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Abstract: This paper investigates the efficiency and sufficiency of various seismic intensity 16 

measures for the structural assessment of buried steel natural gas (NG) pipelines subjected to 17 

axial compression caused by transient seismic ground deformations. The study focuses on 18 

buried NG pipelines crossing perpendicularly a vertical geotechnical discontinuity with an 19 

abrupt change on the soil properties, where the potential of high compression strain is expected 20 

to be increased under seismic wave propagation. A detailed analytical framework is developed 21 

for this purpose, which includes a 3D finite element model of the pipe-trench system, to 22 

evaluate rigorously the pipe-soil interaction phenomena, and 1D soil response analyses that are 23 

employed to determine critical ground deformation patterns at the geotechnical discontinuity, 24 

caused by seismic wave propagation. A comprehensive numerical parametric study is 25 

conducted by employing the analytical methodology in a number of soil-pipeline 26 

configurations, considering salient parameters that control the axial response of buried steel 27 

NG pipelines, i.e. diameter, wall thickness and internal pressure of the pipeline, wall 28 

imperfections of the pipeline, soil properties and backfill compaction level and friction 29 

characteristics of the backfill-pipe interface. Using the peak compression strain of the pipeline 30 

as engineering demand parameter and a number of regression analyses relative to the examined 31 

seismic intensity measures, it is shown that the peak ground velocity PGV at ground surface 32 

constitutes the optimum intensity measure for the structural assessment of the examined 33 

infrastructure. 34 
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1. Introduction 1 

Earthquake-induced damage on Natural Gas (NG) pipeline networks may lead to important 2 

direct and indirect economic losses. The 1999 Chi-Chi earthquake in Taiwan, for instance, 3 

caused noticeable damage on natural gas supply systems, with the associated economic loss for 4 

the relative industry exceeding $ 25 million [1, 2]. More importantly, severe damage may 5 

trigger ignitions or explosions with life-treating consequences and significant effects on the 6 

environment. As an example, the 1995 Hyogo-Ken Nambu earthquake in Japan, caused gas 7 

leakages from buried pipelines at 234 different locations, which subsequently led to more than 8 

530 fires [3, 4]. Based on the above observations, efficient methods for the vulnerability 9 

assessment of NG pipeline networks seem to be of great importance.  10 

A critical step towards the development of adequate tools for the vulnerability assessment of 11 

NG pipelines is the identification of the expected failures, as well as of the mechanisms that 12 

lead to these failures. Post-earthquake observations have demonstrated that seismically-induced 13 

ground deformations may induce significant damage on buried pipelines [5-8]. Buried steel NG 14 

pipelines were found quite vulnerable to high straining imposed by permanent ground 15 

deformations, associated with fault movements, landslides and liquefaction-induced 16 

settlements or uplifting and lateral spreading [5]. Seismically-induced transient ground 17 

deformations, caused by seismic wave propagation, have also contributed to damage of this 18 

infrastructure [9-11]. Permanent ground deformations tend to induce higher straining on buried 19 

steel pipelines, compared to transient ground deformations. Hence, most researchers focused 20 

their investigations on this seismic hazard [12-23]. However, it is more likely for a buried 21 

pipeline to be subjected to transient ground deformations rather than seismically-induced 22 

permanent ground deformations. Transient ground deformations may trigger a variety of 23 

damage modes on continuous buried steel NG pipelines, such as: shell-mode buckling or local 24 

buckling, beam-mode buckling, pure tensile rupture, flexural bending failure or excessive 25 

deformation of the section (i.e. ovaling) [5]. Additionally, recent studies have demonstrated 26 

that pipelines embedded in heterogeneous sites or subjected to asynchronous seismic motion 27 

are more likely to be affected by appreciable strains due to transient ground deformations, 28 

which in turn may lead to exceedance of predefined performance limits, reaching even 29 

excessive damage on the pipeline [24-25]. Based on the above considerations, the present study 30 

focuses on the transient ground deformation effects, as these have not yet been studied in 31 

adequate depth.  32 

An important aspect for the integrity assessment of NG pipeline networks is the aleatory and 33 

epistemic uncertainty that is associated with their seismic response and vulnerability. In fact, a 34 

shift from conventional deterministic analysis procedures to probabilistic analysis and risk 35 

assessment concepts is deemed necessary [24]. Critical elements of the latter analysis 36 

frameworks are: (i) the definition of a proper Engineering Demand Parameter (EDP), which 37 

shall be used as a representative metric of the response of the examined element at risk, and (ii) 38 

the identification of adequate seismic intensity measures (IMs), which shall express the 39 

severity of the ground seismic motion [26].  40 

Evidently, the amplitude, frequency characteristics, energy content and duration of seismic 41 

ground motions are all expected to have a considerable effect on the seismic vulnerability of 42 
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any structural element at risk. However, it is not possible for all the above ground motion 1 

characteristics to be described effectively by one parameter, i.e. one seismic intensity measure 2 

(IM) [26]. Therefore, the definition of optimal seismic IMs for the assessment of any structural 3 

system is of great importance. An optimal seismic IM should be efficient, in the sense that it 4 

should result in a reduced variability of the EDP for a given IM value [27]. Additionally, it 5 

should be sufficient, so that it renders the computed structural response conditionally 6 

independent of earthquake characteristics, such as the earthquake magnitude (M), the epicentral 7 

distance (R) or other earthquake characteristics [28]. An efficient seismic IM leads to a 8 

reduction of the number of analyses and ground seismic motions that are required to estimate 9 

the probability of exceedance of each value of the EDP for a given IM value. A sufficient IM, 10 

on the other hand, allows for free selection of the, employed in the analysis, seismic ground 11 

motions since the effects of seismological parameters, e.g. the magnitude, epicentral distance 12 

etc., on the prediction of the EDP become less important. As discussed in the ensuing, the 13 

efficiency and sufficiency of a seismic IM may be both quantified following existing literature 14 

[28-29]. 15 

Concepts and measures like proficiency, practicality, effectiveness, robustness and hazard 16 

computability, have also been proposed in the literature for identifying optimal seismic IMs for 17 

the assessment of buildings and aboveground civil infrastructure [27-36, 86-87]. However, the 18 

investigation of optimal seismic IMs for embedded infrastructure, including buried steel NG 19 

pipelines, has received considerably less attention by the scientific community. To the authors’ 20 

knowledge, the only relevant study is the one by Shakid & Jahangiri [37], who developed and 21 

employed a numerical framework, in order to examine the efficiency and sufficiency of a 22 

variety of seismic IMs in case of NG pipelines subjected to seismic wave propagation. The 23 

study focused on NG pipelines embedded in uniform soils, with the soil-pipe interaction being 24 

considered in a simplified fashion, by employing beam on soil-springs models. The researchers 25 

did not examine a variety of parameters affecting the seismic response and vulnerability of this 26 

infrastructure.  27 

Based on the above considerations, the aim of this study is to identify the optimum seismic IMs 28 

that shall be adopted for the assessment of buried steel natural gas (NG) pipelines, when these 29 

are subjected to compression axial loading due to transient seismic ground deformations. The 30 

study focuses on NG pipelines crossing perpendicularly a vertical geotechnical discontinuity 31 

with an abrupt change on the soil properties. In such soil sites, the potential of high 32 

compression straining of the pipeline during ground shaking is expected to increase 33 

significantly, compared to the case where the pipeline is embedded in a homogeneous soil site 34 

[24-25]. A de-coupled numerical framework is developed to fulfil our objective, which 35 

includes 1D soil response analyses of selected soil sites and 3D quasi-static analyses of 36 

selected soil-pipe configurations. The former analyses aim at computing critical ground 37 

deformation patterns at the vicinity of the geotechnical discontinuity, caused by seismic wave 38 

propagation. Through the 3D soil-pipe interaction analyses, critical parameters affecting the 39 

seismic response and vulnerability of buried steel pipelines are thoroughly considered. A 40 

comprehensive study is conducted for an ensemble of 40 seismic motions, by employing the 41 

proposed numerical methodology in a number of soil-pipe configurations. Various seismic 42 
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IMs, referring to both outcrop and ground surface conditions, are tested and rated on the basis 1 

of two criteria namely their efficiency and sufficiency [27-28]. 2 

 3 

2. Numerical parametric analysis 4 

2.1 Problem definition and selection of soil-pipe configurations  5 

A continuous buried steel NG pipeline of external diameter D and wall thickness t is embedded 6 

in a backfilled trench at a burial depth h (Fig. 1). The backfill-pipe configuration is located in a 7 

soil deposit of total depth H and crosses perpendicularly a vertical geotechnical discontinuity. 8 

The latter divides the soil deposit into two subdeposits (i.e. subdeposit 1 and subdeposit 2 in 9 

Fig. 1) with abrupt changes on their physical and mechanical properties. The whole system is 10 

subjected to upward propagated seismic shear waves, which cause a dissimilar ground 11 

movement of the adjusted subdeposits. The dissimilar ground movement of the subdeposits 12 

produces a differential horizontal ground deformation along the pipeline axis near the critical 13 

section of the geotechnical discontinuity. This differential ground deformation is subsequently 14 

transferred through the pipe-soil interface on the pipeline, causing its compressional-tensional 15 

axial straining. A potential high axial compression straining of the pipeline might lead to a 16 

failure of the pipeline in the form of local buckling.  17 

 18 

 

h  

Pipeline & surficial soil layer 

Subdeposit 1 

uA uB 

ur 

H  

Subdeposit 2 

Elastic bedrock  19 
Fig. 1 Schematic view of the examined problem (H: depth of soil deposit, h: burial depth of the 20 

pipeline, ur: seismic ground movement of the bedrock, uA, uB seismic ground movement of subdeposit 1 21 

and 2, at the burial depth of the pipeline). 22 

 23 

A number of parameters affecting the seismic response of buried steel pipelines namely wall 24 

thickness, diameter, and burial depth of the pipeline, internal pressure of the pipeline, existence 25 

of wall imperfections of the pipeline, backfill compaction level, pipe-backfill interface friction 26 

characteristics and soil properties of the site, are all considered in the present numerical study. 27 

In particular, most analyses were carried out on pipelines with external diameter D = 914.4 mm 28 

and wall thickness t =12.7 m, while additional analyses were conducted for pipelines with 29 

external diameters D = 406.4 mm and D = 1219.2 mm and wall thicknesses t = 9.5 mm and t = 30 

19.1 mm, respectively. The selected pipelines were designed for a maximum operational 31 

pressure of p = 9 MPa (i.e. 90 bar), following relevant regulations of ALA (2001) [38], while it 32 

was verified that the selected pipeline dimensions are available by the industry. Most of 33 

analyses were conducted for an operational pressure, p = 8 MPa, while sensitivity analyses 34 
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were also carried out for an internal pressure p = 4 MPa, as well as for non-pressurized 1 

pipelines (i.e. p = 0 MPa). It is worth noticing that the external diameters, D, and operational 2 

pressures, p, of the investigated pipelines were all selected on the basis of a preliminary 3 

investigation of the variation of these characteristics in case of actual transmission NG 4 

networks found in several countries of Europe (Table 1). The external diameter, wall thickness 5 

and examined internal pressures of the selected pipelines are summarized in Table 2. The 6 

pipelines were assumed to be made of API 5L X60, X65 and X70 grades, in an effort to cover 7 

a range of steel grades that are commonly used in NG transmission networks. The mechanical 8 

properties of the selected grades are tabulated in Table 3. 9 

 10 

Table 1 External diameters and range of operational pressure of transmission NG pipeline networks in 11 

Europe (information provided by the website of each operator).  12 

Country Operator Nominal diameter range, D (mm, ΄) 
Operational pressure 

range, p (MPa) 

Austria TAG 914.4 mm to 1066.8 mm (36’ to 42’) 7 - 8 

Belgium Fluxys Belgium 914.4 mm, 965.2 mm, 1016.0 mm (36’, 38’, 40’) 4 - 7 

Germany Gascade 

> 1066.8 mm (42’) for the supra-regional 

networks; otherwise > 508 mm to 762 mm (20’ to 

30’) 

n.p.* 

Germany Gasunie 

> 1066.8 mm (42’) for the supra-regional 

networks; otherwise > 508 mm to 762 mm (20’ to 

30’) 

n.p. 

Greece DESFA 
254 mm, 508 mm, 609.6 mm, 762 mm, 914.4 mm 

(10’, 20’, 24’, 30’, 36’) 
7 

Italy SNAM 508 mm to 1219.2 mm (20’ to 48’) 7 - 8 

Spain Enegas 406.4 mm to 812.8 mm (16’ to 32’) n.p. 

Sweden Swedegas 406.4 mm to 660.4 mm (16’ to 26’) 5 - 8 

Switzerland Transitgas 914.4 mm to 1066.8 mm (36’ to 48’) 7 - 8 

* n.p. = not provided  13 

 14 

Table 2 Summary of examined cases. 15 

External diameter,  

D (’) 

External diameter,  

D (mm) 

Wall thickness,  

t (mm) 
D/t 

Internal 

pressure,  

p (MPa) 

Burial 

depth,  

h (m) 

Depth of soil 

sites,  

H (m) 

Surficial soil-

trench 

properties 

16’ 406.4 9.5 42.8 8 1.0 60 TA, TB 

36’ 914.4 12.7 72.0 0, 4, 8 1.0, 2.0 30,60,120 TA, TB 

48’ 1219.2 19.1 63.8 8 1.0 60 TA, TB 

 16 

Table 3 Mechanical properties of steel grades used in this study. 17 

Steel grade X60 X65 X70  

Yield stress, σy (MPa) 414 448 483 

Ultimate stress, σu (MPa) 517 531 565 

Ultimate tensile strain, εu (%) 14.2 13 11.2 

Young’s modulus, E (GPa) 210 210 210 

 18 

The study was conducted assuming a soil site depth H = 60 m, while additional analyses were 19 

also carried out for soil sites with depths equal to 30 m and 120 m. The burial depth, h, of the 20 
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selected pipelines, i.e. distance between the pipeline crown and ground surface, was set equal 1 

to 1.0 m, which constitutes a common burial depth for this infrastructure. A sensitivity study 2 

was conducted for D = 914.4 mm pipelines buried at a burial depth h = 2.0 m.  3 

Both cohesive and cohesionless soil deposits were examined, with the properties of the 4 

examined pairs of subdeposits varying so that to cover a range of anticipated soil sites. A 3.0 m 5 

deep surficial layer of cohesionless material was assumed in all examined cases, regardless of 6 

the adopted underlying subdeposits. Additionally, all examined sites were assumed to rest on 7 

an elastic bedrock with mass density, ρb =2.2 t/m3 and shear wave velocity Vs,b = 1000 m/s. 8 

Fig. 2 illustrates the gradients of shear wave propagation velocities, as well as the mass 9 

densities, ρ, of the selected soil subdeposits. The variation of the small-strain shear modulus of 10 

the cohesionless subdeposits was actually estimated as follows [39]: 11 

( )
0.5

max 2,max220 'mG K =   (1) 12 

 

(b) 

(a) 

ρA = 1.5 t/m
3 
   ρB = 1.7 t/m

3 
  ρC = 1.95 t/m

3 

 

Vs (m/s), H = 30 m Vs (m/s), H = 60 m Vs (m/s), H = 120 m 

Vs (m/s), H = 30 m Vs (m/s), H = 60 m Vs (m/s), H = 120 m 

 13 
Fig. 2 Shear wave velocity gradients of examined (a) cohesionless and (b) cohesive soil sub-deposits. 14 

 15 

where 'm is the effective confining stress (in kPa) and 2,maxK is a constant depending on the 16 

relative stiffness Dr of the subdeposit (Table 4). By employing Eq. 1 for the selected soil mass 17 

densities and based on basic elasto-dynamics, the gradients of small-strain shear wave velocity 18 

were defined, as per Fig. 2a. The gradients of the small-strain shear wave velocity of the 19 

cohesive soil subdeposits were also considered to be increased with depth, as per Fig. 2b. The 20 

selected soil subdeposits correspond to soil classes B and C according to Eurocode 8 [40]. The 21 

above profiles were selected in pairs, in order to define the properties of subdeposits 1 and 2 22 

(Fig. 1). In particular, three pairs were examined, i.e. Soil A - Soil B, Soil A - Soil C and Soil 23 
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B - Soil C. The nonlinear response of the selected subdeposits during ground seismic shaking 1 

was described by means of G-γ-D curves, following [41]. 2 

Two different sets of mechanical and physical properties were examined for the surficial soil 3 

layer, which actually constitutes the trench backfill material for the examined pipelines and 4 

therefore is referred as either trench TA or trench TB in the ensuing, for the sake of simplicity. 5 

The selected properties, summarized in Table 5, correspond to well or very well-compacted 6 

conditions. It is worth noting that the shear moduli G, presented in Table 5, correspond to 7 

‘average’ equivalent soil stiffnesses, referring to the ground strain range anticipated for the 8 

selected seismic ground motions. These values were estimated on the basis of nonlinear 1D soil 9 

response analyses, discussed in the following.  10 

With reference to the selection of the friction coefficient of the backfill-pipe interface, μ; this 11 

may vary along the axis of a long pipeline and may also change during ground shaking. 12 

However, for steel pipelines without external coating, it is bounded between μmin= 0.3 and 13 

μmax= 0.8. These limits are resulted from the relation between the interface friction coefficient 14 

 and friction angle of the backfill  , i.e. ( )0.5 0.9 tan = −   [38, 42], by assuming typical 15 

values for the backfill soil friction angle, i.e. from 29o to 44o. It is worth noting that the 16 

existence of external pipe coating may affect the friction coefficient of the interface [38]. This 17 

effect was disregarded in this study, since the focus was set on more critical cases where higher 18 

shear stresses are developed along the pipe-soil interface, leading to a higher axial straining on 19 

the embedded pipeline. 20 

 21 

Table 4 Relationships between density, relative density, K2,max parameter and cohesionless soil 22 

characterization (after [39]). 23 
 24 

Density, ρ (t/m3) Relative density, Dr (%) K2,max Characterization 

1.4 30 30 Loose 

1.65 52.5 48 Medium 

2 90 70 Fine 

 25 

Table 5 Physical and mechanical properties of investigated trenches.  26 

 
Density, ρ 

(t/m3) 

Poisson’s ratio, 

v 

Shear modulus, 

G (MPa) 

Friction angle, 

φ (o) 

Friction 

coefficient, μ 

Trench TA 1.65 0.3 37.1 35 0.45 

Trench TB 1.9 0.3 63.1 44 0.78 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 
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2.2 Analytical methodology  1 

A 3D full dynamic analysis of the soil-pipe interaction (SPI) phenomena during ground 2 

shaking may be seen as computationally prohibitive, when considering the complications in 3 

simulating rigorously material or geometrical nonlinearities associated with the problem, as 4 

well as the uncertainties in the definition of the characteristics of heterogeneous soil sites and 5 

the inherently random varying ground seismic motion [25]. Hence, a simplified, yet efficient, 6 

numerical analysis framework should be developed and used, instead. 7 

Generally, the inertial soil-structure interaction (SSI) effects are not important in the dynamic 8 

soil-pipe interaction problem [42]. This allows for a decoupling of the problem in successive 9 

stages, in an effort to reduce the computational cost compared to the one associated with a 3D 10 

SPI dynamic analysis. It also allows for the investigation of the effect of transient ground 11 

deformation on the response of the embedded pipeline in a quasi-static form.  12 

Based on the above considerations, a numerical framework was developed within this study. 13 

The framework, which is inspired by Psyrras et al. [25], is illustrated schematically in Fig. 3 14 

and consists of three main steps. A 3D trench-pipe numerical model is constructed within the 15 

first step to compute the axial compressive response of the buried steel NG pipeline under an 16 

increasing level of relative axial ground displacement, caused by the dissimilar ground 17 

movement of adjacent soil subdeposits near the geotechnical discontinuity (Step 1 in Fig. 3). In 18 

the second step (Step 2 in Fig. 3), the ground response is computed under vertically propagated 19 

seismic waves via 1D nonlinear soil response analyses, which are carried out separately for 20 

each subdeposit. More specifically, critical relative axial ground deformation patterns, δue, are 21 

computed at the pipeline depth, for the selected pairs of subdeposits, using the numerically 22 

predicted horizontal deformations of the adjacent soil subdeposits. Time histories of 23 

acceleration, velocity and displacement are also computed at the ground surface, which are 24 

then employed in the definition of some of the examined seismic IMs in the present study. The 25 

outcomes of the 3D SPI analyses and the 1D soil response analyses are combined in the third 26 

step of the analytical framework (Step 3 in Fig. 3). In particular, the pipe response, expressed 27 

in terms of maximum axial compression strain, is correlated with the ground response, the 28 

latter computed for each of the selected pairs of subdeposits and each seismic record. The 29 

analytical framework is further analysed in the following sections.  30 
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 1 
Fig. 3 Schematic view of the analysis framework: Step 1: 3D numerical model of the trench-pipe 2 

configuration to evaluate the pipeline response under an increasing level of relative axial ground 3 

deformations, δu, accounting for the SPI effects. Step 2: 1D soil response analyses of selected soil 4 

subdeposits to compute the ground response for selected ground motions, including the seismic IMs at 5 

ground surface, and define relative axial ground deformations δue, at the vicinity of the geotechnical 6 

discontinuity. Step 3: combination of the results of the 3D SPI analyses with the results of the 1D soil 7 

response analyses. 8 

 9 
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2.2.1 Step 1: 3D trench-pipe model to analyse the SPI phenomena 1 

A 3D continuum trench model, encasing a cylindrical shell model of the pipeline, is initially 2 

developed in ABAQUS [43], aiming at computing the axial response of the pipeline under an 3 

increasing level of relative axial ground displacement, caused by the dissimilar horizontal 4 

ground shaking of the adjacent subdeposits near a geotechnical discontinuity (Step 1 in Fig. 3). 5 

The utilization of a 3D continuum model allows for a rigorous simulation of pressurization 6 

level of the pipeline, as well as of initial geometric imperfections of the wall of the pipeline, 7 

which both are expected to affect significantly the axial compressional response of a buried 8 

steel pipeline, including potential localized buckling modes [24, 45-48]. Additionally, it allows 9 

for a rigorous simulation of potential sliding and/or detachment (i.e. in the normal direction) of 10 

the pipeline wall from the surrounding ground, by employing interaction models available in 11 

advanced finite element codes, like ABAQUS [43]. Finally, it allows for a proper simulation of 12 

the initial stress state and deformation of the trench-pipe system, caused by gravity and the 13 

operational pressure of the pipeline, before the application of the seismically-induced ground 14 

deformations. 15 

The selection of a surficial block from the semi-infinite 3D ground domain, i.e. a part of the 16 

surficial layer-trench TA or TB herein, is made on the ground of absence of significant inertial 17 

SSI effects, in addition to the shallow burial depth of the pipeline and the assumption of in-18 

plane ground deformation pattern. In this context, the dimensions of the 3D model are defined 19 

as follows; the distance between the pipe invert and the bottom boundary of the trench model is 20 

set equal to 1.0 m, while the distance between the side boundaries of the trench model and the 21 

pipe edges is set equal to one pipe diameter. The distance between the pipe crown and ground 22 

surface is defined according to the adopted burial depth, h, of the examined pipeline. 23 

An ‘adequately long’ 3D continuum model is generally required to account for the effect of the 24 

‘anchorage’ length of the pipeline by the surrounding ground on the shear stresses that are 25 

being developed along the soil-pipe interface during seismic ground deformation. This aspect 26 

in addition to the requirement of fine meshes of the pipeline, to adequately resolve its buckling 27 

modes (see following), may lead to a significant increase of the relevant computational cost of 28 

the analyses, even if these analyses are conducted in a quasi-static fashion. On this basis, 29 

generalized nonlinear springs are calculated and introduced at both sides of the pipeline, in an 30 

effort to reduce the required length of the 3D SPI model, while considering the effect of the 31 

‘infinite’ pipeline length on the response of the examined pipeline-soil configurations. The 32 

springs are acting parallel to the pipeline axis, with the force-displacement relation of the 33 

nonlinear springs being given as follows [24]: 34 

 35 

max

2

max max max max max max

    for   

+ 2 for  

x x

s

x x

s s s s s
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k

F
D

EA m
k m k k k k


  

      
    





=   

       + − −               

  (2) 36 

where: 37 
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sDk

EA


 =   (3) 1 

maxD
m

EA

 
=   (4) 2 

x is the backfill-pipe relative axial movement caused by the relative axial ground deformation 3 

δu of the trench backfill soil, as a result of the dissimilar ground movement of the adjacent sub-4 

deposits, ks is the shear stiffness of the backfill-pipe interface, max is the maximum shear 5 

resistance that develops along the backfill-pipe interface and EA is the axial stiffness of the 6 

pipeline cross section. The maximum shear resistance in case of cohesionless backfills depends 7 

on the adopted friction coefficient μ of the interface and varies along the perimeter of the pipe. 8 

Therefore, mean values of max and ks should be evaluated via numerical simulations of simple 9 

axial pull-out tests of the examined pipe from the trench backfill soil, as per [16]. The proposed 10 

simulation of the end-boundaries of the pipeline is inspired from a numerical model that was 11 

developed by Vazouras et al. [16] to account for the effect of the infinite length of a buried 12 

steel pipeline subjected to seismically-induced strike-slip faulting. Based on the above 13 

considerations, the length of the 3D pipe-soil trench model is reduced to 20 × D (D: external 14 

diameter of the pipeline). This length is selected on the grounds of a sensitivity analysis, by 15 

comparing the axial stresses and strains computed at the critical middle section of the pipeline 16 

by the 3D SPI model, with relevant predictions of equivalent extended, almost ‘infinite’, 3D 17 

continuum models of the soil-pipe configuration, subjected to the same axial ground 18 

deformation pattern, as the one used for the hybrid 3D model with the springs at the pipe sides. 19 

The boundary at the bottom of the soil model is fixed in the vertical direction, whereas the 20 

side-boundaries are fixed in the horizontal direction. The ground surface is set free, while the 21 

pipe-ends are connected to the relevant springs by means of rigid constraints, as per Fig. 3a.  22 

The backfill-pipe interface is simulated using an advanced ‘hard contact’ interaction model, 23 

available in ABAQUS [43], which allows for potential sliding and/or detachment (in the 24 

normal direction) between the interacting pipe and backfill soil elements during the horizontal 25 

deformation of the ground. The shear behaviour of the interface model is simulated via the 26 

classical Coulomb friction model, by introducing a friction coefficient, μ. The latter follows the 27 

values provided in Table 5.  28 

A critical aspect for the efficiency of the 3D numerical model is the discretization of the 29 

pipeline and surrounding soil. Linear hexahedral (brick-type) elements are used to model the 30 

trench backfill, employing the equivalent soil properties (i.e. degraded soil stiffness) presented 31 

in Table 5. The pipeline is simulated by means of inelastic, reduced integration S4R shell 32 

elements, having both membrane and bending stiffness. The mesh density of the pipeline at the 33 

critical central section of the 3D numerical model, i.e. at the location of the geotechnical 34 

discontinuity where the axial strain of the pipeline is expected to maximize, is selected 35 

adequately, in order to resolve the inelastic buckling modes of an equivalent axially 36 

compressed unconstrained cylindrical steel shell [25]. To select an adequate mesh, the half-37 

wavelength of the examined pipeline sections in the post-elastic range, ,c p , is initially 38 

computed as [49]: 39 
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, ,c p c el pE E     (5) 1 

where E is the Young’s modulus of the steel grade of the pipeline, Ep is the plastic modulus of 2 

the steel grade of the pipeline and
,c el the elastic axial half-wavelength. Considering a 3 

Poisson’s ratio v = 0.3 for the steel grades examined herein, the latter is given as [49]: 4 

, 1.72c el Rt    (6) 5 

where R and t are the radius and wall thickness of the pipeline, respectively. By setting the 6 

plastic modulus Ep is equal to 0.1E, Eq. 5 yields:
, ,0.5c p c e   [25]. Element lengths, ranging 7 

between 1.0 cm and 2.0 cm, were found capable to reproduce the theoretical axial half-8 

wavelength 
,c p  of the examined pipelines. The above mesh seeds are applied in the middle 9 

section of the examined pipelines and for a length equal to 2.0 m. The mesh density away from 10 

the critical central zone is gradually decreased, with the axial dimension of the shell elements 11 

being as high as 0.30 m, to reduce the computation cost of the 3D analyses. This was done on 12 

the ground of the small strain amplitudes and radial deflections expected away from the central 13 

section of the pipeline. The mesh discretization of the trench soil in the axial direction of the 14 

model matches the exact mesh seed of the pipeline, to avoid any initial gaps during the 15 

generation of mesh. The mesh seed of the trench in the other two directions is restricted to 0.3 16 

m.  17 

The plastic behaviour of the steel pipelines is modelled through a classical J2-flow plasticity 18 

model combined with a von Mises yield criterion. Ramberg-Osgood curves (Eq. 7) are fitted to 19 

bilinear isotropic curves that describe the tensile uniaxial behaviour of the selected steel grades 20 

(Fig. 4). The curves are characterized by a yield offset equal to 0.5 %, and a hardening 21 

exponent n equal to 15, 19.5 and 21, for grades X60, X65 and X70, respectively.  22 
n

y

a
E

 




 
= +   

 

 (7) 23 

 24 

 25 
Fig. 4 Uniaxial tensile stress-strain response of API X60, X65 and X70 steel grades adopted herein (n = 26 

hardening exponent, a = yield offset × E/σy). 27 

 28 

The axial compression response of thin-walled steel pipelines is known to be highly affected 29 

by initial geometric imperfections of the walls [25, 44]. In this context, both ‘perfect’ pipelines 30 

and equivalent pipelines with initial geometric imperfections of their walls are examined. The 31 

simulation of imperfections of the pipeline walls is not a straightforward task since the shape of 32 

these imperfections might be rather complex. In this study, a ‘fictious’ imperfection shape is 33 
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considered, following previous studies [25, 45]. In particular, a stress-free, biased 1 

axisymmetric imperfection is considered, following a sinusoid function modulated by a second 2 

sinusoid, which results in a peak amplitude of the imperfection at the middle section of the 3 

length, where it is applied [25]. The function of radial deflection is defined as per Eq. (8), 4 

where positive values correspond to outward direction form the mid-surface of the pipeline 5 

shell wall.  6 

 7 
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 10 
Fig. 5 Detail of the mesh of the central section of a D = 914.4 mm pipeline with a biased axisymmetric 11 

geometrical imperfection (the radial deformation is exaggerated by a scale factor of 10, × 10). 12 

 13 

The peak amplitude of the imperfection is set as a function of the pipe wall thickness: 14 

0 1 0.10w w w t= + = . This latter selection is made following specifications, of ArcelorMittal 15 

which provide a manufacturing tolerance for the walls of API-5L X65 pipelines in the range of 16 

+ 15% to -12.5% [50]. Generally, the location of a pipeline imperfection is not easily 17 

detectable. In the present study it was decided to select the worst-case scenario, i.e. the 18 

imperfection is applied over the central critical pipeline zone with length equal to critL = 2.0 m, 19 

centered at the exact position of the geotechnical discontinuity. Fig. 5 illustrates a detail of the 20 

mesh of the central section of an imperfect pipeline. The mesh of the backfill soil, surrounding 21 

the pipeline, follows the perturbated mesh of the pipeline, in order to prevent any initial gaps 22 

during the generation of the mesh that might affect the contact phenomena during loading, thus 23 

decreasing the computational efficiency of the model. Residual stresses due to manufacturing 24 

process of the pipelines were disregarded by the present study.  25 

With reference to the loading pattern of the 3D SPI model; the effects of gravity and internal 26 

pressure of the pipeline are initially considered within a general static step. The effect of 27 

transient ground deformation is then simulated in quasi-static manner as follows: the nodes of 28 

the one half of the trench model and the free node of the relevant nonlinear spring are fixed in 29 

the axial direction, i.e. u = 0, in Fig. 3. The nodes of the other half trench model and the free 30 

node of the relevant nonlinear spring are displaced towards the constraint part of the model in a 31 

stepwise fashion. This deformation pattern causes a relative axial deformation of the backfill 32 

model (i.e. δu), which is equivalent to the case where both halves of the model, are moving 33 

differently but in the same axial direction, causing the same differential ground displacement δu 34 

on the examined system. Since the depth of the trench domain is much smaller than the 35 

common predominant wavelengths of shear seismic waves, the above-described deformation 36 
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pattern is kept constant with depth coordinate over the trench backfill domain. The adopted 1 

deformation pattern leads to the development of shear stresses along the pipe-soil interface, 2 

which in addition to the axial loading induced on both ends of the pipeline via the generalized 3 

nonlinear springs, result in an axial compression straining of the pipeline. This axial response 4 

of the pipeline is evaluated for an increasing level of relative axial ground displacement, δu, 5 

through a modified Riks solution algorithm. The main outcome of this analysis is a curve that 6 

describes the relation between an increasing relative axial ground displacement, δu, and the 7 

corresponding maximum compressive axial strain of the critical middle section of the pipeline, 8 

i.e. around the geotechnical discontinuity (see Step 3 in Fig. 3). It is noted that the analysis 9 

focuses on the axial ground displacements, which constitute the dominant loading mechanism 10 

for buried pipelines under seismic wave propagation, while it disregards the vertical ground 11 

displacements. Since the response of the pipeline is computed for an increasing level of relative 12 

axial ground displacement, δu, the outcome of one 3D SPI analysis may be used to evaluate the 13 

axial straining of the pipe under a variety of selected ground axial relative displacements, δue, 14 

caused by diverse seismic motions. This may be possible with the utilization of ‘mean’ 15 

equivalent soil properties for the backfill soil, the latter corresponding to the strain-range that is 16 

anticipated for the selected ground seismic motions.  17 

 18 

2.2.2 Step 2: Soil response analyses 19 

In a second step, the seismic response of the selected soil sites is evaluated via 1D nonlinear 20 

soil response analyses, which are carried out separately for each subdeposit of the adopted 21 

pairs, employing DEEPSOIL [51]. Numerical models of the selected subdeposits, presented in 22 

Section 2.1, are initially developed, accounting also for the properties of the surficial ground 23 

layers (i.e. backfills) and the elastic bedrock. The models are then employed in a series of 24 

nonlinear time history analyses, using an ensemble of seismic records (see Section 2.4). The 25 

hysteretic nonlinear response of the soil during ground shaking is considered by means G-γ-D 26 

curves, which are properly selected for the examined deposits, following [41]. An additional 27 

viscous damping of 1 % is also introduced in the form of the frequency-dependent Rayleigh 28 

type [52], in order to avoid the potential amplification of higher frequencies of the ground that 29 

may result in unrealistic oscillations of the acceleration time histories in low ground strains. 30 

The Rayleigh coefficients are properly selected for a frequency interval range, characterizing 31 

the ‘dominant frequencies’ of each soil column. Through the soil response analyses, time 32 

histories of the horizontal deformations of the soil columns are calculated at the burial depths 33 

of the pipelines, which are then employed to compute maximum differential ground 34 

deformation patterns δue for the selected pairs of adjusted subdeposits (see Section 2.1). 35 

Additionally, time histories of the horizontal acceleration, velocity and deformation are 36 

computed at the ground surface, in order to evaluate a variety of seismic IMs that are examined 37 

in the framework of this study. 38 

 39 

2.2.3 Step 3: Combination of 3D SPI with 1D soil response analyses  40 

The critical relative axial ground deformation patterns, δue , which are defined based on the 41 

results of the 1D soil response analyses are finally correlated with the predicted straining of the 42 
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pipeline, using the δu - maximum compressive axial strain, ε, relations computed through the 1 

3D SPI analyses.  2 

Summarizing, the applying analytical framework accounts for critical parameters affecting the 3 

seismic response of buried steel pipelines. Additionally, the pseudo-static simulation of the 4 

seismically-induced transient ground deformations is computationally more efficient compared 5 

to an analysis conducted in a full-dynamic fashion.  6 

Inevitably, the proposed analysis framework has some limitations. The inertial SPI effects, as 7 

well as effects of the evolution of stresses and deformations due to temperature changes on the 8 

pipeline response are not considered in the present study. Moreover, phenomena related to 9 

fatigue and steel strength and stiffness degradation due to cyclic loading, are neglected. The 10 

effect of soil nonlinearity during ground shaking, on the stiffness of the backfill and therefore 11 

on the confinement level of the pipeline, is considered in an approximate manner through the 12 

introduction of equivalent soil properties (i.e. strain-depended degraded stiffness) on the 13 

backfill. Additionally, the 1D soil response analyses cannot capture the potential 2D wave 14 

phenomena near the geotechnical discontinuity [53]. However, 1D nonlinear soil response 15 

analyses offer computational efficiency compared to 2D or 3D analyses and may be used as a 16 

first approximation for the evaluation of the seismic response of the ground and pipelines at 17 

shallow depths [53]. The computational efficiency of 1D soil response analyses allows for an 18 

extended and thorough parametric analysis, such as the one presented herein.  19 

 20 

2.2.4 Verification of the 3D SPI model  21 

As stated already, the length of the adopted 3D trench soil-pipe models was selected by 22 

examining various lengths and comparing the axial stresses and strains, computed at the middle 23 

critical section of the pipeline, with relevant predictions of equivalent ‘infinitely’ long 3D 24 

continuum models of the examined soil-pipe configurations, the latter subjected to the same 25 

axial ground deformation pattern. An example is provided in this section, referring to the D = 26 

914.4 mm pipeline, embedded in a burial depth h = 1.0 m. The procedure followed to evaluate 27 

the nonlinear springs for the end-sides of the pipeline model in Fig. 3a, is initially presented in 28 

Fig. 6. More specifically, Fig. 6a illustrates the numerical model used to simulate the axial 29 

pull-out of the pipeline from the surrounding ground. The pull-out analyses were performed 30 

assuming a length for the model equal to 20 m and examining both adopted trench backfills, 31 

i.e. TA and TB (Table 5). The analyses yielded the shear stress-displacement relations 32 

presented in Fig. 6b. These relations were then used to define the maximum shear resistance 33 

τmax and the shear stiffness ks of the backfill soil-pipe interface, which were then employed in 34 

the definition of the nonlinear springs, following Eq (1). The computed force-displacement 35 

relations of the nonlinear springs for the present example are presented in Fig 6c. A higher 36 

friction coefficient for the backfill-pipe interface leads to ‘stiffer’ springs for the end-sides of 37 

the pipeline.  38 
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 (b) (c) Trench-soil 

Pipe 

Pipe-soil interface 

(a) 

δx 

 1 
Fig. 6 (a) Numerical simulation of an axial pull-out test of a D = 914.4 mm pipeline, embedded at burial 2 

depth h = 1.0 m, (b) interface shear stress–displacement relationship estimated for the examined system 3 

when the pipeline is embedded in trench TA (μ = 0.45) or in trench TB (μ = 0.78), (c) force-4 

displacement relations of the nonlinear springs, estimated as per Eq.1, when the examined pipeline is 5 

embedded in trench TA (μ = 0.45) or in trench TB (μ = 0.78). 6 

 7 

The nonlinear springs were introduced at the end-sides of the examined pipeline and the 8 

numerical model was subjected gradually to a relative axial ground deformation up to δu = 20 9 

cm, as per Fig. 3a. The analyses were carried out for a ‘perfect’ pipeline (i.e. w/t=0), as well as 10 

for an equivalent pipeline with an initial geometric imperfection at the middle section (i.e. 11 

w/t=0.1). In both cases the pipeline was pressurized at an internal pressure p = 8 MPa. Fig. 7 12 

compares representative numerical results of the pipelines responses computed by the proposed 13 

3D SPI model, with relevant numerical predictions of extended 3D trench-pipe models of the 14 

examined pipelines (i.e. models with lengths equal to 500 times and 1000 times the diameter of 15 

the pipeline without springs at pipe edges). In particular, the axial stress (normalized over the 16 

yield Mises stress) and the axial strain computed along the ditch axis of the examined pipelines 17 

at the end of the analysis, i.e. after local buckling occurred, are compared. The extended 18 

models yield in almost identical results; therefore, it may be assumed that they may provide the 19 

response of an ‘infinitely’ long trench-pipeline model and can be used for verification purposes 20 

of the reduced length 3D hybrid model. The reduced length model provides similar results with 21 

the extended length models in terms of stresses and strains for both the perfect and imperfect 22 

pipelines, irrespectively of the adopted trench backfill properties. Evidently the computational 23 

cost of the reduced length model is highly reduced compared to the one of the extended 24 

models. It is worth noticing the significant effects of geometric imperfections of the walls of 25 

the pipeline, as well of the backfill properties and backfill-pipe interface frictional 26 

characteristics, on the axial response of the pipeline. Clearly, a much higher axial response is 27 

reported for the imperfect pipeline, embedded in trench TB (i.e. case of very-well compacted 28 

backfill soil with higher soil-pipe interface friction coefficient). The critical effects of pipeline 29 

wall imperfections or backfill compaction level on the axial response of buried steel pipelines 30 

are further examined in [47-48].  31 
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 1 

 2 

Fig. 7 Comparisons of axial stresses (normalized over yield Mises stresses) and axial strains computed 3 

along the ditch axis of a D = 914.4 mm perfect (i.e. w/t=0) and imperfect (i.e. w/t=0.1) pipeline, 4 

embedded in trench TA (μ = 0.45) or TB (μ = 0.78) at a burial depth h = 1.0 m, by the 3D SPI model 5 

with the nonlinear springs at end-sides, (i.e. L = 20 D) and extended 3D SPI models (L = 500 D and L = 6 

1000 D), the latter simulating the ‘infinitely’ long soil-pipeline configuration.  7 

 8 

2.3 Seismic ground motions  9 

An ensemble of 40 real ground motions, recorded on rock outcrop or very stiff soil (soil classes 10 

A and B according to Eurocode 8) [40] were selected in this study. The adopted records (Table 11 

6), which were retrieved from the SHARE database [53], represent ground motions from 12 

earthquakes with moment magnitudes Mw, varying between 5 and 7.62, recoded at epicentral 13 

distances, R, between 3.4 and 71.4 km [36]. The shear wave velocity of first 30 m depth, Vs,30, 14 

of the recordings locations, ranges between 650 m/s and 2020 m/s. The peak ground 15 

acceleration PGA of the selected records varies between 0.065 g to 0.91 g. The peak ground 16 

velocity PGV ranges between 0.031 m/s to 0.785 m/s, while the Arias Intensity Ia, ranges from 17 

0.015 m/s and 10.97 m/s. Scatter plots of the Mw-ln(R), PGA-PGV and PGA-Ia relations for the 18 

selected records are provided in Fig. 8. It is noted that no existing selection techniques that 19 

employ spectra for the selection of ground motions [e.g. as in 55-58] were used herein. This 20 

was done on the ground that the response of the extended buried pipelines is highly distinct 21 

compared to that of above ground structures (e.g. [59-60]), for which the ‘target’ spectra are 22 

actually defined. The selection is further strengthened by the fact that buried pipelines do not 23 

have an individual period of vibration, to which a spectrum could be conditioned.   24 

 25 

 26 

 27 

 28 

 29 

 30 
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Table 6. Selected ground motion records. 1 

Date Earthquake Country Station Name MW R (km) Preferred FS 

25/07/2003 N Miyagi Prefecture Japan Oshika 6.1 32.00 Reverse 

23/10/2004 Mid Niigata Prefecture Japan Tsunan 6.6 36 Reverse 

12/06/2005 Anza USA Pinyon Flat Observatory 5.2 11.50 Strike-Slip 

22/12/2003 San Simeon USA Ca: San Luis Obispo; Rec Center 6.4 61.5 Reverse 

16/09/1978 Tabas Iran Tabas 7.35 57 Oblique 

10/06/1987 Kalamata (Aftershock) Greece Kyparrisia-Agriculture Bank 5.36 17.00 Oblique 

13/05/1995 Kozani Greece Kozani 6.61 17 Normal 

07/09/1999 Ano Liosia Greece Athens 4 (Kipseli District) 6.04 17.00 Normal 

15/04/1979 Montenegro Serbia Hercegnovi Novi-O.S.D. 6.9 65 Thrust 

25/10/1984 Kremidia (Aftershock) Greece Pelekanada-Town Hall 5 16  

17/05/1995 Kozani (Aftershock) Greece Chromio-Community Building 5.3 16.00 Normal 

13/10/1997 Kalamata Greece Koroni-Town Hall (Library) 6.4 48 Thrust 

06/05/1976 Friuli Italy Tolmezzo-Diga Ambiesta 6.4 21.70 Reverse 

15/09/1976 Friuli (Aftershock) Italy Tarcento 5.9 8.50 Reverse 

23/11/1980 Irpinia Italy Bisaccia 6.9 28.30 Normal 

14/10/1997 
Umbria Marche 

(Aftershock) 
Italy Norcia 5.6 20.00 Normal 

09/09/1998 App. Lucano Italy Lauria Galdo 5.6 6.60 Normal 

06/04/2009 L Aquila Mainshock Italy L Aquila - V. Aterno - Colle Grilli 6.3 4.40 Normal 

09/02/1971 San Fernando USA Lake Hughes #12 6.61 20.04 Reverse 

28/11/1974 Hollister-03 USA Gilroy Array #1 5.14 11.08 Strike-Slip 

06/08/1979 Coyote Lake USA Gilroy Array #6 5.74 4.37 Strike-Slip 

02/05/1983 Coalinga-01 USA Slack Canyon 6.36 33.52 Reverse 

24/04/1984 Morgan Hill USA Gilroy Array #6 6.19 36.34 Strike-Slip 

23/12/1985 Nahanni, Canada Greece Site 1 6.76 6.8 Reverse 

14/11/1986 Taiwan Smart1(45) Taiwan Smart1 E02 7.3 71.35 Reverse 

07/02/1987 Baja California USA Cerro Prieto 5.5 3.69 Strike-Slip 

18/10/1989 Loma Prieta USA Gilroy Array #6 6.93 35.47 Reverse-Oblique 

18/10/1989 Loma Prieta USA Ucsc Lick Observatory 6.93 16.34 Reverse-Oblique 

25/04/1992 Cape Mendocino USA Petrolia 7.01 4.51 Reverse 

28/06/1992 Landers USA Lucerne 7.28 44.02 Strike-Slip 

17/01/1994 Northridge-01 USA La - Griffith Park Observatory 6.69 25.42 Reverse 

17/01/1994 Northridge-01 USA Pacoima Dam (Downstr) 6.69 20.36 Reverse 

16/01/1995 Kobe, Japan Japan Nishi-Akashi 6.9 8.7 Strike-Slip 

20/09/1999 Chi-Chi, Taiwan Taiwan Tcu071 7.62 15.42 Reverse-Oblique 

28/06/1991 Sierra Madre USA Mt Wilson - Cit Seis Sta 5.61 6.46 Reverse 

16//10/1999 Hector Mine USA Hector 7.13 26.53 Strike-Slip 

20/09/1999 Chi-Chi, Taiwan-03 Taiwan Tcu129 6.2 18.5 Reverse 

17/08/1999 Izmit Turkey Gebze-Tubitak Marmara 7.6 42.77 Strike-Slip 

17/08/1999 Izmit Turkey Izmit-Meteoroloji Istasyonu 7.6 3.40 Strike-Slip 

12/11/1999 Duzce 1 Turkey Ldeo Station No. C1058 Bv 7.1 15.60 Strike-Slip 
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 1 
Fig. 8 Distribution of main parameters of selected ground motion records. 2 

 3 

3. Selection of seismic intensity measures  4 

A variety of seismic IMs has been employed in the existing literature to describe seismic 5 

intensity in empirical fragility functions for the structural assessment of buried pipelines [61-6 

62], including the Modified Mercalli Intensity MMI [63-67], the peak ground acceleration PGA  7 

[68-70], the peak ground velocity PGV [6-7,38,67,71-79], the peak ground strain (εg) 8 

[11,77,79], as well as PGV2/PGA [80]. The efficiency of Arias intensity Ia, spectral 9 

acceleration SA and spectral intensity SI, in predicting the damage of buried pipelines under 10 

transient ground deformations was also examined in previous studies [67, 81]. The limited 11 

available analytical fragility curves for buried steel NG pipelines make use of PGA and PGV as 12 

seismic IMs [82-83]. From the above seismic IMs, PGV and εg, are those that are directly 13 

related to the main loading condition, which is responsible for the induced damage on buried 14 

pipelines caused by seismically-induced transient ground deformations.  15 

Shakib and Jahangiri [37] examined the efficiency and sufficiency of various seismic IMs for 16 

buried steel NG pipelines, employing a numerical parametric study on selected pipe-soil 17 

configurations. In addition to the above seismic IMs (e.g. PGA, PGV, PGV2/PGA, Ia), a set of 18 

other measures was also examined, including the peak ground displacement, PGD, the root 19 

mean square acceleration, velocity and displacement, RMSa, RMSv, RMSd, PGD2/RMSd, the 20 

cumulative absolute velocity, CAV, the sustained maximum acceleration and velocity, SMA, 21 

SMV and a series of spectral IMs. The researchers proposed spectral seismic IMs as optimal 22 

ones for some of the examined pipe-soil configurations. However, to the authors’ view, the use 23 

of spectral seismic IMs for embedded structures, such as buried pipelines, might be highly 24 

debatable, when considering the kinematic loading, which is imposed by the surrounding 25 

ground on the embedded pipeline under ground shaking and is prevailing over the pipeline’s 26 

inertial response [5, 59-60]. Actually, buried structures (including pipelines) exhibit a highly 27 

distinct seismic response compared to that of single degree of freedom oscillators (SDOF), for 28 

which the response spectra and the relevant spectral seismic IMs are defined. This perspective 29 

comes in line with the poor correlations between spectral seismic IMs, i.e. spectral acceleration 30 

and spectrum intensity, and observed damage on water-supply and steel NG pipelines during 31 

past earthquakes [67, 81]. Based on the above observations, no spectral seismic IMs were 32 

examined herein.  33 
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Table 7 summarizes the tested seismic IMs. The selected IMs have been widely used in 1 

previous studies, e.g. for the development of empirical fragility functions or analytical fragility 2 

relations, while most of them may be evaluated easily. Hazard maps and hazard curves are 3 

readily available in terms of PGA or PGV, while other seismic IMs, such as Arias intensity Ia 4 

require more effort to be evaluated. Along these lines, PGA or PGV might be more desirable, 5 

particularly in the framework of a rapid post-seismic assessment of an extended NG network 6 

and management of the post-seismic risk [84]. The peak longitudinal ground strain εg was not 7 

examined herein, due to the nature of the soil response analyses that were carried out within 8 

this study (i.e. 1D soil response analyses). Despite of the direct correlation of longitudinal 9 

ground strain with pipeline axial response, its rigorous computation or even its evaluation in a 10 

simplified fashion via PGV and wave propagation velocity C of the site (i.e. εg = PGV/C) may 11 

be cumbersome [61], particularly in the presence of strong soil heterogeneities along the 12 

pipeline axis, like in the cases examined herein. The selected seismic IMs refer to either 13 

outcrop conditions or ground surface conditions. For the latter cases, two computation 14 

approaches were examined since multiple values of the seismic IMs are available near the 15 

geotechnical discontinuity of the examined soil deposits, i.e. those computed at the ground 16 

surface above subdeposit 1 and those computed at the ground surface above subdeposit 2 (Fig. 17 

1). In particular, the seismic IMs at the ground surface refer to either the maximum value of the 18 

peak values computed at the surface adjacent subdeposits, or to the mean value of the peak 19 

values predicted at the adjacent subdeposits (see Table 7).   20 

 21 

Table 7 Examined Intensity Measures. 22 

Location Intensity measure 

Outcrop  Peak ground acceleration  ( )maxr rPGA a t=  

Outcrop  Peak ground velocity ( )maxr rPGV v t=  

Outcrop  Peak ground velocity ( )maxr rPGD d t=  

Outcrop  Arias intensity ( )
2

0
2

r rIa a t dt
g




=     

Ground surface Peak ground acceleration  ( ) ( ) 1 ,1 ,2max max ,maxsoil soilPGA a t a t=  

Ground surface Peak ground acceleration  ( ) ( ) 2 ,1 ,2max ,maxsoil soilPGA avg a t a t=  

Ground surface Peak ground velocity  ( ) ( ) 1 ,1 ,2max max ,maxsoil soilPGV v t v t=  

Ground surface Peak ground acceleration  ( ) ( ) 2 ,1 ,2max ,maxsoil soilPGV avg v t v t=  

Ground surface Peak ground acceleration  ( ) ( ) 1 ,1 ,2max max ,maxsoil soilPGD d t d t=  

Ground surface Peak ground acceleration  ( ) ( ) 2 ,1 ,2max ,maxsoil soilPGD avg d t d t=  

Ground surface  2 2 2

1 ,1 ,2
max max ,max

soil soil
PGV PGA PGV PGA PGV PGA=  

Ground surface  2 2 2

2 ,1 ,2
max ,max

soil soil
PGV PGA avg PGV PGA PGV PGA=  

 23 

 24 
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4. Intensity measure testing  1 

4.1 Efficiency of tested seismic IMs 2 

To test the efficiency of the selected seismic IMs, regression analyses of the EDP, i.e. the 3 

numerically predicted maximum compression strain ε of the examined pipelines at the critical 4 

middle section, relative to each seismic IM were carried out. A power model was initially 5 

employed to describe the relationship between the pipe compression strain ε and the tested 6 

seismic IM [85]: 7 

( )
b

EDP a IM=    (9) 8 

where a and b are coefficients defined by the regression analysis. The above relation may be 9 

rearranged in a linear regression analysis of the natural logarithm of the EPD relative to the 10 

natural logarithm of the tested seismic IM, as follows: 11 

( ) ( ) resln EPD b ln IM a  =  + +    (10) 12 

where res is the standard normal variant with zero mean and unit standard deviation and   is a 13 

dispersion parameter, describing the conditional standard deviation of the regression. The latter 14 

is defined in natural logarithm units and constitutes a metric of the efficiency of the tested 15 

seismic IM with respect to the EPD. Lower   values mean reduced dispersion around the 16 

estimated median of the results, which in other words means a more efficient seismic IM. A 17 

representative example of a regression analysis of the EPD versus PGV1 is presented in Fig. 9, 18 

referring to a D = 914.4 mm ‘perfect’ pipeline pressurized at p = 8 MPa and embedded in 19 

trench TA. The examined soil-pipe system is assumed to be located over the examined pairs of 20 

soil subdeposits (see Section 2.1), while the ground depth H is equal to 60 m.  21 

 22 
Fig. 9 Regression analysis of the natural logarithm of the maximum compression strain ε of the pipeline 23 

(computed at the critical middle section) relative to the natural logarithm of the PGV1 at ground surface 24 

(results for a D = 914.4 mm ‘perfect’ pipeline embedded in trench TA in soil deposits with H = 60 m). 25 

 26 

Fig. 10 summarizes representative regression analyses of the maximum pipeline compression 27 

strain, ε, relative to various seismic IMs tested herein. The regressions refer to a X60 D = 914.4 28 

mm ‘perfect’ pipeline, pressurized at p = 8 MPa and embedded in trench TA in soil deposits 29 

with depth H = 30 m. The seismic IMs, referring to ground surface conditions, are computed as 30 

the maximum value of the peak values of the measures computed at the adjacent subdeposits, 31 

i.e. IMs1, according to Table 7. It is noted that the regressions were conducted in the log-log 32 

space; however, both the compression strains and the seismic IMs are displayed in their actual 33 

units in Fig. 10. Similar regressions are provided in Fig. 11, referring to the same pipeline, 34 
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embedded this time in trench TB in soil deposits with depth H = 30 m. In both cases, the lowest 1 

standard deviations  are reported for the peak ground velocity at the ground surface, PGV1, 2 

(i.e. σ = 0.52 and 0.66 when the pipeline is embedded in trench TA and TB, respectively), 3 

implying that this seismic IM is the most efficient one, compared to other tested measures. This 4 

observation is in line with the theoretically expected superiority of PGV over the other seismic 5 

IMs tested herein. As stated above, PGV is related directly with the ground strains that are 6 

imposed along buried pipelines during ground shaking and constitute the main loading 7 

mechanism of this infrastructure under this loading condition. A reduced standard deviation 8 

(compared to the other seismic IMs) is also reported for PGV2/PGA1, i.e. σ = 0.55 and 0.72 for 9 

pipeline in trench TA and TB, respectively). The most inefficient seismic IMs for the examined 10 

soil-pipe configurations are found to be PGA1 (σ = 0.64), when the pipeline is embedded in 11 

trench TA and PGVr (σ = 1.07), when the pipeline is embedded in trench TB. Interestingly, 12 

higher standard deviations σ are computed when the pipeline is embedded in the trench TB. It 13 

is recalled that in this case, a denser backfill material and a higher friction coefficient for the 14 

backfill-pipe interface are considered. For a given ground deformation pattern, the above 15 

conditions will lead to higher shear stresses along the perimeter of the pipeline, compared to 16 

the shear stresses developed along the pipeline, when this is embedded in a looser backfill with 17 

reduced friction at soil-pipeline interface (i.e. trench TA). These higher shear stresses along the 18 

perimeter of the pipeline will result in its higher axial loading, thus increasing the potential of 19 

its yielding or buckling failure. The higher nonlinear axial response of the pipeline increases 20 

the scatter of the numerically predicted pipe strain ε for a given value of the seismic IMs, 21 

finally leading to higher σ values, as observed in the regression analyses of Fig. 11. 22 

 23 
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 1 
Fig. 10 Regression analyses for testing the efficiency of various seismic IMs, referring to outcrop 2 

conditions or ground surface conditions (results for a X60 D = 914.4 mm ‘perfect’ pipeline, pressurized 3 

at p = 8 MPa and embedded in trench TA in soil deposits of depth H = 30 m; ε: compression axial strain 4 

computed at the critical middle section of the pipeline). 5 
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 1 
Fig. 11 Regression analyses for testing the efficiency of various seismic IMs, referring to outcrop 2 

conditions or ground surface conditions (results for a X60 D = 914.4 mm ‘perfect’ pipeline, pressurized 3 

at p = 8 MPa and embedded in trench TB in soil deposits of depth H = 30 m; ε: compression axial strain 4 

computed at the critical middle section of the pipeline). 5 

 6 

Figs. 12-14 compare the standard deviations   computed for all tested seismic IMs in all 7 

examined cases. Through the comparisons, the effects of salient parameters controlling the 8 

axial response of the buried steel pipelines, on the computed σ values are reported.  9 

Fig. 12a summarizes standard deviations   computed for D = 914.4 mm pipelines, embedded 10 

at a burial depth h = 1.0 in trench TA in diverse soil deposits with depth H = 30 m. The 11 

comparisons highlight the effects of steel grade and internal pressure of the pipeline, as well as 12 

of imperfections of the walls of the pipeline on the computed standard deviations . In this 13 

context, the standard deviations are plotted for X60, X65, X70 ‘perfect’ (i.e. w/t = 0) or 14 

imperfect (i.e. w/t = 0.1) pipelines, pressurized at various levels of internal pressure (i.e. p = 0, 15 

4 or 8 MPa). The standard deviations computed for all tested seismic IMs are generally 16 
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increasing with decreasing steel grade, i.e. higher   values are reported for X60-grade 1 

pipelines compared to those calculated for X65- or X70-grade pipelines. Similarly, higher 2 

standard deviations   are reported for the imperfect pipelines (i.e. w/t = 0.1) compared to the 3 

equivalent ‘perfect’ ones (i.e. w/t = 0). Moreover, in case of imperfect pipelines (i.e. w/t = 0.1) 4 

it is found that the increase of the internal pressure of the pipeline leads to an increase of the 5 

standard deviations . The latter observation is found to be invalid for perfect pipelines (i.e. 6 

w/t = 0), as higher standard deviations   are reported for non-pressurized pipelines (p = 0 7 

MPa) compared to those calculated for pipeline pressurized at p = 4 MPa. The above 8 

observations should be attributed to the effect of the examined parameters (i.e. pressure level, 9 

pipeline wall imperfections and steel grade) on the axial response of the pipeline under 10 

seismically-induced ground deformations. For a given soil-pipeline configuration subjected to 11 

a given seismic ground deformation pattern, the reduction of the steel grade of the pipeline will 12 

lead to an increased nonlinear axial response of the pipeline, which will finally result in the 13 

higher standard deviations , reported for lower steel grade pipelines in Fig. 12a. The 14 

existence of wall imperfections on the pipeline is again expected to lead in a higher nonlinear 15 

axial response of the pipeline, compared to that of an equivalent ‘perfect’ pipeline-soil system 16 

subjected to the same ground deformation pattern [44, 47-48]. This may explain the higher   17 

values reported for imperfect pipelines (i.e. w/t = 0.1), compared to those reported for 18 

equivalent ‘perfect’ pipelines (i.e. w/t = 0).  19 

Previous studies [44-48] have demonstrated that pressurization of steel pipelines leads to initial 20 

circumferential tensile stresses, which interact with the axial straining of the pipeline, caused 21 

by the seismically-induced ground deformation. In particular, the increase of the internal 22 

pressure level of the pipeline tends to lower the axial load-displacement path, leading faster to 23 

yielding or instability phenomena. In other words, for a given soil-pipeline configuration 24 

subjected to a given seismic ground deformation pattern, the increasing pressurization of the 25 

pipeline is expected to lead to an increasing nonlinear axial response of the pipeline under the 26 

induced ground deformation, which subsequently will lead to a higher scatter of the pipeline 27 

strain ε against the tested seismic IMs. This is confirmed in Fig. 13a since higher σ values are 28 

computed for pipelines pressurized at p = 8 MPa, compared to those predicted for p = 0 or 4 29 

MPa. 30 

Regardless of the effects of the above parameters on the computed σ values, the lowest 31 

standard deviations are reported for PGV1, followed by PGV2 and PGVr. PGV2/PGA1 and 32 

PGV2/PGA2 are also found to give relatively low σ values. On the contrary the highest standard 33 

deviations are reported for PGA2 followed by PGA1 and PGAr. Iar and PGD1, PGD2 and PGDr 34 

are found to be rather inefficient IMs as compared to the PGV metrics.  35 
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 1 
Fig. 12 Comparisons of standard deviations   computed for D = 914.4 mm pipelines through 2 

regression analyses of the axial compression strain ε of pipelines relative to tested seismic IMs. (a) 3 

Effects of internal pressure p and pipeline wall imperfections (w/t) on   values. (b) Effect of trench 4 
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backfill properties and soil-pipe interface characteristics on   values. (c, d) Effect of soil deposit depth 1 

H on   values. 2 

 3 

Fig. 12b elaborates on the effects of backfill properties and backfill-pipeline interface friction 4 

characteristics on the standard deviations  , estimated for all tested seismic IMs, by 5 

comparing  values computed for X60, X65 or X70 D = 914.4 mm pipelines, embedded at a 6 

burial depth h = 1.0 in either trench TA or TB. The comparisons are provided for soil deposits 7 

with depth H = 30 m and refer to both ‘perfect’ (i.e. w/t = 0) and imperfect pipelines (i.e. w/t = 8 

0.1), pressurized at a pressure level p = 8 MPa. Higher σ values are clearly observed for the 9 

cases where the pipelines are embedded in trench TB, where a higher compaction level of the 10 

backfill and a higher backfill-pipe interface friction coefficient are considered. These 11 

observations, which are related to the increased axial response of the pipelines when embedded 12 

in trench TB, are in line with the observations made above (i.e. by comparing the regression 13 

analyses in Figs. 10 and 11). Regardless of the trench properties and the soil-pipeline interface 14 

characteristics, PGV1 exhibits again the lowest standard deviations in all examined cases, 15 

whereas the highest standard deviations are reported for PGA2. Similar conclusions are drawn 16 

when the examined pipelines (i.e. X60, X65 or X70 D = 914.4 mm ‘perfect’ or imperfect 17 

pipelines) are embedded in soil deposits with higher depths, i.e. H = 60 m (i.e. Fig. 12c) or H = 18 

120 m (i.e. Fig. 12d). In both cases PGV1 exhibits the lowest standard deviations, whereas the 19 

highest standard deviations are reported for PGA2. It is worth noticing the increasing σ values 20 

reported for all tested seismic IMs with increasing depth, H, of the soil deposits. The latter 21 

observation should be attributed to the higher differential ground response of deeper adjacent 22 

subdeposits, compared to that of shallower deposits under a given seismic excitation at 23 

bedrock. The higher differential ground response of the adjacent subdeposits is expected to 24 

induce a higher axial straining on the pipeline, thus increasing the potential of a more 25 

‘nonlinear’ response of the pipeline, which results in the higher standard deviation values in the 26 

relevant comparisons. 27 

Fig. 13 examines the effect of burial depth of the pipeline on the standard deviations σ 28 

estimated for all tested seismic IMs, by comparing the relevant σ values computed for X60 D = 29 

914.4 mm pipelines embedded at depths h = 1.0 m or 2.0 m in trench TA in soil deposits with 30 

depth H = 60 m. The relevant comparisons refer to both ‘perfect’ (i.e. w/t = 0) and ‘imperfect’ 31 

(i.e. w/t =0 .1) pipelines, pressurized at a pressure level p = 8 MPa. Higher standard deviations 32 

are computed in most cases for the shallow-embedded pipelines (i.e. for h = 1.0 m) compared 33 

to the equivalent pipelines embedded at h = 2.0 m. This observation is due to the increased 34 

ground response of the soil subdeposits towards ground surface, which yields in a higher 35 

relative axial ground deformation along the pipeline axis, therefore triggering a higher 36 

nonlinear axial response of shallower pipelines compared to the equivalent deeper ‘equivalent’ 37 

pipelines. In line with the previous results, higher σ values are reported for all tested seismic 38 

IMs in case of imperfect pipelines (i.e. w/t = 0.1). Irrespectively of the pipeline’s burial depth, 39 

PGV1 exhibits the lowest σ values, while the highest values are reported for PGA2 and PGA1. 40 
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 1 
Fig. 13 Effect of burial depth, h, of the pipeline on standard deviations   computed through regression 2 

analyses of the axial compression strain ε of pipeline, relative to tested seismic IMs. Results for X60 D 3 

= 914.4 mm pipelines embedded in trench TA in soil subdeposits with depth H = 60 m. 4 

 5 

Fig. 14a summarizes the standard deviations σ computed for all tested seismic IMs in case of D 6 

= 406.4 mm pipelines. More specifically, the presented σ values refer to X60, X65 and X70 7 

perfect (w/t =0) and imperfect (w/t=0.1) pipelines, pressurized at a pressure level p = 8 MPa 8 

and embedded in trench TA or TB in diverse soil deposits with depth H = 60 m. Similar to the 9 

previous results, higher standard deviations are computed for imperfect pipelines (w/t =0.1) 10 

embedded in trench TB. Additionally, higher σ values are reported for lower steel grade 11 

pipelines compared to those predicted for equivalent higher steel grade pipelines; however, the 12 

differences between the σ values computed for various steel grade pipelines are found reduced 13 

as compared to the D =914.4 mm pipelines. Similar observations and conclusions are made for 14 

D = 1219.2 mm pipelines examined in this study (Fig. 14b). Regardless of the geometrical 15 

properties of the examined pipelines, PGV1, reveals the lowest standard deviations  , for all 16 

examined cases.  17 

Summarizing, the lowest standard deviations are reported for PGV1 for all examined soil-pipe 18 

configurations. Hence, this seismic IM is considered the most efficient from the tested ones. On 19 

the contrary, PGA-based measures at top of ground surface (i.e. PGA1, PGA2) are found to be 20 

the most inefficient ones, as they exhibit the highest standard deviations for all examined 21 

configurations. The above observations are valid, irrespectively of the diameter and wall 22 

thickness of the pipeline. However, lower dispersion values are generally identified for the D = 23 

1219.2 mm pipelines with the thicker walls (i.e. R/t = 31.9).  24 
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(a) (b) 

 1 
Fig. 14 Comparisons of standard deviations   computed for D = 406.4mm (a) and D = 1219.2 mm (b) 2 

pipelines through regression analyses of the axial compression strain ε of pipelines relative to tested 3 

seismic IMs. 4 

 5 

4.2 Sufficiency of tested seismic IMs 6 

As stated above, a sufficient seismic IM is conditionally independent of the seismological 7 

characteristics, such as the magnitude (M) and the epicentral distance (R) [28]. To determine 8 

the sufficiency of the tested seismic IMs, regression analyses were performed on the residuals 9 

of the compression axial strain ε of the pipeline (referring at the middle critical section of the 10 

pipeline), relative to the magnitude and the epicentral distance of the selected seismic records 11 

(i.e. 
res IM ). The residuals 

res IM were defined as the differences between the numerically 12 

computed maximum pipeline axial strains (3D SPI results) and the strains computed by the 13 

regression fit line, the latter defined by the regression analysis on the maximum axial strain ε 14 

relative to the tested seismic IM (i.e. regression analysis conducted in the framework of 15 

identifying the efficiency of the tested IM, e.g. Fig. 9). The sufficiency was quantified by 16 

extracting the relevant p-values from the regressions of
res IM relative to the seismological 17 

characteristics of the selected ground motions, i.e. M and R. Fig. 15 illustrates examples of 18 

such regression analyses, referring to a X60 D = 914.4 mm ‘perfect’ pipeline embedded at a 19 

burial depth h =1.0 m in trench TA in soil deposits with depth H = 30 m. The analyses were 20 
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conducted for the selected ground motions to examine the sufficiency of PGV1. Sufficient 1 

seismic IMs generally lead to high p-values. A cut-off p-value of 0.05 was set here to 2 

differentiate between sufficient and insufficient seismic IMs [28].   3 

 4 

 5 

Fig. 15 Representative regression analyses of 
res IM relative to magnitudes (M) and epicentral 6 

distances (ln(R)) of selected ground motions, aiming at evaluating the sufficiency of PGV1. Results for a 7 

X60 D = 914.4 mm ‘perfect’ pipeline, embedded in trench TA in soil deposits with depth H = 30 m and 8 

pressurized at p = 8 MPa. 9 

 10 

Figs. 16-18 summarize the p-values computed for all tested seismic IMs in all examined cases, 11 

based on regression analyses of the residuals of the compression axial strain ε of the pipeline 12 

(
res IM ) relative to the magnitude of the selected seismic records. In particular, Fig. 16a 13 

summarizes p-values computed for D = 914.4 mm pipelines, embedded at a burial depth h = 14 

1.0 in trench TA in diverse soil deposits with depth H = 30 m. The comparisons aim at 15 

highlighting the effects of steel grade and internal pressure of the pipeline, as well as of 16 

imperfections of the walls of the pipeline on the computed p-values. No clear trends can be 17 

identified regarding the effects of pipeline internal pressure on the p-values. However, slightly 18 

higher p-values (up to 5%) are computed for most of tested seismic IMs and examined 19 

configurations, with decreasing internal pressure of the pipeline. The same trend, i.e. higher p-20 

values, is observed with increasing steel grade of the pipeline, while a slight decrease of p-21 

values is observed for imperfect pipelines (i.e. w/t =0.1) compared to ‘perfect’ equivalent ones 22 

(i.e. w/t = 0). Irrespectively of the steel grade, internal pressure and shape of the walls of the 23 

pipeline, it can be clearly seen that PGV1 exhibits the highest p-values compared to the other 24 

tested seismic IMs. Relatively high values are reported for the PGV2 and PGVr, while PGDr, 25 

IAr, PGD1, PGD2, PGV2/PGA1 and PGV2/PGA1 are found to pass the threshold limit of 0.05 for 26 

the p-value, in most of examined cases. On the contrary, the p-values computed for PGA1, 27 

PGA2 and PGAr are in most of examined cases lower than the threshold (i.e. 0.05), indicating 28 

that these measures are insufficient IMs for the examined systems.  29 

Fig. 16b-d aim at highlighting the effects of soil deposit depth, H, backfill properties and 30 

backfill-pipeline interface friction characteristics on the computed p-values, the latter estimated 31 

again via regression analyses of the residuals of the compression axial strain ε of the pipeline 32 

(
res IM ) relative to the magnitudes of the selected seismic records. The results refer to X60, 33 
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X65 or X70 D = 914.4 mm ‘perfect’ (i.e. w/t = 0) and imperfect pipelines (i.e. w/t = 0.1) 1 

pipelines, embedded at a burial depth h = 1.0 in either trench TA or TB in soil deposits of 2 

depth H = 30 m (Fig. 16b), H = 60 m (Fig. 16c) and H = 120 m (Fig. 16d). All examined 3 

pipelines are pressurized at a pressure level p = 8 MPa. In most of examined cases, higher p-4 

values are reported for ‘perfect’ pipelines (i.e. w/t = 0), which generally exhibit a more ‘elastic’ 5 

axial response for a given ground deformation compared to the equivalent imperfect pipelines 6 

(i.e. w/t = 0.1). Similarly, higher p-values are reported for pipelines embedded in trench TA, 7 

compared to equivalent pipelines embedded in trench TB. Regardless of the effects of the 8 

above parameters, the highest p-values are reported for PGV1 followed by PGV2. On the 9 

contrary the lowest values are found for PGA1 and PGA2.  10 

Fig. 17 compares p-values computed for X60 D = 914.4 mm ‘perfect’ (i.e. w/t = 0) and 11 

‘imperfect’ (i.e. w/t = 0.1) pipelines embedded at diverse burial depths (i.e. h = 1.0 m or 2.0 m) 12 

in trench TA in soil deposits with depth H = 60 m. The pipelines are pressurized at a pressure 13 

level p = 8 MPa. The higher embedment of the pipeline seems to lead in higher p-values for 14 

some of the tested seismic IMs (i.e. PGAr, PGA1, PGA2), compared to those computed for 15 

equivalent pipelines embedded in shallower depth (i.e. h = 1.0 m). However, for other 16 

measures, a higher embedment lead to either comparable or reduced p-values, compared to 17 

those referring to shallower equivalent pipelines (e.g. PGV1, PGV2, PGD1, PGD2 etc). 18 

Regardless of the above deviations, PGV1 is again found to provide the highest p-values.  19 

Fig. 18a compares p-values computed for all tested seismic IMs in case of the D = 406.4 mm 20 

pipelines examined herein. The p-values refer to perfect (w/t = 0) and imperfect (w/t = 0.1) 21 

pipelines, embedded in trench TA or TB in soil deposits with depth H = 60 m and pressurized 22 

at a pressure level p = 8 MPa. No clear trends may be identified in these cases, regarding the 23 

effects of backfill properties, backfill-pipe interface characteristics, steel grade of the pipeline 24 

and imperfections of the pipeline walls, on the computed p-values. However, higher p-values 25 

are reported for PGV-based IMs (i.e. PGV1, PGV2, PGVr), while the lowest values are again 26 

reported for PGA-based IMs (i.e. PGA1, PGA2). The same observations are made by comparing 27 

the p-values computed for all tested seismic IMs in case of the D = 1219.2 mm pipelines, 28 

examined herein (Fig. 18b).  29 

 30 
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 (a) (b) 

(c) (d) 

 1 
Fig. 16 Comparisons of p-values computed for all tested seismic IMs through regression analyses of 2 

res IM relative to magnitudes (M) of the selected ground motions. (a) Effects of internal pressure p 3 
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and pipeline wall imperfections (w/t) on p-values. (b) Effects of trench properties and soil-pipe interface 1 

characteristics on p-values. (c, d) Effect of soil deposit depth H on p-values (results for D = 914.4mm 2 

pipelines). 3 

 

 4 
Fig. 17 Effect of burial depth h of the pipeline on p-values computed through regression analyses of 5 

res IM relative to magnitudes (M) of the selected ground motions. Results for X60 D = 914.4 mm 6 

pipelines embedded in trench TA in soil deposits with depth H = 60 m. 7  

(a) (b) 

 8 
Fig. 18 Comparisons of p-values computed for (a) D = 406.4 mm and (b) D = 1219.2 mm pipelines 9 

through regression analyses of 
res IM relative to magnitudes (M) of selected ground motions.  10 
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Figs. 19-21 summarize comparisons of p-values computed for all tested seismic IMs in all 1 

examined cases, based on regression analyses of the residuals of the compression axial strain ε 2 

of the pipeline (
res IM ) relative to the epicentral distance of the selected seismic records. 3 

More specifically, Fig. 19a summarizes p-values referring to X60, X65 or X70 D = 914.4 mm 4 

‘perfect’ (i.e. w/t =0) or imperfect (i.e. w/t =0.1) pipelines, pressurized at various levels of 5 

pressure (p = 0, 4, 8 MPa) and embedded at a burial depth h = 1.0 in trench TA in soil deposits 6 

with depth H = 30 m. Lower p-values are generally computed here, compared to those 7 

predicted from regression analyses of the residuals of the compression axial strain ε of the 8 

pipeline (
res IM ) relative to the magnitudes of the selected seismic records. Additionally, in 9 

most of examined cases the computed p-values are found to be lower than the threshold of 10 

0.05, indicating insufficiency of the tested IMs. However, the computed p-values for PGV1 and 11 

PGV2 are always slightly higher or higher than 0.05. Similar observations are made by 12 

comparing the computed p-values for all tested seismic IMs, in cases where the examined 13 

pipelines (D = 914.4 mm ‘perfect’ or imperfect pipelines) are embedded at a burial depth h = 14 

1.0 in either trench TA or TB in soil deposits of depth H = 30 m (Fig. 19b), H = 60 m (Fig. 15 

19c) and H = 120 m (Fig. 19d). The highest p-values are reported for PGV1 followed by PGV2. 16 

On the contrary the lowest values are found for PGAr. PGV1 reveals the highest p-value 17 

compared to other tested seismic IMs, even when the examined D = 914.4 mm pipeline is 18 

embedded deeper (i.e. at h = 2.0 m) (Fig. 20).  19 

Fig. 21a compares p-values computed for all tested seismic IMs in case of X60, X65 and X70 20 

D = 406.4 mm pipelines, based on regression analyses of the residuals of the compression axial 21 

strain ε of the pipeline (
res IM ) relative to the epicentral distance of the selected seismic 22 

records. The results refer to both ‘perfect’ (w/t = 0) and imperfect (w/t = 0.1) pipelines, 23 

pressurized at a pressure level p = 8 MPa and embedded in trench TA or TB in diverse soil 24 

deposits with depth H = 60 m. The trends regarding the effects of backfill properties, backfill-25 

pipe interface characteristics, steel grade of the pipeline and imperfections of the pipeline 26 

walls, on the computed p-values are again not clear in these cases. Higher p-values are reported 27 

for PGV1, PGV2 and PGVr. On the contrary, the lowest values are again reported for PGA-28 

based measures. The same observations are made by comparing the p-values computed for all 29 

tested seismic IMs, in case of the D = 1219.2 mm pipelines examined herein (Fig. 21b).  30 

Based on the discussion made above, PGV1 is found to satisfy the sufficiency criterion in a 31 

mathematically rigorous way.  32 
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 (a) (b) 

(c) (d) 

 1 
Fig. 19 Comparisons of p-values computed for all tested seismic IMs through regression analyses of 2 

res IM relative to epicentral distances (ln(R)) of the selected ground motions. (a) Effects of internal 3 

pressure p and pipeline wall imperfections (w/t) on p-values. (b) Effects of trench properties and soil-4 
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pipe interface characteristics on p-values, (c, d) Effect of soil deposit depth H on p-values (results for D 1 

= 914.4 mm pipelines).  2 

 

 3 
Fig. 20 Effect of burial depth, h, of the pipeline on p-values computed through regression analyses of 4 

res IM relative to epicentral distances (ln(R)) of the selected ground motions. Results for X60 D = 5 

914.4 mm pipelines embedded in trench TA in soil subdeposits with depth H = 60 m. 6 
 

(a) (b) 

 7 
Fig. 21 Comparisons of p-values computed for (a) D = 406.4 mm and (b) D = 1219.2 mm pipelines 8 

based on regression analyses of 
res IM relative to epicentral distances (ln(R)) of the selected ground 9 

motions.  10 

 11 
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5. Conclusions  1 

This study examined the efficiency and sufficiency of various seismic IMs for the structural 2 

assessment of buried steel natural gas (NG) pipelines subjected to axial compression strains, 3 

the latter developed as a result of seismically-induced differential ground movement near 4 

geotechnical discontinuities. A de-coupled numerical framework was developed for this 5 

purpose, including a 3D soil-pipe numerical model, to rigorously evaluate the pipeline axial 6 

response, accounting for the soil-pipe interaction phenomena, and 1D soil response analyses 7 

that were used to determine critical ground deformation patterns at the geotechnical 8 

discontinuity, caused by ground shaking. A comprehensive numerical parametric study was 9 

performed for an ensemble of seismic records, considering critical parameters that control the 10 

axial response of buried steel NG pipelines, such as the dimensions of the pipeline, the 11 

pressurization level of the pipeline, potential geometric imperfections of the pipeline walls, the 12 

backfill and soil properties and the backfill-pipeline interface characteristics. The peak 13 

compression strain of the pipeline, ε, computed at the location of the assumed geotechnical 14 

discontinuity, was used as EDP to quantify the efficiency and sufficiency of the selected 15 

seismic IMs on the basis of regression analyses of this parameter, relative to the tested IMs. 16 

The main conclusions of the study are summarized in the following: 17 

• The regression analyses of the peak compression strain of the pipeline, ε, relative to the 18 

peak ground velocity PGV, computed at ground surface as the maximum value of the peak 19 

velocities of the adjacent soil subdeposits, i.e. PGV1, revealed the lowest standard 20 

deviations  , regardless of the ground characteristics and pipeline dimensions. On the 21 

contrary, the regression analyses of the peak compression strain of the pipeline ε relative to 22 

PGA-based IMs revealed the highest standard deviations . Additionally, the regression 23 

analyses of the peak compression strain of the pipeline, ε, relative to PGD and PGV2/PGA 24 

revealed higher standard deviations   compared to PGV. Therefore, PGV1 found to be the 25 

most efficient intensity measure for the structural assessment of buried steel NG pipelines, 26 

crossing similar sites we those examined herein and subjected to seismically-induced axial 27 

ground deformations. 28 

• The regression analyses of the residuals 
res IM relative to the magnitude (M) and the 29 

epicentral distance (ln(R)) of the selected records, revealed the highest p-values for peak 30 

ground velocity PGV computed at ground surface as the maximum value of the peak 31 

velocities of the adjacent soil subdeposits, i.e. PGV1. This observation indicates that this IM 32 

satisfies the sufficiency criterion in a mathematically rigorous way. On the contrary, PGA-33 

based IMs where found to be the most inefficient ones.  34 

Summarizing, PGV1 was found to be the optimum seismic IM for the structural assessment of 35 

buried steel NG pipelines, crossing geotechnical discontinuities, when subjected to seismically-36 

induced axial ground deformations. This observation is in line with the theoretically expected 37 

superiority of PGV. Indeed, PGV, is directly associated with the longitudinal ground strains, 38 

which constitute the main loading mechanism of this infrastructure during ground shaking. 39 

This study constitutes a comprehensive numerical effort towards proving superiority of PGV as 40 

optimal seismic IM for the assessment of buried NG pipelines.  41 
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