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Abstract

In many real-world engineering systems, the rate of variation in the system state

depends on the past states, which characteristic is called delay or a time delay. As

time delay will degrade the system dynamic performance and even destroy the sys-

tem stability, the stability analysis of a system with a time delay has been investi-

gated in many real control systems such as load frequency control scheme of power

systems, genetic regulatory network, digital filter, electricity market and economic

dispatch of power system. Several improved stability criteria of time delay sys-

tems are proposed and applied in power system control with time delay such as load

frequency control and electricity market.

In this thesis, the Lyapunov-Krasovskii functional and the Wirtinger inequal-

ity have been investigated to establish several new stability criterion at first. The

Wirtinger-based inequality used in a linear system with two additive time-varying

delays are investigated and applied in load frequency control system in chapter 2.

In chapter 3, an improve stability criterion based on Wirtinger-type double inte-

gral inequality was developed and applied in genetic regulatory networks. Then, in

chapter4, the proposed method hsa been extended to discrete system and applied

in digital filters. Chapter 5 presents a further improve a stability criterion using

Wirtinger-type three integral inequality and applied in the power system, includ-

ing load frequency control system and economical dispatch system. In chapter 6,

the stability analysis of an electricity market with a time-varying delay are studied.

The dynamic model of an electricity market is presented to minimize the operation

cost. The impact of a time delay on this dynamic model is analysed via stability

criterion developed in Chapter 5. The main contribution of the thesis is not only

propses several stability criterion based on the Lyapunov-Krasovskii functional and

iv



Wirtinger inequality but also applying the methods in power systems, genetic regu-

latory network and digital filter. Effectiveness of those new stability criterion have

been verified via simulation studies based on numerical examples and those industry

time-delay system.
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Chapter 1

Introduction

1.1 Time delay system

In many real-world engineering systems, the rate of variation in the system state

depends on the past states, which characteristic is called delay or a time delay [1].

Time delays exist in many engineering systems such as biological systems, me-

chanical transmissions, fluid transmissions, metallurgical processes, and networked

control systems. Time delay will usually deteriorate the dynamic performance of

the whole system or may even destroy the whole system stability [2, 3]. The signif-

icant and widespread occurrence of time delay makes time delay system attracted

lots of researchers’ attention [1]. Theoretical and practical development in the field

of time delay system that explore new directions have been generally launched from

a consideration of stability analysis and robust control.

1.1.1 Stability analysis of a time delay system

In control theory, system stability is a fundamental objective to be achieved,

which has been extensively analysed [1]. Research on the stability of time delay

systems started at 1950s. The objective is to find the maximum time delay of the

system, under which delay the system stability can still be ensured. The maximum

time delay is defined as the stability delay margin. For the control design prospec-

tive, a proper controller is desired be such that the expected time delay robustness

1



1.1 Time delay system 2

can be achieved.

A typical following linear system with a delay can be represented as:{
ẋ(t) = Ax(t) + Adx(t− h),

x(t) = φ(t), t ∈ [−h, 0],
(1.1.1)

where x(t) ∈ Rn is the state vector; h > 0 is a delay in the system state, that is, it

is a discrete delay; φ(t) is the initial condition; and A ∈ Rn×n and Ad ∈ Rn×n are

the system matrices. It can be seen that the future evolution of this system depends

not only on its present state, but also on its history. The stability analysis of time

delay system usually adopt two main types of stability analysis method: frequency-

domain method and time-domain method respectively [3].

Frequency-domain method

Frequency-domain method is the most classical analysis method in control sys-

tem theory and provides the most sophisticated approach to analyzing the stability

of a system without delay (h = 0). The necessary and sufficient condition for the

stability of such system is s(A+ Ad) < 0. When h > 0, frequency-domain method

yields the result that system (1.1.1) is stable if and only if all the roots of its charac-

teristic function,

f(s) = det(sI − A− Ade−hs) = 0 (1.1.2)

have negative real parts. However, the equation is transcendental and hard to be

solved, which limits the application of frequency-domain method. Moreover, frequency-

domain method is good at daling with constant time delay only.

Time-domain method

Time-domain method is primarily based on two famous theorems: the Lyapunov-

Krasovskii stability theorem and the Razumikhin stability theorem. The main idea

is to obtain a sufficient condition for the stability of system (1.1.1) via constructing

an appropriate Lyapunov-Krasovskii functional (LKF) or an appropriate Lyapunov

function. The Linear Matrix Inequality (LMI) can then be used to construct LKFs

Haotian Xu



1.1 Time delay system 3

and Lyapunov functions. The general LKF is:

V1(xt) = xT (t)Px(t) +

∫ t

t−h
xT (s)Qx(s) ds (1.1.3)

where P > 0 andQ > 0 are the Lyapunov matrices to be determined; xt denotes the

translation operator acting on the trajectory: xt(θ) = x(t + θ) for some (non-zero)

interval [−h, 0] (θ ∈ [−h, 0]). Calculating the derivative of V1(xt) along the solu-

tions of system (1.1.1) and restricting it to less than zero yield the delay-independent

stability condition of the system:[
PA+ ATP +Q PAd

∗ −Q

]
< 0 (1.1.4)

Since the inequality (1.1.4) is linear with respect to the matrix variables P and

Q, it is called an LMI. If the LMI toolbox of Matlab yields solutions to LMI (1.4)

for these variables, then according to the Lyapunov-Krasovskii stability theorem,

system (1.1.1) is asymptotically stable for all h ≤ 0. Furthermore, an appropriate

LKF can be obtained.

In 1990s, the main approach to study delay-dependent stability involved an ad-

dition of a quadratic double-integral term to the LKF (1.1.3), which is shown in

equation (1.1.5).

V (xt) = V1(xt) + V2(xt) (1.1.5)

where

V2(xt) =

∫ o

−h

∫ t

t+θ

xT (s)Zx(s) dsdθ

The derivative of V2(xt) is

V̇2(xt) = hxT (t)Zx(t)−
∫ t

t−h
xT (s)Zx(s) ds (1.1.6)

Delay-dependent conditions can be obtained from the Lyapunov-Krasovskii stability

theorem. However, how to solve the integral term on the right side of (1.1.6) is a

challenge.

Haotian Xu



1.1 Time delay system 4

1.1.2 Time-domain delay dependent stability analysis of a time

delay system

The stability criterion and controller design conditions obtained by above time-

domain methods are both sufficient, and exist conservatism. The main research mo-

tivation is to design a method so that conservatism of these criteria can be reduced.

Conservativeness of the results obtained by various methods is also the main crite-

rion to evaluate the superiority of the corresponding methods. In order to achieve

this objective for reducing conservatism, the existing research is often implemented

from two aspects, including functional structure and the processing of its derivatives.

The following part is a brief review of the current research on these two aspects.

1) Functional structure

In the Lyapunov functional analysis method, selecting or constructing a suitable

functional is a crucial step. For the best knowledge of author, the constructed func-

tional in the existing research can be roughly divided into general type, complete

type, discrete type, augmented type and time-delay decomposition type [1].

The general LKF is mentioned in (1.1.3). Some quadratic terms which considers

time delay information are added on the basis of the classical quadratic function [4].

The advantages of simple structure involve clear physical meaning, less matrix vari-

ables and simple calculation. A complete functional is constructed in [5]. Obvi-

ously, this kind of functional can obtain sufficient and necessary conditions for the

asymptotic stability of the system. However, this kind of functional is generally in-

finite dimensional and difficult to verify. In order to solve the problem caused by

infinite dimension of complete functional, discrete functional is proposed in [6, 7],

but it is difficult to integrate for a time-varying systems. In recent years, based on

the idea of simple functional and discretization, many researchers have proposed a

functional construction method based on the delay decomposition approach to effec-

tively reduce the conservatism of analysis and design [8–11], but with the increase

of the number of segments, the computational complexity will increase rapidly. In

addition, He et al. improved simple functional from another perspective and pro-

Haotian Xu



1.1 Time delay system 5

posed that augmented functional could extend some items of simple functional to

consider more system information and time-delay information [12], thus reducing

the conservatism of analysis and design.

2)Estimation on functional derivatives

After selecting the functional, the next problem becomes to reasonably estimate

its derivative along the system. The processing objective is to express the derivative

as a negative qualitative form that can be determined by one or more matrix inequal-

ities. The processing principle is to estimate the derivative of the functional without

any amplification or to minimize the amplification degree, including the amplifica-

tion times and the amplification amplitude, in order to obtain the lowest conservative

result [1].

Because the time delay in real systems cannot be infinite, it is often desirable

to obtain time delay correlation conditions in analysis and design. For this case,

the difficulty in processing functional derivatives is how to reasonably estimate the

quadratic integral terms contained in them. According to different treatment meth-

ods, the existing research can be divided into three categories:

Before 2004, almost all the research results were based on model transformation

combined with cross term definition technology. It uses Newton-Leibniz formula

to redescribe the time delay system and uses various inequalities such as basic in-

equalities, Park inequalities [13], Moon inequalities [14] to enlarge the cross term

appearing in the derivatives, so as to offset the quadratic integral term in the deriva-

tive. However, the process of model transformation and inequality enlarge the cross

term will bring conservatism.

In 2004, by analyzing the essence of the model transformation method, He et

al. [15,16] proposed a new Free weighting matrix (FWM) method, which used FWM

to express the relations of terms in Newton-Leibniz formula. Then, the optimal

values of these matrices are obtained by LMIs. This method avoids the conservatism

caused by model transformation and inequality definition. Later, He et al. [17–19]

further improved the FWM and made it one of the most important methods for the

study of time-delay systems.

Haotian Xu



1.1 Time delay system 6

Zhang et al. [20] proposed an integral inequality method based on the FWM

method. It estimates the quadratic integrals of functional derivatives directly and

obtains the delay dependent conditions based on matrix inequality. Then, based

on this idea, some new and more effective integral inequalities, such as Jensen’s

inequality [21] and Wirtinger’s inequality [22], were proposed.

Plenty of important results in stability analysis of time delay system are inves-

tigated and published. Following the rapid development, the conservatism of sta-

bility analysis of time delay system is reduced. Theoretical results are much better

than past following the rise of complicated computation. However, the complicated

computation makes many advanced results hard to be applied in a real system. The

application of stability criteria becomes a popular topic in this area.

How to choose a good application background becomes an important problem.

The application must have a non-negligible delay. The time delay is difficult to de-

termine as a constant and will affect the stability of the system after the controller is

added. Firstly, in power system, load frequency control requires transmitting mea-

surement form remote terminal units to control center and control signals from the

control center to plant side. The open communication networks will introduce time-

varying delays. Those delays would degrade the dynamic performance of LFC and

in the worst case, cause instability. The delay margin which allows an LFC scheme

embedded with controllers to retain stable is an important parameter to design a

controller with time-delay robustness. Secondly, a delay system needs to be used

more widely to prove the applicability of the delay system such as GRNs. The mes-

senger RNA and proteins may be synthesized at different locations, an important

issue in modeling GRNs is that the slow processes of transcription, translation, and

translocation results in sizable delays. Time delays arising in the GRNs may lead to

incorrect prediction of dynamic behaviors. Thirdly, the limitation of register length

reduces the wordlength of quantization. therefore, nonlinearities are unvoidable and

in turn lead to undesirable behaviors. Finally, in electricity market, generators and

consumers are competed though price signal. The time delay arising by discrete

price signals and communication has long been neglected by scholars. However,

the delay in electricity market increases the cost and even unstable the market. This
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1.2 Electricity markets 7

motivates the PhD research on investigating the stability analysis of a time delay

system and its application in electricity market.

1.2 Electricity markets

For more than one decade, the electricity markets, as a part of electricity indus-

try restructuring, have experienced huge transformations in the United States (US)

and all around the world. This restructuring has a series of reforms, which mainly

include the building of spot market and the separation of electricity market into gen-

eration, transmission, distribution and load. The reason for restructuring is because

the conventional electricity supply market, where generation, transmission and dis-

tribution were regarded as a whole electricity supply, was vertically integrated in

the electricity markets as a monopoly utility prior to electricity industry restructur-

ing. However, with the occurrence of the electricity supply industry competition in

restructuring, electricity markets will no longer be charged by a single electricity

supply industry [23]. The restructuring for generation market and the load market

is deregulation. As for the transmission and distribution networks, they will remain

regulated, but they must be open to all customers. Therefore, in order to study elec-

tricity markets, modelling electricity markets is a key step.

These reforms have started since 1970. Peru tried to reform the monopoly nature

of electricity market, many countries such as the US, the UK and most of European

countries have changed their policies to transit from vertically integrated regulated

monopoly companies to a competitive market. For example, electricity supply in

Britain was a monopoly activity until the start of the privatization of electricity in-

dustries in November 1990 [24]. Full competition was introduced in 1999. Since

then domestic and non-domestic consumers have been able to choose and change

their electricity suppliers freely [24].

Electricity market is a nature monopoly market because the essential features of

electrical energy are different with other commodities. The purpose of electricity

industry rstruan is deregulated the authority from government of oligrchic company

to price. As the purpose of electricity industry restructuring is deregulated power

Haotian Xu



1.2 Electricity markets 8

from government or oligarchic company to electricity price. As shown in Fig. 1.1,

in a conventional electricity market, the price is set by an organization who controls

the power grid and is monopoly. Oppositely, in the deregulated electricity market,

the electricity pricing is the key factor [25].

Figure 1.1: The electricity market model

1.2.1 Structure of electricity markets

Although the structure of electricity markets reform varies from country to coun-

try, there are many commonalities that can be used to introduce the general struc-

ture of electricity markets. As mentioned above, the competition is introduced in

the generation market and load market. Two new markets are formed as the elec-

tricity wholesale market and electricity retail market accordingly. In the electricity

retail market, suppliers sell the electricity that they have purchased from generators

in the electricity wholesale market to end consumers [26]. The electricity wholesale

market is the market for the sale and purchase of electricity between suppliers (to

meet the demands of their customers) and generators [27]. Competition is achieved

through unrestricted bilateral contract trading [27].

Since the characteristics of wholesale market are more representative of the

power market, the general research will focus on the electricity wholesale market.

The wholesale market can be separated as long-term forward contract, day-ahead

market and real-time market. The day-ahead market is a forward market in which
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1.2 Electricity markets 9

hourly clearing prices are calculated for each node in the system, for each hour of the

next operating day. The real-time market is a spot market in which market clearing

prices are computed for each node in the system, based on actual system operating

conditions on near real-time basis. Fig. 1.2 shows the operation principle of this

two market.

Figure 1.2: The structure of day ahead market and real time market

There are two types of wholesale market: Pool and Bilateral trading which are

designed by the UK and the US separately. The Pool trading is a compulsory day-

ahead market for bulk physical trading between generators and purchasers (suppliers

and large-scale consumers) [27]. However, the two dominant generators at that time

(PowerGen and National Power) had too much market power, which resulted in a

series of problems including non-sufficient competition (manipulation of the pool

selling price), unnecessary increase of system marginal price, etc. The Pool trading

is replaced by Bilateral trading in 2001. Then, system operators are set to operate

the power grid without benefit from Bilateral trading in 2005.

The current electricity trading arrangements in the wholesale market are de-

scribed as follows: Electricity is generated, transmitted, distributed and consumed

continuously in real-time and supply must always match demand. Although the

generation, transmission, distribution and consumption of electricity is continuous,

for the purposes of trading and settlement electricity is considered to be generated,

transmitted, distributed and consumed in chunks called Settlement Periods. The
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length of each Settlement Period in the GB wholesale market is currently half an

hour.

1.2.2 Model of electricity market

The model of electricity market is popular topic to research the electricity mar-

ket. However, the deregulated electricity market has been separated as several dif-

ferent markets. In this part, the general market model and electricity market model

is introduced here.

Markets

All markets consist of a supply and a demand side. On the supply side, economic

actors (people or companies) who are willing to provide some amount of a product

or a service in exchange for money. The demand side consists of consumers, who are

willing to buy some amount of the product or service using money. Whenever the

suppliers are ready to sell for a lower (or equal) price than what the consumers are

prepared to pay, a mutually beneficial opportunity for trade presents itself, which

both parties can take advantage of. In other words, how to find these mutually

beneficial trading opportunities requires some exploration. The parties must learn

about and find each other, then work out the details of the trade (a contract) so that

no one gets cheated, and must also be able to enforce the agreement afterwards.

Organized markets are created to make sure that transactions go as smoothly as

possible and the costs associated with making trades are minimized.

Supply The supply side of a market consists of producers or services providers

whose purpose is to fulfill the needs and wants of consumers, and to do so prof-

itably. In this section, we will first look at different ways of describing the costs

associated with the production process, and then analyze the optimal supply deci-

sion of a company that faces a fixed product price on its output market.

Cost categories The cost must be produced when supply provides a product or

service. In large category, total production costs consist of a fixed cost and a variable
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cost. Fixed costs must be paid regardless of the level of production, whereas variable

costs add up as producing more and more units which entails additional expenses

(incremental or marginal costs).

The per unit cost (average cost) of production comes together from two ele-

ments: the marginal cost of producing each unit and the fixed cost distributed onto

each unit of production. Average costs are usually decreasing with the level of pro-

duction at first, as the fixed costs get distributed to more and more units. After a

while, however, the decrease in average fixed costs becomes insignificant.

At the same time, the marginal costs will usually start to increase at some point.

The overall effect is that average costs decrease for a while as the company expands

its production, but will hit a minimum level and then start increasing afterwards.

The production level at which the company can supply the market at the lowest per

unit cost is called the efficient scale of production.

Optimal production level of a company With mainly the aforementioned inspi-

rations, the optimal production decision of a competitive supplier can be discussed.

Before the discussion, an assumption which called price taking assumption must be

given. In a perfect competition (the company believes that it cannot act in a strategic

way regarding the market price), in other words, the company takes the market price

that it can get for the product as given, and does not believe that its own production

decisions influence this price at all. This is the so-called price taking assumption,

which will also be employed to describe the demand side of the market as well.

If a company sells one more unit of a product in the market, its total revenue

increases by the market price, whereas its total cost increases by the marginal cost

of producing the additional unit. Since the profit is the difference between total

revenues and total costs, the company’s profit will increase with the market price

minus the marginal cost of production. If this amount is positive, the company gains

profit by increasing its output. Conversely, if it is negative (marginal cost is larger

than the market price), the company gains profit by reducing its output.

Demand Consumer demand is the relationship between the price of a given prod-

uct and the quantity that consumers would like to purchase of it at that price. Graph-
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ically, it is usually represented by a downward-sloping curve, where price is on the

vertical and quantity is on the horizontal axis. Each point on the curve shows the

maximum quantity demanded for a given price and at the same time it also shows

that the maximum unit price that consumers are willing to pay for the given quantity

(reservation price). The negative slope indicates that consumers would like to buy

less of the product when the price is higher, as it can be naturally expected.

Another useful concept is the (price) elasticity of demand. This measure shows

the percentage change in the quantity demanded that occurs in response to one per-

cent rise in the price. For example, if the elasticity of demand is -0.8, then when the

price of a product increases by one percent, the demanded amount will decrease by

0.8 percent. The demand is called elastic when the elasticitys absolute value is more

than 1, otherwise it is inelastic. It is also usual to make the distinction between more

and less elastic demand, the former denoting a point on the demand function where

the absolute value of the demand elasticity is larger.

Market equilibrium With mainly the aforementioned inspirations, the short-run

determination of market prices can be discussed. Obviously, the price must be such

that the quantity supplied by the companies and the quantity demanded by the con-

sumers exactly equal each other (the market clears). This point is shown by the in-

tersection of the market-level supply and demand curves in Fig. 1.3. The brown line

Figure 1.3: Short-run market equilibrium in competitive markets
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is market demand, the price of which increases with the amount decreases; while

the black line is the power supply, the price of which increases with the amount

increases.

Competition and welfare Free market competition is generally a good way of

organizing the provision of the most products and services that people in a society

would like to consume.

In economic definition, social welfare encapsulates the benefits of a market to

the society. It is reasonable to increase this benefit as much as possible. Social

welfare describes the aggregate well-being of consumers and producers in a given

market. It is consisted by two main ingredients which are consumer surplus and

producer profits.

Company profits, which are expressed by deducting the total costs from total

revenues, is the amount that shareholders of a company earn as capital income. The

higher profit indicates the higher income of the shareholders.

Consumer surplus, which measures by the difference between the price con-

sumers are willing to pay for a product and the price they actually have to pay for

it. Willingness to pay is measured by the demand curve. The market price is what

people have to pay is in the nature of things. Therefore, consumer surplus is nothing

but the aggregated difference between the reservation prices of different people who

buy the product or service and the market price they pay for it. The shadow areas

shown in Fig. 1.4 described the consumer surplus.

Welfare = Consumersurplus+ Producerprofits (1.2.1)

Welfare = Reservation− totalcost (1.2.2)

Efficiency and welfare maximization in a market require the lowest willingness to

pay for a product (among those who purchase) to equal the (marginal) cost of pro-

ducing another unit of the product in the industry.

Efficiency of the competitive market equilibrium In a competitive market, where

both buyers and sellers are price takers, the market equilibrium implies the following

Haotian Xu



1.2 Electricity markets 14

Figure 1.4: Consumer surplus with small (a) and large (b) quantities

two relationships.

• The market price equals to the marginal cost of producing the next unit of

output (as a result of producer optimization).

• The market price equals to the lowest willingness to pay for the product among

those people, who purchase (as a result of consumer sovereignty).

These two conditions taken together imply that the competitive market equilibrium

situation is both efficient and welfare maximizing.

The electricity is a special market as its character. The model of electricity mar-

ket can be described as follow. First, each generating company (GenCo) submits the

bidding stacks of each of its units to the pool. Similarly, each consumer (ConCo)

submits the bidding stacks of each of its demands to the pool. Then the ISO clears

the market using an appropriate market-clearing procedure resulting in prices and

production and consumption schedules. In what follows, each of the components

(GenCo, ConCo, and ISO) is modeled together with their constraints and the opti-

mization goal.

1.2.3 Dynamic characteristic of electricity markets

Experience in the restructured power market shows that power trading can cause

large price fluctuations. Electric energy is a liquid commodity that cannot be stored.
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In order to achieve real-time balance, the formation of day-ahead market price needs

to be supplemented by continuous trading or settlement to meet the requirements

of real-time operation. Since electricity cannot be stored, the electricity market

is more complex than the traditional commodity market. Therefore, the existing

commodity market price formation model does not apply to the electricity market.

In addition, the high concentration of the industry may inevitably generate strategic

behaviour. Given these characteristics, economic theoretical analysis is often based

on highly stylized models that, although sometimes criticized by power engineers

for not taking into account electrical properties, such as circulation and reactive

power, can be useful for regulatory policy.

Up until now, in the most model of the electricity market, the supplier and the

consumer interact continuously and instantaneously to set the price of power, the

price evolves continuously, and price signals are transmitted instantaneously. How-

ever, in real markets, the participants receive discrete price signals at intervals equal

to the market-clearing time, which ranges from a few minutes to as much as an hour.

The price signals can be sent through e-mail, special-purpose wireless networks,

Internet-based middle-ware, pagers, or any number of other commercial communi-

cation networks and devices, all of which act to delay the price signals arrival.

1.2.4 Electricity market with time delay

The communication infrastructure, a necessary intermediate for conveying price

information to a real-time market and hence a stable operation of the grid, intro-

duces certain challenges. The main challenge is the introduction of constant or time

varying delays due to the presence of Smart Meters, Smart Devices, and related in-

formation processing and communication lags. The presence of smart devices are

not real-time because of delays in data collection, computation, and communication.

These delays can range in size from 10 seconds to 1 minute. However, the realization

of real-time data processing needs a huge computing cost.This is an unacceptable

fixed cost for the average retailer. Such problems also exist in the management of

the electricity market. The only difference is that the cost is affordable. But it faces

far more complex and massive data. There are more time delays from 1 minute to 5
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minutes existing here. For generators, another problem arises. Large thermal power

generation equipment is difficult to adjust power, while small new energy generation

equipment is frequent insufficient to make up for real-time power changes caused

by price. This causes the market to have to adjust over a constant time which now

generally sets at five minutes. These delays in turn can endanger market operation

and stability of the electricity grid.

The effect of delays in electricity markets has begun to be explored in [28–32].

Reference [28], is one of the earliest papers to discuss a dynamic market model.

In [29], an upper bound on the market clearing time and price signal delay was

computed beyond which a time-discretized version of the single supplier and single-

consumer power market model used in [28] became unstable. The results in [29]

indicated that the impact of the power market could be significant and should be an-

ticipated by proper design of balancing mechanisms and market regulations. In [30],

the authors continued the research in the direction of [29] by investigating the limita-

tions imposed by delays on large-scale ancillary service market for real-time balanc-

ing originating from a hierarchical tree-based communication topology. A dynamic

model was proposed for the wholesale market in [31], whose stability was evalu-

ated in the presence of a delay due to the presence of smart meter and other com-

municating devices. In [31, 32], dynamic market models that included transparent

connections to Local Marginal Prices were developed, outlining a clear relation-

ship between stability and delays. In this article, a similar analysis is carried out

to [31, 32], and adopt a discrete time framework to derive the underlying dynamics,

thereby providing a direct connection to the actual market practices that exist today.

In the conventional study of time-varying delay system, the Lyapunov-Krasovskii

functional and Jason-based inequality together methods has been used commonly.

However, the Wirtinger-based inequality which leads much better results than Jason-

based inequality are proposed recently.
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1.3 Motivations and objectives

1.3.1 Motivations

The time delays appear in all real control system and it can not be ignored in

many areas, such as LFC, GRNs and digital filters. However, most researchers find

that these results are not optimal when using the existing delay upper bound were

calculated by existing stability criteria. A great deal of conservatism exists in these

results. Meanwhile, in the simulation of some simple models, it can be found that

the existing computational stability delay upper bound is not the actual delay upper

bound. There is even a big gap. It motivates the researchers to further investigate

and reduce the conservatism.

In additions, the application of the proposed stability criteria in different real

industry systems with time delays is hard work. It motivates the researchers to seek

a suitable and necessary application for the proposed methods.

Firstly, LFC is designed for maintaining the frequency at its required value,

should transmit the frequency derivation from the remote power plant to the con-

trol centre and send to the calculated power reference signal from the control centre

to the power generation plant. The time delays arising in the feedback measurement

channel and the forward control channel are combined by one time delay in most

research. There are few types of research to consider the two additive time delays in

the load frequency control system and it motivates the author to study.

Secondary, GRNs have been becoming a new research area of biological sci-

ences. Mathematical modelling provides a useful tool for studying gene regulation

processes in living organisms. Among them, the nonlinear differential equation

model provides a more detailed understanding and insights into the nonlinear dy-

namical behaviour exhibited by GRNs. Since mRNAs and proteins in the GRNs

may be synthesized at different locations, an important issue in modelling GRNs is

that the slow processes of transcription, translation, and translocation results in size-

able delays. Time delays arising in the GRNs may lead to an incorrect prediction

of dynamic behaviours which may result in very serious consequences. Stability is

essential for designing or controlling GRNs. There is a great significance to study
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the influence of delays on the stability of the GRNs.

Thirdly, the digital filter is a necessary element of everyday electronics. It is

an effective device that produces the desired discrete-time output signal from the

original input signal, which will involve undesired information. The analysis of

digital filters is helpful for their implementation. Because of the limitation of reg-

ister length, the quantization and overflow correction mechanisms are commonly

required to reduce the word length. Therefore, nonlinearities are unavoidable. Time

delay is frequently encountered in many systems and exists in digital filters. How-

ever, there are few kinds of research focusing on a digital filter which considers both

nonlinearities and time delays. Therefore, the analysis of digital filters is helpful for

their implementation.

Finally, the electricity market has been deregulated in vast countries for two

decades. Instead of government or oligopoly, price becomes the key decision-

making variable in the electricity market. Under the high coupling of electricity

markets and power systems, how to further reduce the extra loss in the market be-

comes a popular research topic. Therefore, the time delay which decreases the sta-

bility of the market and increases the cost of the market becomes e a very important

direction. It motivates the researchers to further investigate and combine with pro-

posed methods.

1.3.2 Objectives

The popular investigation framework is combining the LKF and LMI, and the

previous results are all obtained in this framework. It is well known that the effort is

to reduce the conservatism of the obtained criteria from the viewpoints of construc-

tion of the LKFs and estimation of their derivatives. Up until now, many LKFs with

more general forms and integral inequalities with smaller estimation errors were

proposed for this task. However, there still exists room for further investigation and

reduction of the conservatism.

Firstly, The objective of this thesis is to present four novel stability criterion of

the system to reduce the conservatism of the previous criteria. secondly, the practical

application of related research has not kept up with the progress of the research on
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time delay system. Thus, the second objective is applying the proposed methods

in a different system with time delay. Thirdly, stability analysis of the dynamic

electricity market model with two communication delays is proposed to investigate.

1.4 Main contributions

This thesis focus on the stability analysis of time delay system and its application

on the electricity market. The first part develops the new stability criterion for time

delay system, as the results presented in Chapter 2 to Chapter 5. And the second

part investigates the delay dependent stability of electricity market with time delays

and load frequency control (LFC) with delays, respectively.

• the stability analysis of linear systems with two additive time-varying delays

are studied. A novel stability criteria has been used for the linear system with

additive delays. A new LKF with delay-product-type terms is constructed,

and then the Wirtinger-based inequality, together with the reciprocally con-

vex combination technique, is applied to estimate the derivative of the LKF.

As a result, a less conservative stability criterion is established. A numeri-

cal example is used to demonstrate the advantage of the proposed criterion.

An application of the proposed criterion to analyze the stability of the LFC

scheme of power systems is also studied.

• The Wiringter-type double integral inequality method(WTDII) are investi-

gated for establishing to estimate the double integral term. The theoretically

advantage can be proved by comparing with the widely used JBDII and the

recently developed WTDII, the presented WTDII. Two stability criteria of the

GRNs are respectively established by applying the proposed WTDII to esti-

mate the double integral terms appearing in the derivative of the LKFs.

• Stability analysis problem of digital filters with generalized overflow nonlin-

earity and a time-varying delay is further investigated. The main contribution

is that a new delay and nonlinearity bounds dependent stability criterion with
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less conservatism are developed, which can judge the stability of digital fil-

ters more accurately. Firstly, several augmented terms are introduced into the

Lyapunov function and can provide extra freedom for the feasibility of the

obtained criterion. Secondly, several new methods, including the Wirtinger-

based summation inequality, extended reciprocally convex matrix inequality,

and two zero-value equations, are applied to estimate the forward difference

of the function as accurate as possible.

• Chapter 5 proposed a novel inequalities of control system with time-varying

delay. The delay decomposition approach which combines with relaxed three

integral inequalities has been studied. Those techniques have led to a stability

criterion with less conservatism in comparison with the existing criteria. Then

the effect of the delays on system stability can be assessed accurately by us-

ing the proposed stability criterion. A numerical example have been used to

demonstrate the advantages of proposed method. Further more, the applica-

tion of LFC and ED are researched to show the benefit of proposed method.

The dynamic model of electricity market has been introduced. Then, the sta-

bility of this model with communication delay has been analyzed. A sta-

bility criterion, which using the Wirtinger-based inequality with less conser-

vatism in comparing to the existing criteria is applied in the electricity market.

Then,the effect of the delays on system stability can be assessed accurately by

using the proposed stability criterion.
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1.6 Outline of thesis

The stability analysis of time delay system and it’s application in electricity mar-

ket are investigated in this thesis. Chapter 2, 3, 4 and 5 investigates delay-dependent

stability analysis of time delay system from different aspects. Chapters 5 and 6

present electricity market with time delay by using criterion developed previous

chapter.

Chapters 2 Linear systems with two additive time-varying delays via new Lya-

punov functional

This chapter is concerned with the stability analysis of continuous linear sys-

tems with two additive time-varying delays in the LKF framework. Two novel

delay-product-type terms are introduced into LKF candidate. The Wirtinger-based

inequality, together with the reciprocally convex combination technique, is applied

to estimate the integral terms arising in the derivative of the LKF. As a result, a new

delay- and its-change-rate-dependent stability criterion is established. Its advantage

of less conservatism than some existing criteria is demonstrated through a numerical

example. Finally, the stability criterion is applied to analyze the stability of the LFC

scheme of power systems.

Chapters 3 Stability analysis of delayed GRNs via a relaxed double integral in-

equality The delay-dependent stability of the GRNs by developing a more effective

inequality to estimate the double integral term is investigated. By applying the WT-

DII to the stability analysis of a delayed GRN, together with the usage of useful
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information of regulatory functions, several delay-range- and delay-rate-dependent

(or delay-rate-independent) criteria are derived in terms of LMIs. An example is

achieved to verify the effectiveness of the proposed method and also show the ad-

vantages of the established stability criteria through the comparison with some lit-

erature.

Chapters 4 Improved delay-dependent stability analysis of digital filters with time-

varying delay and generalized overflow arithmetic

This chapter is concerned with the stability analysis of fixed-point state-space

digital filters with generalized overflow arithmetic and a time-varying delay. In or-

der to assess the influence of the time delay on the stability of digital filters more

precisely, this chapter aims to derive a delay and nonlinear function bound depen-

dent asymptotical stability criterion with less conservatism in comparison to the

previous criteria. Firstly, a new Lyapunov functional with several augmented terms

is constructed. Then, the Wirtinger-based summation inequality is introduced and

several zero-value terms are applied to add more cross terms. As a result, a stabil-

ity criterion in the form of LMIs is established and its conservatism is smaller than

the previous ones due to the usage of more flexible Lyapunov functional and more

accurate estimation techniques. Finally, several numerical examples are given to

illustrate the advantages of the proposed method.

Chapters 5 Delay dependent stability analysis via relaxed three integral inequal-

ity method and its application to optimal economic dispatch In this chapter, the

stability analysis via relaxed three integral inequality was investigated. A Wirtinger-

based double integral inequality can reduce the conservatism than Wirtinger-based

inequality. There is no research to investigate the effect on the stability analysis by

the number of integral. The relaxed three integral inequality is established to esti-

mate the three integral term appearing in the derivative of LKF with a triple integral

term. The delay decomposition approach which compared the above inequalities has

been used. A new stability criterion with less conservatism in comparison with the

existing criteria are proposed. A numerical example have been used to demonstrate

the advantages of proposed method. The application on the LFC and economic

Haotian Xu



1.6 Outline of thesis 23

dispatch has been investigated to demonstrate the merit of the proposed method.

Chapters 6 Dynamic Stability of Electricity Market with Time Delay In a dereg-

ulated electricity market, the electricity pricing is the key factor. The interaction

between an electricity market and prices makes communication delays more impor-

tant. However, the studies in this area are limited. Therefore, Chapter 6 presents the

stability analysis of an electricity market with a time-varying delay. The dynamic

model of an electricity market is presented to minimize the operation cost. The

impact of a time delay on this dynamic model is analysed by previous research in

chapter 4. A relaxed three integral inequality is applied to estimate the integral terms

arising in the derivative of the LKF. Finally, simulations are provided to demonstrate

the benefit of propose method.

Chapters 7 Conclusions

The thesis has concluded with a summary of the results and several suggestions

for future work. the suggestions for future work will highlight the unsolved prob-

lems that remained.
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Chapter 2

Linear Systems with Two Additive

Time-Varying Delays via New

Lyapunov Functional

2.1 Introduction

As an increasing number of closed-loop control systems are being implemented

using communication networks, time delays inevitably arise in these communication

channels, which may degrade the system dynamic performance and even destroy

the system stability. Therefore, the effect of those delays on the system stability has

been becoming an important topic in the last few decades and significant research

has been devoted to this topic [2, 3, 33]. In the literature, many researchers have

studied the systems with one time-varying delay, where the time-varying delay is a

combination of all the delays appearing in the total communication networks of the

control system. For some systems, such as remote control systems and networked

control systems, the measured signals transmitted from the sensors to the control

center and the control signals sent from the control center may experience different

segments of networks and the time delays arising may have different properties due

to variable network transmission conditions [34]. Therefore, it is also an important

issue to assess the effects on system stability from different parts of delays.
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In [34], the system with two additive time-varying delay components has been

firstly proposed to model different properties of delays for different channels and

the free-weighting-matrix (FWM) approach [15] was used to develop a stability

criterion. After that, many results for the analysis and design of this model were

reported. Robust stability analysis was discussed via taking into account the sys-

tem uncertainties in [35]. Stability criteria with less conservatism were developed

via the improved FWM approach [36], Jensen inequality [37–39] and other integral

inequalities [40], respectively. The comparison of several stability criteria was in-

vestigated in [41]. In [42], the idea of additive delays modelling was extended to the

singular system and several stability criteria were reported. The case that two addi-

tive delays of linear systems were constant and had overlapping ranges was studied

in [43]. In recent years, the reciprocally convex combination lemma was widely

used to develop new stability criteria for systems with additive delays [38, 39]. Sta-

bility analysis and stabilization design for the systems with additive delays were dis-

cussed via the delay-partitioning-based LKF [44], Jensen inequality and connected

component labeling algorithm [45] and a relaxed LKF [46]. Robust control design

of the systems with both additive delays and parameter uncertainties was studied

in [47].

The time delays appearing in the control loops are usually time-varying. For the

case of time-varying delays, the popular investigation framework is combining the

LKF and LMI, and the aforementioned results are all obtained in this framework.

It is well known that the objective is to reduce the conservatism of the obtained

criteria from the viewpoints of construction of the LKFs and estimation of their

derivatives. Up until now, many LKFs with more general forms and integral in-

equalities with smaller estimation errors were proposed for this objective, such as

the augmented-based LKFs [38], the delay-partitioning-based LKFs [44] and simple

Wirtinger-based inequality [47]. However, further investigation and reduction of the

conservatism can still be further researched. On the one hand, The delay-product-

type LKFs were developed and found to be helpful for improving the results. On

the other hand, a tighter Wirtinger-based inequality was proposed in [48], while it

has not been used for the systems with additive delays. Therefore, it is expected
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that the stability criterion of system with additive delays will be further improved

by combining those two new techniques. This motivates the research introduced in

this chapter.

This chapter provides further study on the stability analysis of linear systems

with two additive time-varying delays. A new LKF with delay-product-type terms

is constructed and then the Wirtinger-based inequality together with the reciprocally

convex combination technique is applied to estimate the derivative of the new LKF.

As a result, a less conservative stability criterion is established. A numerical exam-

ple is used to demonstrate the advantage of the proposed criterion. An application of

the proposed criterion to analyze the stability of the LFC scheme of a power system

is also studied.

The reminder of this chapter is organized as follows. Section 2 explains the

problem formulation. In Section 3, a new stability criterion is developed through

a delay-product-type LKF and the Wirtinger-based inequality. Section 4 illustrates

the advantages of the proposed method via a numerical example and an application

example on the LFC of a power system is also studied in this section. Finally,

conclusion is presented in Section 5.

Notations: Throughout this chapter, the superscripts T and −1 mean the trans-

pose and the inverse of a matrix, respectively; Rn denotes the n-dimensional Eu-

clidean space; ‖ · ‖ refers to the Euclidean vector norm; P > 0 (≥ 0) means P is

a real symmetric and positive-definite (semi-positive-definite) matrix; I and 0 stand

for the identity matrix and the zero-matrix, respectively; diag{·} denotes the block-

diagonal matrix; the symmetric term in the symmetric matrix is denoted by ∗; and

He{X} = X +XT .
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2.2 Modeling and Wirtinger-based Integral Inequal-

ity

Consider the following continuous linear closed-loop system with two additive

time-varying delays

ẋ(t) = Ax(t) +BKx(t− d1(t)− d2(t)) (2.2.1)

where x(t) ∈ Rn is the state, A and B are the known real constant matrices, K

is the state feedback control gain, d1(t) and d2(t) are time delays arising during

the measured signal transmitted from sensor to the controller and the control signal

sent from the controller to the actuator, respectively and they satisfy the following

conditions

0 ≤ d1(t) ≤ h1, 0 ≤ d2(t) ≤ h2 (2.2.2)

|ḋ1(t)| ≤ µ1, |ḋ2(t)| ≤ µ2 (2.2.3)

where hi and µi, i = 1, 2 are constant. Let d(t) = d1(t) + d2(t) and h = h1 + h2.

This chapter is concerned with the stability problem of system (2.2.1) and un-

derstanding the effect of time delays therein on the stability. In order to accurately

assess the system stability, this chapter aims to develop a new stability criterion with

as small conservatism as possible.

The following lemmas were used for developing the main results.

Lemma 1. (Wirtinger-based integral inequality [48]) For a symmetric matrix R >

0, scalars a and b with a < b and vector ω such that the integration concerned are

well defined, the following inequality holds

(b− a)

∫ b

a

ω̇T (s)Rω̇(s)ds ≥ χT1Rχ1 + 3χT2Rχ2 (2.2.4)

where

χ1 = ω(b)− ω(a)

χ2 = ω(b) + ω(a)− 2

b− a

∫ b

a

ω(s)ds
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Lemma 2. (Reciprocally convex combination lemma [49]) For given positive inte-

gers n and m, a given scalar α in the interval (0, 1), a given n × n-matrix R > 0,

two matrices W1,W2 ∈ Rn×m. For all vector ξ ∈ Rm, define the function Θ(α,R)

with the following form

Θ(α,R) =
1

α
ξTW T

1 RW1ξ +
1

1− α
ξTW T

2 RW2ξ

if there exists a matrix X ∈ Rn×n satisfying

[
R X

∗ R

]
> 0, then the following

inequality holds

min
α∈(0,1)

Θ(α,R) ≥

[
W1ξ

W2ξ

]T [
R X

∗ R

][
W1ξ

W2ξ

]
(2.2.5)

2.3 New criterion via Wirtinger-based Integral Inequal-

ity

In this section, a new LKF with delay-product-type terms, together with Lemmas

1 and 2, is applied to develop a novel stability criterion, which is shown as follows.

Theorem 1. For given scalars K, h1, h2, µ1, and µ2, system (2.2.1) with the time-

varying delay satisfying (2.2.2) and (2.2.3) is asymptotically stable if there exist a

5n × 5n-matrix P = P T > 0, n × n-matrices Qi = QT
i (i = 1, 2, · · · , 5), Z1 =

ZT
1 > 0, and Z2 = ZT

2 > 0, and 2n × 2n-matrices P1 = P T
1 > 0, P2 = P T

2 > 0,

P3 = P T
3 > 0, and P4 = P T

4 > 0, and any 2n× 2n-matrices X and Y such that the

following conditions hold

Ω0 = Φ− 1

h1

GT
aΩ1Ga −

1

h1 + h2

GT
b Ω2Gb < 0 (2.3.1)

Ω1 =

[
Z̃1 X

∗ Z̃1

]
> 0 (2.3.2)

Ω2 =

[
Z̃2 Y

∗ Z̃2

]
> 0 (2.3.3)

where
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Φ = He(F T
1 PFa + F T

2 P1Fb + F T
3 P2Fc + F T

4 P3Fd + F T
5 P4Fe)

−eT3 (Q2 −Q5)e3 − eT2 (Q1 −Q2 −Q3)e2 + eT1Q1e1 + eT4 (Q4 −Q3)e4

−eT5 (Q4 +Q5)e5 + (Ae1 +BKe3)T (h1Z1 + hZ2)(Ae1 +BKe3)

+ḋ1(t)(F T
2 P1F2 − F T

3 P2F3 + F T
4 P3F4 − F T

5 P4F5 + eT3 (Q2 −Q5)e3

+eT2 (Q1 −Q2 −Q3)e2) + ḋ2(t)(F T
4 P3F4 − F T

5 P4F5

+eT3 (Q2 −Q5)e3) (2.3.4)

F1 =



e1

d1(t)e6

[d1(t) + d2(t)]e8

[h1 − d1(t)]e7 + d1(t)e6

d(t)e8 + [h− d(t)]e9 − d1(t)e6 − [h1 − d1(t)]e7


(2.3.5)

Fa =



Ae1 +BKe3

e1 − (1− ḋ1(t))e2

e1 − (1− ḋ(t))e3

e1 − e4

e4 − e5


(2.3.6)

F2 =

[
e1

e6

]
, Fb =

[
d1(t)(Ae1 +BKe3)

e1 − (1− ḋ1(t))e2 − ḋ1(t)e6

]
(2.3.7)

F3 =

[
e1

e7

]
, Fc =

[
(h1 − d1(t))(Ae1 +BKe3)

(1− ḋ1(t))e2 − e4 + ḋ1(t)e7

]
(2.3.8)

F4 =

[
e1

e8

]
, Fd =

[
d(t)(Ae1 +BKe3)

e1 − (1− ḋ(t))e3 − ḋ(t)e8

]
(2.3.9)

F5 =

[
e1

e9

]
, Fe =

[
(h− d(t))(Ae1 +BKe3)

(1− ḋ(t))e3 − e5 + ḋ(t)e9

]
(2.3.10)

Ga =
[
GT

3 GT
4 GT

1 GT
2

]T
, Gb =

[
GT

7 GT
8 GT

5 GT
6

]T
, (2.3.11)

Z̃1 =

[
Z1 0

∗ 3Z1

]
, Z̃2 =

[
Z2 0

∗ 3Z2

]
(2.3.12)

(2.3.13)
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G1 = e2 − e4, G2 = e2 + e4 − 2e7, G3 = e1 − e2, G4 = e1 + e2 − 2e6,

G5 = e3 − e5, G6 = e3 + e5 − 2e9, G7 = e1 − e3, G8 = e1 + e3 − 2e8,

h = h1 + h2, d(t) = d1(t) + d2(t)

Proof: Inspired by previous research [50], the following LKF candidate with

two delay-product-type terms is constructed

V (xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt) + V5(xt) + V6(xt) (2.3.14)

where

V1(xt) = ξT0 (t)Pξ0(t)

V2(xt) = d1(t)ξT1 (t)P1ξ1(t) + d(t)ξT2 (t)P3ξ2(t)

V3(xt) = [h1 − d1(t)]ξT3 (t)P2ξ3(t) + [h− d(t)]ξT4 (t)P4ξ4(t)

V4(xt) =

∫ t

t−d1(t)

xT (s)Q1x(s)ds+

∫ t−d1(t)

t−d(t)

xT (s)Q2x(s)ds

V5(xt) =

∫ t−d1(t)

t−h1
xT (s)Q3x(s)ds+

∫ t−h1

t−h
xT (s)Q4x(s)ds

+

∫ t−d(t)

t−h
xT (s)Q5x(s)ds

V6(xt) =

∫ 0

−h1

∫ t

t+s

ẋT (α)Z1ẋ(α)dαds+

∫ 0

−h

∫ t

t+s

ẋT (α)Z2ẋ(α)dαds

with

ξ0(t) =
[
xT (t),

∫ t
t−d1(t)

xT (s)ds,
∫ t
t−d(t)

xT (s)ds,
∫ t
t−h1 x

T (s)ds,
∫ t−h1
t−h xT (s)ds

]T
ξ1(t) =

[
xT (t),

∫ t
t−d1(t)

xT (s)
d1(t)

ds
]T
, ξ2(t) =

[
xT (t),

∫ t
t−d(t)

xT (s)
d(t)

ds
]T

ξ3(t) =
[
xT (t),

∫ t−d1(t)

t−h1
xT (s)

h1−d1(t)
ds
]T
, ξ4(t) =

[
xT (t),

∫ t−d(t)

t−h
xT (s)
h−d(t)

ds
]T

On the one hand, if the matrices in V (xt) satisfying P > 0, P1 > 0, P2 > 0,

P3 > 0, P4 > 0, Qi = QT
i (i = 1, 2, · · · , 5), Z1 > 0 and Z2 > 0, then V (xt) ≥

ε1||x(t)|| for a scalar ε1 > 0.

On the other hand, the conditions guaranteeing the negative definite of the deriva-

tive of V (xt) are discussed. At first, for simplifying the representation of the subse-
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quent part, the following notations are defined:

ζ(t) =
[
xT (t), xT (t− d1(t)), xT (t− d(t)), xT (t− h1), xT (t− h)

1

d1(t)

∫ t

t−d1(t)

xT (s)ds,
1

h1 − d1(t)

∫ t−d1(t)

t−h1
xT (s)ds,

1

d(t)

∫ t

t−d(t)

xT (s)ds,
1

h− d(t)

∫ t−d(t)

t−h
xT (s)ds

]
ej =

[
0n×(i−1)n, In, 0n×(9−i)n

]
Calculating the derivative of the V1(xt) along the solutions of system (2.2.1)

leads to

V̇1(xt) = 2x̃T (t)P ˙̃x(t) (2.3.15)

= 2



x(t)∫ t
t−d1(t)

x(s)ds∫ t
t−d(t)

x(s)ds∫ t−d1(t)

t−h1 x(s)ds+
∫ t
t−d1(t)

x(s)ds∫ t
t−d(t)

x(s)ds+
∫ t−d(t)

t−h x(s)ds−
∫ t
t−d1(t)

x(s)ds−
∫ t−d1(t)

t−h1 x(s)ds



P



ẋ(t)

x(t)− [1− ḋ1(t)]x(t− d1(t))

x(t)− [1− ḋ(t)]x(t− d(t))

x(t)− x(t− h1)

x(t− h1)− x(t− h)


= ζT (t)He{F T

1 PFa}ζ(t) (2.3.16)

where F1 and Fa are defined in (2.3.5) and (2.3.6) separately.

Calculating the derivative of the V2(xt) along the solutions of system (2.2.1)

leads to

V̇2(xt) = ḋ1(t)ξT1 (t)P1ξ1(t) + 2d1(t)ξT1 (t)P1ξ̇1(t) (2.3.17)

+ḋ(t)ξT2 (t)P3ξ2(t) + 2d(t)ξT2 (t)P3ξ̇2(t)
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where

ξ1(t) =

[
e1

e6

]
ζ(t) = F2ζ(t),

d1(t)ξ̇1(t) =

[
d1(t)(Ae1 +BKe3)

e1 − (1− ḋ1(t))e2 − ḋ1(t)e6

]
ζ(t) = Fbζ(t)

ξ2(t) =

[
e1

e8

]
ζ(t) = F4ζ(t),

d(t)ξ̇2(t) =

[
d(t)(Ae1 +BKe3)

e1 − (1− ḋ(t))e3 − ḋ(t)e8

]
ζ(t) = Fdζ(t)

Thus, V̇2(xt) is rewritten as

V̇2(xt) = ḋ1(t)ζT (t)F T
2 P1F2ζ(t) + ζT (t)He(F T

2 P1Fb)ζ(t) (2.3.18)

+ḋ(t)ζT (t)F T
4 P3F4ζ(t) + ζT (t)He(F T

4 P3Fd)ζ(t)

= ζT (t)
[
ḋ1(t)

(
F T

2 P1F2 + F T
4 P3F4

)
+ ḋ2(t)F T

4 P3F4 (2.3.19)

+He{F T
2 P1Fb + F T

4 P3Fd}
]
ζ(t)

where F2, Fb, F4, and Fd are defined in (2.3.7) and (2.3.9).

Calculating the derivative of the V3(xt) along the solutions of system (2.2.1)

leads to

V̇3(xt) = −ḋ1(t)ξT3 (t)P2ξ3(t) + 2(h1 − d1(t))ξT3 (t)P2ξ̇3(t) (2.3.20)

−ḋ(t)ξT4 (t)P4ξ4(t) + 2(h− d(t))ξT4 (t)P4ξ̇4(t)

where

ξ3(t) =

[
e1

e7

]
ζ(t) = F3ζ(t),

(h1 − d1(t))ξ̇3(t) =

[
(h1 − d1(t))(Ae1 +BKe3)

(1− ḋ1(t))e2 − e4 + ḋ1(t)e7

]
ζ(t) = Fcζ(t)

ξ4(t) =

[
e1

e9

]
ζ(t) = F5ζ(t),

(h− d(t))ξ̇4(t) =

[
(h− d(t))(Ae1 +BKe3)

(1− ḋ(t))e3 − e5 + ḋ(t)e9

]
ζ(t) = Feζ(t)
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Thus, V̇3(xt) is rewritten as

V̇3(xt) = −ḋ1(t)ζT (t)F T
3 P2F3ζ(t) + ζT (t)He(F T

3 P2Fc)ζ(t) (2.3.21)

−ḋ(t)ζT (t)F T
5 P4F5ζ(t) + ζT (t)He(F T

5 P4Fe)ζ(t)

= ζT (t)
[
−ḋ1(t)

(
F T

3 P2F3 + F T
5 P4F5

)
(2.3.22)

− ḋ2(t)F T
5 P4F5 +He{F T

3 P2Fc + F T
5 P4Fe}

]
ζ(t)

where F3, Fc, F5, and Fe are defined in (2.3.8) and (2.3.10).

Taking the derivative of V4(xt) along the solutions of system (2.2.1) yields

V̇4(xt) = xT (t)Q1x(t)− (1− ḋ1(t))xT (t− d1(t))Q1x(t− d1(t))

+(1− ḋ1(t))xT (t− d1(t))Q2x(t− d1(t))

−(1− ḋ(t))xT (t− d(t))Q2x(t− d(t)) (2.3.23)

The derivative of V5(xt) along the solutions of system (2.2.1) can be obtained as

V̇5(xt) = (1− ḋ1(t))xT (t− d1(t))Q3x(t− d1(t))− xT (t− h1)Q3x(t− h1)

+xT (t− h1)Q4x(t− h1)− xT (t− h)Q4x(t− h) (2.3.24)

+(1− ḋ(t))xT (t− d(t))Q5x(t− d(t))− xT (t− h)Q5x(t− h)(2.3.25)

Taking the derivative of V6(xt) yields

V̇6(xt) = h1ẋ
T (t)Z1ẋ(t) + hẋT (t)Z2ẋ(t)−

∫ t

t−h1
ẋT (s)Z1ẋ(s)ds

−
∫ t

t−h
ẋT (s)Z2ẋ(s)ds (2.3.26)

Combining (2.3.16), (2.3.20), (2.3.23)-(2.3.26) yields

V̇ (xt) = ζT (t)Φζ(t)−
∫ t

t−h1
ẋT (s)Z1ẋ(s)ds

−
∫ t

t−h
ẋT (s)Z2ẋ(s)ds (2.3.27)

where Φ is defined in (2.3.4).
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By applying Lemma 1 and 2 to estimate the Z1-dependent integral term, the

following is obtained

−
∫ t

t−h1
ẋT (s)Z1ẋ(s)ds = −

∫ t

t−d1(t)

ẋT (s)Z1ẋ(s)ds−
∫ t−d1(t)

t−h1
ẋT (s)Z1ẋ(s)ds

≤ − 1

d1(t)

[
x(t)− x(t− d1(t))

x(t) + x(t− d1(t))− 2
d1(t)

∫ t
t−d1(t)

x(t)ds

]T [
Z1 0

0 3Z1

]
[

x(t)− x(t− d1(t))

x(t) + x(t− d1(t))− 2
d1(t)

∫ t
t−d1(t)

x(t)ds

]

− 1

h1 − d1(t)

[
x(t− d1(t))− x(t− h1)

x(t− d1(t)) + x(t− h1)−
∫ t−d1(t)

t−h1
2x(t)

h1−d1(t)
ds

]T [
Z1 0

0 3Z1

]
[

x(t− d1(t))− x(t− h1)

x(t− d1(t)) + x(t− h1)−
∫ t−d1(t)

t−h1
2x(t)

h1−d1(t)
ds

]

= −ζT (t)

 1

d1(t)

[
e1 − e2

e1 + e2 − 2e6

]T [
Z1 0

∗ 3Z1

][
e1 − e2

e1 + e2 − 2e6

]

+
1

h1−d1(t)

[
e2 − e4

e2 + e4 − 2e7

]T [
Z1 0

∗ 3Z1

][
e2 − e4

e2 + e4 − 2e7

] ζ(t)

≤ − 1

h1

ζT (t)GT
a

[
Z̃1 X

∗ Z̃1

]
Gaζ(t) (2.3.28)

where Ga and Z̃1 are defined in (2.3.11) and

[
Z̃1 X

∗ Z̃1

]
> 0.

Similarly, the Z2-dependent integral term in (2.3.27) estimated through Lemma

1 and 2 leads to

−
∫ t

t−h
ẋT (s)Z2ẋ(s)ds ≤ − 1

h1 + h2

ζT (t)GT
b

[
Z̃2 Y

∗ Z̃2

]
Gbζ(t) (2.3.29)

where Gb and Z̃2 are defined in (2.3.11) and

[
Z̃2 Y

∗ Z̃2

]
> 0.

Thus, based on (2.3.27)-(2.3.29), the following is true

V̇ (xt) < ζT (t)

(
Φ− 1

h1

GT
aΩ1Ga −

1

h1 + h2

GT
b Ω2Gb

)
ζ(t)

= ζT (t)Ω0ζ(t) (2.3.30)
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Therefore, Ω0 < 0 leads to V̇ (xt) ≤ −ε2||x(t)||2 for a sufficient small scalar

ε2 > 0. Hence, when (2.3.1)-(2.3.3) hold, system (2.2.1) with the time-varying

delay satisfying (2.2.2) and (2.2.3) is asymptotically stable. This completes the

proof. �

Remark 1. The condition, Ω0 < 0, of Theorem 1 is dependent on the time-varying

delays, d1(t) and d2(t), and their change rate, ḋ1(t) and ḋ2(t), and it cannot be

directly checked. In fact, this condition can be rewritten as the following form:

Ω0(d1(t), d2(t), ḋ1(t), ḋ2(t)) = d1(t)[Υ1 + ḋ1(t)Υ2 + ḋ2(t)Υ3] (2.3.31)

+d2(t)[Υ4 + ḋ1(t)Υ5 + ḋ2(t)Υ6] < 0

where Υi, i = 1, 2, · · · , 6 are time-independent matrix-combinations. By using the

convex combination technique [51] and following the same proof procedure in [52]

[proof of Theorem 1], the condition Ω0(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0 holds if the

following conditions hold

Ω0|(d1(t),d2(t),ḋ1(t),ḋ2(t))∈([0,h1]×[0,h2]×[−µ1,µ1]×[−µ2,µ2]) < 0 (2.3.32)

Remark 2. The LKF used in this chapter is different from the ones reported in

the literature. It not only contains some augmented terms similar to the one used

in [38] but also introduces four delay-product-type terms, which are inspired by

previous work for discrete-time time delay system [50] and whose simple form has

been proved to be helpful to reduce the conservatism of the criteria in [53].

Remark 3. During the proof of Theorem 1, the Wirtinger-based integral inequal-

ity and the reciprocally convex combination technique are applied to estimate the

derivative of the LKF. It is well known that the Wirtinger-based integral inequality

is tighter than the Jensen inequality used in [37–39], which means that the con-

servatism of the proposed criterion can be reduced. Moreover, the usage of the

reciprocally convex combination avoids some enlargement treatments, such as d(t)

is directly enlarged to its upper bound h [34]. As a result, the conservatism of the

proposed criterion is further reduced.
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2.4 Numerical test

This section gives a typical numerical example to show the advantages of the

proposed criterion. Moreover, the application to the LFC of a single area power

system is also studied.

2.4.1 A numerical example

Consider system (2.2.1) with the following parameters

A =

[
−2 0

0 −0.9

]
, BK =

[
−1 0

−1 −1

]
.

This example is widely used for checking the conservatism of the stability cri-

teria [34–36, 45, 47, 54]. It is assumed that the bounds of the delay change rates are

respective 0.1 and 0.8, i.e., |ḋ1(t)| ≤ 0.1 and |ḋ2(t)| ≤ 0.8. For given different upper

bounds of d1(t), i.e., h1 ∈ {1.0, 1.2, 1.5}, the upper bounds of d2(t) guaranteeing

the stability of system calculated by Theorem 1 are listed in Table 2.1, where the

results reported in other literature are also given for comparison. Note that ‘—-’ in-

dicates that the results for corresponding cases are not reported in other literatures.

It can be found that the proposed Theorem 1 can provide less conservative results.

Table 2.1: Upper bounds of d2(t) for given h1 and upper bounds of d1(t) for given

h2

Method h2 for given h1 h1 for given h2

h1=1.0 h1=1.2 h1=1.5 h2=0.3 h2=0.4 h2=0.5

[34] 0.415 0.376 0.248 1.324 1.039 0.806

[54] 0.512 0.406 0.283 1.453 1.214 1.021

[36] 0.519 0.453 0.378 —- —- —-

[45] 0.596 0.463 0.313 1.532 1.313 1.140

[35] 0.872 0.672 0.371 1.572 1.472 1.372

Theorem 1 1.163 0.965 0.669 1.875 1.773 1.671

The results which calculated by Theorem 1 can be found that the sum of h1 and
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h2 are similar. It leads a question that the limit would be only on the total delay and

considering two separate delay terms would become meaningless. It influenced by

the two delay change rates are not significant difference. For demonstrated purpose,

The delay change rate of second time delay ḋ2(t) are changed to 2. The table 2.2

shows the sum of h1 and h2 are changed followed the enlarge between two delay

change rates.

Table 2.2: Upper bounds of d2(t) and d1(t) for |ḋ2(t)| ≤ 2

Method h2 for given h1 h1 for given h2

h1=1.0 h1=1.2 h1=1.5 h2=0.3 h2=0.4 h2=0.5

Theorem 1 1.079 1.039 0.897 2.043 1.758 1.522

2.4.2 Application to the stability analysis of load frequency con-

trol

As mentioned in [55–57], LFC is designed for maintaining the frequency at

its required value, should transmit the frequency derivation from the remote power

plant to the control center and send the calculated power reference signal from the

control center to the power generation plant. The time delays arising in the feedback

measurement channel and the forward control channel are combined by one time

delay in [55–57], while those delays in different channels may be different.

+

ACE

_

d
P

_
f

+mPCP vP 1

D sMch

1

1 sTg

1
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1
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K ( )G s 2e sd1e sd

Figure 2.1: Diagram of the LFC for a single area power system

The basic diagram of the simplified LFC of a single area power system is shown

in Fig. 2.1, where ∆f , ∆Pm, ∆Pv, and ∆Pd are the frequency deviation, the me-
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chanical output change, the valve position change and the load disturbance, respec-

tively; M and D are the moment of inertia of the generator and generator damping

coefficient, respectively; Tg and Tch are the time constant of the governor and the

turbine, respectively; R is the speed drop; β is the frequency bias factor; KP andKI

are PI gains of the LFC; d1(t) and d2(t) are the time delays in feedback and forward

channels, respectively. By modifying the dynamic model in [55], the new model

with two additive delays can be obtained as follows

ẋ(t) = Ax(t) + Adx(t− d1(t)− d2(t)) (2.4.1)

where

x(t) =


∆f

∆Pm

∆Pv

 , A =


− D
M

1
M

0 0

0 − 1
Tch

1
Tch

0

− 1
RTg

0 − 1
Tg

0

β 0 0 0

 ,

Ad =


0 0 0 0

0 0 0 0

−Kpβ

Tg
0 0 −KI

Tg

0 0 0 0


with the parameters given in [55], M = 10, D = 1, Tch = 0.3, Tg = 0.1, R = 0.05,

β = 21, KI = 0.2, and Kp = 0.1. The results for the case of |ḋ1(t)| ≤ 0.1 and

|ḋ2(t)| ≤ 0.8 are given in Table 2.3. hR shows the real upper bound by texted in

simulation. The results show the proposed criterion has less conservatism. However,

It can be found there is still room to improve and reduce the conservatism for future

work.

For the case: an increase step load of 0.1 pu; d1(t) = 1.5
2

sin
(

20
1.5
x(t)

)
+ 1.5

2
and

d2(t) = 5.383
2

sin
(

2.5
5.383

x(t)
)

+ 5.383
2

(satisfying d1(t) ≤ 1.5, d2(t) ≤ 5.383, |ḋ1(t)| ≤
0.1, |ḋ2(t)| ≤ 0.8), the simulation results are provided in Fig. 2.2. The obtained

simulation results show that the LFC is stable, which verifies the effectiveness of

the proposed method.
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Table 2.3: Upper bounds of d2(t) for given h1 and upper bounds of d1(t) for given

h2

Method h2 for given h1 h1 for given h2

h1=1.0 h1=1.2 h1=1.5 h2=2 h2=3 h2=4

[55] 4.803 4.603 4.303 3.803 2.803 1.803

Theorem 1 5.882 5.682 5.383 4.892 3.886 2.885

hR 8.496 8.308 8.035 7.503 6.520 5.514

2.5 Conclusion

This chapter has investigated the stability of linear systems with two additive

time-varying delays. A delay-product-type LKF has been developed and its deriva-

tive has been estimated through Wirtinger-based inequality. Those techniques have

led to a stability criterion with less conservatism in comparison with the existing

criteria. Then, the effect of the delays on system stability can be assessed accurately

by using the proposed stability criterion. A numerical example and an application

of the LFC have been used to demonstrate the effectiveness of the proposed method.

Haotian Xu



2.5 Conclusion 40

Time (s)

0 5 10 15 20 25 30 35 40 45 50

A
C

E
 (

p
u
)

-0.1

-0.05

0

0.05

0.1

Time (s)

0 5 10 15 20 25 30 35 40 45 50

∆
 f
 (

p
u
)

×10-3

-5

0

5

Figure 2.2: Frequency deviation and ACE of the LFC under a step load change (0.1

pu)
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Chapter 3

Stability analysis of delayed genetic

regulatory networks via a relaxed

double integral inequality

3.1 Introduction

In the past few years, genetic regulatory networks, which describe the interac-

tions of many molecules (DNA, RNA, proteins, etc.), have been becoming a new

research area of biological and biomedical sciences [58–61]. A genetic regulatory

network (GRN) is a collection of molecular regulators that interact with each other

and with other substances in the cell to govern the gene expression levels of mRNA

and proteins. These play a central role in morphogenesis, the creation of body struc-

tures, which in turn is central to evolutionary developmental biology.

Mathematical modeling based on the extracted functional information from the

time-series data provides a useful tool for studying gene regulation processes in liv-

ing organisms [62], and a large variety of formalisms have been proposed to model

and simulate GRNs, such as directed graphs, Boolean networks and nonlinear dif-

ferential equations [63]. Among them, the nonlinear differential equation model

provides more detailed understanding and insights into the nonlinear dynamical be-

havior exhibited by GRNs [64].
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Since mRNAs and proteins in the GRNs may be synthesized at different loca-

tions, an important issue in modeling GRNs is that the slow processes of transcrip-

tion, translation, and translocation results in sizable delays [65]. Time delays arising

in the GRNs may lead to incorrect prediction of dynamic behaviors [66], which may

result in very serious consequences. Stability is essential for designing or control-

ling GRNs [67], it is of a great significance to study the influence of delays on the

stability of the GRNs.

Up to now, a huge number of results on the stability of the delayed GRNs have

been reported in the literature (see e.g. [68] ). The sufficient and necessary local sta-

bility criteria were firstly given for the GRNs with constant delay in [68] and [69].

However, local stability is not enough for understanding nonlinear GRNs, the glob-

ally asymptotical stability of GRNs with SUM regulatory functions has been widely

investigated [70–72]. Meanwhile, by taking into account the unavoidable uncer-

tainties caused by modelling errors and parameter fluctuations, many scholars paid

attentions to the robust stability analysis of the delayed GRNs [73]. Moveover, both

the intrinsic noise derived from the random births and deaths of individual molecules

and the extrinsic noise due to environment fluctuations make the gene regulation

process be an intrinsically noisy process [74]. Thus, many researches aimed at the

robust stability analysis of the GRNs in consideration of those noises [75]. Also,

some results have considered both the uncertainties and the noises [76]. In addition,

based on the definition of convergence rate index, the exponential stability problem

was also studied in [77].

On the other hand, no matter what type of stability problems concerned, the

analysis methods for finding stability criteria have always been an important topic.

To the best of the authors’ knowledge, there are mainly two methods that have

been used for the delayed GRNs. The first type of method is the M-matrix-based

method. For example, the delay- and rate-independent stability criteria were pro-

posed in [71], the delay-independent but rate-dependent criteria were established

in [78] and [79], and the delay- and rate-dependent criteria were developed in [80]

and [81]. The stability of the GRNs through those M-matrix-based criteria is judged

by verifying whether or not a matrix is a nonsingular M-matrix. Although the com-
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putational complexity is low, those criteria are just available for slow-varying delay

cases [71]. However, the time delays encountered in GRNs may be fast-varying or

random changing. The M-matrix-based method is inapplicable for those cases. The

second type of method is based on the framework of LKF and LMI. The LKF-based

method can be used to handle all time delays aforementioned and it is available for

not only stability analysis but also many other problems, such as controller synthe-

sis, state estimation, filter design, passivity analysis, and so on [74]. Meanwhile, the

LMI-based criteria can be easily checked through MATLAB/LMI toolbox for deter-

mining the system stability. Therefore, the most existing researches for the GRNs

are based on this type of method [75].

The stability analysis creteria obtained by using the LKF and the LMI is the

criteria obtained have more or less conservatism. Thus, one important issue is to

develop new criteria with as small conservatism as possible. The key point of the

stability analysis based on such framework is to find an LKF satisfying some re-

quirements for ensuring the globally asymptotical stability of the GRNs. It is pre-

dictable that the form of the LKF candidate is tightly related to the conservatism of

the obtained criteria.

In most researches, the used LKFs were constructed by introducing delay-based

single and/or double integral terms into the typical non-integral quadratic form of

Lyapunov function for delay-free systems [75]. Based on a predictable fact that

the conservatism-reducing of criteria can be achieved by constructing more general

LKF, two types of more general LKFs have been developed to reduce the conser-

vatism. The first one is the delay-partition-based LKFs, which is constructed by

dividing the delay interval into several small subintervals and then replacing the

original integral terms with multiple new integral terms based on delay subinter-

vals. This type of LKF has been used to investigate the robust stability of various

GRNs [82], the exponential stability of switch GRNs [83], and the stochastic stabil-

ity of jumping GRNs [84]. The other is the augmented LKF constructed by using

various state vectors (current, delayed, and/or integrated state vectors etc.) to aug-

ment the quadratic terms of original LKFs, it has been used to derive the improved

stability criteria of the GRNs [85].
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Beside above mentioned two types of improved LKFs, a new LKF including

triple integral terms firstly developed in [86] is proved to be very useful to reduce the

conservatism. However, only a few researches of the GRNs have applied such type

of LKF. The LKF with triple integral terms was used to discuss the asymptotical

stability of the GRNs [87]. The following form of double integral term will be

introduced into the derivative of the LKF with a triple integral term:

−
∫ b

a

∫ b

s

yT (u)Zy(u)duds, Z > 0 (3.1.1)

As mentioned in [88], the effective estimation of the above term is strongly linked

to the conservatism of the criteria. To the best of the authors’ knowledge, for the

researches referring to the triple integral term in the LKFs, most literature directly

applied the Jensen-based double integral inequality (JBDII) (see (3.1.15) for de-

tails) to achieve the estimation task [85]. Although an improved integral inequality

was developed in [87], it is also derived based Jensen inequality. Very recently, a

Wirtinger-based double integral inequality (WBDII) was developed to general lin-

ear time-delay system and it was proved to be less conservative than the JBDII [88].

However, such inequality has not been used to discuss the GRNs. Furthermore, the

gap between the term (3.1.1) and its estimated value obtained by the WBDII still

leads to conservatism. Therefore, it can be expected that the results may be further

improved if a new estimation method that brings tighter gap is applied for the term

(3.1.1). This is the motivation of the chapter.

This chapter further investigates the delay-dependent stability of the GRNs by

developing a more effective inequality to estimate the double integral term (3.1.1).

The contributions of the chapter are summarized as follows:

1) A relaxed double integral inequality, i.e. WTDII, is established to estimate

the double integral term. Compared with the widely used JBDII and the re-

cently developed WTDII, the presented WTDII is theoretically proved to be

the tightest.

2) Two less conservative stability criteria of the GRNs are derived. For the GRNs

with time-varying delays satisfying different conditions, two stability criteria
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are respectively established by applying the proposed WTDII to estimate the

double integral terms appearing in the derivative of the LKFs.

The rest of the chapter is organized as follows. Problem statements and prelimi-

naries are presented in Section II. In Section III, the development and the compari-

son of the WTDII approach are discussed in detail. Two stability criteria of the GRN

with time-varying delay are derived through the WTDII in Section IV. An example

is given to show the validity of the obtained results in Section V. Finally, in Section

IV, the conclusions are drawn.

Notations: Throughout this chapter, the superscripts T and −1 mean the trans-

pose and the inverse of a matrix, respectively; Rn denotes the n-dimensional Eu-

clidean space; Rn×m is the set of all n×m real matrices; ‖·‖ refers to the Euclidean

vector norm; P > 0 (≥ 0) means that P is a real symmetric and positive-definite

(semi-positive-definite) matrix; I stands for an appropriately dimensioned identity

matrix; diag{· · · } denotes a block-diagonal matrix; symmetric term in a symmetric

matrix is denoted by ∗; and Sym{X} = X +XT .

This section describes the problem to be investigated and gives some necessary

preliminaries.

The following nonlinear differential equations have been used recently to de-

scribe the GRNs with time-varying feedback regulation delays and translational de-

lays [73]: 
ṁi(t) = −aimi(t) + bi(p1(t− σ(t)), p2(t− σ(t)),

· · · , pn(t− σ(t)))

ṗi(t) = −cipi(t) + dimi(t− τ(t))

(3.1.2)

as shown in Fig. 3.1, where mi(t) and pi(t) are the concentrations of the ith

mRNA and protein, respectively. ai > 0 and ci > 0 are the positive real numbers that

represent the degradation rate of the ith mRNA and protein, respectively. di > 0 is

the positive real number that represents the translating rate from mRNA i to protein

i. bi is the regulatory function of the ith gene. σ(t) and τ(t) are the transcriptional

and translational delays, respectively.
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Figure 3.1: GRNs with time-varying feed-back regulation delays and translational

delays.

Since each transcription factor acts additively to regulate the gene, it is usually

to assume that the regulatory function bi satisfies the following SUM logic [75]:

bi(p1(t), p2(t), · · · , pn(t)) =
n∑
j=1

bijpj(t) (3.1.3)

and bij is a monotonic function of the Hill form, that is

bij =


αij

1+(x/βj)
Hj
, if transcription factor j represses gene i

αij(x/βj)
Hj

1+(x/βj)
Hj
, if transcription factor j activates gene i

where αij is bounded constant that denotes the dimensionless transcriptional rate of

transcription factor j to gene i, βj is a positive scalar, and Hj is the Hill coefficient

that represents the degree of cooperativity.

The transcriptional and translational delays, σ(t) and τ(t), are assumed to satisfy

the following two different conditions:

Case I: τ(t) and σ(t) satisfy{
0 ≤ τ1 ≤ τ(t) ≤ τ2, 0 ≤ σ1 ≤ σ(t) ≤ σ2

τ̇(t) ≤ τd, σ̇(t) ≤ σd
(3.1.4)
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Case II: τ(t) and σ(t) satisfy

0 ≤ τ1 ≤ τ(t) ≤ τ2, 0 ≤ σ1 ≤ σ(t) ≤ σ2 (3.1.5)

Clearly, based on (3.1.3), GRN (3.1.2) can be rewritten as [87]
ṁi(t) = −aimi(t) +

n∑
j=1

wijgj(pj(t− σ(t))) + li

ṗi(t) = −cipi(t) + dimi(t− τ(t))

(3.1.6)

where li =
∑

j∈Vi αij with Vi being the set of all the transcription factor j which is

a repressor of gene i; wij = αij if transcription factor j activates gene i, wij = 0

if there is no connection between j and i, and wij = −αij if transcription factor

j represses gene i; and gj(x) =
(x/βj)

Hj

1+(x/βj)
Hj
, x ≥ 0 is a monotonically increasing

function satisfying

ρ ≤ gj(s1)− gj(s2)

s1 − s2

≤ ρi (3.1.7)

with ρ = mins≥0 ġj(s) = 0 and

ρi = max
s≥0

ġj(s) =
(Hj − 1)(Hj−1)/Hj(Hj + 1)(Hj+1)/Hj

4βjHj

(3.1.8)

GRN (3.1.6) can be expressed as the following vector-matrix form:{
ṁ(t) = −Am(t) +Wg(p(t− σ(t))) + l

ṗ(t) = −Cp(t) +Dm(t− τ(t))
(3.1.9)

where m(t) = [m1(t),m2(t), · · · ,mn(t)]T , p(t) = [p1(t), p2(t), · · · , pn(t)]T , A =

diag{a1, a2, · · · , an} > 0,C = diag{c1, c2, · · · , cn} > 0,D = diag{d1, d2, · · · , dn}
> 0, g(p(t)) = [g1(p1(t)), g2(p2(t)), · · · , gn(pn(t))]T , W = [wij]n×n, and l =

[l1, l2, · · · , ln].

Let (m∗, p∗) be the equilibrium point (steady state) of (3.1.9), that is, −Am∗ +

Wg(p∗)+ l = 0 and−Cp∗+Dm∗ = 0. Using the transformation x(t) = m(t)−m∗

and y(t) = p(t)− p∗, one can shift the equilibrium point (m∗, p∗) to the origin and

rewrite (3.1.9) as the following GRN:{
ẋ(t) = −Ax(t) +Wf(y(t− σ(t)))

ẏ(t) = −Cy(t) +Dx(t− τ(t))
(3.1.10)
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where f(s) = [f1(s), f2(s), · · · , fn(s)]T and fi(y(t)) = gi(y(t) + p∗)− gi(p∗) with

fi(0) = 0. Then,

fi(s1)−fi(s2)

s1−s2

=
gi(s1 + p∗)− gi(s2 + p∗)

s1 + p∗ − (s2 + p∗)

Thus, it follows from (3.1.7) and fi(0) = 0 that

0 ≤ fi(s1)− fi(s2)

s1 − s2

≤ ρi, s1 6= s2 (3.1.11)

0 ≤ fi(s)

s
≤ ρi, s 6= 0 (3.1.12)

This chapter aims to analyze the asymptotical stability of GRN (3.1.2) and to

determine the delay bounds, name as maximal admissible delay bounds (MADBs),

under which the GRN is asymptotically stable. In order to achieve this aim, this

chapter will develop a new double integral inequality (i.e., WTDII) for estimating

the double integral term (3.1.1) so as to derive some less conservative stability cri-

teria.

Several lemmas used to obtain main results are given as follows.

For the estimation of single integral term, the most popular technique is Wirtinger-

based inequality, shown as lemma 3.

Lemma 3. (Wirtinger-based inequality [89]) For symmetric positive definite matrix

R ∈ Rn×n, scalars a < b, and vector ω : [a, b] 7→ Rn such that the integration

concerned are well defined, the following inequality holds∫ b

a

ωT (s)Rω(s)ds≥ 1

b− a

[
χa

χb

]T [
R 0

0 3R

][
χa

χb

]
(3.1.13)

where χa=
∫ b
a
ω(s)ds and χb=χa− 2

b−a

∫ b
a

∫ s
a
ω(u)duds=−χa+ 2

b−a

∫ b
a

∫ b
s
ω(u)duds.

The Auxiliary function-based integral inequality, which encompasses the Wirtinger-

based inequality, has been developed recent years.

Lemma 4. (Auxiliary function-based integral inequality [90]) For symmetric posi-

tive definite matrix R ∈ Rn×n, scalars a < b, and vector ω : [a, b] 7→ Rn such that

the integration concerned are well defined, the following inequality holds

(b− a)

∫ b

a

ω̇T (s)Rω̇(s)ds≥χT1Rχ1 + 3χT2Rχ2 + 5χT3Rχ3 (3.1.14)
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where χ1 = ω(b) − ω(a), χ2 = ω(b) + ω(a) − 2
b−a

∫ b
a
ω(s)ds, and χ3 = ω(b) −

ω(a) + 6
b−a

∫ b
a
ω(s)ds− 12

(b−a)2

∫ b
a

∫ b
s
ω(u)duds.

For the estimation of double integral term, the JBDII is widely applied in [86],

and as its improvement, the WBDII was developed in [88] very recently, respectively

shown as lemma 3 and lemma 4.

Lemma 5. (Jensen-based double inequality (JBDII) [86]) For symmetric positive

definite matrix Z ∈ Rn×n, scalars a < b, and vector ν : [a, b] 7→ Rn such that the

integration concerned are well defined, the following inequality holds

(b−a)2

2

∫ b

a

∫ b

s

νT (u)Zν(u)duds ≥ χT4Zχ4 (3.1.15)

where χ4 =
∫ b
a

∫ b
s
ν(u)duds.

Lemma 6. (Wirtinger-based double inequality (WBDII) [88]) For symmetric posi-

tive definite matrix Z ∈ Rn×n, scalars a < b, and vector ν : [a, b] 7→ Rn such that

the integration concerned are well defined, the following inequality holds

(b−a)2

2

∫ b

a

∫ b

s

νT (u)Zν(u)duds ≥ χT4Zχ4 + 2χT5Zχ5 (3.1.16)

where χ5 =−χ4 + 3
b−a

∫ b
a

∫ b
s

∫ b
θ
ν(u)dudθds with χ4 given in Lemma 5.

For time-varying delay, when using the integral inequality, the reciprocally con-

vex lemma is needed, its simple form can be reformulated as Lemma 5.

Lemma 7. (Reciprocally convex combination lemma [91]) For any vectors β1 and

β2, symmetric matrix R, any matrix S, and real scalar 0 ≤ α ≤ 1 satisfying[ R S

∗ R

]
≥ 0, the following inequality holds,

1

α
βT1 Rβ1 +

1

1− α
βT2 Rβ2 ≥

[
β1

β2

]T [
R S

∗ R

][
β1

β2

]
(3.1.17)
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3.2 A relaxed double integral inequality and its ad-

vantages

This section develops a new integral inequality, i.e., the WTDII, to estimate

the double integral terms existing. The comparison of the WTDII and the existing

double integral inequalities is also given.

Based on the technique of integral in parts, the following WTDII is given.

Lemma 8. For symmetric positive definite matrix Z ∈ Rn×n, scalars a < b, and

vector ν : [a, b] 7→ Rn such that the integration concerned are well defined, the

following inequality holds

(b−a)2

2

∫ b

a

∫ b

s

νT (u)Zν(u)duds ≥ χT4Zχ4 + 8χT5Zχ5 (3.2.1)

where χ4 and χ5 are defined in Lemmas 5 and 6.

Proof: For a function λ(u) = k1 + k2u, the calculation through integration by

parts leads to∫ b

a

∫ b

s

λ(u)ν(u)duds = λ(a)

∫ b

a

∫ b

s

ν(u)duds

+2k2

∫ b

a

∫ b

s

∫ b

θ

x(u)dudθds

By setting λ(a) = −1, 2k2 = 3
b−a , i.e., λ(u) = −a−2b

2(b−a)
+ 3

2(b−a)
u, the above equality

is rewritten as ∫ b

a

∫ b

s

λ(u)ν(u)duds = χ5 (3.2.2)

Then the following equality is obtained for any vector χ0 and any matrix M :∫ b

a

∫ b

s

λ(u)χT0Mν(u)duds = χT0Mχ5 (3.2.3)
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Similarly, the following equalities are derived:∫ b

a

∫ b

s

χT0Lν(u)duds = χT0Lχ4∫ b

a

∫ b

s

χT0LR
−1LTχ0duds=

(b− a)2

2
χT0LR

−1LTχ0∫ b

a

∫ b

s

χT0LR
−1MTλ(u)χ0duds = 0∫ b

a

∫ b

s

λ2(u)χT0MR−1MTχ0duds

=
(b−a)2

16
χT0MR−1MTχ0

Therefore, using above five equalities and the Schur complement derives the follow-

ing equality:

∫ b

a

∫ b

s


χ0

λ(u)χ0

ν(u)


T

LZ−1LT LZ−1MT L

∗ MZ−1MT M

∗ ∗ Z




χ0

λ(u)χ0

ν(u)

duds
=

∫ b

a

∫ b

s

νT (u)Rν(u)duds+ Sym{χT0Lχ4+χT0Mχ5}

+
(b−a)2

2
χT0

(
8LZ−1LT +MZ−1MT

8

)
χ0

≥ 0 (3.2.4)

By letting χT0 = [χT4 , χ
T
5 ], L = − 2

(b−a)2
[Z, 0]T , and M = − 16

(b−a)2
[0, Z], i.e.,

χT0L = − 2
(b−a)2

χT4Z and χT0M = − 16
(b−a)2

χT5Z, then (3.2.4) leads to∫ b

a

∫ b

s

νT (u)Zν(u)duds ≥ 2

(b−a)2

(
χT4Zχ4 + 8χT5Zχ5

)
(3.2.5)

Thus (3.2.1) holds. This completes the proof. �

Remark 4. Based on the comparison of the proposed WTDII (3.2.1) with the widely

used JBDII (3.1.15) and the recently developed WBDII (3.1.16), it can be found

that WTDII (3.2.1) provides the tightest estimation value of the double integral term

(3.1.1). More specifically, compared with the widely used JBDII (3.1.15), the extra

positive term 8χT5Zχ5 reduces the gap between the original double integral term
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(3.1.1) and its estimated value; and compared with the recently developed WBDII

(3.1.16), the extra positive term 6χT5Zχ5 reduces the estimation gap. As mentioned

in [88–90], it is helpful to reduce the conservatism by reducing such estimation gap.

Therefore, the proposed WTDII (3.2.1) will lead to less conservative criteria than

the ones derived by JBDII (3.1.15) [87] or WBDII (3.1.16).

By setting ν(u) = ω̇(u), the following lemma can be directly obtained from

Lemma 8.

Lemma 9. For symmetric positive definite matrix Z ∈ Rn×n, scalars a < b, and

vector ω̇ : [a, b] 7→ Rn such that the integration concerned are well defined, the

following inequality holds∫ b

a

∫ b

s

ω̇T (u)Zω̇(u)duds ≥ 2θT1 Zθ1 + 16θT2 Zθ2 (3.2.6)

where θ1 = 1
b−aχ4|ν(u)=ω̇(u) = ω(b) −

∫ b
a
ω(s)
b−a ds and θ2 = 1

b−aχ5|ν(u)=ω̇(u) =

−1
2
ω(b)−

∫ b
a
ω(s)
b−a ds+ 3

∫ b
a

∫ b
s

ω(u)
(b−a)2

duds.

3.3 Delay-dependent stability analysis of genetic reg-

ulatory networks

This section derives delay-dependent stability criteria of GRN (3.1.2) by con-

structing the LKF with triple integral terms and applying the proposed WTDII

(3.2.1) to estimate the double integral terms appearing in its derivative.

The following notations are introduced at first for simplifying the representation

of subsequent parts:

τ1τ (t)=τ(t)− τ1, τ2τ (t)=τ2 − τ(t)

σ1σ(t)=σ(t)− σ1, σ2σ(t)=σ2 − σ(t)

xτ1(t)=x(t− τ1), yσ1(t)=y(t− σ1)

xτ (t)=x(t− τ(t)), yσ(t)=y(t− σ(t))

xτ2(t)=x(t− τ2), yσ2(t)=y(t− σ2)
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v1(t)=
∫ t
t−τ1

x(s)
τ1
ds , v4(t)=

∫ t
t−τ1

∫ t
s
x(u)

τ21
duds

v2(t)=
∫ t−τ1
t−τ(t)

x(s)
τ1τ (t)

ds , v5(t)=
∫ t−τ1
t−τ(t)

∫ t−τ1
s

x(u)

τ21τ (t)
duds

v3(t)=
∫ t−τ(t)

t−τ2
x(s)
τ2τ (t)

ds , v6(t)=
∫ t−τ(t)

t−τ2

∫ t−τ(t)

s
x(u)

τ22τ (t)
duds

v7(t)=
∫ t
t−σ1

x(s)
σ1
ds , v10(t)=

∫ t
t−σ1

∫ t
s
x(u)

σ2
1
duds

v8(t)=
∫ t−σ1
t−σ(t)

x(s)
σ1σ(t)

ds , v11(t)=
∫ t−σ1
t−σ(t)

∫ t−σ1
s

x(u)

σ2
1σ(t)

duds

v9(t)=
∫ t−σ(t)

t−σ2
x(s)
σ2σ(t)

ds , v12(t)=
∫ t−σ(t)

t−σ2

∫ t−σ(t)

s
x(u)

σ2
2σ(t)

duds

ζ(t) =
[
xT (t), xT (t− τ1), xT (t− τ(t)), xT (t− τ2), vT1 (t),

vT2 (t), · · · , vT6 (t), yT (t), yT (t−σ1), yT (t−σ(t)),

yT (t− σ2), vT7 (t), vT8 (t), · · · , vT12(t), fT (y(t)),

fT (y(t−σ1)), fT (y(t−σ(t))), fT (y(t−σ2))
]T (3.3.1)

ex = [−A, 0n×21n, W, 0n×n]

ey = [0n×2n, D, 0n×7n, − C, 0n×13n]

e0 = [0n×24n]

ei = [0n×(i−1)n, In×n, 0n×(24−i)n], i = 1, 2, · · · , 24

Σ = diag{ρ1, ρ2, · · · , ρn} (3.3.2)

3.3.1 Stability of genetic regulatory networks with delay satisfy-

ing

For GRN (3.1.2) with a delay satisfying (3.1.4), the following stability criterion

is derived by using the proposed WTDII (3.2.6), together with Lemmas 3, 4, and 7,

to estimate the derivative of the LKF.

Theorem 2. For given scalars τi, σi, i = 1, 2, τd, and σd, GRN (3.1.2) with the time

delay satisfying (3.1.4) and regulatory function satisfying (3.1.3) is asymptotically

stable, if there exist symmetric matrices P > 0, Qi > 0, Rj > 0, Zk > 0, i =

1, 2, · · · , 6, j = 1, 2, · · · , 5, k = 1, 2, · · · , 4; diagonal matrices Λ1 > 0,Λ2 > 0,

Hj > 0, j = 1, 2, · · · , 4, Ulk > 0, l = 1, 2, · · · , 4, k = l + 1, · · · , 4; and any
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matrices Si, i = 1, 2, such that the following LMIs hold[
R̃2i+1 Si

∗ R̃2i+1

]
> 0, i = 1, 2 (3.3.3)

Ψ1 = Ξτ(t)|τ(t)=τ1 +
8∑
i=1

Ξi ≤ 0 (3.3.4)

Ψ2 = Ξτ(t)|τ(t)=τ2 +
8∑
i=1

Ξi ≤ 0 (3.3.5)

where τ12 = τ2 − τ1, σ12 = σ2 − σ1, and

Ξτ(t) = −τ1τ (t)[e
T
6R2e6+3(2e9−e6)TR2(2e9−e6)] (3.3.6)

−τ2τ (t)[e
T
7R2e7+3(2e10−e7)TR2(2e10−e7)]

Ξ1 = Ξ11 + ΞT
11 (3.3.7)

Ξ11 =

[
e1

e11

]T
P

[
ex

ey

]
+
[
(Σe11−e21)TΛ1+eT21Λ2

]
ey (3.3.8)

Ξ2 = eT1Q1e1 − eT2 (Q1 −Q2 −Q3)e2

−eT4Q2e4 − (1− τd)eT3Q3e3 (3.3.9)

Ξ3 = Ξ31 + Ξ32 + Ξ33 (3.3.10)

Ξ31 = eTx (τ 2
1R1 + τ 2

12R3)ex + τ12e
T
1R2e1 (3.3.11)

Ξ32 = ET
1 R̃1E1, R̃1 = diag{R1, 3R1, 5R1} (3.3.12)

Ξ33 =

[
E2

E3

]T[
R̃3 S1

∗ R̃3

][
E2

E3

]
, R̃3 =diag{R3, 3R3, 5R3} (3.3.13)

Ξ4 = Ξ41 + Ξ42 + Ξ43 (3.3.14)

Ξ41 = eTx

(τ 2
1

2
Z1 +

τ 2
2 − τ 2

1

2
Z2 − τ1τ12Z2

)
ex (3.3.15)

Ξ42 = −2[e1 − e5]TZ1[e1 − e5]

−16
[
3e8 −

e1

2
− e5

]T
Z1

[
3e8 −

e1

2
− e5

]
(3.3.16)

Ξ43 = −2[e2 − e6]TZ2[e2 − e6]

−16
[
3e9 −

e2

2
− e6

]T
Z2

[
3e9 −

e2

2
− e6

]
−2[e3 − e7]TZ2[e3 − e7]

(3.3.17)
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−16
[
3e10 −

e3

2
− e7

]T
Z2

[
3e10 −

e3

2
− e7

]
(3.3.18)

Ξ5 =

[
e11

e21

]T
Q4

[
e11

e21

]
+

[
e12

e22

]T
(Q5+Q6−Q4)

[
e12

e22

]

−

[
e14

e24

]T
Q5

[
e14

e24

]
− (1−σd)

[
e13

e23

]T
Q6

[
e13

e23

]
(3.3.19)

Ξ6 = Ξ61 + Ξ62 + Ξ63 (3.3.20)

Ξ61 = eTy (σ2
1R4 + σ2

12R5)ey (3.3.21)

Ξ62 = ET
4 R̃4E4, R̃4 =diag{R4, 3R4, 5R4} (3.3.22)

Ξ63 =

[
E5

E6

]T[
R̃5 S2

∗ R̃5

][
E5

E6

]
, R̃5 =diag{R5, 3R5, 5R5} (3.3.23)

Ξ7 = Ξ71 + Ξ72 + Ξ73 (3.3.24)

Ξ71 = eTy

(σ2
1

2
Z3 +

σ2
2 − σ2

1

2
Z4 − σ1σ12Z4

)
ey (3.3.25)

Ξ72 = −2[e11 − e15]TZ3[e11 − e15]

−16
[
3e18 −

e11

2
− e15

]T
Z3

[
3e18 −

e11

2
− e15

]
(3.3.26)

Ξ73 = −2[e12 − e16]TZ4[e12 − e16]

−16
[
3e19 −

e12

2
− e16

]T
Z4

[
3e19 −

e12

2
− e16

]
−2[e13 − e17]TZ4[e13 − e17]

−16
[
3e20 −

e13

2
− e17

]T
Z4

[
3e20 −

e13

2
− e17

]
(3.3.27)

Ξ8 = Ξ81 + ΞT
81 (3.3.28)

Ξ81 =
4∑
i=1

[
(Σe1i−e2i)

THie2i

]
(3.3.29)

+
4∑
i=1

4∑
j=i+1

[Σ(e1i−e1j)−(e2i−e2j)]
T Uij(e2i−e2j)

E1 =


e1 − e2

e1 + e2 − 2e5

e1 − e2 + 6e5 − 12e8

 (3.3.30)

E2 =


e2 − e3

e2 + e3 − 2e6

e2 − e3 + 6e6 − 12e9

 (3.3.31)
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E3 =


e3 − e4

e3 + e4 − 2e7

e3 − e4 + 6e7 − 12e10

 (3.3.32)

E4 =


e11 − e12

e11 + e12 − 2e15

e11 − e12 + 6e15 − 12e18

 (3.3.33)

E5 =


e12 − e13

e12 + e13 − 2e16

e12 − e13 + 6e16 − 12e19

 (3.3.34)

E6 =


e13 − e14

e13 + e14 − 2e17

e13 − e14 + 6e17 − 12e20

 (3.3.35)

Proof: Construct the following LKF candidate:

V (t) =
7∑
i=1

Vi(t) (3.3.36)

where

V1(t) =

[
x(t)

y(t)

]T
P

[
x(t)

y(t)

]
(3.3.37)

+
n∑
i=1

∫ yi

0

[λ1i(ρis− fi(s)) + λ2ifi(s)]ds

V2(t) =

∫ t

t−τ1
xT (s)Q1x(s)ds+

∫ t−τ1

t−τ2
xT (s)Q2x(s)ds

+

∫ t−τ1

t−τ(t)

xT (s)Q3x(s)ds (3.3.38)

V3(t) = τ1

∫ 0

−τ1

∫ t

t+θ

ẋT (s)R1ẋ(s)dsdθ (3.3.39)

+

∫ −τ1
−τ2

∫ t

t+θ

[
xT (s)R2x(s)+τ12ẋ

T (s)R3ẋ(s)
]
dsdθ

Haotian Xu



3.3 Delay-dependent stability analysis of genetic regulatory networks 57

V4(t) =

∫ 0

−τ1

∫ 0

θ

∫ t

t+s

ẋT (u)Z1ẋ(u)dudsdθ (3.3.40)

+

∫ −τ1
−τ2

∫ −τ1
θ

∫ t

t+s

ẋT (u)Z2ẋ(u)dudsdθ (3.3.41)

V5(t) =

∫ t

t−σ1

[
y(s)

f(y(s))

]T
Q4

[
y(s)

f(y(s))

]
ds

+

∫ t−σ1

t−σ2

[
y(s)

f(y(s))

]T
Q5

[
y(s)

f(y(s))

]
ds

+

∫ t−σ1

t−σ(t)

[
y(s)

f(y(s))

]T
Q6

[
y(s)

f(y(s))

]
ds (3.3.42)

V6(t) = σ1

∫ 0

−σ1

∫ t

t+θ

ẏT (s)R4ẏ(s)dsdθ

+σ12

∫ −σ1
−σ2

∫ t

t+θ

ẏT (s)R5ẏ(s)dsdθ (3.3.43)

V7(t) =

∫ 0

−σ1

∫ 0

θ

∫ t

t+s

ẏT (u)Z3ẏ(u)dudsdθ (3.3.44)

+

∫ −σ1
−σ2

∫ −σ1
θ

∫ t

t+s

ẏT (u)Z4ẏ(u)dudsdθ (3.3.45)

and P > 0, Qi > 0, Rj > 0, Zk > 0, i = 1, 2, · · · , 6, j = 1, 2, · · · , 5, k =

1, 2, · · · , 4 are the symmetric positive definite matrices; and Λi = diag{λi1, λi2, · · · , λin} >
0, i = 1, 2 are the symmetric positive definite diagonal matrices.

Calculating the derivative of the LKF along the solutions of GRN (3.1.10) yields,

V̇ (t) =
7∑
i=1

V̇i(t) (3.3.46)

where

V̇1(t) = 2

[
x(t)

y(t)

]T
P

[
ẋ(t)

ẏ(t)

]
+2
{
[Σy(t)−f(y(t))]TΛ1+f

T (y(t))Λ2

}
ẏ(t)

= ζT (t)(Ξ11 + ΞT
11)ζ(t) (3.3.47)
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V̇2(t) = xT (t)Q1x(t) + xTτ1(t)(Q2 +Q3 −Q1)xτ1(t)

−xTτ2(t)Q2xτ2(t)− (1− τ̇(t))xTτ (t)Q3xτ (t)

≤ xT (t)Q1x(t) + xTτ1(t)(Q2 +Q3 −Q1)xτ1(t)

−xTτ2(t)Q2xτ2(t)− (1− τd)xTτ (t)Q3xτ (t)

= ζT (t)Ξ2ζ(t) (3.3.48)

V̇3(t) = ẋT (t)(τ 2
1R1 + τ 2

12R3)ẋ(t) + τ12x
T (t)R2x(t)

−τ1

∫ t

t−τ1
ẋT (s)R1ẋ(s)ds

−
∫ t−τ1

t−τ2

(
xT (s)R2x(s) + τ12ẋ

T (s)R3ẋ(s)
)
ds (3.3.49)

V̇4(t) = ẋT (t)
(τ 2

1

2
Z1 +

τ 2
2 − τ 2

1

2
Z2 − τ1τ12Z2

)
ẋ(t)

−
∫ t

t−τ1

∫ t

s

ẋT (u)Z1ẋ(u)duds

−
∫ t−τ1

t−τ2

∫ t−τ1

s

ẋT (u)Z2ẋ(u)duds (3.3.50)

V̇5(t) =

[
y(t)

f(y(t))

]T
Q4

[
y(t)

f(y(t))

]

+

[
yσ1(t)

f(y(t− σ1))

]T
(Q5 +Q6 −Q4)

[
yσ1(t)

f(y(t− σ1))

]

−

[
yσ2(t)

f(y(t− σ2))

]T
Q5

[
yσ2(t)

f(y(t− σ2))

]

−(1−σ̇(t))

[
yσ(t)

f(y(t− σ(t)))

]T
Q6

[
yσ(t)

f(y(t− σ(t)))

]
≤ ζT (t)Ξ5ζ(t) (3.3.51)

V̇6(t) = ẏT (t)(σ2
1R4+σ2

12R5)ẏ(t)−σ1

∫ t

t−σ1
ẏT (s)R4ẏ(s)ds

−σ12

∫ t−σ1

t−σ2
ẏT (s)R5ẏ(s)ds (3.3.52)
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V̇7(t) = ẏT (t)
(σ2

1

2
Z3 +

σ2
2 − σ2

1

2
Z4 − σ1σ12Z4

)
ẏ(t)

−
∫ t

t−σ1

∫ t

s

ẏT (u)Z3ẏ(u)duds

−
∫ t−σ1

t−σ2

∫ t−σ1

s

ẏT (u)Z4ẏ(u)duds (3.3.53)

where Ξ11, Ξ2, and Ξ5 are defined in (3.3.8), (3.3.9), and (3.3.19), respecitvely.

Using Lemma 4 to estimate the R1-dependent single integral terms in V̇3(t)

yields

−τ1

∫ t

t−τ1
ẋT (s)R1ẋ(s)ds ≤ −ηT1 (t)R̃1η1(t)

= ζT (t)Ξ32ζ(t) (3.3.54)

where R̃1 and Ξ32 is defined in (3.3.12) and

η1(t) =


x(t)− xτ1(t)

x(t) + xτ1(t)− 2v1(t)

x(t)− xτ1(t) + 6v1(t)− 12v4(t)


Using Lemma 3 to estimate the R2-dependent single integral terms in V̇3(t)

yields

−
∫ t−τ1

t−τ2
xT (s)Rx(s)ds

= −
∫ t−τ1

t−τ(t)

xT (s)Rx(s)ds−
∫ t−τ(t)

t−τ2
xT (s)Rx(s)ds

≤ −τ1τ (t)[v
T
2 (t)R2v2(t)+3(2v5(t)−v2(t))TR2(2v5(t)−v2(t))]

−τ2τ (t)[v
T
3 (t)R2v3(t)+3(2v6(t)−v3(t))TR2(2v6(t)−v3(t))]

= ζT (t)Ξτ(t)ζ(t) (3.3.55)

where Ξτ(t) is defined in (3.3.6).

Using Lemmas 4 and 7, together with (3.3.3), to estimate the R3-dependent
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single integral terms in V̇3(t) yields

−τ12

∫ t−τ1

t−τ2
ẋT (s)R3ẋ(s)ds

= −τ12

∫ t−τ1

t−τ(t)

ẋT (s)R3ẋ(s)ds− τ12

∫ t−τ(t)

t−τ2
ẋT (s)R3ẋ(s)ds

≤ − τ12

τ(t)− τ1

{
ηT2 (t)R̃3η2(t)

}
− τ12

τ2 − τ(t)

{
ηT3 (t)R̃3η3(t)

}
≤ −

[
η2(t)

η3(t)

]T [
R̃3 S1

∗ R̃3

][
η2(t)

η3(t)

]
= ζT (t)Ξ33ζ(t) (3.3.56)

where R̃3 and Ξ33 is defined in (3.3.13) and

η2(t) =


xτ1(t)− xτ (t)

xτ1(t) + xτ (t)− 2v2(t)

xτ1(t)− xτ (t) + 6v2(t)− 12v5(t)



η3(t) =


xτ (t)− xτ2(t)

xτ (t) + xτ2(t)− 2v3(t)

xτ (t)− xτ2(t) + 6v3(t)− 12v6(t)


Using Lemma 9 to estimate the Z1-dependent double integral terms in V̇4(t)

yields

−
∫ t

t−τ1

∫ t

s

ẋT (u)Z1ẋ(u)duds

≤ −2[x(t)− v1(t)]TZ1[x(t)− v1(t)]

+16
[
3v4(t)− x(t)

2
− v1(t)

]T
Z1

[
3v4(t)− x(t)

2
− v1(t)

]
= ζT (t)Ξ42ζ(t) (3.3.57)

where Ξ42 is defined in (3.3.16).

Using Lemma 9 to estimate the Z2-dependent double integral terms in V̇4(t)
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yields

−
∫ t−τ1

t−τ2

∫ t−τ1

s

ẋT (u)Z2ẋ(u)duds

= −
∫ t−τ1

t−τ(t)

∫ t−τ1

s

ẋT (u)Z2ẋ(u)duds

−
∫ t−τ(t)

t−τ2

∫ t−τ1

s

ẋT (u)Z2ẋ(u)duds

≤ −
∫ t−τ1

t−τ(t)

∫ t−τ1

s

ẋT (u)Z2ẋ(u)duds

−
∫ t−τ(t)

t−τ2

∫ t−τ(t)

s

ẋT (u)Z2ẋ(u)duds

≤ −2[xτ1(t)− v2(t)]TZ2[xτ1(t)− v2(t)]

−16
[
3v5(t)−xτ1(t)

2
−v2(t)

]T
Z2

[
3v5(t)−xτ1(t)

2
−v2(t)

]
−2[xτ (t)− v3(t)]TZ2[xτ (t)− v3(t)]

−16
[
3v6(t)−xτ (t)

2
−v3(t)

]T
Z2

[
3v6(t)−xτ (t)

2
−v3(t)

]
= ζT (t)Ξ43ζ(t) (3.3.58)

where Ξ43 is defined in (3.3.17).

Similarly, Using Lemmas 4, 7, and 9 to estimate the single and double integral

terms in V̇6(t) and V̇7(t) yields

−σ1

∫ t

t−σ1
ẋT (s)R4ẋ(s)ds ≤ ζT (t)Ξ62ζ(t) (3.3.59)

−σ12

∫ t−σ1

t−σ2
ẋT (s)R5ẋ(s)ds ≤ ζT (t)Ξ63ζ(t) (3.3.60)

−
∫ t

t−σ1

∫ t

s

ẋT (u)Z3ẋ(u)duds ≤ ζT (t)Ξ72ζ(t) (3.3.61)

−
∫ t−σ1

t−σ2

∫ t−σ1

s

ẋT (u)Z4ẋ(u)duds ≤ ζT (t)Ξ73ζ(t) (3.3.62)

where Ξ62, Ξ63, Ξ72, and Ξ73 are defined in (3.3.22)-(3.3.27).

Taking into account the assumption of the activation function, (3.1.11) and (3.1.12),
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the following inequalities hold [92, 93]:

hi(s) = 2 [Σy(s)−f(y(s))]T Hif(y(s))≥0

uij(s1, s2) = 2 [Σ(y(s1)−y(s2))−(f(y(s1))−f(y(s2)))]T Uij

× (f(y(s1))− f(y(s2)))≥0

where Hi, i = 1, 2, · · · , 4 and Uij, i = 1, 2, · · · , 4, j = i+ 1, · · · , 4 are the symmet-

ric diagonal matrices. Thus, the following inequality holds:

H(t) + U(t)

= h1(t) + h2(t− σ1) + h3(t− σ(t)) + h4(t− σ2)

+u12(t, t− σ1) + u13(t, t− σ(t)) + u14(t, t− σ2)

+u23(t− σ1, t− σ(t)) + u24(t− σ1, t− σ2)

+u34(t− σ(t), t− σ2)

= ζT (t)Ξ8ζ(t) ≥ 0 (3.3.63)

where Ξ8 is defined in (3.3.28).

Finally, combining (3.3.46) - (3.3.63) yields

V̇ (t) ≤ ζT (t)

[
Ξτ(t) +

8∑
i=1

Ξi

]
ζ(t) (3.3.64)

where the related notations are defined in (3.3.4).

Therefore, if LMIs (3.3.4) and (3.3.5) hold, then the following holds for a suffi-

ciently small scalar ε > 0 based on convex combination method [91]:

V̇ (t) ≤ −ε(||x(t)||2 + ||y(t)||2) (3.3.65)

which shows the asymptotical stability of GRN (3.1.2) with time delay satisfying

(3.1.4). This completes the proof. �

For some cases, the change rates of the time-varying delays are unmeasurable,

i.e., time delay satisfying (3.1.5). For this case, the following stability criterion can

be derived by using the proposed WTDII (3.2.6), together with Lemmas 3, 4, 7, and

9, to estimate the derivative of the LKF.
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Theorem 3. For given scalars τi and σi, i = 1, 2, GRN (3.1.2) with the time delay

satisfying (3.1.5) and regulatory function satisfying (3.1.3) is asymptotically stable,

if there exist symmetric matrices P > 0, Qi > 0, Rj > 0, Zk > 0, i = 1, 2, 4, 5, j =

1, 2, · · · , 5, k = 1, 2, · · · , 4; diagonal matrices Λ1 > 0,Λ2 > 0, Hj > 0, j =

1, 2, 3, 4, Ulk > 0, l = 1, 2, · · · , 4, k = l + 1, · · · , 4; and any matrices Si, i = 1, 2,

such that the following LMIs hold[
R̃2i+1 Si

∗ R̃2i+1

]
> 0, i = 1, 2 (3.3.66)

Ψ3 = Ξτ(t)|τ(t)=τ1 +
∑

i=1,3,4,6,7

Ξi + Ξ̄2 + Ξ̄5 ≤ 0 (3.3.67)

Ψ4 = Ξτ(t)|τ(t)=τ2 +
∑

i=1,3,4,6,7

Ξi + Ξ̄2 + Ξ̄5 ≤ 0 (3.3.68)

where Ξi, i = 1, 3, 4, 6, 7 are defined in Theorem 2, and

Ξ̄2 = eT1Q1e1 − eT2 (Q1 −Q2)e2 − eT4Q2e4

Ξ̄5 =

[
e11

e21

]T
Q4

[
e11

e21

]
+

[
e12

e22

]T
(Q5−Q4)

[
e12

e22

]

−

[
e14

e24

]T
Q5

[
e14

e24

]

Proof: The above stability criterion can be obtained by setting Q3 = 0 and

Q6 = 0 in Theorem 2. �
This part gives some remarks for the above criteria.

Remark 5. During the proof of the above two stability criteria, the double integral

terms arising in the derivative of the LKFs are estimated by using the proposed WT-

DII, i.e., Lemma 9. The WTDII is tighter than the widely used JBDII (3.1.15), which

was used for the GRN [85, 87], and the recently developed WBDII (3.1.16), which

has not been used for the GRN. Thus, the proposed criteria are less conservative

than the ones reported in [87] and [85].

Remark 6. Compared with the literature, more information of regulatory func-

tion has been used during the proof of criteria. Specifically, in the literature, only

(3.1.12) is used during the estimation of the derivative of the LKF, while, in this
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chapter, an extra information of regulatory function, (3.1.11), is also used for esti-

mating task. It has been proved in [93] that such additional information is helpful

to reduce the conservatism.

Remark 7. The conditions given in Theorems 2 and 3 are in the form of LMI. Such

LMI conditions can be easily checked by using MATLAB/Toolbox [94]. The one can

refer to [56, 95, 96] for more details.

Remark 8. Although this chapter has just investigated the asymptotical stability,

the proposed method can be extended to the robust stability analysis by taking into

account the parameter uncertainties and/or noises of the GRNs. Moreover, the pro-

posed method can also be extended to other problems discussed in introduction,

such as controller synthesis, state estimation, filter design, passivity analysis, and

so on [74, 97–108].

3.4 Illustrative example

An example will be presented to illustrate the effectiveness of results. As men-

tioned in Section I, the important aim of the stability analysis of delayed GRNs is to

determine the MADBs. And the stability criterion that provides bigger MADBs has

less conservative than the one that gives smaller ones. Therefore, the advantages of

the proposed criteria are demonstrated via the comparison of the MADBs calculated

by various criteria. Moreover, the index of the number of variable (NoV) is applied

to show the complexity of criteria.

For the GRN model which is theoretically predicted and experimentally investi-

gated in Escherichia coli in [61], the genetic network is composed of three repres-

silators (lacl, tetR, cl) which forms a cyclic negative feedback loop, each repressor

protein inhibits the transcription of its downstream repressor gene, as shown in Fig.

3.2, the protein of lacl represses the gene transcription of tetR, and the protein of

tetR inhibits the gene transcription of cl simultaneously, finally, the transcription of

lacl is inhibited by cl, that completes the cycle.

The kinetics of the genetic network are modelled as the GRN (3.1.2) with the
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Figure 3.2: The repressilator network.

following parameters [87]:

A = diag{3, 3, 3}, C = diag{2.5, 2.5, 2.5}

W =


0 0 −2.5

−2.5 0 0

0 −2.5 0

 , D =


0.8

0.8

0.8


bi(x) =

x2

1 + x2
, i = 1, 2, · · · , n

It follows from (3.1.8) and (3.3.2) that

Σ = diag{3
√

3/8, 3
√

3/8, 3
√

3/8} (3.4.1)

1) Calculation results: The first case study is that the changing rates of the time-

varying delays are measurable. The Theorem 3 can directly employ to discuss the

stability of the GRN 3.1.10 which satisfy delays satisfy (3.1.4).

Assume that σ1 = 0.1, σ2 = 0.3, σd = 0.7, τd = 1.5 [87],

the MADBs of τ2 with respect to various τ1 obtained by the proposed criteria are

given in Table 3.1, where the MADBs reported in the literature are also listed for

comparison.

The second case study is that the changing rates of the time-varying delays are

nonmeasurable. The Theorem 3 can directly employ to discuss the stability of the

GRN 3.1.10 which satisfy delays satisfy (3.1.5). Assume that σ1 = 1, σ2 = 2, the

MADBs of τ2 with respect to various τ1 obtained by the proposed criteria, together

with the ones provided by the least literature [87], are given in Table 3.2.

Moveover, the NoVs of criteria reported in the least literature [87] and that of

criteria established in this paper are also given in tables to compare the computation

complexity.

Haotian Xu



3.4 Illustrative example 66

From the results in the tables, it can be easily found that the proposed stability

criteria can provide the larger MADBs for two cases than those given in the existing

literature. It shows that the proposed criteria are indeed less conservative than the

ones reported in the literature. On the other hand, it is found that the NoV of the

proposed criteria (Theorem 2 and Corollary 1) is smaller than the one reported in

[87], (40.5n2 + 16.5n) − (32n2 + 22n) = 8.5n2 − 5.5n > 0 and (38n2 + 15n) −
(29.5n2 + 20.5n) = 8.5n2 − 5.5n > 0 for any n. Both of those observations show

the advantages of the proposed criterion.

Table 3.1: The MADBs of τ2 for various τ1 and the NoVs of various criteria.

Criteria NoVs τ2 for given τ1

τ1= 0.1 τ1= 0.5 τ1= 1

[85, 109, 110] — < 5.5 < 5.9 < 6.4

Theorem 1 [87] 40.5n2 + 16.5n 5.5 5.91 6.41

Theorem 2 32n2 + 22n 9.2681 9.6682 10.1681

Table 3.2: The MADBs of τ2 for various τ1 and the NoVs of various criteria.

Criteria NoVs τ2 for given τ1

τ1= 0 τ1= 1 τ1= 2

Corollary 1 [87] 38n2 + 15n 2.3101 3.3101 4.3102

Corollary 1 29.5n2 + 20.5n 4.1647 5.1647 6.1646

2) Simulation verification: From the given parameters, the equilibrium points of

the GRN can be obtained as

m∗ = [0.7840, 0.7840, 0.7840], p∗ = [0.2509, 0.2509, 0.2509]

Simulation studies for the following two types of time-varying delays are carried

out:

• Case I: the initial condition m(t) = [0.70, 0.85, 0.80]T , t∈ [−10.1681, 0] and

p(t) = [0.15, 0.20, 0.30]T , t ∈ [−0.3, 0], and the following delays satisfying
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σ1 = 0.1, σ2 = 0.3, σd = 0.7, τ1 = 1, τ2 = 10.1681, τd = 1.5:{
τ(t) = 9.1681 sin2(0.1636t) + 1

σ(t) = 0.2 sin2(3.5t) + 0.1
(3.4.2)

• Case II: the initial condition m(t) = [0.70, 0.85, 0.80]T, t ∈ [−6.1646, 0] and

p(t) = [0.15, 0.20, 0.30]T , t ∈ [−2, 0], and the random delays satisfying σ1 =

1, σ2 = 2, τ1 = 2, τ2 = 6.1646.

Based on Tables 3.1 and 3.2, the GRN with the above delays respectively is stable.

The trajectories of the concentrations of mRNA and protein are shown in Figs. 3.3-

3.4. The results show that they are stable at their equilibrium points.
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Figure 3.3: The trajectories of concentrations of mRNA and protein for Case I.

3.5 Conclusion

This chapter has investigated the stability of the GRN with time-varying delay,

and its contributions have been revealed from two aspects. The novel WTDII has
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Figure 3.4: The trajectories of concentrations of mRNA and protein for Case II.

been developed for the estimation of the double integral terms, and it has been also

proved to be tighter than the widely used JBDII and the recently developed WBDII

for the same task. Then, benefit from the WTDII, two LMI-based stability criteria

with less conservatism have been derived for checking the stability of the GRN with

time delays. Finally, the advantages of the proposed inequality and the established

criteria have been verified through an example.
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Chapter 4

Improved delay-dependent stability

analysis of digital filters with

time-varying delay and generalized

overflow arithmetic

4.1 Introduction

As an effective device that produces the desired discrete-time output signal from

the original input signal will involve undesired information, the digital filter be-

comes a necessary element of everyday electronics like radios, cell phones, and

stereo receivers. Due to its large-scale applications in many areas such as radar,

image processing, telecommunications, signal processing and chemical pollution

modeling, the analysis of properties and performances of the digital filters has at-

tracted considerable attention in the past few decades (see [111–113] and references

therein). Therefore, the analysis of digital filters is helpful for their implementation.

During the practical implementation of a digital filter via hardware using the

fixed-point arithmetic, the complex operations within the hardware require increas-

ing wordlength to deal with the signals. On the other side, because of the limi-

tation of register length, the quantization and overflow correction mechanisms are
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commonly required to reduce the wordlength [111]. Therefore, nonlinearities, in-

cluding magnitude truncation, roundoff, or value truncation due to quantization

and saturation, zeroing, two’s complement, or triangular for overflow, are unavoid-

able [114,115]. Those nonlinearities in turn lead to undesirable behaviors, for exam-

ple, performance degradation, oscillations and limited cycles [116]. Many scholars

have investigated the stability problem of digital filters with the consideration of dif-

ferent nonlinearities. Under the consideration that the influence of quantization and

that of overflow can be studied separately if the total number of quantization steps

(or internal wordlength) is large sufficiently [117], a stability criterion of fixed-point

state-space digital filters with saturation arithmetic was presented in [118] and was

improved in [119]. LMI based stability criteria for direct form digital filters utiliz-

ing single saturation nonlinearity were developed in [117] and [120]. In [121], the

stability analysis of fixed-point state-space digital filters with generalized saturation

nonlinearity was discussed. Due to the fact that the hardware implementation of sat-

uration arithmetic is more expensive than that of two’s complement arithmetic, the

digital filters using two’s complement arithmetic were investigated and the stability

criteria for such type of filters were also proposed. A global asymptotic stability cri-

terion in the form of LMIs for fixed-point state-space digital filters using two’s com-

plement arithmetic was presented in [122] and its simple form and improved form

were respectively given in [123] and [124]. Stability criteria for direct-form digital

filters utilizing two’s complement nonlinearity were proposed in [125] and [126].

By taking into account the possibility of influence of both overflow and quantiza-

tion, stability criteria for digital filters with different combinations of overflow and

quantization nonlinearities were established [115, 127, 128]. Furthermore, in or-

der to analyze the possible effect of external disturbances, different performances

of digital filters were successively investigated, for example, the H∞, l2 − l∞, and

l∞ performances [129–132], the input-to-state stability (ISS) and the input/output-

to-state stability (IOSS) analysis [133], the dissipativity analysis [134, 135], local

stability analysis [136, 137], and etc.

Besides the nonlinearities and external disturbances mentioned above, time de-

lay is frequently encountered in many systems [138,139] and also exists in digital fil-
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ters. For example, a causal digital filter with a fixed order and cutoff frequency will

delay different frequency signals [140]. For the discrete-time systems with quanti-

zation/overflow nonlinearities and time delays, a LMI based stability criterion was

proposed in [141], in which the criterion was delay-independent and conservative.

For the digital filters with time delays, saturation nonlinearity and externally dis-

turbances, the method to check the exponential stability and H∞ performance was

proposed in [113]. For the digital filters with time delays, parameter uncertainties

and both the quantization and overflow nonlinearities, the robust stability criterion

was derived in [111]. However, the delays concerned in [111] and [113] are all con-

stant. In [142], a delay-dependent criterion was developed by using free-weighting

matrix approach for the asymptotic stability of a class of uncertain discrete-time

state-delayed systems with the combination of quantization and overflow nonlin-

earities. For the digital filters with generalized overflow nonlinearity, a stability

condition depends not only on the delay bounds but also on the bounds of nonlinear

function was reported in [140] with the help of Jensen-based summation inequality.

In [143], the extended dissipativity analysis for digital filters with a time-varying de-

lay and Markovian jumping parameters was investigated and a criterion was given

by putting forward a general form of nonlinearity functions and employing the recip-

rocally convex combination approach. While the criteria reported in [140, 142, 143]

are all based on a simple Lyapunov functional, which is simple but conservative.

In [112], the ISS problem of digital filters in the presence of both external distur-

bance and time-varying delay was discussed and stability criteria were derived by

using simple Lyapunov functionals and Jensen-like summation inequality.

Based on the above discussions, there still remains room for further investigation

on the analysis of digital filters with both the nonlinearity and the time-varying de-

lay. On the one hand, from the research on digital filters point of view, there are only

a few works on digital filters considering the time-varying delay [112,140,142,143],

and the techniques used therein are all conservative in comparison to the ones de-

veloped for the time-delay systems. In fact, many more effective methods have been

developed for dealing with time-varying delays, such as augmented Lyapunov func-

tionals [144–146], new inequalities [147–150], extended reciprocally convex matrix
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inequalities [151–153], etc. On the other hand, from the viewpoint of techniques

dealing with the discrete-time delay systems, every term in the Lyapunov function-

als is usually required to positive in order to guarantee the positive-definiteness of

the functionals. Such strict requirement leads to the conservatism.

In this chapter, the stability analysis problem of digital filters with generalized

overflow nonlinearity and a time-varying delay is further investigated. The main

contribution of the paper is that a new delay and nonlinearity bounds dependent

stability criterion with less conservatism is developed,

and the proposed criterion can provide more accurate delay stable region (namely,

the allowably maximal delay region such that the stability of the digital filter with

any delay belonging to such region is guaranteed).

The advantage of the proposed stability criterion is illustrated based on several

numerical examples. The main techniques, different from the previous publications,

are summarized as follows.

• The first aspect is on the construction of the Lyapunov functional. Several

augmented terms, especially the one with the information of overflow non-

linearity, are introduced into the Lyapunov functional and the condition of

positive-definiteness of functional is relaxed by requiring the sum of all terms,

instead of each term, be positive. Those treatments can provide extra freedom

for the feasibility of the obtained criterion.

• The second aspect relies on the estimation of the forward difference of the

functional. A new lemma is developed to introduce new cross terms for con-

structing the link between the delay states and the overflow nonlinear function.

Moreover, several methods (such as the Wirtinger-based summation inequal-

ity, the extended reciprocally convex matrix inequality, and zero-value equa-

tions), which are not used in the literature on delayed digital filters, are applied

to estimate the forward difference of the functional as accurate as possible.

Notations: Throughout this chapter, Rn and Rm×n respectively denote the set of

all the n-dimensional vectors and that of all them×n−dimensional real matrices; ‖·
‖ denotes the Euclidean norm; the superscripts T and−1 stand for the transpose and
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the inverse of a matrix, respectively; diag{· · · } denotes a block-diagonal matrix;

P > 0 (≥ 0) means that P is a positive-definite (semi-positive-definite) symmetric

matrix; I and 0 represent the identity matrix and the zero-matrix with appropriate

dimensions, respectively; the symmetric term in a symmetric matrix is denoted by

∗; and Sym{X} = X +XT .

4.2 Model of digital filter and Wirtinger-based inequal-

ity

Consider the following digital filter with a time-varying delay:
x(k + 1) = f(y(k)),

y(k) = Ax(k) + Adx(k − τ(k)),

x(k) = φ(k), k ∈ {−τ2, . . . , 0},

(4.2.1)

where x(k) = [x1(k), x2(k), · · · , xn(k)]T ∈ Rn is the state vector; φ(k) = [φ1(k),

φ2(k), · · · , φn(k)]T ∈ Rn is the initial condition with |φi(k)| ≤ 1, y(k) = [y1(k),

y2(k), · · · , yn(k)]T ∈ Rn is the filter output vector; τ(k) is the time-varying delay

satisfying

τ1 ≤ τ(k) ≤ τ2, (4.2.2)

with τ1 and τ2 being constant; A and Ad are the known interconnection weight

matrices; the nonlinearity function f(·): Rn → Rn is defined as follows [140]
−1 ≤ li ≤ fi(yi(k)) ≤ l1i ≤ 1, yi(k) > 1,

fi(yi(k)) = yi(k), −1 ≤ yi(k) ≤ 1,

−1 ≤ −l2i ≤ fi(yi(k)) ≤ −li ≤ 1, yi(k) < −1,

(4.2.3)

with i = 1, 2, . . . , n, li, l1i and l2i being known real scalars.

Remark 9. As mentioned in [140], the nonlinear relationships shown in (4.2.3)

include various overflow arithmetics by fixing the values of li, l1i, and l2i. For ex-

ample, (4.2.3) gives saturation nonlinearity for li = l1i = l2i = 1; (4.2.3) indicates
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zeroing nonlinearity for li = l1i = l2i = 0; and (4.2.3) shows two’s complement

nonlinearity for li = −1, l1i = l2i = 1. That is, the stability criterion developed in

this chapter can be used to check the stability of digital filters with the above three

types of overflow nonlinearities.

In order to analyze the influence of the time-varying delay on the stability of

digital filter (4.2.1), this chapter aims to develop a less conservative delay-dependent

stability criterion. The following Lemmas which are used for handling time delays

are given as follows.

Lemma 10. (Wirtinger-based inequality [147]). For a given positive definite matrix

R, integers b ≥ a, any sequence of discrete-time variable x : Z[a, b] → Rn, the

following inequality holds:

(b− a)
b−1∑
i=a

4xT (i)R4x(i) ≥

[
χ1

χ2

]T [
R 0

0 3R

][
χ1

χ2

]
, (4.2.4)

where

4x(k) = x(k + 1)− x(k),

χ1 = x(b)− x(a),

χ2 = x(b) + x(a)− 2

b− a+ 1

b∑
i=a

x(i).

Lemma 11. (Jensen-based inequality [154]). For a given positive definite matrix

R, integers b ≥ a, any sequence of discrete-time variable x : Z[a, b] → Rn, the

following inequality holds:

b−1∑
i=a

xT (i)Rx(i) ≥ 1

b− a

(
b−1∑
i=a

x(i)

)T

R

(
b−1∑
i=a

x(i)

)
. (4.2.5)

Lemma 12. (Extended reciprocally convex matrix inequality [151,152]). For a real

scalar 0 < α < 1, positive-definite symmetric matrices X, Y ∈ Rn×n, and any

matrix N ∈ Rn×n, the following inequality holds:[
1
α
X 0

0 1
1−αY

]
≥

[
X + (1− α)T1 N

∗ Y + αT2

]
, (4.2.6)

where T1 = X −NY −1NT and T2 = Y −NTX−1N .
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The following Lemmas related to the overflow nonlinearity are given.

Lemma 13. [140] Let l̂i = min{li, 0}, then the following inequality holds for

nonlinear functions fi(·) satisfying condition (4.2.3):[
yi(k)− fi(yi(k))

][
fi(yi(k))− l̂iyi(k)

]
≥ 0. (4.2.7)

Lemma 14. [124] For a given digital filter (4.2.1) satisfying condition (4.2.3), if

there exists matrix S = diag(s1, s2, . . . , sn) > 0 and any matrices M = [mij]n×n,

N = [nij]n×n satisfying

si ≥
n∑
j=1

|mji|+
n∑
j=1

|nji|, i = 1, 2, . . . , n, (4.2.8)

then the following inequality holds:[
yT (k)S + xT (k)M + fT (y(k))N

][
y(k)− f(y(k))

]
≥ 0. (4.2.9)

Lemma 15. For a given digital filter (4.2.1) satisfying condition (4.2.3), if there

exists matrices S1 = diag(s11, s12, . . . , s1n) > 0, S2 = diag(s21, s22, . . . , s2n) > 0,

and any matrices M1 = [m1ij]n×n and M2 = [m2ij]n×n satisfying

s1i ≥
n∑
j=1

|m1ji|, i = 1, 2, . . . , n, (4.2.10)

s2i ≥
n∑
j=1

|m2ji|, i = 1, 2, . . . , n, (4.2.11)

then the following inequalities hold:[
yT(k)S1+xT (k−τ(k))M1

][
y(k)−f(y(k))

]
≥ 0, (4.2.12)[

yT (k)S2 + xT (k − 1)M2

][
y(k)− f(y(k))

]
≥ 0. (4.2.13)

Proof: It is easy to find that (4.2.12) holds if |yi(k)| ≤ 1 (i.e., yi(k) = fi(yi(k))

based on (4.2.3)). For the case of |yi(k)| > 1, the left-hand side of (4.2.12) can be

rewritten as
n∑
i=1

[
yi(k)s1i+

n∑
j=1

xj(k−τ(k))m1ji

][
yi(k)− fi(yi(k))

]
=

n∑
i=1

y2
i (k)

[
s1i +

n∑
j=1

xj(k−τ(k))

yi(k)
m1ji

][
1− fi(yi(k))

yi(k)

]
.

(4.2.14)
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Then, it follows from |yi(k)| > 1, |fj(yj(k))| ≤ 1, |xj(k−τ(k))| ≤ 1 (obtained

from (4.2.1)) and (4.2.10) that

1− fi(yi(k))

yi(k)
> 0, (4.2.15)

and

s1i +
n∑
j=1

xj(k−τ(k))

yi(k)
m1ji

≥ s1i −
n∑
j=1

∣∣∣∣xj(k−τ(k))

yi(k)

∣∣∣∣ |m1ji|

≥ s1i −
n∑
j=1

|m1ji|

≥ 0. (4.2.16)

Combining (4.2.14), (4.2.15), and (4.2.16) leads that (4.2.12) holds for the case of

|yi(k)| > 1. Thus, (4.2.12) holds for all yi(k).

Similar, the holding of (4.2.13) can be proved if (4.2.11) holds. �

Remark 10. Compared with (4.2.9) used in [112, 140, 143], in which only delay-

free states, y(k) and x(k), are linked with the nonlinear function f(y(k)), (4.2.12)

and (4.2.13) in Lemma 15 introduce many additional cross terms related to the de-

layed states, x(k − τ(k)) and x(k − 1), and overflow nonlinear function, f(y(k)),

which constructs the link between delayed states and overflow nonlinear function.

In fact, the holding of (4.2.7), (4.2.9), (4.2.12) and (4.2.13) is based on the spe-

cial feature of nonlinear function caused by overflow correction mechanism. The

usage of those information is an important difference in comparison to the linear

discrete-time delayed systems [147–150] or traditional Lur’e nonlinear discrete-

time delayed systems [155, 156], and it is also the one of important treatments for

reducing the conservatism.
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4.3 Stability analysis of digital filter with delay and

overflow arithmetic

In this section, a new delay-dependent stability criterion is derived by construct-

ing an augmented Lypunov functional and using several new techniques to estimate

the forward difference of the functional.

Before giving the main results, the following notations are defined to simplify

the expression of the proof of stability criterion.

υ1(k) =
k−1∑

i=k−τ1

x(i),

υ2(k) =

k−τ1−1∑
i=k−τ(k)

x(i),

υ3(k) =

k−τ(k)−1∑
i=k−τ2

x(i),

υ4(k) =

k−τ1∑
i=k−τ(k)

x(i)

τ(k)− τ1 + 1
,

υ5(k) =

k−τ(k)∑
i=k−τ2

x(i)

τ2 − τ(k) + 1
,

ξ(k) =
[
fT (y(k)),

xT (k), xT (k − τ1), xT (k − τ(k)), xT (k − τ2),

υT1 (k), υT2 (k), υT3 (k), υT4 (k), υT5 (k), xT (k−1)
]T
,

e1 = [In, 0n×10n], f(y(k)) = e1ξ(k),

e2 = [0n×n, In, 0n×9n], x(k) = e2ξ(k),

e3 = [0n×2n, In, 0n×8n], x(k − τ1) = e3ξ(k),

e4 = [0n×3n, In, 0n×7n], x(k − τ(t)) = e4ξ(k),

e5 = [0n×4n, In, 0n×6n], x(k − τ2) = e5ξ(k),

e6 = [0n×5n, In, 0n×5n], υ1(k) = e6ξ(k),

e7 = [0n×6n, In, 0n×4n], υ2(k) = e7ξ(k),

e8 = [0n×7n, In, 0n×3n], υ3(k) = e8ξ(k),
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e9 = [0n×8n, In, 0n×2n], υ4(k) = e9ξ(k),

e10 = [0n×9n, In, 0n×n], υ5(k) = e10ξ(k),

e11 = [0n×10n, In], x(k − 1) = e11ξ(k),

ei = [0n×(i−1)n, In, 0n×(11−i)n], i = 1, 2, · · · , 11,

v6(k) =
k−1∑

i=k−τ1

x(i),

v7(k) =

k−τ1−1∑
i=k−τ2

x(i),

ξ̄(k) =
[
xT(k), vT6(k), vT7(k), xT(k−τ1), xT(k−τ2), xT(k−1)

]T
,

ē1 = [In, 0n×5n], x(k) = ē1ξ̄(k),

ē2 = [0n×n, In, 0n×4n], v6(k) = ē2ξ̄(k),

ē3 = [0n×2n, In, 0n×3n], v7(k) = ē3ξ̄(k),

ē4 = [0n×3n, In, 0n×2n], x(k − h1) = ē4ξ̄(k),

ē5 = [0n×4n, In, 0n×n], x(k − h2) = ē5ξ̄(k),

ē6 = [0n×5n, In], x(k − 1) = ē6ξ̄(k),

ēi = [0n×(i−1)n, In, 0n×(6−i)n], i = 1, 2, · · · , 6.

The delay-dependent stability criterion derived in this chapter is shown as follows.

Theorem 4. For given scalars li, τ1 and τ2, digital filter (4.2.1) with time-varying

satisfying (4.2.2) is asymptotically stable if there exists symmetric matrices P1,

P2, Z, Q1, Q2, R1, R2, T1, T2, positive definite diagonal matrices S, S1, S2, D, and

any matrices X , U1, U2, M,M1,M2, N , such that conditions (4.2.8), (4.2.10) and

(4.2.11), and the following LMIs are feasible:

Ri > 0, i = 1, 2, (4.3.1)

Φ̂1 =

[
0 0

0 R2

]
+ Z > 0, (4.3.2)

Haotian Xu



4.3 Stability analysis of digital filter with delay and overflow arithmetic 79

Φ̂2 = τ 2
12Z +

[
Q1 0

0 τ 2
12R2 + τ1R1

]
> 0, (4.3.3)

Φ̂3 = τ12Z +

[
Q2 0

0 τ12R2

]
> 0, (4.3.4)

Φ̂4 =

[
ē2

ē1−ē4

]T
Φ̂2

τ1

[
ē2

ē1−ē4

]
+

[
ē3

ē4−ē5

]T
Φ̂3

τ12

[
ē3

ē4−ē5

]

+


ē1

ē2

ē3


T

P1


ē1

ē2

ē3

+

[
ē6

ē1

]T
P2

[
ē6

ē1

]

+ τ1(τ1 − 1)[ē1 − ē11]TR1[ē1 − ē11]

> 0, (4.3.5)[
Ψ|τ(k)=τ1 ET

2 X

∗ − Ξ1

]
< 0, (4.3.6)

[
Ψ|τ(k)=τ2 ET

3 X
T

∗ − Ξ2

]
< 0, (4.3.7)

Z +

[
0 T1

T1 T1

]
> 0, (4.3.8)

Z +

[
0 T2

T2 T2

]
> 0, (4.3.9)

where

Ψ = Φ1 + Φ2 + Φ3 + Φ4 + Φ5 + Φ6 − Φ7 − Φ8,

Φ1 = ΠT
1 P1Π1 − ΠT

2 P1Π2 + ΠT
3 P2Π3 − ΠT

4 P2Π4,

Π1 =


e1

e6 + e2 − e3

e7 + e8 + e3 − e5

 , Π2 =


e2

e6

e7 + e8

 ,
Π3 =

[
e2

e1

]
, Π4 =

[
e11

e2

]
,

Φ2 = eT2Q1e2 − eT3 (Q1 −Q2)e3 − eT5Q2e5,
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Φ3 = ΠT
5 (τ 2

1R1 + τ 2
12R2)Π5 + τ 2

12

[
e2

Π5

]T
Z

[
e2

Π5

]
,

Π5 = e1 − e2,

Φ4 = τ12

[
eT3 T1e3 − eT4 (T1 − T2)e4 − eT5 T2e5

]
,

Φ5 = Sym
{

[Π6 − e1]TD[e1 − LΠ6]
}
,

+Sym
{

[ΠT
6 S + eT2M + eT1N ][Π6 − e1]

}
,

+Sym
{

[ΠT
6 S1 + eT4M1][Π6 − e1]

}
,

+Sym
{

[ΠT
6 S2 + eT11M2][Π6 − e1]

}
,

Π6 = Ae2 + Ade4,

Φ6 = Sym
{
eTg U1[(τ(k)− τ1 + 1)e9 − e7 − e3]

}
+Sym

{
eTg U2[(τ2 − τ(k) + 1)e10 − e8 − e4]

}
,

Φ7 = ET
1

[
R1 0

0 3R1

]
E1,

E1 =

[
e2 − e3

e2 + e3 − 2
τ1+1

(e2 + e6)

]
,

Φ8 =

[
E2

E3

]T [
2τ2−τ(k)−τ1

τ12
Ξ1 X

∗ τ2+τ(k)−2τ1
τ12

Ξ2

][
E2

E3

]
,

E2 =


e7

e3 − e4

e3 + e4 − 2e9

 ,

E3 =


e8

e4 − e5

e4 + e5 − 2e10

 ,
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Ξ1 =


Z +

[
0 T1

T1 R2 + T1

] [
0

0

]

[
0 0

]
3R2

 ,

Ξ2 =


Z +

[
0 T2

T2 R2 + T2

] [
0

0

]

[
0 0

]
3R2

 ,

ei =
[
0n×(i−1)n, In, 0n×(11−i)n

]
(i = 1, 2, · · · , 11),

eg =
[
e3, e4, e7, e8, e9, e10

]
,

ēi = [0n×(i−1)n, In, 0n×(6−i)n], i = 1, 2, · · · , 6,

L = diag{l̂1, l̂2, · · · , l̂n},

l̂i = min{li, 0}.

Proof: Firstly, choose the following functional candidate:

V (k) =
4∑
i=1

Vi(k), (4.3.10)

where

V1(k) = ηT1 (k)P1η1(k) + ηT2 (k)P2η2(k),

V2(k) =
k−1∑

i=k−τ1

xT (i)Q1x(i) +

k−τ1−1∑
i=k−τ2

xT (i)Q2x(i),

V3(k) = τ1

−1∑
i=−τ1

k−1∑
j=k+i

4xT (j)R14x(j)

+ τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

4xT (j)R24x(j),

V4(k) = τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

ηT3 (j)Zη3(j),
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with P1, P2, Z, Q1, Q2, R1, andR2 being symmetric matrices, Ri > 0, i = 1, 2, and

τ12 = τ2 − τ1

η1(k) =

[
xT (k),

k−1∑
i=k−τ1

xT (i),

k−τ1−1∑
i=k−τ2

xT (i)

]T
,

η2(k) =
[
xT (k − 1), fT (y(k − 1))

]T
,

η3(i) =
[
xT (i), 4xT (i)

]T
.

The second step is to find the conditions which can ensure the positive-definiteness

of functional (4.3.10). Based on R1 > 0 in (4.3.1), the following holds

τ1

−1∑
i=−τ1

k−1∑
j=k+i

4xT (j)R14x(j)

= τ1

k−1∑
j=k−τ1

4xT (j)R14x(j)

+τ1

−1∑
i=−τ1+1

k−1∑
j=k+i

4xT (j)R14x(j)

> τ1

k−1∑
j=k−τ1

4xT (j)R14x(j)

+τ1

−1∑
i=−τ1+1

k−1∑
j=k−1

4xT (j)R14x(j)

= τ1

k−1∑
j=k−τ1

4xT (j)R14x(j)

+τ1

−1∑
i=−τ1+1

4xT (k − 1)R14x(k − 1)

= τ1(τ1 − 1)[x(k)− x(k − 1)]TR1[x(k)− x(k − 1)]

+τ1

k−1∑
j=k−τ1

4xT (j)R14x(j). (4.3.11)

Haotian Xu



4.3 Stability analysis of digital filter with delay and overflow arithmetic 83

Based on Φ̂1 > 0 in (4.3.2), the following is correct

τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

4xT (j)R24x(j) + V4(k)

= τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

= τ12

k−1∑
j=k−τ2

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

+τ12

−τ1−1∑
i=−τ2+1

k−1∑
j=k+i

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

> τ12

k−1∑
j=k−τ2

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

+τ12

−τ1−1∑
i=−τ2+1

k−1∑
j=k−τ1

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

= τ12

k−1∑
j=k−τ1

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

+τ12

k−τ1−1∑
j=k−τ2

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

+τ12(τ12 − 1)
k−1∑

j=k−τ1

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

= τ 2
12

k−1∑
j=k−τ1

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

+τ12

k−τ1−1∑
j=k−τ2

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]
. (4.3.12)
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Combining (4.3.10), (4.3.11), and (4.3.12) yields

V2(k) + V3(k) + V4(k)

>

k−1∑
i=k−τ1

xT (i)Q1x(i) +

k−τ1−1∑
i=k−τ2

xT (i)Q2x(i)

+τ1

k−1∑
j=k−τ1

4xT (j)R14x(j)

+τ1(τ1 − 1)[x(k)− x(k − 1)]TR1[x(k)− x(k − 1)]

+τ 2
12

k−1∑
j=k−τ1

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]

+τ12

k−τ1−1∑
j=k−τ2

[
x(j)

4x(j)

]T
Φ̂1

[
x(j)

4x(j)

]
= τ1(τ1 − 1)[x(k)− x(k − 1)]TR1[x(k)− x(k − 1)]

+
k−1∑

j=k−τ1

[
x(j)

4x(j)

]T
Φ̂2

[
x(j)

4x(j)

]

+

k−τ1−1∑
j=k−τ2

[
x(j)

4x(j)

]T
Φ̂3

[
x(j)

4x(j)

]
, (4.3.13)

where Φ̂2 and Φ̂3 are defined in (4.3.3) and (4.3.4), respectively. Furthermore, using

Φ̂2 > 0, Φ̂3 > 0 and applying (4.2.5) to estimate the summation terms in (4.3.13)

yield

k−1∑
j=k−τ1

[
x(j)

4x(j)

]T
Φ̂2

[
x(j)

4x(j)

]

+

k−τ1−1∑
j=k−τ2

[
x(j)

4x(j)

]T
Φ̂3

[
x(j)

4x(j)

]

>


k−1∑

i=k−τ1
x(i)

x(k)− x(t− τ1)


T

Φ̂2

τ1


k−1∑

i=k−τ1
x(i)

x(k)− x(t− τ1)



+


k−τ1−1∑
i=k−τ2

x(i)

x(t− τ1)− x(t− τ2)


T

Φ̂3

τ12


k−τ1−1∑
i=k−τ2

x(i)

x(t− τ1)− x(t− τ2)

 .
Haotian Xu



4.3 Stability analysis of digital filter with delay and overflow arithmetic 85

Therefore,

V1(k) + V2(k) + V3(k) + V4(k)

>


x(k)

k−1∑
i=k−τ1

x(i)

k−τ1−1∑
i=k−τ2

x(i)



T

P1


x(k)

k−1∑
i=k−τ1

x(i)

k−τ1−1∑
i=k−τ2

x(i)


+

[
x(k − 1)

f(y(k − 1))

]T
P2

[
x(k − 1)

f(y(k − 1))

]
+τ1(τ1 − 1)[x(k)− x(k − 1)]TR1[x(k)− x(k − 1)]

+


k−1∑

i=k−τ1
x(i)

x(k)− x(t− τ1)


T

Φ̂2

τ1


k−1∑

i=k−τ1
x(i)

x(k)− x(t− τ1)



+


k−τ1−1∑
i=k−τ2

x(i)

x(t− τ1)− x(t− τ2)


T

Φ̂3

τ12


k−τ1−1∑
i=k−τ2

x(i)

x(t− τ1)− x(t− τ2)



=


ē1ξ̄(k)

ē2ξ̄(k)

ē3ξ̄(k)


T

P1


ē1ξ̄(k)

ē2ξ̄(k)

ē3ξ̄(k)

+

[
ē6ξ̄(k)

ē1ξ̄(k)

]T
P2

[
ē6ξ̄(k)

ē1ξ̄(k)

]

+τ1(τ1 − 1)[ē1 − ē11]TR1[ē1 − ē11]

+

[
ē2ξ̄(k)

ē1ξ̄(k)− ē4ξ̄(k)

]T
Φ̂2

τ1

[
ē2ξ̄(k)

ē1ξ̄(k)− ē4ξ̄(k)

]

+

[
ē3ξ̄(k)

ē4ξ̄(k)− ē5ξ̄(k)

]T
Φ̂3

τ12

[
ē3ξ̄(k)

ē4ξ̄(k)− ē5ξ̄(k)

]
= ξ̄T (k)Φ̂4ξ̄(k), (4.3.14)

where Φ̂4 is defined in (4.3.5).

It follows from (4.3.5) and (4.3.14) that

V (k) > ξ̄T (k)Φ̂4ξ̄(k) ≥ ε||x(k)||2, (4.3.15)

where ε is a sufficient small positive scalar.
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The third step is to find the conditions that can ensure the negative-definiteness

of forward difference of functional (4.3.10). Defining the forward difference of

Lyapunov functional as ∆V (k) = V (k + 1) − V (k) and calculating it along the

trajectories of digital filter (4.2.1)

∆V (k) =
4∑
i=1

∆Vi(k), (4.3.16)

where ∆V1(k) is given as

∆V1(k)

= V1(k + 1)− V1(k)

= ηT1 (k + 1)P1η1(k + 1)− ηT1 (k)P1η1(k)

+ηT2 (k + 1)P2η2(k + 1)− ηT2 (k)P2η2(k)

=


x(k + 1)
k∑

i=k−h1+1

x(i)

k−h1∑
i=k−h2+1

x(i)



T

P1


x(k + 1)
k∑

i=k−h1+1

x(i)

k−h1∑
i=k−h2+1

x(i)



−


x(k)

k−1∑
i=k−h1

x(i)

k−h1−1∑
i=k−h2

x(i)



T

P1


x(k)

k−1∑
i=k−h1

x(i)

k−h1−1∑
i=k−h2

x(i)


+

[
x(k)

f(y(k))

]T
P2

[
x(k)

f(y(k))

]

−

[
x(k − 1)

f(y(k − 1))

]T
P2

[
x(k − 1)

f(y(k − 1))

]

=


e1ξ(k)

(e6 + e2 − e3)ξ(k)

(e7+e8+e3−e5)ξ(k)


T

P1


e1ξ(k)

(e6 + e2 − e3)ξ(k)

(e7+e8+e3−e5)ξ(k)
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−


e2ξ(k)

e6ξ(k)

(e7 + e8)ξ(k)


T

P1


e2ξ(k)

e6ξ(k)

(e7 + e8)ξ(k)


+

[
e2ξ(k)

e1ξ(k)

]T
P2

[
e2ξ(k)

e1ξ(k)

]
−

[
e11ξ(k)

e2ξ(k)

]T
P2

[
e11ξ(k)

e2ξ(k)

]
= ξT (k)(ΠT

1 P1Π1 − ΠT
2 P1Π2 + ΠT

3 P2Π3 − ΠT
4 P2Π4)ξ(k)

= ξT (k)Φ1ξ(k), (4.3.17)

with Π1, Π2, and Φ1 being defined in Theorem 4.

∆V2(k) is given as

∆V2(k)

= V2(k + 1)− V2(k)

=
k∑

i=k−τ1+1

xT (i)Q1x(i)−
k−1∑

i=k−τ1

xT (i)Q1x(i)

+

k−τ1∑
i=k−τ2+1

xT (i)Q2x(i)−
k−τ1−1∑
i=k−τ2

xT (i)Q2x(i)

= xT (k)Q1x(k)− xT (k − τ1)Q1x(k − τ1)

+xT (k − τ1)Q2x(k − τ1)− xT (k − τ2)Q2x(k − τ2)

= ξT (k)(eT2Q1e2 − eT3 (Q1 −Q2)e3 − eT5Q2e5)ξ(k)

= ξT (k)Φ2ξ(k), (4.3.18)

with Φ2 being defined in Theorem 4.
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∆V3(k) is given as

∆V3(k) = V3(k + 1)− V3(k)

= τ1

−1∑
i=−τ1

k∑
j=k+i+1

4xT (j)R14x(j)

−τ1

−1∑
i=−τ1

k−1∑
j=k+i

4xT (j)R14x(j)

+τ12

−τ1−1∑
i=−τ2

k∑
j=k+i+1

4xT (j)R24x(j)

−τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

4xT (j)R24x(j)

= τ 2
14xT (k)R14x(k) + τ 2

124xT (k)R24x(k)

−J1 − J2 − J3, (4.3.19)

with

J1 = τ1

k−1∑
j=k−τ1

4xT (j)R14x(j),

J2 = τ12

k−τ1−1∑
j=k−τ(t)

4xT (j)R24x(j),

J3 = τ12

k−τ(t)−1∑
j=k−τ2

4xT (j)R24x(j).

∆V4(k) is given as

∆V4(k) = V4(k + 1)− V4(k)

= τ12

−τ1−1∑
i=−τ2

k∑
j=k+i+1

ηT3 (j)Zη3(j)

−τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

ηT3 (j)Zη3(j)

= τ 2
12η

T
3 (k)Zη3(k)− J4 − J5, (4.3.20)
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with

J4 = τ12

k−τ1−1∑
j=k−τ(t)

ηT3 (j)Zη3(j),

J5 = τ12

k−τ(t)−1∑
j=k−τ2

ηT3 (j)Zη3(j).

For symmetric matrix T1 and T2, the following two zero-value equations are

satisfied:

Z1 = τ12x(k − τ1)TT1x(k − τ1)

− τ12x(k − τ(k))TT1x(k − τ(k))

− τ12

k−τ1−1∑
j=k−τ(k)

ηT3 (i)

[
0 T1

T1 T1

]
η3(i)

= 0, (4.3.21)

Z2 = τ12x(k − τ(k))TT2x(k − τ(k))

− τ12x(k − τ2)TT2x(k − τ2)

− τ12

k−τ(k)−1∑
j=k−τ2

ηT3 (i)

[
0 T2

T2 T2

]
η3(i)

= 0, (4.3.22)

which implies

Z1 + Z2

= τ12ξ
T (k)

[
eT3 T1e3 − eT4 (T1 − T2)e4 − eT5 T2e5

]
ξ(k)

−J6 − J7, (4.3.23)

where

J6 = τ12

k−τ1−1∑
j=k−τ(k)

ηT3 (i)

[
0 T1

T1 T1

]
η3(i),

J7 = τ12

k−τ(k)−1∑
j=k−τ2

ηT3 (i)

[
0 T2

T2 T2

]
η3(i).
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Based on Lemma 13-15, the following inequalities hold, if (4.2.8), (4.2.10) and

(4.2.11) hold, for any positive diagonal matrices S, S1, S2 and D and any matrices

N , M , M1, and M2:

Z3 = 2
[
y(k)− f(y(k))

]T
D
[
f(y(k))− Ly(k)

]
≥ 0, (4.3.24)

Z4 = 2
[
yT (k)S + xT (k)M + fT (y(k))N

][
y(k)− f(y(k))

]
≥ 0, (4.3.25)

Z5 = 2
[
yT (k)S1 + xT (k − τ(k))M1

][
y(k)− f(y(k))

]
≥ 0, (4.3.26)

Z6 = 2
[
yT (k)S2 + xT (k − 1)M2

][
y(k)− f(y(k))

]
≥ 0. (4.3.27)

Moreover, based on the definition of ξ(k), it can be found that several vectors therein

satisfy the following conditions:

υ2(k) = (τ(k)− τ1 + 1)υ4(k)− x(k − τ1),

υ3(k) = (τ2 − τ(k) + 1)υ5(k)− x(k − τ(k)),

which can lead to the following zero-value terms

Z7 = 2ξT (k)eTg U1

[
(τ(k)− τ1 + 1)e9 − e7 − e3

]
ξ(k) = 0, (4.3.28)

Z8 = 2ξT (k)eTg U2

[
(τ2 − τ(k) + 1)e10 − e8 − e4

]
ξ(k) = 0, (4.3.29)

with U1 and U2 being any matrices.

Combining (4.3.16)-(4.3.29) yields

∆V (k) =
4∑
i=1

∆Vi(k)

≤
4∑
i=1

∆Vi(k) +
8∑
i=1

Zi

= ξT (k)

(
6∑
i=1

Φi

)
ξ(k)−

7∑
i=1

Ji. (4.3.30)
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Using R1 > 0 and applying (4.2.4) of Lemma 10 to estimate J1 yield

J1 = τ1

k−1∑
j=k−τ1

4xT (j)R14x(j)

≥

[
κ1(k)

κ2(k)

]T [
R1 0

0 3R1

][
κ1(k)

κ2(k)

]

= ξT (k)

[
e2 − e3

e2 + e3 − 2(e2+e6)
τ1+1

]T [
R1 0

0 3R1

]

×

[
e2 − e3

e2 + e3 − 2(e2+e6)
τ1+1

]
ξ(k)

= ξT (k)Φ7ξ(k), (4.3.31)

where

κ1(k) = x(k)− x(k − τ1),

κ2(k) = x(k) + x(k − τ1)− 2

τ1 + 1
(υ1(k) + x(k)).

Using R2 > 0 and applying (4.2.4) of Lemma 10 to estimate J2 yield

J2 = τ12

k−τ1−1∑
j=k−τ(k)

4xT (i)R24x(i)

≥ τ12

τ(k)− τ1

[
κ3(k)

κ4(k)

]T [
R2 0

0 3R2

][
κ3(k)

κ4(k)

]

=
τ12

τ(k)− τ1

ξT (k)

[
e3 − e4

e3 + e4 − 2e9

]T [
R2 0

0 3R2

]

×

[
e3 − e4

e3 + e4 − 2e9

]
ξ(k)

= ξT (k)
τ12Φ81

τ(k)− τ1

ξ(k), (4.3.32)
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where

κ3(k) = x(k − τ1)− x(k − τ(k)),

κ4(k) = x(k − τ1) + x(k − τ(k))− 2υ4(k),

Φ81 =

[
e3 − e4

e3 + e4 − 2e9

]T [
R2 0

0 3R2

][
e3 − e4

e3 + e4 − 2e9

]
.

Using R2 > 0 and applying (4.2.4) of Lemma 10 to estimate J3 yield

J3 = τ12

k−τ(k)−1∑
j=k−τ2

4xT (i)R24x(i)

≥ τ12

τ2 − τ(k)

[
κ5(k)

κ6(k)

]T [
R2 0

0 3R2

][
κ5(k)

κ6(k)

]

=
τ12

τ2 − τ(k)
ξT (k)

[
e4 − e5

e4 + e5 − 2e10

]T [
R2 0

0 3R2

]

×

[
e4 − e5

e4 + e5 − 2e10

]
ξ(k)

= ξT (k)
τ12Φ82

τ2 − τ(k)
ξ(k), (4.3.33)

where

κ5(k) = x(k − τ(k))− x(k − τ2),

κ6(k) = x(k − τ(k)) + x(k − τ2)− 2υ5(k),

Φ82 =

[
e4 − e5

e4 + e5 − 2e10

]T [
R2 0

0 3R2

][
e4 − e5

e4 + e5 − 2e10

]
.
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Using (4.3.8) and applying (4.2.5) Lemma 11 to estimate J4 + J6 yield

J4 + J6 = τ12

k−τ1−1∑
j=k−τ(k)

ηT3 (i)

(
Z +

[
0 T1

T1 T1

])
η3(i)

≥ τ12

τ(k)− τ1

[
υ2(k)

κ3(k)

]T (
Z +

[
0 T1

T1 T1

])[
υ2(k)

κ3(k)

]

=
τ12

τ(k)− τ1

ξT (k)

[
e7

e3 − e4

]T (
Z +

[
0 T1

T1 T1

])

×

[
e7

e3 − e4

]
ξ(k)

= ξT (k)
τ12Φ83

τ(k)− τ1

ξ(k), (4.3.34)

where

Φ83 =

[
e7

e3 − e4

]T (
Z +

[
0 T1

T1 T1

])[
e7

e3 − e4

]
.

Using (4.3.9) and applying (4.2.5) Lemma 11 to estimate J5 + J7 yield

J5 + J7 = τ12

k−τ(k)−1∑
j=k−τ2

ηT3 (i)

(
Z +

[
0 T2

T2 T2

])
η3(i)

≥ τ12

τ2 − τ(k)

[
υ3(k)

κ4(k)

]T (
Z +

[
0 T2

T2 T2

])[
υ3(k)

κ4(k)

]

=
τ12

τ2 − τ(k)
ξT (k)

[
e8

e4 − e5

]T (
Z +

[
0 T2

T2 T2

])

×

[
e8

e4 − e5

]
ξ(k)

= ξT (k)
τ12Φ84

τ2 − τ(k)
ξ(k), (4.3.35)

where

Φ84 =

[
e8

e4 − e5

]T (
Z +

[
0 T2

T2 T2

])[
e8

e4 − e5

]
.
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It follows from (4.3.32)-(4.3.35) that

7∑
i=2

Ji ≥ ξT (k)

[
τ12(Φ81 + Φ83)

τ(k)− τ1

+
τ12(Φ82 + Φ84)

τ2 − τ(k)

]
ξ(k)

= ξT (k)

[
τ12Φ813

τ(k)− τ1

+
τ12Φ824

τ2 − τ(k)

]
ξ(k)

= ξT (k)

[
τ12E

T
2 Ξ1E2

τ(k)− τ1

+
τ12E

T
3 Ξ2E3

τ2 − τ(k)

]
ξ(k), (4.3.36)

where

Φ813 =


e7

e3 − e4

e3 + e4 − 2e9


T


Z +

[
0 T1

T1 R2 + T1

] [
0

0

]

[
0 0

]
3R2



×


e7

e3 − e4

e3 + e4 − 2e9


= ET

2 Ξ1E2,

Φ824 =


e8

e4 − e5

e4 + e5 − 2e10


T


Z +

[
0 T2

T2 R2 + T2

] [
0

0

]

[
0 0

]
3R2



×


e8

e4 − e5

e4 + e5 − 2e10


= ET

3 Ξ2E3.
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For any matrix X , it follows from (4.2.6) of Lemma 12 that

τ12E
T
2 Ξ1E2

τ(k)− τ1

+
τ12E

T
3 Ξ2E3

τ2 − τ(k)

≥

[
E2

E3

]T [
2τ2−τ(k)−τ1

τ12
Ξ1 X

∗ τ2+τ(k)−2τ1
τ12

Ξ2

][
E2

E3

]

−τ2 − τ(k)

τ12

ET
2 XΞ−1

1 XTE2

−τ(k)− τ1

τ12

ET
3 X

TΞ−1
2 XE3

= Φ8 − Φ̄8, (4.3.37)

where

Φ̄8 =
τ2 − τ(k)

τ12

ET
2 XΞ−1

1 XTE2

+
τ(k)− τ1

τ12

ET
3 X

TΞ−1
2 XE3.

Based on (4.3.30), (4.3.31), (4.3.36) and (4.3.37), it can be obtained that

∆V (k) ≤ ξT (k)

(
6∑
i=1

Φi − Φ7 − Φ8 + Φ̄8

)
ξ(k)

= ξT (k)
(
Ψ + Φ̄8

)
ξ(k). (4.3.38)

It can be checked that Ψ + Φ̄8 is convex with respect to τ(t), which from the

convex combination technique shows the following holds

Ψ + Φ̄8 < 0,∀τ(t) ∈ {τ1, τ2} (4.3.39)

⇒ Ψ + Φ̄8 < 0,∀τ(t) ∈ [τ1, τ2]. (4.3.40)

Based on the Schur complement, (4.3.39) is equivalent to LMIs (4.3.6) and

(4.3.7). Thus, if LMIs (4.3.6) and (4.3.7) holds, then (4.3.40) holds, which com-

bined with (4.3.38) leads to

∆V (k) ≤ −ε||x(k)||2, (4.3.41)

for a sufficient small ε > 0.

Therefore, under conditions (4.2.8), (4.2.10), (4.2.11) and (4.3.1)-(4.3.9), digital

filter (4.2.1) is stable. This completes the proof. �
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Remark 11. On the one hand, compared with the simple functionals used for dis-

cussing the digital filters in the previous literature [112, 140, 142, 143], extra free

matrices are introduced by the augmented terms, V1(k) and V4(k), of the proposed

augmented functional (4.3.10), especially, f(y(k − 1)) included in V1(k) is used to

construct functional at the first time, which can provide extra freedom during check-

ing the feasibility of criterion. Thus, Theorem 4 in this chapter has less conservatism

than the ones in the previous literature.

Remark 12. On the other hand, compared with the criteria of digital filters devel-

oped in [112,140,142,143], Theorem 4 in this chapter has less conservatism due to

the improvement during the estimation of ∆V (k). In order to accurately estimate

the summation term arising in ∆V (k), i.e., Ji, i = 1, 2, · · · ,7, Lemma 15 and several

other techniques, which are proved to be helpful to reduce the conservatism during

the investigation of discrete-time delay systems, are applied to reduce the estimation

error, summarized as follows:

(1) Due to adding of Z5 and Z6 respectively defined in (4.3.26) and (4.3.27) into

the ∆V (k), several cross terms are introduced to give the relationship be-

tween the delayed states, x(k − τ(k)) and x(k − 1), and the nonlinear func-

tion, f(y(k)), which are not used in the literature [112, 140, 142, 143] and

provide extra freedom for finding the solutions of conditions in Theorem 4 so

as to reduce the conservatism.

(2) The summation terms defined by J1, J2 and J3 are bounded by using the

Wirtinger-based summation inequality in this chapter, while the similar terms

are estimated based on a more conservative inequality in the previous litera-

ture [112, 140, 142, 143], i.e. the Jensen-based summation inequality.

(3) Two zero-value equations Z7 and Z8, respectively defined in (4.3.28) and

(4.3.29), are developed and introduced into the ∆V (k), which adds many

cross-terms into Theorem 4. The presence of free matrices U1 and U2 in The-

orem 4 can increase the feasibility of the conditions of Theorem 4 so as to

reduce the conservatism.
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Remark 13. Remark 11 and 12 show the improvements of Theorem 4 compared

with the ones for digital filters reported in literature. In fact, compared with the

techniques developed for the analysis of linear discrete-time system with a time-

varying delay, novel treatments are also used to develop Theorem 4. More specifi-

cally, compared with the functionals used in the related works, in which each term

of functionals is usually required to be positive, the functional (4.3.10) constructed

in this chapter is relaxed by considering all terms together and requiring the sum of

all terms to be positive. That is to say, the positive-definite condition of functional

(4.3.10) is relaxed, (i.e., P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, and Z > 0 are removed),

which helps to reduce the conservatism. Moreover, x(k − 1) included in V1(k) has

not been used for the investigation of linear discrete-time system with a time-varying

delay.

In order to easily show the advantage of the proposed Theorem 4, the following

corollary is developed by requiring each term of LKF is positive and setting P2 =

0, S1 = 0, S2 = 0,M1 = 0,M2 = 0.

Corollary 1. For given scalars li, τ1 and τ2, digital filter (4.2.1) with time-varying

satisfying (4.2.2) is asymptotically stable if there exists positive definite symmetric

matrices P1, Z, Q1, Q2, R1, R2, symmetric matrices T1, T2, positive diagonal matri-

ces S,D, and any matrices X , U1, U2, M,N , such that condition (4.2.8) and LMIs

(4.3.6)-(4.3.9) are feasible.

Remark 14. Although Theorem 4 has less conservatism, compared with the ones

in [112, 140, 143], with the help of the techniques summarized in Remarks 3-5, it is

still a sufficient criterion and provides conservative results. Many new techniques

developed for linear time-delay systems, such as improved functionals [157, 158]

and improved bounding inequalities [146], can be used to further reduce the con-

servatism. In addition, the method proposed in this chapter can be extended to deal

with other types of systems with time delays [143] and the practical systems affected

by communication delays and/or saturation constraint [56, 159–163].

Haotian Xu



4.4 Numerical examples 98

4.4 Numerical examples

In this section, two numerical examples are given to demonstrate the effective-

ness and advantages of the proposed method.

Example 1. Consider digital filter (4.2.1) with the following parameters

l1 = −1, l2 = 0, (4.4.1)

l11 = l12 = l21 = l22 = 1, (4.4.2)

A =

[
0.3 −0.4

0.5 0.7

]
, (4.4.3)

Ad =

[
0.1 0

0 0.1

]
. (4.4.4)

For different given lower bounds of τ(k), τ1,

the allowably maximal values of τ2 calculated by Theorem 4, Corollary 1, and

the ones provided by the criteria of [112,140,143] are listed in Table 4.1. It is clearly

seen that Theorem 4 provides less conservative results than the ones reported in

[112,140,143], which shows that the improvements, summarized in Remarks 3 and

4, indeed reduce the conservatism. Moreover, the results provided by Theorem 4 are

less conservative than those provided by Corollary 1, which means that the relaxed

positive-definite condition in Theorem 4 and the cross terms introduced by Lemma

15 indeed reduce the conservatism as analyzed in Remarks 4 and 5. Therefore, the

advantages of the proposed method is verified.

When the lower bound of time-varying delay is 1, i.e., τ(k) ≥ τ1 = 1, it is

calculated from Theorem 4 that the allowably maximal value of τ2, τmax, is 43 and
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Table 4.1: Allowably maximal value of τ2, τmax, for various τ1 (Example 2)

τ1

Criteria 1 3 5 10

Theorem 1 [140] 8 10 12 17

Corollary 1 [143] 11 13 15 20

Theorem 2 [112] 11 13 15 20

Corollary 1 15 17 19 24

Theorem 4 43 45 47 52

the related feasible solutions of the conditions of Theorem 4 are given as follows

P1 =



1.8501 0.7162 0.0050 0.0085 −0.0020 0.0017

0.7162 1.1126 −0.0043 0.0031 −0.0011 −0.0013

0.0050 −0.0043 0.0006 0.0003 −0.0007 0.0006

0.0085 0.0031 0.0003 0.0050 −0.0007 −0.0003

−0.0020 −0.0011 −0.0007 −0.0007 −0.0002 0.0001

0.0017 −0.0013 0.0006 −0.0003 0.0001 0.0003


,

P2 =


0.0082 −0.0036 −0.0104 −0.0022

−0.0036 0.0089 0.0109 −0.0024

−0.0104 0.0109 0.9051 0.1608

−0.0022 −0.0024 0.1608 0.6397

 ,

Q1 =

[
0.0702 0.0129

0.0129 0.0411

]
, Q2 =

[
0.0333 0.0053

0.0053 0.0177

]
,

R1 =

[
0.0116 −0.0006

−0.0006 0.0074

]
,

R2 =

[
0.3433 −0.0088

−0.0088 0.1474

]
,

Z =


0.0013 0.0007 0.0010 −0.0004

0.0007 0.0010 0.0013 0.0001

0.0010 0.0013 0.0023 0.0001

−0.0004 0.0001 0.0001 0.0006

 .
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That is, digital filter (4.2.1) with parameters given in (4.4.1)-(4.4.4) and time-

varying delay satisfying 1 ≤ τ(k) ≤ 43 is asymptotically stable since one can

find the Lyapunov functional (4.3.10) with matrices P1, P2, Q1, Q2, R1, R2, Z being

given above. Simulation results are also obtained to verify this case.

Let the initial condition x(k) = [−0.4, 0.1]T , k ∈ [−43, 0] and the delay is

a random value within [1, 43]. The responses of the corresponding time delay and

two state variables of digital filter are shown in Fig. 4.1. It is clearly observed that

the digital filter is stable. Therefore, the effectiveness of the proposed criterion is

verified.

Figure 4.1: The time delay and state trajectories (Example 2).
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Example 2. Consider digital filter (4.2.1) with the following parameters

l1 = −1, l2 = 0, l3 = 1, (4.4.5)

l11 = l21 = 0, l12 = l22 = l13 = l23 = 1, (4.4.6)

A =


0.8 −1.75 −2.5

−0.1 −0.5 −0.6

0.1 0.1 0.5

 , (4.4.7)

Ad =


0.001 0.01 −0.01

0 0.01 0

−0.01 0.01 0.01

 . (4.4.8)

For different given lower bounds of τ(k), τ1, the allowably maximal values of

τ2 calculated by Theorem 4, Corollary 1, and the ones provided by the criteria of

[112,140,143] are listed in Table 4.2. It is clearly seen that Theorem 4 provides less

conservative results than the others, which shows the advantages of the proposed

Theorem 4.

Table 4.2: Allowably maximal value of τ2, τmax, for various τ1 (Example 3)

τ1

Criteria 5 10 15 20 25

Theorem 1 [140] 33 38 43 48 53

Corollary 1 [143] 34 39 43 48 53

Theorem 2 [112] 34 39 43 48 53

Corollary 1 47 52 57 62 67

Theorem 4 49 54 59 64 69

From Table 4.2, digital filter (4.2.1) with parameters given in (4.4.5)-(4.4.8) and

time-varying delay satisfying 5 ≤ τ(k) ≤ 49 is asymptotically stable. Simulation

results are also obtained to verify this observation.

Let the initial condition x(k) = [−0.4, 0.02, 0.3]T , k ∈ [−49, 0] and the delay

is a random value within [5, 49]. The responses of the time delay together with two

state variables of digital filter are shown in Fig. 4.2. It is clearly observed that digital

filter is stable. Therefore, the effectiveness of the proposed criterion is verified.
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Figure 4.2: The time delay and state trajectories (Example 3).

4.5 Conclusion

This chapter has investigated the stability analysis of fixed-point state-space dig-

ital filters with generalized overflow arithmetic and a time-varying delay. A new

stability criterion has been developed to assess the influence of the time delay on

the stability of digital filter. The criterion has less conservatism in comparison to

the ones reported in the previous literature due to two aspects of improvements.

A new Lyapunov functional with several augmented terms and relaxed positive-

definite condition has been constructed, and free matrices therein provides extra

freedom of checking the conditions of stability criterion. And, Lemma 15, together

with several new techniques (such as Wirtinger-based inequality, zero-value equa-

tions, the extended reciprocally convex matrix inequality), has been used to estimate

the summation terms arising in the forward difference of functional, which leads to a

smaller estimate gap than the methods used in the literature. Finally, two numerical

examples have been given to show the effectiveness and advantages of the proposed
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stability criterion.
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Chapter 5

Delay dependent stability analysis via

relaxed three integral inequality

method and its application to optimal

economic dispatch

5.1 Introduction

As mentioned by [164], the delay decomposition approach is the best one to han-

dle the stability of system with constant delay and obviously the less conservative

stability results can be obtained when the delay decomposition approach is extended

to the case of time-varying [165]. Generally, the main aim is to derive a maximum

allowable delay bound of the time-delay such that the time delays’system is asymp-

totically stable for any delay size less than this maximum delay [166]. However, the

purpose of reducing conservatism is still limited due to the estimated derivative of

LKF.

In the construction of LKF to obtain delay-dependent criterion, a double integral

term which showed below is frequently applied:

Vr(t) =

∫ 0

−h

∫ t

t+s

ẋT (u)Rẋ(u) du ds (5.1.1)
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where h is respectively the upper bound of a time-varying delay and x(t) is the

system state. Then the following single integral terms with time-varying delay in-

formation will appear in the forward difference of Vr(t):

S̄(t) = −
∫ t

t−d(t)

ẋT (s)Rẋ(s) ds−
∫ t−d(t)

t−h
ẋT (s)Rẋ(s) ds (5.1.2)

As mentioned by Zhang [167], the key problem during the criterion-deriving is

how to estimate the lower bound of the above single integral term. There are plenty

of works to find the optimal solution which is estimated the derivative of LKF, but

relaxed integral inequalities is one of the best methods. This chapter provides fur-

ther study on combined the delay decomposition approach and relaxed integral in-

equalities. Like most of researches, the research of Zhang just studies the derivative

which includes the two single integral terms with time-varying delay information.

However, in the delay decomposition approach, there are three single integral terms

showing below in the derivative. This motivates to prove a new inequality which is

suitable for this situation.

S(t) = −
∫ t

t−αd(t)

ẋT (s)Rẋ(s) ds−
∫ t−αd(t)

t−d(t)

ẋT (s)Rẋ(s) ds (5.1.3)

−
∫ t−d(t)

t−h
ẋT (s)Rẋ(s) ds

Finally, stability analysis of linear systems with time-varying delays is further

studied and a new criterion to understand the effect of delays on the system stabil-

ity is developed. Three relaxed integral inequalities are developed to estimate the

derivative of LKF by considering three integral terms together. Then combined with

the delay decomposition approach.

The main contribution of the chapter is summarized as follows:

• A dynamic market model of ED problem is proposed. Stability of the result-

ing dynamical model is investigated and the region of attraction around the

equilibrium of interest is established.

• By developing a delay decomposition approach, the integral interval [t− h, t]
is decomposed into three integral intervals [t−h, t−d(t)], [t−d(t), t−αd(t)]
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and [t − αd(t), t]. Since a tuning parameter α is introduced, the information

about x(t − αd(t)) can be taken into full consideration, and thus the upper

bound of S(t) can be estimated more exactly no matter the delay derivative

exists or not.

• A new stability criterion with less conservatism in comparison with the ex-

isting ones is established. A new LKF with delay-product-type terms is con-

structed, and its derivative is estimated via a novel relaxed integral inequality

and combined a delay decomposition approach which mentioned above. A

more general type of Lyapunov functionals is defined in this chapter, and new

delay-dependent sufficient stability criteria are obtained in terms of LMIs. It

is shown that the presented stability conditions are much less conservative

than the existing ones.

• A dynamic market model that incorporates the interaction between real-time

pricing, physical constraints, and demand response based loads is proposed.

In contrast to the papers above, this market model is directly linked with

the standard market clearing structure so that the relation between the state-

variables of the dynamic model and the primal variables of the power dis-

patch model is transparent. And secondary, stability of the resulting dy-

namical model which consists of three main participants, generating com-

pany(GenCo), consumers company(Conco), and independent system opera-

tor (ISO) is investigated and the region of attraction around the equilibrium of

interest is established.

Notations: Throughout this chapter, the superscripts T and −1 mean the trans-

pose and the inverse of a matrix, respectively; Rn denotes the n-dimensional Eu-

clidean space; ‖ · ‖ refers to the Euclidean vector norm; P > 0 (≥ 0) means P is

a real symmetric and positive-definite (semi-positive-definite) matrix; I and 0 stand

for the identity matrix and the zero-matrix, respectively; diag{·} denotes the block-

diagonal matrix; the symmetric term in the symmetric matrix is denoted by ∗; and

He{X} = X +XT .
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5.2 Problem formulation and preliminaries

Consider the following linear system with a time-varying delay:ẋ(t) = Ax(t) + Adx(t− d(t)), t ≥ 0

x(t) = φ(t), t ∈ [−h, 0]
(5.2.1)

where x(t) ∈ Rn is the system state, A and Ad are the system matrices, the initial

condition φ(t) is a continuously differentiable function, and d(t) is the time-varying

delay satisfying

0 ≤ d(t) ≤ h (5.2.2)

|ḋ(t)| ≤ µ (5.2.3)

where h and µ are constant.

This chapter aims to derive a new delay-dependent stability criteria for analyzing

the stability of system(5.2.1) by using delay decomposition approach which com-

bined relaxed integral inequalities. Inspired by Gouaisbaut’s work [168], a constant

α ≤ 1 will be added on the delay h as a new delay αd(t), and satisfy

0 ≤ αd(t) ≤ αh (5.2.4)

|αḋ(t)| ≤ αµ (5.2.5)

As mentioned previously, there are three single integral terms when we derive

the LKF which satisfied delay decomposition approach and relaxed integral inequal-

ities. Consequently, we firstly aim to develop a new inequalities which have three

relaxed integral inequalities. Then we prepare to estimate the new stability criteria.

For the sake of notational simplicity, some common settings are showed below:

ei =
[
0n×(i−1)n, I, 0n×(7−i)n

]
, i = 1, 2, . . . , 5

Ei =
[
0n×(i−1)n, I, 0n×(3−i)n

]
, i = 1, 2, 3

es = Ae1 + Ade3

td = t− d(t), th = t− h, ta = t− αd(t), t1 = t− d1(t)

d1(t) = αd(t), d2(t) = d(t)− αd(t).

The following lemma was used for developing the main results.
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Lemma 16. ( [167]) For a n× n symmetric matrix R > 0 and any 2n× 2n matrix

S1 satisfying

[
R1 S1

∗ R1

]
≥ 0 with R1 = diag{R, 3R}, theS(t) defined in (5.1.2)

can be estimated as:

S(t) ≤ −1

h
ζ1(t)gT0 χ0g0ζ1(t) (5.2.6)

where

ζ1(t) =
[
xT (t), xT (t− d(t)), xT (t− h), V T

1 (t), V T
2 (t)

]T
V1(t) =

∫ t

t−d(t)

x(s)

d(t)
ds, V2(t) =

∫ t−d(t)

t−h

x(s)

h− d(t)
ds

g0 =
[
GT

1 GT
2

]T
, G1 =

[
e1 − e2

e1 + e2 − 2e4

]
, G2 =

[
e2 − e3

e2 + e3 − 2e5

]

χ0 =

[
Z1 S1

∗ Z1

]
,

5.3 Improvement stability criterion based on relaxed

three integral inequality

This section discusses the methods of estimating S(t). The commonly used

method based on

Lemma 17. For a block 2n× 2n symmetric matrix Z1 = diag(R, 3R), with R > 0

and any 2n× 2n matrix S1, S2, S3, let χi > 0(i = 1, 2, 3), the S(t) can be estimated

as:

S(t) ≤ −1

h
ζ2(t)gT (ψ2 − φ)gζ2(t) (5.3.1)
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where

S(t) = −
∫ t

t−d1(t)
ẋT (s)Rẋ(s)ds−

∫ t−d1(t)

t−d(t)
ẋT (s)Rẋ(s)ds−

∫ t−d(t)

t−h
ẋT (s)Rẋ(s)ds

ζ2(t) =
[
xT (t), xT (t− d1(t)), xT (t− d(t)), xT (t− h), V T

3 (t), V T
4 (t), V T

5 (t)
]T

V3(t) =

∫ t

t−d1(t)

x(s)

d1(t)
ds, V4(t) =

∫ t−d1(t)

t−d(t)

x(s)

d2(t)
ds, V5(t) =

∫ t−d(t)

t−h

x(s)

h− d(t)
ds

g =
[
GTa GTb GTc

]T
Ga =

 e1 − e2

e1 + e2 − 2e5

 , Gb =

 e2 − e3

e2 + e3 − 2e6

 , Gc =

 e3 − e4

e3 + e4 − 2e7



ψ1 =


Z1 S1 S2

∗ Z2 S3

∗ ∗ Z3

 ,

χ10 =

Z1 S1

∗ Z1

 , χ20 =

Z2 S2

∗ Z2

 , χ30 =

Z3 S3

∗ Z3

 ,

ψ2 =


2h−d1(t)

h Z1
2h−d(t)

h S1
h+d2(t)

h S2

∗ 2h−d2(t)
h Z2

h+d1(t)
h S3

∗ ∗ h+d1(t)
h Z3



φ =
h− d(t)

h



S2

S3

0

Z−1
1

[
ST2 ST3 0

]

+
d2(t)

h



S1

0

ST3

Z−1
2

[
ST1 0 S3

]+
d1(t)

h




0

ST1

ST2

Z−1
3

[
0 S1 S2

]
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Proof: By setting λ(s, a, b) = 2s−b−a
b−a , The following integral can be calculated

by the Matlab: ∫ b

a

ẋ(s)ds = x(b)− x(a) (5.3.2)∫ b

a

λ(s, a, b)ẋ(s)ds = x(b) + x(a)− 2

b− a

∫ b

a

x(s)ds (5.3.3)∫ b

a

λ(s, a, b)ds = 0 (5.3.4)∫ b

a

λ2(s, a, b)ds =
b− a

3
(5.3.5)


M2i−1R

−1
i MT

2i−1 M2i−1R
−1
i MT

2i M2i−1

∗ M2iR
−1
i MT

2i M2i

∗ ∗ Ri

 ≥ 0 (5.3.6)

Πi = −
∫ ti

ti+1


g1

fig1

ẋ(s)


T 

M2i−1R
−1
i MT

2i−1 M2i−1R
−1
i MT

2i M2i−1

∗ M2iR
−1
i MT

2i M2i

∗ ∗ Ri



g1

fig1

ẋ(s)

 ds ≤ 0

g1 = [GT
1 , G

T
2 , G

T
3 ]T ξ(t), f1 = λ(s, t− d1(t), t),

f2 = λ(s, t− d(t), t− d1(t)), f3 = λ(s, t− d1(t), t− h)

t1 = t, t2 = t− d1(t), t3 = t− d(t), t4 = t− h

M1 = −1

h
[R1, 0, XT

1 , X
T
2 ]T , M2 = −1

h
[0, 3R1, X

T
3 , X

T
4 ]T

M3 = −1

h
[Y T

1 , R2, 0, XT
5 ]T , M4 = −1

h
[Y T

2 , 0, 3R2, X
T
6 ]T

M5 = −1

h
[Y T

3 , Y
T

5 , R3, 0]T , M6 = −1

h
[Y T

4 , Y
T

6 , 0, 3R3]T

Zi = diag {Ri, 3Ri} (i = 1, 2, 3)

S1 = [X1, X3]T = [Y1, Y2], S2 = [X2, X4]T = [Y3, Y4],

S3 = [X5, X6]T = [Y5, Y6]
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−
∫ t

t−d1(t)

[
g1

f1g1

]T [
M1R

−1
1 MT

1 M1R
−1
1 MT

2

∗ M2R
−1
1 MT

2

][
g1

f1g1

]
ds

= −
∫ t

t−d1(t)

gT1 M1R
−1
1 MT

1 g1ds− 2

∫ t

t−d1(t)

f1g
T
1 M1R

−1
1 MT

2 g1ds

−
∫ t

t−d1(t)

f1g
T
1 M2R

−1
1 MT

2 f1g1ds

= −gT1 M1R
−1
1 MT

1 g1(t− (t− d1(t))− 2

∫ t

t−d1(t)

f1dsg
T
1 M1R

−1
1 MT

2 g1

−
∫ t

t−d1(t)

f 2
1dsg

T
1 M2R

−1
1 MT

2 g1

= −d1(t)gT1 M1R
−1
1 MT

1 g1 − 0 ∗ gT1 M1R
−1
1 MT

2 g1 −
d1(t)

3
gT1 M2R

−1
1 MT

2 g1

= −d1(t)

h2
ξ(t)


G1

G2

G3


T 

Z1 S1 S2

ST1 ST1 Z
−1
1 S1 ST1 Z

−1
1 S2

ST2 ST2 Z
−1
1 S1 ST2 Z

−1
1 S2



G1

G2

G3

 ξ(t) (5.3.7)

−2

∫ t

t−d1(t)

 g1

f1g1

T M1

M2

 ẋ(s)ds =
1

h
ξ(t)


G1

G2

G3


T 

2Z1 S1 S2

ST1 0 0

ST2 0 0



G1

G2

G3

 ξ(t)

−
∫ t−d1(t)

t−d(t)

 g1

f2g1

T M3R
−1
2 MT

3 M3R
−1
2 MT

4

∗ M4R
−1
2 MT

4

 g1

f2g1

 ds

= −d(t)− d1(t)

h2
ξ(t)


G1

G2

G3


T 

S1Z
−1
2 ST1 S1 S1Z

−1
2 S3

ST1 Z2 S3

ST3 Z
−1
2 ST1 ST3 ST3 Z

−1
2 S3



G1

G2

G3

 ξ(t)

− 2

∫ t−d1(t)

t−d(t)

 g1

f2g1

T M3

M4

 ẋ(s)ds =
1

h
ξ(t)


G1

G2

G3


T 

0 S1 0

ST1 2Z2 S3

0 ST3 0



G1

G2

G3

 ξ(t)
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−
∫ t−d(t)

t−h

 g1

f3g1

T M5R
−1
3 MT

5 M5R
−1
3 MT

6

∗ M6R
−1
3 MT

6

 g1

f3g1

 ds

= −h− d(t)

h2
ξ(t)


G1

G2

G3


T 

S2Z
−1
3 ST2 S2Z

−1
3 ST3 S2

S3Z
−1
3 ST2 S3Z

−1
3 ST3 S3

ST2 ST3 Z3



G1

G2

G3

 ξ(t)

−2

∫ t−d(t)

t−h

 g1

f3g1

T M5

M6

 ẋ(s)ds =
1

h
ξ(t)


G1

G2

G3


T 

0 0 S2

0 0 S3

ST2 ST3 2Z3



G1

G2

G3

 ξ(t)

3∑
i=1

Πi = S(t) +
1

h
ξ(t)


G1

G2

G3


T

Θ


G1

G2

G3

 ξ(t)

Θ =


Z1 S1 S2

∗ Z2 S3

∗ ∗ Z3



+


d(t)−d1(t)

h T1 + h−d(t)
h T2

h−d(t)
h N1

d(t)−d1(t)
h N2

∗ d1(t)
h T3 + h−d(t)

h T4
d1(t)
h N3

∗ ∗ d1(t)
h T5 + d(t)−d1(t)

h T6



=


2h−d1(t)

h Z1
2h−d(t)

h S1
h+d2(t)

h S2

∗ 2h−d2(t)
h Z2

h+d1(t)
h S3

∗ ∗ h+d1(t)
h Z3

− h− d(t)

h


S2

S3

0

Z−1
1

[
ST2 ST3 0

]

−d2(t)

h


S1

0

ST3

Z−1
2

[
ST1 0 S3

]
− d1(t)

h


0

ST1

ST2

Z−1
3

[
0 S1 S2

]

T1 = Z1 − S1Z
−1
2 ST1 T2 = Z1 − S2Z

−1
3 ST2 T3 = Z2 − ST1 Z−1

1 S1

T4 = Z2 − S3Z
−1
3 ST3 T5 = Z3 − ST2 Z−1

1 S2 T6 = Z3 − ST3 Z−1
2 S3

N1 = S1 − S2Z
−1
3 ST3 N2 = S2 − S1Z

−1
2 S3 N3 = S3 − ST1 Z−1

1 S2
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ψ2 =


2h−d1(t)

h Z1
2h−d(t)

h S1
h+d2(t)

h S2

∗ 2h−d2(t)
h Z2

h+d1(t)
h S3

∗ ∗ h+d1(t)
h Z3

 (5.3.8)

φ =
h− d(t)

h



S2

S3

0

Z−1
1

[
ST2 ST3 0

] (5.3.9)

+
d2(t)

h



S1

0

ST3

Z−1
2

[
ST1 0 S3

]+
d1(t)

h




0

ST1

ST2

Z−1
3

[
0 S1 S2

]
let

V̇ (t) ≤ P (t) + S(t)

≤ ζT2 (t)(Ξ− 1

h
gT (ψ2 − φ)g)ζ2(t)

= ζT2 (t)(Ξ− 1

h
gTψ2g +

1

h
gTφg)ζ2(t)

therefore, Ξ − 1
h
gTψg + 1

h
gTφg < 0, leads to V̇ (t) ≤ ε ‖ x(t) ‖2 for a sufficient

small scalar ε > 0. using Schur complement we can got when d(t) = 0,

Ξ− 1

h
gTψ2g +

1

h
gTφg < 0

Ξ− 1

h
gTψ2g +

1

h
gT



S2

S3

0

Z−1
1

[
ST2 ST3 0

] g < 0

Σ1 =


Ξ− 1

h
gTψ2g gT


S2

S3

0


∗ −hZ1

 < 0
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when d(t) = h,

Ξ− 1

h
gTψ2g +

1

h
gTφg < 0

Ξ− 1

h
gTψ2g + gT

d2(t)

h2



S1

0

ST3

Z−1
2

[
ST1 0 S3

] g

+gT
d1(t)

h2




0

ST1

ST2

Z−1
3

[
0 S1 S2

] g < 0

Σ2 =


Ξ− 1

h
gTψ2g gT

[
S1

ST3

]
gT

[
ST1

ST2

]
∗ − h2

d2(t)
Z2 0

∗ ∗ − h2

d1(t)
Z3

 < 0

Remark 15. In the proof of Lemma 17, the interval[t − h, t] is divided into three

subintervals [t− h, t− d(t)], [t− d(t), t− αd(t)] and[t− αd(t), t], the information

of delayed state x(t− αd(t)) and x(t− d(t)) can be taken into account. It is clear

that the Lyapunov function defined in Lemma 17 are more general than the ones

in some existing results. Since the delay decomposition approach is introduced in

time delay, it is clear that the stability results are based on the delay decomposition

approach. When the positions of delay decomposition are varied,the stability results

of proposed criteria are also different.In order to obtain the optimal delay decompo-

sition sequence. The proposed stability conditions are much less conservative and

are more general than some existing results.

5.3.1 New theorem which using lemma 17

Theorem 5. For given scalars α, and µ, system (5.2.1) with the time-varying delay

satisfying (5.2.2) and (5.2.3) is asymptotically stable if one of the following condi-

tions holds

A1:there exist a 5n × 5n-matrix P = P T > 0, 2n × 2n-matrices Qi = QT
i (i =

1, 2, 3), R = RT > 0,Q4 = QT
4 > 0, and any 2n× 2n-matrices Si(i = 1, 2, 3), such
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that the following conditions hold

χ1 =

[
R1 S1

∗ R1

]
≥ 0, χ2 =

[
R1 S2

∗ R1

]
≥ 0, (5.3.10)

χ3 =

[
R1 S3

∗ R1

]
≥ 0 (5.3.11)

Ψ1 < 0 (5.3.12)

A2:there exist a 5n × 5n-matrix P = P T > 0, 2n × 2n-matrices Qi = QT
i (i =

1, 2, 3),Q4 = QT
4 > 0, R = RT > 0, and any 2n× 2n-matrices Si(i = 1, 2, 3), such

that the following conditions hold

Φ1 =

[
Ψ2|d(t) = 0 X1

∗ −R1

]
< 0 (5.3.13)

Φ2 =


Ψ2|d(t) = h X2 X3

∗ −R 0

∗ ∗ −R1

 < 0 (5.3.14)

where

Ψ1 = Ξ1 + Ξ2 + Ξ3 + Ξ4 − Ξ5 (5.3.15)

Ψ2 = Ξ1 + Ξ2 + Ξ3 + Ξ4 − Ξ5 − Ξ6 (5.3.16)

Ξ1 = He(F T1 PFa) (5.3.17)

Ξ2 =

e1

0

T Q1

e1

0

−
 e4

e3 − e4

T Q3

 e4

e3 − e4


−(1− αḋ(t))(

 e2

e1 − e2

T Q1

 e2

e1 − e2

−
 e2

e2 − e3

T Q2

 e2

e2 − e3

) (5.3.18)

−(1− µ)(

 e3

e2 − e3

T Q2

 e3

e2 − e3

−
e3

0

T Q3

e3

0

)

+2αd(t)

 0

es

T Q1

 e6

e1 − e6

− 2(1− α)d(t)(1− αḋ(t))

 0

e5

T Q2

 e7

e7 − e3


+2(h− d(t))(1− ḋ(t))

 0

e5

T Q3

 e8

e3 − e8

 (5.3.19)
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Ξ3 = heTs Res (5.3.20)

Ξ4 =
[
eTsQ4es − (1− ḋ(t))eT5Q4e5

]
(5.3.21)

Ξ5 =
1

h
gTχg (5.3.22)

Ξ6 =
h− d(t)

h
gT1 χ1g1 +

(1− α)d(t)

h
gT2 χ2g2 +

αd(t)

h
gT2 χ3g2 (5.3.23)

χ =


R1 S1 S2

∗ R1 S3

∗ ∗ R1

 , R1 =

[
R 0

∗ 3R

]
(5.3.24)

F1 =



e1

e3

αd(t)e6

(1− α)d(t)e7

(h− d(t))e8


, Fa =



es

e5

e1 − [1− αḋ(t)]e2)

[1− αḋ1(t)]e2 − [1− ḋ(t)]e3

[1− ḋ(t)]e3 − e4


(5.3.25)

g =
[
GT
a GT

b GT
c

]T
, g1 =

[
GT
a GT

b

]T
, (5.3.26)

g2 =
[
GT
a GT

c

]T
, g3 =

[
GT
b GT

c

]T
(5.3.27)

Ga =

[
e1 − e2

e1 + e2 − 2e6

]
, Gb =

[
e2 − e3

e2 + e3 − 2e7

]
, (5.3.28)

Gc =

[
e3 − e4

e3 + e4 − 2e8

]
(5.3.29)

ej =
[
0n×(i−1)n, In, 0n×(8−i)n

]
(5.3.30)

es = Ae1 + Ade3 (5.3.31)

X1 =

√
1

h
gT1

[
ST2 ST3

]T
, X2 =

√
1− α
h

gT2

[
ST1 S3

]T
, (5.3.32)

X3 =

√
α

h
gT3

[
S1 S2

]T
(5.3.33)

Proof: The following LKF candidate with two delay-product-type terms is con-

structed

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (5.3.34)
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V1(t) = x̄T (t)Px̄(t)

V2(t) =

∫ t

t−αd(t)

 x(s)∫ t
s ẋ(u)du

T Q1

 x(s)∫ t
s ẋ(u)du

 ds
+

∫ t−αd(t)

t−d(t)

 x(s)∫ s
t−d(t) ẋ(u)du

T Q2

 x(s)∫ s
t−d(t) ẋ(u)du

 ds
+

∫ t−d(t)

t−h

 x(s)∫ t−d(t)
s ẋ(u)du

T Q3

 x(s)∫ t−d(t)
s ẋ(u)du

 ds
V3(t) = h

∫ 0

−h

∫ t

t+s
ẋT (u)Rẋ(u) du ds

V4(t) =

∫ t

t−d(t)
ẋT (s)Q4x(s) ds

If the matrices in V (xt) satisfying P > 0 Qi = QT
i (i = 1, 2, 3), and R > 0,

then V (xt) ≥ ε1||x(t)|| for a scalar ε1 > 0. On the other side, the conditions

guaranteeing the negative definite of the derivative of V (xt) are discussed. let

ξ1(t) =
[
xT (t), xT (t− αd(t)), xT (t− d(t)), xT (t− h), ẋT (t− d(t))∫ t

t−αd(t)

xT (s)

αd(t)
ds,

∫ t−αd(t)

t−d(t)

xT (s)

(1− α)d(t)
ds,

∫ t−d(t)

t−h

xT (s)

h− d(t)
ds,

]

Calculating the derivative of V1(xt) yields

V̇1(t) = 2x̄T (t)P ˙̄x(t)

= 2



x(t)

x(t− d(t))∫ t
t−αd(t)

x(s)ds∫ t−αd(t)

t−d(t)
x(s)ds∫ t−d(t)

t−h x(s)ds


P



ẋ(t)

(1− ḋ(t))ẋT (t− d(t))

x(t)− [1− αḋ(t)]x(t− αd(t))

[1− αḋ(t)]x(t− αd(t))− [1− ḋ(t)]x(t− d(t))

[1− ḋ(t)]x(t− d(t))− x(t− h)


= ξT1 (t)He(F T

1 PFa)ξ1(t)

= ξT1 (t)Ξ1ξ1(t) (5.3.35)

where F1 and Fa are defined in (5.3.25) and Ξ1 are defined in (5.3.32).
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Calculating the derivative of the V2(xt) along the solutions of system leads to

V̇2(t) =

x(t)

0

T Q1

x(t)

0

− (1− αḋ(t))

 x(t− αd(t))∫ t
t−αd(t) ẋ(u) du

T Q1

 x(t− αd(t))∫ t
t−αd(t) ẋ(u) du


+2αd(t)

 0

ẋ(t)

T Q1

 1
αd(t)

∫ t
t−αd(t) x(s) ds

x(t)− 1
αd(t)

∫ t
t−αd(t) x(s) ds


+(1− αḋ(t))

 x(t− αd(t))∫ t−αd(t)
t−d(t) ẋ(u)du

T Q2

 x(t− αd(t))∫ t−αd(t)
t−d(t) ẋ(u)du


−(1− ḋ(t))

x(t− d(t))

0

T Q2

x(t− d(t))

0


−2(1− α)d(t)(1− ḋ(t))

 0

ẋ(t− d(t))

T Q2

 1
(1−α)d(t)

∫ t−αd(t)
t−d(t) x(s) ds

1
(1−α)d(t)

∫ t−αd(t)
t−d(t) x(s) ds− x(t− d(t))


+(1− ḋ(t))

x(t− d(t))

0

T Q3

x(t− d(t))

0


−

 x(t− h)∫ t−d(t)
t−h ẋ(u) du

T Q3

 x(t− h)∫ t−d(t)
t−h ẋ(u) du


+2(h− d(t))(1− ḋ(t))

 0

ẋ(t− d(t))

T Q3

 1
h−d(t)

∫ t−d(t)
t−h x(s) ds

x(t− d(t))− 1
h−d(t)

∫ t−d(t)
t−h x(s) ds


≤ ξT1 (t)[

e1

0

T Q1

e1

0

−
 e4

e3 − e4

T Q3

 e4

e3 − e4


−(1− αḋ(t))(

 e2

e1 − e2

T Q1

 e2

e1 − e2

−
 e2

e2 − e3

T Q2

 e2

e2 − e3

)

−(1− ḋ(t))(

e3

0

T (Q2 −Q3)

e3

0

) + 2αd(t)

 0

es

T Q1

 e6

e1 − e6


−2(1− α)d(t)(1− αḋ(t))

 0

e5

T Q2

 e7

e7 − e2


+2(h− d(t))(1− ḋ(t))

 0

e5

T Q3

 e8

e3 − e8

]ξ1(t)

= ξT1 (t)Ξ2ξ1(t) (5.3.36)
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where Ξ2 is defined in (5.3.32). Calculating the derivative of the V3(xt) yields

V̇3(t) = h2ẋT (t)Rẋ(t)− h
∫ t

t−h
ẋT (s)Rẋ(s)ds

= ξT1 (t)Ξ3ξ1(t)− hS(t) (5.3.37)

Calculating the derivative of V4(xt) yields

V̇4(t) = ẋT (t)Q4ẋ(t)− (1− ḋ(t))ẋT (t− d(t))Q4ẋ(t− d(t))

= ξT1

[
eTsQ4es − (1− ḋ(t))eT5Q4e5

]
ξ1

= ξT1 Ξ4ξ1

On the one hand, if applying past inequality to estimate S(t) appearing in (5.3.36),

the V (t) can be estimated as

V̇ (t) ≤ ξT1 (t)

Ξ1 + Ξ2 + Ξ3 + Ξ4 −


Ga

Gb

Gc


T 

R1 S1 S2

∗ R1 S3

∗ ∗ R1



Ga

Gb

Gc


 ξ1(t)

= ξT1 (t)Ψ1ξ1 (5.3.38)

where Ψ1 is defined in (5.3.15). Therefore, Ψ1 < 0 leads to V̇ (t) ≤ −ε2||x(t)||2 for

a sufficient small scalar ε2 > 0.

On the other hand, if applying equality (5.1.3) to estimate S(t) appearing in

(5.3.37), the V (t) can be estimated as

V̇ (t) ≤ ξT1 (t)

Ξ1 + Ξ2 + Ξ3 + Ξ4 −



Ga

Gb

Gc


T 

R1 S1 S2

∗ R1 S3

∗ ∗ R1



Ga

Gb

Gc



+ (h− d(t))

G1

G2

T Z1 S1

ST1 Z1

−
S2

S3

Z−1
1

[
ST2 ST3

]G1

G2


+ ((1− α)d(t))

G1

G3

T Z2 S2

ST2 Z2

−
S1

ST3

Z−1
2

[
ST1 S3

]G1

G3


+ αd(t)

G2

G3

T Z3 S3

ST3 Z3

−
ST1
ST2

Z−1
3

[
S1 S2

]G2

G3



 ξ1(t)

= ξT1 (t)(Ψ2 + Ξb1)ξ1 (5.3.39)
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where Ψ2 is defined in (5.3.16), and

Ξb1 =
(1− α)d(t)

h
gT1

S2

S3

Z−1
1

[
ST2 ST3

]
g1 (5.3.40)

+
(1− α)d(t)

h
gT2

S1

ST3

Z−1
2

[
ST1 S3

]
g2 +

αd(t)

h
gT3

ST1
ST2

Z−1
3

[
S1 S2

]
g3

Therefore, Φ1 < 0 and Φ2 < 0, which is equivalent to Ψ2 < 0 and Ψ2 + Ξb1 < 0

based on the Schur complement and convex combination method, leads to V̇ (t) ≤
−ε2||x(t)||2 for a sufficient small scalar ε2 > 0.

Remark 16. It is clear that the Lyapunov function defined in A2 Theorems 1 are

more general than the A1 in [167]. The proposed stability conditions are much less

conservative and are more general than some existing results.

5.4 Numerical example

Two numerical examples listed in Table 5.1 are used to check the conservatism

of the stability criteria. The conservatism of the criteria is checked based on the

calculated maximal admissible delay upper bounds. Consider system (5.2.1) with

the parameters show in Table 5.1 Applied these two numerical examples separately

Table 5.1: systems used as numerical examples.

Criteria A Ad

1

[
−2 0

0 −0.9

] [
−1 0

−1 −1

]

2

[
0 1

−1 −1

] [
0 0

0 −1

]

in control system 5.2.1 and use Theorem 1 to calculate. The results show in table

5.2 and 5.3.

Based on the results listed in table 5.2 and 5.3, the new resulted is better than

previous work. It can be found that the proposed Theorem 1 can provide less con-

servative results.
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Table 5.2: MADUPs for various µ = −µ1 = µ2(Example 1).

Criteria µ = −µ1 = µ2

0 0.1 0.5 0.8

Corollary 3 [169] 4.472 3.669 2.337 1.934

Theorem 1 [170] 4.975 3.869 2.337 1.934

Theorem 2 [171] 5.120 4.081 2.528 2.152

Theorem 3 [172] 6.117 4.794 2.682 1.957

Theorem 1.C1 [167] 6.059 4.703 2.420 2.137

Theorem 1.A2

α = 1 6.0593 4.8172 2.9990 2.5854

α = 0.9 6.0811 4.8322 2.9832 2.5578

α = 0.7 6.0176 4.7714 2.9612 2.5497

α = 0.5 5.9878 4.7404 2.9615 2.5621

α = 0.3 6.0200 4.7698 2.9834 2.5819

α = 0.1 6.0818 4.8269 3.0044 2.5961

α = 0 6.0593 4.8162 2.9978 2.5858

• The regular method which divided the interval into two subintervals can be

showed in inequality(5.3.37) by recognise the α = 0 or α = 1. The difference

between the delay decomposition approach which divided the interval into

two subintervals and three subintervals can be find in above tables. The results

show that Theorem 1.A2 provides better result when 0 < α < 1 than α = 0

or α = 1.

• The results show that Theorem 1.A2 provides better result than Theorem 1

A1, which verifies the less conservatism of inequality (5.3.37).

• The results show that Theorem 1.A2 provides better result than previous re-

sults show in [169] [167].
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Table 5.3: MADUPs for various µ = −µ1 = µ2(Example 2).

Criteria µ = −µ1 = µ2

0 0.1 0.5

Corollary 3 [169] 2.52 1.75 1.61

Theorem 1 [170] 2.523 2.028 1.622

Theorem 2.C1 [167] 3.136 2.386 1.775

Theorem 2.C2 [167] 3.136 2.397 1.787

Theorem 1.A2

α = 1 3.0347 2.0744 1.9137

α = 0.9 3.0716 2.0836 1.9117

α = 0.7 3.0886 2.0721 1.8999

α = 0.5 3.0895 2.0663 1.8945

α = 0.3 3.0907 2.4210 1.9242

α = 0.1 3.0727 2.4051 1.9054

5.4.1 Application on load frequency control system

In power systems, LFC has been used effectively for many years. As mentioned

in Chapter 2, time delays arising in feedback measurement channel and the forward

control channel and calculated its upper bounds are helpful for controller design.

By defining virtual state and measurement output vectors as x(t) = [∆f, ∆Pm,

∆Pv,
∫
ACE]T and y(t) = [ACE,

∫
ACE]T , respectively, and the closed-loop

LFC system can be expressed as follows which defined in [173]:

ẋ(t) = Ax(t) + Adx(t− d1(t)− d2(t)) (5.4.1)

where

x(t) =


∆f

∆Pm

∆Pv∫
ACE

 , A =


− D
M

1
M

0 0

0 − 1
Tch

1
Tch

0

− 1
RTg

0 − 1
Tg

0

β 0 0 0

 ,
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Ad =


0 0 0 0

0 0 0 0

−Kpβ

Tg
0 0 −KI

Tg

0 0 0 0


with the parameters given in [55]: M = 10, D = 1, Tch = 0.3, Tg = 0.1, R = 0.05,

and β = 21.

Table 5.4: MADUPs for various µ = −µ1 = µ2 = 0.9(LFC).

Criteria α NoVs

0 0.1 0.9 1

[55] 4.672

[173] 6.882 28n2 + 10n

Theorem 1.A1 6.8599 6.8847 6.7854 6.8482

Theorem 1.A2 6.8612 6.9086 6.8523 6.8659 33n2 + 7n

The results listed in table 5.4. It can be clearly find the Theorem 1.A2 offers

much better upper bound than previous results. It can be found the results also

better than the sum of two time delays which shows in Chapter 2.

5.5 Economic dispatch

Economic dispatch (ED) ensures the operation of power system in the most eco-

nomical condition minimizing the cost of generating electricity and satisfying the

balance of supply and demand as well as the output constraints of each generator.

In recent years, with the fast development of renewable energy, more and more

distributed generators integrated into the distributed system of power system. As a

result, power systems have become much more decentralized than before. Consid-

ering those DGs, the traditional centralized solution will not be the best way to solve

the ED. Moreover, the distributed solution can provide more robust, economic and

efficient way to solve the ED in distributed power systems. For example, in [174], a

distributed algorithm for electricity market is proposed to protect the privacy of load
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aggregators and generators, and to reduce the computational complexity of the cen-

tralized approach. This is because that the connectivity of the distributed structure

is usually higher than the centralized structure (i.e., star network), and the calcu-

lation can be done by a bunch of cheap devices in parallel in a distributed system

instead of the expensive centralized control center. Besides these advantages, the

development of distributed control system also benefits the conventional centralized

power system, since the distributed control system can be implemented as an auxil-

iary or backup system for the centralized control system to improve the robustness

and efficiency of the power system.

Distributed economic dispatch methods have been proposed recently. One of

the major methods is the consensus-based distributed ED approaches [175]. These

methods are mainly based on the consensus protocol from graph theory method.

Since the necessary condition for the solution to the ED problem requires the La-

grange multipliers of all generators to be identical, the consensus protocol was

applied to achieve all equal Lagrange multipliers in these researches. The solution

of the distributed ED problem should also meet the power balance constraint (the

power supply is equal to the power consumption), this value is estimated locally

by each generator through an estimation algorithm and the result of the estimation

heavily depends on the initial value [176].

In distributed optimization problems, communication among agents is a key is-

sue. In practice, communication delays are inevitable and may destabilize the sys-

tem dynamics. In multi agent systems, there are many literature [177–180] dealing

with the impact of communication delays. While, only few of them investigate

the impact of delay on distributed ED problem. Yang et al. [24] introduced the

distributed algorithm for ED problem with uniform communication delays, while

communication delays are different in the practical communication network. Most

of above mentioned researches have assumed that communication delays are uni-

form for each component. In practical power system, it is very hard to guarantee

this hypothesis, especially as the network grows larger and larger. However, the

impacts of communication delays analyse via the Jensen’s Inequality and the results

still suffer from large conservatism.

Haotian Xu



5.5 Economic dispatch 125

5.5.1 Modeling economic dispatch problem

In the microgrid, the model of economic dispatching problem introduces renew-

able energy in addition to the model of electricity market. Based on this, a simple

state are assumed. There are conventional generators and new energy generators in

microgrid and the cost of renewable generator is to be zero. The cost function of

each conventional generator is defined as given below[27]

Ci(PGi) =
1

2
cGi(PGi)

2 + bGiPGi + aGi (5.5.1)

Pmin
Gi ≤ PGi ≤ Pmax

Gi (5.5.2)

where PGi is the active power generated by each generating unit i ∈ Gf = {1, 2..., NG};
aGi, bGi and cGi are generators cost coefficients; and Pmin

Gi and Pmax
Gi are the lower

and upper bound of power generation of the generator i.

The goal of ED problem is to minimize total cost while meeting total demands

and satisfying the output limits of generators. The objective function can be stated

as
min (

∑nC
i=1 Ci (PGi))

subject to
∑nG

i=1 PGi +
∑nR

l=1 PRl = PD

Pmin
Gi ≤ PGi ≤ Pmax

Gi

(5.5.3)

where nG is the number of conventional generators; nR is the number of renewable

generators; PRl is the active power generated by the renewable generator l; and PD
is the total active power demand.

5.5.2 Centralized approach for economic dispatch problem

For ease of calculation, it is assumed that the conventional generator does not

have constraints at fisrt. The Lagrange multiplier method can be used to solve the

ED problme and the Lagrange function is established for(6)

Γ =

nG∑
i=1

Ci (PGi) + λ

(
PD −

nC∑
i=1

PGi −
nR∑
l=1

PRl

)
(5.5.4)

where λ is the Lagrange multiplier.
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From the first-order optimality conditions, the optimal solution for (5.5.4) is

∂Ci
∂PGi

− λ = 0 (5.5.5)

The partial derivatives of the (5.5.1)

∂Ci
∂PGi

= αiPGi + βi (5.5.6)

From (5.5.5) and (5.5.6), we get

PGi =
λ− βi
αi

(5.5.7)

Substituting PGi into the equality constraint, the centralized optimal solution with-

out the constraints can be obtained as

λ∗ =
PD −

∑nR
l=1 PRl +

∑nG
i=1

βi
αi∑nG

i=1
1
αi

(5.5.8)

Next, the constraint of each conventional generator are considered below. If the

conventional generator does not exceed the bound, PGi can be calculated as (5.5.7).

If the conventional generator exceeds its upper or lower bound, then PGi = Pmax
Gi or

PGi = Pmin
Gi . Thus, the generation of the conventional generator can be calculated

as

PGi =


pmax
Gi ,

λ−βi
αi

> pmax
Gi

pmin
Gi ,

λ−βi
αi

< pmin
Gi

λ−βi
αi

otherwise

(5.5.9)

Let Ω denote the set of conventional generators that exceed their bounds. Then

the centralized optimal solution with the constraints λ̃ is

λ̃ =
PD −

∑nR
l=1 PRl −

∑
i∈Ω PGi +

∑
i/∈Ω

βi
αi∑

i/∈Ω
1
αi

(5.5.10)

5.5.3 Distributed algorithm with the communication delays

In this section, a multiagent system consisting of nG agents is considered. Each

agent only has access to its local cost function and only needs to receive information

from its neighbors. The goal for all agents is to solve Problem (5.5.4) via cooper-

ation. In practical ED problem, due to the distance among the generations, it is
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necessary to consider communication delays among the generations. Considering

the complicated working environment, time-varying delays have more practical sig-

nificance in engineering applications.

5.5.4 Distributed algorithm without generation constraint

Based on the optimality analysis in the aforementioned section, all generators

operate at the optimal configuration. A fully distributed algorithm with time-varying

communication delays to solve ED problem for microgrids, as shown[22]

˙̃
PGi(t) = −

nG∑
j=1

aij (λj(t− τ(t))− λi(t− τ(t)))

λ̇i(t) =κ
(
−PGi(t)− P̃Gi(t)

)
+

nG∑
j=1

aij (λj(t− τ(t))− λi(t− τ(t)))

(5.5.11)

where P̃Gi is the estimated active power generated by the conventional generator

i; τ(t) ∈ [0, τ) denotes the communication delays, τ > 0; and κ is the model

parameter. For calculation purpose, I rewrite (5.5.11) in the dynamic model:

ẏ(t) = Ay(t) + Ady(t− τ) + b (5.5.12)

y(t) =

[
Pgi

λi(t)

]
, A =

[
−αgi 0

−0 0

]
, Ad =

[
0 L

0 L

]
, b =

[
βgi

0

]
(5.5.13)

where P(t) = (PG1, . . . , PGnG)T , and λ(t) = (λ1, . . . , λnG)T ; Firstly, a undirected

and strongly connected communication topoloigy G is condiered Which means

1TnL = 0Tn

The state x2 = y2 − y∗2 can be used to replace the gap between the solution of

the model y = [P T
gi
, λT ]T and the optimal solution y∗ = [P ∗Tgi , λ

∗T
n ]T , and coincides

with it at infinity if the market is stable. Then electricity market model with two

generator and one consumer system can be rewrite as following system

ẋ(t) = Ax(t) + Adx (t− dk(t)− τ) (5.5.14)

Then the above stability analysis method can be used in system 5.5.14
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5.6 Conclusion

This chapter has investigated the stability of linear systems with time-varying

delay. A novel inequalities with three integral terms for the stability analysis of this

system is proposed. The delay decomposition approach which compared the above

inequalities has been used in this chapter. Those techniques have led to a stabil-

ity criterion with less conservatism in comparison with the existing criteria. Then

the effect of the delays on system stability can be assessed accurately by using the

proposed stability criterion. A numerical example has been used to demonstrate the

advantages of proposed method. The application on LFC system and ED problem

has been used to show advantage.
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Chapter 6

Dynamic stability of electricity

market with time delay

6.1 Introduction

For more than one decade, the electricity market, as a part of electricity industry

restructuring, have experienced huge transformations all around the world. This re-

structuring has a series of reforms, which mainly include the building of spot market

and the separation of electricity market into generation, transmission, distribution

and load. The reason for restructuring is because the conventional electricity supply

market, where generation, transmission and distribution were regarded as a whole

electricity supply, was vertically integrated in the electricity markets as a monopoly

utility prior to electricity industry restructuring. However, with the occurrence of

the electricity supply industry competition in restructuring, electricity markets will

no longer be charged by a single electricity supply industry [23]. The restructuring

for generation market and the load market is deregulation. As for the transmission

and distribution networks, they will remain regulated, but they must be open to all

customers. Therefore, in order to study electricity markets, modelling electricity

markets is a key step.

Different electricity market models have been used in the literature to capture

various aspects of power market dynamics from bilateral contracts, power exchanges
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and Pool markets to data based time-series models, game theoretical formulations

and the dynamical modeling of supply, (elastic) demand, and real-time pricing.

Among all these models, the price signal is setting to control the electricity mar-

ket operation. And in most of these research, the price signal is directly considered

as a market clearing price. However, the price signals can be sent through any com-

munication networks or devices [181]. The above communication will lead to the

price signal’s arrival delay. As the price signal is the key information to control the

electricity market, the research on the impact of price signal with time delay needs

to be carefully studied. The time delay of price signal is considered by [29]. In

related researches, there are two kinds of time delay such as market clearing time,

which ranges from a few minutes to as much as an hour [182] and the delay between

the market clearing time and signal process.

The communication infrastructure as a necessary intermediate for conveying

price information to a real-time market, introduces certain challenges on the sta-

ble operation of the grid. The main challenge is the introduction of discrete time

delay and constant or time-varying delays due to the related information processing

and communication lags. The stability of the electricity grid and market operation

can be endangered by these delays. Many researches focused on the communication

in the electricity market. Various approaches have been developed were based on

the Lyapunov-Krasovskii stability theory and the resulting stability criteria have a

certain degree of conservativeness, which leads that the tolerance of the time de-

lay where it usually indicates by the acceptable maximal delay bound or acceptable

maximal sampling period. Many researches have obtained many significant results

on the impacts of communication delays. Thus, the approach which considers the

increasing of acceptable maximal delay bound is a significant issue and challenge

within the context of electricity markets in microgrids and this is the motivation of

this chapter to reduce the conservativeness for market optimization purpose.

In this chapter, an electricity market model and its dynamic characteristics are

investigated. The main idea of this chapter is to introduce the time delay in the

dynamic model of electricity market. A novel stability analysis method which pro-

posed in Chapter 2 for control system with two additive communication delays com-
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bined with the input delay approach are applied in the electricity market model.

Compared with the existing literature, the contributions of this chapter are summa-

rized as follows:

1. A dynamic electricity market model that incorporates the interaction between

real-time pricing, physical constraints and demand response based loads is

developed. The stability of the resulting dynamical model which consists of

three main participants, generating company, consumer company and system

operator is investigated and the conservativeness is reduced by applying the

new stability criterion.

2. A less conservative stability criterion which using Wirtinger-based inequality

together with the reciprocally convex combination technique is applied. Com-

pared with the existing criteria, several new techniques, including the novel

method of the LKF constructing and the improved techniques for estimating

the LKF and its derivative, are applied to reduce the conservativeness.

The remainder of this chapter is organized as follows: In section 2, the electricity

market structure is introduced. Section 3 presents the dynamic model of electricity

market and its stability properties are derived by using a new stability criterion. The

calculation and simulation results are provided in section 4. Finally, section 5 gives

summary.

List of Symbols:

Pg the amount of the generated power

Pd the amount of the consumed power

λ power price

E time integral of the difference in supply and demand

θ(ϑ) the set of indices of generating units (demand) at node n

Ω the set of indices of nodes connected to node n

δn the voltage angle of bus n

Bnm the susceptance of line n−m
Pmax

nm the transmission capacity limit of line n−m
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6.2 Electricity market structure

The electricity market which considers in this thesis is wholesale and is assumed

to function as follows: each GenCo submits the bidding stacks of each of its units to

the ISO and each ConCo submits the bidding stack of each of its demands to the ISO

too. Then, the market is cleared by the ISO. Prices and production and consumption

schedules are given by an appropriate market-clearing procedure. Before discussing

the details, some assumptions are given here. There is no monopoly existing in a

deregulated market, which means the GenCo cannot manipulate the price which is

the same for ConCo.

6.2.1 Generating company model

There are multiple generators in any grids. If it is assumed that NG generators

and the associated operating cost is denoted as Cgi(Pgi), the marginal cost function

of each conventional generator can be defined as given below [183]

Cgi(Pgi) =
1

2
cgi(Pgi)

2 + bgiPgi + agi (6.2.1)

where Pgi is the active power generated by each generator unit i ∈ Gf =

{1, 2..., NG}; agi , bgi and cgi are generators cost coefficients; Pmin
gi

and Pmax
gi

are

the lower and upper bound of power generated by the ith generator.

The goal of a GenCo is to maximize its overall profit πgi which is stated as

max
Pgi

πgi = max
Pgi

[λgiPgi − Cgi(Pgi)] (6.2.2)

s.t.

NG∑
i=1

Pgi = PD (6.2.3)

Pmin
gi
≤ Pgi ≤ Pmax

gi
(6.2.4)

6.2.2 Consumer company model

Similar to the generators, there are multiple consumers in the most grids. If it

is assumed that there are ND consumers and the demand of each consumer j ∈
Dq = {1, 2..., ND}, is denoted as Pdj . The associated utility function is denoted
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as Udj(Pdj), which represents the value of using electricity for the consumer and is

defined as [183]

Udj(Pdj) =
1

2
cdj(Pdj)

2 + bdjPdj + adj (6.2.5)

where adj , bdj and cdj are consumer utility coefficients. The goal of the ConCo is

to maximize the total profit, πdj , while consuming electricity. This profit, for a unit

j connected to node n, is determined as the difference between the utility Udj(Pdj)

and the market clearing price. Assuming that the corresponding power consumed is

denoted as Pdj , the maximization problem can be posed as

max
Pdj

πdj = max
Pdj

[Udj(Pdj)− λdjPdj ] (6.2.6)

s.t.

NG∑
i=1

Pgi =

ND∑
j=1

Pdj (6.2.7)

Pmin
dj
≤ Pdj ≤ Pmax

dj
(6.2.8)

6.2.3 Market clearing model

The market-clearing procedure consists of optimizing a cost function, subject to

various network constraints. The most dominant network constraints are due to line

capacity limits and network losses [184]. The power flow through any line is often

limited due to technical constraints and is said to be congested when it approaches

its maximum limit. This constraint is explicitly included in the model shown below.

The second constraint is due to the network losses, most of which come from the

heat losses in the power lines. For ease of exposition, such ohmic losses are not

considered in this chapter.

The cost function that is typically used is referred to as social welfare. In eco-

nomic definition, social welfare encapsulates the benefits of a market to the society.

It is reasonable to increase this benefit as much as possible. Social welfare describes

the aggregate well-being of GenCo and ConCo in a given market. It is consisted by

two main parts which are ConCo surplus and GenCo profits. Social welfare is de-

fined as SW , which

SW =

NG∑
i=1

πgi +

ND∑
j=1

πdj =

NG∑
i=1

[λgiPgi − Cgi(Pgi)] +

ND∑
j=1

max
Pdj

[Udj(Pdj)− λdjPdj ]
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If it is assumed that there is no benefit for market operator, this means the payments

of consumers will equal to the benefits of generators. Then, the social welfare can

be defined as

SW =
∑
j∈Dq

Udj(Pdj)−
∑
i∈Gf

Cgi(Pgi) (6.2.9)

where the first and second terms denote the revenue due to surpluses stemming from

bids from GenCo and ConCo, respectively. The market-clearing procedure is given

by

min −SW (6.2.10)

s.t.
∑
j∈ϑ

Pdj −
∑
i∈θ

Pgi +
∑
m∈Ω

Bnm[δn − δm] = 0 ∀n ∈ N, (6.2.11)

Bnm[δn − δm] ≤ Pmax
nm ∀n ∈ N ; ∀m ∈ Ω, (6.2.12)

where θ(ϑ) is denoted the set of indices of generating units (demand) at node n,

Ω is the set of indices of nodes connected to node n, δn is the voltage angle of bus

n, Bnm is the susceptance of line n−m and Pmax
nm is the transmission capacity limit

of line n −m. The constraints (6.2.11) and (6.2.12) are due to power balance and

capacity limits, respectively. The associated Lagrange multipliers λn and γnm can be

indicated by each constraint. The underlying optimization problem of the ISO can

therefore be defined as the optimization of (6.2.10) subject to constraints (6.2.11)

and (6.2.12). The corresponding Lagrangian of the market clearing optimization

problem is given by

L(x, λn, γnm) =
∑
j∈Dq

Udj (Pdj )−
∑
i∈Gf

Cgi(Pgi) (6.2.13)

+
N∑
n+1

λn[
∑
j∈ϑ

Pdj −
∑
i∈θ

Pgi +
∑
m∈Ω

Bnm[δn − δm]] (6.2.14)

+

N∑
n+1

∑
m∈Ω

γnm[Bnm[δn − δm]− Pmaxnm ] (6.2.15)

where x =
[
PG PD δ

]T
is the primal optimization variable. The resulting solu-

tion can be determined, using Karush Kuhn Tucker(KKT) conditions [185], it will

satisfy the following conditions:
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(
dCgi(Pgi)

dPgi
|P ∗
gi
−λ∗n(i)

)
= 0 ∀i ∈ Gf (6.2.16)(

λ∗n(i) −
dUdj (Pdj )

dPdj
|P ∗
dj

)
= 0 ∀j ∈ Dq (6.2.17)(∑

m∈Ω

Bnm[λ∗n−λ∗m+γ∗nm−γ∗mn]

)
= 0 ∀n ∈ N (6.2.18)−∑

i∈θ

NgiP
∗
gi∑

b=1

+
∑
j∈ϑ

NdjP
∗
dj∑

k=1

+
∑
m∈Ω

Bnm [δ∗n − δ∗m]

 = 0 ∀n ∈ N (6.2.19)

γ∗nm (bnm [δ∗n − δ∗m]− Pmaxnm ) = 0 ∀n ∈ N, ∀m ∈ Ω (6.2.20)

Now, these decision variables will be connected to a Nash equilibrium approach.

The equilibrium of the market model in (6.2.17)-(6.2.20) is the Nash equilibrium for

GenCo and ConCo, which collectively optimizes the overall benefit of GenCo and

ConCo denoted in (6.2.2) and (6.2.6) while satisfying constraints of system operator

in (6.2.11) and (6.2.12).

It follows that the payoff functions denoted in (6.2.2), (6.2.6) and (6.2.10) are

diagonally strictly concave and the corresponding constraints are concave functions.

This implies that the market has a unique Pure Strategy Nash Equilibrium that is

identical to the solution of the KKT denoted in (6.2.17)-(6.2.20). This implies that

at the extremum,P ∗gi , P
∗
dj

, δ∗n, λ∗n, γ∗nm, the profit of GenCo in (6.2.2) is maximized.

That is,

πgi(P
∗
gi
, P ∗dj , δ

∗
n, λ

∗
n, γ

∗
gi
, ) ≥ πgi(Pgi , P

∗
dj
, δ∗n, λ

∗
n, γ

∗
gi
, )

Similarly, it follows that the the total profit of ConCo is maximized. That is,

πgi(P
∗
gi
, P ∗dj , δ

∗
n, λ

∗
n, γ

∗
gi
, ) ≥ πgi(P

∗
gi
, Pdj , δ

∗
n, λ

∗
n, γ

∗
gi
, )

This implies that at the extremum, the best response of the players is given by P ∗gi ,

P ∗dj , δ
∗
n, λ∗n and γ∗nm, Therefore, this extremum coincides with the Nash equilibrium.

6.2.4 Optimization method

In the optimization area, [32] mentioned a general optimization method to pro-

cess the core problem. It is introduced in this part for legibility.
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Definition of optimization problem

A convex optimization problem can be formed as :

Minimizef(x)

s.t.gi(x) = 0, ∀i = 1, ..., N
N∑
i=1

Rjihi(x) ≤ cj, ∀j = 1, ...L

where R is a matrix of constants, f , gi, hi are differentiable functions and cj are

constants.

Dual decomposition

In order to derive the dual optimization problem, the Lagrangian function is

defined as

L(x, λ, µ) = f(x) +
N∑
i=1

λigi(x) +
L∑
j=1

µj(Rjihi(x)− cj) (6.2.21)

where λi and µj ≥ 0 are (dual) Lagrangian multipliers for the equality and inequal-

ity constraints, and x is the primal variable. Denoting

D(λ, µ) = infxL(x, λ, µ) (6.2.22)

the dual optimization problem is formulated as

MaximizeD(λ, µ)

s.t.µ ≤ 0, ∀j = 1, ..., L

Under the condition that the original problem is strictly feasible, then there is no

duality gap (i.e. the original and the dual problem have the same optimum). In this

case, the dual problem can be solved instead of the original problem. In addition,

the constraint set for the optimization problem is convex which allows to use the

method of Lagrange multipliers and the KKT theorem.
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Subgradient Algorithm

In generally, an iterative manner can more simply solve the above optimization

problem. For this purpose, a gradient approach is often employed and is briefly

described below. Since the ultimate goal of constraint optimization problem is the

minimization of a Lagrangian function denoted as L(x, λ, µ) in (6.2.21), x, λ and µ

can be progressively changed so that the minima-Lagrange multiplier pairs λ and µ

satisfy the KKT conditions. In order to achieve these results, Primal-Dual interior

point method is used, which is given by

x(t+ h) = x(t)− kx5x L(x, λ, µ)h (6.2.23)

λ(t+ h) = λ(t)− kλ5λ L(x, λ, µ)h (6.2.24)

µ(t+ h) = µ(t)− kµ [5µL(x, λ, µ)]+µ h (6.2.25)

where kx, kλ and kµ are positive scaling parameters which control the amount of

change in the direction of the gradient. Letting h→ 0,

τxẋ(t) = −5x L(x, λ, µ) (6.2.26)

τλλ̇(t) = 5λL(x, λ, µ) (6.2.27)

τµµ̇(t) = [5µL(x, λ, µ)]+µ (6.2.28)

where τy = 1/ky for y = x, λ and µ.

6.3 Stability analysis of electricity market with time

delay

The stability analysis of electricity market with time delay has few research as

the stability of the system can be ensured by reducing the economic income of the

market participants. However, with the introduction of renewable energy and the

rise of smart grid technologies such as distributed power grid, the economic cost of

maintaining the stability of the electricity market becomes higher and higher, which

makes its stability problem paid high attention.
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6.3.1 Dynamic model of the electricity market

In the actual electricity market, the market participants are not able to know the

competitors’ decision and profit functions. They are unable to reach the equilibrium

condition at once. In fact, each participant is rational and can only decide the pro-

duction strategy according to the participant’s expected profit at each iteration. For

each market participant, the evaluation of the participant’s own profit is more accu-

rate than the predication of the competitors output. Therefore, market participants

play a game with a dynamic adjustment to reach their Nash equilibrium. Now, a rea-

sonable dynamic model of the market participant’s interactions can be considered.

It is assumed that if the game is not at equilibrium, each participant will attempt to

change the participant’s own strategy so as to obtain the maximum rate of change

of the participant’s own payoff function with respect to a change in the participant’s

own strategy.

By using the Subgradient Algorithm method which mentioned in preliminary

part, the optimization probelm in (6.2.10)-(6.2.12) can be viewed alternately as a

game between the GenCo, ConCo and ISO, where each of these three players at-

tempts to maximize their own benefit [186]. Instead of solving (6.2.17)-(6.2.20) as

a static optimization problem, it can be taken as a dynamic approach, inspired by

(6.2.27)-(6.2.28). Supposing that the underlying primal and dual variables are per-

turbed from their corresponding equilibrium to Pgi , Pdj , λn and γnm. Using (6.2.17)

and (6.2.2), a differential equation for the ith equation for the i GenCo ∀i ∈ Gf can

be derived as

τgiṖgi = λ(i)− cgiPgi + bgi (6.3.1)

with the goal of driving its solution Pgi to the equilibrium P ∗gi which solves (6.2.17).

Similarly, using (6.2.18) and (6.2.6), a differential equation can be derived for the

jth ConCo ∀i ∈ Dq as

τdj Ṗdj = cdjPdj − bdj − λ(j) (6.3.2)

where τgi and τdj are time-constants that can be adjusted so as to result in an optimal

convergence of these solutions to the equilibrium in (6.2.17)-(6.2.20).
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In addition, differential equations for the market clearing prices, congestion

price and phase angles can be determined as

τλnλ̇n = −
∑
i∈θn

Pgi +
∑
j∈ϑn

Pdj +
∑
m∈Ωn

Bnm[δn − δm] (6.3.3)

τnmγ̇nm = [Bnm(γn − γm − Pmax
nm )]+γnm (6.3.4)

τδn δ̇n = −
∑
m∈Ωn

Bnm[λn − λm + γnm − γmn] (6.3.5)

Equation (6.3.1)-(6.3.5) represent a dynamic model of the overall electricity market

which consider congestion.

6.3.2 Impact of time delay on the stability of electricity market

The characteristic of above dynamic model is decentralized. The market clear-

ing price is given at each node i. For research purpose, the next step focus on the

dynamic model of electricity market without congestion. When the congestion are

out of consideration, the market clearing price in whole market at time t can be uni-

form as λ. Then, the above differential equations for the dynamic model of overall

electricity market without congestion are given by simplification above equations:

τgiṖgi = λ− cgiPgi − bgi + kE(t) (6.3.6)

τdj Ṗdj = cdjPdj − bdj − λ (6.3.7)

τλλ̇ = −
∑
i∈θn

Pgi +
∑
j∈ϑn

Pdj (6.3.8)

Ė =
∑
i∈θn

Pgi −
∑
j∈ϑn

Pdj (6.3.9)

In a deregulated electricity market, discrete price signals are received and inter-

vals equal to the market clearing time [29], i.e., the updating period of electricity

price. In a real market, the price signals are sent through various communication

networks and devices. The following new linear model with the sampled and de-
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layed price is obtained:
τgiṖgi(t) = λ (tk − τ)− bgi − cgiPgi(t)− kE(t)

τDj ṖDj(t) = bDj + cDjPDj(t)− λ (tk − τ)

Ė(t) =
∑
Pgi −

∑
PDj

τλλ̇(t) = −E(t)

(6.3.10)

where tk is the updating instants of the price satisfying.

0 < tk+1 − tk = Tmctk ≤ Tmct

with Tmctk and Tmct being respectively the market clearing time for k and its maxi-

mal value; and τ is the communication delay.

6.3.3 Stability analysis of the electrical market with time delay

The market with one generator and one consumer

The electricity market model with one generator and one consumer leads i and

j equal to 1. A continuous-time state equation can replace the system (6.3.10):

ẏ(t) = Ay(t) + Ady(t− h) + b (6.3.11)

y(t) =


Pg

Pd

E(t))

λ(t)

 , A =


− cg
τg

0 − k
τg

0

0 cd
τd

0 0

1 −1 0 0

0 0 − 1
τλ

0

 , Ad =


0 0 0 1

τg

0 0 0 1
τd

0 0 0 0

0 0 0 0

 , b =


bg
τg
bd
τd

0

0


(6.3.12)

The solution of this model y = [P T
g , P

T
d , E

T , λT ]T , converges to the equilibrium

in (6.3.12), as t → ∞ if the overall system is stable. At all other transient times,

the trajectories represent the specific path that these variables take, when perturbed,

as they converge towards the optimal solution. In other words, y is distinct from

the optimal solution y∗ = [P ∗Tg , P
∗T
d , E

∗T , λ∗T ]T , and coincides with it at infinity

if the market is stable. For defining a new state x = y − y∗, the stability of overall

system at equilibrium point y∗ is equivalent to the stability of the following system

at zero-point.
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ẋ(t) = Ax(t) + Adx (t− dk(t)− τ) (6.3.13)

It is effortless to discover that the above system is similar to the control system

with two delays which is investigated in Chapter 2. Therefore, the Theorem can

directly employ to discuss the stability of the electricity market with market clearing

time dk(t) and time delays τ of price signal.

The market with two generators and one consumer

The electricity market model with two generators and one consumer leads i =

1, 2 and j = 1. A continuous-time state equation can replace the system (6.3.10):

ẏ2(t) = A2y(t) + Ad2y2(t− h) + b2 (6.3.14)

y2(t) =


Pgi

Pd

E(t))

λ(t)

 , A2 =


− cgi
τgi

0 − k
τgi

0

0 cd
τd

0 0

1 −1 0 0

0 0 − 1
τλ

0

 , Ad2 =


0 0 0 1

τgi

0 0 0 1
τd

0 0 0 0

0 0 0 0

 , b2 =


bgi
τgi
bd
τd

0

0


(6.3.15)

The state x2 = y2 − y∗2 is the same to replace the gap between the solution of the

model y = [P T
gi
, P T

d , E
T , λT ]T and the optimal solution y∗ = [P ∗Tgi , P

∗T
d , E

∗T , λ∗T ]T ,

and coincides with it at infinity if the market is stable. Then, the electricity market

model with two generator and one consumer system can be rewritten as following

system

ẋ2(t) = A2x2(t) + Ad2x2 (t− dk(t)− τ) (6.3.16)

There is no difference except the order of matrix is larger than one supply sys-

tem, which means the stability analysis method can also be used to solve this prob-

lem with the sharply increasing on the calculation.
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6.4 Calculation and simulation results

6.4.1 One generator and one consumer

The case study which has one generator and one consumer in a electricity market

are studied in this part to compare the advantage of the proposed Theorem. The

parameters listed in Table 6.1 are used in this case study and the equilibrium point

of this system is Pg = 26.68MW , Pd = 26.68MW , λ = 4.66 and E = 0. Assume

that a sudden shortage of supply is occurred since a generator is out off grid, then

Pg is reduced to 80% of steady state production.

Table 6.1: Parameters used in one generator, one consumer model

τg cg bg τd cd bd τλ k

0.2 0.1 2 0.1 -0.2 10 100 0.1

Based on Theorem 1 and the criterion in [2.3.1 2.3.2 2.3.3], the values of τ with

given market clearing time period dk(t) are calculated and partial results are show

in Table 6.2. Based on 6.2, it can be found that the stability upper bound obtained

by the Theorem 1 is larger than the previously results obtained by [187, 188]. In

addition, the simulation results are shown in Fig. 6.1. It can also be observed

that the electricity market is stable, which verifies the effectiveness of the proposed

method.

Table 6.2: Upper bounds of τ for given dk(t)

Criteria dk(t)

1.0 2.0 5.0

[187] 6.975 5.605 -

[188] 7.712 7.034 3.865

Theorem 1 8.161 7.823 5.142

Haotian Xu



6.4 Calculation and simulation results 143

0 20 40 60 80 100 120 140 160 180 200
-100

0

100

P
g

0 20 40 60 80 100 120 140 160 180 200
0

50

P
d

0 20 40 60 80 100 120 140 160 180 200
-100

0

100

E

0 20 40 60 80 100 120 140 160 180 200

Time (s)

0

5

10

Figure 6.1: The responses of the system during Tmct = 2.

6.4.2 Two generators and one consumer

The case study which has two generators and one consumer in a electricity mar-

ket are studied in this part to compare the advantage of the proposed Theorem. The

parameters list in Table 6.3 are used in this case and the equilibrium point of this

system is Pg1 = 26.68MW , Pg2 = 0MW , Pd = 26.68MW , λ = 4.66, and E = 0.

The states keep with previous case except one spare generator are introduce in this

case. Also assume that a sudden shortage of supply is occurred since a generator is

out off grid, then Pg is reduced to 80% of steady state production. The values of τ

with given market clearing time period dk(t) are calculated by Theorem 1 and the

criterion in [2.3.1 2.3.2 2.3.3]. Partial results can be found in Table 6.4. The results

show the stability upper bound and the simulation results of electricity market with
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Table 6.3: Parameters used in two generators, one consumer model

Number τg cg bg τd cd bd τλ k

1 0.2 0.1 2 0.1 -0.2 10 100 0.1

2 0.3 0.15 1.5 - - - - 0.2

clearing time equals to 2 are shown in Fig. 6.2. The simulation results show that the

electricity market is stable, which verify the effectiveness of the proposed method.

Compared the results achieved in two case studies, it can be found that the standby

unit can enhance the stability of the whole system.

Table 6.4: Upper bounds of τ for given dk(t)

Criteria dk(t)

2 5 10

[188] 12.71 8.34 5.15

Theorem 1 13.64 9.07 6.47

The numerical examples are simple with one or two generators and one con-

sumer to demonstrate the proposed method can be applied in a electricity market.

As the actual electricity market is much more complex, there is no related research

give an optimized results with more complex electricity market equilibrium data.

The proposed method will text in complex scenarios in the future work.

6.5 Conclusion

In this chapter, the dynamic model of electricity market has been introduced.

Then, the stability of this model with communication delay has been analyzed. A

stability criterion, which using Wirtinger-based inequality with less conservatism

in comparison with the existing criteria is applied in the electricity market. Then,

the effect of the delays on system stability can be assessed accurately by using the

proposed stability criterion. Two case studies are provided. The calculation and

simulation results have been obtained and shown to demonstrate the effectiveness
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Figure 6.2: The responses of the system during Tmct = 2, dk(t) = 12.7 and dk(t) =

13.6

of the proposed method.
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Chapter 7

Conclusions and Future Work

This chapter summarize the obtained results and contributions of this thesis.

Suggestions for future investigations are also presented.

7.1 Conclusions

In this thesis, the stability analysis of time delay system and its application on

the power system are investigated. Time-varying time delays resulting from the

communication channel or a channel like communication network such as message

RNA are considered in those industrial time delay systems. Delay dependent stabil-

ity criteria with less conservatism have been proposed at first. Then less conserva-

tive estimation of delay margin is used to guide the synthesis of the controller with

compromising between the dynamic performance and the delay margins.

First, four new delay dependent stability criteria have been proposed. Their ef-

fectiveness has been verified by numerical examples with the comparison with the

approaches provided by previous researches. In Chapter 2, the stability of linear

systems with two additive time-varying delays are analysed. The less conservative

delay-dependent stability criterion is given by constructing a new delay-product-

type LKF and the Wirtinger-based integral inequality, combing the analysis tech-

nique of inequalities with the reciprocally convex.

The stability analysis of the GRN with time-varying delay is investigated in
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Chapter 3. A novel delay-dependent stability criterion has been derived. The novel

Wirtinger-type double integral inequality has been developed for the double integral

terms estimation. Chapter 4 has investigated the stability analysis of fixed-point

state-space digital filters with generalized overflow arithmetic and a time-varying

delay. The criterion has less conservatism in comparison to the ones reported in the

previous literature due to two aspects of improvements. A new Lyapunov functional

with several augmented terms and the relaxed positive-definite condition has been

constructed, and free matrices therein provide extra freedom of checking the condi-

tions of stability criterion, combining the analysis technique of inequalities such as

Wirtinger-based inequality, zero-value equations and the extended reciprocally con-

vex matrix inequality. In Chapter 5, the less conservative delay-dependent stability

criterion is given by constructing the Lyapunov functional which was proposed in

Chapter 2 based on the ideal of delay decomposition. The Wirtinger-type relaxed

three integral inequalities combining reciprocally convex matrix inequality are used

to analysis inequalities.

In the second part of this thesis, the proposed stability criteria are applied in

different real industry systems with time delays, which include power systems (LFC,

electricity market), GRN and digital filtering.

The first stability criterion is applied in load frequency control scheme of power

systems in Chapter 2, where load frequency control is designed for maintaining the

frequency at its required value. Since two time delays are introduced by the commu-

nication between feedback measurement channel and the forward control channel of

the load frequency control, the proposed stability criterion is used to calculate the

delay margins of those two additive time-varying delays. The obtained delay mar-

gins of the two-additive time-varying delays can be used to design a controller of

the closed-loop system. According to the results provided, it can be found that the

delay margins of time delays are larger than existing work in literature, which means

obtained results is less conservative than previous work. By using these delay mar-

gins, system stability can be assessed accurately. In addition, when one of the delay

change rate increases, the calculated sum of two time delay margins changes as the

same time. Hence, it proves that the two delays cannot be considered as one delay
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when two delays are different. Finally, the simulation results of the power system

with the calculated delay margins added are provided and it can be found that the

power system with LFC is stable, which verifies the effectiveness of the proposed

method.

For the deregulated electricity market, the first stability criterion is also applied

to analyse the system considering the price signal with time delay. The price of

electricity is used to calculate the optimal power flow and control the power system

operation through generators, loads and market operators. Time delays are gener-

ally ignored in the related researches. Therefore, the optimal power flow which was

calculated by previous researches is not the real optimal solutions, which can lead

to energy and economic losses. In order to save the cost of participants, the stabil-

ity analysis of the electricity market with time delay is studied. The first stability

criterion is applied to the electricity market in Chapter 6 to investigate the effect of

time delay. Two case studies which include generator and consumer are researched

separately. It can be found that the stability upper bound obtained by the proposed

criterion is larger than the previous results in the literature, which indicates that the

proposed criterion can achieve less conservatism than existing results. Furthermore,

the simulation results of the electricity market show that the electricity market is

still stable under the calculated maximum time delay. It verifies the effectiveness of

the proposed stability criterion. However, from the simulation results, the minimum

time delay which makes the system unstable is greater than the calculated maximum

time delay. In other words, there’s still plenty of room for improvement.

In Chapter 3, the stability analysis of control systems is extended to a biological

system for expanding the scope of application. The second stability criterion which

is proposed in this thesis is applied in the genetic regulatory networks with nonlinear

dynamical behaviour and time delay. It can be easily found from the results that

the proposed stability criterion can provide the larger maximal admissible delay

bounds for two cases than those given in the existing literature. It shows that the

proposed criterion is indeed less conservative than the ones reported in the literature.

In addition, the number of variables in the proposed criteria is smaller than previous

research, which means the proposed method not only is less conservative, but also
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saves computing space.

The digital filter is a necessary element of everyday electronics. It is an effective

device that produces the desired discrete-time output signal from the original input

signal, which will unavoidably involve undesired information. Therefore, the anal-

ysis of digital filters is helpful for their implementation. Improved delay-dependent

stability analysis of digital filters with time-varying delay and generalized overflow

arithmetic are proposed in Chapter 4. The third stability criterion is used to analyse

the digital filters which consider both nonlinearities and time delays. Two numerical

examples have been given to show the effectiveness and advantages of the proposed

stability criterion. In addition, the results with and without relaxed positive-definite

condition and the cross-terms introduced by the Wirtinger-type inequality demon-

strate that these techniques are effective in reducing conservatism.

7.2 Future work

The possible future work are listed based on the following ideas.

• In recent years, other integral inequalities, tighter than Wirtinger-based in-

tegral inequality, have been developed, for example, free-matrix-based in-

equality, auxiliary function-based integral inequalities and Bessel-Legendre

inequality. The further improved stability criteria can be obtained by combin-

ing those inequalities and the proposed delay-product-type LKF, which will

be further studied in future research.

• The dynamic model of electricity market is researched just with output con-

straint of each generator. However, as the real electricity market, the conges-

tion and line loss can not be ignored. The difference between the optimized

scheme and the actual system makes it difficult to apply the result directly in

the actual power market. However, if the model of block management and

line loss is too complicated, the calculation amount of stability analysis will

be greatly increased. In the future work, stability analysis methods combin-

ing conservative reduction and computational load can be studied to make the

electricity market model more realistic.
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• The stability analysis of the optimal economic dispatch of microgrids consid-

ering communication delays are investigated by ignored the cost of renewable

generators. Further more, there are plenty researches focus on demand re-

sponse. The both goals of economic dispatch and demand response are reduc-

ing their cost and get more benefit from market. The dynamic of this gaming

has few attention and this motivates the next research. In the future work, the

model of ED problem considering will be more rigorous.

• The case studies in electricity market and ED problem are only based a very

simple ideal-type model. The further improved case studies based on 39bus-

IEEE model will be investigated.
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