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Abstract.  For pin-jointed assemblies with many members or self-stress states, the form-finding problem using 
conventional methods generally involves considerable computational complexities due to the large size of the 

solution spaces. Here, we propose an improved form-finding method for prestressable pin-jointed structures by 

combining symmetry-based qualitative analysis with particle swarm optimization. Expressed in the symmetry- 

adapted coordinate system, the nodal coordinate vectors of a structure with specific symmetry and topology are 

independently extracted from the key blocks of the small-sized force density matrices associated with rigid- 

body translations. Then, the first block of the equilibrium matrix is computed, in which the null space reveals 

integral self-stress states. Particle swarm optimization is introduced and adapted to find feasible prestress 

modes, where the uniformity and unilaterality conditions of the members are considered. Besides, the QR 

decomposition with column pivoting is adopted for efficient computations on the null space of these blocks. 

The QR decompositions of the small-sized blocks of the force density matrix and the equilibrium matrix are 

performed iteratively, to simultaneously find a stable self-equilibrium configuration and a feasible prestress 
mode. Representative examples show the presented method is computationally efficient and accurate for the 

form-finding of symmetric tensegrities and prestressed cable–strut structures. 
 

 
 

1 Introduction 

 
Prestressable pin-jointed structures generally contain a number of self-stress states and can be infinitesimally 
rigid. They are a new type of spatial structures with interesting configurations, as well as desirable character- 
istics such as light weight and foldability, where flexible cables and compression struts act as basic units [1,2]. 
Contrary to traditional spatial structures and reinforced concrete structures [3], a prestressable pin-jointed 
structure is generally not stable at the initial configuration when there is no prestress. Thus, initial prestresses 
in the members are essential for obtaining or enhancing structural stability [4]. On the condition that a pre- 
stressable pin-jointed structure reaches a stable self-equilibrium state by initial prestresses, the structure can be 
transformed into a free-standing tensegrity [5], a cable truss structure, or a cable dome structure (e.g., the well-
known Levy cable dome [6]). 

From  a  structural  design  perspective,  finding  a  specific  self-equilibrium  configuration  and/or  feasible 
prestress distribution of the members (also known as form-finding analysis [7,8]) is the key to developing a 
novel prestressed structure. Therefore, form-finding of prestressable pin-jointed structures has attracted great 
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attention from researchers in different fields, such as mathematics [9,10], biology [11,12], novel robotics, and 
engineering structures [13,14]. However, it is often difficult to simultaneously determine initial prestresses and 
geometric configurations because of the strong coupling between them [15,16]. Several methods of form- 
finding have been proposed by various scholars [15,17–20]. Based on the D’Alembert principle, Motro [2] 
extended the dynamic relaxation method—commonly used for membrane structures—into the form-finding of 
tensegrity structures. Zhang and Ohsaki [18] proposed an adaptive force density method for tensegrity 
structures, where the form-finding results are dependent on the given force densities. Koohestani and Guest 
[15] proposed a numerical form-finding method for tensegrity structures, in which the basic variables are the 
lengths of members in a Cartesian coordinate system. Based on the affine transformations of nodal coordinates, 
Masic et al. [21] developed an algebraic form-finding method for tensegrity structures. Connelly and Back [22] 
adopted a group representation theory to explain mathematical principles behind tensegrity structures and 
employed symmetry principles to systematically classify them. It was followed by the development of 
complementary- based analytic and group-theoretic approaches to simplify the form-finding procedure of 
prestressable pin- jointed structures [23–25]. 

On the other hand, metaheuristics have been applied to the formation of the structures [26,27]. Kaveh and 
Bakhshpoori [28] presented certain well-known algorithms in a practical implementation framework, where 
the MATLAB codes and some benchmark structural optimization problems are provided. Further, iterative 
methods  and  optimization  algorithms  have  been  successfully  exploited  to  develop  large-scale  or  irregular 
prestressable pin-jointed structures [29–31]. Tran and Lee [32] proposed an iterative form-finding method for 
cable–strut structures where the force density and equilibrium matrices could be repeatedly computed and 
updated for detecting self-equilibrium configurations. Li et al. [33] proposed a Monte Carlo form-finding 
method for irregular tensegrity structures. Using the ant colony algorithm, Chen et al. [16] developed a form- 
finding method for tensegrity structures in which nodal positions are given in advance and the connectivity 
pattern of the members is viewed as a design variable. More recently, Xu et al. [34] have combined the force 
density theory and the mixed integer nonlinear programming for the optimization of tensegrity structures, where 
the topology and force densities are taken as design variables. These form-finding methods apply considerably 
fewer constraints on the structures and find some feasible form-finding solutions by optimizing the global 
object functions. They are robust and applicable to structures with a single integral self-stress state or a small 
number of self-stress states. However, when the number of nodes and members increases, the required rank 
deficiencies of certain matrices and the unilaterality properties of the members (i.e., cables are in tension and 
struts are in compression) are often difficult to be guaranteed, especially for large-scale structures with many 
self-stress states. Then, the computational complexity of the involved form-finding process increases 
significantly, because the space to be searched for feasible solutions becomes much larger. 

Besides, the inherent symmetry of symmetric structures is frequently underutilized during the iterative 
form- finding process. In fact, using symmetry not only reduces computational complexity, but also provides 
us with insightful qualitative results [23,35–37]. A recent study [24] has shown that rigid-body motions 
necessarily lie in the null space of several key blocks of the symmetry-adapted force density matrix. In addition, 
integral self- stress states always retain full symmetry and come from the first block of the symmetry-adapted 
equilibrium matrix [25]. Importantly, these fully symmetric self-stress states are necessary requirements for the 
stability of symmetric cable–strut structures [4], whereas their proper combination can generate a feasible 
prestress mode. Group theory and graph products have been verified to be simple and effective for structures 
with symmetry and regularity [38–42]. Consequently, the symmetry-based qualitative analysis and the 
optimization algorithm would  be  combined  for  the  nonlinear  form-finding  of  prestressable  pin-jointed  
structures,  to  significantly reduce the solution space and enhance the robustness of the involved form-finding 
procedure. 

Here, by exploiting both symmetry analysis and particle swarm optimization (PSO) algorithm, we propose 
an advanced form-finding method for prestressable pin-jointed structures. A practical advantage of this method 
is that the nodal coordinate vectors and integral self-stress states are accurately and iteratively extracted from 
the null space of certain key blocks by a small computational cost, according to the qualitative knowledge 
obtained from the symmetry analysis. To effectively evaluate the feasible prestress distribution and consider 
the uniformity and unilaterality conditions of members, a particle swarm optimization model is developed. 
Moreover, the QR decomposition with column pivoting is introduced to extract the null space of block matrices. 
During form-finding, certain blocks of the force density matrix and the equilibrium matrix—expressed in the  
symmetry-adapted  coordinate  system—are  iteratively  computed,  to  simultaneously  find  a  stable  self- 
equilibrium configuration and a feasible prestress mode. 
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2 Advanced form-finding of symmetric prestressable pin-jointed structures 
 

2.1 Flowchart and improvements of the proposed form-finding process 

 
According to the force density method [18,43], it is known that the self-equilibrium equation of a prestressable 
pin-jointed structure can be expressed with respect to nodal coordinates: 

 

Dx = 0,  Dy = 0,  Dz = 0,                                                                     (1) 
 

where x, y, and z are the nodal coordinate vectors along the directions x, y, and z, respectively, and D is known 
as the force density matrix [7,18] or the stress matrix [10,44]. In fact, the matrix D can be directly established 
by the force density of each member, given by

 
 
 

 
 
 
 
 
 

where qk  denotes the force density of the member k connected to nodes i  and  j  and   describes the set of all 
members connected to node i. On the other hand, when the internal forces of the members are taken as variables, 
the self-equilibrium equation can be rewritten as 

Ht = 0,                                                                                (3) 
 

where  H  is  the  equilibrium  matrix  and  t  is  the  internal  force  vector.  The  force  density  matrix  D  and  
the equilibrium matrix H are coupled to each other, as the matrix H is determined by the nodal coordinate 
vectors and the force density of a member k is dependent on the internal force tk , 

qk = tk / lk .                                                                              (4)  

In Eq. (4), lk  is the length of the member k. For a self-equilibrated pin-jointed structure with at least one state 
of self-stress, the matrices D and  H  are necessarily singular. It can be noticed from Eqs. (1) and (3) that the 
null space of the matrix D contains independent modes of nodal coordinates, while that of the matrix H contains 
independent states of self-stress. Thus, on the basis of strong coupling between these two matrices, the nonlinear 
form-finding method can be utilized to iteratively compute the matrices D and H. On condition that the 
requirement on the rank deficiencies of the two matrices is satisfied, a non-degenerate prestressable pin-jointed 
structure can be developed [15,18,45]. For clarity, Fig. 1a shows the kernel iterative calculation during the 
form-finding method. It keeps updating the matrices D and H  and gets out of the iteration loop when a self-
equilibrated and stable structure is obtained [45]. 

The reported form-finding process shown in Fig. 1a exhibits efficiency and accuracy for both tensegrity 
structures and prestressed cable–strut structures with a single configuration or a small number of self-stress 
states [45]. However, when the number of self-stress states or the dimension of the solution space rises, it is 
frequently difficult to compute the force densities (from the internal forces evaluated by the self-stress states) 
and the nodal coordinate vectors (extracted from potential vectors of the null space of  D), as shown by the dark 
gray areas in Fig. 1a. 

To overcome these difficulties, an improved form-finding method is presented, where the basic and 
nonlinear iteration loop is illustrated in Fig. 1b. Based on the specific symmetry properties of the structure, the 
first block matrix of the symmetry-adapted equilibrium matrix is computed, of which the null space necessarily 
contains integral self-stress states with full symmetry. Then, the initial prestress mode and thus the force 
densities can be obtained by using PSO to find an optimized combination of the integral self-stress states. In 
addition, our previous study has shown that the rigid-body motions must be associated with certain irreducible 
representations of a symmetry group, and nodal coordinates can be extracted from the null space of three key 
blocks of the symmetry-adapted force density matrix [24]. 

According  to  Fig. 1b,  the  improved  form-finding  procedure  using  both  PSO  algorithm  and  symmetry 
contains eight steps:  

Step 1 Define a certain symmetry group G for the input structure in advance and identify irreducible repre- 
sentations associated with rigid-body translations from group theory tables [24,46] 

 (5) 
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Fig. 1  Comparison between two different approaches to form-finding for prestressable pin-jointed assemblies: a form-finding 
process without symmetry; b a novel process based on symmetry and the PSO algorithm 
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Fig. 9  Obtained self-equilibrium configuration and prestress distribution of the Levy cable dome: a plan view; b section view 
 

 

 
 

Fig. 10  Typical configurations of the Levy cable dome during form-finding 

 

 
 

5 Conclusions 
 

This  paper  presented  an  improved  form-finding  method  of  symmetric  prestressable  pin-jointed structures. 

We demonstrated that by combining a specified symmetry with a PSO algorithm, the proposed method can 
effectively find both the stable self-equilibrium configuration and the feasible prestress mode for a prestressable 

structure. During form-finding, a PSO model for evaluating the prestress mode of a structure with multiple self- 

stress states is developed. Several numerical examples with different symmetries were presented to validate the 

efficient implementation and accuracy of the proposed method for nonlinear form-finding. 
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Based on the qualitative knowledge acquired from symmetry analysis, the main contribution of this work is 
developing a method for the accurate, iterative extraction of nodal coordinate vectors and integral self- stress states 

from the null space of certain key blocks by a relatively small computational cost. Moreover, to effectively evaluate 

the null space of the block matrices, the QR decomposition with column pivoting is utilized. 

 

Importantly, the nonlinear form-finding process considers not only the given symmetry and the stability of a 

structure, but also the uniformity and unilaterality conditions of the members. This method could potentially find 

applications in the design and optimization of novel tensegrities and prestressed cable–strut structures, as different 

initial force densities can develop various stable self-equilibrium configurations. 
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