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Abstract—The use of Wiener-Khinchin theorem in the 

reverberation chamber reveals the relationships between a 
number of important parameters: the coherence bandwidth and 
the Q factor measured in the time domain, the coherence time and 
the Q factor measured in the frequency domain, the K-factor and 
the Doppler spectrum as well as the K-factor and the total 
scattering cross section (TSCS). The lower bound of the average 
K-factor is also given. Different physical quantities which share 
similar mathematical insights are unified. Analytical derivations 
are given and results are validated by measurements. 
 

Index Terms— Wiener-Khinchin theorem, reverberation 
chamber, Q factor, K-factor, Doppler shift, total scattering cross 
section, absorption cross section.  
 

I. INTRODUCTION 

EVERBERATION chambers (RCs) have been used in the 
electromagnetic compatibility area for many years.  

Recently, the applications of RC have been extended to 
communication channel emulations [1-7]. Due to the statistical 
mechanism and the system level measurement ability, RCs can 
be used in fifth generation (5G) communication system 
measurements [1-7]. Existing applications including bit error 
rate (BER) measurement [1], total radiated power (TRP) 
measurements [5], total isotropic sensitivity (TIS) 
measurements [6], antenna diversity gain measurements [7], 
and antenna efficiency measurements [8, 9]. 

Coherence is an important concept in channel emulation. In 
an RC, the relationship between the coherence bandwidth (݂߂) 
of the measured S-parameters and the Q factor of the RC has 
been experimentally investigated [10-13], efforts have been 
made to obtain analytical and empirical equations between ݂߂ 
and Q [10-13]. By applying the Wiener-Khinchin theorem to 
the frequency domain response (ܵଶଵ) of the RC, the relationship 
between the coherence bandwidth and the chamber decay time 

 
Manuscript received **. 
This work was supported in part by the National Natural Science Foundation 

of China (61701224 and 61601219) and Nature Science Foundation of Jiangsu 
Province (BK20160804).  

Q. Xu, L. Xing, Y. Zhao are with College of Electronic and Information 
Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 
211106, China (e-mail: emxu@foxmail.com). 

Z. Tian is with the College of Optoelectronic Science and Engineering, 
National University of Defense Technology, Changsha 410073, China. 

Y. Huang is with the Department of Electrical Engineering and Electronics, 
The University of Liverpool, Liverpool L69 3GJ, UK. (e-mail: 
yi.huang@liv.ac.uk). 

(߬ோ஼) has been given in [14]. 
In this paper, based on the contribution in [14], we generalize 

the application of Wiener-Khinchin theorem from frequency 
domain in [14] to the time domain and space domain. We show 
that not only in the frequency domain, but also in the time 
domain and the space domain (the moving of a stirrer), the 
Wiener-Khinchin theorem can be used and the relationship 
between different physical quantities (coherence bandwidth, Q 
factor, coherence time, K-factor, Doppler spectrum, total 
scattering cross section and absorption cross section) can be 
revealed. The use of the Wiener-Khinchin theorem in this paper 
unifies different physical quantities in an RC, and the 
relationship between them can be well understood and 
quantified. 

The Wiener-Khinchin theorem is briefly reviewed in Section 
II, followed by its applications and derivations in the frequency 
domain, time domain and space domain. In Section III, 
measurements are conducted to verify the results. Discussion 
and conclusions are summarized in Section IV. 

II. THEORY AND APPLICATIONS 

The well-known Wiener-Khinchin theorem (also known as 
the Wiener–Khinchin–Einstein theorem or the Khinchin–
Kolmogorov theorem) gives the relationship between the 
autocorrelation function and the power spectrum. Suppose ܵ(݂) is a complex function, the autocorrelation function ܴ(߲݂) 
is defined as 

 ܴ(߲݂) ≡ ׬ ܵ(݂)ܵ∗(݂ + ߲݂)݂݀ஶିஶ 																		(1)  
 
where * means complex conjugate, and the inverse Fourier 
transform (IFT) of ܵ(݂) is (ݐ)ݏ 
(ݐ)ݏ  = ℱିଵ[ܵ(݂)] = ׬ ܵ(݂)݁௝ଶగ௙௧݂݀ஶିஶ 													(2)  
 
Wiener-Khinchin theorem tells us that [15] 
 ܴ(߲݂) = ℱ[|(ݐ)ݏ|ଶ] = ׬ ஶିஶݐଶ݁ି௝ଶగడ௙௧݀|(ݐ)ݏ| 					(3)  
 
where ℱ[|(ݐ)ݏ|ଶ]  is actually the power spectrum. For the 
measurements in this paper, the functions are defined over a 
finite region and the values outside the defined regions can be 
set as zero. Thus, (1) - (3) do not have infinite integral 
boundaries for data processing and Wiener-Khinchin theorem 
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is valid as long as the Fourier transform of functions in (1) – (3) 
exist. Since ݂߂  has been used to represent the coherence 
bandwidth or average mode bandwidth in this paper, we do not 
use ݂߂ but use ߲݂ instead as the variable in (1) and (3). 

In an RC, a typical measurement setup is shown in Fig. 1, 
Ant 1 and Ant 2 are connected to the port 1 and port 2 of a 
vector network analyzer (VNA), respectively. A computer 
controls the rotation of the stirrer and records the measured 
S-parameters from the VNA at different stirrer positions. 
Because Wiener-Khinchin theorem is a mathematical 
conclusion, the function ܵ(݂) in (1) can be treated as a transfer 
function depends on the frequency, it can also be replaced by a 
time domain response depends on time (ݐ)ݏ  or a transfer 
function depends on the position of the stirrer ܵ(ߠ). These three 
cases are analyzed as follows, and we use 〈∙〉௠, 〈∙〉௔ and 〈∙〉௙ to 
represent the averaging process caused by rotating mechanical 
stirrers (mechanical stir), moving antennas (source stir) and 
frequency averaging (frequency stir) respectively.  
 

 
Fig. 1.  RC measurement setup at Nanjing University of Aeronautics and 
Astronautics (NUAA), the dimensions are 1.2 m (L) × 1.2 m (H) × 0.8 m (W), 
the lowest usable frequency is about 1 GHz. 
 

A. Frequency Domain 

Suppose ܵ(݂) in (1) is the measured ܵଶଵ for different stirrer 
positions in an RC and ݂ is the frequency, (ݐ)ݏ = ℱିଵ[ܵ(݂)] is 
the IFT of ܵ(݂). (ݐ)ݏ is actually the time domain response of 
the RC, the square of it is the power delay profile (PDP), which 
decays exponentially with time [14]: 

 PDP(ݐ) = ௠〈ଶ|(ݐ)ݏ|〉 = ଴ܲ݁ି௧/ఛೃ಴,					ݐ > 0										(4)	
 
where 〈∙〉௠ means the assemble average over different stirrer 
positions, ߬ோ஼ is the chamber decay time. From (3), it can be 
found that [14] 
 〈ܴ(߲݂)〉௠ = ℱ[〈|(ݐ)ݏ|ଶ〉௠] = ℱൣ ଴ܲ݁ି௧/ఛೃ಴൧							(5) 

 
thus the average autocorrelation [14] 

 〈ܴ(߲݂)〉௠ = ଴ܲ߬ோ஼1 +  (6)																									ோ஼߲݂߬ߨ2݆
 
The use of Wiener-Khinchin theorem in the frequency domain 
clarifies the relationship between the coherence bandwidth and ߬ோ஼ [14]. If the magnitude of (6) is normalized to its peak value, 
it has been given in [14] that 
 |〈ܴ(߲݂)〉௠|௡௢௥௠ = 1ඥ1 + ଶ(ோ஼߲݂߬ߨ2) 													(7) 
 
and ߬ோ஼ can be related to the Q factor of the RC measured in the 
time domain [16]: 
 ்ܳ஽ = ߱߬ோ஼ = ܳி஽ߟଵ௧௢௧ߟଶ௧௢௧ = ଶ௧௢௧ߟଵ௧௢௧ߟଷߣଶܸ〈|ܵଶଵ|ଶ〉௠ߨ16 							(8)	
 
where 	ܸ is the volume of the RC, ߣ is the wavelength, ܳி஽ 
means the Q factor measured in the frequency domain which 
needs to be corrected by using the total efficiency of antennas 
 Note that the average mode bandwidth is .[8] (ଶ௧௢௧ߟ ଵ௧௢௧ andߟ)
defined as ݂߂ = ݂/ܳ [16], when ߲݂ =  ݂߂
 |〈ܴ(߲݂)〉௠|௡௢௥௠,డ௙ୀ௱௙ = 1ඥ1 + ଶ(ܳ/ோ஼݂߬ߨ2) = 1√2		(9) 
 
Thus a threshold of 1 √2⁄  for the autocorrelation can be used. 
Similar conclusions have been given in [12, 14] with different 
thresholds, but one should be careful on the definition of the 
coherence bandwidth. If 2߲݂  is defined as the coherence 
bandwidth [14], a different threshold (2 √5⁄ ) should be used to 
keep the equality between the average mode bandwidth and the 
coherence bandwidth, otherwise one may draw a different 
conclusion (i.e., the coherence bandwidth is larger than the 
average mode bandwidth). 

Equation (7) reveals the relationship between the coherence 
bandwidth and ߬ோ஼ or ்ܳ஽ [14]. The use of (7) is based on the 
assumption that the PDP decays exponentially and the 
early-time response is ignored, this is reasonable as the 
late-time response dominates the PDP [14]. More detailed 
discussions on double-exponential model have been given in 
[14], and it has been shown that when the RC is not heavily 
loaded, (9) is very accurate. 

B. Time Domain 

The Wiener-Khinchin theorem can be used in the time 
domain. We can rewrite (1) in the time domain as  

(ݐ߲)ܴ  ≡ ׬ ݐ)∗ݏ(ݐ)ݏ + ஶିஶݐ݀(ݐ߲ = ׬ ݐ)ݏ(ݐ)ݏ + ஶିஶݐ݀(ݐ߲ 	(10)  
 
where (ݐ)ݏ is the time domain response, ݐ is time and ߲ݐ can be 
understood as the deviation for the time domain correlation. 
Suppose ܵ(݂)  is the Fourier transform (FT) of (ݐ)ݏ , (2) 
becomes 
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 ℱିଵ[(ݐ)ݏ] = ׬ ஶିஶݐ௝ଶగ௙௧݀݁(ݐ)ݏ = ܵ(−݂)															(11)  
 
because (ݐ)ݏ is real, ܵ(݂) = ܵ∗(−݂) (or ܵ(−݂) = ܵ∗(݂)), thus  |ܵ(݂)|ଶ is an even function, (3) becomes  
 |ܵ(−݂)|ଶ = |ܵ(݂)|ଶ = ℱିଵ[ܴ(߲ݐ)] = ℱ[ܴ(߲ݐ)]	= ׬ ஶିஶݐ௝ଶగడ௧௙߲݀ି݁(ݐ߲)ܴ 																											(12)  
 

Interestingly, if we treat (ݐ)ݏ as the measured time domain 
response of the RC, and the spectrum of the time domain 
response (ݐ)ݏ is the measured ܵଶଵ. Equation (12) reveals the 
relationship between ܳி஽  or chamber transfer function 〈|ܵଶଵ|ଶ〉௠ and the coherence time: 

 〈|ܵଶଵ|ଶ〉௠ = ℱ[〈ܴ(߲ݐ)〉௠] = ܳி஽ߣଷ16ߨଶܸ																(13) 
 
If we assume that in a narrow band 〈|ܵଶଵ|ଶ〉௠ is a constant, this 
is reasonable as 〈|ܵଶଵ|ଶ〉௠  varies slowly with the frequency. 
From (13), the autocorrelation 〈ܴ(߲ݐ)〉௠ can be obtained as a 
modulated ܵܽ(∙) function which is  
௠〈(ݐ߲)ܴ〉  = 2〈|ܵଶଵ|ଶ〉௠݊݅ݏ(ߨBW߲ݐ)ݐ߲ߨ ߨ2)ݏ݋ܿ ௖݂߲ݐ) = 2〈|ܵଶଵ|ଶ〉௠BWܵܽ(ߨBW߲ݐ)ܿߨ2)ݏ݋ ௖݂߲(ݐ						(14) 
 
where BW is the frequency bandwidth of the signal, ௖݂ is the 
center frequency. When ߲ݐ = 0, we have 
 〈|ܵଶଵ|ଶ〉௠ = 〈ܴ(0)〉௠2BW 																																(15) 
 
Equation (15) reveals the relationship between the 
autocorrelation function of the time domain response and the 
chamber transfer function.  

C. Space Domain 

When the Wiener-Khinchin theorem is applied in the space 
domain, the Doppler spectrum can be characterized. If the 
channel transfer function is changed by the rotation of a stirrer 
(or other moving objects), the autocorrelation function is 
defined as [17-20] 

(ߠ߲)ܴ  = ׬ ߠ)ܵ(ߠ)∗ܵ + ஶିஶߠ݀(ߠ߲ 														(16)	        
 

where ܵ(ߠ) can be the measured ܵଶଵ at a single frequency and 
depends on the rotation angle ߠ  (or position) of the stirrer, ܴ(߲ߠ) is complex-conjugate symmetric (ܴ(߲ߠ) =  ((ߠ߲−)∗ܴ
[17]. Following the same procedure in (2) and (3), we have 
(ߩ)ݏ  = ℱିଵ[ܵ∗(ߠ)] = ℱ[ܵ(ߠ)]∗															(17) 
 
where ߩ  is the transformed variable of ߠ  in FT and ݏ  is 
transformed from ܵ. If ߠ is replaced by ߠ =  is the ݒ where ݐݒ
rotation or moving speed and ݐ is time in seconds, the unit of ߩ 

is Hz. 
The Doppler spectrum (ߩ)ܦ is real and can be written as [17] 

(ߩ)ܦ  = ଶ|(ߩ)ݏ| = ℱିଵ[ܴ(߲ߠ)] = ℱ[ܴ∗(߲ߠ)]∗ = ℱ[ܴ(−߲ߠ)]∗ = ℱ[ܴ(−߲ߠ)]																								(18) 
 
Note that the Doppler spectrum defined in (18) and the Doppler 
spectrum defined in [17] are symmetric in y-axis, but it does not 
affect our analysis. Also the Doppler spectrum with different 
moving/rotating speed ݒ can be obtained by converting ܵ(ߠ) to ܵ(ݐݒ) [17]. 

The relationship between the Doppler spectrum and the Q 
factor measured in the frequency domain can be derived. When ߲ߠ = 0, (16) becomes 

 ܴ(0) = ׬ ஶିஶߠ݀(ߠ)∗ܵ(ߠ)ܵ = ׬ ஶିஶߠଶ݀|(ߠ)ܵ| 				(19)  
 

by using the Parseval’s theorem (Plancherel theorem), we have 
׬  ஶିஶߩ݀(ߩ)ܦ = ׬ ஶିஶߩଶ݀|(ߩ)ݏ|   = ׬ ஶିஶߠଶ݀|(ߠ)ܵ| = ܴ(0)																	(20)  

 
Suppose ܵ(ߠ) is the measured ܵଶଵ for different stirrer angle, 
thus the relationship between the Doppler spectrum and ܳி஽ 
can be found as 

 〈|ܵଶଵ|ଶ〉௠ = 1Θන ஀ߠଶ݀|(ߠ)ܵ|
଴ = 1Θන ஶߩ݀(ߩ)ܦ

ିஶ  = ܴ(0)Θ = ܳி஽ߣଷ16ߨଶܸ																																							(21) 
 

where Θ is the total rotation angle (or moving distance for an 
moving object). Comparing (21) with (15), (21) links the 
autocorrelation function of the frequency domain response ܴ(0) and the Doppler spectrum (ߩ)ܦ to the chamber transfer 
function. 

We can find the relationship between the K-factor and the 
Doppler spectrum. When ߩ = 0, from (17) and (18) we have 
ଶ|(0)ݏ|  = |ℱ[ܵ(ߠ)]∗|ఘୀ଴ଶ = ቤන ஶߠ௝ଶగఏఘ݀ି݁(ߠ)ܵ

ିஶ ቤఘୀ଴ଶ
 

= Θଶ ቤ1Θන ஀ߠ݀(ߠ)ܵ
଴ ቤଶ = Θଶ|〈ܵଶଵ〉௠|ଶ =  (22)					(0)ܦ

 
Note that the K-factor is defined as the ratio of the unstirred part 
and the stirred part of the received power [16, 21] 
ܭ  = |〈ܵଶଵ〉௠|ଶ〈หܵଶଵ,௦หଶ〉௠ = |〈ܵଶଵ〉௠|ଶ〈|ܵଶଵ − 〈ܵଶଵ〉௠|ଶ〉௠ 												(23) 
 
when K-factor is small (the stirred part is much larger than the 
unstirred part ܭ ≈ |〈ܵଶଵ〉௠|ଶ 〈|ܵଶଵ|ଶ〉௠⁄ ), by using (21) and 
(22), we have 
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ܭ ≈ |〈ܵଶଵ〉௠|ଶ〈|ܵଶଵ|ଶ〉௠ = 1Θଶ ׬1Θ(0)ܦ ஶିஶߩ݀(ߩ)ܦ = (0)ܦ Θ⁄׬ ஶିஶߩ݀(ߩ)ܦ 					(24) 
 
which gives the relationship between the K-factor and the 
Doppler spectrum. The physical meaning is clear: (0)ܦ means 
the DC component (zero Doppler shifts) which is the unstirred 
part, and the denominator represents the total power. This 
unifies the characterization of RC using Doppler spectrum [20] 
and K-factor [21, 22]: they are theoretically equivalent but 
K-factor gives a global description (integral) of the Doppler 
spectrum, while the Doppler spectrum has more detailed 
information. 

We can also find the relationship between the K-factor (or 
the Doppler spectrum) in (24) and the total scattering cross 
section (TSCS) of the stirrer. By applying the Parseval’s 
theorem to |〈ܵଶଵ〉௠|ଶ , and considering |〈ܵଶଵ〉௠|ଶ  is 
complex-conjugate symmetric (real), we have 

׬  |〈ܵଶଵ〉௠|ଶ݂݀ஶିஶ = ׬2 |〈ܵଶଵ〉௠|ଶ݂݀௙మ௙భ   = ׬ (ℱିଵ〈ܵଶଵ〉௠)ଶ݀ݐஶ଴ 									(25)	  
 
If we average both sides of (25) over different antenna positions 
(or different stirrer positions of another stirrer), we have 
 〈2 ׬ |〈ܵଶଵ〉௠|ଶ݂݀௙మ௙భ 〉௔ = ׬2 〈|〈ܵଶଵ〉௠|ଶ〉௔݂݀௙మ௙భ   = ׬ 〈(ℱିଵ〈ܵଶଵ〉௠)ଶ〉௔݀ݐஶ଴ 					(26)  
 
If the early-time response from is ignored, and we check the 
TSCS measurement procedure in [23-26] carefully, it can be 
found that 〈(ℱିଵ〈ܵଶଵ〉௠)ଶ〉௔ in (26) is exactly the power decay 
profile of the unstirred part of the time domain response in 
TSCS measurement 

 〈(ℱିଵ〈ܵଶଵ〉௠)ଶ〉௔ ≈ ଴ܲ݁ି௧/(ఛೃ಴షభାఛೞషభ)																(27) 
 
where ߬௦ is the scattering damping time and ߬ோ஼ is the chamber 
decay time. TSCS can be obtained from [23-26] as 
 TSCS = ܸ߬௦ܿ଴ 																																							(28)	
 
where ܸ  is the volume of the RC, ܿ଴ = 3 × ݏ/݉	10଼  is the 
speed of light in free space. If we assume 〈|ܵଶଵ|ଶ〉௠  is a 
constant in a narrow frequency band ଵ݂ ~ ଶ݂, from (24), (26) 
and (27) we have 
௙,௔〈ܭ〉  = ௔〈௙〈ܭ〉〉 = ௙〈௔〈ܭ〉〉 = 1BWන ௔݂݀௙మ௙భ〈ܭ〉  

≈ 1〈|ܵଶଵ|ଶ〉௠BWන 〈|〈ܵଶଵ〉௠|ଶ〉௔݂݀௙మ௙భ  = 12〈|ܵଶଵ|ଶ〉௠BWන 〈(ℱିଵ〈ܵଶଵ〉௠)ଶ〉௔݀ݐஶ
଴  

= ׬ ଴ܲ݁ି௧൫ఛೃ಴షభାఛೞషభ൯݀ݐஶ଴ 2〈|ܵଶଵ|ଶ〉௠BW = ଴ܲ(߬ோ஼ିଵ + ߬௦ି ଵ)ିଵ2〈|ܵଶଵ|ଶ〉௠BW 					(29) 
 
where BW = ଶ݂ − ଵ݂  is the frequency bandwidth. If the 
early-time responses of the PDP are ignored [14], similar to 
(25), we have  

׬  〈|ܵଶଵ|ଶ〉௠݂݀ஶିஶ = ׬2 〈|ܵଶଵ|ଶ〉௠݂݀௙మ௙భ = 2〈|ܵଶଵ|ଶ〉௠BW  = ׬ 〈|ℱିଵ[ܵଶଵ]|ଶ〉௠݀ݐஶ଴ = ׬ ଴ܲ݁ି௧ ఛೃ಴⁄ ஶ଴ݐ݀ = ଴ܲ߬ோ஼					(30)	  
 
thus  
 〈|ܵଶଵ|ଶ〉௠ = ଴ܲ߬ோ஼2BW 																											(31) 
 
From (28), (29) and (31), the average K-factor can be obtained 
as 
௙,௔〈ܭ〉  = ߬௦߬௦ + ߬ோ஼ = ܸTSCSܿ଴ܸTSCSܿ଴ + ߬ோ஼ 											(32) 
 
where 〈∙〉௙,௔  means averaging over frequencies and different 
antenna positions. Considering that all the loss in the RC can be 
equivalent to an absorber with an absorption cross section 
(ACS) of ACS௔௟௟ = ܸ/(ܿ଴߬ோ஼)  [23-26], (32) can be further 
simplified to  
௙,௔〈ܭ〉  = 1TSCS1TSCS + 1ACS௔௟௟ = ACS௔௟௟ACS௔௟௟ + TSCS									(33) 
 
which gives the relationship between the average K-factor and 
TSCS (and ACS). Note that the limit of the TSCS is a quarter of 
the stirring surface area TSCS ≤   ௦/4 [27], thusܣ
௙,௔〈ܭ〉  ≥ ACS௔௟௟ACS௔௟௟ + ௦ܣ 4⁄ 																									(34) 
 
where ܣ௦ is the stirring surface area [27]. It is interesting to find 
that a lower bound for the average K-factor exists and it is 
related to the stirring surface area and the loss in the RC.  

Note that when Ant 1 and Ant 2 in the RC are not high gain 
antennas and are not directed to each other in main lobes, the 
average K-factor obtained from frequency stir and source stir 
gives same results (〈ܭ〉௙,௔ = ௙〈ܭ〉 =  ௔), because there is no〈ܭ〉
difference between averaging independent samples over 
different frequencies or over different antenna positions.  

One can also replace the K-factor using the Doppler 
spectrum in (24) to link (33) and (34) to the Doppler spectrum, 
or link 〈ܭ〉௙ to the stirrer efficiency ߟ௦ defined in [26]. 

III. MEASUREMENTS 

The measurement scenario is illustrated in Fig. 1, 1601 
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(ݐ)ܥ = 〈(ℱିଵ〈ܵଶଵ〉௠)ଶ〉௔〈[ℱିଵ(ܵଶଵ)]ଶ〉௠,௔ = ݁ି௧/ఛೞ											(35) 
 
The measured (ݐ)ܥ from time domain and ݁ି௧/ఛೞ (߬௦ calculated 
from 〈ܭ〉௙,௔ ) are shown in Fig. 14, which shows a good 
agreement. The stirring surface area of the RC is about 1.2 m2, 
the lower bound of the average K-factor over the frequency in 
(34) is calculated as 〈ܭ〉௙ ≥ −13.4	  dB, note 〈ܭ〉௙,௔ ≈−10.7	dB which is higher than -13.4 dB as expected.  

The Doppler spectrum of other rotation speed can be derived 
as ߩ)ܦ ⁄ݒ ) ⁄ଶݒ  [17], where ݒ is the rotation speed (or moving 
speed), (ߩ)ܦ is the Doppler spectrum for the rotation speed of 
1°/s. By replacing ߠ =  in (16), Θ in (24) is the total time for ݐݒ
one revolution of the stirrer, we have 

(ݒ/0)ܦ  ݒଶ⁄Θݒ ׬ ߩ)ܦ ⁄ݒ ) ⁄ଶݒ ஶିஶߩ݀ = ׬Θ(0)ܦ ஶିஶߩ݀(ߩ)ܦ = |〈ܵଶଵ〉௠|ଶ〈|ܵଶଵ|ଶ〉௠ ≈  (36)	ܭ
 

As expected, the rotation speed of a stirrer does not affect the 
K-factor. 

IV. DISCUSSION AND CONCLUSIONS 

Different physical quantities such as coherence 
bandwidth/time, K-factor, Doppler spectrum, TSCS and ACS 
have been used in different applications of the RC or in RC 
characterizations. It would be easy to have an intuitive 
understanding of the relationship between these quantities, e.g. 
a high Q factor leads a small coherence time, a broader Doppler 
spectrum means a big stirrer, a big stirrer (TSCS) can lead to 
small K-factors and small coherence angles. However, these 
relationships had not been quantified and analytical equations 
or inequations had not been found before. 

In this paper, we have shown that the Wiener-Khinchin 
theorem unifies different quantities in different applications: in 
the frequency domain, it relates the coherence bandwidth to the 
Q factor measured in the time domain; in the time domain, it 
relates the coherence time to the Q factor measured in the 
frequency domain; in the space domain, it relates the coherence 
distance/angle to the Doppler spectrum. In the meanwhile, the 
relationship between the average K-factor and the Doppler 
spectrum, and the relationship between the average K-factor 
and the TSCS have also been revealed. Because the TSCS has a 
limit [27], the lower bound of the average K-factor has been 
obtained. For large K-factors, the unstirred response is 
significant, and this effect has been quantified in [16]. 

The Parseval’s theorem relates the K-factor (and the average 
lower bound) to the TSCS and ACS. In the derivation of the 
lower bound, there are two preconditions:  

1. The early-time behavior of the time domain response is 
ignored (gated), this means that the early-time response of ℱିଵ〈ܵଶଵ〉 does not dominate the unstirred part, this is easy to 
satisfy when source stir 〈∙〉௔ is applied;  

2. The unstirred part is small in (23).  
Because violating these two conditions would lead a larger 

K-factor, and (34) still holds true, thus these two preconditions 

do not need to be satisfied and (34) is a general conclusion. 
However, since the average K-factor is not a single K-factor, 
K-factor smaller than the lower bound in (34) is possible for a 
specific antenna position in a narrow band (as can be seen in 
Fig. 12), but the average value over different antenna positions 
(or different positions for another stirrer) makes (34) valid.  

It should be noted that when using (33) and (34), the average 
K-factor is related to how the TSCS is measured (how the RC is 
stirred). The TSCS of all the moving objects account for the 
average K-factor. By hybridizing different stirring technique, 
the equivalent TSCS can be increased (superimposed) [23, 26] 
and the lower bound can be reduced [30]. 

Because the TSCS can be superimposed [23, 26], (33) can be 
generalized to multiple stirrers: 

௙ೌ೗೗〈ܭ〉1  − 1 ≈෍ቆ ௙௜〈ܭ〉1 − 1ቇெ
௜ୀଵ 																	(37) 

 
where 〈ܭ〉௙ೌ೗೗ is the average K-factor when M stirrers moving 
together; 〈ܭ〉௙௜ is the average K-factor for the ith stirrer. The 
reason of using approximation (≈) is that different operation 
conditions of moving stirrers may not superimpose TSCS 
perfectly [31], although for synchronized moving stirrers the 
TSCS superposition has been experimentally verified [26]. 
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