12
+
2

α

Figure 6.4: γγ coincidence spectrum when gating on the 2+
1 → 0+

1 transition. Spectrum
has been Doppler corrected for 182Hg.

lists the observed transitions and the efficiency-corrected counts.

The X-ray yield given in Table 6.1 is the sum of two contributing factors. X-

rays due to internal conversion of the 4+
1 → 2+

1 transition can be easily calculated

as this is a pure E2 transition. These account for 2.01±0.31 of the measured

yield. The remaining X-ray yield originates from the 2+
2 → 2+

1 transition. The

contribution to the X-ray yield from an E0 component of the 2+
2 → 2+

1 transition

has been calculated using the following relation

Xtot = XIC
4+1 →2+1

+ XIC
2+2 →2+1

+ XE0
2+2 →2+1

, (6.1)

where Xtot is the total X-ray yield from Table 6.1, XIC
4+1 →2+1

are the X-rays from

the internal conversion of the 4+
1 → 2+

1 transition, XIC
2+2 →2+1

the X-rays from the

internal conversion of the 2+
2 → 2+

1 transition and XE0
2+2 →2+1

are the X-rays due to

an E0 component of the 2+
2 → 2+

1 transition. As the ratio of E2 to M1 components

in the 2+
2 → 2+

1 transition is unknown a range of values for δ2 have been used. For
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Transitions in Coincidence with the 2+
1 → 0+

1 transition in 182Hg

Transition Energy (keV) Counts

Kα X-ray 68 78 ± 15

2+
2 → 2+

1 196 23.3 ± 5.2

4+
1 → 2+

1 262 62.9 ± 9.6

Table 6.1: Efficiency-corrected transitions observed in coincidence with the 2+
1 → 0+

1

transition in 182Hg.

each value of δ2 the X-rays from the internal conversion of the 2+
2 → 2+

1 transition

have been calculated along with the X-rays from an E0 component of the same

transition. The E0 component of the 2+
2 → 2+

1 transition has been inferred for

each value of δ2 using the relation

E0 =
XE0

2+2 →2+1

Xtot
2+2 →2+1

+ γ2+
2 →2+

1

, (6.2)

where XE0
2+2 →2+1

is the X-ray yield from the E0 component of the 2+
2 → 2+

1

transition, Xtot
2+2 →2+1

is the total X-ray yield of the 2+
2 → 2+

1 transition and

γ2+
2 →2+

1
is the γ-ray yield of the 2+

2 → 2+
1 transition. Table 6.2 lists for each δ2

value used the percentage composition of the 2+
2 → 2+

1 transition.
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182Hg 2+
2 → 2+

1 Composition

δ2 E0 % M1 % E2 % ρ2 × 103

∞ 72.4 ± 20.8 0 27.6 ± 20.8 66 ± 28

9.0 70.5 ± 20.6 3.0 ± 2.1 26.6 ± 18.5 63 ± 27

4.0 68.7 ± 20.4 6.3 ± 4.1 25.1 ± 16.3 59 ± 25

2.3 66.9 ± 20.2 9.9 ± 6.1 23.2 ± 14.1 58 ± 25

1.5 65.1 ± 20.0 14.0 ± 8.0 21.0 ± 12.0 50 ± 21

1.0 63.2 ± 19.8 18.4 ± 9.9 18.4 ± 9.9 50 ± 21

0.66 61.4 ± 19.7 23.1 ± 11.8 15.4 ± 7.9 45 ± 19

0.43 59.6 ± 19.5 28.3 ± 13.7 12.1 ± 5.9 40 ± 17

0.25 57.8 ± 19.4 33.8 ± 15.5 8.4 ± 3.9 35 ± 16

0.11 56 ± 19.3 39.6 ± 17.3 4.4 ± 1.9 34 ± 15

0 53.9 ± 19.2 46.1 ± 19.2 0 33 ± 15

Table 6.2: Calculated composition of the 2+
2 → 2+

1 transition in 182Hg using γγ-
coincidence X-ray and γ-ray yields. E0 branch is calculated from the E0 X-rays re-
quired to account for the observed X-ray yield in the γγ-coincidence spectrum that do
not originate from internal conversion. E2 and M1 branches are calculated from the
assumed δ2 values.

Values for ρ2 have been calculated using the equation

ρ2 =

(
1

Ωk

)
·
(

1

τE0

)
, (6.3)

where Ωk is the electronic factor and τE0 is the E0 lifetime of the 2+
2 state. It

can be seen from Table 6.2 that there is a strong E0 component to the 2+
2 →

2+
1 transition. This is indicative of mixing between the 2+

1 and 2+
2 states. From

this analysis a lower limit for the E0 component of 53.9 ± 19.2% can be inferred.

Values of ρ2 are high, as is expected for a transition with a strong E0 component,

but are in the same range as ρ2 values for 0+
2 → 0+

1 transitions in 186Hg and

neighbouring nuclei [JZR+94, WZCH99]. χ2 minimizations were performed for

each value of δ2 listed in Table 6.2. Figure 6.5 shows the effect on the matrix

elements associated to the 2+
1 and 2+

2 states that the value of δ2 has. The B(E2)
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Figure 6.5: Resulting matrix elements from GOSIA χ2 minimizations for values of δ2

listed in Table 6.2.

value for the 2+
1 state is not effected. This can be seen by the almost constant

straight line. The diagonal matrix elements for both the 2+
1 and 2+

2 states are

affected to some degree, though the effect is contained within the quoted errors

for 〈2+
1 || E2|| 2+

1 〉 and 〈2+
2 || E2 ||2+

2 〉.

6.3 Summary

The nature of the light 182,186Hg isotopes has been investigated for the first time

using Coulomb excitation. In addition, RDDS lifetime measurements have been

performed for 182Hg. These two complementary methods have allowed the shape

of the low-lying levels in these nuclei to be probed.

The magnitude and sign of the quadrupole moment for this state can be

unambiguously assigned from the model independent approach undertaken. It is

clear from both χ2 minimizations and complementary shape analysis that the 2+
1

state in 186Hg has a positive quadrupole moment. It can be concluded from the

Coulomb excitation data that in 186Hg there is a clear dominant oblate component

to the 2+
1 state and its wavefunction. The large error bars on the diagonal matrix

elements in particular show that the sensitivity to the Coulomb excitation cross

section of the quadrupole moment was not as great as was hoped for.
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In 182Hg the lack of sensitivity to the quadrupole moment produced diago-

nal matrix elements again with large error bars. It can be concluded from the

Coulomb excitation data alone that the 2+
1 state in 182Hg is a strong mixture of

prolate and oblate structure. A relatively small quadrupole moment is a sign of

strong mixing. This is supported by the conclusion that the 2+
2 → 2+

1 transition

has a dominant E0 component. The negative sign of the quadrupole moment

shows a prolate dominance of the wavefunction. RDDS lifetime measurements

and band mixing calculations confirm this.

A transition from a dominant oblate component of the wavefunction of the

2+
1 state to a prolate dominance of the wavefunction has been observed close to

the neutron midshell. The 2+
1 state in 186Hg is clearly oblate in majority, and the

2+
1 state in 182Hg an admixture of prolate and oblate with a prolate dominance.

This can be explained when considering level systematics; the prolate 2+
1 intruder

state finds its minimum at A = 180/182 and so will become the first excited 2+
1

state in these isotopes.

The collective nature of the prolate band in the light Hg isotopes has been

confirmed through the behaviour of the |Qt| values. The similarity to the light

Pb isotopes confirms common behaviour in the region.

With the analysis of more accurate RDDS lifetime measurements of 184,186,188Hg

under way, new, improved B(E2) and |Qt| values for these nuclei will soon be avail-

able. The nature of collectivity and shape coexistence in the light Hg isotopes

will further be investigated and the knowledge of this phenomena improved.
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Figure A.1: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 261.4 keV 4+ → 2+ transition, gated on the populating
333.1 keV 6+ → 4+ transition when using Ring 1 of JUROGAM. Target-to-degrader
distances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 153

261.4 keV 4+ → 2+ Transition JUROGAM Ring 1

Distance d (µm) Counts Is Counts Id

15 5±7 393±21

25 5±6 317±19

35 7±6 429±22

50 7±5 287±18

60 8±6 274±17

70 16±8 375±20

100 18±8 224±16

150 20±7 317±19

250 62±12 417±22

300 76±12 285±19

500 148±15 232±17

700 234±18 137±15

1000 340±20 120±14

2000 432±22 35±10

3000 372±20 24±9

Table A.1: Summary of measurements of different target-to-degrader distances for the
261.4 keV 4+ → 2+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 5 JUROGAM
detectors at 157.6◦.
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Figure A.2: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 261.4 keV 4+ → 2+ transition, gated on the populating
333.1 keV 6+ → 4+ transition when using Ring 2 of JUROGAM. Target-to-degrader
distances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 155

261.4 keV 4+ → 2+ Transition JUROGAM Ring 2

Distance d (µm) Counts Is Counts Id

15 9±7 719±33

25 7±6 687±31

35 10±8 779±30

50 4±5 536±27

60 6±7 629±30

70 7±6 772±33

100 5±7 490±27

150 11±9 781±34

250 114±24 786±36

300 146±24 639±32

500 354±28 443±29

700 458±30 333±28

1000 772±35 208±27

2000 809±34 52±21

3000 745±33 68±21

Table A.2: Summary of measurements of different target-to-degrader distances for the
261.4 keV 4+ → 2+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 10 JUROGAM
detectors at 134.8◦.
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Figure A.3: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 333.1 keV 6+ → 4+ transition, gated on the populating
414 keV 8+ → 6+ transition when using Ring 1 of JUROGAM. Target-to-degrader dis-
tances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 157

333.1 keV 6+ → 4+ Transition JUROGAM Ring 1

Distance d (µm) Counts Is Counts Id

15 3±7 269±17

25 5±7 248±17

35 2±6 325±19

50 7±5 197±15

60 8±5 208±15

70 43±9 285±18

100 48±9 138±13

150 148±14 145±14

250 238±17 107±13

300 227±16 79±11

500 257±17 16±6

700 278±18 16±6

1000 316±19 10±8

2000 328±19 5±6

3000 278±18 4±6

Table A.3: Summary of measurements of different target-to-degrader distances for the
333.1 keV 6+ → 4+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 5 JUROGAM
detectors at 157.6◦.



158 APPENDIX A

0
40
80

120

0

40

80

120

0

40

80

120

0

40

80

0

40

80

120

0

40

80

120

0

40

80

0

40

80

0

40

80

120

0

40

80

0

40

80

120

0

40

80

120

0
40
80

120

320 325 330 335 340 345 350
 Energy (keV)

0
40
80

120

320 325 330 335 340 345 350
 Energy (keV)

0

40

80

120

04080120160200

15µm 25µm

35µm 50µm

60µm 70µm

100µm 150µm

250µm 300µm

500µm 700µm

1000µm 2000µm

3000µm

Figure A.4: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 333.1 keV 6+ → 4+ transition, gated on the populating
414 keV 8+ → 6+ transition when using Ring 2 of JUROGAM. Target-to-degrader dis-
tances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 159

333.1 keV 6+ → 4+ Transition JUROGAM Ring 2

Distance d (µm) Counts Is Counts Id

15 34±16 524±26

25 40±15 407±23

35 46±16 540±27

50 67±15 374±23

60 87±16 364±23

70 112±19 451±26

100 130±17 248±20

150 339±25 235±22

250 520±29 125±21

300 470±27 84±18

500 601±29 7±16

700 595±29 2±15

1000 664±31 1±12

2000 690±32 1±11

3000 575±28 2±12

Table A.4: Summary of measurements of different target-to-degrader distances for the
333.1 keV 6+ → 4+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 10 JUROGAM
detectors at 134.8◦.
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Figure A.5: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 414.0 keV 8+ → 6+ transition, gated on the populating
487.4 keV 10+ → 8+ transition when using Ring 1 of JUROGAM. Target-to-degrader
distances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 161

414.0 keV 8+ → 6+ Transition JUROGAM Ring 1

Distance d (µm) Counts Is Counts Id

15 1±4 190±15

25 1±4 153±13

35 15±6 165±14

50 30±7 90±11

60 48±8 98±11

70 67±10 93±11

100 86±10 31±7

150 142±13 17.7±6.1

250 201±15 22±7

300 156±13 11±6

499 157±13 6±6

700 165±14 2±4

1000 179±14 2±5

2000 184±14 1±6

3000 153±13 1±5

Table A.5: Summary of measurements of different target-to-degrader distances for the
414.0 keV 8+ → 6+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 5 JUROGAM
detectors at 157.6◦.
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Figure A.6: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 414.0 keV 8+ → 6+ transition, gated on the populating
487.4 keV 10+ → 8+ transition when using Ring 2 of JUROGAM. Target-to-degrader
distances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 163

414.0 keV 8+ → 6+ Transition JUROGAM Ring 2

Distance d (µm) Counts Is Counts Id

15 49±12 319±20

25 71±12 266±18

35 108±15 301±20

50 107±13 145±15

60 155±15 114±14

70 269±20 117±15

100 205±17 62±12

150 387±22 32±12

250 397±23 12±7

300 357±22 7±8

500 351±21 3±5

700 341±21 1±5

1000 424±24 1±6

2000 409±23 1±6

3000 386±22 0±8

Table A.6: Summary of measurements of different target-to-degrader distances for the
414.0 keV 8+ → 6+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 10 JUROGAM
detectors at 134.8◦.



164 APPENDIX A

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

0

10

20

0

10

20

30

0

10

20

0

10

20

30

0
10
20
30
40

0
10
20
30
40

0

10

20

30

0

10

20

30

0
10
20
30
40

480 485 490 495 500
 Energy (keV)

0
10
20
30
40

480 485 490 495 500
 Energy (keV)

0
10
20
30
40

04080120160200

15µm 25µm

35µm 50µm

60µm 70µm

100µm 150µm

250µm 300µm

500µm 700µm

1000µm 2000µm

3000µm

Figure A.7: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 487.4 keV 10+ → 8+ transition, gated on the populating
553.1 keV 12+ → 10+ transition when using Ring 1 of JUROGAM. Target-to-degrader
distances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 165

487.4 keV 10+ → 8+ Transition JUROGAM Ring 1

Distance d (µm) Counts Is Counts Id

15 6±8 84±11

25 15±6 66±10

35 49±10 105±12

50 51±9 36±8

60 62±10 35±8

70 94±11 21±7

100 66±10 5±5

150 118±13 10±7

250 129±13 16±8

300 133±13 9±6

500 129±13 5±6

700 126±13 5±7

1000 154±14 2±6

2000 132±13 1±8

3000 93±11 0±9

Table A.7: Summary of measurements of different target-to-degrader distances for the
487.4 keV 10+ → 8+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 5 JUROGAM
detectors at 157.6◦.
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Figure A.8: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 487.4 keV 10+ → 8+ transition, gated on the populating
553.1 keV 12+ → 10+ transition when using Ring 2 of JUROGAM. Target-to-degrader
distances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 167

487.4 keV 10+ → 8+ Transition JUROGAM Ring 2

Distance d (µm) Counts Is Counts Id

15 28±11 130±15

25 58±12 162±16

35 99±14 147±15

50 93±12 68±11

60 94±13 44±11

70 190±17 36±11

100 134±14 15±8

150 195±17 6±10

250 236±19 7±7

300 209±17 7±7

500 187±17 2±5

700 215±18 3±7

1000 275±20 2±6

2000 231±19 1±7

3000 230±18 0±8

Table A.8: Summary of measurements of different target-to-degrader distances for the
487.4 keV 10+ → 8+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 10 JUROGAM
detectors at 134.8◦.
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Figure A.9: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 553.1 keV 12+ → 10+ transition, gated on the populating
611.3 keV 14+ → 12+ transition when using Ring 1 of JUROGAM. Target-to-degrader
distances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 169

553.1 keV 12+ → 10+ Transition JUROGAM Ring 1

Distance d (µm) Counts Is Counts Id

15 36±8 62±10

25 40±9 43±8

35 94±11 39±9

50 47±7 2±2

60 74±9 1±2

70 81±11 2±6

100 54±8 1±4

150 111±12 3±6

250 143±13 0±4

300 121±12 0±6

500 87±11 1±7

700 119±12 1±7

1000 122±12 0±4

2000 96±11 0±5

3000 101±11 0±5

Table A.9: Summary of measurements of different target-to-degrader distances for the
553.1 keV 12+ → 10+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 5 JUROGAM
detectors at 157.6◦.
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Figure A.10: Spectra showing the deconvolution of the fully Doppler shifted and de-
graded components of the 553.1 keV 12+ → 10+ transition, gated on the populating
611.3 keV 14+ → 12+ transition when using Ring 2 of JUROGAM. Target-to-degrader
distances are listed in each panel, dashed lines indicate the degraded component whilst
dotted lines indicate the fully Doppler shifted component of the transition.



Tabulated Recoil Distance Doppler Shift Measurements of 182Hg 171

553.1 keV 12+ → 10+ Transition JUROGAM Ring 2

Distance d (µm) Counts Is Counts Id

15 94±13 159±16

25 84±13 95±13

35 138±15 101±14

50 126±13 36±10

60 145±15 44±11

70 190±16 46±11

100 143±14 30±9

150 217±18 15±10

250 256±19 31±12

300 243±18 27±13

500 240±18 26±12

700 223±17 22±10

1000 239±19 16±11

2000 239±19 15±12

3000 178±16 11±11

Table A.10: Summary of measurements of different target-to-degrader distances for the
553.1 keV 12+ → 10+ transition for RDDS measurements of 182Hg. The fully Doppler
shifted components, Is and degraded components, Id are measured with 10 JUROGAM
detectors at 134.8◦.


