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Abstract—Dynamic Spectrum Access (DSA) / Cognitive Radio
(CR) systems can greatly benefit from the knowledge of the
activity statistics of the primary channel. Such statistics can be
estimated by the DSA/CR system based on the on/off decisions
provided by the employed spectrum sensing algorithm, which can
be processed to estimate the duration of the individual idle/busy
periods of the primary channel and subsequently a broad range
of activity statistics. Previous work has investigated analytically
this estimation approach and provided closed-form expressions
for the estimated distribution as well as its associated estimation
error. However, existing analytical results are provided in an
implicit form that requires some form of numerical evaluation
and is not always well-suited for analytical manipulations. In
this context, this work extends the existing results by providing
mathematical models in an explicit form that can be evaluated
directly and are applicable to several estimation strategies. The
obtained mathematical expressions are validated with simulation
results, showing a remarkable high level of accuracy.

I. INTRODUCTION

Despite being a broader concept [1], [2], Dynamic Spectrum
Access/Cognitive Radio (DSA/CR) [3] is commonly under-
stood as an opportunistic spectrum access paradigm where
unlicensed (secondary) users can access frequency bands allo-
cated to licensed (primary) users during those intervals that the
channel is inactive (i.e., not being used for transmission by the
primary users). Given the opportunistic nature of this spectrum
access approach, the performance of DSA/CR systems de-
pends on the spectrum occupancy pattern of primary systems.
For this reason, DSA/CR systems can benefit enormously
from the knowledge of primary activity statistics. Statistical
information such as the durations of the idle/busy periods
of the primary channel and their underlying distributions can
be exploited by DSA/CR systems to predict future spectrum
occupancy trends [4], select the most convenient licensed fre-
quency band and radio channel of operation [5], and for other
spectrum and radio resource management decisions that can
help minimise interference, optimise the system performance
and improve the overal spectrum efficiency [6].

The activity statistics of a primary channel can be estimated
by DSA/CR systems based on the outcomes of the spectrum
sensing process [7]. The main purpose of spectrum sensing in
a DSA/CR system is to determine the instantaneous idle/busy
state of the primary channel in order to detect transmission

opportunities. However, the sequence of binary on/off sensing
decisions can also be exploited to estimate the durations of the
individual idle/busy periods observed in the primary channel
until a sufficiently large set of idle/busy periods have been
observed, which can then be used by the DSA/CR system
to produce, based on an adequate processing of the observed
period set, a broad range of primary activity statistics [7].

While many different primary activity statistics could be
derived from the observed period set, the focus of this work
is on the distribution of the observed idle/busy periods, which
provides a complete characterisation of the statistical prop-
erties of the primary on/off activity pattern. The estimation
of such distribution based on spectrum sensing observations
was initially investigated in [7], where closed-form expressions
were presented for the estimated distribution as a function of
the original distribution and other relevant parameters such
as the employed sensing period. Moreover, generic implicit
closed-form expressions were also provided in [7] to quantify
the error of the estimated distribution. In this context, this work
extends the analytical results presented in [7] by developing an
explicit closed-form expression that can be used to quantify the
error of the estimated distribution under different estimation
strategies. The accuracy of the obtained mathematical model
is validated and corroborated with simulation results.

The rest of this work is organised as follows. First, Section II
presents the considered system model and formulates the prob-
lem under study. The distribution of the observed idle/busy
periods as estimated from spectrum sensing and its associated
estimation error are discussed in Section III. The simulation
approach considered in this work to evaluate the obtained
analytical results is described in Section IV. Numerical and
simulation results are presented and analysed in Section V.
Finally, Section VI summarises and concludes this work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

An uncertain number of primary users communicate through
a radio channel targeted by the DSA/CR system. The trans-
missions of the primary users over the channel result in a
certain activity pattern that can be modelled as a sequence of
on (busy) and off (idle) periods. In general, the durations of
such periods will be random and can be characterised by an
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Fig. 1. Estimation of an idle period based on spectrum sensing.

appropriate distribution model. A common assumption widely
used in the literature is that the idle/busy periods of the primary
channel are exponentially distributed. While this assumption
facilities the analytical treatment of the problem, a significant
number of experimental studies have demonstrated that such
assumption is unrealistic [8]-[12]. A more realistic model over
a broad range of frequency bands is the Generalised Pareto
(GP) distribution [13]. The Cumulative Distribution Function
(CDF) of the GP distribution is given by [14, ch. 20]:
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where p; > 0, \; > 0 and «; € R are the location, scale
and shape parameters, respectively, and T; denotes the period
duration (¢ = 0 for idle periods, ¢ = 1 for busy periods).

The DSA/CR system is interested in estimating the distri-
bution of the primary idle/busy periods given by (1). To this
end, the idle/busy decisions of the employed spectrum sensing
algorithm are used to estimate each individual idle/busy period
observed in the channel as depicted in Fig. 1, where the
estimation of an idle period is illustrated. The primary channel
is sensed periodically by the DSA/CR system with a spectrum
sensing period of 7T time units (t.u.). The spectrum sensing
decisions are used to determine when the primary channel
changes its state (from idle to busy and vice versa). The
DSA/CR system can then estimate the duration of a real
idle/busy period duration, denoted as 7; (¢ = 0 for idle
periods, ¢ = 1 for busy periods), based on the time difference
between the sensing events observed around the channel state
transitions (t4, tp, ts, ty in Fig. 1). Based on the channel
states observed at these sensing events, the DSA/CR system
can make an estimation of the period duration, denoted as T3,
following three methods or Estimation Strategies (ESs):

« ESI1: 73 = t, — tp (which underestimates 7;).
o ES2: T; =t, — t, (which overestimates T5).
LA emte) Ay —ta) g ;
e ES3: T, = 3 =i, ta = ty ty (Wthh
averages the estimations of ES1/ES2 and is expected to
provide a more accurate estimation of 7;).

The process is repeated for each individual idle/busy period
observed in the primary channel until a sufficiently large
set of N obsAerved pfiriod durations is collected, which is
denoted by 7; = {7;,})_,. The number of periods N
that the DSA/CR system needs to collect to attain a certain
level of accuracy is beyond the scope of this work but a

detailed analysis can be found in [15]. Based on an adequate
processing of the values in the set 7;, the DSA/CR system
can make an estimation of several primary activity statistics,
including the distribution in (1). Note that the original periods
T; will in general have a continuous domain while the periods
T, estimated from sensing as shown in Fig. 1 will have a
discrete domain since they are integer multiples of the sensing
period (T; = kT,, k € NT). The employed sensing period
determines the accuracy to which each individual period can be
estimated and therefore introduces some error in the estimated
distribution. The focus of this work is on the error between the
distribution estimated from the set 7; and the true distribution
in (1) for each of the three considered estimation strategies.

III. ESTIMATED DISTRIBUTION AND ITS ACCURACY
Given a set 7; = {T;.,}Y_, of N observed primary period
durations, an estimation of the distribution Fr, (7)) given in

(1), which is denoted as F (T'), can be made as follows:
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where lﬁ(fﬂ _indicates the cardinality (number of elements)
of ,(T) ={Tin : T1n <T,n=1,...,N} (the subset of
period durations lower than or equal to ZA“), and 1 4{x} is the
indicator function of subset A, which is equal to one for the
elements = € A and zero otherwise. The distribution estimated
in this way is usually referred to as empirical CDF.

As discussed in Section II, the original distribution Fr, (T")
in (1) will have in general a continuous domain (T" € R1)
while the estimated distribution Fi7; () in (2) will always have

a discrete domain (f = kTs, k € NT) as a result of employing
a finite sensing period. The relation between the estimated
distribution F; (T') in (2) and the true distribution Fr,(T)
in (1) as a function of the employed sensing period 7 was

investigated in [7] and was found to be given by:
N T,
Fp (1) =Gz | T+ > 3)
where G (-) is given by (5) and () is given by:
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The expressions in (3)—(5) assume that the estimation strategy
ES3 is employed, however they are also valid for ES1 and
ES2 by replacing T" with T+ T and T' — T5, respectively.
The error of the estimated distribution F (T') with respect
to the true distribution F, (7)) can be quantified in terms of
the Kolmogorov-Smirnov (KS) distance, which is defined as
the maximum absolute difference between the CDFs [16, eq.
(14.3.17)] and in the context of this work takes the form:
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(3) has been rewritten in terms of the continuous variable T’
(instead of the discrete variable T') before being introduced
into (8) by using the relation T = |T/Ts|Ts (where |-]
denotes the floor function), which represents the discretisation
of the continuous time domain into the discrete time domain
over which the estimated distribution Fi; (T') is defined.

The KS distance in (8) can be evaluated analytically by
determining the period duration 75 for which the absolute
difference of (8) is maximum and then evaluating at 7' = T/,

In order to find an expression for TiK S let’s first define:

Tr = {T (T = sup §(T)}

as the period duration in the continuous time domain for
which the absolute difference between Fr, (7)) in (1) and
F7 ([T/Ts| Ts), which is denoted as (7") as shown in (10),
takes its maximum value.

&) = |pn(r) - 7y (| 1| 1)

The sought T can be found by computing the value of T" for
which 9¢(T) /0T = 0 and 9%¢(T)/OT? < 0. The resolution
of these equations for ES1 (after replacing 7" with T" + T5)
and for ES3 is straightforward and yields the result T = p;
(where p; is the location parameter of the original distribution
and represents the minimum period duration). However, the
resolution of these same equations for ES2 (after replacing T’
with T'—T%) is not possible as a result of the presence of non-
polynomial terms arising from the algebraic form of Fr,(T')
in (1). This problem can be overcome by replacing such non-
polynomial terms with their equivalent Taylor series centred
around the point 7" = p; as shown in (6) and then taking their
second-order approximation as shown in (7), which yields the
following tight approximation:
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As it can be appreciated, the value of 7 for ES2 is not
constant (as it is the case of ES1 and ES3) but depends on the
employed sensing period Ts. Moreover, it can be shown that
T for ES2 is comprised within the interval [p; + T, p; +27]
provided that T < p;, which is indeed required to enable an
accurate estimation of the periods and their distribution.
Based on the obtained 7" for each estimation strategy, the
desired T/ can be found by appropriately rounding 7} to
either |T7/Ts| T, or [T;/Ts]Ts, whichever maximises the
value of £() in (10). Recall, as mentioned earlier in this
section, that the estimated distribution Fi (T') in (2) has a

discrete domain (T’ = kT, k € NT) as a result of employing a
finite sensing period, which also means that it is a stair-shaped
function. One can intuitively realise that the comparison of
such stair-shaped function with the continuous distribution of
the original periods Fr,(7) in (1) will have the maximum
absolute difference exactly at one of the steps of Iz (f) (i.e.,

at one of the discrete values of 7 for which the estimated CDF
is defined), which in fact is an integer multiple of the sensing
period (I' = kT, k € NT). From the analysis performed
above, such value will necessarily have to be in the immediate
vicinity of the obtained 7}* € R*. Therefore, the value 7%
that maximises the absolute difference £(-) in (10) will be
one of the nearest integer multiples of 7 around T}, i.e.,
either |T/Ts|Ts or [T;/Ts] Ts. This leads to the problem
of which of these two options is the right choice for each
employed sensing period and estimation strategy. In general,
there is no simple or obvious relation, however by performing
an exhaustive analysis of the absolute difference £(-) in (10)
in both candidate points, i.e. |17 /Ts|Ts and [T} /T| T,
and observing the point where such difference is greater, the
following rounding rules for 7;" were empirically obtained:

T*
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Ti*+%*H%—‘Ts*M
TiKS ~ T, - T, for ES2 (12b)
]
TST T., for ES3 (12¢)




where T} = p; for ES1 and ES3, T7* is given by (11) for ES2,
and |-] is the nearest integer (round) operator.

The introduction of the obtained TiK S in (12) into (8)
provides the final expression for the KS distance:

T
D% = |Pr, (T/®) - G (T,.KS + &-2>‘ (13)
where
1, for ES1 (14a)
—1, for ES2 (14b)

for ES3 (14c¢)
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with sgn(x) = z/|z| being the sign function. Since the
estimated distribution has discontinuities at every step (i.e.,
at the integer multiples of T), the term & € {—1,+1} is
needed to indicate from which side of the discontinuity the
value of the distribution is considered in (13).

IV. SIMULATION METHODOLOGY

The accuracy of the mathematical models developed in Sec-
tion III to quantify the error of the estimated distribution for
each estimation strategy was evaluated by means of software
simulations in Matlab based on the following steps:

1) Generate a sequence of N alternated idle/busy periods,
whose durations Ty /T are obtained as random numbers
drawn from generalised Pareto distributions.

2) From the sequence of idle/busy periods obtained in step
1, determine the sequence of idle/busy states (Ho/H1)
that would be observed in the primary channel when the
channel is sensed with a sensing period 7.

3) Based on the sequence H/H; obtained in step 2,
compute, as depicted in Fig. 1, the period durations
To/T; that would be observed with each of the three
considered estimation strategies (ES1/ES2/ES3).

4) Calculate the empirical CDF of the period durations
To /T1 obtained in step 3 as indicated by (2).

5) Compare the estimated distribution from step 4 with
the original distribution used in step 1 and quantify the
estimation error in terms of the KS distance in (8).

The value of N (i.e., number of simulated idle/busy periods)
was selected based on the analytical results provided in [15]
in order to ensure that the employed sample size N was in all
cases sufficiently large to remove the impact of estimating the
distribution based on a limited number of observed periods.

V. NUMERICAL AND SIMULATION RESULTS

This section assesses the accuracy of the mathematical
models proposed in this work by numerically evaluating the
expressions developed in Section III and comparing with the
corresponding results obtained by simulations as detailed in
Section IV. The examples shown in this section were obtained
when the generalised Pareto distribution for the true periods
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Fig. 2. Distribution of the real T; and estimated ﬁ periods for the three
considered estimation strategies: ES1 (top), ES2 (middle) and ES3 (bottom).

was configured with the following parameters: u; = 5 tu.,
A; = 5 tu. and a; = 0.1. The conclusions obtained for this
particular configuration are valid for other values as well.

Fig. 2 compares the distribution estimated from the periods
observed in the primary channel based on spectrum sensing
(when the employed sensing period is Ts = 2 t.u.) with
the distribution of the original primary idle/busy periods.
As it can be appreciated, while the original distribution is
continuous, the estimated distribution is discrete regardless
of the employed estimation strategiy (hence the stair shape).
As discussed in Section III, this stair shape is an inherent
consequence of estimating the individual idle/busy periods
based on spectrum sensing and, as a result, it can also be
observed that the step width of the estimated distribution is
equal to the employed sensing period (T = 2 tu. in the
example of Fig. 2); since all the estimated periods are integer
multiples of the sensing period, their (discrete) distribution
is defined only for values that are integer multiples of the
employed sensing period as well.

The fact that the estimated distribution has a discrete domain
will necessarily introduce an estimation error with respect to
the original distribution, which is continuous. This estimation
error could be reduced by reducing the employed sensing pe-
riod, which would also reduce the step width of the estimated
distribution and would therefore make it look more similar
to the original distribution. However, the estimation error is
affected not only by the employed sensing period but also by
the employed estimation strategy. The estimated distributions
observed in Fig. 2 are in line with the observations made in
Section II when the three considered estimation strategies were
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Fig. 3. Accuracy of the three considered estimation strategies.

introduced. When ES1 is employed, the estimated periods
will be shorter than the original periods and as a result
the distribution estimated with ES1 is shifted to the left of
the original distribution in Fig. 2. Similarly, ES2 results in
estimated periods that are longer than the original periods and
consequently the distribution estimated in this case is shifted
to the right of the original distribution in Fig. 2. Moreover, the
periods estimated with ES3 can be thought of as the average
of the periods estimated by ES1 and ES2, which leads to
an estimated distribution that lies in between. Moreover, the
points of the distribution estimated with ES3 are closer to those
of the original distribution and as a result it can be stated that
ES3 provides the most accurate estimation.

The accuracy of the distribution obtained with each esti-
mation strategy can be evaluated numerically with the math-
ematical models developed in Section III. Fig. 3 compares
the accuracy results obtained from the proposed mathematical
models with those obtained from simulations. As it can be
appreciated, the results shown in Fig. 3 provide quantitative
evidence of the claims made above about the possibility to
reduce the estimation error by reducing the employed sensing
period and/or using ES3 instead of ES1 or ES2 (as a matter
of fact, the estimation error of ES3 is roughly about one
half the error obtained with ES1 and ES2). More importantly,
the results shown in Fig. 3 demonstrate that there exists a
nearly perfect agreement between analytical and simulation
results for the three considered estimation strategies over the
whole range of considered sensing periods (Ts < p;), which
demonstrates the validity and remarkable accuracy of the
mathematical models developed in this work.

VI. CONCLUSIONS

DSA/CR systems can benefit from the knowledge of pri-
mary activity statistics such as the distribution of idle/busy
periods. Such statistics can be estimated based on the out-
comes of the spectrum sensing process, but will be affected
by a certain estimation error that depends on the employed
sensing period as well as the selected estimation strategy. In

this context, this work has proposed closed-form mathematical
models that can be used to quantify the error of the estimated
distribution as a function of the parameters of the original
distribution and the employed sensing period. The validity of
the proposed models has been corroborated with simulation
results, which demonstrate that the proposed mathematical
models provide an excellent level of accuracy. These models
constitute a valuable tool that can find useful applications in
performance evaluations and system designs (e.g., to calculate
the maximum sensing period required to guarantee a minimum
level of accuracy for a particular statistical distribution of the
primary idle/busy periods).
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