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We present a novel source of dark energy, which is motivated by the prevalence of hidden sectors in
string theory models and is consistent with all of the proposed swampland conjectures. Thermal effects
hold a light hidden sector scalar at a point in field space that is not a minimum of its zero temperature
potential. This leads to an effective “cosmological constant,” with an equation of state w ¼ −1, despite the
scalar’s zero temperature potential having only a four-dimensional Minkowski or anti–de Sitter vacuum.
For scalar masses ≲μeV, which could be technically natural via sequestering, there are large regions of
phenomenologically viable parameter space such that the induced vacuum energy matches the measured
dark energy density. Additionally, in many models a standard cosmological history automatically leads to
the scalar having the required initial conditions. We study the possible observational signals of such a
model, including at fifth force experiments and through ΔNeff measurements. Similar dynamics that are
active at earlier times could resolve the tension between different measurements of H0 and can lead to a
detectable stochastic gravitational wave background.
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I. INTRODUCTION

The microscopic nature of dark energy, which constitutes
around 70% of the energy density in the Universe today and
drives its current accelerated expansion, is one of the
biggest questions in fundamental physics. Although obser-
vations [1] are so far consistent with a nonzero cosmo-
logical constant, its value would be some 120 orders of
magnitude smaller than naive estimates from quantum field
theory (see [2] for a review). The most commonly con-
sidered alternative to a cosmological constant is a slowly
rolling scalar field, known as quintessence. However, in
models of quintessence the scalar must not only source an
extremely small vacuum energy, but it also has to be
extremely light with a mass ≲10−32 eV and yet evade
stringent observational constraints on new fifth forces [3].
Moreover, in the absence of additional dynamics, neither a
cosmological constant nor quintessence can resolve the
growing tension between direct measurements of today’s
Hubble constant, H0, and the value inferred from the
cosmic microwave background (CMB) using the ΛCDM
model [4,5]. A host of current and upcoming astrophysical

and cosmological observations will test the ΛCDM model,
quintessence, and alternatives, e.g., by probing its equation
of state and time dependence [6].
String theory provides a well-motivated theoretical

framework in which to explore dark energy, particularly
in view of the latter’s sensitivity to ultraviolet physics
and quantum gravity effects. Various no-go theorems have
shown that string theory constructions of vacua with a
positive cosmological constant will be, at best, at the limits
of theoretical control given current calculational tech-
niques, as reviewed in [7]. Meanwhile string models of
quintessence suffer from similar challenges (see [8] for a
review and [9–18] for some recent works).
Recently, the difficulty of proving the existence of

metastable de Sitter vacua in string theory has prompted
a conjecture that any scalar potential arising from a
consistent theory of quantum gravity satisfies either
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at all points in field space, where c, c0 are some universal
order one constants [19,20].1 If true Eq. (1) would rule out
metastable de Sitter (dS) vacua, although unstable dS are
possible due to the second condition. It would also put slow
roll quintessence models under pressure [24–27]. There are
tantalizing connections between this dS conjecture and
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other swampland conjectures, as well as with deeper dis-
cussions on the consistency of quantum field theory in dS
spacetime [28–32].
In this paper we propose a new, simple, possible source

of dark energy, which is consistent with all of the current
swampland conjectures. We call this thermal dark energy.
Large classes of string compactifications contain an abun-
dance of hidden sectors, which can have rich internal
dynamics and interactions yet are only weakly coupled to
the visible sector. Consequently it is plausible that there
could be a hidden sector with light degrees of freedom
(d.o.f.) that is still in internal thermal equilibrium in the
present day Universe. We show that if this is the case, a
hidden sector scalar—which could be a matter or modulus
field—can be stabilized in a temperature-dependent meta-
stable dS minimum, away from the true Minkowski [or
anti–de Sitter (AdS)] vacuum, by its interactions with the
thermal bath. Although the equation of state of the induced
dark energy is w ¼ −1 up to current times, at some point in
the future the system will find its way to the global
minimum, once the hidden sector temperature has dropped
sufficiently.
Considering observational and model building con-

straints, we show that the measured dark energy density
can be explained for scalar masses ≲10−6 eV, which is still
much heavier than the masses required for quintessence. We
will also see that thermal dark energy models can lead to
observational signals, e.g., at fifth force experiments or in
measurements of ΔNeff , which could be accessible to future
searches. Additionally, motivated by the richness of typical
string compactifications, we consider the possibility that
there could be several hidden sectors, at diverse mass scales,
each of which sources a component of dark energy. These
could lead to detectable gravitational wave signatures and
can provide a scenario for early dark energy [33], which has
been argued to resolve the tension between astrophysical and
cosmological measurements of the Hubble parameter.
The idea that finite temperature effects may result in a

temperature-dependent vacuum energy that leads to cosmic
acceleration in the early universe has previously been
proposed under the name of thermal inflation [34,35].
These papers, and the subsequent literature, focused on
dynamics arising from a “flaton” scalar field in the visible
sector, at temperatures around the tera-electron-volt (TeV)
scale. It was shown that of order 10 e-folds of inflation
could be obtained, which would dilute otherwise over-
abundant stable relics and solve the cosmological moduli
problem. The key difference of our work is that we consider
dynamics occurring in a hidden sector at a much lower
scale, so the Universe is currently in the finite temperature
generated metastable vacuum, and the accelerated expan-
sion is just beginning, rather than long since finished.
This paper is organized as follows: In Sec. II we show

how finite temperature effects around a Minkowski vacuum
can provide a source of dark energy, using a simple example

mode for illustration. In Sec. III we determine the phenom-
enologically viable parameter space for two realizations of
our scenario. In Sec. IV we study the potential observable
signals of our models, as well as addressing model building
issues and discussing how technically natural hidden sectors
maybepossible.We closewith a discussionof our results and
open questions in Sec. V.

II. DARK ENERGY FROM A THERMALIZED
HIDDEN SECTOR

Suppose there is a hidden sector that includes a scalar
field, ϕ, with a zero temperature potential that stabilizes it at
a vacuum expectation value (VEV) hϕi ¼ ϕ1, where the
classical vacuum energy vanishes. As a simple working
example, we choose a Higgs-like quartic potential:

V0ðϕÞ ¼ λϕ4 −
m2

ϕ

2
ϕ2 þ C; ð2Þ

which is minimized at ϕ1 ¼ mϕ=ð2
ffiffiffi
λ

p Þ. The constant C is
fixed to C ¼ m4

ϕ=ð16λÞ so that the classical vacuum energy
vanishes at this point. We will relax this condition below.
We assume that ϕ has Higgs-like interactions with other

hidden sector states, such that the masses of these increase
if ϕ develops a VEV. For example the additional states

might be fermions, ψ i, with interactions yiϕψ iψ i, or other
scalars, χa, with interactions λaϕ2χaχa.
If it is to source thermal dark energy, the hidden sector

must be in internal thermal equilibrium in the present day
universe. However, the hidden sector temperature Th need
not be the same as the temperature of the visible sector (and
due to observational constraints typically cannot be).
Thermal equilibrium is maintained provided ΓI > H, where
ΓI is the typical rate of hidden sector interactions and H is
the Hubble parameter. The hidden sector can be in thermal
equilibrium even if the ϕ quartic coupling λ in Eq. (2) is
small, provided the interactions between ϕ and the addi-
tional hidden sector states are sufficiently strong. As we
discuss later, the condition for thermalization is easily
satisfied provided that the masses of ϕ and the other hidden
sector states are smaller than the hidden sector temperature.
Finite temperature effects—where the plasma interacts

with the homogenous scalar field background which itself
determines the masses and interactions of particles in the
plasma—affect the dynamics of ϕ (see e.g., [36]). This is
encapsulated in the thermal effective potential for ϕ, which
at one loop is given by

Vðϕc; ThÞ ¼ V0ðϕcÞ þ
T4
h

2π2

�
−
X
ψ i

nψ i JF

�m2
ψ iðϕcÞ
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h

�

þ
X
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nχaJB

�
M2

χaðϕcÞ
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h

��
; ð3Þ
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where m2
ψ iðϕcÞ and M2

χaðϕcÞ are the masses of the hidden

sector fermions and scalars, respectively, in the homo-
geneous background of ϕ denoted hϕi ¼ ϕc, and the sums
run over all species in thermal equilibrium. Equation (3) is
expressed in terms of the thermal functions

JBðx2Þ≡
Z

∞

0

dqq2 log
�
1 − e−

ffiffiffiffiffiffiffiffiffi
q2þx2

p �
; ð4Þ

JFðx2Þ≡
Z

∞

0

dqq2 log
�
1þ e−

ffiffiffiffiffiffiffiffi
q2þx

p
2
�
; ð5Þ

where nψ i and nχa are the number of d.o.f. in the fermion i
and the scalar a, respectively.2 Although we use their full
expressions when plotting results, it is instructive to
consider the high and low temperature behaviors of the
thermal functions.3 In the high temperature limit, jxj ≪ 1,

JBðx2Þ ¼ −
π4

45
þ π2

12
x2 þOðx3Þ;

JFðx2Þ ¼
7π4

360
−
π2

24
x2 þOðx3Þ; ð6Þ

whereas in the low temperature limit, jxj ≫ 1,

JBðx2Þ ¼ x2e−x
ffiffiffiffiffi
π

2x

r
;

JFðx2Þ ¼ −x2e−x
ffiffiffiffiffi
π

2x

r
: ð7Þ

For simplicity we assume the hidden states that acquire
mass from a ϕ VEV are otherwise massless. Then at
temperatures much higher than the masses in the thermal
bath, Th ≫ mψ iðϕcÞ; mχaðϕcÞ, that is, Th ≫ yiϕc; λaϕc, the
thermally corrected scalar potential goes as

Vðϕ; ThÞ ¼ λϕ4 −
m2

ϕ

2
ϕ2 þ m4

ϕ

16λ
− aT4

h þ bT2
hϕ

2: ð8Þ

The constant a in Eq. (8) is fixed by the number of light
d.o.f., while b can be inferred from the preceding expres-
sions and depends on the couplings yi and λa. The effect of
a ϕ background on its own mass also contributes to b;
however, we will see later that the quartic self-interaction of
ϕ is suppressed in phenomenologically interesting models
so this is negligible. In the simple case that ϕ couples only

to a single Dirac fermion with Yukawa coupling y ¼ 1 we
have b ¼ 1=12. Meanwhile any states with a mass
miðϕcÞ ≫ Th do not contribute significantly to ϕ’s thermal
potential, as can be seen from the expansion Eq. (7).
From Eq. (8), if

Th >
mϕffiffiffiffiffiffi
2b

p ; ð9Þ

finite temperature effects lead to a minimum at ϕ ¼ 0, since
the high temperature approximation to the thermal poten-
tial, Eq. (8), is automatically valid around this point. The
minimum can be either stable or metastable. If Eq. (8) is
also accurate around ϕ’s zero temperature VEV at
ϕ1 ¼ mϕ=ð2

ffiffiffi
λ

p Þ, ϕ ¼ 0 will be the global minimum of
the thermal potential. However, if λ ≪ 1 (so ϕ1 ≫ mϕ), the
high temperature approximation might break down at large
ϕ if the induced masses of the hidden sector states become
larger than the hidden sector temperature. In this case the
thermal contribution to ϕ’s potential is exponentially sup-
pressed, and the zero temperature potential dominates in this
part of field space. As a result there is a minimum close to
ϕ ¼ ϕ1, which is deeper than that at ϕ ¼ 0 if T4

h ≪ m4
ϕ=λ.

In Fig. 1 we plot the thermal potential, Eq. (3), of ϕ for a
model withmϕ ¼ 10−6 eV, λ ¼ 2.4 × 10−15, andb ¼ 1=12.
The hidden sector temperature Th ¼ 10−4.5 eV is such that
there is a local minimum at the origin; however, this is only
metastable and the minimum close to ϕ1 is much deeper. A
plot of the same potential zoomed in around the origin is
shown in Fig. 2. Moving away from ϕ ¼ 0 the potential
increases until ϕ≳ Th at which point the masses of the
hidden sector fermions become larger than the temperature,

FIG. 1. The finite temperature scalar potential, defined by
Eqs. (2) and (3), for a model with mϕ ¼ 10−6 eV and
λ ¼ 2.44 × 10−15, in which ϕ is coupled to a single Dirac
fermion with a Yukawa coupling y ¼ 1. The hidden sector
temperature is fixed to Th ¼ 10−4.5 eV. The vertical axis is
normalized relative to the present day dark energy density
ρDE ¼ ð0.0023 eVÞ4, and the potential is symmetric around
ϕ ¼ 0.

2The one loop thermal potential leads to numerical inaccur-
acies in some theories, and it can be improved in various ways
(see e.g., [37]). We have verified that including higher corrections
via daisy resummation does not significantly change the allowed
parameter space in the models we consider.

3These can be derived from JBðx2Þ ¼ −
P∞

n¼1 n
−2x2K2ðnxÞ

and JFðx2Þ ¼ −
P∞

n¼1ð−1Þnn−2x2K2ðnxÞ, where K2 is the modi-
fied Bessel function of the second kind.
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and the contribution from these states to the thermal potential
is suppressed.
If ϕ is trapped in the minimum at ϕ ¼ 0, the hidden

sector will contribute to Einstein’s equations determining
the evolution of the Universe in two ways. First, there is an
energy density contained in the hidden sector radiation of

ρrh ¼
π2ghT0

h
4

30
; ð10Þ

where gh is the effective number of hidden sector relativistic
d.o.f., and T0

h is the current hidden sector temperature (and
we assume that the hidden sector does not contain any
significant abundance of nonrelativistic matter).4 Second,
even though the finite temperature effects break Lorentz
invariance and do not contribute directly to the observed
vacuum energy which sources Einstein’s equations, they
can contribute indirectly by shifting the vacuum expect-
ation value of ϕ (see [38] for a clear discussion on this
point). As a result, ϕ will source a contribution to the dark
energy density of

ρDE ¼ m4
ϕ

16λ
: ð11Þ

It is this contribution to the dark energy density that we will
use to explain the accelerated expansion of the Universe.

III. VIABLE PARAMETER SPACE

If it is to account for the observed present day dark
energy, a hidden sector scalar with the potential given in
Eq. (2) must satisfy various model building and observa-
tional constraints. In studying these, we assume that the
minimum of the zero temperature potential of the Universe
has zero cosmological constant, although there is also

viable parameter space in which this is AdS. For definite-
ness we also suppose that ϕ is coupled to a single Dirac
fermion with Yukawa coupling y ¼ 1; however, our results
are not very sensitive to this choice.
To account for the observed dark energy density we need

ρDE ≃ ð2.3 meVÞ4 [1]. Since the dark energy density is
larger than the energy density in radiation in the present day
Universe, Eq. (11) implies

m4
ϕ

16λ
>

π2gv
30

T0
v
4; ð12Þ

where T0
v ∼ 0.24 meV is the temperature of the visible

sector CMB photons today and gv is the effective number of
visible sector relativistic d.o.f. As well as needing to be
subdominant to the dark energy density, the energy density
in hidden sector radiation in the present day universe is
strongly constrained by its impact on the effective number
of relativistic d.o.f. at earlier times (as we discuss shortly).
Observational bounds require that the present day hidden
sector temperature, T0

h, is smaller than T0
v.

In addition to these conditions on the energy densities,
the hidden sector must satisfy Eq. (9) so that a metastable
minimum exists. In our current model all the different
requirements can be satisfied simultaneously if λ ≪ 1, so
mϕ ≪ ϕ1, and also the hidden sector temperature is such
that mϕ ≪ T0

h ≪ ϕ1. Put another way, a small quartic
coupling allows the temperature induced mass of ϕ at
ϕ ¼ 0 to be

bT0
h
2 > −

∂2V0

∂ϕ2
; ð13Þ

which creates a local minimum, despite there being a large
energy difference between the metastable and global
minima

T0
h
4 ≪ Vð0Þ − Vðϕ1Þ: ð14Þ

The local minimum at ϕ ¼ 0 is automatically metastable
relative to the minimum at ϕ1 in this regime.
The requirement of a small coupling, in order for thermal

dark energy to dominate over radiation energy in our
present model, is mirrored for other forms of zero temper-
ature potential, which generically need a small dimension-
less parameter, or a hierarchy in dimensionful scales to be
in this regime.5

It is interesting to note that the condition C ¼ m4
ϕ=ð16λÞ

in Eq. (2), for the potential’s zero temperature minimum to
be Minkowski, can be relaxed. Ensuring that ϕ ¼ 0 is a
metastable minimum still requires Eq. (9), and the dark

FIG. 2. Close-up of the potential in Fig. 1 around ϕ ¼ 0,
showing the metastable minimum due to the thermal potential.
The vertical axis is plotted in steps of ϵ ¼ 10−8.

4The effect of the hidden sector temperature being smaller than
the visible sector temperature is not absorbed in our definition
of gh.

5The absence of such a hierarchy is why the Standard Model
Higgs does not lead to a period of thermal dark energy
domination when the visible sector temperature is around the
electroweak scale.
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energy density is still given by ρDE ¼ C. Assuming that
C < m4

ϕ=ð16λÞ, so that the zero minimum temperature is
AdS, then implies that λ<m4

ϕ=ð16ρDEÞ< 4b2T4
h=ð16ρDEÞ.

The parameter space in which there is a metastable
minimum that can account for the observed dark energy
density is plotted in Fig. 3, forC ¼ m4

ϕ=ð16λÞ, as a function
of the Lagrangian parametermϕ and the present day hidden
sector temperature T0

h. Note that mϕ does not coincide with
the physical mass of the scalar around the metastable
minimum in the present day universe, which is instead
dominantly sourced by thermal effects. Apart from very
close to the stability boundary, the current physical mass is
well approximated by

m2
phys ¼ 2bT0

h
2: ð15Þ

Over all of the parameter space of interest, ϕ’s zero
temperature potential satisfies the dS swampland condition

Eq. (1), and the distance in field space between the high and
low temperature minima, Δϕ ¼ 2ρ1=2DE =mϕ, is much smaller
than MPl.
Figure 3 also shows the other phenomenological con-

straints, which we now describe.

A. Temperature of the hidden sector and ΔNeff

The energy density in hidden sector particles is con-
strained by their effect on the measured expansion history
of the Universe. For relativistic dark particles this is usually
parametrized by the effective number of neutrino species,
Neff , or the effective number of d.o.f., geff� , defined via (see
e.g., [39–41])

geff� ≡ gSM−ν� þ gν�ξ4ν þ gh�ξ4h ð16Þ

¼ gSM−ν� þ 7

8
× 2 × Neff × ðξ0νÞ4: ð17Þ

Here g� counts the number of d.o.f., weighted by 1 for
bosons and 7

8
for fermions, SM − ν refers to the Standard

Model (SM) without neutrinos, ξν ≡ Tν=Tv (where Tv is
the temperature of the visible sector photon bath), and

ξh ≡ Th=Tv ð18Þ

accounts for the possibility that the hidden sector is cold
relative to the visible sector. ξ0ν is ξν in the Standard Model
when neutrino reheating from electron-positron annihila-
tions is neglected, that is, ξ0ν ¼ ð4=11Þ1=3 for Tv ≲me and
ξ0ν ¼ 1 for Tv ≳me.
We assume that the hidden and visible sectors are

reheated to different temperatures and that, being only
very weakly coupled, interactions between the two sectors
do not significantly alter their temperature ratio, ξh.
However, ξh will still vary throughout the history of the
Universe due to separate conservation of the comoving
entropies, s ¼ gsðTÞT3, within each sector. Assuming that
only the visible sector number of d.o.f. change, this leads to
the relation

ξhðT2Þ ¼ ξhðT1Þ
�
gsvðT2Þ
gsvðT1Þ

�
1=3

: ð19Þ

Solving (17) for Neff we have, with three neutrino flavors,

Neff ¼ 3

�
ξν
ξ0ν

�
4

þ 4

7
gh�

�
ξh
ξ0ν

�
4

: ð20Þ

Observational limits on Neff , both from the abundances of
light elements and the properties of the CMB, then constrain
the hidden sector temperature and effective number of d.o.f.
Around big bang nucleosynthesis (BBN), Tν ¼ Tγ and
ξ0ν ¼ ξν, and we have

FIG. 3. The parameter space in which a scalar with zero
temperature potential given by Eq. (2) coupled to a single Dirac
fermion and trapped in a thermally generated metastable mini-
mum can account for the present day dark energy. The results are
shown as a function of the Lagrangian parameter mϕ, the present
day hidden sector temperature T0

h, the zero temperature VEV, ϕ1,
and the physical mass of ϕ excitations around the metastable
vacuum, mphys. Constraints arise from demanding that a suitable
metastable minimum exists, and an additional barely visible
region is excluded by requiring that this is sufficiently long lived.
The hidden sector temperature T0

h cannot be too large; otherwise
observational constraints on the effective number of neutrinos are
excluded. Outside the region labeled “Initial conditions?” the
scalar is automatically in the metastable minimum provided the
reheating temperature after inflation is sufficiently high. Models
inside this region are not excluded but do require an explanation
of why ϕ is in the metastable minimum.
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Neff ≈ 3þ 4

7
gh�ξ4h: ð21Þ

Assuming e.g., gh� ¼ 1þ 7
8
4, as is the case in our illustrative

model containing a real scalar and a singleDirac fermion, and
using the upper bound on Neff , Neff ≲ 3.18 from BBN
constraints [42], this implies Th ≲ 0.51Tv at BBN. Taking
into account the change in d.o.f. from BBN to today in the
visible sector, gsv ¼ 10.75 to gsv ¼ 2, we obtain an upper
limit on the current temperature of the hidden sector

T0
h ≲ 0.29T0

v: ð22Þ

Around the time of recombination and the formation of the
CMB, instead

Neff ≈ 3.046þ 4

7

�
11

4

�
4=3

gh�ξ4h: ð23Þ

Using the upper boundary for CMB constraints on Neff ,
Neff ≲ 3.55 [1], this leads to a weaker limit:

T0
h ≲ 0.47T0

v: ð24Þ

B. Lifetime of the Universe

As discussed above, if dark energy dominates over the
energy in hidden sector radiation, the vacuum at ϕ ¼ 0 is
automatically only metastable, and it can therefore decay
through nucleation of bubbles of the true vacuum. For a
model to explain the current dark energy this must occur at
a sufficiently slow rate

Γnucl ≪ H4
0; ð25Þ

where H0 is the present day value of the Hubble parameter.
Nucleation of bubbles can occur via quantum fluctuations
tunneling through the barrier between the minima or
thermal fluctuations traveling up the hill. The rate of such
events depends on the critical bubble actions S4 or S3=Th,
respectively, which lead to nucleation rates that are approx-
imately

Γ3 ¼ T4
h

�
S3

2πTh

�
3=2

e−S3=Th ; ð26Þ

Γ4 ¼ v4
�
S4
2π

�
2

e−S4 ; ð27Þ

where v is the width of the barrier that is tunneled
through [43,44].6

Equation (25) imposes lower bounds on S3=T0
h and S4.

The value of S3=T0
h above which the Universe is sufficiently

stable explicitly depends on the ratio of the hidden and
visible sector temperatures via the prefactor in Eq. (26);
however, this is only a logarithmic effect. For example, if
T0
h ¼ 0.2T0

v, vacuum stability requires that S3=T0
h ≳ 270,

while if T0
h ¼ 0.02T0

v, we need S3=T0
h ≳ 260.

To determine the parameter space in which the meta-
stable minimum is sufficiently long-lived, we calculate the
critical bubble actions S3=T0

h and S4 as a function ofmϕ and
T0
h (having fixed that the model sources the measured dark

energy density). This is done via a standard numerical
overshoot/ undershoot method, using a modified version of
the publicly available code COSMOTRANSITIONS[46]. Since
the distance in field space between the metastable mini-
mum and the global minimum ϕ1 is much larger than the
barrier height, the field configuration of a critical bubble
interpolates between ϕ ¼ 0 and a value on the other side of
the barrier ϕ� that satisfies ϕ� ≪ ϕ1.

7

The critical bubble actions are shown for a model with
mϕ ¼ 10−6 eV in Fig. 4 as a function of the hidden sector
temperature. Both actions remain sufficiently large so that
vacuum decay is negligible until close to Th ¼

ffiffiffi
6

p
mϕ,

when the metastable minimum disappears.
Similar to in Fig. 4, over all of the parameter space of our

model vacuum decay remains negligible until shortly
before the barrier between minima disappears, and Γ3 is

FIG. 4. The actions B for the formation of critical bubbles by
thermal fluctuations S3=Th and quantum tunneling S4 as a
function of the hidden sector temperature, for a model with
mϕ ¼ 10−6 eV and a quartic coupling such that the metastable
minimum sources the measured present day dark energy density.
The temperature at which the barrier between the minima
disappears, T ¼ ffiffiffi

6
p

mϕ and the approximate value of the actions
required for vacuum decay to occur within a Hubble time in the
present day universe are also plotted.

6A more precise determination of the prefactor in Γ4 is
possible [45]; however, this is unimportant for our purposes.

7As a result the thin wall approximation [47] to the bubble
actions is extremely inaccurate.
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exponentially larger than Γ4. The critical bubble actions
increase quickly as a function of the hidden sector temper-
ature, so if the decay rate is sufficiently small at present
times, then it was negligible at earlier times as well.
Consequently only a thin strip of otherwise allowed models
are excluded by the vacuum stability constraint in Fig. 3.
Having discussed vacuum decay, let us consider the rest

of the cosmological history. Dark energy domination began
at a time ti such that ρDE > 3H2

0ΩM=aðtiÞ3, whereΩM is the
present day matter density (including dark matter) and aðtÞ
is the scale factor of the Universe normalized such that
a ¼ 1 today.
Looking to the future, dark energy domination will end

at a time te such that Th ≈mϕ. Since the critical bubble
actions S3=Th and S4 go to zero as the barrier between the
minima disappears, the rate of bubble nucleation will grow
exponentially immediately prior to this. As a result the
Universe will go through a first order phase transition to the
zero temperature minimum at this time. Because the barrier
disappears at some nonzero hidden sector temperature, the
era of accelerated expansion necessarily ends. During the
phase transition the dark energy sourced by ϕ will be
converted to hidden sector radiation or matter (apart from a
small fraction that goes into gravitational waves).
The number of e-folds between the beginning and the

end of dark energy domination will be

NDE ¼ log

�
aðteÞ
aðtiÞ

�

¼ log

�
T0
h

mϕ

�
þ 0.65; ð28Þ

where we used that the number of e-folds between the onset
of dark energy domination and today is N ¼ 0.65. For
example, for Th

0 ¼ 10−4.5 eV and mϕ ¼ 10−6 eV, we have
NDE ¼ 4.1.

C. Thermal equilibrium and initial conditions

We now briefly return to the issue of thermal equilibrium
in the hidden sector. To be maintained at a time t, this
requires

ΓIðtÞ ≫ HðtÞ; ð29Þ

where ΓI ¼ nhσvi is the thermally averaged rate of an
interaction that maintains equilibrium, n is the hidden
sector number density, σ is the cross section, and v is
the velocity of the particles (see e.g., [48]). As long as the
temperature of the hidden sector is much greater than the
masses of the hidden sector particles, they are relativistic,
v ∼ c, m ∼ 0, n ∼ T3

h, and σ ∼ α=T2
h for some dimension-

less constant α, so Γ ∼ αTh. Then Eq. (29) was satisfied
during the radiation dominated era if

ξh ≫
1

α

Tv

MPl
: ð30Þ

Provided α is not tiny, this is easily the case for, say, Tv ≲
109 GeV over all of the parameter space that we are
interested in (and Tv may be significantly higher for some
regions of parameter space). Similarly it can be seen that
equilibrium is subsequently maintained during matter domi-
nation and the present era, as long as α is not minuscule.
It is also natural to ask how the Universe found itself in a

minimum that is so energetically disfavored. This is
actually an automatic outcome of a normal cosmological
history over the majority of the parameter space of our
model. In Fig. 5 we show ϕ’s finite temperature potential
for different hidden sector temperatures in our illustrative
model.8 For clarity, we plot the finite temperature potential
shifted by a temperature dependent constant

Ṽðϕ; ThÞ ¼ Vðϕ; ThÞ − Vð0; ThÞ: ð31Þ

If the temperature of the hidden sector was greater than ϕ1

at some time during the history of the Universe, and the
hidden sector was in internal thermal equilibrium at this
point, ϕ ¼ 0 will have been the global minimum of the
potential while the region around ϕ1 was unstable. At later
times, once the hidden sector temperature has dropped,
there will be a deeper minimum close to ϕ1. However, as
long as the transition rate to the true vacuum is sufficiently

FIG. 5. The finite temperature scalar potential, defined by
Eqs. (2) and (3) and shifted by a temperature dependent constant
defined in Eq. (31) for clarity, of a theory with a quartic coupling
λ ¼ 10−3, for different hidden sector temperatures (assuming ϕ is
coupled to a single Dirac fermion with a Yukawa coupling
y ¼ 1). At high temperatures ϕ ¼ 0 is the only minimum of the
potential. As the hidden sector temperature decreases, a deeper
minimum forms, but ϕ remains trapped in the, now metastable,
minimum at ϕ ¼ 0.

8In this figure we assume a quartic coupling λ ¼ 10−3.
Although such a value is too large for the induced thermal dark
energy to explain the present day dark energy density in viable
models, the key qualitative features of the potential are unaffected
and are more conspicuous when plotted.
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slow, ϕ remains trapped at ϕ ¼ 0, and it sources thermal
dark energy.9

Such a history is not essential for a phenomenologically
successful model. However, since it is simple and minimal,
we consider the conditions for it to occur. First, the hidden
sector must reach a sufficiently high temperature after
inflation. Neglecting small effects from the changes in
d.o.f. in the two sectors, this requires that the visible sector
reheating temperature satisfies

TRH
v ≳ ϕ1

ξh
; ð32Þ

which, in a model that sources the present day dark energy
density, corresponds to

TRH
v ≳ ρ1=2DE

ξhmϕ
: ð33Þ

Negative searches for primordial gravitational waves
bound the scale of inflation HI ≲ 1014 GeV [50], which
assuming fast reheating constrains TRH

v ≲ 1016 GeV.
Combined with Eq. (33) this limits the parameter space
of our model.10

The hidden sector must also be in thermal equilibrium at
Th ¼ ϕ1, so that ϕ rolls away from this point in field space.
As an estimate of whether this is the case, we suppose that
the relevant hidden sector interactions have coupling
constants of Oð1Þ so they occur at a rate ΓI ∼ Th.
Similar to the derivation of Eq. (30), thermal equilibrium
requires

mϕξ
2
h >

ρ1=2DE

MPl
: ð34Þ

The constraints in Eqs. (33) and (34) are plotted in
Fig. 3. Apart from a small region with mϕ ≲ 10−28 eV and
T0
h ∼ 10−5 eV, Eq. (34) is the stronger of the two con-

ditions. Over most of the parameter space ϕ1 and therefore
the required reheating temperature are not especially large.
We also stress that these are not sharp bounds, and indeed
these conditions are not needed at all if the cosmological
history of the Universe was different.

D. An alternative potential

A thermal potential can also create a metastable mini-
mum and shift the vacuum energy density in theories with
zero temperature potentials that differ from Eq. (2). As we
will discuss in Sec. IV, the phenomenological and model

building features of a model can vary depending on the
form of its zero temperature potential.
As an example, we show that thermal dark energy is

possible in a theory with a moduluslike zero temperature
potential

V0ðϕÞ ¼
m2

ϕ

2
ðϕ − ϕ1Þ2: ð35Þ

Despite having a single minimum at ϕ ¼ ϕ1 and no
stationary point at ϕ ¼ 0, after coupling ϕ to other hidden
sectors states the finite temperature potential can still create
a metastable minimum close to ϕ ¼ 0. If such a minimum
exists, it sources a dark energy density ρDE ≃ 1

2
m2

ϕϕ
2
1. This

has a chance of dominating the energy density of the
Universe (i.e., ρDE ≫ T0

v
4) if the hidden sector has a

hierarchy of scales mϕ ≪ T0
h ≲ T0

v ≪ ϕ1.
The condition for the thermal potential to generate a

vacuum at ϕ ≪ ϕ1 is slightly different from the previous
model since the zero temperature potential has a nonzero
gradient at the origin. If it is in a region of field space for
which the quadratic approximation to the thermal potential
is valid, the thermally generated minimum is at

ϕ0ðThÞ ¼
m2

ϕϕ1

m2
ϕ þ 2bT2

h

: ð36Þ

As before we assume that b is generated by a Yukawa
coupling between ϕ and an otherwise massless hidden
sector Dirac fermion, so b ¼ y2=12. The quadratic approxi-
mation is accurate and the minimum in Eq. (36) is
self-consistent provided ϕ0ðThÞ < yTh. In the phenomeno-
logically interesting scenario that the induced vacuum
energy exceeds the energy in the hidden sector radiation,
this leads to a condition on the hidden sector temperature

T0
h ≳ 1

y
m2=3

ϕ ϕ1=3
1 : ð37Þ

Requiring that the present day measured dark energy
density is induced, we have

ϕ1 ¼
ffiffiffi
2

p
ρ1=2DE =mϕ; ð38Þ

and Eq. (37) becomes

T0
h ≳ 1

y
m1=3

ϕ ρ1=6DE : ð39Þ

It can be shown that no metastable minimum exists if
Eq. (39) is violated by a factor of more than Oð1Þ.
The other constraints on theories with the zero temper-

ature potential Eq. (35) are similar to the previous case, and
the allowed parameter space is plotted in Fig. 6. As in the
previous model, the zero temperature potential satisfies the

9These dynamics are reminiscent of those proposed to occur in
some models of supersymmetry breaking [49].

10Due to the finite time taken for thermalization after inflation,
this condition might be too weak [51]; however, this only slightly
affects our allowed parameter space.
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dS swampland conjecture over all of the parameter space,
and ϕ1 ≪ MPl.

IV. OBSERVATIONAL SIGNALS
AND MODEL BUILDING

The models that we consider can naturally lead to
potentially observable signals, although these are not
necessarily present. In this section we also address some
model building issues and discuss effects that depend on
possible UV completions.

A. Portal couplings and fifth force searches

Although the hidden sector that gives rise to thermal dark
energy does not have to couple directly to the visible sector,
string theory UV completions suggest that portal couplings
should exist at some level. We will discuss the issue of
sequestering between visible and hidden sectors in string
models in Sec. IV D. In this section we focus on possible
experimental signatures arising from portal interactions as
well as their implications for fine-tuning. Such interactions
are also constrained by their impact on the cosmological
evolution of the hidden and visible sectors.
Limiting ourselves to hidden sectors without a U(1)

gauge factor, the only renormalizable portal operators
between ϕ and the visible sector involve the SM Higgs,11

L ⊃ −ðAϕþ gϕ2ÞjHj2: ð40Þ

The experimental constraints on the linear coupling A are
far stronger than on the quadratic interaction g. It is most
plausible that a nonzero value of A will be present for the
model of Sec. III D, since in this case any quantum numbers
carried by ϕ are already broken in its own potential and
cannot protect against a linear coupling to jHj2. In contrast,
in the model of Sec. II ϕ could carry a conserved quantum
number; e.g., this could be a Z2 symmetry or in a
straightforward extension ϕ could be a complex scalar
and carry a gauge charge, which would forbid a linear
interaction. On the other hand, A is not necessarily zero
even in this model; for example, ϕ might be charged under
a global symmetry, which could be violated by Planck scale
effects [52].
For the hidden sector scalar masses of interest, the

strongest limits on the coupling A are from experimental
searches for fifth forces. The interaction Eq. (40) leads to a
Yukawa interaction between SM states, which modifies the
potential between two objects separated by a distance r to

Vij ¼ −
Gmimj

r
ð1þ αije−r=lÞ; ð41Þ

where l ¼ 1=mphys is set by the mass of the new scalar, and
the coupling constants αij depend on the interactions of the
new particle and the compositions of the bodies i and j.
Spectacularly precise experiments have searched for the

effects of a new long range Yukawa interaction. Following
[53], null results from the searches [54–57] can be
interpreted as limits on A, and we plot the constraints
obtained in Fig. 7. In this plot mphys is the physical mass of
ϕ excitations around the metastable minimum defined in

FIG. 6. Constraints on a model with a zero temperature
potential given by Eq. (35) that accounts for the present day
dark energy density. The excluded regions correspond to those
described in the text around Fig. 3.

FIG. 7. The experimental bounds from fifth force searches on
the interaction, with coupling constant A defined by Eq. (40), of a
new light scalar with the Standard Model Higgs as a function of
the scalar’s mass. The constraint remains constant at smaller
values of mϕ than are plotted. We also indicate the region of
scalar masses that is excluded by constraints on the hidden sector
temperature from ΔNeff measurements in our model, for the case
that the scalar interacts with a single hidden sector Dirac fermion
via a Yukawa coupling of 1.

11If there is a hidden sector U(1), kinetic mixing of this with
the SM U(1) is also renormalizable.
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Eq. (15), which does not coincide with the Lagrangian
parametermϕ. For a model with ϕ coupled to a single Dirac
fermion the bounds on ΔNeff mean that

mphys < 2.8 × 10−5 eV: ð42Þ

The coupling A leads to logarithmically divergent con-
tributions to the mass of ϕ from loop diagrams involving
the SM Higgs. Provided mϕ ≳ A, as is the case over large
parts of the nonexcluded parameter space in our model,
these do not necessitate fine-tuning the mass of ϕ.
However, A also induces a quadratically divergent linear
field shift of ϕ of the form L ∼ AϕΛ2

UV, where ΛUV is a UV
scale that cuts off the visible sector loops [53]. For this not
to affect the dynamics of our model we need AΛ2

UV ≪ T0
h
3.

This is a strong constraint, and values of A that could be
experimentally observed require that this contribution to
ϕ’s potential is fine-tuned. However, given the uncertainty
surrounding the solution of the SM electroweak hierarchy
problem, we remain agnostic on whether this issue should
be interpreted as forbidding a significant value of A.
In contrast to A, fifth force experiments only weakly

constrain the interaction that is quadratic in ϕ in Eq. (40),
and comparable limits arise from the effects of the small
shifts in the SM parameters induced by a hϕ2i background
in the early universe [58,59]. However, bounds from both
of these sources turn out to be negligible in the models that
we consider. Instead, since energy is transferred from the
visible to the hidden sector via this interaction, a stronger
limit on the coupling g comes from requiring that the
hidden sector remains sufficiently cold that constraints on
ΔNeff are evaded. The maximum relative energy transfer
happens shortly after visible sector electroweak symmetry
breaking when the SM Higgs gets a VEV and can decay
directly to ϕ, but before the visible sector temperature is
small enough that the Higgs abundance is Boltzmann
suppressed. For the hidden sector temperature not to
change by more than a factor of Oð1Þ we need g <
10−10ξh [60]. Additionally, loop diagrams involving g lead
to radiative corrections to m2

ϕ ∼ gΛ2
UV, where ΛUV is a UV

cutoff in the visible sector. Consequently, unless it is tiny, a
nonzero coupling g may necessitate that ϕ’s potential is
fine-tuned.
As well as the renormalizable portal interactions in

Eq. (40), ϕ can interact with the visible sector through
nonrenormalizable interactions of the form

L ⊃ κiϕOSMi; ð43Þ

where κ has mass dimension −1 and OSMi is an operator in
the SM Lagrangian. For new scalars with a mass ≲meV
fifth force limits require that κ ≲M−1

Pl ; i.e., the interactions
must be weaker than gravitational strength.

The theoretical predictions for the patterns of fκig, in
particular high energy theories and the phenomenology of
the induced interactions, have been studied extensively (see
e.g., [61–63]). The values of the couplings κi are extremely
dependent on a model’s UV completion, and they also
evolve during renormalization group (RG) flow between
the UV scale and the low scale relevant to experimental
searches. Similar to the Higgs portal coupling that is linear
in ϕ, such interactions are most plausible in the model of
Sec. III D, although they could also be present in the model
of Sec. II.
Due to their UV dependence, we do not commit to a

particular patten of fκig. Instead we focus of the coupling
to gluons, which is usually parametrized as

L ⊃ dg
β3ffiffiffi

2
p

g3MPl

ϕGμνGμν; ð44Þ

where MPl is the reduced Planck mass, β3 is the beta
function, g3 is the gauge coupling, and Gμν is the field
strength of QCD. The coupling of ϕ with gluons is one of
the interactions in Eq. (43) that is most strongly exper-
imentally constrained, and it is also often enhanced by a
factor of ∼40 relative to the other couplings by the RG flow
from the string scale [63].
In Fig. 8 we recast current fifth force constraints as

bounds on dg. Again these limits are on the physical mass
of ϕ around the metastable minimum. Over a large part of
the viable parameter space the bounds require interaction
strengths that are not too much smaller thanM−1

Pl . Given the
difficulty in finding string models in which the interactions
in Eq. (43) are significantly weaker thanM−1

Pl [15,64–69], it
is encouraging that such couplings are both not excluded
and are also sufficiently close to current limits that they
could plausibly be detected in upcoming experiments.

FIG. 8. The experimental bounds from fifth force searches on
the coupling of a new light scalar to gluons via the interaction
Eq. (44) with strength dg. The constraint on the scalar mass from
ΔNeff in our model is plotted similarly to as in Fig. 7.
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On the other hand, such portal couplings have the
downside of inducing loop diagrams that produce a ϕ
tadpole, which is parametrically L ⊃ κiΛ4

UVϕ. This neces-
sitates fine-tuning in the hidden sector since κiΛ4

UV ≫ T0
h
3

for ΛUV ≳ TeV. Despite this, as before, given the uncertain
nature and solution of the SM hierarchy problem, we do not
regard fine-tuning as a definitive problem, and fifth force
experiments remain an interesting route to detecting ϕ.

B. Cosmological observables

Theories of thermal dark energy could also leave a
detectable imprint on cosmological observables. One
potential signal is a dark energy density that changes with
time. However, for the simple potentials that we have
studied this effect is actually negligible for a hidden sector
that explains the present day energy density: In the model
with a quartic interaction the metastable minimum remains
fixed at ϕ ¼ 0, and the induced dark energy density is not
time dependent, until the temperature drops sufficiently low
such that vacuum decay occurs. In the model of Sec. III D
the location of the metastable minimum is time dependent
via Eq. (36). Despite this, the change in the induced
vacuum energy as the hidden sector temperature varies,

ρDE ¼ m2
ϕϕ

2
1

2

�
1 −

m2
ϕ

2bT2
h

�
; ð45Þ

is negligible for models that account for the observed
dark energy density, since the hidden sector temperature
must satisfy Eq. (39). An observationally significant time
dependence might be possible in theories with more
complex potentials, although we do not investigate this
possibility further here.
Searches for beyond the SM contributions to ΔNeff are a

more promising route to a detectable signal. In Figs. 3 and 6
a substantial proportion of the viable model space has a
hidden sector temperature corresponding to a contribution
to ΔNeff that is not far below the present limits, and which
is within the reach of future measurements with improved
sensitivities. Fairly high hidden sector temperatures are also
beneficial from a UV perspective because they lead to
relatively large physical ϕ masses, which relax fifth force
constraints on portal couplings. Moreover, models with
reasonably large values ofmϕ have the appealing feature of
not needing extremely small quartic couplings λ [see
Eq. (11)], and the hidden sector temperature must be
relatively high for a metastable minimum to exist in such
theories. The increased number of relativistic d.o.f., para-
metrized by ΔNeff may also help alleviate the H0 tension
[70–73].

C. Model building

The zero temperature potentials that we have considered
so far [Eqs. (2) and (35)] are extremely fine-tuned. For it to

source a significant amount of thermal dark energy, ϕ must
be strongly coupled to some additional hidden sector states.
Then divergent loops of these will tend to generate a ϕ4

quartic coupling that is of Oð1Þ, which would destroy the
required phenomenology in both of the potentials that we
have considered. Further, the mass of ϕ is expected to be
quadratically sensitive to a UV scale, analogously to the
SM Higgs.12

However, there are models of thermal dark energy with
all of the required phenomenological properties that need
no fine-tuning at all.13 As an example we show how this can
be achieved using supersymmetry. Since it is necessarily
weakly coupled to the visible sector, it is plausible that the
hidden sector could have a supersymmetry breaking scale
that is far smaller than the visible sector, and this is also
reasonable from a string theory perspective as we discuss in
Sec. IV D.
A slight variant of the model in Sec. III D can easily be

made supersymmetric. We suppose that the hidden sector
contains two chiral superfields: Φ, which has scalar
component ϕ and fermion component ξ, and Ψ, which
has scalar component χ and fermion component ψ . The
theory’s superpotential is fixed to

W ¼ ðmψ −ΦÞΨ2; ð46Þ

and the Kähler potential is taken to be canonical. We
assume that there are soft supersymmetry breaking scalar
mass terms

Vsoft ¼ m2
ϕjϕj2 þm2

χ jχj2; ð47Þ

which satisfy mψ ≫ mϕ; mχ. Supersymmetry protects
against radiative corrections so this mass hierarchy is
stable, as well as prevents any additional terms being
generated in the superpotential.
The scalar potential corresponding to Eqs. (46)

and (47) is

V ¼ jχj4 þ j2mψχ − 2ϕχj2 þm2
ϕjϕj2 þm2

χ jχj2; ð48Þ

and the Lagrangian contains fermion mass terms

L ⊃ −ðmψ − hϕiÞψ2 þ 2hχiξψ : ð49Þ

At zero temperature the scalar potential is minimized
at ϕ ¼ χ ¼ 0.
Finite temperature effects break supersymmetry [74], as

can be seen from the different ways that fermions and

12If ϕ’s mass is sensitive to the Planck mass, the required
tuning is 1 part in ∼1066, and this is correspondingly reduced if
the UV scale is lower.

13We do not speculate on the fine-tuning required for the
magnitude of the vacuum energy of the zero temperature potential
to be sufficiently small for a viable theory.
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scalars contribute to the thermal potential in Eq. (3). As
usual, the thermal potential favors parts of field space that
minimize the masses induced by scalar VEVs. At large
temperatures Th ≫ mψ the thermal potential has a global
minimum at ϕ ¼ mψ (with χ ¼ 0). Formϕ < Th < mψ this
is no longer the global minimum, which is instead close to
ϕ ¼ 0; however, it remains as a local minimum. Similar to
the previous models the metastable minimum at ϕ ¼ mψ

leads to a contribution to the dark energy of

ρDE ¼ 1

2
m2

ψm2
ϕ: ð50Þ

This is analogous to the model in Sec. III D with mψ

replacing ϕ1. As before there is a significant region of
viable parameter space that can explain the present day dark
energy density.
Finally, we address another model building issue. In the

theory of Sec. II it is reasonable that there are additional
fermions that are massless in the absence of a ϕ VEV, since
ϕ can carry a conserved charge. In the model in Sec. III D a
massless fermion is more unusual, since the potential
includes terms V ⊃ m2

ϕϕ0ϕ and V ⊃ ϕψ̄ψ so there is no
symmetry reason to forbid a fermion mass term mfψ̄ψ .
However, the addition of an explicit fermion mass does not
destroy the dynamics provided mψ ≲ ϕ1 (and viable
models are even possible if mf ≫ ϕ1). In this case the
thermal potential has a metastable minimum at ϕ ¼ −mf

for sufficiently large hidden sector temperatures, and the
dynamics remain the same as before with only minor
modifications to the formula. In such theories a small
quartic coupling λϕ4 also does not have a significant effect
provided that mϕ=

ffiffiffi
λ

p
≪ ϕ1.

D. Sequestering and UV completions

If fine-tuning is to be avoided, ϕ’s potential must also be
stable against corrections from loops of states at the scale of
the theory’s UV completion, which for us is typically the
string scale, and loops of visible sector states interacting
with the hidden sector gravitationally. Although it is not the
only way that ϕ’s potential can be protected, we will
continue to use the supersymmetric hidden sector described
previously as an example in which such effects can be
discussed.
There is an unavoidable interaction between the hidden

sector states and visible sector matter, or any other states in
the theory, from the exchange of gravitons. This leads to a
contribution to ϕ’s mass that is parametrically

Δm2
ϕ ∼

1

ð4πÞ6
M6

M4
Pl

; ð51Þ

where M is the mass of the e.g., visible sector states
[assuming an Oð1Þ coupling between ϕ and the hidden

sector matter fields] [75]. For mSM ≲ 105 TeV these con-
tributions do not disrupt the hidden sector dynamics in the
parameter space that we consider.
If the hidden sector hierarchies are protected by super-

symmetry, the condition that loops of states at the string
scale do not necessitate fine-tuning is equivalent to
demanding that the scale of hidden sector supersymmetry
breaking remains sufficiently low. Given that the scale
of the visible sector soft terms is ≳TeV the source of
supersymmetry breaking, parametrized by an F term Fb,
must couple more strongly to the visible sector than the
hidden sector.
From a supergravity perspective the hidden sector soft

terms are generically expected to be

msoft ≳ αloopm3=2; ð52Þ

where m3=2 ∼ Fb=MPl is the gravitino mass and αloop is a
loop factor set by the strongest interactions of a hidden
sector state (for example, this is the magnitude of the soft
terms induced by anomaly mediation [76–78]). Such soft
masses would be too large to avoid fine-tuning in the
hidden sector.
However, if the hidden sector is sequestered from the

source of supersymmetry breaking, e.g., via geometric
separation in the extra dimensions, its soft terms could
be parametrically suppressed from the expectation Eq. (52)
[79]. This may occur if the volume of the internal compact
dimensions is large, so the string scale is significantly lower
than the Planck mass. For example, considering a particular
proposed form of moduli stabilization, the authors of
Ref. [80] found that the scale of the soft terms can be

msoft ¼ ϵm3=2; ð53Þ

where ϵ ∼m3=2=MPl is a small parameter.
In typical string models the magnitude of the hidden

sector soft terms is closely linked to the mechanism by
which the moduli are stabilized, and it is model dependent
(see e.g., [81]). As we do not commit ourselves to a
particular string UV completion, we simply note that if the
visible sector soft terms are generated by low scale gauge
mediation Fb ≳ ð105 GeVÞ2, so the gravitino mass is
m3=2 ≳ 10−8 GeV, a suppression of the form of Eq. (53)
with ϵ≲ 10−7 would be sufficient to protect the hidden
sector hierarchies.
Sequestering the hidden sector from the visible sector

can also prevent string scale physics from generating portal
couplings between the two that are excluded by fifth force
searches. The experimental constraints on the portal inter-
actions Eq. (43) require κi ≲M−1

Pl , which is in tension with
the naive expectation that UV modes will produce
κi ∼M−1

Pl . However, in sequestered models the interactions
of ϕ with the visible sector may be suppressed from Planck
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scale by some (model-dependent) power of the volume
modulus [76,79,82,83]. Given the range of physical ϕ
masses that we are interested in, only a fairly mild reduction
in the κi from M−1

Pl is necessary, which appears achievable
in explicit models.

E. Thermal dark energy during other eras

Although we have focused onmodels that account for the
present day dark energy, there could also be hidden sectors
that give a thermal dark energy contribution at early times
and have subsequently decayed to the global minimum of
their potential. Indeed, in a string theory context it is
plausible that there could be multiple hidden sectors at
differing mass scales and temperatures, each sourcing a
component of dark energy that disappears at a different
time.14 Depending on the scales and interactions of a hidden
sector, the resulting dynamics can lead to unusual phenom-
enology and signals, and could also dramatically modify the
relic abundances of visible and hidden sector relics. We
leave the interesting task of performing a detailed analysis of
this scenario to future work, and instead here we simply
point out a few preliminary considerations and possibilities.
The cosmological impact of such a hidden sector

depends on the scale at which it decays to the global
minimum of its potential, its temperature hierarchy relative
to the visible sector, whether it has any interactions with the
visible sector, and the maximum ratio between the density
of the dark energy sourced and the radiation energy density
that is reached before the metastable vacuum decays. For
example, for the quartic potential of Sec. II the maximum
ratio, reached immediately prior to decay to the global
minimum, is approximately

ρDE
ρrad

∼
ξ4h
λ
: ð54Þ

The corresponding number of e-folds of accelerated
expansion is given, analogously to Eq. (28), by

NDE ∼ log

�
ξh
λ1=4

�
:

If an era of dark energy domination happens at sufficiently
early times, and the hidden states are sufficiently heavy, it is
possible that the hidden sector energy density could be
transferred to the visible sector after the metastable mini-
mum decays. Otherwise limits on the hidden sector energy
density from ΔNeff , and the abundance of stable hidden
sector relics, will be relevant. It is also possible that the
early dark energy does not dominate the total energy
density of the Universe.

There is a long-standing discrepancy between cosmo-
logical and astrophysical measurements of the Hubble
parameter (see e.g., [84–86] and references therein). It
has been shown that this could be explained by an additional
contribution to the dark energy that is present at early times
and after z ∼ 3000 redshifts as radiation (or faster) [33,87].
Such dynamics could naturally arise from a period of early
thermal dark energy, if a hidden sector transitions to the
minimum of its zero temperature potential at this time.
As discussed in Sec. III B, a hidden sector that sourced

an early thermal dark energy component will transition to
its zero temperature minimum through the nucleation of
critical bubbles, which subsequently expand and collide.
This produces a background of stochastic gravitational
waves, which could be detected in current and proposed
experiments (for a recent review see e.g., [88]). The
frequency of the gravitational wave signal is parametrically
fixed by the value of the Hubble parameter at the time of the
transition, appropriately redshifted, and the amplitude of
the signal is determined by the energy released and the
properties of the transition, such as the time it takes to
complete. Gravitational wave signals from models of
thermal inflation at a temperature around the TeV scale
have been considered in [89]. However, given the possibi-
lity of thermal dark energy in hidden sectors at a wide range
of mass scales, signals at many different frequencies are
possible.

V. DISCUSSION

We have shown that thermal dark energy is a viable route
to an effective “cosmological constant” that can persist to
late times. It is therefore a possible explanation for the
present day accelerated expansion of the Universe. This is
despite the theory’s zero temperature potential having no de
Sitter vacuum or slow roll directions.
We have considered two simple realizations of the

scenario, one with a hidden Higgs-like quartic scalar
potential, VðϕÞ ¼ λϕ4 − 1

2
m2

ϕ þ C, and the other with a
string modulus-like potential, VðϕÞ ¼ 1

2
ðϕ − ϕ1Þ2, both

with a Yukawa-like coupling between ϕ and a hidden
sector fermion. Both theories are consistent with recent
string swampland conjectures, assuming that the finite
temperature potential need not satisfy the dS conjecture.
This is reasonable, since the finite temperature potential of
the SM Higgs already violates Eq. (1) in the early universe.
Similar to the model of Sec. II, prior to the electroweak
phase transition finite temperature effects source a dS
minimum around H ¼ 0.15 It would, however, be very
interesting to study the status of the dS conjecture at the
finite temperature carefully, potentially applying the frame-
work of [20].

14Previously considered models of thermal inflation [34,35]
correspond to the visible sector itself sourcing a component of
thermal dark energy at scales ∼TeV that dominates the energy
density of the Universe for a significant number of e-folds.

15For the SM Higgs radiation energy density dominates while
it is in a thermally generated minimum, so it does not result in the
expansion of the Universe accelerating.
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While both a dS zero temperature vacuum and also
viable theories of quintessence are difficult to construct
within string theory, thermal dark energy models that
explain the present day dark energy density might arise
naturally. The essential phenomenological ingredient of a
low scale hidden sector, at a lower temperature than the
visible sector CMB photons and still in internal thermal
equilibrium today, seems reasonable given what is known
about generic string compactifications. The condition that
the hidden sector includes a scalar field with Higgs-like
couplings to hidden matter also does not seem surprising.
One unusual requirement is the need for a moderate
hierarchy of scales, or a small dimensionless coupling,
in the hidden sector. However, even this may be made
technically natural. In particular, we have shown how
thermal dark energy can occur in a supersymmetric model
for which the necessarily small scalar quartic self-coupling
is protected against loops of hidden sector states provided
the hidden sector supersymmetry breaking soft terms are
sufficiently small.
To avoid the need for fine-tuning, ϕ’s potential must also

be robust against quantum corrections from loops of heavy
states, for example associated with the string scale, which
depends on the theory’s UV completion. Taking the model
with hidden sector supersymmetry as an example, there is
hope that this can be addressed by sequestering the hidden
sector from the source of supersymmetry breaking.16 As
discussed in Sec. IV D, the hidden sector soft terms must be
≲10−6 eV, which is smaller than their naive supergravity
estimated value ∼m3=2. However, the required suppression
seems reasonable given what is currently known about
string compactifications, and it certainly appears easier to
achieve than the scales necessary for quintessence.
Moreover, as thermal dark energy decouples dark energy
from the moduli stabilization problem in string theory—
though all moduli must still be stabilized—new model
building avenues should be possible. Sequestering also
helps to keep the hidden sector in thermal isolation from the
visible sector, and it might explain why the hidden sector
was reheated to a lower temperature than the visible sector.
Having studied the observational and model building

constraints in Sec. III, we have seen that both of the zero
temperature scalar potentials that we considered have large

regions of viable parameter space in which they can explain
the present day dark energy.
Over a significant part of the allowed parameter space,

signals are possible in future experimental searches. For
example, UV modes often generate nonrenormalizable
portal couplings between the hidden and visible sectors
with interaction strengths that are of order M−1

Pl , although
the couplings could be somewhat suppressed relative to
this in sequestered string models. Meanwhile experimen-
tal searches for fifth forces constrain linear interactions
of ϕ with the visible sector to be slightly weaker than
Planckian in the mass range of interest. So, with an
improvement in sensitivities, a future detection is plau-
sible. We do, however, note that couplings that are large
enough to be observed are likely to introduce quantum
corrections to ϕ’s potential that necessitate fine-tuning.
From a UV perspective, the relatively large physical
masses of ϕ in the models that we have considered,
mphys ≲ 10−5 eV, are beneficial. As seen in Fig. 8, the
fifth force constraints at these masses are far weaker than
those on scalars with masses ≲10−12 eV. Consequently,
whereas in string theory it has proven difficult to obtain
sufficient sequestering between quintessence and the
visible sector for models to not already be excluded
[15,64–69], the required suppression of couplings seems
within reach in our models.
The hidden sector’s contribution to ΔNeff is also often

close to present limits and within reach of future observa-
tions. Moreover, if there are several distinct thermal dark
energy sectors, this can lead to additional cosmological
effects including the H0 tension; and sectors that have
decayed to the zero temperature minimum of their potential
naturally emit potentially observable gravitational wave
signals since this involves a first order phase transition.
Finally, we have assumed that some unknown mecha-

nism exactly cancels the zero temperature contributions to
the vacuum energy from the SM, hidden sectors, and any
other new physics, with the view that is easier to explain
zero than 10−120M4

Pl.
To conclude, thermal dark energy appears to be a

promising candidate to explain the current accelerated
expansion of our Universe. It will be important to study
its potential signatures in more detail, and to try to embed
the scenario into a UV complete theory of quantum gravity,
such as string theory.
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16The issue of producing sufficiently small couplings, along
with the need to protect ϕ’s potential against radiative correction,
would be resolved if ϕ were an axion field. However, from
preliminary investigations it seems difficult to construct models
in which finite temperature contributions to an axion’s potential
shift its VEV and generate a temperature dependent potential
energy.
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