
Big Data Ingestion and Lifelong Learning
Architecture

Gautam Pal
Department of Computer Science

University of Liverpool
Liverpool, UK

gautam.pal@liverpool.ac.uk

Gangmin Li
Department of Computer Science

Xi’an Jiaotong-Liverpool University
Suzhou, China

Gangmin.Li@xjtlu.edu.cn

Katie Atkinson
Department of Computer Science

University of Liverpool
Liverpool, UK

K.M.Atkinson@liverpool.ac.uk

Abstract—Lifelong Machine Learning (LML) mimics common
human learning experiences. Humans undergo through long
learning phase at start while studying followed by updating
knowledge base incrementally from everyday instances. The
objective is to retain past learnt knowledge and transfer learning
to the next task iteratively. Training on the large data pool
through a one-shot long running batch job limits the responsive-
ness and increases the infrastructure cost through large cluster
requirements. The full dataset may not be available as well
at the initiation of the training process. Through a review of
previous work on lifelong machine leaning, we propose a Multi-
agent Lambda Architecture (MALA) model to combine historical
batch data with live streaming data to develop a lifelong learning
system. MALA allows the streaming process to initialize itself
with trained model from the batch data. Streaming process
takes the batch data offset and incrementally updates the model
iteratively with new waves of data. Reasons for our claim are
presented through implementation of a recommender engine.

Index Terms—Lifelong learning, Incremental learning, Multi-
agent System, Recommender systems

I. INTRODUCTION

Over the past two decades significant advancements has
been made in the field of machine leaning frameworks and
methods. However, not much research has been done on
the framework that leverages these methods to retain and
iteratively extend the past learnt knowledge over the period
of time.

This work provides an approach towards developing an
LML system [1] RN2 through big data hybrid data processing
Lambda Architecture which consolidates the stream and batch
views using big data tools. In our model batch and real-
time components act as autonomous Multi-agent systems
in collaboration. We propose a novel Multi-agent Lambda
Architecture (MALA) model and prove the efficiency through
implementation of a recommender service.

II. PROPOSED ARCHITECTURES

A. Lambda Architecture

Lambda Architecture (LA) [1] is a standard framework
for managing big data which enables mixing of real-time
with batch data. The basic architecture of lambda offers three

This research was supported by Accenture Technology Labs Beijing, China.
Grant number RDF 15-02-35.

layers: speed layer for real-time data, batch layer for large
volume of static historical data pool and serving layer that
integrates real-time and batch views.

Fig. 1: Lambda Architecture integrates low latency real-time
framework with high throughput Hadoop batch framework.
Notice, data from Kafka message queue gets ingested to
both and stream processor frameworks. While stream
processors can analyze data in transit, batch module stores
the ingested data pool into HDFS over the time before
processing. Apache Storm and Hadoop MapReduce
frameworks are used at stream and batch modules
respectively. A NoSql datastore (Cassandra) combines the
batch and real-time views at the serving layer.

B. Multi-agent Lambda Architecture

Multi-agent Lambda Architecture (MALA) is our extension
to the standard LA model and primary contribution in this
paper. MALA enables accumulative and collaborative learning
through set of big data tools and methods. Stream and batch
components act as two autonomous multi-agent system which
collaborates to produce more comprehensive view of the data.

2018 IEEE International Conference on Big Data (Big Data)

1



Fig. 2: Multi-agent Lambda Architecture (MALA). Modules
of MALA are: Stream processing engine, historical data
miner, Knowledge base and Knowledge miner. Batch and
streaming modules are considered as two autonomous
Multi-agent systems to collaborate and achieve a common
goal.

1) Stream Processing Engine: Streaming processing engine
initializes itself with trained model generated from batch
stored into HDFS. Stream engine uses the batch data as initial
offset to start with and builds on top of it, incrementally at
a specified window intervals. The main challenge streaming
layer faces is to process in-flight high velocity of ingested
data without first storing into a file system or a database. In
the current supporting case study, the stream engine ingests
users clickstream data generated a high rate. Since volume
of click to view is much higher than final purchases, the
framework uses multi-node multi-broker Kafka installation for
distributed caching and integrating pipeline [2]. Apache Storm
is the subscriber for the Kafka message queues and does the
distributed processing through series of Spouts and Bolts [3]
[4] [5].

2) Historical Data Miner: Historical Data Miner(HDM)
has two sub components: distributed storage and processing
by MapReduce. Hadoop Distributed File System (HDFS) or
a NoSQL datastores like Cassandra, MongoDB or HBase can
be a storage option for batch jobs. Batch job uses Hadoop
MapReduce through Java and Hive with a one-shot batch run
on the entire data pool.

3) Knowledge Miner and Knowledge Base: Knowledge
Minder (KM) is the severing layer to the end user. It combines
the views from batch and stream to provide a lifelong learning
mechanism. KM persists the results into the Knowledge Base
(KB). KM also performs data filtration, provides the system
health and performance statistics for data governance and
monitoring purposes.

III. IMPLEMENTATION OF A RECOMMENDER SYSTEM
THROUGH LIFELONG LEARNING MODEL

Incremental lifelong learning approach outlined through
MALA architecture is implemented through a recommender
system. Recommender system we design is capable of rec-
ommending items for an e-commerce site. It does not require
users to login to see the list of recommendations. Rather, the
system users click to view data as passive or implicit form of

feedback [6] to recommend items. Implicit Feedback Based
Recommender System (IFBRS) uses the concept of Collab-
orative Filtering [7] [8] [9] [10] to build upon other users
viewing preference on the same items under one browsing
session. The recommender system also considers filtration on
item similarity based on categories.

Algorithm 1 Computing Recommendation Through MALA
Architecture
Input: batch dataset db, streaming window dataset ds =∑n

i=1 di, Kafka topic kt, Database address da,

Output: : Ordered recommendation list

1: Cb ← CollaborativeFilteringFunction(db)

2: Sb ← ItemSimilarityFunction(db)

3: call subscribeKafkaQueue();

4: for Streamed dataset ds do
5: Stream engine consumes from Kafka queue

6: Cs ← CollaborativeFilteringRule(ds)

7: Rc ← Update(Cb, Cs) //update batch with stream

8: Ss ← ItemSimilarityFunction(ds)

9: Rs ← Update(Sb, Ss) //update batch with stream

10: R ← Rc ∩ Rs

11: return R persisted into da

12: end for

Step 1 (lines 1-2): Initial recommendation list is built based
on item similarity and collaborative filtering rule .
Step 2(lines 7-9): On each streaming window, batch data (plus
previous iterations of streaming data) gets updated with current
stream window
Step 3 (lines 10-11): Knowledge base is updated and used for
next iterations. Notice, final recommendation is based on items
common between Collaborative Filtration and item similarity
rules.

A. Experimental Results

IFBRS is verified against Spark ALS for accuracy. Users
clickstream data provides several latent factors like browsing
location and time of browsing [11] [12]. IFBRS performs a
weighted average with different latent factors to compute the
final recommendations. Refer [13] for the detailed steps for
core recommender engine.

2



Fig. 3: Recommender system architecture and data flow. Kafka ingestion pipeline retrieves users click data. Apache Storm is
the real-time processing engine. Internal context holds the items feature for similarity computation, online context captures
the users clickstream data. Fusion of batch and real-time data flow updates the recommendation ordering making it more
precise through every iteration.

Fig. 4: IFBRS provides better accuracy than Spark ALS as
its distribution over different product IDs (x axis) is closer to
user provided actual ratings.

REFERENCES

[1] J. Heidrich, A. Trendowicz, and C. Ebert, “Exploiting big data’s bene-
fits,” IEEE Software, vol. 33, no. 4, pp. 111–116, 2016.

[2] G. Pal, G. Li, and K. Atkinson, “Big data real time ingestion and
machine learning,” in 2018 IEEE Second International Conference on
Data Stream Mining Processing (DSMP), Aug 2018, pp. 25–31.

[3] D. Xiang, Y. Wu, P. Shang, J. Jiang, J. Wu, and K. Yu, “Rb-
storm: Resource balance scheduling in apache storm,” in 2017 6th IIAI
International Congress on Advanced Applied Informatics (IIAI-AAI),
Conference Proceedings, pp. 419–423.

[4] M. R. H. Farahabady, H. R. D. Samani, Y. Wang, A. Y. Zomaya,
and Z. Tari, “A qos-aware controller for apache storm,” in 2016 IEEE
15th International Symposium on Network Computing and Applications
(NCA), Oct 2016, pp. 334–342.

[5] J. Xu, R. Rahmatizadeh, L. Bölöni, and D. Turgut, “Real-time prediction
of taxi demand using recurrent neural networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 8, pp. 2572–2581, Aug
2018.

[6] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in 2008 Eighth IEEE International Conference on
Data Mining, Conference Proceedings, pp. 263–272.

[7] H. Kim, S. Madhvanath, and T. Sun, “Hybrid active learning for
non-stationary streaming data with asynchronous labeling,” in 2015
IEEE International Conference on Big Data (Big Data), Conference
Proceedings, pp. 287–292.

[8] C. H. Lee and C. Y. Lin, “Implementation of lambda architecture:
A restaurant recommender system over apache mesos,” in 2017 IEEE
31st International Conference on Advanced Information Networking and
Applications (AINA), Conference Proceedings, pp. 979–985.

[9] A. Batyuk and V. Voityshyn, “Apache storm based on topology for real-
time processing of streaming data from social networks,” in 2016 IEEE

3



First International Conference on Data Stream Mining & Processing
(DSMP), 2018, Conference Proceedings, pp. 345–349.

[10] M. Hanif, H. Yoon, S. Jang, and C. Lee, “An adaptive sla-based data flow
mechanism for stream processing engines,” in 2017 International Con-
ference on Information and Communication Technology Convergence
(ICTC), Conference Proceedings, pp. 81–86.

[11] C. Xia, X. Jiang, L. Sen, L. Zhaobo, and Y. Zhang, “Dynamic item-based
recommendation algorithm with time decay,” in 2010 Sixth International
Conference on Natural Computation, vol. 1, Conference Proceedings,
pp. 242–247.

[12] J. A. Deri, F. Franchetti, and J. M. F. Moura, “Big data computation of
taxi movement in new york city,” in 2016 IEEE International Conference
on Big Data (Big Data), Dec 2016, pp. 2616–2625.

[13] G. Pal, G. Li, and K. Atkinson, “Multi-agent item to item contextual big
data recommender system,” International Journal of Design, Analysis &
Tools for Integrated Circuits & Systems, vol. 6, no. 1, pp. p58–59, Oct,
2017.

4




