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Abstract 

This paper examines the performance of environmental strategies in seven recently 

constructed or refurbished university buildings in the UK. These buildings contain a range of 

administrative spaces, classrooms, libraries and studios, reflecting their often complex, multi-

use, heterogeneous nature. The key features of each environmental strategy are described 

(including passive, mixed-mode or active systems), in the context of the occupants and 

spaces they serve and the level of interaction that they afford. Energy performance and 

occupant thermal comfort (assessed by user surveys) are analysed and compared with studies 

of other non-domestic buildings, which have typically focused on more predictable single 

administrative uses (e.g. government offices), and unusually effective operation scenarios 

(e.g. continuous monitoring by expert building managers). The paper concludes by 

examining two of the case studies that reflect an increasingly common model of ‘flexible’ 

environmental design in more detail, identifying key features of the strategies for each 

building that have had a significant impact on their performance. The design assumptions 

leading to these features will be explored, and key lessons identified, contributing towards the 

development of a more robust evidential basis for choosing appropriate environmental 

strategies for university and other non-domestic buildings in the UK. 

 

Keywords: post-occupancy evaluation (PoE), energy performance, thermal comfort, 
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Introduction 

The Higher Education building stock 

The 2016 Higher Education Carbon Challenge report described progress towards the 

Higher Education Funding Council for England (HEFCE) target to reduce carbon emissions 

in Higher Education (HE) institutions in the UK by 43% in 2020 against a 2005 baseline of 

2.06m tonnes, in line with the 2008 Climate Change Act. According to the report a 9% 

reduction had been achieved in scope 1 and 2 emissions in a survey of 120 institutions by 

2015, meaning that four times these savings would need to be achieved by 2020 if the target 

were to be met (Carbon Credentials and The Environmental Association for Universities and 

Colleges 2016). In the same time-frame, energy costs to the sector have more than doubled 

from around £170m in 2005 to £400m in 2015 (Association of University Directors of 

Estates 2016).  

The carbon savings that have currently been achieved have largely come from supply-

side improvements, particularly in the development of Combined Heat and Power (CHP) 

systems, which now account for 16% of energy use in the sector (Higher Education Statistics 

Agency 2016). It is likely that the remaining savings will need to come largely from demand-

side interventions. Some effort has been undertaken to improve the energy performance of 

existing buildings, particularly in improving the fabric of mid-twentieth century buildings. 

However it remains difficult to quantify or track improvements, due to a lack of reliable 

disaggregated data on carbon emissions (AUDE 2009). Energy savings may be counteracted 

by a perceived requirement for improved comfort and the installation of new environmental 

control systems (AUDE and HEFCE 2008).  

Similarly, there is no agreed strategy for the Post-Occupancy Evaluation (POE) of HE 

buildings, as the most up-to-date guidance available from HEFCE, dating from 2006, 

‘purposefully avoid[s] adopting any particular definition, preferring instead to embrace the 



concept that as Estates Professionals the whole life of a building or development is our 

responsibility’ (HEFCE, AUDE, and University of Westminster 2006). This guidance may 

have been appropriate at the time, but a lack of follow-on agreement on the nature and scope 

of POE in the sector has meant that very few studies have been published explicitly 

examining the energy performance of HE buildings, representing a significant knowledge 

gap. There is therefore an urgent need to understand why HE buildings use more energy, as 

well as an opportunity to utilise better performing HE buildings to educate users about the 

impacts of their activities and the need for carbon emission reductions. 

This paper builds on previous research contrasting environmental strategies in two HE 

buildings with five additional case studies, expanding the currently very limited availability 

of data about the energy performance and thermal comfort of identified Higher Education 

buildings in the UK. The design concept and environmental strategies of the seven buildings 

are first outlined. This is followed by the results of thermal comfort surveys conducted in 

each building, and analysis of their energy performance. Finally the environmental strategies 

and disaggregated energy data for two of the case studies – reflecting a recent trend to meet a 

perceived need for flexibility in multifunctional spaces – are examined in further detail. 

This approach is employed to examine how environmental design strategy may be related 

both to energy performance and indoor thermal comfort conditions. Lessons are identified 

with relevance to the wider non-domestic building sector. The research complements 

evidence from POE studies that have either suffered from verification bias through the 

selection of ‘model’ examples of buildings with highly specialised environmental strategies 

for predictable and specific use patterns (e.g. schools, hospitals), or studies that have been too 

large to disaggregate data to explore causal relationships between specific design strategies 

and performance. 

 



Background 

The Performance Gap in non-domestic buildings 

While predicted operational energy use in new non-domestic buildings continues to fall, 

analysis of Display Energy Certificate data has revealed that the standard approaches for 

estimating operational energy use are often systematically flawed, underestimating regulated 

energy due to errors in modelling deterministic phenomena, and failing to account for 

increased unregulated energy due to the stochastic behaviour of building occupants. 

According to a study of 528 public offices, recent changes in building regulations have 

reduced thermal energy use by almost 40% in buildings built after 2000. However this has 

been counteracted by a 75% increase in use of electrical energy in buildings constructed after 

2000 (where electrical energy is almost double thermal energy use) relative to those built pre-

1959, often due to the installation of heating, ventilation and air conditioning (HVAC) 

systems, resulting in higher overall CO2 emissions (Armitage et al. 2015). A study by the 

Carbon Trust indicated actual energy use was up to five times higher than specified in 

refurbished offices (Carbon Trust 2008), while K. Gram-Hansen estimates actual energy use 

up to three times higher in the residential sector (Gram-Hansen 2011). The scale of the 

performance gap in HE buildings is currently unknown but likely to be comparable. HESA 

data suggests that mean carbon emissions across 9,833 non-domestic HE buildings are 86.3 

kgCO2e/m2/annum, approximately 25% higher than the average office building in the UK 

(comparison of data from Higher Education Statistics Agency 2016; Armitage et al. 2015). 

Of 31 HE buildings for which data is available on CarbonBuzz (the RIBA/CIBSE reporting 

database), mean actual carbon emissions are 77.8 kg CO2/m2/yr, more than double mean 

design estimates of 36.3kg CO2/m2/yr (CarbonBuzz, RIBA and CIBSE, n.d.).  

 

Post-Occupancy Evaluation 



Post-Occupancy Evaluation (POE) describes the systematic evaluation of occupied 

buildings with the aim of providing feedback to inform remedial action and the design of 

future projects (Nicol and Roaf 2005). POE has been demonstrated to have a positive impact: 

reducing carbon emissions, running costs, and improving comfort and productivity from one 

project to the next. However, there remain many challenges to implementing POE in practice, 

including a lack of recognition of the value of the case study method, difficulty in engaging 

stakeholders, and concerns about liability following discovery of faults (Stevenson 2009). 

Findings from POE are often applied only to buildings of a similar scale and function with 

similar occupancy patterns, and dissemination is often restricted by commercial 

confidentiality. 

Notable post-occupancy studies include the 23 PROBE case study buildings examined 

between 1995 and 2002 (Bordass et al. 2001), and specialist projects such as the EPSRC-

funded 'Design and Delivery of Robust Hospital Environments in a Changing Climate' 

(DeDeRHECC) project (examining the impact of climate change on 9 hospital buildings) 

(Lomas and Giridharan 2012), which have revealed that the current and future energy 

performance of many buildings still falls significantly below expectations. A 2009 study by 

Newsham et al. of 100 LEED-certified buildings found that there was no statistically 

significant relationship between LEED-certification level and energy use (Newsham, 

Mancini, and Birt 2009). 

More recently, 56 non-domestic buildings studied as part of the Technology Strategy 

Board’s Building Performance Evaluation (BPE) programme (Building Performance 

Evaluation Group, n.d.) revealed actual carbon emissions 3.8 times those predicted at the 

design stage (Palmer, Terry, and Armitage 2016). Reports from individual TSB BPE projects 

are being disseminated to industry via the Building Data Exchange web portal launched in 

February 2016, however the project executive report identifies unexpected and unexplained 



findings such as: 

1. No correlation between airtightness and carbon emissions. 

2. Problems with the application of BREEAM assessment as a predictor of energy 

performance (‘Excellent’ projects used more energy than ‘Very good’ projects). 

3. A lack of data about the impact of control systems, e.g. Building Management Systems 

(BMSs). 

4. A lack of understanding of the impact of unregulated loads/energy use ‘out of hours’ 

(Palmer, Terry, and Armitage 2016). 

In order to address a lack of shared information and to identify underlying trends in 

performance across a wider range of buildings, other research has targeted understanding ‘the 

performance gap’ from a macro-scale analysis of larger building stock samples (Steadman 

and Hong 2013; Armitage et al. 2015). However, while these macro-scale studies reveal that 

performance data from individual POE studies is broadly representative, it is still not 

currently possible to identify design decisions in individual buildings that have led to higher 

than predicted energy use. The TSB BPE programme survey only included four HE 

buildings, three of which are atypical outliers (Table 1). As a consequence, there is an urgent 

need to examine the performance of a representative sample of Higher Education buildings in 

more detail.  

 

Table 1. HE buildings included in TSB BPE programme. 

Building Location Date Area m2 Description  Energy use 
(kWh/m2/ annum) 
 

Jarman School 
of Arts 

Canterbury 2009 2,500 A small specialist arts building 252.7 

Sus. Con. 
Academy 

Dartford 2014 3,907 An underused building 
designed as an exemplar 

126.4 

Thomas Paine 
Study Centre 

Norwich 2010 4,300 Similar design to Elizabeth Fry 
building (PROBE case study) 

212.0 

University of 
West of Scotland 

Ayr 2011 7,758 The largest/only typical HE 
building included in the survey 

398.0 

 



Thermal comfort 

Thermal comfort has been defined as ‘that condition of mind which expresses satisfaction 

with the thermal environment’ (ASHRAE 2004). It results from a dynamic equilibrium; the 

interaction between people and buildings in a particular social and climatic context. (Nicol 

and Roaf 2005). As individuals have different comfort thresholds, they will react in different 

ways at different times, making unanimous perceptions of comfort satisfaction in spaces of 

multiple occupancy very difficult to achieve.  

As different people have different standards for evaluating environments, a variety of 

environments (environmental diversity) can meet different people’s needs, allowing them to 

choose a particular space to satisfy their own requirements. Thermal adaptation is described 

by de Dear et al. as consisting of three components: behavioural adjustment (e.g. clothing, 

controls), psychological adaptation (e.g. habituation, expectation), and physiological 

adaptation (e.g. acclimatisation) (R. de Dear and Brager 1998). 

Even though the adaptive actions of occupants are complex and unpredictable, research 

has shown that if people can control or choose their environment, their satisfaction with the 

environment will rise significantly (Leaman and Bordass 1999). Environmental design should 

therefore aim to provide environmental diversity, as well as opportunities for people to 

control and adapt to their own environment (Leaman and Bordass 2007). 

However, providing personal control in the open plan spaces typical of HE buildings is 

often considered to be too costly and impractical; temperature and lighting are therefore often 

designed to meet generic standards, automatically controlled by Building Management 

Systems (Myerson and Bichard 2010). 

	  

	  

	  



Field studies 

Due to the complexity of the human sensory system, it is impossible to simulate the 

thermal comfort of an individual in a particular space in a constantly changing environment 

through a theoretical model (Nicol, Humphreys, and Roaf 2012). In order to assess the 

thermal comfort of a space it is therefore necessary to conduct a field survey. Satisfaction is 

measured by interviewing subjects for a ‘vote’ on a descriptive scale such as the ASHRAE 

scale. The AHSRAE scale has been thoroughly tested through continuous use over many 

years (Nicol, Humphreys, and Roaf 2012). A neutral feeling is recorded as ‘0’, while the two 

extreme points, cold and hot, are defined as ‘-3’ and ‘3’ respectively. The other scores 

describe ‘slightly warm’ (1), ‘warm’ (2), ‘slightly cool’ (-1) and ‘cool’ (-2). These scores can 

be combined to ascertain the Actual Mean Vote (AMV). 

In contrast, the Predicted Mean Vote (PMV) heat exchange model was developed from the 

principle that a subject is a passive recipient of thermal stimulation, and the effects of a 

thermal environment are mediated by the physics of heat transfer alone (R. de Dear and 

Brager 1998). The PMV model was developed from the results of thousands of experiments 

conducted in controlled conditions in a climate chamber. However, it does not consider 

contextual and psychological variables. As a result the PMV model is more accurate the more 

unfamiliar participants are with the space they occupy and the less ability they have to control 

their conditions (Michael Humphreys, Nicol, and Roaf 2015). Discrepancy between AMV 

and PMV may be an indication of more adaptive behaviour by occupants seeking to achieve 

thermal comfort individually. This behaviour is encouraged by adaptive opportunities, more 

of which are likely to be present in passive, free-running buildings. 

 

 

 



Description of case studies 

HE buildings are often characterised by more heterogeneous use patterns than other non-

domestic buildings, due to a greater diversity of spatial requirements and daily as well as 

seasonal changes in occupancy, leading to more variation in use. The seven case studies 

examined here represent buildings of different ages with different environmental design 

strategies (Figure 1). They include a range of design strategies and use patterns, focussing on 

more complex situations that have been largely overlooked in existing POE, which has 

tended to focus on successful examples of buildings fine-tuned with more specialised 

environmental strategies for more predictable use patterns (Table 2).  

 





Figure 1. Clockwise from top right: Arts Tower; Western Bank Library; Reid Building; 

Benzie Building; Information Commons; The Diamond; Potterrow. 

 

Table 2. Case study buildings. 

Building Location Date 
(refurbish) 

Area m2 Architect 
(refurbishment) 

Design brief  

Arts Tower Sheffield 1965 (2011) 7,200 Gollins, Melvin, 
Ward & Partners 
(HLM Architects) 

Refurbishment of offices and 
studio spaces – occupancy and 
use well-established 

Western Bank 
Library 

Sheffield 1959 (2009) 11,160 Gollins, Melvin, 
Ward & Partners 
(Avanti Architects) 

Refurbishment of library – 
occupancy and use well-
established 

Reid Building Glasgow 2014 11,250 Steven Holl 
Architects (with JM 
Architects) 

New art school – 
occupancy patterns similar to 
existing school 

Benzie 
Building 

Manchester 2012 17,320 Feilden Clegg 
Bradley Studios 

Extension to art school – new 
flexible space, occupancy and 
use uncertain 

Information 
Commons 

Sheffield 2007 11,500 RMJM New study centre – occupancy 
patterns uncertain 

The Diamond Sheffield 2015 19,500 Twelve Architects New multi-functional faculty 
building – occupancy and use 
uncertain 

Potterrow  Edinburgh 2008 16,000 Bennetts 
Associates 

Designed as flexible office 
space to BCO specifications – 
occupancy and use uncertain 

 

The Arts Tower and Western Bank Library are the oldest buildings included in the survey, 

dating from the mid 20th century. They neighbour each other and were designed concurrently, 

connected by a bridge at mezzanine level. The library was completed first in 1959. Its large 

reading room, characterised by curtain glazing offering views north across Weston Park, sits 

atop a square plan of book stacks, which rely on artificial lighting and ventilation. 

Construction of the Arts Tower began in 1961, three years after Mies can der Rohe’s 

Seagram building in New York, to which the Arts Tower, although half the height, clearly 

owes an aesthetic debt (Everett 2013). 

The buildings were amongst the first of a new generation of post-war university buildings 

constructed in the UK, representing the arrival of the International Style as the architectural 

language that best symbolised the ambition of what Harold Wilson described as the ‘white 



heat of the technological revolution’, including the promise of unlimited energy from nuclear 

fusion (Calder Hall, the world’s first nuclear power station, opened in 1956). For the first 

time Mies’s vision of curtain-walled towers seemed practical, aided by advances in air 

conditioning and fluorescent lighting, although, intriguingly, the former was considered to be 

unaffordable in the Arts Tower, which was instead fitted with opening metal sash framed 

windows (Schneider 2007). This compromise, together with the relatively poor thermal 

characteristics of the facades (which are identical regardless of orientation), led to regular 

overheating in the south side of the tower in summer. Both buildings have recently been 

refurbished, however intervention to the fabric has been limited by their Grade II* listing 

(Everett 2013). The library is still in use largely as designed, while the Arts Tower is divided 

between university administration on the lower levels and academic departments (Landscape 

and Architecture) above. 

Mies’s legacy – divorcing the envelope of the building from open plan spaces inside, 

which are largely mechanically serviced regardless of orientation – is still apparent today, as 

can be seen in several of the later case studies included in this survey, the designs of which 

have often been driven by a perceived need for more ‘flexible’ space planning. 

The Reid Building was completed in 2014. It sits directly opposite Mackintosh’s Glasgow 

School of Art of 1910, and accommodates a range of new studio spaces for that institution at 

different scales. Despite being designed over a century apart the plans of the two buildings 

are in fact broadly similar, with high ceilinged and brightly day lit teaching spaces to the 

north, and a range of ancillary spaces to the south. The circulation of the Reid building is 

arranged around three ‘driven voids’, admitting daylight into the centre of the plan and 

permitting natural stack ventilation (‘Art Academy in Glasgow’ 2014). 

The Benzie building, completed in 2012, is the latest extension of Manchester School of 

Art, joined to a three storey 1960’s building with a nine storey tower to the east. The new 



building is composed of a six storey ‘living room’ (café and social space) behind a highly 

glazed north façade, and a four storey ‘factory’ (composed of classrooms and open plan 

working space) to the south. The ‘factory’ is organised around an atrium with two lanterns to 

the roof, however the admission of daylight is carefully restricted. Fresh air is supplied 

through floor diffusers and extracted at high level through a heat exchanger on the roof (Mara 

2013). 

The Information Commons opened in 2007. With 1,300 workstations over seven levels, it 

is Sheffield’s largest library, open 24/7 (Salter 2015). Located at the junction of two major 

trunk roads, it is orientated around a central atrium with restricted views to the exterior. It is 

mechanically ventilated and air conditioned, and largely closed off from the outside world. 

The Diamond, housing teaching and research space for the Faculty of Engineering, 

represents the largest ever capital investment for the University of Sheffield. Costing £81m, 

the building was opened in 2015. The Diamond is also a 24/7 facility, with six levels housing 

a range of lecture theatres, seminar rooms, open plan study spaces, library, IT services, 

spaces for informal study and a café. The top four levels of the building include an atrium 

designed to provide an open and light atmosphere. The building operates in a mixed mode, 

with mechanical ventilation in closed spaces and stack ventilation in the atrium (Cousins 

2016). 

Potterrow is a multi-departmental building organised around a central atrium for the 

University of Edinburgh. The first phase was completed in 2008, housing the School of 

Informatics and the School of Philosophy, Psychology and Language Sciences. To facilitate a 

requirement for ‘simple flexible space to accommodate constantly changing academic 

requirements’, the building was designed with moveable partitions providing cellular 

accommodation (MacGregor 2004). 



 Corridors provide access to offices on the outside of the building or looking into the 

central atrium, with breakout spaces at a range of scales. The servicing strategy is a complex 

hybrid, with air supplied from sub-floor plenums or opening windows to the outside, and 

extracted via a heat exchanger at the top of the atrium. 

The environmental strategies and the thermal characteristics of the fabric of the seven case 

studies are summarised below (Table 3). 

 

Table 3. Environmental strategies and thermal characteristics. 

Building Mode Fabric Environmental 
strategies 

U-value 
(fabric) 

U-value 
(glazing) 

Glazing 
ratio % 

Arts Tower Naturally 
ventilated 

Concrete frame, glass 
spandrel panel facade 

Operable windows, 
high-performance 
glazing 

1.10 2.2 55 

Western Bank 
Library 

Mechanical 
ventilation/ 
AC 

Concrete frame, 
Portland stone cladding 
on brick base 

Air conditioning, 
perimeter heating 
around glazed facades 

0.70 1.6 55 

Reid Building Naturally 
ventilated 

In-situ concrete 
structure clad over in 
glass 

Stack ventilation 
through circulation 
spaces with radiant 
heating and exposed 
thermal mass 

0.24 1.6 40 

Benzie 
Building 

Mechanical 
ventilation/ 
AC 

Concrete frame, glass 
aluminium curtain 
walling system 

Variable air volume 
system and lighting 
controls to adapt to 
different occupancies 

0.17 1.1 60 (N), 
20 (S) 

Information 
Commons 

Mechanical 
ventilation/ 
AC 

Concrete frame, 
cladding (glazing, 
copper, terracotta tile) 
supported by steel 
frame 

Conditional air module 
(CAM) climate control 
with underfloor 
plenums 

0.25 1.6 20 

The Diamond Mixed-mode Steel frame, anodised 
aluminium and glass 
spandrel panel facade 

Air conditioning in 
closed spaces and 
stack ventilation in 
atrium 

0.22 0.8 40 

Potterrow  Mixed-mode Concrete frame, cast 
stone panel facade 

Exposed concrete 
slabs and sub-floor 
plenums, heat recovery 
system in atrium 

0.25 1.9 40 

 

Methodology 

Field surveys 

As indicated in CIBSE TM52, occupant evaluation of the indoor thermal environment is 

largely context dependent and varies over time (CIBSE 2013). A transverse occupant field 



survey of each building was therefore conducted. Participants were interviewed in situ with 

date, time and location recorded. The questionnaire was designed to be completed as quickly 

as practically possible (under 5 minutes) while meeting the requirements of what has been 

defined as a ‘level 3’ survey, including ‘all factors needed to calculate the heat exchange 

between a person and the environment, together with subjective responses’ (Nicol, 

Humphreys, and Roaf 2012). 

A seven-point ASHRAE scale was used to measure subject’s thermal sensation and 

thermal satisfaction votes as recommended by Humphreys and Hancock (M. Humphreys and 

Hancock 2007) (see Appendix A). In total 403 thermal sensation votes (Actual Mean Vote) 

and 405 winter thermal preference votes were recorded across six buildings, and 505 summer 

thermal preference votes were recorded across seven buildings. Data was simultaneously 

collected on subject activity and clothing (clo value) (Table 4). 

 

Table 4. Survey details. 

Building Survey 
date  

Sample 
size 

Mean 
operative 
temp. (°C) 

Mean clo 
value  

Mean 
neutral 
temp. (°C)  

Thermal 
sensa-
tion 

Thermal 
pref. 
(summer) 

Thermal 
pref. 
(winter)  

Arts Tower June 
2015 

50 23.5 0.82 21.7 X X X 

Western 
Bank Library 

July/Aug 
2017 

30 23.0 0.87 22.5 X X X 

Reid 
Building 

October 
2016 

72 18.3 1.28 16.8 X X X 

Benzie 
Building 

July 
2018 

100 24.7 0.59 23.8 X X - 

Information 
Commons 

June 
2015 

51 24.1 0.85 23.5 X X X 

The 
Diamond 

June/July 
2017 

100 23.0 0.53 22.6 X X X 

Potterrow  October 
2013 

102 21.0 0.96 - - X X 

 

Environmental measurements were collected concurrently to the administration of the 

occupant survey using a handheld Testo 435 multifunction meter with Testo radiant globe 

thermometer, air thermometer, Relative Humidity (RH) and hot-wire anemometer probes. 



This equipment offers an operating temperature range of -50° to 150°C with a resolution of 

0.1°C, 0 to 20m/s for air velocity with a resolution of 0.1m/s, and 0 to 100% for RH with a 

resolution of 0.1%. Accuracy for temperature is ± 0.2°C from -25°C to 75°C, ±0.03 m/s +5% 

for air velocity, and ± 2% from 2 to 98% for RH. Measurements were taken at a height of 

1.1m at the location of each interviewed subject, away from radiators and other heat sources. 

The Predicted Mean Vote (PMV) was then calculated for comparison with Actual Mean Vote 

(AMV), using the CBE Thermal Comfort Tool, according to ASHRAE Standard 55 

(University of California Berkeley n.d.). 

Mean neutral temperature (Tn) was calculated from the mean operative temperature (To) 

employing the Griffiths method, assuming that a thermal sensation vote (V) of 0 represents 

comfort. Tn = To – V/G, where G represent the ‘Griffiths constant’ (K-1), a standard value for 

the relationship between sensation vote and operative temperature, assuming no adaptive 

behaviour occurs (Griffiths 1990). A value of 0.5 has been chosen for the Griffiths constant 

as recommended by Nicol and Humphreys, based on observations of thermal comfort 

collated from databases compiled by de Dear (R. de Dear 1998) and the Smart Controls and 

Thermal Comfort project (McCartney and Nicol 2001). It should be noted that no relationship 

was found between the Griffiths constant and the mode of building operation (M. A. 

Humphreys, Nicol, and Raja 2007; Nicol and Humphreys 2010). 

 

Energy data 

Energy use data for the Arts Tower, Western Bank Library, the Information Commons and 

the Diamond was collected via Energy Remote Monitoring (ERM) and Power Monitoring 

Energy (PME)1 systems. Energy use data for the Reid and Benzie buildings and Potterrow 

was obtained from Building Managers. Energy data is examined at the scale of the whole 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The ERM system collects ½ hourly electricity consumption data. The PME system monitors consumption at a 
more detailed level (e.g. by floor). It also allows electricity consumption data to be collected in real time. 



building. This data is compared with CIBSE Part F annual energy usage for libraries (the 

most relevant in terms of occupancy patterns and small power use for study spaces). 

 

Results 

The mean thermal sensation, recorded as Actual Mean Vote (AMV), was compared with 

the Predicted Mean Vote (PMV) for six of the case studies (thermal sensation was not 

recorded for Potterrow). Thermal preference was also examined, as it should not be assumed 

that the preferred thermal sensation is neutral (M. Humphreys and Hancock 2007). Thermal 

preference was recorded for seven case studies in summer, and six of the case studies in 

winter (winter thermal preference was not recorded for the Benzie Building), reflecting 

changing preferences over an annual cycle. The results of the field surveys of each case study 

are presented below (Table 5).  

 

Table 5. Results. 

Building Sample 
size 

PMV Mean 
thermal 
sensation 
(AMV) 

SD  Mean 
thermal 
pref. 
(summer) 

SD Mean 
thermal 
pref. 
(winter) 

SD  

Arts Tower 50 -0.48 0.90 1.17 -0.82 0.96 1.40 0.99 
 

Western 
Bank Library 

30 -0.28 0.23 0.96 -0.43 0.82 1.13 0.82 

Reid 
Building 

72 -0.55 0.76 1.25 -0.75 0.80 0.25 0.80 

Benzie 
Building 

100 -0.12 0.45 0.88 -0.38 0.72 - - 

Information 
Commons 

51 -0.26 0.29 1.43 -0.80 0.92 0.78 1.05 

The 
Diamond 

100 -0.70 0.22 1.00 -0.99 0.94 0.04 0.85 

Potterrow  102 - - - -0.79 0.94 0.24 1.01 
 

 

One-way ANOVA tests were conducted to compare thermal sensation scores (AMV) 

(Table 6), thermal preference scores in summer (Table 7), and thermal preference scores in 

winter (Table 8). There was a significant difference in thermal sensation scores [F(5, 397) = 



4.042, p = 0.001], summer thermal preference scores [F(6, 498) = 4.981, p = 0.000], and 

winter thermal preference scores  [F(5, 399) = 20.798, p = 0.000] between the buildings. Post 

hoc comparisons using the Tukey test were carried out with significant findings reported 

below. 

 

Table 6. Thermal sensation statistical tests. 

      ANOVA Sum of 
squares 

df Mean 
square 

F Sig. 

Building 25.011 5 5.002 4.042 0.001 

Error 491.351 397 1.238   

Total 516.362 402    

     

Tukey HSD Mean 
difference 

Std. error Sig. 90% confidence interval 

Lower bound Upper bound 

Arts Tower/Diamond 0.68 0.192 0.006 0.179 1.181 

Reid Building/Diamond 0.54 0.172 0.021 0.097 0.991 

Arts Tower/Information Commons 0.61 0.221 0.070 0.031 1.181 

 

Table 7. Summer thermal preference statistical tests. 

      ANOVA Sum of 
squares 

df Mean 
square 

F Sig. 

Building 22.777 6 3.796 4.981 0.000 

Error 379.512 498 0.762   

Total 402.289 504    

     

Tukey HSD Mean 
difference 

Std. error Sig. 90% confidence interval 

Lower bound Upper bound 

Diamond/Benzie Building -0.61 0.123 0.000 -0.944 -0.277 

Potterrow/Benzie Building -0.41 0.123 0.014 -0.746 -0.823 

Diamond/Western Bank -0.56 0.182 0.037 -1.048 -0.066 

Arts Tower/Benzie Building -0.44 0.151 0.058 -0.849 -0.032 

Information Commons/Benzie 
Building 

-0.42 0.150 0.073 -0.830 -0.018 

Reid Building/Benzie Building -0.37 0.135 0.090 -0.735 -0.006 

 
 



Table 8. Winter thermal preference statistical tests. 

      ANOVA Sum of 
squares 

df Mean 
square 

F Sig. 

Building 89.077 5 17.815 20.798 0.000 

Error 341.787 399 0.857   

Total 430.864 404    

     

Tukey HSD Mean 
difference 

Std. error Sig. 90% confidence interval 

Lower bound Upper bound 

Arts Tower/Diamond 1.36 0.160 0.000 0.944 1.777 

Arts Tower/Potterrow 1.16 0.160 0.000 0.750 1.580 

Arts Tower/Reid Building 1.15 0.170 0.000 0.707 1.593 

Western Bank/Diamond 1.09 0.193 0.000 0.593 1.594 

Western Bank/Potterrow 0.90 0.192 0.000 0.399 1.398 

Western Bank/Reid Building 0.88 0.201 0.000 0.361 1.406 

Information Commons/Diamond 0.74 0.159 0.000 0.331 1.158 

Information Commons/Potterrow 0.55 0.159 0.008 0.137 0.962 

Arts Tower/Information Commons 0.62 0.184 0.012 0.137 1.094 

Information Commons/Reid 
Building 
 

0.53 0.169 0.021 0.942 0.975 

 

Thermal sensation 

According to the thermal sensation scores (AMV) it appears that the buildings which are 

naturally ventilated and more passively controlled (the Arts Tower and the Reid Building) are 

perceived to be warmer than the buildings which are more mechanically conditioned and 

controlled by active environmental systems such as BMSs (the Diamond and the Information 

Commons) (Figure 2). 

 



 

Figure 2. AMV and PMV compared. 

 

Disparities greater than ±1 on the ASHRAE scale were identified between AMV and 

PMV in the Arts Tower and the Reid Building. This supports the hypothesis that the PMV 

model is a more accurate predictor of thermal sensation in buildings with more active control 

of the thermal environment, such as the Benzie Building and Information Commons. In the 

naturally ventilated Arts Tower and Reid Building, subjects reported feeling ‘quite warm’, 

while the PMV model suggested they should feel between ‘neutral’ and ‘slightly cool’. This 

may demonstrate the impact of psychological variables on perceptions of comfort in more 

dynamic environments. These variables have been identified as naturalness, expectations, 

experience (short- and long-term), time of exposure, perceived control and environmental 

stimulation (Nikolopoulou and Steemers 2003). 

 

 



Thermal preference 

According to the thermal preference scores, in summer the Benzie Building and Western 

Bank Library are perceived to be more comfortable (cooler) than the other five buildings. In 

winter the Diamond, Potterrow and the Reid Building are perceived to be more comfortable 

(warmer) than the other three buildings (Figures 3, 4). 

 

 

Figure 3. Mean thermal preference in summer and winter. 

 

 

Figure 4. Mean thermal preference showing seasonal variation. 



 

The buildings perceived to be most uncomfortable in summer (The Diamond and 

Potterrow) both rely on mechanical ventilation and cooling, while the Arts Tower is 

perceived to be the most uncomfortable naturally ventilated building. In winter it appears that 

the older buildings with the highest u-values (the Arts Tower and Western Bank Library) are 

perceived to be less comfortable (cooler) than the newer buildings with improved fabric 

performance, such as the Diamond, Potterrow and the Reid Building.  

 

Energy performance 

The oldest buildings (the Arts Tower and Western Bank) use significantly less energy than 

the more recently constructed buildings. These two buildings are the only buildings to 

achieve below the CIBSE-Part F standard for Good Practice for a naturally ventilated library, 

considered to be a reasonable proxy for student study spaces (a figure of 161 kWh/m2). Of 

the recently completed buildings, the naturally ventilated Reid building uses the least energy. 

It has not been possible to disaggregate energy data for the Reid building as heating is 

provided by a campus wide CHP system (Figure 5).  

 



 

Figure 5. Energy use. 

 

However when carbon emissions are considered, the Benzie building may be responsible 

for lower emissions than the Reid building, as the carbon content of gas for heating (which is 

responsible for a larger share of energy use in the Benzie building) is lower than electricity 

(Figure 6). Similarly, buildings with significantly greater electricity use are responsible for 

greater carbon emissions (carbon emissions from Potterrow are however reduced through 

connection to a CHP network). This highlights the significance of understanding carbon 

conversion factors in the development of the environmental strategy for HE buildings, 

particularly in achieving the right balance between heating, and ventilation and cooling, 

which represent significant end uses of electricity. 

 



 

Figure 6. Carbon emissions. 

 

Discussion 

The thermal sensation scores suggest that the naturally ventilated buildings tend to be 

perceived as warmer than the mechanically ventilated or air-conditioned buildings. This may 

partly be accounted for by the timing of the surveys, the majority of which took place over 

summer. However, as the thermal preference scores show, this finding does not equate to 

greater discomfort on the part of the users of these buildings. This supports the findings of 

previous research (M. Humphreys and Hancock 2007; Roaf et al. 2010). 

The thermal preference scores show that, while Western Bank Library and the Arts Tower 

were refurbished in 2009 and 2011 respectively, in winter users feel the consequences of the 

relatively poor thermal performance of their fabric, characterised by high u-values and low 

standards of airtightness compared with the newer buildings. In particular, large areas of 

curtain glazing on the Arts Tower, and problems with the opening windows, are the cause of 

noticeable discomfort. This may also reveal a decline in adaptive tolerance in recent years, as 



expectations of thermal comfort have changed with the development of new buildings that 

provide more constant conditions all year round (Roaf et al. 2010). 

However, in summer it is notable that the Information Commons, the Diamond and 

Potterrow are perceived to be almost equally too warm. With projected increases in 

temperature due to climate change in coming decades, there is a danger that these new 

buildings, which rely on mechanical HVAC systems with spaces largely sealed off from the 

outside, may cause greater discomfort as users struggle to adapt. Based on this research there 

is little evidence to support the hypothesis that mixed-mode or hybrid buildings (such as the 

Diamond and Potterrow) can promote adaptive thermal comfort behaviour more readily than 

those that employ mechanical HVAC exclusively (such as the Information Commons), 

though more research is required in this area (Carlucci et al. 2018). 

Naturally ventilated buildings are likely to be perceived as more comfortable as winters 

become warmer, and more resilient to perceived discomfort during summer heatwaves (Lun, 

Ohba, and Morikami 2012). The variety of spaces in the naturally ventilated Reid Building, 

for example, together with the careful consideration of orientation (unlike the other naturally 

ventilated building in the survey, the Arts Tower), afford users more control of their working 

environment. Students and staff can choose to work in brighter, darker, side or toplit studios, 

and adjust ventilation and temperature by manually opening and closing windows and blinds. 

A similar observation may be made with regard to energy efficiency. With warmer 

summers and increased incidence of heat waves, the energy performance of buildings that 

rely on air conditioning to maintain comfort conditions may steadily decline in comparison 

with buildings that rely on connections to the outside for users to adapt. This supports the 

findings of previous research examining council offices, which found a significant increase in 

electricity use in buildings constructed over the last two decades, despite for example a 60% 

decrease in maximum permissible u-values in UK building regulations over the same period 



(Armitage et al. 2015). 

In the next section examples of two recently constructed case studies are examined in 

more detail. In particular, the environmental implications of the design ambition for open 

plan flexible spaces are considered. 

 

The environmental design of flexible spaces 

The Information Commons 

The Information Commons is an example of a modern building that has been designed to 

take control away from occupants and use automated systems to control environmental 

conditions and mitigate interventions by occupants (Figure 7). Two Air Handling Units 

located on the roof incorporate supply and extract fans, hot water heating coils, cross-flow 

heat exchangers, and chilled water provided by a blast air cooler and two chillers (Buckman 

2016).  

 

 

Figure 7. Study space, the Information Commons. 



 

A complex Building Management System is employed to manage the internal 

environment. Each level is divided into between three and six control zones, except levels 5 

and 6 which are treated as single zones. Air supply is mostly from a raised floor void, via 

swirl outlets. Artificial lighting is restricted to a relatively dull 150 lux in most areas, rising to 

300 lux in study spaces. PIR occupancy detectors in each zone turn off the HVAC and 

lighting systems after 30 minutes of inactivity. However this is often rendered ineffective by 

cleaning staff and 24/7 security checks by porters (Figure 8). Computers will automatically 

turn off after 20 minutes of inactivity when logged off. 

 

 

Figure 8. PIR detectors activating lighting in the Information Commons. 

 

The Diamond 

The Diamond also employs a Building Management System to manage the internal 

environment. This controls the mechanical ventilation system in closed spaces, and 



automated louvres at clerestory level in the atrium. These open if the outside air temperature 

is between 17°C and 25°C and the indoor temperature has reached 24°C. Vents in the east 

and west façades are also automated to provide the building with natural ventilation, and for 

smoke extraction (Plockova 2016). 

The building relies on artificial lighting, particularly at lower levels (Figure 9). Most of the 

study spaces have a desk lamp overhead, which can be turned on, off, or dimmed by the user. 

This supplements background lighting. Each of the building zones has a presence detector. If 

no movement is registered for a specific amount of time, the system will turn off the main 

lights and in return will turn them back on if movement is detected. Lighting in corridors is 

controlled manually by building managers. In other places, especially closed bookable rooms, 

users can control the light by turning it on or off. Projection units located at a higher level 

project lights toward celling mirrors which provide artificial light in the atrium, which is 

otherwise poorly daylit by deep circular skylights in the roof (Figure 10). 

 

 

Figure 9. Lower levels, the Diamond. 



 

 

Figure 10. The atrium in the Diamond. 

 

Performance issues 

The Information Commons and the Diamond are responsible for the highest carbon 

emissions of the seven buildings included in this study, with artificial lighting operating 

extensively throughout for 24 hours a day, and narrow temperature set point ranges 

maintained by mechanical HVAC systems (Figure 11).  

 

Figure 11. Breakdown of energy use in the Information Commons and the Diamond. 



 

Despite this, they do not appear to offer any significant advantages in terms of how 

comfortable they are perceived to be by users. Conversely, the use of complex BMS systems 

to prevent users from ‘interfering’ with the ‘correct’ running of each building has led to user 

complaints about a lack of control over the internal environment. 32% of users of the 

Information Commons would prefer to have ‘more’ or ‘much more’ control over the 

temperature of their environment (Figure 12), and 51% of users would prefer to have ‘more’ 

or ‘much more’ control over lighting, despite it being the biggest end use of energy in the 

building (Figure 13).  

 

Figure 12. Preferred control of temperature in the Information Commons and the Diamond. 

 

Figure 13. Preferred control of lighting in the Information Commons and the Diamond. 



The inflexibility of the environmental strategy and control systems in these buildings 

contrasts with the ambitions of their designers: to create ‘flexi-spaces’ which are ‘user-

configurable’ in the Information Commons (Lewis 2010); and ‘flexible’ and ‘adaptable’ 

spaces for informal study in the Diamond (Arup n.d.). Arguably the ‘flexible’ occupancy and 

use patterns desired for both buildings have led to a lack of user interface with the 

environment, leading to complaints as users struggle to adapt. This supports previous 

research that shows that occupants show more ‘forgiveness’ for naturally variable indoor 

conditions which they can control (Leaman and Bordass 1999), and where the environmental 

design intent is more legible (Leaman and Bordass 2007). 

The theoretical justification for the complex automated systems incorporated into these 

buildings are that they are necessary to easily adjust to the varying demands of heterogeneous 

patterns of occupancy and use over both diurnal and seasonal cycles, exacerbated by periods 

of intensive student activity around exams and long transient periods outside of term. 

However research has shown that increased automation of environmental systems is only 

efficient when buildings approach near maximum occupancy, which is often not the case in 

HE institutions. For example, ‘sub-optimal’ energy use in the Information Commons (when 

the occupancy of the building is less than 50% capacity) is on average five times higher per 

person than ‘optimal’ use (when occupancy is over 50% capacity). ‘Optimal’ conditions are 

only reached for 30% of the year (Buckman 2016).	  

 

Conclusion 

With Post-Occupancy Evaluation becoming more routine, together with year-on-year 

growth in investment and the professionalisation of HE estate management, it is often 

assumed that the performance of new HE buildings is continually improving. However, this 

research has revealed a far more complex situation, with a fashion for flexibility in the design 



of HE buildings leading to environmental strategies that are increasingly disconnected from 

the outside world, with control systems routinely automated. This has not translated either 

into improved performance in terms of energy use or improved comfort for occupants. 

The findings of this paper supports existing research which suggests that there is up to a 

three times scalar difference in the energy performance of non-domestic buildings. This 

hypothesis has been tested in seven higher education buildings with similar functional 

requirements. Intriguingly, of the seven buildings considered in this study, the two 

refurbished mid-twentieth century buildings use the least energy. This suggests that an 

energy-first approach to improving performance may be to adopt the passive design strategies 

of earlier buildings, which together with recent improvements to fabric (u-vales and 

airtightness), may offer users more opportunities to control and adapt to their environment 

locally, rather than attempting to design one-size-fits-all universal systems. 

The new building which uses the least energy (the Reid building) is closest to this model, 

while the buildings that use the most energy follow the standard contemporary approach of 

highly-automated HVAC systems, with deep plans oriented around central atriums rather 

than connection to the outside environment. These buildings often do not perform as well as 

expected, partly because of over-optimistic assumptions about occupancy and use patterns 

made at the design stages, contributing to overly ambitious predictions of energy use (the 

performance gap). Similarly, it does not appear that increased automation translates into 

improved comfort, with broadly similar thermal preference scores across the case studies. 

Specifically, this research has highlighted the following key issues: 

1. The perceived need for ‘flexible’ open-plan spaces in HE buildings has led to increasing 

reliance on automated control systems, with negative consequences in terms of perceived 

occupant comfort. 

2. The naturally ventilated buildings in this study suggest that alternative passive 



environmental strategies can be as effective as technological solutions in providing comfort, 

particularly when these are in tune with the local climate. 

3. There is little evidence that improvements to building fabric as a result of recent changes to 

building regulations have had any impact on energy performance in HE buildings. 

4. HE buildings that rely on mechanical HVAC systems perform poorly in energy terms 

during periods of low occupancy, despite automated control by BMSs. 

These findings suggest that it is necessary to reevaluate the assumptions that have led to 

the highly automated environmental design strategies perceived to be required for the 

provision and management of more open plan or ‘flexible’ spaces. An over-emphasis on the 

need for flexibility (often understood as a need for more open plan spaces, or spaces with 

reconfigurable divisions) has led to an increasing reliance on mechanical servicing via floor 

or ceiling voids rather than connection with outdoors. However there is little evidence that 

HE institutions reconfigure or adapt these spaces more often than in the past. It is possible 

that the desire for flexibility may simply reflect the complexity of HE client requirements, 

and the need to placate different, and often competing, groups of users in the design stages. 

If HE clients and design teams were able to better define future occupancy and use 

patterns following completion and over a building’s lifetime, it may be possible to develop 

more robust environmental strategies that reduce the performance gap. Passive design 

alternatives, such as improved daylighting or accepting a wider range of temperatures in 

different spaces, may result in better performance. For example, carefully designing a series 

of environmental transition spaces from outdoors has been shown to increase user tolerance 

to a broader range of temperatures, permitting HVAC systems to be reduced in size (Vargas, 

Lawrence, and Stevenson 2017). Similarly occupants will feel more comfortable as they 

regain control over how they inhabit their immediate environment. Reducing servicing 

requirements and improving comfort in turn improve flexibility, as obsolescence of 



equipment and control systems is avoided, and spaces are more adaptable for future 

occupants and/or change of use. 

 

References 

Armitage, Peter, Daniel Godoy-Shimizu, Koen Steemers, and Torwong Chenvidyakarn. 
2015. ‘Using DECs to Quantify Public Sector Office Energy Consumption’. Building 
Research & Information 43 (6): 691–709. 

‘Art Academy in Glasgow’. 2014. Detail, no. 5: 572–76. 
Arup. n.d. ‘The Diamond, Sheffield: An Educational Building That Provides Lessons in 

Sustainability’. Accessed 25 June 2019. https://www.arup.com/projects/the-diamond. 
ASHRAE. 2004. ‘Standard 55: Thermal Environment Conditions for Human Occupancy’. 

ASHRAE. 
Association of University Directors of Estates. 2016. ‘Estates Management Report 2016’. 

http://www.aude.ac.uk/about-us/ems-report/. 
AUDE. 2009. ‘Response to HEFCE Consultation on Carbon Reduction Strategy for HE in 

England’. http://www.aude.ac.uk/resources/sustainability/carbon/. 
AUDE, and HEFCE. 2008. ‘The Legacy of 1960’s University Buildings’. 

http://www.aude.ac.uk/resources/buildings/legacy/. 
Bordass, Bill, Robert Cohen, Mark Standeven, and Adrian Leaman. 2001. ‘Energy 

Performance of PROBE Buildings’. Building Research & Information 29 (2): 114–28. 
Buckman, Alex. 2016. ‘An Exploration of the Applications of Increased Information 

Availability in Smart Buildings’. University of Sheffield. 
Building Performance Evaluation Group. n.d. ‘Outputs from the BPE Programme’. 

https://connect.innovateuk.org/web/building-performance-evaluation/outputs. 
Carbon Credentials, and The Environmental Association for Universities and Colleges. 2016. 

‘The Higher Education Carbon Challenge’. 
http://www.eauc.org.uk/higher_education_carbon_challenge_report. 

Carbon Trust. 2008. ‘Low Carbon Refurbishment of Buildings’. 
Carlucci, S., L. Bai, R. de Dear, and L. Yang. 2018. ‘Review of Adaptive Thermal Comfort 

Models in Built Environmental Regulatory Documents’. Building and Environment 
137 (June): 73–89. 

CIBSE. 2013. ‘CIBSE - TM52 The Limits of Thermal Comfort: Avoiding Overheating in 
European Buildings’. 

Cousins, Stephen. 2016. ‘Sheffield Rocks’. RIBA Journal, July. 
https://www.ribaj.com/buildings/sheffield-rocks. 

Dear, Richard de. 1998. ‘A Global Database of Thermal Comfort Field Experiments’. 
ASHRAE Technical Data Bulletin 14 (1): 15–26. 

Dear, Richard de, and G. S. Brager. 1998. ‘Developing an Adaptive Model of Thermal 
Comfort and Preference’. ASHRAE Transactions 104 (1). 

Everett, Clive P. 2013. ‘Sheffield Arts Tower: Rejuvenation of a II* Listed Structure’. 
Proceedings of the ICE - Structures and Buildings 166 (1): 38–48. 

Gram-Hansen, K. 2011. ‘Households’ Energy Use’. Proceedings of the World Renewable 
Energy Congress, May. 

Griffiths, I. 1990. ‘Thermal Comfort Studies in Buildings with Passive Solar Features: Field 
Studies’. Report of the Commission of the European Community, ENS35 090. UK. 



HEFCE, AUDE, and University of Westminster. 2006. ‘Guide to Post Occupancy 
Evaluation’. 

Higher Education Statistics Agency. 2016. ‘Estates Management Record 2015/16’. 
https://www.hesa.ac.uk/collection/c15042/. 

Humphreys, M., and M. Hancock. 2007. ‘Do People like to Feel “Neutral”?: Exploring the 
Variation of the Desired Thermal Sensation on the ASHRAE Scale’. Energy and 
Buildings 39: 867–74. 

Humphreys, Michael A., J. Fergus Nicol, and Iftikhar A. Raja. 2007. ‘Field Studies of Indoor 
Thermal Comfort and the Progress of the Adaptive Approach’. Advances in Building 
Energy Research 1 (1): 55–88. https://doi.org/10.1080/17512549.2007.9687269. 

Humphreys, Michael, Fergus Nicol, and Susan Roaf. 2015. Adaptive Thermal Comfort: 
Foundations and Analysis. London: Routledge. 

Leaman, Adrian, and Bill Bordass. 1999. ‘Productivity in Buildings: The “Killer” Variables’. 
Building Research & Information 27 (1): 4–19. 

———. 2007. ‘Are Users More Tolerant of “Green” Buildings?’ Building Research & 
Information 35 (6): 662–73. 

Lewis, Martin. 2010. ‘The University of Sheffield Library Information Commons: A Case 
Study’. Journal of Library Administration 50 (2): 161–78. 

Lomas, K. J., and R. Giridharan. 2012. ‘Thermal Comfort Standards and Resilience to 
Climate Change of Free-Running Buildings: A Case-Study of Hospital Wards’. 
Building and Environment 55 (September): 57–72. 

Lun, Isaac, Masaaki Ohba, and Shinya Morikami. 2012. ‘An Overview of Extreme Hot 
Weather Incidents and the Role of Natural Ventilation in Buildings on Human Body 
Comfort’. International Journal of Ventilation 11 (3): 311–22. 

MacGregor, Fiona. 2004. ‘University’s £40m IT School Unveiled’. Edinburgh Evening 
News, 1 September 2004. 
https://www.ed.ac.uk/files/imports/fileManager/40m_unveiled.pdf. 

Mara, Felix. 2013. ‘Industrious Spaces: Manchester School of Art by FCBS’. Architects 
Journal, December. https://www.architectsjournal.co.uk/buildings/industrious-spaces-
manchester-school-of-art-by-fcbs/8656259.article. 

McCartney, K. J., and Fergus Nicol. 2001. ‘Developing an Adaptive Control Algorithm for 
Europe: Results of the SCATs Project’. In Moving Thermal Comfort Standards into 
the 21st Century, 176–97. Oxford: Oxford Brookes University. 

Myerson, Jeremy, and Jo-Anne Bichard. 2010. New Demographics New Workspace: Office 
Design for the Changing Workforce. Farnham: Gower. 

Newsham, Guy R., Sandra Mancini, and Benjamin J. Birt. 2009. ‘Do LEED-Certified 
Buildings Save Energy?’ Energy and Buildings 41 (8): 897–905. 

Nicol, Fergus, and Michael Humphreys. 2010. ‘Derivation of the Adaptive Equations for 
Thermal Comfort in Free-Running Buildings in European Standard EN15251’. 
Building and Environment 45 (1): 11–17. 

Nicol, Fergus, Michael Humphreys, and Susan Roaf. 2012. Adaptive Thermal Comfort: 
Principles and Practice. London: Routledge. 

Nicol, Fergus, and Susan Roaf. 2005. ‘Post-Occupancy Evaluation and Field Studies of 
Thermal Comfort’. Building Research & Information 33 (4): 338–46. 

Nikolopoulou, Marialena, and Koen Steemers. 2003. ‘Thermal Comfort and Psychological 
Adaptation as a Guide for Designing Urban Spaces’. Energy and Buildings 35: 95–
101. 

Palmer, Jason, Nicola Terry, and Peter Armitage. 2016. ‘Building Performance Evaluation 
Programme: Findings from Non-Domestic Projects’. Innovate UK. 
https://buildingdataexchange.org.uk/bpe-final-non-domestic-report/. 



Plockova, Joann. 2016. ‘Engineering an English Diamond’. ArchiExpo E-Magazine, July. 
http://emag.archiexpo.com/engineering-an-english-diamond/. 

RIBA, and CIBSE. n.d. ‘CarbonBuzz’. http://www.carbonbuzz.org/. 
Roaf, Sue, Fergus Nicol, Michael Humphreys, Paul Tuohy, and Atze Boerstra. 2010. 

‘Twentieth Century Standards for Thermal Comfort: Promoting High Energy 
Buildings’. Architectural Science Review 53 (1): 65–77. 

Salter, Paul. 2015. The University of Sheffield: Fire Safety Policy and Procedures. 
Schneider, Tatjana. 2007. This Building Should Have Some Sort of Distinctive Shape: The 

Story of the Arts Tower in Sheffield. Sheffield: Sheffield School of Architecture. 
Steadman, Philip, and S. M. Hong. 2013. ‘An Analysis of Display Energy Certificates for 

Public Buildings, 2008 to 2012’. Energy Institute, UCL. 
http://www.bartlett.ucl.ac.uk/energy/news/documents/CIBSE__Analysis_of_Display_
Energy_Certificates_for_Public_Buildings_.pdf. 

Stevenson, F. 2009. ‘Post-Occupancy Evaluation and Sustainability’. Proceedings of the 
Institution of Civil Engineers - Urban Design and Planning 162 (3): 123–30. 

University of California Berkeley. n.d. ‘CBE Thermal Comfort Tool for ASHRAE-55’. 
Accessed 25 July 2016. http://comfort.cbe.berkeley.edu/. 

Vargas, Gloria, Ranald Lawrence, and Fionn Stevenson. 2017. ‘The Role of Lobbies: Short-
Term Thermal Transitions’. Building Research & Information 45 (7): 759–82. 

 

Appendix A. Occupant Survey 
 
General Information 
 
a) Date:    Time: 
 
b) Gender:     
 
c) Location:    Time spent in the building:  
 
d) Activity:    Clo value: 
    
e) Conditions: 
Radiative temperature:  Air temperature:   RH: 
AV: 
 
Votes 
 
a) How do you feel at this time? 
□ 3 Hot  □ 2 Warm  □ 1 Slightly warm □ 0 No change 
□ -1 Slightly cool □ -2 Cool  □ -3 Cold 
 
b) In general in summer, how would you prefer to feel? 
□ 3 Much warmer □ 2 Warmer  □ 1 A bit warmer □ 0 No change 
□ -1 A bit cooler □ -2 Cooler  □ -3 Much cooler 
 
c) In general in winter, how would you prefer to feel? 
□ 3 Much warmer □ 2 Warmer  □ 1 A bit warmer □ 0 No change 
□ -1 A bit cooler □ -2 Cooler  □ -3 Much cooler 


