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Abstract—The use of Wiener-Khinchin theorem in the
reverberation chamber reveals the relationships between a
number of important parameters: the coherence bandwidth and
the Q factor measured in the time domain, the coherence time and
the Q factor measured in the frequency domain, the K-factor and
the Doppler spectrum as well as the K-factor and the total
scattering cross section (TSCS). The lower bound of the average
K-factor is also given. Different physical quantities which share
similar mathematical insights are unified. Analytical derivations
are given and results are validated by measurements.

Index Terms— Wiener-Khinchin theorem, reverberation
chamber, Q factor, K-factor, Doppler shift, total scattering cross
section, absorption cross section.

I. INTRODUCTION

EVERBERATION chambers (RCs) have been used in the

electromagnetic compatibility area for many years.
Recently, the applications of RC have been extended to
communication channel emulations [1-7]. Due to the statistical
mechanism and the system level measurement ability, RCs can
be used in fifth generation (5G) communication system
measurements [1-7]. Existing applications including bit error
rate (BER) measurement [1], total radiated power (TRP)
measurements  [5], total isotropic sensitivity (TIS)
measurements [6], antenna diversity gain measurements [7],
and antenna efficiency measurements [8, 9].

Coherence is an important concept in channel emulation. In
an RC, the relationship between the coherence bandwidth (4f)
of the measured S-parameters and the Q factor of the RC has
been experimentally investigated [10-13], efforts have been
made to obtain analytical and empirical equations between Af
and Q [10-13]. By applying the Wiener-Khinchin theorem to
the frequency domain response (S,;) of the RC, the relationship
between the coherence bandwidth and the chamber decay time
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(Tgc) has been given in [14].

In this paper, based on the contribution in [ 14], we generalize
the application of Wiener-Khinchin theorem from frequency
domain in [14] to the time domain and space domain. We show
that not only in the frequency domain, but also in the time
domain and the space domain (the moving of a stirrer), the
Wiener-Khinchin theorem can be used and the relationship
between different physical quantities (coherence bandwidth, Q
factor, coherence time, K-factor, Doppler spectrum, total
scattering cross section and absorption cross section) can be
revealed. The use of the Wiener-Khinchin theorem in this paper
unifies different physical quantities in an RC, and the
relationship between them can be well understood and
quantified.

The Wiener-Khinchin theorem is briefly reviewed in Section
I1, followed by its applications and derivations in the frequency
domain, time domain and space domain. In Section III,
measurements are conducted to verify the results. Discussion
and conclusions are summarized in Section IV.

II. THEORY AND APPLICATIONS

The well-known Wiener-Khinchin theorem (also known as
the Wiener—Khinchin—Einstein theorem or the Khinchin—
Kolmogorov theorem) gives the relationship between the
autocorrelation function and the power spectrum. Suppose
S(f) is a complex function, the autocorrelation function R(9f)
is defined as

ROf) = [~ S(HS*(f +af)df €Y)

where * means complex conjugate, and the inverse Fourier
transform (IFT) of S(f) is s(¢t)

s(®) =FS(N] = [, S(Ne*™df ()
Wiener-Khinchin theorem tells us that [15]

R@f) = Flls@IP] = [ Is@Pe ™ tdt - (3)
where F[|s(t)|?] is actually the power spectrum. For the
measurements in this paper, the functions are defined over a
finite region and the values outside the defined regions can be

set as zero. Thus, (1) - (3) do not have infinite integral
boundaries for data processing and Wiener-Khinchin theorem
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is valid as long as the Fourier transform of functions in (1) — (3)
exist. Since Af has been used to represent the coherence
bandwidth or average mode bandwidth in this paper, we do not
use Af but use df instead as the variable in (1) and (3).

In an RC, a typical measurement setup is shown in Fig. 1,
Ant 1 and Ant 2 are connected to the port 1 and port 2 of a
vector network analyzer (VNA), respectively. A computer
controls the rotation of the stirrer and records the measured
S-parameters from the VNA at different stirrer positions.
Because Wiener-Khinchin theorem is a mathematical
conclusion, the function S(f) in (1) can be treated as a transfer
function depends on the frequency, it can also be replaced by a
time domain response depends on time s(t) or a transfer
function depends on the position of the stirrer S(6). These three
cases are analyzed as follows, and we use ()., (*)o and (-)+ to
represent the averaging process caused by rotating mechanical
stirrers (mechanical stir), moving antennas (source stir) and
frequency averaging (frequency stir) respectively.

R " | 3 P
x \ T
VNA
/ Computer Motor,
Port2 Portl controller

Fig. 1. RC measurement setup at Nanjing University of Aeronautics and
Astronautics (NUAA), the dimensions are 1.2 m (L) x 1.2 m (H) x 0.8 m (W),
the lowest usable frequency is about 1 GHz.

A. Frequency Domain

Suppose S(f) in (1) is the measured S, for different stirrer
positions in an RC and f is the frequency, s(t) = F1[S(f)] is
the TIFT of S(f). s(t) is actually the time domain response of
the RC, the square of it is the power delay profile (PDP), which
decays exponentially with time [14]:

PDP(t) = (Is(t)|*) = Poe™"/™’c, t>0  (4)
where (-),, means the assemble average over different stirrer

positions, Tgc is the chamber decay time. From (3), it can be
found that [14]

(RO = FUIs®)[?)n] = F[Poe /] (5)

thus the average autocorrelation [14]

Pytge

ROPIm =13 2mea7

(6)

The use of Wiener-Khinchin theorem in the frequency domain
clarifies the relationship between the coherence bandwidth and
Tgrc [14]. If the magnitude of (6) is normalized to its peak value,
it has been given in [14] that

1

J1+ 2rtgc0f)?

and Tz, can be related to the Q factor of the RC measured in the
time domain [16]:

KR(Of))mlnorm = ™

QFD

NitotN2tot

_ 1612V (|21 1%

3
AN1totN2tot

®)

Qrp = WTpe =

where V is the volume of the RC, A is the wavelength, Qpp
means the Q factor measured in the frequency domain which
needs to be corrected by using the total efficiency of antennas
(Mtor and M240¢) [8]. Note that the average mode bandwidth is
defined as Af = f/Q [16], when 0f = Af

1 1
|(R(af)>m|norm,0f=Af - \/1 T (ZﬂfTRc/Q)Z - ﬁ

€)

Thus a threshold of 1/+/2 for the autocorrelation can be used.
Similar conclusions have been given in [12, 14] with different
thresholds, but one should be careful on the definition of the
coherence bandwidth. If 20f is defined as the coherence
bandwidth [14], a different threshold (2/+/5) should be used to
keep the equality between the average mode bandwidth and the
coherence bandwidth, otherwise one may draw a different
conclusion (i.e., the coherence bandwidth is larger than the
average mode bandwidth).

Equation (7) reveals the relationship between the coherence
bandwidth and g, or Qrp [14]. The use of (7) is based on the
assumption that the PDP decays exponentially and the
early-time response is ignored, this is reasonable as the
late-time response dominates the PDP [14]. More detailed
discussions on double-exponential model have been given in
[14], and it has been shown that when the RC is not heavily
loaded, (9) is very accurate.

B. Time Domain
The Wiener-Khinchin theorem can be used in the time
domain. We can rewrite (1) in the time domain as

[o0] [oe]

R(@t) = [__ s(®)s*(t+at)dt = [__s(t)s(t + at)dt (10)

where s(t) is the time domain response, t is time and dt can be
understood as the deviation for the time domain correlation.
Suppose S(f) is the Fourier transform (FT) of s(t), (2)
becomes
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FUs@®] = [2, s(®)e?™tdt = S(—f) (11)
because s(t) isreal, S(f) = S*(—f) (or S(—f) = S*(f)), thus
|S(f)|? is an even function, (3) becomes

IS(=PIZ =IS(OI? = FH[R(0)] = F[R(31)]
= [7 R(at)e~12mt dot (12)
Interestingly, if we treat s(t) as the measured time domain
response of the RC, and the spectrum of the time domain
response s(t) is the measured S,;. Equation (12) reveals the
relationship between Qpp or chamber transfer function
{1S511?),, and the coherence time:

13
15212) = FIUR@O) ] = 122

(13)
If we assume that in a narrow band (]S, |?),, is a constant, this
is reasonable as (|S,;|?),, varies slowly with the frequency.
From (13), the autocorrelation (R(dt)),,, can be obtained as a
modulated Sa(+) function which is

2 .
(R(D),, = 2521l )m:al?("Bwat) cos(2nf.at)

= 2(|S11%),nBWSa(mrBWat)cos (2 f.0t)

(14)

where BW is the frequency bandwidth of the signal, f; is the
center frequency. When dt = 0, we have

(R(0))rm
2BW

(1S211*)m = (15)

Equation (15) reveals the relationship between the
autocorrelation function of the time domain response and the
chamber transfer function.

C. Space Domain

When the Wiener-Khinchin theorem is applied in the space
domain, the Doppler spectrum can be characterized. If the
channel transfer function is changed by the rotation of a stirrer
(or other moving objects), the autocorrelation function is
defined as [17-20]

R(36) = [ S5*(6)S(0 + 06)d6 (16)
where S(8) can be the measured S,; at a single frequency and
depends on the rotation angle 8 (or position) of the stirrer,
R(06) is complex-conjugate symmetric (R(06) = R*(—00))
[17]. Following the same procedure in (2) and (3), we have
s(p) = F7HS*(O)] = FIS(O)] 17)
where p is the transformed variable of 6 in FT and s is

transformed from S. If 8 is replaced by 6 = vt where v is the
rotation or moving speed and ¢ is time in seconds, the unit of p

is Hz.
The Doppler spectrum D(p) is real and can be written as [17]

D(p) = Is(p)|> = F~*[R(80)] = F[R*(96)]*
= F[R(-00)]" = F[R(-06)] (18)
Note that the Doppler spectrum defined in (18) and the Doppler
spectrum defined in [17] are symmetric in y-axis, but it does not
affect our analysis. Also the Doppler spectrum with different
moving/rotating speed v can be obtained by converting S(6) to
S(vt) [17].
The relationship between the Doppler spectrum and the QO
factor measured in the frequency domain can be derived. When
d6 = 0, (16) becomes

R(0) = [, S(6)S*(8)d6 = [ |S(6)I*de  (19)
by using the Parseval’s theorem (Plancherel theorem), we have

I, D(p)dp = [~ Is(p)I*dp

= [2.15(0)12d0 = R(0) (20)
Suppose S(0) is the measured S, for different stirrer angle,
thus the relationship between the Doppler spectrum and Qpp
can be found as

1(° 1(*
() =5 [ 15@Pa0 =5 | DGy
_RO) _ 0
T e 16mV 1)

where O is the total rotation angle (or moving distance for an
moving object). Comparing (21) with (15), (21) links the
autocorrelation function of the frequency domain response
R(0) and the Doppler spectrum D(p) to the chamber transfer
function.

We can find the relationship between the K-factor and the
Doppler spectrum. When p = 0, from (17) and (18) we have

2

[oe]

Is(0)[2 = |FISO)] 12, = f S(@)e-72m0dg

p=0
2
= 02[(Sy1)ml* =D(0) (22)

=07 |L f QS(H)dH
0 0

Note that the K-factor is defined as the ratio of the unstirred part
and the stirred part of the received power [16, 21]

_ |(521)m|2 _ |<521)m|2
e P W~ S, &

when K-factor is small (the stirred part is much larger than the
unstirred part K = [(Sy1)m1%/{1S211*)m), by using (21) and
(22), we have
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1
g Sl __@P® D@70
US21m L1 p(pyap S D(P)dp

which gives the relationship between the K-factor and the
Doppler spectrum. The physical meaning is clear: D(0) means
the DC component (zero Doppler shifts) which is the unstirred
part, and the denominator represents the total power. This
unifies the characterization of RC using Doppler spectrum [20]
and K-factor [21, 22]: they are theoretically equivalent but
K-factor gives a global description (integral) of the Doppler
spectrum, while the Doppler spectrum has more detailed
information.

We can also find the relationship between the K-factor (or
the Doppler spectrum) in (24) and the total scattering cross
section (TSCS) of the stirrer. By applying the Parseval’s
theorem to [{S,;)m|®> , and considering [(Sy;),|% is
complex-conjugate symmetric (real), we have

Lo Sadml2df =2 [2Sa)ml?df

= [PF NSt (25)
If we average both sides of (25) over different antenna positions
(or different stirrer positions of another stirrer), we have

@ [P US200ml2df)a = 2 [ (S2)m?)adlf
= [JAFHS1)m)?)adt  (26)

If the early-time response from is ignored, and we check the
TSCS measurement procedure in [23-26] carefully, it can be
found that ((F ~1(S51)m)?), in (26) is exactly the power decay
profile of the unstirred part of the time domain response in
TSCS measurement

(FMS21)m)?)q = Poe /(R @7
where 7, is the scattering damping time and 7y is the chamber
decay time. TSCS can be obtained from [23-26] as

(28)

where V is the volume of the RC, ¢, = 3 X 108 m/s is the
speed of light in free space. If we assume (|S,;|%),, is a
constant in a narrow frequency band f; ~ f,, from (24), (26)
and (27) we have

1
(K)ra = (KY) = <<K>a>f =), @0uts

m (|(521>m| Yadf

mf ((F~HSa1dm)?)adt

fom Poe"f(TEé”s_l)dt
2(|S211?)mBW

_ Py(tre 1)

25 PrBw &

where BW = f, — f; is the frequency bandwidth. If the
early-time responses of the PDP are ignored [14], similar to
(25), we have

fm (IS21 12 )mdf = foz(l521|2)mdf = 2(1S511*)mBW

= (|7—" [S,1112)mdt = [ Pye~t/T™Redt = Pytpe (30
0 0'RC
thus
Pyt
(15211 = 5 g (31)

From (28), (29) and (31), the average K-factor can be obtained
as

4

T TSCSc,
(K)f,a = . = g
Tg + Tre

u (32)
TSCSe, T Tre

where ()7, means averaging over frequencies and different
antenna positions. Considering that all the loss in the RC can be
equivalent to an absorber with an absorption cross section
(ACS) of ACSyy; =V /(coTre) [23-26], (32) can be further
simplified to

1
TSCS ACSau
Ko =" 41 ACS,y; + TSCS (33)
TSCS " ACS.

which gives the relationship between the average K-factor and
TSCS (and ACS). Note that the limit of the TSCS is a quarter of
the stirring surface area TSCS < Ag/4 [27], thus

ACS,;;
(K)r.a 2 ACS,; + Ag/4 (34
where Ay is the stirring surface area [27]. It is interesting to find
that a lower bound for the average K-factor exists and it is
related to the stirring surface area and the loss in the RC.

Note that when Ant 1 and Ant 2 in the RC are not high gain
antennas and are not directed to each other in main lobes, the
average K-factor obtained from frequency stir and source stir
gives same results ((K) . = (K); = (K),), because there is no
difference between averaging independent samples over
different frequencies or over different antenna positions.

One can also replace the K-factor using the Doppler
spectrum in (24) to link (33) and (34) to the Doppler spectrum,
or link (K to the stirrer efficiency 7, defined in [26].

III. MEASUREMENTS

The measurement scenario is illustrated in Fig. 1, 1601
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points of S,; were measured in the frequency range of 2.8 GHz
~ 3.0 GHz for each stirrer angle, 720 stirrer angles were used
with a step size of 0.5°. Because the chamber decay time g
varies slowly with frequency, a 200 MHz measurement
bandwidth means that the extracted 7 is treated as a constant
in the measured bandwidth, similar technique has been used in
radiation efficiency measurement [8] and ACS measurement
[28].
A. Frequency Domain

A typical set of S, at one stirrer position is shown in Fig. 2,
the magnitude of the autocorrelation for S,; in Fig. 2 is given in

Fig. 3(a), and the normalized average autocorrelation over all
stirrer positions is illustrated in Fig. 3(b).
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Fig. 2. Measured S, at one stirrer position.
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Fig. 3. (a) The magnitude of the autocorrelation for S,; in Fig. 2, (b) the

magnitude of the normalized average autocorrelation over 720 stirrer positions.

The chamber decay time 7z can be extracted from the IFT
of §,; measured in the frequency range of 2.8 GHz ~ 3.0 GHz
[14], and is shown in Fig. 4. The least-square fitting method is
used to extract Tz from PDP: the slope ratio of the fitting line
is k=-0.0163 , 7z = —10/(kIln10) = 265.79 ns. The
average mode bandwidth Af = 1/(2mtRe) = 0.60 MHz,
compared with df = 0.61 MHz at the threshold of 1/v2 =
0.707 as shown in Fig. 3(b), a good agreement is obtained.
Similar measurements have been conducted in [10-14].
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80 ] : ‘
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t(ns)
Fig. 4. PDP in dB and the least-square fit, S-parameters in the frequency range
of 2.8 GHz — 3.0 GHz were used to obtain the time domain response.

B. Time Domain

The time domain response can be obtained from the IFT of
the frequency domain response, it can also be measured directly
by using an oscilloscope. Here we use the IFT method as a
VNA normally can provide a much larger dynamic range than
an oscilloscope [29].

1000 1500
t(ns)
Fig. 5. The time domain response (IFT of S,;) at one stirrer position.
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Fig. 6. (a) The autocorrelation of time domain response at one stirrer position,
(b) a zoomed view.
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Fig. 7. The average autocorrelation over 720 stirrer positions.

A typical time domain response is illustrated in Fig. 5, the
autocorrelation using (10) is calculated and plotted in Fig. 6
where Fig. 6(b) presents a zoomed view. The average
autocorrelation for all stirrer positions is shown in Fig. 7, where
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the analytical curve is obtained from (14) and (15) with
BW = 0.2 GHz, f. =2.9 GHz, (|S;;|?);, = —16.5 dB. As
expected, they have a very good agreement because {|S,1|%)m
is nearly constant over the frequency band. Fig. 8 gives the
average transfer function obtained from the frequency domain
and the FT of the time domain autocorrelation. Not surprisingly,
they equal each other.
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Fig. 8. The average transfer functions obtained from (|S,;|?),, and

FLR@O)m].
C. Space Domain

If we treat the measured S,; as a function of the rotation
angle (0) of the stirrer, at each frequency we have a set of S,
typically shown in Fig. 9. The magnitude and phase of the
normalized average autocorrelation over 1601 frequency points
are illustrated in Fig. 10. If we set the rotation speed as 1°/s, the
x-axes in Fig. 9 and Fig. 10 are in unit second, thus the unit in
x-axis of the average Doppler spectrum in Fig. 11 can be Hz.
The K-factor obtained from S-parameters using (23) and from
Doppler spectrum using (24) are compared and given in Fig. 12.
Overall they have a good agreement, but not for very small
values. This is because when calculating the integral in (16), a
trapezoidal numerical integration is used and has small errors.

2.95 3

0 45 90 135 180 225 270 315 360
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Fig. 9. Measured S,; at 2.8 GHz as a function of the rotation angle of the stirrer.
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Fig. 10. The magnitude and phase of the normalized average autocorrelation
over 1601 frequency points.
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Fig. 11. Average Doppler spectrum over 1601 frequency points.
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Fig. 12. Measured K-factor from S-parameters in (23) and from Doppler

spectrum in (24), the lower bound of (K) is also given.
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Fig. 13. Measured 50 sets of K-factors at 50 random positions of Ant 1 and Ant
2.
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Fig. 14. A comparison of measured C (t) from the time domain response and
from the average K-factor.

To verify (32), we moved the positions of Ant 1 and Ant 2 in
the RC with 50 positions randomly and repeated the
measurement for each antenna position. Thus 50 sets of
K-factors were obtained which are shown in Fig. 13, and the
mean value (K);, ~—10.7 dB From (32), 1, =

Tre/((K) 74 — 1), also note [25]
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_ (FXS200m))a _
CO = 105, 00ma €

-t/

(35

The measured C(t) from time domain and e ~¢/%s (z, calculated
from (K)s,) are shown in Fig. 14, which shows a good
agreement. The stirring surface area of the RC is about 1.2 m?,
the lower bound of the average K-factor over the frequency in
(34) is calculated as (K); = —13.4 dB, note (K)r, =
—10.7 dB which is higher than -13.4 dB as expected.

The Doppler spectrum of other rotation speed can be derived
as D(p/v)/v? [17], where v is the rotation speed (or moving
speed), D(p) is the Doppler spectrum for the rotation speed of
1°/s. By replacing 8 = vt in (16), © in (24) is the total time for
one revolution of the stirrer, we have

DO/W/v* DO kSl
O Dip/wfvrdp 01D ISPl

~ K (36)

As expected, the rotation speed of a stirrer does not affect the
K-factor.

IV. DISCUSSION AND CONCLUSIONS

Different physical quantities such as coherence
bandwidth/time, K-factor, Doppler spectrum, TSCS and ACS
have been used in different applications of the RC or in RC
characterizations. It would be easy to have an intuitive
understanding of the relationship between these quantities, e.g.
a high Q factor leads a small coherence time, a broader Doppler
spectrum means a big stirrer, a big stirrer (TSCS) can lead to
small K-factors and small coherence angles. However, these
relationships had not been quantified and analytical equations
or inequations had not been found before.

In this paper, we have shown that the Wiener-Khinchin
theorem unifies different quantities in different applications: in
the frequency domain, it relates the coherence bandwidth to the
Q factor measured in the time domain; in the time domain, it
relates the coherence time to the Q factor measured in the
frequency domain; in the space domain, it relates the coherence
distance/angle to the Doppler spectrum. In the meanwhile, the
relationship between the average K-factor and the Doppler
spectrum, and the relationship between the average K-factor
and the TSCS have also been revealed. Because the TSCS has a
limit [27], the lower bound of the average K-factor has been
obtained. For large K-factors, the unstirred response is
significant, and this effect has been quantified in [16].

The Parseval’s theorem relates the K-factor (and the average
lower bound) to the TSCS and ACS. In the derivation of the
lower bound, there are two preconditions:

1. The early-time behavior of the time domain response is
ignored (gated), this means that the early-time response of
F~1(S,,) does not dominate the unstirred part, this is easy to
satisfy when source stir (-), is applied;

2. The unstirred part is small in (23).

Because violating these two conditions would lead a larger
K-factor, and (34) still holds true, thus these two preconditions

do not need to be satisfied and (34) is a general conclusion.
However, since the average K-factor is not a single K-factor,
K-factor smaller than the lower bound in (34) is possible for a
specific antenna position in a narrow band (as can be seen in
Fig. 12), but the average value over different antenna positions
(or different positions for another stirrer) makes (34) valid.

It should be noted that when using (33) and (34), the average
K-factor is related to how the TSCS is measured (how the RC is
stirred). The TSCS of all the moving objects account for the
average K-factor. By hybridizing different stirring technique,
the equivalent TSCS can be increased (superimposed) [23, 26]
and the lower bound can be reduced [30].

Because the TSCS can be superimposed [23, 26], (33) can be
generalized to multiple stirrers:

M

1 1
kRS <<K>ﬁ - 1)

i=

(37)

where (K)f . is the average K-factor when M stirrers moving
together; (K); is the average K-factor for the ith stirrer. The
reason of using approximation (=) is that different operation
conditions of moving stirrers may not superimpose TSCS
perfectly [31], although for synchronized moving stirrers the
TSCS superposition has been experimentally verified [26].
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