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ABSTRACT
The centre determination of a galaxy cluster from an optical cluster finding algorithm can
be offset from theoretical prescriptions or N-body definitions of its host halo centre. These
offsets impact the recovered cluster statistics, affecting both richness measurements and the
weak lensing shear profile around the clusters. This paper models the centring performance of
the redMaPPer cluster finding algorithm using archival X-ray observations of redMaPPer-
selected clusters. Assuming the X-ray emission peaks as the fiducial halo centres, and
through analysing their offsets to the redMaPPer centres, we find that ∼75 ± 8 per cent of the
redMaPPer clusters are well centred and the mis-centred offset follows a Gamma distribution in
normalized, projected distance. These mis-centring offsets cause a systematic underestimation
of cluster richness relative to the well-centred clusters, for which we propose a descriptive
model. Our results enable the DES Y1 cluster cosmology analysis by characterizing the
necessary corrections to both the weak lensing and richness abundance functions of the DES
Y1 redMaPPer cluster catalogue.
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1 IN T RO D U C T I O N

The abundance of galaxy clusters is a sensitive probe of cosmo-
logical models (see reviews and the referenced literature in Allen,
Evrard & Mantz 2011; Weinberg et al. 2013). Cluster cosmology
studies from the latest optical imaging surveys such as the Dark
Energy Survey (the DES Collaboration, in preparation) will deliver
significant improvement in precision over previous studies based
on the Sloan Digital Sky Survey (SDSS, Rozo et al. 2010) and
require (McClintock et al. 2019) accurate understanding of various
systematic effects such as the orientation of clusters (Noh & Cohn
2012; Dietrich et al. 2014), correlated structures and their projection
effect (Erickson, Cunha & Evrard 2011; Costanzi et al. 2019),
mass profile modelling uncertainties (McClintock et al. 2019),
and the contamination of cluster member galaxies in the lensing
measurements (Varga et al. 2018).

One such important systematic effect is the mis-identification
of cluster centres (Johnston et al. 2007a,b; Melchior et al. 2017;
Simet et al. 2017; McClintock et al. 2019; the DES Collab-
oration, in preparation). Cluster observables, e.g. gravitational
shear profiles, must be compared to models in order to derive
constraints on parameters, and the models are based on some
definition of cluster centre, described theoretically or on the basis
of the matter density field in N-body simulations. Cluster lensing
studies based on data from DES (McClintock et al. 2019) require
accurate knowledge of cluster mis-centring fraction and offset
distribution in order to forward model masses using analytic halo
profiles.

Optical cluster finders often attempt to identify a central galaxy
as the centre (Koester et al. 2007; Hao et al. 2010; Rykoff et al.
2014; Oguri et al. 2018). These central galaxies are typically
quenched of star formation activities and may appear to be the
brightest galaxy in a cluster (see studies in Skibba et al. 2011;
Lauer et al. 2014; Hoshino et al. 2015). The identification of cluster
central galaxies may seem straightforward given their dominant
appearances, but mis-identifications or offsets relative to any other
theoretical definition of centre is inevitable. Because massive haloes
experience growth through mergers, cluster central galaxies can
be displaced from the local gravitational potential minimum (e.g.
Martel, Robichaud & Barai 2014). A related effect is when a
second galaxy within the halo is chosen as the centre by the cluster
finding algorithm. For a colour-based scheme focused on the reddest
galaxies, this may happen if the central galaxy of the host halo
has experienced recent star formation (e.g. McDonald et al. 2012;
Donahue et al. 2015) or if a merging event brings in two nearly
identical central galaxies of the progenitor haloes, as in the case
of the Coma cluster (e.g. Vikhlinin et al. 2001). Another cause of
mis-centring is when galaxies lying outside the primary host halo,
but aligned in projection, are chosen as the central galaxy by the
cluster finding algorithm.

The centring performance of optical cluster finding algorithms
has been characterized with various methods. Cluster hot gas is an
excellent tracer of the cluster potential as the dominant baryonic
mass component. Cluster X-ray or thermal Sunyaev–Zel’dovich
(tSZ) observation centres, identified as the centroids or the peaks
of the surface brightness, are often used to calibrate the optically
selected centres (see examples of X-ray studies in Lin & Mohr 2004;
Stott et al. 2012; Mahdavi et al. 2013; Lauer et al. 2014; Rozo &
Rykoff 2014; Rykoff et al. 2016; Zhang et al. 2016 and examples
of tSZ studies in Song et al. 2012; Saro et al. 2015). Other than
calibration to centres identified in multiwavelength observations,
cluster centring has been characterized through comparing cluster

radial profiles (lensing or galaxy number count) to those of a cluster
sample with well-known centres from X-ray or optical data (Hikage
et al. 2018; Luo et al. 2017) and through examining the velocity and
separation distribution of cluster satellite galaxies (Skibba et al.
2011).

In this paper, we characterize the centring performance of the
redMaPPer cluster finding algorithm – a method for identifying
galaxy clusters from optical imaging data. The redMaPPer algo-
rithm excels in producing a complete and efficient cluster sample
with an accurate richness mass proxy and precise redshift estima-
tions, as characterized with multiwavelength and spectroscopic data
(Rykoff et al. 2012; Rozo & Rykoff 2014; Rozo et al. 2015a,b; Saro
et al. 2015; Murata et al. 2018). Cluster catalogues constructed from
SDSS (Rykoff et al. 2014) and DES data (Rykoff et al. 2016) are
used to derive cosmological constraints in Costanzi et al. (2018)
and the DES Collaboration (in preparation). In terms of the cluster
centre identification, redMaPPer is not exempt from occasional mis-
identification of the central galaxy.

The centring distribution of the redMaPPer algorithm has been
studied using almost all of the aforementioned methods (Rozo &
Rykoff 2014; Saro et al. 2015; Rykoff et al. 2016; Hikage et al.
2017). In this paper, we model the cluster centring distribution
with 211 high-signal-to-noise X-ray cluster detections associated
with the redMaPPer SDSS DR8 and DES Year 1 samples from
the Chandra public archives, and the model constraints are then
validated with X-ray cluster detections from the XMM public
archives. We focus on the modelling aspects of redMaPPer cen-
tring performance in this paper, while the X-ray data processing
procedures are presented in Hollowood et al. (2018) and Giles et al.
(in preparation). The data set and methods we employ allow us
to analyse the redMaPPer centring performance with the highest
precision to date. We also develop a model to characterize how
mis-centring affects redMaPPer richness estimation and discuss the
impact of cluster mis-centring on cluster cosmology analyses. It is
the first time that this effect has been quantified.

This paper is a companion paper to the DES and SDSS cluster
weak lensing and cosmology studies presented in McClintock et al.
(2019), Costanzi et al. (2018), and the DES Collaboration (in
preparation). It uses similar data products to Farahi et al. (2019).

Throughout this paper, we assume a Flat � cold dark matter
cosmology with h = 0.7 and �m = 0.3.

2 DATA

2.1 The redMaPPer catalogues

The redMapper algorithm examines galaxy colour, spatial over-
density, and galaxy luminosity distribution to identify possible
galaxy clusters. Cluster centres are placed on a central galaxy
candidate according to the colour, luminosity, and galaxy over-
density computed around the galaxy. Up to five central galaxy
candidates are recorded for each cluster with probabilities assigned
to them. The cluster centre is chosen to be the most probable
one. The redMaPPer algorithm also estimates a richness as a mass
proxy, λ, which is a probabilistic count of red sequence galaxies
within an aperture centred on the central galaxy candidate. Detailed
presentation of this algorithm can be found in Rykoff et al. (2014,
2016).

The redMaPPer samples studied in this paper have been derived
from both SDSS (Rykoff et al. 2014, 2016) and DES (Rykoff et al.
2016; McClintock et al. 2019) data. We use the redMaPPer SDSS
6.3.1 sample (Costanzi et al. 2018) derived from SDSS DR8 (Aihara
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et al. 2011) photometric data and the redMaPPer DES-Y1-6.4.17
volume-limited catalogue which is based on the DES Y1 gold
catalogue (Drlica-Wagner et al. 2018), with cluster richnesses ≥20.
For the SDSS redMaPPer sample, we consider clusters in the
redshift range of 0.1–0.35 which are nearly volume-limited. For
the DES redMaPPer sample, we select clusters between redshifts
0.2 and 0.7.

2.2 Comparison of centres in redMaPPer catalogues

In this paper, we treat the DES and SDSS redMaPPer catalogues
as two independent samples and characterize their centring per-
formances separately. We examine the offset distribution between
redMaPPer centres of the overlapping clusters in the DES and
SDSS samples, to estimate an upper limit of the well-centred cluster
fraction. We match between the DES and SDSS redMaPPer samples
to identify the overlapping clusters in the redshift range of 0.2–0.35.
For a pair of DES and SDSS clusters to be considered a match, their
redshift difference, |�z|, must be less than 0.05 to account for the
scatter in photometric redshifts and possible blending effects. The
redMaPPer centres must be within 1 Rλ (Rλ = (λ/100)0.2 h−1 Mpc).
The radius aperture is chosen because redMaPPer does not consider
the clusters to be the same if their centring offset is larger than
Rλ. The richness estimations derived from SDSS and DES data
have an average relation of λDES = (0.88 ± 0.03) × λSDSS +
(3.28 ± 1.20). We look for matches to λ > 20 DES clusters in
the SDSS redMaPPer sample by lowering the SDSS redMaPPer λ

threshold to 5 to account for the λ difference and scatter between
DES and SDSS.

There are 150 DES clusters with λ > 20 and 38 786 SDSS clusters
with λ > 5 in the overlap region of both catalogues after applying
redshift, position, and mask cuts. Of these 150 DES clusters, 1481

have SDSS matches given the criteria listed above. 15 of these
148 clusters have at least two matches and the most likely SDSS
match was chosen by inspection of redshift, position, and richness.
As the purpose of this matching process is to verify the centring
consistency in SDSS/DES, we further remove three clusters in the
total sample (148) because of our poor confidence in the match:
the SDSS matching candidates have large richness differences with
their respective DES clusters. This further reduces our matching
sample size to 145.

Fig. 1 shows the scaled offset distribution between SDSS and
DES centres for the matched clusters. For 77 per cent of the
matched clusters, their SDSS and DES centres are within 0.05 Rλ

(corresponding to ∼50 kpc at λ = 20, close to the size of a typical
central galaxy, Zibetti et al. 2005; Stott et al. 2011). We consider
these clusters as consistently centred between the two catalogues.
The remaining 23 per cent of the clusters comprise a long tail in
the SDSS and DES offset distribution up to 1 Rλ. The inconsistency
indicates that for at least one of the samples, the mis-centred fraction
is ≥0.23/2 = 0.115. As we do not have sufficient information (i.e.
enough X-ray observations) in the DES/SDSS samples to analyse
which has a greater rate of well-centring, we decide to indepen-
dently analyse the SDSS and DES redMaPPer samples in this
paper.

1After further investigation, the other two DES clusters appear to have SDSS
matches with the same central galaxy selections, but the redshift differences
between the DES and SDSS match are ∼0.06, and thus did not pass our
strict redshift difference cuts.

Figure 1. The offset distribution of cluster centres assigned in the SDSS
and DES redMaPPer catalogues, measured in radial units of Rλ [Rλ =
(λ/100)0.2 h−1 Mpc, which is ∼1 Mpc for λ of 20]. The solid blue histogram
is the full sample of overlap clusters while the solid and dashed histograms
are the same distribution in richness bins of λ > 40 and λ < 40, respectively.
77 per cent of clusters have offsets below 0.05 Rλ and are considered self-
consistent, with the remaining 23 per cent comprising a long tail. We notice
a marginal richness dependence that richer clusters appear to be more
consistently centred in DES and SDSS.

We further examine the richness distribution of the offsets by
dividing the clusters into two richness ranges. We do not notice a
significant richness trend – 34 out of 41 clusters at richness above
40 are consistently centred versus 77 out of 101 at richness below
40.

2.3 Chandra X-ray data and centre measurement

While the comparison of centring between different redMaPPer
catalogues above gives an indication of the minimum level of mis-
centring, we use X-ray data to calibrate the absolute value of the
well-centred cluster fraction, and the offset distribution of mis-
centring clusters in each of the redMaPPer samples.

In this paper, we use cluster X-ray emission peaks as the fiducial
centres and rely on these to estimate the redMaPPer mis-centring
fraction and offsets. Some previous studies have used the X-ray and
tSZ centroids within different aperture sizes that closely resemble
the centroids of the cluster gravitational potential to calibrate the
cluster centring distribution (Song et al. 2012; Stott et al. 2012;
Saro et al. 2015; Zhang et al. 2016), while others use X-ray
emission peaks that closely resemble the peaks of the cluster matter
distribution (Lin & Mohr 2004; Mahdavi et al. 2013; Lauer et al.
2014). In DES and SDSS cluster weak lensing and cosmology
studies (Costanzi et al. 2018; McClintock et al. 2019; the DES
Collaboration, in preparation), the aim is to quantify redMaPPer’s
accuracy in identifying the galaxy near the centre of a cluster’s
host dark matter halo, or the galaxy that corresponds to the density
peak of the dark matter halo (Tinker et al. 2008). To this end, we
employ the X-ray peak position as a proxy for the host halo centre,
and measure the distribution of the projected offsets between X-ray
peaks and redMaPPer central galaxies.

We search for X-ray observations and determine X-ray peaks
in archival Chandra data for redMaPPer clusters in both SDSS and
DES Y1 of richness above 20. RedMaPPer clusters falling within an
archival Chandra observation are analysed with a custom pipeline
MATCha, described in Hollowood et al. (2018). A summary of the
X-ray analysis follows.

For each of the redMaPPer clusters with archival Chandra
observations, starting with an initial aperture of 500 kpc radius
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centred on the redMaPPer centre, the pipeline first determines
the X-ray centroid, re-centres, and then iteratively finds X-ray
centroids until convergence is reached within 15 kpc. A cluster
is considered to be detected if the signal-to-noise ratio within a
final 500 kpc aperture centred on the converged centroid is greater
than 5. For detected clusters, MATCha analysis proceeds with
attempts to measure LX, TX, and centroid within a set of apertures
including 500 kpc, r2500, r500, and core-cropped r500. Visual checks
of non-detected redMaPPer clusters are employed to examine if
any redMaPPer clusters with Chandra observations were omitted
in the process. We find one SDSS redMaPPer cluster with a large
offset of 1.82 Mpc (1.40 Rλ for this cluster) between the X-ray
centroid and the redMaPPer centre, possibly overlooked because
of the initial 500 kpc X-ray centroid searching criteria. Since this
omission makes up less than 1 per cent of the total SDSS Chandra
sample, we do not consider it in further analyses. No similar cases
were found in the DES Y1 sample.

For the clusters with X-ray detections, MATCha additionally
determines the position of the X-ray peak starting from the reduced,
exposure-corrected, and point source subtracted images. Images are
smoothed with a Gaussian with σ = 50 kpc width, and the peak is
defined to be the brightest pixel in this smoothed image. All peaks
are then visually examined. In a small number of cases relic point
source emission or the removal of a point source near the cluster
peak are found to bias the peak determination. The peak position is
adjusted after accounting for the point source emission. In addition,
two failure modes are flagged and removed from the sample. First,
for the centring analysis we remove clusters falling on or near a chip
edge in the X-ray observation such that the position of the X-ray
peak could not be reliably determined. Secondly, in a few cases the
identified X-ray cluster is clearly not the redMaPPer cluster (e.g. a
bright foreground or background cluster in the same observation),
and these clusters are likewise removed (see Hollowood et al. 2018
for further detail). Moreover, there are some special redMaPPer mis-
centring cases, denoted as mis-percolations in Hollowood et al.
(2018), because these cases are related to a ‘percolation’ procedure
of redMaPPer. In these cases there is a spatially close pair of
clusters with similar redshifts, and the one with a less luminous
X-ray detection is assigned with a greater richness. Hollowood
et al. (2018) manually associates the richer redMaPPer candidate
with the more luminous X-ray detection and removes the less rich
system from the X-ray samples.

Finally, to improve the accuracy of X-ray peak location, among
all the clusters identified in Hollowood et al. (2018), we further
impose a signal-to-noise cut removing clusters with a signal-to-
noise ratio less than 6.5 within a 500 kpc aperture. In the end, 144
redMaPPer SDSS clusters are identified with X-ray peak centres in
the Chandra archival data.

The compilation of the DES redMaPPer Chandra sample follows
a similar process to the SDSS redMaPPer sample, with the exception
that the X-ray peaks of the DES sample are initially identified
around the redMaPPer centres within 500 kpc due to pipeline
re-factoring. The peak identifications are visually examined and
adjusted if needed. Overall, 67 DES redMaPPer clusters are identi-
fied with Chandra observations of signal-to-noise ratio higher than
6.5.

In Fig. 2, we show the redshift and richness distributions of
the SDSS and DES redMaPPer Chandra samples. Fig. 3 shows
the scaled offset distributions between the X-ray peaks and the
redMaPPer centres. The tail of the offset distribution indicates a
population of mis-centred clusters. Examples of the mis-centred
clusters can be found in Hollowood et al. (2018).

Figure 2. Normalized redshift and richness distributions of the SDSS
(black) and DES (blue) redMaPPer clusters matched to archival Chandra
observations. The X-ray matched clusters have much higher richnesses than
the general redMapper sample, although we do not find significant richness
dependence of the results presented in the paper.

3 THE X-RAY R EDMAPPER O FFSET

3.1 Model

In this paper, we use the X-ray peaks as the cluster fiducial centre,
and model the offsets between X-ray peaks and redMaPPer centres
to characterize the redMaPPer centring distribution.

When redMaPPer misidentifies the galaxy at the cluster centre, an
offset between X-ray peaks and the redMaPPer centres is expected.
On the other hand, when the redMaPPer centres are correct, the
X-ray peaks may still be offset from them because of the different
dynamics and relaxation time-scales of gas and galaxies (e.g. see
studies about cluster state and X-ray galaxy offsets in Mantz et al.
2015; Kim, Peter & Wittman 2017; Roberts, Parker & Hlavacek-
Larrondo 2018), as well as observational uncertainties in identifying
the X-ray peaks,2 but these offsets tend to be small, i.e. less
than tens of kpc. Therefore, we expect the well and mis-centred
redMaPPer clusters to have different offset distributions to the X-
ray peaks, and we model the redMaPPer and X-ray offset as a
mixture of well-centred and mis-centred components, written as:

P (x|ρ, σ, τ ) = ρ × Pcent(x|σ ) + (1 − ρ) × Pmiscent(x|τ ),

Pcent(x|σ ) = 1

σ
exp

(
− x

σ

)
, (1)

Pmiscent(x|τ ) = x

τ 2
exp

(
−x

τ

)
.

In the above model, the peaked exponential distribution char-
acterized by the parameter σ , Pcent(x|σ ), describes the X-ray
offset distribution of the correctly centred clusters. The second
component, Pmiscent(x|τ ), a Gamma distribution of shape parameter
2 and characterized by a scale parameter τ , describes the offset
of the mis-centred clusters. This distribution has a heavy tail and
the choice of this distribution is inspired by the Chandra SDSS
sample having an extended offset distribution. The fraction of well-
centred clusters are modelled by the ρ parameter. In total, the models
consists of three parameters ρ, σ and τ . The redMaPPer and X-ray
centre offset, x, is computed as

x = roffset/Rλ,

Rλ = (λ/100)0.2 h−1 Mpc, (2)

2The photometric and astrometric uncertainties of galaxy positions are
negligible in DES compared to X-ray (Drlica-Wagner et al. 2018).
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Figure 3. The Rλ [Rλ = (λ/100)0.2 h−1 Mpc] scaled offset distribution between the redMaPPer centres and the X-ray emission peaks for the redMaPPer
SDSS and DES samples from the Chandra archival observations, with the inset zooming on the mis-centred component, starting at roffset/Rλ = 0.05. The
distribution can be fitted with two components – a concentrated component that represents the well-centred redMaPPer clusters, and an extended component
that represents the mis-centred redMaPPer clusters. The best-fitting SDSS offset model is shown as the solid lines (black: well-centred model, red: mis-centred
model), with the shaded regions representing the uncertainties.

Figure 4. Centring offset parameter constraints (equation 1) for the Chan-
dra DES (blue) and SDSS (grey) redMaPPer samples. About 70 per cent
of the DES and SDSS redMaPPer clusters appear to be well centred in
both samples (indicated by the ρ parameter). For the mis-centred clusters,
their mis-centring offsets is characterized by a Gamma distribution with a
characteristic offset (the τ parameter) around 0.18 Rλ.

which scales the offset with a mild dependence on redMaPPer rich-
ness denoted by λ.

Given the measurements of these offsets, {xi}, the Bayesian
posterior distribution of ρ, σ , and τ is written as

P (ρ, σ, τ |{xi}) ∝ P ({xi}|ρ, σ, τ )P (ρ, σ, τ )

= P (ρ, σ, τ )
∏

i

P (xi |ρ, σ, τ ), (3)

where P(ρ, σ , τ ) is the prior distribution of ρ, σ , and τ listed in
Table 1, which is chosen to be flat and independent parameters.
We sample the posterior distribution of ρ, σ , and τ using a Markov
Chain Monte Carlo (MCMC) method.

3.2 Model constraints

The aforementioned X-ray redMaPPer offset model is constrained
separately for the Chandra SDSS and DES redMaPPer samples.
Table 1 lists and Fig. 4 shows the posterior constraints of the
model parameters including the correctly centred fraction ρ, and
the mis-centred characteristic offset τ , as well as the characteris-
tic redMaPPer X-ray offset, σ . The SDSS sample yields higher

Table 1. Centring offset parameter constraints (equation 1) for the Chandra
DES and SDSS redMaPPer samples.

ρ σ τ

Prior [0.3, 1] [0.0001, 0.1] [0.08, 0.5]

Chandra SDSS posterior 0.678+0.035
−0.051 0.0156+0.0026

−0.002 0.179+0.021
−0.021

Chandra DES posterior 0.835+0.112
−0.075 0.0443+0.0231

−0.0094 0.166+0.111
−0.042
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Table 2. Alternative offset models and constraints derived with the Chandra SDSS redMaPPer sample, and DIC comparisons
to the nominal model in this paper.

Name Model Constraints DIC − DICnominal

Gaussian P(x|ρ, σ , τ ) = ρPcent + (1 − ρ)Pmiscent ρ = 0.64+0.05
−0.05 19.0

Pcent(x|σ ) = 2√
2πσ

exp(− x2

2σ 2 ) σ = 0.0177+0.0025
−0.0020

Pmiscent(x|τ ) = x

τ2 exp(− x
τ

). τ = 0.161+0.021
−0.016

Rayleigh P(x|ρ, σ , τ ) = ρPcent + (1 − ρ)Pmiscent ρ = 0.70+0.05
−0.04 4.4

Pcent(x|σ ) = 1
σ

exp(− x
σ

) σ = 0.0185+0.0025
−0.0023

Pmiscent(x|τ ) = x

τ2 exp(− x2

2τ2 ). τ = 0.323+0.029
−0.024

Full gamma P(x|ρ, σ , τ , k) = ρPcent + (1 − ρ)Pmiscent ρ = 0.64+0.07
−0.05 1.85

(four parameters) Pcent(x|σ ) = 1
σ

exp(− x
σ

) σ = 0.015+0.0027
−0.003

Pmiscent(x|τ, k) = xk−1

�(k)τk exp(− x
τ

) τ = 0.21+0.07
−0.05

k = 1.0+0.83
−0.0

Cauchy P(x|ρ, σ , τ ) = ρPcent + (1 − ρ)Pmiscent ρ = 0.645+0.05
−0.05 14.2

Pcent(x|σ ) = 1
σ

exp(− x
σ

) σ = 0.014+0.0028
−0.0022

Pmiscent(x|τ ) = xτ

(x2+τ2)1.5 τ = 0.14+0.04
−0.03

precision because of the larger sample sizes. The fraction of well-
centred clusters ρ and the mis-centring offset τ for the mis-centred
clusters are mildly different from the DES redMaPPer sample
which displays a hint of having a higher fraction of well-centred
clusters at a 1.5σ significance level. For the well-centred clusters,
the characteristic redMaPPer X-ray offset, σ , of the DES sample
is larger than the respective parameter of the SDSS sample,
reflecting the limited angular resolution of X-ray peak identification
and the higher redshift range of the DES sample (and therefore
lower physical separation resolution of the DES X-ray peak
identification).

The redMaPPer algorithm computes a centring probability, Pcen,
as an indicator of whether or not the selected central galaxy is the
right choice. We do not find the values of Pcen to accurately reflect
the centring statistics of the redMaPPer sample. Specifically, we
study the dependence of the centring performance by separately
constraining the centring model of the redMaPPer SDSS sample in
two Pcen ranges, ≥0.9 and <0.9, respectively. Clusters of Pcen ≥
0.9 have centring fraction of 0.76 ± 0.05 while clusters of Pcen

< 0.9 have a notably lower centring fraction of 0.49 ± 0.09.
Although a larger Pcen value does indicate a better centring per-
formance, it does not reflect the real centring fractions at the face
values.

We have tested the dependence of the centring parameters through
constraining the model with the SDSS sample in different ranges of
richnesses, X-ray temperatures or luminosities, and for serendip-
itous versus targeted observations. We do not find significant
differences in the centring parameter constraints. A larger set of
X-ray observations would be needed to reveal any trends.

Interpretation of the results from this centring offset charac-
terization depends on the adopted models. Different functional
forms of the mis-centring offset – a Rayleigh distribution for the
mis-centred component, and a Gaussian distribution for the well-
centred clusters – have been attempted in previous studies (Saro
et al. 2015; Rykoff et al. 2016; Hikage et al. 2017). We have
tested alternative models (listed in Table 2) for the mis-centring
and centring distributions with the Chandra SDSS sample. As the
common parameter shared across different models, the well-centred
cluster fraction, ρ, is consistently constrained to be in the range of
64 per cent to 70 per cent for SDSS.

We use the Bayesian deviance information criterion (DIC, Gel-
man et al. 2003) to compare the fitness of the models listed in
Table 2. We compute the Bayesian DIC values (DIC, Gelman et al.
2003) by sampling the posterior constraints of the alternative and
nominal models presented in the paper. DIC is computed as

DIC = −2log(p({xi}|θ ) + 2log(p({xi}|θ̄ ). (4)

log(p({xi}|θ ) is the probability of the observed offsets averaged
over the posterior mis-centring model, and log(p({xi}|θ̄) is the
probability of the observed offsets given the best-fitting mis-
centring model. Lower DIC values indicate better fitting of the
model, and a DIC difference larger than 2 is considered significant.
This DIC comparison strongly favours the nominal model described
in this section.

Notably, when adopting a Rayleigh distribution for the mis-
centred component, our SDSS posterior values on the well-centred
cluster fraction, ρ, and the mis-centred characteristic offset, τ are
highly consistent with the previous study in Hikage et al. (2017)
which adopts a similar model and is based on a similar SDSS
redMaPPer catalogue. The posterior precision of the parameters
has improved significantly in our analysis.

3.3 Model validation

We check the model goodness-of-fit with a posterior prediction test.
Specifically, we compare the fractions of clusters in an offset range
from the data to the predictions from the constrained models. The
procedures are as the follows.

(i) From the measurements of x = roffset/Rλ, record the number
of clusters with offsets larger than a comparison value x0.

(ii) Take one set of model parameters, ρ, σ , and τ from the
MCMC posterior constraints, denoted as ρ i, σ i, and τ i. Randomly
draw a set of centring offsets, {xij}, from the offset model (equa-
tion 1) with the above set of posterior model parameters. The
number of random draws should match the size of the X-ray-
redMaPPer sample being tested.

(iii) With the above set of centring offsets sampling, {xij}, record
the number of offsets larger than a comparison value x0, N(xij > x0).
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Figure 5. Posterior predictive check of the centring offset model. We show
the predictions on the fraction of clusters in different offset ranges (x >

0.1, x > 0.5, and x > 1.0) from the offset model sampling the posterior
constraints (histograms). These predictions agree with the measurements
from data (solid squares) for both the SDSS and DES models and data.

(iv) Repeat the process for each set of ρ, σ , and τ values from
the MCMC posterior chain and acquire the distribution of N. This
is the posterior prediction on the number of clusters with offsets
larger than the comparison value x0.

(v) Compare the number from data to this posterior prediction.
We expect a two-sided P-value, defined as the minimum of the
fractions of the posterior predictions above and below the data, to
be larger than 0.025.

We use the above process to evaluate the goodness of the model
at offsets larger than 0.1, 0.5, and 1 Rλ. Fig. 5 shows the posterior
predictive distribution of these offset ranges. For both the SDSS
and DES redMaPPer samples, the prediction from the model and
its respective model constraints well match the measurements from
the data in these small, medium, and large offset ranges, with the
two-sided P-values being 0.35, 0.37, and 0.18 for SDSS and 0.11,
0.25, and 0.17 for DES.

4 MIS-CENTRING IMPAC T O N R ICHNESS
SCALING R ELATION

When a cluster is mis-centred, the redMaPPer richness estimation
may become biased, and the bias depends on the mis-centring offset.
In this section, we use the redMaPPer catalogue itself to constrain
a model that describes the bias of λ upon a mis-centring offset.

As mentioned in Section 3, the redMaPPer algorithm selects the
five most probable central galaxies and stores the λ estimations
computed at each of the centres. The default redMaPPer centre is
chosen as the one with the highest centring probability. We make
use of this information to construct a richness shift versus offset
model.

Assuming that there existed a redMaPPer catalogue with the most
probable centres always being the correct ones, the λ estimations
computed at the other four centres will be affected by the mis-
centring effect. The λ bias between the real centre and each of the
four remaining centre candidates, and the positional offsets between
them, can be used to constrain a λ versus centring offset model.

We use the lambda offsets between the second and the first
(redMaPPer default centre) most likely centres, and the distance
offset between them, to model the richness versus centring offset
(Section 4.1). The model is further validated with X-ray data
(Section 4.2).

Table 3. Parameter constraints for the lambda offset versus centring offset
model as in ȳ(x) = exp(−x2/σ 2) and σ y(x) = a × arctan(bx).

SDSS α SDSS b SDSS a
Prior (0, 10) (0, 10) (0, 10)
Posterior 1.64 ± 0.02 1.76 ± 0.07 0.241 ± 0.008

DES α DES b DES a
Prior (0, 10) (0, 10) (0, 10)
Posterior 1.66 ± 0.06 1.43 ± 0.22 0.26 ± 0.04

4.1 Model and model constraints

We quantify the fractional shift of λ, y = λmiscentred/λtrue due to mis-
centring. This shift is quantified as being dependent on the scaled
mis-centring offset in terms of rλ. Upon trial of different analytical
forms, we model the probabilistic distribution of y as a Gaussian
distribution:

y ∼ N (ȳ(x), σy(x)), (5)

with the mean and the dispersion, ȳ(x) and σ y(x), both depending
on x. The mean is positive, decreases with larger offsets starting
from 1, and asymptotically reaches 0 for large offsets (Fig. 6). The
dispersion is positive, increases with larger offsets starting from
0, and asymptotically reaches a constant for large offsets (Fig. 6).
Specifically, we choose ȳ(x) to be a Gaussian function between
y and x, ȳ(x) = exp(−x2/α2) with α being a model parameter.
σ y(x) is chosen as σ y(x) = a × arctan(bx) and a and b are model
parameters.

The process of evaluating the above model goes as follows:

(i) We compute the separation between the first and the second
most probable centres, rsep, assuming the cluster photometric
redshift from the redMaPPer algorithm for both of the galaxies.
We scale rsep as rsep/rλ to become quantity x.

(ii) We compute the relative λ offset between the first and the
second most probable centres as y = λ2nd/λ1st.

(iii) We repeat the above process for each cluster i in the
redMaPPer catalogue, acquiring a measurement data set {xi} and
{yi}. This data set is shown in Fig. 6.

(iv) With the above measurement data set, we constrain the model
parameters of y with the following likelihood: L = ∑

i,xi<0.1

( −
[yi−ȳ(xi )]2

2σ 2
y (xi )

− ln[σy(xi)]
)
. The likelihood is sampled with an MCMC

algorithm.
(v) Note that only the data points with xi > 0.1 are used in

the fitting process. This helps eliminate overfitting at small x, and
improves the fitting results at large x.

The same measurements and modelling processes are performed
for the SDSS and DES redMaPPer catalogues separately. Fig. 6
shows the data points as well as the best-fitting models in the first
two columns. For comparison, the red lines/points are the data
running averages and running dispersions in the x bins (bin widths
indicated by the x error bars in the second column). The MCMC
posterior constraints are shown in Fig. 7 and listed in Table 3. α

does not appear to be covariant with a or b, but a and b appear to
be highly covariant.

Overall, the impact of mis-centring on cluster richness is mild
with a low scatter at small mis-centring offset, but grows with a
larger offset, reaching a bias ratio λmiscentred/λtrue of 0.5 at rsep/Rλ ∼
1.40.
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Figure 6. The richness versus offset distributions and models. The cluster richness tends to be biased lower by mis-centring (a, e), and the mean of the bias
can be characterized by a Gaussian function (b, f). The biases have large dispersions (c, g), which can be further characterized by an arctan function (c, g).
Posterior predictive checks show that the models are tightly constrained from the data and fit the data well (d, h).
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Figure 7. Parameter constraints for the lambda offset versus centring offset
model. See Section 4.2 for details.

4.2 Model validation with X-ray centres

As a test of the richness offset model, we make use of the Chandra-
redMaPPer samples (Section 2.3) and compare the X-ray peak
redMaPPer centred λ to the prediction from the model. We rerun the
redMaPPer λ algorithm with the X-ray peaks as the cluster centres.
The procedures are equivalent to the original λ estimation with the
exception of a ‘percolation’ process (Rykoff et al. 2014), which re-
evaluates λ upon masking neighbouring redMaPPer clusters. The
λ estimations on X-ray peaks do not go through the ‘percolation’
process as the run does not consider redMaPPer clusters not present
in the X-ray sample. In this test, to ensure that the ‘percolation’
process is negligible, we remove clusters whose λ changed by
10 per cent in the initial redMaPPer percolation process.3

We calculate the λ offsets versus the distance offsets between the
X-ray peaks and redMaPPer centres. The λ offsets are calculated as
yx = λRM/λxray, and the corresponding X-ray and redMaPPer mis-
centring offsets as xx = rsep/rλ, where rλ is evaluated with the X-ray
centred λ. Clusters of centring offsets xx less than 0.1 are considered
well-centred (a similar cut is applied when deriving the model in
Section 4.1) and do not enter the test. In Fig. 8, we show the derived
λ and centring offsets from the X-ray observations. The constrained
models in Section 4.1 appear to be qualitatively consistent with
these offsets.

To quantify the fitness of the model from the previous section,
we compute the following χ2 discrepancy given model parameters
and observations:

χ2
n (α, a, b) =

n∑
i=1

[
yx,i − ȳ(xx,i)

σy(xx,i)

]2

. (6)

As described in the previous section, α is the parameter of the ȳ(x)
function, and a and b are the parameters of the σ y(x) function. If the
model quantitatively describes cluster mis-centring correctly, and

3Two from each of the SDSS and DES Y1 samples.

the values of α, a, and b are accurate, χ2
n (α, a, b) will appear to

be drawn from a chi-squared distribution, χ2(n), with the degree
of freedom, n, matching the number of {yx, xx} observations. This
chi-squared distribution is known as the posterior predictive density
for the χ2 discrepancy.

We perform Bayesian posterior predictive assessment on the
fitness of the model following the process in Gelman, Meng &
Stern (1996) and Meng (1994). The process includes calculating
a posterior predictive p-value (PPP value) which is the classical
p-value averaged over the posterior model parameter distribution.
With the posterior distribution of α, a and b sampled with the
MCMC method, the procedure goes as follows:

(i) Take one set of α, a, and b from the MCMC posterior
constraints, donated as αj, aj, and bj.

(ii) Calculate the χ2 discrepancy for αj, aj, and bj, denoted as χ2
j .

(iii) Repeat the process for each set of α, a, and b values from
the MCMC posterior chain.

(iv) For each χ2
j , randomly draw a value, qj, from a standard χ2(n)

distribution. For the posterior set of {χ2
j , qj }, record the fraction of

χ2
j ≥ qj as Pb1, and the frequency of χ2

j ≤ qj as Pb2. We use a two
sided p-value definition, that Pb = min(Pb1, Pb2) as the PPP value.

We compute the posterior χ2 discrepancy given X-ray {yx, xx}
observations shown in Fig. 8. The posterior χ2 discrepancy values
are expected to occupy a highly probable interval of a chi-squared
distribution χ2(n) (posterior predictive density), with the degree of
freedom n matching the number of {yx, xx} observations from X-ray
peak centres. This appears to be the case for both the SDSS and
DES X-ray redMaPPer sample. The Bayesian posterior predictive
P-values (PPP values) are 0.18 and 0.50 respectively for the SDSS
and DES X-ray redMaPPer samples. Both of the PPP values are
above a 0.025 model rejection threshold, indicating consistency
between the constrained models and the offsets derived with X-ray
peak centres.

We also compute the posterior χ2 discrepancy for the original
{yi}, {xi} observations that are used to constrain the model. The
distributions of {χ2

j } are shown as the grey shaded histogram
in Fig. 6, along with the probability density of a chi-squared
distribution, χ2(n), for comparison. The distribution of {χ2

j } is in
good accordance with the expected χ2(n) distribution, for both the
SDSS and DES redMaPPer samples, indicating the goodness of the
fit and tightness of the model parameter constraints. The PPP values
for the SDSS and DES samples are 0.50 and 0.49, respectively,
matching the expectation of a well-posited model.

Note that when deriving the model, the available redMaPPer cat-
alogues already have imperfect centre selections. According to the
previous section, the majority (∼70 per cent) of the clusters in
the redMaPPer catalogue are correctly selected. We have attempted
to select clusters with a higher centring probability (using the
redMaPPer Pcen quantity), but the samples selected on Pcen display
a hint of performing slightly worse in the validation test with
X-ray data. Because of a concern that this Pcen selection may
have biased the cluster sample, and that the selection still cannot
ensure a 100 per cent well centred subsample, we do not apply
the selection in this paper and emphasize on our derived model
passing the validation test with X-ray data. In the future, it would
be desirable to quantify the richness offset model with X-ray
centred richness when larger X-ray redMaPPer clusters become
available.
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Figure 8. The shift in richness when the richness is estimated at the X-ray centres rather than the redMaPPer centres (first column). The lambda versus
centring offset models derived from the redMaPPer catalogue are shown as blue solid and dashed lines. Posterior predictive checks (second column) show that
the richness shifts estimated at the X-ray centres adhere to the models derived from the redMaPPer catalogue (see Section 4.2 for details).

5 IMPLICATIONS FOR D ES CLUSTER
C O S M O L O G Y

5.1 Mis-centring model in DES cluster weak lensing analysis

In DES stacked cluster lensing studies, the cluster lensing signals
are fitted to an analytic model to determine cluster mass and
concentration. To summarize, McClintock et al. (2019) adopts the
following method to correct for mis-centring:

�(r|M, c) = ρ�cent(r|M, c) + (1 − ρ)�miscent(r|M, c). (7)

In the above equations, �(r|M, c) is the cluster mass profile model
with mass M and concentration c. �cent(r|M, c) denotes the mass
profile model for well-centred clusters, while �miscent(r|M, c) is the
mass profile model for mis-centred clusters. The mis-centred profile
is averaged over the angle, θ , and magnitude, R, of the radial vector
to the correct centre,

�miscent(�r|M, c) = �cent(�r + �R|M, c),

�miscent(r|M, c) = 1

2π

∫
dθdRPmiscent(R) (8)

×�cent(
√

r2 + R2 + 2rRcos(θ )|M, c).

The distribution for the magnitude of the radial offset R is Pmiscent(R),
which is described by a parameter τ . The model does not account for
the offset between central galaxies and X-ray peaks because haloes
are assumed to be centred on a massive dark matter substructure
hosting a central galaxy. Based on the analyses carried out in
this study and a companion SDSS redMaPPer centring study of
a complete sample with Swift observations in von der Linden et al.
(in preparation) and McClintock et al. (2019) adopted the prior ρ =
0.75 ± 0.08 and τ = 0.17 ± 0.04. These values are consistent

with the Chandra DES constraints presented in Section 3, but also
encompass the results of the SDSS samples presented in this paper
and in von der Linden et al. (in preparation).

5.2 Sensitivity of cluster mass estimation to the mis-centring
model

We determine the sensitivity of the mass calibration to variations
in the values of the mis-centring parameters. To do so, we create a
fiducial mass profile and analyse how much the measured masses
deviate from the truth if the mis-centring model is inaccurate.
Following the recipe in McClintock et al. (2019), the fiducial mass
profile model combines an NFW profile and a two-halo model of
M200m = 1014 M	, concentration of 5 and Rλ = 1 Mpc. We compute
the mis-centred lensing signal by adopting fiducial values ρ =
0.68 and τ = 0.15. We fit this synthetic weak lensing data with a
minimum χ2 method assuming a range of values for both ρ and τ ,
and measure the bias of the best-fitting mass and concentration as a
function of these two parameters. The fitting process is restricted to
the 0.2–30 Mpc radius range as in the DES Y1 weak lensing study
(McClintock et al. 2019) and the profile measurement uncertainty
is assumed to be due to shape nose only, and therefore scales with
radius as r−1.

Fig. 9 shows the best-fitting mass and concentration parameters
as a function of ρ and τ . We find that the best-fitting mass
is insensitive to the assumed ρ value, whereas the recovered
concentration is biased. Allowing the concentration parameter to
vary effectively decouples the recovered mass from ρ. By contrast,
variations in τ have a non-negligible impact on the best-fitting
mass. Uncertainties in τ at a level of ±0.04, comparable to the
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Figure 9. We explore how inaccurate knowledge of the mis-centring
model parameters affects the accuracy of cluster mass and concentration
estimations in cluster lensing studies. A fiducial mass profile is created
using the prescription in McClintock et al. (2019) with a fiducial set of
mis-centring parameters. Through comparing to the fiducial mass pro-
file, the best-fitting mass and concentrations are estimated for different
assumed values of the mis-centring model parameters, ρ and τ . We find
that the mass estimation is robust under inaccurate assumptions of ρ,
but susceptible to inaccuracy in τ . The concentration parameter, on the
contrary, is more susceptible to the inaccuracy of ρ than τ . The vertical
lines indicate parameter ranges comparable to those in McClintock et al.
(2019).

constraint in this paper, results in a mass uncertainty of ±0.015
dex.4

These results are in qualitative agreement with the results of
McClintock et al. (2019), though computed with two important
methodological differences. Specifically: (1) McClintock et al.
(2019) has considered more systematic effects other than mis-
centring, including using a semi-analytic covariance matrix (Gruen
et al. 2015), and accounting for boost-factor corrections (Varga et
al. 2018). These changes will affect the relative weighting of radial
inner to outer scales, thereby impacting the sensitivity of the mass
posteriors to the mis-centring parameters. (2) When constraining
the richness-mass scaling relation parameters, McClintock et al.
(2019) treats the mis-centring parameters for each richness and
redshift bin as independent, which reduces the relative importance
of mis-centring in their analysis. Together, these differences reduce
the sensitivity of the scaling relation amplitude from the 0.015 dex
we estimated here to 0.78 per cent, as quoted in McClintock et al.
(2019). Nevertheless, it is clear from fig. 10 in McClintock et al.
(2019) that the mass posterior in a single bin is largely insensitive to
ρ, but is degenerate with τ , as illustrated in our toy model analysis
above.

These conclusions, however, rely on the assumption that the
cluster mass profile is not correlated with the cluster mis-centring

40.015 dex means δlogM200m = 0.015.

effect in optical data. Future cluster lensing analysis may wish
to further investigate this assumption, e.g. through examining the
cluster mass distribution in X-ray selected clusters (Das et al.,
private communication).

5.3 Cluster abundance

The λ offset caused by cluster mis-centring introduces bias and
scatter into the lambda–mass scaling relation. We study the scatter
increase with a test based on a N-body dark matter simulation (Habib
et al. 2016). Richnesses are prescribed to each of the simulation dark
matter haloes following the richness–mass relation in Saro et al.
(2015), with a richness scatter, σ lnλ|M, of 25 per cent. We perturb the
assigned richnesses with the Chandra SDSS offset model presented
in Section 3 and the richness bias model presented in this section,
and find the richness scatter, σ lnλ|M to increase by 2 per cent.

The bias and scatter manifest themselves in the number count
of clusters selected by λ, which is a fundamental input to cluster
abundance cosmology. Mis-centring tends to lower the richness
estimation and the numbers of clusters above a richness threshold
selected by the mis-centred richnesses would be lower than those
selected by richnesses without mis-centring. The average mass
of the clusters selected by the mis-centred richnesses tend to be
higher. Testing with simulations shows that the numbers of clusters
selected by the mis-centred richnesses is lower by ∼2 per cent,
and the average cluster masses increase by ∼0.5 per cent. Costanzi
et al. (2018) estimates these shift to have negligible effects for
SDSS and DES Y1 cluster cosmology constraints since they are
significantly smaller than the remaining systematic uncertainties
of cluster abundance and mass estimations. Nevertheless, Costanzi
et al. (2018) and the DES Collaboration (in preparation) corrected
the data vectors with the factors listed above to account for the mis-
centring effect. Future cluster cosmology analysis in the coming
years of DES and LSST may wish to explicitly incorporate the
mis-centring richness relations as the mis-centring effect on cluster
abundance becomes more substantial compared to the statistical
uncertainty.

6 C ENTRI NG STUDY WI TH XMM DATA

During the preparation of this paper, an additional sample of
redMaPPer clusters (SDSS and DES) with archival X-ray obser-
vations from the XMM–Newton space telescope became available.
As the centring analyses in this paper are optimized for Chandra
observations, especially the centring offset model for well-centred
clusters is optimized for Chandra PSFs, we do not attempt to
combine the XMM and Chandra observations in the modelling
processes. Rather, we use the XMM defined X-ray centres to explore
the robustness of the fits presented in Section 3. The sample selection
and the XMM data analysis methods are described in Section 6.1,
and Section 6.2 describes the centring comparison results from
XMM.

6.1 X-ray data processing

The redMaPPer–XMM joint samples (SDSS and DES) were con-
structed as follows. First, the redMaPPer centroids were compared
to the aim points of observations in the XMM public archive.5

redMaPPer clusters with centroids falling outside 13 arcmin of

5The archive match used in this analysis was carried out on 2018 August.
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an aim point were excluded from the samples. Secondly, the
mean and median XMM exposure time was determined within
a 10 arcsec radius of the redMaPPer centroid. For this we used
exposure maps produced by the XMM Cluster Survey (XCS, Lloyd-
Davies et al. 2011). Any redMaPPer clusters with mean exposure
times of <3 ks, and/or median exposure times of <1.5 ks, were
excluded from the samples. We note that the median filter was
necessary because some clusters straddle both active and inactive
regions of the field of view (FOV), e.g. those lying close to the
FOV edge. If a given cluster was observed multiple times by
XMM, only the observation with the longest exposure time, at the
redMaPPer centroid, was used in subsequent analyses. Third, the
remaining redMaPPer cluster centroids were compared to the list
of extended sources detected using the XCS Automated Pipeline
Algorithm (XAPA). Any redMaPPer clusters lying further than
2 h−1 Mpc (assuming the redMaPPer redshift) of such a source
were excluded from the samples. At this stage, the SDSS and
DES redMaPPer–XCS samples comprised of 356 and 282 clusters,
respectively.

The X-ray peaks for the clusters in the redMaPPer–XMM joint
samples were then determined using a method that closely follows
that used for the Chandra analyses, as described in Section 2.3.
An initial peak location was found in the respective merged (PN,
MOS1, MOS2) XMM image, after smoothing with a σ = 50h−1 kpc
Gaussian (assuming the redMaPPer redshift). As with the Chandra
analysis, other sources (i.e. those assumed not to be associated
with the redMaPPer cluster) are masked out before the smoothing
takes place. For this, we use the XAPA source catalogue of point-
like sources. If there are multiple XAPA extended source within
the image, then only the one closest to the redMaPPer centroid
is left unmasked. The peak location is then the brightest pixel in
the masked, smoothed image, within a radius 1.5 × Rλ of the RM
position.

The initial peak selection was occasionally erroneous. For exam-
ple when there was a very bright point source in the XMM FOV.
Such sources ‘bleed’ into the surrounding region of the detector,
meaning that the default point source mask size was not large enough
remove them completely. Such cases were easily identified by eye
using SDSS (or DES) and XMM ‘postage stamp’ images. Most of
these cases could be corrected by adjusting the size of the point
source mask, and then re-running the peak finding script. However,
for some, the point source ‘bleeding’ was so pronounced that the
respective cluster had to be removed from the redMaPPer–XMM
joint sample. Another reason for the initial peak being erroneous
was the mis-percolation issue described in Section 2.3. The mis-
percolation cases were also identified using eye-ball checks. For
these it was necessary to adjust the extended source mask, so that
the closest source was now masked, but the second closest was not.

Once the second run of peak finding has been completed (and the
new peak positions have been confirmed by eye), the remaining clus-
ters were eye-balled again. At this stage, more redMaPPer clusters
were removed from the sample: (i) those where the XAPA extended
source is clearly not associated with the redMaPPer cluster (i.e.
it is a foreground background cluster in projection), and (ii) those
where the redMaPPer central galaxy falls in an XMM chip gap. After
the various cuts described above, the SDSS–XCS and DES–XCS
samples contained 248 and 109 sources, respectively.

We further apply off axis angle and SNR cuts to the XMM
samples. The SNR was determined in the same way as for the
Chandra sample i.e. within 500h−1 kpc, using 0.5–2.0 keV XMM
images. For the XMM-SDSS sample, we require the detections S/N
to be >6.5, and the redMaPPer centres to be within 8.5 arcmin of

Figure 10. Redshift and richness distributions of the SDSS (black) and
DES (blue) redMaPPer clusters matched to archival XMM observations.

the aim point (or 6.5 arcmin away from the FOV edge assuming a 15
arcmin FOV radius). For the XMM-DES sample, we again require
the detections S/N to be >6.5, but allow the redMaPPer centres to
be up to 10.5 arcmin of the aim point. The FOV cuts ensure that
the corresponding redMaPPer centres are more than 500 kpc away
from the FOV edge at z = 0.1 for the SDSS sample, or at z = 0.2
for the DES sample. The S/N cuts were imposed to match the 6.5
S/N cuts in the Chandra analysis. With these FOV and S/N cuts,
the final SDSS and DES XMM samples contain 163 and 66 clusters,
respectively. Fig. 10 shows their richness and mass distributions.

Further details of the redMaPPer–XMM joint sample develop-
ment, the peak measurements, the signal-to-noise estimation and
the individual mis-percolation cases can be found in Giles et al. (in
preparation).

6.2 The XMM–Chandra and XMM–redMaPPer offsets

A subsample of the redMaPPer clusters, 54 in the SDSS sample,
and 25 in the DES sample, are analysed by both the XMM and
Chandra analyses. With these overlapping cases, we compare the
XMM peak measurements to those from Chandra. Fig. 11 shows the
offset distribution between XMM and Chandra peak identifications
for the same redMaPPer clusters, scaled by their Rλ. The XMM and
Chandra peak identifications are highly consistent: their separations
are within 0.05 Rλ for 53/54 of the overlapping SDSS clusters,
and 20/25 of the overlapping DES clusters. The separations have
a wider distribution for the DES redMaPPer sample reflecting its
higher redshift range, and hence higher X-ray peak identification
uncertainties in terms of physical distances.

Given the consistency between XMM and Chandra X-ray peak
identifications, we constrain the redMaPPer centring offset model
proposed in Section 3 with the XMM peaks. Figs 12 and 13
respectively show the offset distributions between the XMM peaks
and the redMaPPer centres for the SDSS and DES samples, with
comparisons to their corresponding Chandra offset distributions.
Figs 14, 15, and Table 4 show the model parameter constraints from
these XMM samples. The σ parameter in our redMaPPer centring
offset model (equation 1) represents the X-ray peak offset to cluster
central galaxy for well-centred clusters, which is further smeared
by X-ray peak identification uncertainty and X-ray telescope PSFs.
Since σ is in the unit of physical distance, the σ difference can be
driven by the different angular resolutions of XMM and Chandra at
low redshift, and other X-ray peak identification uncertainties, and
X-ray peak-galaxy centre separations at higher redshift. Hence, we
do not expect this parameter to agree between XMM and Chandra,
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Figure 11. The Rλ [Rλ = (λ/100)0.2 h−1 Mpc] scaled offset distribution
between the Chandra and XMM peak identifications for the same redMaPPer
clusters.

Figure 12. The Rλ [Rλ = (λ/100)0.2 h−1 Mpc] scaled offset distribution
between the redMaPPer centres and the X-ray emission peaks for the
redMaPPer SDSS samples from the XMM archival observations. The distri-
bution can be fitted with two components – a concentrated component that
represents the well centred redMaPPer clusters, and an extended component
that represents the mis-centred redMaPPer clusters. The best-fitting SDSS
offset model is shown as the solid lines (black: well-centred model, red:
mis-centred model), with the shaded regions representing the uncertainties.
As a comparison, we also show the corresponding offset distribution from
the analysis with Chandra archival data (blue dashed histogram).

Figure 13. The Rλ [Rλ = (λ/100)0.2 h−1 Mpc] scaled offset distribution
between the redMaPPer centres and the X-ray emission peaks for the
redMaPPer DES samples from the XMM archival observations. The distri-
bution can be fitted with two components – a concentrated component that
represents the well centred redMaPPer clusters, and an extended component
that represents the mis-centred redMaPPer clusters. The best-fitting DES
offset model is shown as the solid lines (black: well-centred model, red:
mis-centred model), with the shaded regions representing the uncertainties.
As a comparison, we also show the corresponding offset distribution from
the analysis with Chandra archival data (blue dashed histogram).

Figure 14. Centring offset parameter constraints (equation 1) for the XMM
SDSS (grey) redMaPPer samples. 76 ± 6 per cent of the SDSS redMaPPer
clusters appear to be well centred (indicated by the ρ parameter). For the
mis-centred clusters, their mis-centring offsets is characterized by a Gamma
distribution with a characteristic offset (the τ parameter) of 0.16 ± 0.03
Rλ. As a comparison, we also show the corresponding model constraints
from the SDSS analysis with Chandra archival data (blue). The prior central
values adopted in DES cosmological analyses as described in Section 5 are
shown as the black dashed lines.

Figure 15. Centring offset parameter constraints (equation 1) for the XMM
DES (grey) redMaPPer samples. 74 ± 10 per cent of the DES redMaPPer
clusters appear to be well centred (indicated by the ρ parameter). For the
mis-centred clusters, their mis-centring offsets is characterized by a Gamma
distribution with a characteristic offset (the τ parameter) of 0.20 ± 0.07 Rλ.
As a comparison, we also show the corresponding model constraints from
the DES analysis with Chandra archival data (blue). The prior central values
adopted in DES cosmological analyses as described in Section 5 are shown
as the black dashed lines.
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Table 4. Centring offset Parameter constraints (equation 1) for the XMM
DES and SDSS redMaPPer samples.

ρ σ τ

Prior [0.3, 1] [0.0001, 0.1] [0.08, 0.5]
XMM SDSS posterior 0.781+0.055

−0.038 0.0432+0.0063
−0.0059 0.201+0.026

−0.039

XMM DES posterior 0.815+0.059
−0.085 0.053+0.012

−0.011 0.185+0.066
−0.041

and the σ difference is especially larger for the lower redshift SDSS
redMaPPer samples. For the other two parameters of the model, ρ

and τ , which respectively represent the well-centred fractions of
redMaPPer and the centring offset of mis-centred redMaPPer clus-
ters, the constraints from XMM are consistent with those from
Chandra for both the SDSS and DES redMaPPer samples within
two standard deviations.

Notably, no selection cuts in the XMM analysis were made to
make its centring model constraints better match the Chandra
results, yet their centring offset results are consistent with each other.
We conclude that the redMaPPer mis-centring offset modelling
presented in this paper are robust upon investigation with archival
XMM data.

7 SU M M A RY

This analysis makes use of the archival X-ray observations to
constrain the centring performance of the redMaPPer cluster find-
ing algorithm. We calibrate the well-centred fraction of redMaP-
Per clusters for both the SDSS and DES samples with the X-ray
emission peaks. The offsets between the redMaPPer centres and
X-ray peaks are well modelled by a two-component distribution,
which indicates that 69+3.5

−5.1 per cent and 83.5+11.2
−7.5 per cent of the

clusters are well centred in the SDSS and DES samples. The offset
distribution of the mis-centred redMaPPer clusters are modelled
with a Gamma distribution, and cluster mass modelling appears to
be more sensitive to the accuracy of these mis-centring offsets than
the mis-centring fraction.

With the upcoming DES Year 3 and Year 5 data, we expect
the redMaPPer centring constraints to continue improving with ∼
2 times larger overlapping samples between DES and archival X-
ray observations, which may permit us to quantify the dependence
of the centring parameters on cluster properties, such as cluster
richness, redshift, X-ray temperature, and luminosity. The current
improvement has already lowered the cluster weak lensing mass
modelling uncertainties due to mis-centring, to the extent of being
in-substantial comparing to the other modelling systematic effects.
Since mis-centring is often assumed to be uncorrelated with cluster
mass distributions in weak lensing analyses, with the anticipated
level of improvement, one may wish to investigate the correlations
of mis-centring with other cluster lensing systematic effects, such as
cluster mass modelling uncertainties, cluster orientation, triaxiality,
and projection (McClintock et al. 2019).

The cluster richness estimates tend to be biased lower by mis-
centering. In this paper, we propose a richness bias model to
describe the effect, which is validated by X-ray centred richness
measurements. The richness bias is offset dependent, low for
clusters with small mis-centering offset, but larger than 50 per cent
for severely mis-centred clusters. Cluster cosmology studies based
on full depth DES data or LSST data should explicitly account for
this effect to avoid biased cosmological parameter inferences.

Code used in this analysis is available from https://github.com/y
yzhang/center modeling y1.
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Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro,
Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico
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