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Abstract

Fair division of indivisible goods is a very well-studied

problem. The goal of this problem is to distribute m goods

to n agents in a “fair” manner, where every agent has a

valuation for each subset of goods. We assume general

valuations.

Envy-freeness is the most extensively studied notion of

fairness. However, envy-free allocations do not always exist

when goods are indivisible. The notion of fairness we

consider here is “envy-freeness up to any good” (EFX) where

no agent envies another agent after the removal of any single

good from the other agent’s bundle. It is not known if such

an allocation always exists even when n = 3.

We show there is always a partition of the set of goods into

n + 1 subsets (X1, . . . , Xn, P ) where for i ∈ [n], Xi is the

bundle allocated to agent i and the set P is unallocated (or

donated to charity) such that we have:

(1) envy-freeness up to any good,

(2) no agent values P higher than her own bundle, and

(3) fewer than n goods go to charity, i.e., |P | < n

(typically m� n).

Our proof is constructive. When agents have additive

valuations and |P | is large (i.e., when |P | is close to n), our

allocation also has a good maximin share (MMS) guarantee.

Moreover, a minor variant of our algorithm also shows the

existence of an allocation which is 4/7 groupwise maximin

share (GMMS): this is a notion of fairness stronger than

MMS. This improves upon the current best bound of 1/2

known for an approximate GMMS allocation.

1 Introduction

Fair division of goods among competing agents is a fun-
damental problem in Economics and Computer Science.
There is a set M of m goods and the goal is to allocate
goods among n agents in a fair way. An allocation is
a partition of M into disjoint subsets X1, . . . , Xn where
Xi is the set of goods given to agent i. When can an
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allocation be considered “fair”? One of the most well-
studied notions of fairness is Envy-freeness. Every agent
has a value associated with each subset of M and agent i
envies agent j if i values Xj more than Xi. An alloca-
tion is envy-free if no agent envies another. An envy-free
allocation can be regarded as a fair and desirable par-
tition of M among the n agents since no agent envies
another; as mentioned in [27], such a mechanism of par-
titioning land dates back to the Bible.

Unlike land which is divisible, goods in our setting
are indivisible and an envy-free allocation of the given
set of goods need not exist. Consider the following
simple example with two agents and a single good: one
of the agents has to receive this good and the other
agent envies her. Since envy-free allocations need not
exist, several relaxations have been considered.

Relaxations. Budish [12] introduced the notion of
EF1: this is an allocation of goods that is “envy-free
up to one good”. In an EF1 allocation, agent i may
envy agent j, however this envy would vanish as soon
as some good is removed from Xj . Note that no good is
really removed fromXj : this is simply a way of assessing
how much i values Xj more than Xi. That is, if i values
Xj more than Xi, then there exists some g ∈ Xj such
that i values Xi at least as much as Xj \ {g}. Going
back to the example of two agents and a single good, the
allocation where one agent receives this good is EF1. It
is known that EF1 allocations always exist; as shown by
Lipton et al. [26], such an allocation can be efficiently
computed.

Caragiannis et al. [14] introduced a notion of envy-
freeness called EFX that is stronger than EF1. An EFX
allocation is one that is “envy-free up to any good”. In
an EFX allocation, agent i may envy agent j, however
this envy would vanish as soon as any good is removed
from Xj . Thus every EFX allocation is also EF1 but
not every EF1 allocation is EFX.

a b c

Agent 1 1 1 2

Agent 2 1 1 2

Consider the simple example given above: there
are three goods a, b, c and two agents with additive
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valuations (defined in Section 1.1) as described below.
Both agents value c twice as much as a or b. The
allocation where agent 1 gets {a} and agent 2 gets
{b, c} is EF1 but not EFX. On the other hand, the
allocation where agent 1 gets {a, b} and agent 2 gets {c}
is EFX. Indeed, the latter allocation seems fairer than
the former allocation. As said in [13]: “Arguably, EFX
is the best fairness analog of envy-freeness of indivisible
items”. While it is known that EF1 allocations always
exist, the question of whether EFX allocations always
exist is still an open problem (despite significant effort,
according to [14]).

Plaut and Roughgarden [27] showed that EFX allo-
cations always exist (i) when there are only two agents
or (ii) when all n agents have the same valuations.
Moreover, it was shown in [27] that exponentially many
value queries may be needed to determine EFX alloca-
tions even in the restricted setting where there are only
two agents with identical submodular valuation func-
tions1. It is not known if an EFX allocation always
exists even when there are only three agents with addi-
tive valuations. It was remarked in [27]: “We suspect
that at least for general valuations, there exist instances
where no EFX allocation exists”.

A relaxation of EFX. Very recently, Caragiannis
et al. [13] introduced a more relaxed notion of EFX
called EFX-with-charity. This is a partial allocation
that is EFX, i.e., the entire set of goods need not be
distributed among the agents. So some goods may be
left unallocated and it is assumed that these unallocated
goods are donated to charity. There is a very simple
allocation that is EFX-with-charity where no good is
assigned to any agent—thus all goods are donated to
charity. Obviously, this is not an interesting allocation
and one seeks allocations with better guarantees and
one such allocation was shown in [13].

Let X∗ = 〈X∗1 , . . . , X∗n〉 be an optimal Nash social
welfare allocation2 on the entire set of goods. It was
shown in [13] that there always exists an EFX-with-
charity allocation X = 〈X1, . . . , Xn〉 where every agent
receives at least half the value of her allocation in
X∗. Interestingly, as shown in [13], Xi ⊆ X∗i for all
i. Unfortunately, there are no upper bounds on how
complete this allocation is (wrt bounding the number of
unallocated goods) or on the value any agent has for the
set of goods donated to charity.

We believe these are important questions to ask.
The ideal allocation is one that is EFX and complete;

1These are valuation functions with decreasing marginal val-

ues.
2This is an allocation that maximizes Πn

i=1vi(X
∗
i ), where vi is

agent i’s valuation function.

so we would like a guarantee that a large number
of goods have been allocated to agents. Moreover,
since EFX allocations guarantee envy-freeness once any
good is removed from another agent’s set, it is in the
same spirit that we seek an EFX (partial) allocation
where nobody envies the set of unallocated goods.
The allocation in [13] gives no guarantee either on the
number of unallocated goods or on whether any agent
values the set of unallocated goods more than her own
bundle. Here we consider the notion of EFX-with-
bounded-charity. That is, we seek EFX-with-charity
allocations with bounds on the set given to charity, i.e.,
a bound on the size and a bound on the value of the set
of goods donated to charity.

1.1 Our Results Let N = [n] be the set of agents.
Every agent i ∈ [n] has a valuation function vi : 2M →
R≥0, where M is the set of m goods. We show our main
existence result for general valuation functions, i.e., the
only assumptions we make on any valuation function vi
is that (i) it is normalized, i.e., vi(∅) = 0, and (ii) it
is monotone, i.e., S ⊆ T implies vi(S) ≤ vi(T ). In
contrast, the EFX-with-charity allocation in [13] works
only for additive valuations, i.e., vi(S) =

∑
g∈S vi({g}).

We show there always exists an allocation3 X =
〈X1, . . . , Xn〉 that satisfies the following properties:

1. X is EFX, i.e., for any two agents i, j:
vi(Xi) ≥ vi(Xj \ {g}) for any g ∈ Xj ;

2. vi(Xi) ≥ vi(P ) for all agents i, where
P = M \ ∪ni=1Xi is the set of unallocated goods;

3. |P | < n (recall that n is the number of agents).

Note that our result implies that among the n
agents, if there is just one agent who has no preferences
(say, for some i, we have vi(S) = 0 for all S ⊆ M)
then a complete EFX allocation always exists for general
valuations.

Our proof is constructive. We start with no goods
being allocated to the agents and find the claimed allo-
cation by at most nmV/∆ applications of three simple
update rules. Here, n is the number of agents, m is the
number of goods, V = maxi vi(M) is the maximum val-
uation of any agent, and ∆ = mini min{|vi(T )−vi(S)| :
S, T ⊆ M and vi(S) 6= vi(T )} is the minimum differ-
ence between distinct valuations.

The update rules use a minimum-size-valuable-set-
oracle: given S ⊆ M , agent i, and α ∈ R such
that vi(S) > α, find a minimum cardinality subset
Z ⊆ S such that vi(Z) > α. If this oracle can be

3Henceforth, allocations are partial and we will use “complete
allocation” to refer to one where all goods are allocated.
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implemented in pseudo-polynomial time, then our proof
yields a pseudo-polynomial time algorithm to compute
the above allocation.

It also follows from our proof that when all agents
have the same valuation function, our allocation is
complete. That is, |P | = 0. This is an alternate proof to
the existence of complete EFX allocations for identical
(general) valuations, originally shown in [27].

Our next result is a pseudo-polynomial time algo-
rithm to find an allocation that obeys properties 1-3
given above. For this, we assume that all agents have
gross substitute valuations (defined in Section 3). For
gross substitute valuations, the minimum-size-valuable-
set-oracle can be realized by a simple greedy algorithm
that uses only value queries. Every additive valuation
is a gross substitute valuation and gross substitute val-
uations form a subclass of the set of submodular valua-
tions [23].

• Suppose all agents have gross substitute valuations.
Then an EFX allocation with properties 1-3 can be
computed with poly(n,m, V, 1/∆) value queries.

1.1.1 Additive valuations The most well-
understood class of valuation functions is the set
of additive valuations. We consider the case when all
agents have additive valuations and show that our
allocation or very minor variants of our allocation can
guarantee several other notions of fairness.

Ensuring high Nash social welfare. We show that
modifying the starting step of our algorithm ensures
that our allocation X, which satisfies properties 1-3
stated above, also has a high Nash social welfare. That
is, vi(Xi) ≥ 1

2 · vi(X
∗
i ) as promised in [13], where

X∗ = 〈X∗1 , . . . , X∗n〉 is an optimal Nash social welfare
allocation. Here we use the allocation computed in [13]
as a black box in our starting step, thus our result can
be regarded as an extension of the result in [13].

Number of Unallocated Goods and MMS Guar-
antee. Another interesting and well-studied notion of
fairness is maximin share. Suppose agent i has to parti-
tion M into n bundles (or sets) knowing that she would
receive the worst bundle with respect to her valuation.
Then i will choose a partition of M that maximizes
the valuation of the worst bundle (wrt her valuation).
The value of this worst bundle is the maximin share of
agent i. An important question here is: does there al-
ways exist an allocation of M where every agent gets a
bundle worth at least her maximin share?

Formally, let N and M be the sets of n agents and
m goods, respectively. We define the maximin share of
an agent (say, i) as follows: (here X is the set of all

complete allocations)

MMS i(n,M) = max
〈X1,...,Xn〉∈X

min
j∈[n]

vi(Xj).

The goal is to determine an allocation
〈X1, X2, . . . , Xn〉 of M such that for every i we have
vi(Xi) ≥ MMS i(n,M). This question was first posed
by Budish [12]. Procaccia and Wang [28] showed that
such an allocation need not exist, even in the restricted
setting of only three agents! Thereafter, approximate-
MMS allocations were studied [28, 19, 21, 20] and we
know polynomial time algorithms to find allocations
where for all i, agent i gets a bundle of value at least
α · MMS i(n,M); the current best guarantee for α is
3/4−ε by Ghodsi et al. [21] (for any ε > 0) and this was
very recently improved to 3/4 by Garg and Taki [20].

Amanatidis et al. [2] showed that any complete
EFX allocation is also a 4

7 -MMS allocation. We show
that our allocation promises better MMS guarantees
when the number of unallocated goods is large. Let
X = 〈X1, . . . , Xn〉 be our allocation as described by
properties 1-3 above and P be the set of unallocated
goods. For any agent i ∈ [n], we have:

vi(Xi) ≥
1

2− |P |/n
MMS i(n,M).

Hence, larger the number of unallocated goods,
better are the guarantees that we get on MMS. The
extreme values are |P | = 0 and |P | = n−1. When |P | =
0, we have a complete EFX allocation and when |P | =
n−1, we have an EFX allocation that is an almost-MMS
allocation: vi(Xi) ≥ (1− 1/n) ·MMS i(n,M) for all i.

Improved Guarantees for Groupwise MMS. Bar-
man et al. [7] recently introduced a notion of fair-
ness called groupwise maximin share (GMMS) which
is stronger than MMS. An allocation is said to be
GMMS if the MMS condition is satisfied for every sub-
group of agents and the union of the sets of goods al-
located to them. Formally, a complete allocation X =
〈X1, X2, . . . , Xn〉 is α-GMMS if for any N ′ ⊆ N , we
have vi(Xi) ≥ α ·MMS i(n

′,
⋃

i∈N ′ Xi) where n′ = |N ′|.
Every GMMS allocation, i.e. α = 1, is also a complete
EFX allocation [7].

It is known [7] that GMMS strictly generalizes
MMS. In particular, in the same paper, it was shown
that GMMS allocations rule out some very unsatisfac-
tory allocations that have MMS guarantees. For exam-
ple, consider an instance with n agents with additive
valuations and a set M of n− 1 goods and every agent
has a valuation of one for each good. Since the num-
ber of goods is less than the number of agents, we have
MMS i(n,M) = 0 for every agent i. So any allocation
has MMS guarantees. It is not hard to see that the
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only allocation with a GMMS guarantee is where n− 1
agents get one good each and one agent is left without
any goods. See subsection 2.1 in [7] for more discussion.
Naturally, it is a harder problem to approximate GMMS
than MMS. While 3

4 -MMS allocations always exist, the
largest α for which α-GMMS allocations are known to
exist is 1

2 [7]. We extend the result of Amanatidis et
al. [2] for MMS to show the following:

• A 4
7 -GMMS allocation always exists and can be

computed in pseudo-polynomial time.

In particular, we show that modifying the last step of
our algorithm results in a complete allocation that is 4

7 -
GMMS. Very recently and independently, Amanatidis
et al. [4] showed the same approximation.

1.2 Our Techniques We now give an overview of
the main ideas used to find our EFX allocation. We
first recall the algorithm of Lipton et al. [26] for finding
an EF1 allocation4. They use the notion of an envy-
graph: here each vertex corresponds to an agent and
there is an edge (i, j) iff i envies j. The invariant
maintained is that the envy-graph is a DAG: a cycle
corresponds to a cycle of envy and by swapping bundles
along a cycle, every agent becomes better-off and the
number of envy edges decreases. More precisely, if
i0 → i1 → i2 → . . . → i`−1 → i0 is a cycle in
the envy graph, then reassigning Xij+1 to agent ij for
0 ≤ j < ` (indices are to be read modulo `) will increase
the valuation of every agent in the cycle. Also if there
was an edge from s to some ik where s is not a part
of the cycle, this edge just gets directed now from s to
ik+1 after we exchange bundles along the cycle. Thus
the number of envy edges in the graph does not increase
and the valuations of the agents in the cycle goes up.
Thus cycles can be eliminated.

The algorithm in [26] runs in rounds and always
maintains an allocation that is also EF1. At the
beginning of every round, an unenvied agent s (this
is a source vertex in this DAG) is identified and an
unallocated good g is allocated to s. The new allocation
is also EF1, as nobody will envy the bundle of s after
removing the good g.

The Reallocation Operation. We now highlight a
key difference between an EF1 allocation and an EFX
allocation. From the algorithm of Lipton et al. [26], it is
clear that given an EF1 allocation on a set M0 of goods,
one can determine an EF1 allocation onM0∪M1, for any
M1 ⊆M \M0, by simply adding goods from M1 one-by-
one to the existing bundles and changing the owners (if

4The algorithm in [26] was published in 2004 with a different
property and EF1 was proposed in 2011.

necessary) in a clever way. Intuitively, we never need to
cut or merge the bundles formed in any EF1 allocation.
We can just append the unallocated goods appropriately
to the current bundles.

The above strategy is very far from true for EFX.
Consider the example illustrated below with three
agents with additive valuations and four goods a, b, c,
and d.

a b c d

Agent 1 0 1 1 2

Agent 2 1 0 1 2

Agent 3 1 1 0 2

An EFX allocation for the first three goods has to
give exactly one of a, b, c to each of the three agents.
However an EFX allocation for all the four goods
has to allocate the singleton set {d} to some agent
(say, agent 1) and say, {a} to agent 2 and {b, c} to
agent 3. Thus the allocation needs to be cut and merged.
When there are many agents - each with her own
valuation, figuring out the cut-and-merge operations
is the difficult step. Here we implement our global
reallocation operation as follows.

Improving Social Welfare. Suppose we have an EFX
allocation X = 〈X1, . . . , Xn〉 on some subset M0 ⊂ M .
We would now like to add a good g ∈M \M0. However
we will not be able to guarantee an EFX allocation on
M0 ∪{g}. What we will ensure is that either case (i) or
case (ii) occurs:

(i) We have an EFX allocation X ′ = 〈X ′1, . . . , X ′n〉 on
a subset of M0 ∪ {g} such that vi(X

′
i) ≥ vi(Xi) for

all i and for at least one agent j we have vj(X
′
j) >

vj(Xj). Thus
∑

i∈[n] vi(X
′
i) >

∑
i∈[n] vi(Xi); in

other words, social welfare strictly improves.

(ii) We have an EFX allocation on M0 ∪ {g} and the
social welfare does not decrease.

Hence in each step of our algorithm, we either in-
crease the number of allocated goods or we increase so-
cial welfare—thus we always make progress. This is sim-
ilar to the approach used by Plaut and Roughgarden [27]
to guarantee the existence of 1

2 -EFX5 when agents have
subadditive valuations. We now outline how we ensure
one of the cases (i) and (ii) has to happen:

For simplicity of exposition, we assume the envy-
graph corresponding to our starting EFX allocation X
has a single source s. Add g to s’s bundle: if nobody

5An allocation X = (X1, . . . , Xn) is 1
2

-EFX if for any two

agents i, j: vi(Xi) ≥ 1
2
· vi(Xj \ {g}) for all g ∈ Xj .
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envies s up to any good then we are in an easy case as
we have an EFX allocation on M0 ∪ {g}. In this case,
we “decycle” the envy-graph (if cycles are created) and
continue. Observe that swapping bundles along a cycle
in the envy-graph increases social welfare.

Most Envious Agent. So assume there are one
or more agents who envy s up to any good after g
is allocated to s. To resolve this, we introduce the
concept of a most envious agent. Let i be an agent who
envies s up to any good, so vi(Xi) < vi(S

′) for some
S′ ⊂ Xs ∪ {g}. Let Si be the subset of Xs ∪ {g} with
the minimum cardinality such that vi(Xi) < vi(Si). So
for any Ti ⊂ Si, we have vi(Xi) ≥ vi(Ti). The agent i
with the smallest value of |Si| (break ties arbitrarily) is
the most envious agent of s. Call this agent t.

The crucial observation is that no agent envies St

up to any good—otherwise it would contradict t being
the agent with the smallest value of |St|. Recall the
assumption that s is the only source, so there is a path
s → i1 → · · · → ik−1 → t in the envy-graph. We do a
leftwise shift of bundles along this path: so s gets i1’s
bundle, and for 1 ≤ r ≤ k − 1: ir gets ir+1’s bundle
(where ik = t), and finally t gets St. The goods in
Xs∪{g}\St are thrown back into the pool of unallocated
goods.

Observe that every agent in this path is strictly
better-off now than in the allocation X and nobody is
worse-off. Moreover, by the definition of St, there are no
agents envying any agent up to any good. Thus we have
a desired EFX allocation X ′. When there are multiple
sources, we can adapt this technique provided there are
enough unallocated goods; in particular, the number
of unallocated goods must be at least the number of
sources in the envy-graph. We describe this in detail in
Section 2.

We would like to contrast the above approach with
other EFX algorithms [27, 13]. The 1

2 -EFX algorithm
by Plaut and Roughgarden [27] either merges g (the
new good) with an existing bundle or allocates the
singleton set {g} to an agent while the EFX-with-
charity algorithm by Caragiannis et al. [13] takes an
allocation of maximum Nash social welfare as input
and then permanently removes some goods from the
instance. We regard the notion of “most envious agent”
that shows a natural way of breaking up a bundle to
preserve envy-freeness up to any good as one of the
innovative contributions of our work.

Our Other Results. Regarding our result with ap-
proximate MMS guarantee, if the number of unallocated
goods in our EFX allocation is large, then the number of
sources also has to be large: these are unenvied agents.
Moreover, no agent envies the set of unallocated goods.

Suppose for now that |P | = n − 1. This means every
agent is a source. So no agent envies the bundle of any
other agent and also the set of unallocated goods. Thus
for each agent i, we have:

vi(Xi) ≥
vi(M)

n+ 1
≥ (1 + 1/n)−1 · vi(M)

n
≥ (1− 1/n) ·MMS i(n,M),

where the constraint that vi(M)/n ≥ MMS i(n,M)
holds for additive valuations. We show our result for
approximate-MMS allocation and our improved bound
for approximate-GMMS allocation in Section 4.

1.3 Related Work Fair division of divisible re-
sources is a classical and well-studied subject start-
ing from the 1940’s [29]. Fair division of indivisible
goods among competing agents is a young and excit-
ing topic with recent work on EF1 and EFX alloca-
tions [14, 9, 27, 10, 13], approximate maximin share
allocations [12, 11, 3, 8, 24, 21, 19], and approximation
algorithms for maximizing Nash social welfare and gen-
eralizations [17, 16, 15, 5, 18, 6]. As mentioned earlier,
Caragiannis et al. [14] introduced the notion of EFX:
whether such allocations always exist is an enigmatic
open problem. It was shown in [14] that there always
exists an EF1 allocation that is also Pareto-optimal6

and Barman et al. in [9] showed a weakly-polynomial
time algorithm to compute such an allocation.

Applications. Fair division of goods or resources oc-
curs in many real-world scenarios and this is demon-
strated by the popularity of the website Spliddit (http:
//www.spliddit.org) that implements mechanisms for
fair division where users can log in, define what needs
to be divided, and enter their valuations. This web-
site guarantees an EF1 allocation that is also Pareto-
optimal and since its launch in 2014, it has been used
tens of thousands of times [14]. We refer to [22, 27] for
details on the diverse applications for which Spliddit has
been used: these range from rent division and taxi fare
division to credit assignment for an academic paper or
group project. Another such website is Fair Outcomes,
Inc. (http://www.fairoutcomes.com). Another inter-
esting application is Course Allocate used at Wharton
School that guarantees certain fairness properties to al-
locate courses among students [27].

6An allocation X = 〈X1, . . . , Xn〉 is Pareto-optimal if there

is no allocation Y = 〈Y1, . . . , Yn〉 where vi(Yi) ≥ vi(Xi) for all
i ∈ [n] and vi(Yj) > vi(Xj) for some j.
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2 Existence of an EFX-Allocation with
Bounded Charity

We prove our main result on EFX-with-bounded-charity
allocations in this section. We will define three update
rules. Each update rule takes a pair (X,P ) consisting
of an allocation X and a set P of unallocated goods
(we will call P the pool) and returns a modified pair
(X ′, P ′).

Each application of an update rule will ensure that
either (i) the social welfare φ(X) =

∑
i∈[n] vi(Xi) of

the current allocation increases or (ii) the size of the
pool decreases and the social welfare does not decrease,
so |P ′| < |P | in this case. Hence the update process
will terminate. The overall structure of the algorithm
is given in Algorithm 1.

Algorithm 1 Algorithm for Computing an EFX-
Allocation

Postcondition: X is EFX, |P | < n and vi(P ) ≤
vi(Xi) for all i ∈ [n].

1: Xi ← ∅ for i ∈ [n]; P ←M ;
2: while one of the update rules shown in Algorithm 2

is applicable do
Invariant: X is EFX and the envy-graph GX

is acyclic
3: Let U` be an applicable update rule;
4: (X,P )← U`(X,P );
5: Decycle the envy-graph;
6: end while

In order to define our update rules, we need the
concepts of envy-graph and the most envious agent for
a bundle of goods. These were discussed in Section 1.2
and we formally define them below.

Definition 2.1. The envy-graph GX for an allocation
X = 〈X1, X2, . . . , Xn〉 has the set of agents as vertices
and there is a directed edge from agent i to agent j if
and only if vi(Xi) < vi(Xj).

The notion of envy-graph was introduced in [26]
and it is well-known that cycles can be removed from
the envy-graph without destroying desirable properties
(see Lemma 2.1). Thus we can maintain GX as a DAG.
For an agent s, the reachability component C(s) consists
of all agents reachable from s in the envy-graph. The
sources in the envy-graph are the vertices with indegree
zero.

For ease of notation, we will use B \ g and B ∪ g to
denote B \ {g} and B ∪ {g}, respectively.

Lemma 2.1. Let i0 → i1 → · · · → ik−1 → i0 be a cycle
in the envy-graph. Consider the allocation X ′ where

X ′i` = Xi`+1
(indices are modulo k) for ` ∈ {0, . . . , k−1}

and X ′j = Xj for j /∈ {i0, . . . , ik−1}. If X is EFX, then
X ′ is also EFX. Moreover, φ(X ′) > φ(X).

Proof. Consider any agent i. We have vi(X
′
i) ≥

vi(Xi) with strict inequality if i lies on the cycle. So∑
i∈[n] vi(X

′
i) >

∑
i∈[n] vi(Xi). Thus φ(X ′) > φ(X).

Since X ′ is just a permutation of X, for any agent
j there exists some agent j′ such that X ′j = Xj′ .
Therefore, since X is EFX, for any good g ∈ Xj′ (or
equivalently X ′j) we have vi(X

′
j \ g) = vi(Xj′ \ g) ≤

vi(Xi) ≤ vi(X ′i). Thus X ′ is also EFX.

Definition 2.2. Let X be an allocation and S ⊆ M .
For an agent i with vi(S) > vi(Xi), let κX(i, S) be the
minimum k such that there is a set Z ⊆ S of size k with
vi(Z) > vi(Xi). We define κX(S) = mini∈[n] κX(i, S).

The following definition formalizes the notion of
“most envious agents”. Let S ⊆M , then we define

AX(S) = {i ∈ [n] : κX(i, S) = κX(S)}.

If there is no i with vi(S) > vi(Xi), then AX(S) is
empty. We make a simple observation.

Lemma 2.2. Consider an agent i ∈ AX(S) and let Z ⊆
S be such that |Z| = κX(S) and vi(Z) > vi(Xi). Then
for any agent j (incl. i) we have that vj(Z \g) ≤ vj(Xj)
for all g ∈ Z.

Proof. Let j be any agent. There are two cases: either
vj(Xj) ≥ vj(S) or vj(Xj) < vj(S). In the former case,
we have vj(Xj) ≥ vj(Z \ g) by monotonicity.

In the latter case, vj(Xj) ≥ vj(Z ′) for all sets Z ′ ⊆
S of size at most κX(j, S)−1 (by definition of κX(j, S)).
Note that the set Z \g has size κX(S)−1 ≤ κX(j, S)−1
since κX(S) ≤ κX(j, S) (by definition of κX(S)). Thus
vj(Z \ g) ≤ vj(Xj).

We are now ready to present our three update rules
U0, U1, and U2, see Algorithm 2.

Rule U0 : Rule U0 is the easiest of the update rules. It
is applicable whenever adding a good from the pool to
some source of GX does not destroy the EFX-property
(see Algorithm 2).

Lemma 2.3. (Rule U0)

(a) Rule U0 returns an EFX allocation. An application
of the rule does not decrease social welfare and
decreases the size of the pool.

(b) If rule U0 is not applicable then for any source i
of GX and good g ∈ P , there will be an agent
j 6= i such that vj(Xi ∪ g) > vj(Xj). In particular,
AX(Xi ∪ g) will not be empty, and κX(j,Xi ∪ g) ≤
|Xi| for all j ∈ AX(Xi ∪ g).
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Proof. The first part of a) follows directly from the
precondition of the rule. The second part holds since
the valuations are monotone and because |P ′| = |P |−1.

The first two sentences in part b) are obvious. We
come to the third sentence. Since adding g to Xi

destroys the EFX-property, there must be some g′ ∈
Xi∪g and some j ∈ [n] such that vj(Xi∪g\g′) > vj(Xj).
Thus κX(j,Xi ∪ g) ≤ |Xi|.

Rule U1 : Rule U1 is applicable whenever there is
an agent that values the pool higher than her current
bundle (see Algorithm 2).

Lemma 2.4. (Rule U1) Rule U1 increases the social
welfare and returns an EFX allocation.

Proof. Since there is an agent that values the pool
higher than her own bundle, AX(P ) is non-empty.
Choose i from AX(P ) arbitrarily. Let X ′ be the
allocation defined in Algorithm 2, line 7. Then vi(X

′
i) >

vi(Xi) and vj(X
′
j) = vj(Xj) for j 6= i. Thus φ(X ′) >

φ(X). It remains to show that the allocation X ′ is
EFX, i.e., for every pair of agents j and k and any good
g ∈ X ′k, we have vj(X

′
k \ g) ≤ vj(X ′j).

Since X is EFX, this is obvious if neither j nor k is
equal to i. If j = i, then vi(X

′
i) > vi(Xi) ≥ vi(Xk \g) =

vi(X
′
k \ g) for all g ∈ X ′k (or equivalently g ∈ Xk).

Finally, we consider k = i. Since k = i ∈ AX(P ), we
have vj(X

′
j) = vj(Xj) ≥ vj(Z \ g) = vj(X

′
i \ g) for any

g ∈ Z (where Z is defined in Algorithm 2, line 6) by
Lemma 2.2.

Rule U2 : Rule U2 is our most complex rule. It is
applicable if for some ` ≥ 1, there are distinct goods
g0, g1, . . . , g`−1 in P , distinct sources s0, s1, . . . , s`−1
of GX and distinct agents t1, t2,. . . , t` (indices are to
be interpreted modulo `) such that for each i: (1) ti is
a most envious agent when gi−1 is added to si−1 and
(2) ti is reachable from si. We first show that rule U2

is applicable if rule U0 is not applicable and the pool
contains at least n goods.

Lemma 2.5. If |P | ≥ n and rule U0 is not applicable
then there is an ` ≥ 1, distinct goods g0, g1, . . . , g`−1 in
P , distinct sources s0, s1, . . . , s`−1 of GX , and distinct
agents t1, t1, . . . , t` such that ti ∈ C(si) ∩ AX(Xsi−1 ∪
gi−1) for i ∈ {0, . . . , `− 1} (indices are modulo `).

Proof. Since rule U0 is not applicable, AX(Xs ∪ g) is
non-empty for every source s of GX and every good
g ∈ P . Construct a sequence of triples (si, gi, ti+1),
i ≥ 0 defined as follows. Let s0 be an arbitrary source
of GX and g0 be an arbitrary good in P . Assume we
have defined si−1 and gi−1. Let ti ∈ AX(Xsi−1

∪ gi−1)
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t3

t2

s2

Xs2
∪ g2Xs1

∪ g1Xs0
∪ g0

C(s0) C(s2)C(s1)

Figure 1: We have ti ∈ AX(Xsi−1 ∪ gi−1)). Moreover,
ti 6∈ C(s0) ∪ · · · ∪ C(si−1) for i = 1, 2 and t3 ∈
C(s0)∪· · ·∪C(s2). j = 1 is largest such that t3 ∈ C(sj).
The cycle is defined by s1, s2, g1, g2, t2 and t3.

be arbitrary. If ti ∈ C(s0) ∪ · · · ∪ C(si−1) then stop
the construction of the sequence and let j be maximum
such that ti ∈ C(sj). Set ` = i − j and return
sj , . . . , si−1, gj , . . . , gi−1 and tj+1, . . . , ti; see Figure 1
for an illustration. If ti 6∈ C(s0) ∪ · · · ∪ C(si−1), let si
be such that ti ∈ C(si). Also, let gi be a good in P
distinct from g0 to gi−1.

The construction is well-defined since |P | ≥ n and
hence we cannot run out of goods. The sources and
goods are pairwise distinct by construction. The agents
t1 to ti−1 are distinct by construction. The agent ti is
distinct from tj+1 to ti−1 since tk ∈ C(sk)\(C(s0)∪· · ·∪
Csk−1

) for k < i and j is maximum such that ti ∈ C(sj).

For each i, let ui0 → ui1 → · · · → uimi
be the path of

length mi from si = ui0 to ti = uimi
in C(si). Rule U2

assigns (i) X ′
ui
k

= Xui
k+1

for all k ∈ {0, . . . ,mi − 1}
and all i ∈ {0, . . . , ` − 1} and (ii) X ′ti = Zi−1 for all
i ∈ {1, . . . , `}, where Zi is defined in Algorithm 2 (see
line 12). For all other j, we have X ′j = Xj .

Lemma 2.6. (Rule U2) Rule U2 increases social wel-
fare and returns an EFX allocation.

Proof. We first observe that the valuations of the agents
for their bundles have either increased or remained the
same (since either the agents are left with their old bun-
dles or assigned bundles that they envied). In particu-

lar, the valuations of all the agents in
⋃`−1

i=0

⋃mi

k=0{uik}
are strictly larger, where the vertices uik are defined
above. Thus φ(X ′) > φ(X).

It remains to show that the allocation X ′ is EFX,
i.e., for every pair of agents j and k and any good g ∈ X ′k
we have vj(X

′
k \ g) ≤ vj(X

′
j). Let T = {t1, t2, . . . , t`}.

For every agent r /∈ T we have X ′r = Xr′ for some r′.
Now consider two cases depending on k:
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Algorithm 2 The Update Rules

1: function U0(allocation X, pool P )
Precondition: There is a good g ∈ P and an agent i such that allocating g to i results in an EFX allocation.

2: Allocate g to i, i.e., X ′i ← Xi ∪ g, P ′ ← P \ g, and X ′j = Xj for j 6= i.
3: return (X ′, P ′).
4: end function

5: function U1(allocation X, pool P )
Precondition: There is an agent i such that vi(P ) > vi(Xi).

6: Let i be an agent in AX(P ) and Z ⊆ P be a set of size κX(P ) such that vi(Z) > vi(Xi).
7: Set X ′i = Z and X ′j = Xj for j 6= i.
8: Set P ′ = Xi ∪ (P \ Z).
9: return (X ′, P ′).

10: end function

11: function U2(allocation X, pool P )
Precondition: There is an ` ≥ 1, distinct goods g0, g1, . . . , g`−1 in P , distinct sources s0, s1, . . . , s`−1 of

GX and distinct agents t1, t2,. . . , t` such that ti ∈ C(si)∩AX(Xsi−1
∪gi−1) for 0 ≤ i ≤ `−1

(indices are to be interpreted modulo `).

12: Let Zi ⊆ Xsi ∪ gi of size κX(Xsi ∪ gi) be such that vti+1
(Zi) > vti+1

(Xti+1
) for 0 ≤ i ≤ `− 1.

13: Set P ′ = (P \ ∪`i=0{gi}
⋃`−1

i=0((Xsi ∪ {gi}) \ Zi).
14: Let ui0 → · · · → uimi

be the path of length mi from si = ui0 to ti = uimi
in C(si) for 0 ≤ i ≤ `− 1.

15: Set X ′
ui
k

= Xui
k+1

for all k ∈ {0, . . . ,mi − 1} and all i ∈ {0, . . . , `− 1}.
16: Set X ′ti = Zi−1 for all i ∈ {1, . . . , `}.
17: Set X ′j = Xj for all other j.
18: return (X ′, P ′).
19: end function

– k /∈ T : Note that valuations of the agents for
their current bundles (in X ′) is at least as good
as their old bundles (in X). We have vj(X

′
j) ≥

vj(Xj) ≥ vj(Xk′ \ g) = vj(X
′
k \ g) for any g ∈ X ′k

(or equivalently, g ∈ Xk′).

– k ∈ T : Let k = ti. We have vj(X
′
j) ≥ vj(Xj) ≥

vj(Zi−1 \ g) for any g ∈ Zi−1 (by Lemma 2.2) and
vj(Zi−1 \ g) = vj(X

′
ti \ g) = vj(X

′
k \ g) for any

g ∈ X ′k.

We can now summarize. Let V = maxi vi(M)
be the maximum valuation of any agent and ∆ =
mini min{|vi(T )−vi(S)| : S, T ⊆M and vi(S) 6= vi(T )}
be the minimum difference between distinct valuations.
Each application of rule U1 or rule U2 increases the
social welfare by at least ∆ and hence there can be
no more than nV/∆ applications of these rules. Each
application of rule U0 decreases the size of the pool by
one and hence there cannot be more than m successive
applications of this rule. We conclude that the number
of iterations is at most nmV/∆. Thus we have shown
the following theorem.

Theorem 2.1. For normalized and monotone valua-
tions, there is always an allocation X and a pool P of

unallocated goods such that

• X is EFX,

• vi(Xi) ≥ vi(P ) for all agents i, and

• |P | is less than the number of sources in the envy-
graph; in particular, |P | < n.

Algorithm 1 determines such an allocation in at most
nmV/∆ iterations.

2.1 New Proof of a Result from [27] For agents
with identical (general) valuations, it was shown by
Plaut and Roughgarden [27] that an allocation that
maximizes the the minimum valuation, then maximizes
the size of this bundle, then maximizes the second min-
imum valuation, then maximizes the size of this bundle,
and so on is EFX. We now show that Algorithm 1 gives
another proof that when all the agents have identical
valuations, a complete allocation that is EFX always
exists.

Recall that Algorithm 1 consists of applying 3 up-
date rules: U0, U1, U2 – whichever of these is applicable.
Moreover, if a certain precondition is satisfied (see Al-
gorithm 2), then rule U2 is applicable.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited



We will now show that when all the agents have
identical valuations and rule U0 is not applicable, then
the precondition of rule U2 is satisfied as long as there is
some unallocated good. Let X = 〈X1, . . . , Xn〉 be the
current allocation and P = M \ ∪ni=1Xi be the set of
unallocated goods in X.

Lemma 2.7. Let s be any source vertex in the envy-
graph GX . If |P | ≥ 1 and rule U0 is not applicable then
s ∈ AX(Xs ∪ g) for any g ∈ P .

Proof. Let g ∈ P and s be any source in the envy-graph
GX . Since rule U0 is not applicable, AX(S) 6= ∅, where
S = Xs∪g. Let t ∈ AX(S). So v(Xt) < v(S), where v is
the common valuation function of all agents. Let Z ⊆ S
be the subset of size κX(S) such that v(Xt) < v(Z).
Since s is a source in GX , we have v(Xs) ≤ v(Xt).
So v(Xs) < v(Z); thus κX(s, S) ≤ κX(S). Hence
s ∈ AX(Xs ∪ g).

Lemma 2.7 implies that while P 6= ∅, either rule U0

or rule U2 is applicable. Whenever we apply rule U2, we
add any good g in P to the bundle of a source s in GX

and determine Z ⊆ Xs ∪ g of size κX(Xs ∪ g) such that
v(Z) > v(Xs). We then throw the goods in (Xs ∪ g) \Z
back into the pool P and set Xs = Z.

This makes agent s strictly better-off and no agent
is worse-off: thus we have made progress. So when
Algorithm 1 terminates, we have an EFX allocation
with P = ∅. Thus we have a complete allocation
X = 〈X1, . . . , Xn〉 that is EFX.

3 Finding the Desired Allocation in
Pseudo-Polynomial Time

In this section we describe how to find in time poly-
nomial in n, m, V , and 1/∆, the EFX-with-bounded-
charity allocation described in Theorem 2.1 for all gross
substitute valuations. A minimum-size-valuable-set-
oracle will be used here; it is defined as : given S ⊆M ,
agent i, and α ∈ R such that vi(S) > α, find a minimum
cardinality subset Z ⊆ S such that vi(Z) > α.7

For additive valuations, the oracle is easy to realize.
We initialize Z to the empty set and as long as vi(Z) ≤
α, we select g ∈ S \ Z with maximum vi(g) and add g
to Z.

7Alternatively, a size-constrained-optimal-valuation oracle
would suffice too, where given a set S, agent i and an inte-
ger k, find Z ⊆ S such that |Z| ≤ k and vi(Z) is maximum.
We can simulate the minimum-size-valuation-oracle with the size-
constrained-optimal-valuation oracle : All we need to do is to de-

termine the smallest k ∈ [n0] (where n0 = |S|) such that the
valuation of agent i for the optimal set returned by the size-
constrained-optimal-valuation oracle is larger than α. This can

be realized with n0 queries of this oracle (enumerating over all
k ∈ [n0]).

We now show that the oracle can also be realized
for gross substitutes valuations. For the definition of the
gross substitutes property, we use the notion of demand
correspondence. Let f(S) = v(S)−

∑
g∈S pg.

Definition 3.1. (Demand Correspondence D(v, p))
Given a valuation function v : 2M → R≥0 and a price
vector p ∈ Rm

≥0, define the demand correspondence as

D(v, p) = {S ⊆M : f(S) ≥ f(S′) for all S′ ⊆M} .

That is, the demand correspondence is the family of
sets that maximize the utility under prices p.

Definition 3.2. (Gross Substitutes (GS) [1]) A valu-
ation function v : 2M → R≥0 satisfies the gross substi-
tutes (GS) property if for any price vectors p, p′ ∈ Rm

≥0
with p ≤ p′ (i.e. pg ≤ p′g for all g ∈ [m]) and any
set S ∈ D(v, p), there is a set T ∈ D(v, p′) such that
S ∩ {g : pg = p′g} ⊆ T .

A useful consequence of the GS property [25] is that
the greedy approach shown in Algorithm 3 computes
a set S ∈ D(v, p). It considers goods in order of
non-increasing incremental value of v(g|S) − pg where
v(g|S) = v(S ∪ g)− v(S) and S is the current set. The
algorithm is non-deterministic in the choice of g∗ in
line 4 and whether to terminate in line 6.

Algorithm 3 Greedy Demand Oracle

1: Input: v : 2M → R≥0 (v satisfies GS), p ∈ Rm
≥0

2: Initialize S = ∅
3: Repeat
4: Let g∗ ∈M \ S maximize ∆g = v(g|S)− pg
5: If ∆g∗ > 0 then set S = S ∪ g∗
6: If ∆g∗ = 0 then either set S = S ∪ g∗

or return S
7: If S = M or ∆g∗ < 0 then return S

If all prices are the same (equivalently, zero), the
greedy approach (Algorithm 4) computes for each car-
dinality k, a set Sk of maximum value (this is Z after k
rounds of Algorithm 4).

Algorithm 4 Most Valuable Sets

1: Input: α ≥ 0, v : 2M → R≥0 (v satisfies GS)
2: Initialize Z = ∅
3: While Z 6= M do
4: Let g∗ ∈ arg maxg∈M\Z{v(g|Z)}
5: Z = Z ∪ g∗

Lemma 3.1. Let gk be the good added in the k-th round
of Algorithm 4 and Sk = {g1, g2, . . . , gk}. Then Sk is
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a set of cardinality k of maximum value, i.e., v(Sk) ≥
v(T ) for every set T with |T | ≤ k.

Proof. Consider any k. If v(gk+1|Sk) = 0, then v(g ∪
Sk) = v(Sk) for every g 6∈ Sk and hence v(Sk) =
v(M) by the submodularity8 of v [23]. Thus Sk is
a most valuable set of size k. This is also true for
k = m. So assume k < m and v(gk+1|Sk) > 0.
Then v(gk|Sk−1) ≥ v(gk+1|Sk−1) ≥ v(gk+1|Sk) > 0,
where the first inequality holds since gk is chosen in
round k and the second inequality follows from the
submodularity of v. Let p be a price vector with
pg = v(gk|Sk−1) for all g ∈ M ; we abuse the notation
and use also p for the common price. We will show that
Sk ∈ D(v, p).

Claim 1. Sk ∈ D(v, p).

Proof. We will use Algorithm 3 to derive that Sk ∈
D(v, p). Observe that the price is the same (this is p) for
all goods. So in each round, Algorithm 3 chooses a good
g that maximizes v(g|S). This is also what Algorithm 4
does. We may assume that ties are broken in the same
way and hence both algorithms add goods in the same
order. We need to guarantee that Algorithm 3 can
return the set Sk. This holds because v(gk|Sk−1)− p =
0, so we can add this item and terminate the algorithm
in the next round where ∆gk+1

≤ 0.

We are now ready to show that v(T ) ≤ v(S) for any
set T of size at most k. We have

v(T )−
∑
g∈T

pg ≤ v(Sk)−
∑
g∈Sk

pg = v(Sk)− kp,

for every set T ⊆M since Sk ∈ D(v, p). Hence we have:

v(T ) ≤ v(Sk) + (|T | − k)p ≤ v(Sk)

for every set T with |T | ≤ k.

The minimum-size-valuable-set oracle is now read-
ily realized. We simply run Algorithm 4 on the set S
until a set of value greater α is obtained. We can con-
clude the following theorem.

Theorem 3.1. For gross substitute valuations, the al-
location defined in Theorem 2.1 can be determined with
poly(n,m, V, 1/∆) value queries.

8So v(S ∪ g)− v(S) ≥ v(T ∪ g)− v(T ) whenever S ⊆ T .

3.1 An FPTAS to Determine an “Almost” De-
sired Allocation Our algorithm is pseudo-polynomial,
since the increase in individual valuations of the agents
when we perform the update rules could be very small.
Suppose we just wanted an “almost” EFX property, i.e.,
for every pair of agents i and j, we are happy to ensure
that (1 + ε) · vi(Xi) ≥ vi(Xj) and also (1 + ε) · vi(Xi) ≥
vi(P ) for every i. Then we have an algorithm that runs
in poly(n,m, 1ε , log V ) time and finds a desired alloca-
tion.

Theorem 3.2. For normalized and gross substitute
integral valuations, given any ε > 0, in time
poly(n,m, 1ε , log V ), we can determine an allocation
X = 〈X1, X2, . . . , Xn〉 and a pool of unallocated goods
P such that

• for any pair of agents i and j we have

(1 + ε) · vi(Xi) ≥ vi(Xj \ g) for all g ∈ Xj,

• for any agent i, we have (1 + ε) · vi(Xi) ≥ vi(P ),
and

• |P | < n.

The proof follows in a straightforward manner from
the proof of Theorem 2.1 in Section 2. The key idea
is that the “almost” EFX property is violated if and
only if (1 + ε) · vi(Xi) < vi(Xj \ g) for some i, j ∈ [n] or
(1+ε)·vi(Xi) < vi(P ) for some i ∈ [n]. So every time we
apply the update rules U1 or U2 there is a multiplicative
improvement (by a factor of 1 + ε) in the valuation of
some agents. Since these valuations are upper-bounded
by V we get a bound of poly(n,m, log(1+ε) V ) on the
number of iterations.

4 Guarantees on Other Notions of Fairness

In this section we assume that all agents have additive
valuations. We show that a minor variant of our
algorithm finds an allocation with a good guarantee
on Nash social welfare and groupwise maximin share
(GMMS).

Guarantee in Terms of Nash Social Welfare. We
claimed in Section 1 that for additive valuations, it
can also be ensured that for each i, we have vi(Xi) ≥
1
2 · vi(X

∗
i ) where X∗ = 〈X∗1 , . . . , X∗n〉 is an optimal

Nash social welfare allocation and X is the allocation
in Theorem 2.1. This is easy to see from Algorithm 1:

– rather than initialize Xi = ∅, we will initialize
Xi to the bundle corresponding to the allocation
determined by the algorithm in [13].

So we have vi(Xi) ≥ 1
2 · vi(X

∗
i ), to begin with. As the

algorithm progresses, our invariant is that vi(Xi) never
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decreases for any i. So if X ′ = 〈X ′1, . . . , X ′n〉 is the final
allocation computed by our algorithm, then we have
vi(X

′
i) ≥ 1

2 · vi(X
∗
i ) for i ∈ [n].

Lemma 4.1. Given a set N of agents with additive val-
uations and a set M of goods, there exists an alloca-
tion X = 〈X1, . . . , Xn〉 and a pool P of unallocated
goods that satisfy all the conditions of Theorem 2.1
and vi(Xi) ≥ 1

2vi(X
∗
i ) for all i ∈ N , where X∗ =

〈X∗1 , . . . , X∗n〉 is an optimal Nash social welfare alloca-
tion.

4.1 An Approximate MMS Allocation for
Large |P| We now show that if |P | (the number of un-
allocated goods in our allocation) is sufficiently large,
then our EFX allocation X has a very good MMS guar-
antee. Recall that our algorithm continues till |P | is
smaller than the number of sources in the envy-graph
GX and recall that sources are unenvied agents. In par-
ticular, if |P | = n − 1, then the number of sources in
GX is n; so no agent envies another. That is, for each
i, we have vi(Xi) ≥ vi(Xj) for all j ∈ [n]. Moreover,
vi(Xi) ≥ vi(P ). So we have

vi(Xi) ≥
vi(M)

n+ 1
≥

(
1 +

1

n

)−1
· vi(M)

n

≥
(

1 +
1

n

)−1
·MMS i(n,M),

where for every agent i, the inequality MMS i(n,M) ≤
vi(M)/n holds for additive valuations. We formalize
the above intuition in Theorem 4.1. The following
proposition will be useful.

Proposition 4.1. ([19]) Let N be a set of n agents
with additive valuations and M be a set of m goods. If
N ′ ⊆ N and M ′ ⊆M are such that |N \N ′| ≥ |M \M ′|
then for any agent i ∈ N ′, we have MMS i(n

′,M ′) ≥
MMS i(n,M) where n′ = |N ′|.

Theorem 4.1. Given a set N of n agents with additive
valuations and a set M of m goods, there exists an al-
location X = 〈X1, X2, . . . , Xn〉 and set P of unallocated
goods that satisfies:

• the 3 conditions stated in Theorem 2.1;

• vi(Xi) ≥ 1
2vi(X

∗
i ) for all i ∈ N , where X∗ is an

optimal Nash social welfare allocation;

• vi(Xi) ≥ MMS i(n,M)/
(
2− k

n

)
for every i ∈ N ,

where k = |P |.

Proof. Let (X,P ) be the allocation guaranteed by
Lemma 4.1. Hence the first two conditions given in

the theorem statement are satisfied by (X,P ). So what
we need to show now is that for any agent i, we have
vi(Xi) ≥ MMS i(n,M)/

(
2− k

n

)
.

Let N ′ ⊆ N be the set of agents j for which either
vi(Xj) ≤ vi(Xi) or |Xj | ≥ 2. Then i ∈ N ′ and
all sources of GX belong to N ′. Also, |Xj | = 1 and
vi(Xj) > vi(Xi) for j ∈ N \N ′.

Let M ′ be the set of goods allocated to the agents
in N ′. The agents in N \ N ′ are allocated the goods
in M \ (M ′ ∪ P ). Observe that every agent in N \ N ′
is allocated at most one good. So we have |N \ N ′| ≥
|M \ (M ′ ∪ P )|.

Proposition 4.1 tells us that MMS i(n
′,M ′ ∪ P ) ≥

MMS i(n,M) where n′ = |N ′|. Thus it suffices to show
that vi(Xi) ≥ MMS i(n

′,M ′ ∪ P )/
(
2− k

n

)
.

Consider any j ∈ N ′ with vi(Xj) > vi(Xi). So
|Xj | ≥ 2. Since valuations are additive and vi(Xi) ≥
vi(Xj \ {g}) for all g ∈ Xj , we have

vi(Xi) ≥
(

1− 1

|Xj |

)
· vi(Xj) ≥

1

2
· vi(Xj).

We know the following inequalities hold:

vi(Xi) ≥ vi(P ),(4.1)

vi(Xi) ≥ vi(Xj) for all j that(4.2)

were sources in GX ,

2vi(Xi) ≥ vi(Xj)(4.3)

for all other j ∈ N ′.

Recall that the number of sources is at least |P | +
1 = k + 1. Summing up all inequalities in (4.1)-
(4.3) and using the fact that vi is additive, we have
(2(n′ − (k + 1)) + k + 2) · vi(Xi) ≥ vi(M ′ ∪ P ).

Hence we have

vi(Xi) ≥
vi(M

′ ∪ P )

2n′ − k

≥ vi(M
′ ∪ P )

n′
· n′

2n′ − k

≥ MMS i(n
′,M ′ ∪ P ) · n′

2n′ − k
(since vi is additive)

= MMS i(n
′,M ′ ∪ P )/

(
2− k

n′

)
≥ MMS i(n

′,M ′ ∪ P )/
(
2− k

n

)
(since n′ ≤ n).

4.2 An Improved Bound for Approximate-
GMMS As mentioned in Section 1, a new notion of
fairness called groupwise maximin share (GMMS) was
recently introduced by Barman et al. [7]. We formally
define a GMMS allocation below.
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Definition 4.1. Given a set N of n agents and a set
M of m goods, an allocation X = 〈X1, X2, . . . , Xn〉
is α-GMMS if for every N ′ ⊆ N , we have vi(Xi) ≥
α ·MMS i(n

′,
⋃

i∈N ′ Xi) where n′ = |N ′|.

Observe that a GMMS allocation is also an MMS
allocation. Since MMS allocations do not always exist
in a given instance [28], GMMS allocations also need not
always exist. Interestingly, 1

2 -GMMS allocations always
exist [7]. We now describe how to modify our allocation
so that the resulting allocation is 4

7 -GMMS.
Let X = 〈X1, . . . , Xn〉 be the allocation and P be

the pool of unallocated goods that satisfy the conditions
of Lemma 4.1. Without loss of generality, assume that
agent 1 is a source in the envy-graph GX . Define the
complete allocation Y = 〈Y1, . . . , Yn〉 as follows:

∗ Y1 = X1 ∪ P and Yi = Xi for all i 6= 1.

Theorem 4.2 shows that Y is our desired allocation. The
proof of Theorem 4.2 is similar to [2, Proposition 3.4].
We also remark that one can use the proof of [2,
Proposition 3.4] to show that any EFX allocation is a
4/7-GMMS. However note that Y is not necessarily an
EFX allocation. But it has sufficiently nice properties
that we can still show that it is 4/7-GMMS.

Theorem 4.2. Given a set N of n agents with additive
valuations and a set M of m goods, there exists a
complete allocation Y = 〈Y1, Y2, . . . , Yn〉 of M such that

• Y is 4
7 -GMMS.

• vi(Yi) ≥ 1
2vi(X

∗
i ) for all i ∈ N where X∗ is the

optimal Nash social welfare allocation.9

Proof. Observe that the bound on Nash social welfare
holds for allocation X and thus for allocation Y (since
vi(Yi) ≥ vi(Xi) for all i ∈ [n]). So what we need
to show now is the guarantee on GMMS. That is, we
need to show that for every Ñ ⊆ N and all i ∈ Ñ ,
we have vi(Yi) ≥ 4

7MMS i(ñ, M̃) where ñ = |Ñ | and

M̃ =
⋃

j∈Ñ Yj .

Fix some i ∈ Ñ . Define N ′ as the subset of Ñ that
contains i and all agents that have been allocated at
least two goods in Y , i.e., j ∈ N ′ if and only if j = i or
|Yj | ≥ 2. Let M ′ =

⋃
j∈N ′ Yj .

9In private communication we are aware that Jugal Garg

and Setareh Taki have obtained independently related results.

For additive valuations, they can show that there is an EFX-
allocation after donating at most n−1 goods to charity. However,

there is no bound on the value of the goods donated to charity.

Thus they obtain a 4/7-GMMS-allocation after removing n − 1
goods from the original set of goods.

Note that Y allocates all goods in M̃ \ M ′ to

agents in Ñ \ N ′. Since every agent in Ñ \ N ′ has

been allocated at most one good, we have |Ñ \ N ′| ≥
|M̃ \M ′|. Proposition 4.1 tells us that MMS i(n

′,M ′) ≥
MMS i(ñ, M̃) where n′ = |N ′|. Thus it suffices to show
vi(Yi) ≥ 4/7 ·MMS i(n

′,M ′).

We now classify the goods in M ′ as good or bad.
A good is good if it contained in a Yj of cardinality at
least three or is contained in Y1 or Yi. All other goods
are bad, i.e., a bad good is contained in a bundle of
cardinality two different from Y1 and Yi. A bundle in Y
containing good goods is good.

We will next reduce the problem further. Let x be
the number of bad goods in M ′. Since the bad goods
are contained in bundles of cardinality two, the good
goods in M ′ come from n′−x/2 good bundles of Y . As
long as x > n′, we will apply a reduction step. Each
reduction step will reduce the number of bad goods
in M ′ by two, the number of agents by one, will not
decrease the MMS i-value, and will leave the quantity
n′ − x/2 and set of good goods in M ′ unchanged.

Let Z = 〈Z1, Z2, . . . Zn′〉 be an optimal MMS
partition for agent i of the set M ′ of goods. If there are
more than n′ bad goods in M ′, there is a set Zk with at
least two bad goods, say g1 and g2. We distribute the
goods in Zk \ {g1, g2} arbitrarily among the other sets
in Z. So we have a partition of the set M ′ \ {g1, g2} of
goods into n′ − 1 many bundles. The value for agent i
of any remaining bundles did not decrease. Set M ′ to
M ′ \ {g1, g2} and decrement n′. Note that we reduced
the number of bad goods by two, the number of agents
by one, did not decrease MMS i(n

′,M ′) and the set of
good goods in M ′ still come from the n′ − x/2 good
bundles in Y . We keep repeating this reduction until M ′

contains at most n′ bad goods. At this point, we have
a set M ′ of goods and an integer n′ with the following
properties:
(1) The number x of bad goods in M ′ is at most n′.

(2) MMS i(n
′,M ′) ≥ MMS i(ñ, M̃), and

(3) The set of good goods in M ′ has not changed. They
come from n′ − x/2 goods bundles in Y .

We will next relate the value of good and bad goods
to the value of Yi for all i.

Lemma 4.2. We have
a) For any bad good g, vi(g) ≤ vi(Yi).
b) vi(Y1) ≤ 2vi(Yi).
c) If j 6= 1 and Yj is a good bundle then vi(Yj) ≤

3/2 · vi(Yi).

Proof. a) Let Yj = {g, g′} be the bundle containing g.
Since j 6= 1 (by definition of a bad good), we have
vi(Yi) ≥ vi(Xi) ≥ vi(Xj \ g′) = vi(Yj \ g′) = vi(g).
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b) Since agent 1 is a source, vi(Xi) ≥ vi(X1). By
Theorem 2.1, vi(Xi) ≥ vi(P ). Therefore, vi(Y1) =
vi(X1 ∪ P ) = vi(X1) + vi(P ) ≤ vi(Xi) + vi(Xi) =
2vi(Xi) = 2vi(Yi).

c) Let g ∈ Yj be such that vi(g) is minimal. Then
vi(Yj − g) ≤ vi(Yi) and vi(g) ≤ vi(Yj)/|Yj |. Thus

vi(Yi) ≥
(

1− 1

|Yj |

)
· vi(Yj) ≥

(
1− 1

3

)
· vi(Yj)

=
2

3
· vi(Yj).

Now we are ready to show the bound on GMMS.
We have x bad goods in M ′. The good goods in M ′

come from n′ − x/2 good bundles. Also x ≤ n′. The
total value of the good goods for agent i is at most

3

2
(n′− x

2−2)·vi(Yi)+vi(Yi)+2vi(Yi) =
3

2
(n′− x

2 )·vi(Yi),

since there are at most n′ − x/2− |{1, i}| good bundles
different from Y1 and Yi: each of value at most (3/2 ·
vi(Yi)), and Y1 has value at most 2vi(Yi). Also, the total
value of the bad goods for agent i is at most x · vi(Yi),
since there are x many bad goods and each bad good is
worth at most vi(Yi). Therefore,

vi(M
′) = vi(bad goods in M ′) + vi(good goods in M ′)

≤ x · vi(Yi) +
3

2
(n′ − x

2
) · vi(Yi)

=
6n′ + x

4
· vi(Yi) ≤

7n′

4
· vi(Yi).

5 Large Markets with Subadditive Valuations

Our main result (Theorem 2.1) implies that complete
allocations that are approximately EFX always exist
in large markets with subadditive valuations. In large
markets, the valuation of any good by an agent is only
a small fraction of her valuation for the entire set M .

The intuition behind this observation is that the
number of unallocated goods in Theorem 2.1 is less
than the number of agents that nobody envies in the
allocation X. We can therefore assign at most one
unallocated good to each of the agents that nobody
envies. This does not create much envy from other
agents since the valuation any agent has for a single
good is not significantly high in large markets. Hence
we can get very close to an EFX allocation.

More precisely, a large market with parameter ε is
one where for any agent i ∈ N and good g ∈ M , we
have vi(g) ≤ ε · vi(M)/n [13]. It is easy to see that

Theorem 2.1 can be used to show that in a large market
when agents have subadditive valuations, there always
exists an allocation X = 〈X1, . . . , Xn〉 such that for any
pair of agents i, j:
(1) either vi(Xi) ≥ vi(Xj \ g) for all g ∈ Xj or
(2) vi(Xi) ≥ (1− δ) · vi(Xj), where δ = ε+ ε/n.

6 Conclusions and Open Problems

We studied the existence of EFX allocations when
agents have general valuations. We showed that we
can ensure such an allocation always exists when we
donate a small number of goods that nobody envies to
charity. The major open problem here is whether EFX
allocations always exist. Plaut and Roughgarden [27]
remarked that an instance with no EFX allocation may
be easier to find in the setting of general valuations.
Our result on “almost-EFX” allocations for general
valuations allows one to hope that EFX allocations
always exist, at least for more structured valuations such
as additive.

Plaut and Roughgarden [27] showed that an expo-
nential number of “value queries” are required to de-
termine an EFX allocation even for two agents with
identical submodular valuations. From our proof it is
evident that we can determine a (1 − ε) EFX alloca-
tion (as in Theorem 3.2) with polynomially many size-
constrained-optimal-valuation queries (where for a given
k, S and agent i we need to find the subset of S of size
at most k that maximizes agent i’s valuation). Studying
the complexity of determining approximate EFX alloca-
tions under other queries is a line of direction for future
work.

We also showed that we get guarantees in terms of
other notions of fairness when agents have additive val-
uations. To the best of our knowledge, allocations with
good guarantees (i.e., constant factor approximation)
on Nash social welfare and MMS (as well as GMMS)
were not known prior to our work. It would also be in-
teresting to investigate whether these guarantees can be
improved or if instances can be constructed where our
guarantees are tight. We believe that our work is just
the beginning towards determining an allocation that
gives good guarantees with respect to several notions of
fairness: an allocation that is universally fair.

Very recently, Amanatidis et al. [4] have announced
an allocation that has good approximation guarantees
simultaneously with respect to four notions of fairness
when valuation functions are additive: in particular,
their allocation is (φ − 1)-EFX and 2/(φ + 2)-GMMS,
where φ ≈ 1.618 is the golden ratio. Moreover, a
fine-tuned version of their algorithm also achieves 4/7-
GMMS which matches our result (see Theorem 4.2).
They also show that for additive valuations, when m
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is at most n + 2, where m is the number of goods and
n is the number of agents, GMMS (and hence, EFX)
allocations always exist.

Acknowledgments. We thank the reviewers for their
helpful comments.
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