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ABSTRACT
In describing the charge carriers’ separation mechanism in the organic solar cell, providing a method, which considers the impact of all
parameters of interest on the same footing within an inexpensive numerical effort, could play an essential role. We use here a simple tight-
binding model to describe the dissociation of the charge carriers and investigate their dependence on the physical parameters of the system.
We demonstrate that the quantum yield of the cell is subtly controlled by the collective action of the Coulomb interaction of the electron–
hole pair, electron–phonon coupling, and the geminate recombination of the charge carriers. This approach should help us understand the
performance of organic solar cells and optimize their efficiency.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5140323., s

I. INTRODUCTION

Organic photovoltaic devices (OPVs) have triggered widespread
attention in recent years due to their promising potential toward the
generation of inexpensive green energy.1–3 A significant improve-
ment in the cell efficiency has been observed by the introduc-
tion of the bulk hetero-junction (BHJ) devices consisting of a
blend film of donor (usually a polymer) and acceptor (usually
fullerene derivatives) materials.4–7 In the BHJ OPVs, an absorbed
photon creates a bound electron–hole pair, the so-called exciton,
which migrates to the donor–acceptor interface to be separated
into free charge carriers, and is then transported toward the elec-
trodes.8–10 The efficiency of the device is literally controlled by the
success rate of charge carriers in reaching the electrodes without
recombination. The charge migration rate is determined by elec-
tron and hole mobilities, which are affected by many factors, for
instance, the morphology of materials, charge carriers interactions
and recombination, temperature, coupling to vibrational modes,
external electrical fields, and polarization effects caused by atomic
induced dipoles on adjacent molecules. Accordingly, the consid-
eration of electron–hole interaction, geminate recombination, and
electron–phonon coupling is unavoidable for a fully microscopic

understanding of the charge separation mechanism in organic pho-
tovoltaic devices. To tackle this problem, various numerical methods
such as exact diagonalization,11 diagrammatic Monte Carlo,12 time-
dependent density functional theory,13 the Dirac–Frenkel’s time-
dependent variational principle,14 quantum master equation,15 and
other approaches16–18 have been developed. However, these meth-
ods are quite demanding from a computational point of view,
which makes the comprehensive treatment of the charge separa-
tion process a challenging task. In the present study, we contribute
to the theory of organic photovoltaic devices, extending on vari-
ous other studies addressing the problem of energy conversion in
OPVs.19–25 We develop a theoretical model that is based on the scat-
tering theory and the Lippmann–Schwinger equation and has been
employed in our recent works to assess the impact of hole propaga-
tion, off-set energies, electron–hole interaction, and non-radiative
recombination on the charge separation yield.26–29 In this work,
we go a step further and study microscopically the relative role of
phonons in addition to charge interaction and recombination on
the quantum yield. Such modes are strongly coupled to the elec-
tronic orbitals as shown, e.g., by ab initio theoretical calculations30,31

and ultrafast spectroscopic techniques,32,33 and lead to polaron
formation in the case of a sufficiently strong electron–phonon
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coupling.11,14,34 This methodology helps us understand the differ-
ence in transferring an electron to a manifold of polaronic bands
rather than to a purely electronic band. It has to be noted that sim-
ilar methodologies have been applied to the molecular junctions,
which are comparable to the systems examined here.35,36 In particu-
lar, the present formalism extends on previous work by Galperin and
Nitzan in the context of molecular junctions37 and by including the
impact of electron–hole interaction, electron–phonon coupling and
geminate recombination adds important highly non-trivial aspects
to that model. Among the interesting novelties of this method com-
pared to prior studies11–18 is that it provides an energy domain
framework which, on the one hand, enables one to have access to
detailed spectral information, a suitable framework to interpret the
results, and, on the other hand, provides an efficient inexpensive
numerical approach to treat all parameters of interest on the same
footing. The outline of this paper is as follows: In Sec. II, the theo-
retical model is described. Section III is divided into two parts: In
Sec. III A, we investigate the cell performance in the presence of a
short-range electron–hole interaction, and in Sec. III B, the impact
of long-range interaction is considered. A brief summary is given
in Sec. IV.

II. THEORETICAL MODEL
The following generic Hamiltonian is utilized to describe

the quantum-mechanical charge transfer process of an electron
at a molecular chain of length N interacting with a vibrational
bath:

H = ε0c+
0 c0 +

N

∑

l=1

V
l
c+
l cl + C(c+

0 c1 + c+
1 c0) + J

N

∑

l=1
(c+

l cl+1 + c+
l+1cl)

+ ̵hω0

N

∑

l=1
a+
l al + g

N

∑

l=1
c+
l cl(a

+
l + al), (1)

where a+
l (al) and c+

l (cl) are the phonon and electron creation (anni-
hilation) operators on site l, respectively, ̵hω0 represents the energy
of the relevant molecular vibration, g is the local electron–phonon
coupling constant, C is the tunneling amplitude between the donor
(site l = 0) and the first site of the tight-binding chain describing
the acceptor (site l = 1), ε0 is the energy of the incoming elec-
tron, V sets the typical Coulomb potential binding the electron–
hole pair, and J is the transfer integral between adjacent molecules
within the acceptor chain (sites l = 1:N). In the following, to out-
line the strength of the local electron–phonon coupling, we use the
dimensionless Huang–Rhys parameter α2 = (g/̵hω0)2, which is a
ratio between the molecular reorganization energy and the phonon
energy.38

Our main assumptions in this study are as follows: (i) we
assume that the hole is fixed in the interface (at site l = 0); how-
ever, the effects of hole diffusion can be described by a reduction in
the effective Coulomb binding and can be easily taken into account
by extending the Hamiltonian in Eq. (1).29 (ii) A single intramolec-
ular mode of vibration is considered. The multiple phonon modes
provide additional transfer channels and treating them properly
requires a detailed knowledge of all the modes which is not the
focus of present study. (iii) A Coulomb potential for the electron–
hole is considered, although other types of interaction should not

cause drastic changes in the results.39,40 (iv) We study the model at
the zero temperature. This assumption is justified as the electronic
and vibrational energies are much larger than kBT. (v) For sim-
plicity, we consider only the momentum average treatment of the
model as such the phonon modes are excited only on the site where
the electron arrives and all the other modes are empty. Although
the momentum average approximation neglects the inelastic pro-
cesses, it provides a suitable framework to describe the polaronic
bands.

Starting from the quantum scattering theory and Lipmann–
Schwinger equation,28 we introduce the local polaronic Green’s
function at site l = 0 (see the supplementary material for further
details) or the so-called resolvent,

G0(z) = (z − ε0 + i
ΓR
2
− C2G̃1(z))

−1
, (2)

with z and ΓR being a complex energy with an infinitesimal positive
imaginary part and the geminate recombination parameter, respec-
tively. G̃n(z) denotes the Green’s function on site n when all sites
between n and 0 are neglected and obey a recurrence relation as
follows:

G̃n(z) = (z −
V
n
− Σp(z) − J2G̃n+1(z))

−1
, (3)

where Σp(z) is the so-called phonon self-energy, which can be com-
puted according to the phonon chain Green’s function as explained
in detail in the supplementary material. The so-called polaronic
Green’s function G0(z) in the absence of coupling to the phonon
modes is the retarded Green’s function for a single electron. As
shown in Ref. 28, having defined the G0(z) enables one to investi-
gate the quantum yield Y, which is a manifestation of competition
between electronic motion and loss processes (e.g., charge carriers
recombination),

Y = ∫
−C2 Im G̃1(z)

(
ΓR
2 − C

2 Im G̃1(z))
× n0(z)dz, (4)

where n0(z) = −(1/π) ImG0(z) is the density of states (DOS) on
site l = 0. It has to be noted that when the recombination parame-
ter ΓR tends to zero, only the energies leading to nonzero Im G̃1(z),
i.e., the energies in the continuum contribute to the yield. In that
case, one obtains Y = 1 − P where P = 1 − ∫n0(z)dz denotes the
weight of localized states on the initial state l = 0. Indeed, the part of
the initial wave-function that decomposes on localized states stays
close to the interface until it undergoes recombination even in the
case of the insignificant recombination parameter. On the contrary,
the part which decomposes on eigen-states of the continuum gets
the opportunity of injection to the electrodes if ΓR tends to zero. Let
us emphasize that in a solar cell, there is also the question of how
the electron goes to the electrode which requires an electric field
that can be self-consistent with the flow of charge and may mod-
ify the local Hamiltonian. The results presented here do not treat
the effect of an external varying voltage. In that sense, we are not
presenting a full theory of organic solar cells. Yet the present work
sheds light on basic quantum phenomena that occur in this type
of cell.
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III. RESULTS AND DISCUSSIONS
In the following, we examine the density of states and the

charge separation yield. The initial state in the model consists of
an electron injected on the donor site l = 0 with excess energy
ε0, without any coupling to the phonon modes. All the vibration
modes on the acceptor chain are empty. We set the basic energy
unit to be the hopping parameter on the sites of acceptor mate-
rial J = 1. The donor to acceptor tunneling rate is set to C = 0.5.
The values of J and C are chosen to be different as the former
stands for the coupling between the molecules of the same mate-
rial (acceptor) while the latter denotes the coupling between the
molecules of different materials (donor and acceptor). The vibration
frequency is also set to ̵hω0 = 1. All the parameters are expressed
as a factor of J; however, as long as the calculation is done in the
non-adiabatic regime (i.e., ̵hω0 ≥ J),41 the precise values are not
so important. The other three parameters, i.e., the injection energy
ε0, the local electron–phonon coupling α2, and the strength of the
Coulomb potential V are kept free. In the following, considering
the local electron–phonon coupling, we assess the density of states
and the quantum yield in the presence of (Sec. III A) a short-range
electron–hole interaction and (Sec. III B) a long-range electron–hole
interaction.

A. Short-range electron–hole interaction
The short-range interaction term indicates that the electron–

hole interaction occurs only on the site l = 0 whose effect is no
more than a change in the onsite energy of this site (ε0). The local
density of states (DOS) far from the interface (the so-called bulk

part) is an essential parameter, which reveals the influence of intra-
molecular vibrations on the electronic structure. We compute the
local DOS for different strengths of electron–phonon coupling. As
shown in Fig. 1, a series of bands appears at the edges, which are
the so-called polaronic bands. In the limit studied here, there is
essentially no scattering effect by the phonons, and therefore, the
coupling to the phonon modes mainly causes the band renormaliza-
tion. The gaps between the different bands of the local DOS spec-
trum appear as a result of resonance energies caused by the coupling
to the phonon modes. Mathematically, these gaps appear when the
phonon self-energy Σp(z) diverges or equivalently when the polaron
Green’s function G0(z) becomes zero. It has to be noted that there
is an infinite number of polaronic bands which are centered around
energies given by ̵hω0(m − α2). However, the amplitude of the pola-
ronic peaks decrease with 1/m! (m is the number of polaronic peaks),
and therefore, all the peaks cannot be observed in Fig. 1. The spec-
trum of the polaronic bands can be obtained straightforwardly from
G̃n(z) at a large n. Indeed, the spectrum corresponds to energies for
which G̃n(z) have a non-zero imaginary part implying that the effec-
tive energy z − Σp(z) belongs to the spectrum of the bare electron
chain (i.e., no coupling to phonon modes), which is extended in the
energy interval of [−2J, 2J].

To evaluate the charge separation yield in the presence of
electron–phonon coupling and local Coulomb interaction (second
row in Fig. 1), we begin by considering the case without charge
carrier recombination (ΓR = 0), scanning for all possible values of
the injection energy ε0 and varying the strength of the electron–
phonon coupling α. We find that in the non-interacting and non-
recombining electron–hole conditions, the yield within the accep-
tor bandwidth, i.e., −2J ≤ ε0 ≤ 2J, is one as long as α = 0. Upon

FIG. 1. Top panels: the local density of states in the bulk part for different strengths of electron–phonon coupling α showing the polaronic bands. Bottom panels: the charge
separation yield as a function of injection energy ε0 in the presence of local electron–hole Coulomb interaction and for various values of α. The figures are obtained for ̵hω0
= J = 1.
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FIG. 2. From top to the bottom: local den-
sity of states in the bulk part and close to
the interface for different injection ener-
gies. The electron–phonon coupling con-
stant is set to α =

√

0.4. All the energies
are expressed in terms of J as the basic
energy unit.

increasing α, several sub-bands appear, which are in conformity with
the polaronic band structure of the acceptor side42 shown in the top
panels of the same figure. As can be seen for any value of α, one
can find energy bands where the yield is almost one, indicating that

polarons behave like “good” charge carriers. An in depth analysis
of the spectral information enables one to understand the required
conditions for the efficient charge extraction and consequently the
higher yield. Therefore, in Fig. 2, for an arbitrary α, we examine the

FIG. 3. Yield as a function of injec-
tion energy ε0 for various values of
the electron–phonon coupling constant α
and electron–hole recombination param-
eter ΓR. The legend presented in the first
panel is valid for all the other panels. All
the energies are expressed in terms of J
as the basic energy unit.
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FIG. 4. Yield as a function of injec-
tion energy ε0 for various values of the
electron–phonon coupling parameter α
and electronic coupling C. The legend
presented in the first panel is valid for all
the other panels.

density of states in the bulk (far from the interface) and also close to
the interface for different injection energies ε0. The electronic struc-
ture in the bulk part represents an aggregate picture of all possible
polaronic bands and the energy gap regimes. As depicted in the four
bottom panels, for a given injection energy ε0, the electronic struc-
ture may contain the energy states on the “allowed” polaronic bands
or contrarily on the localized states in the energy gap (defined on the
basis of bulk DOS). The charge carriers lying in a polaronic band can

evacuate and reach the electrodes, and conversely, the ones localized
in the bound state in the gap regimes recombine quickly, leading to
a reduction in the yield. Here, we draw the reader’s attention to a
delicate point: as can be seen, for injection energies well above the
band of the bare electron chain (+2J), the yield never reaches one.
At a large band index m, i.e., in the regime of high orbital energy,
the width of the polaronic band is so narrow such that the coupling
of the interface LUMO to this band is stronger than the width of

FIG. 5. Yield as a function of injec-
tion energy ε0 for various values of the
electron–phonon coupling α in the pres-
ence of long-range electron–hole bind-
ing V = −1 and different electron–hole
recombination parameters ΓR. The leg-
end presented in the first panel is valid
for all the other panels.
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FIG. 6. Local density of states in the bulk
part and close to the interface for dif-
ferent injection energies. The electron–
phonon coupling constant is set to
α =

√

0.4, and Coulomb interaction
energy is V = −1.

the band. Therefore, a localized state exists regardless of the initial
orbital energy. Since there is always a localized polaronic state, the
bound electron–hole pair ultimately recombines and the yield never
reaches one in this regime.

For further investigation, in Figs. 3 and 4, we investigate the
effects of the recombination parameter ΓR and tunneling amplitude
C on the charge separation yield. The charge carrier recombination
reduces the probability of charge separation and, as can be seen,
it leads to a reduction in the yield, which gets more significant in
the presence of stronger electron–phonon coupling. On the other
hand, a stronger tunneling parameter C facilitates the electron injec-
tion to the acceptor band, and as can be seen from Fig. 4, the yield
grows with increasing values of C as long as the injection energy does
not fall within the strong coupling limit where bound states appear
leading to charge carriers recombination and yield reduction.

B. Long-range electron–hole interaction
In this stage, the former evaluations are repeated for the case

of long-range Coulomb interaction. The strength of Coulomb inter-
action is assumed to be V = −1 and its impact in the presence of
recombination and local electron–phonon coupling is depicted in
Fig. 5. The following points are remarkable: First, the yield keeps the
periodic resonance structure as a consequence of polaronic band for-
mation. Second, for all values of α, the combined effect of Coulomb
interaction and polaronic dressing of the carriers leads to a strong
overall suppression of the yield such that it never reaches one. Third,
with increasing α, the yield drops down even in the regime of bare

electron spectrum (i.e., the energy interval [−2J, 2J]), which is not
observed in the absence of long-range Coulomb interaction. Fourth,
as before, the effects of recombination ΓR can be detected through a
global reduction of the yield, although its impact is more significant
in the presence of long-range Coulomb interaction.

The spectral information represented in Fig. 6, which is
obtained for an electron–phonon coupling strength α =

√

0.4, facili-
tates the rationalization of the yield behavior. We find that the long-
range Coulomb interaction leads to a more intricate spectrum with
many localized and nearly localized states, which further reduce the
charge separation yield.

IV. CONCLUSIONS
We present that the charge separation yield in OPVs is subtly

controlled by the interplay of Coulombic confinement and coher-
ent electron–phonon coupling, which develops a methodology that
is able to rationalize the difference in transferring an electron to a
manifold of polaronic bands rather than to a purely electronic band.
The method is developed in the energy domain and, therefore, pro-
vides spectral information to interpret the results and rationalize the
oscillatory behavior of the charge separation yield. This methodol-
ogy can also be applied to other light harvesting systems where there
is coupling to high-frequency vibrational modes.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details on derivation
of the polaronic Green’s function and spectrum of polaronic bands.
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