
Reduction of random variables in the Stochastic

Harmonic Function representation via spectrum-relative

dependent random frequencies

Jianbing Chen1, Liam Comerford2,3, Yongbo Peng1, Michael Beer2,3, Jie Li1

1 State Key Laboratory on Disaster Reduction in Civil Engineering, Tongji University,
China

2 Institute for Risk and Reliability, Leibniz University Hannover, Germany
3 Institute for Risk and Uncertainty, University of Liverpool, Liverpool, L69 3GH, UK

Abstract

Two significant developments pertaining to the application of the Stochastic
Harmonic Function representation of stochastic processes are presented. To-
gether, they allow for Gaussian records to be simulated within the bounds
of the representation with the fewest number of random variables. Specifi-
cally, independent random frequencies that form a staple component of the
Stochastic Harmonic Function are replaced by dependent random frequen-
cies, along with a specific scheme for choosing frequency interval widths.
Numerical examples demonstrating spectrum reconstruction accuracy and
estimated PDF convergence to the Gaussian are presented to support the
work.
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1. Introduction

Propagation of randomness through non-linear systems can be highly
computationally demanding where numerical schemes are utilised. For many
problems, a brute force Monte Carlo simulation is not feasible when the time
required to simulate the system output for a single case is not insignificant.
Possible approaches to such problems include simplification of the system
response, for example through statistical linearisation [1, 2]; response proba-
bility density function (PDF) determination through Wiener Path integrals
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[3, 4, 5], recently extended to utilise PDF sparsity in a monomial basis [6]; and
application of the Probability Density Evolution Method (PDEM) [7, 8, 9]
to a track probability masses through the system. Where stochastic input
processes need to be propagated through a non-linear system, discounting
the linearisation option cited above, process representations that are able to
rely on fewer random variables could further reduce computational demand.

To address these issues, Ref. [10] introduced the stochastic harmonic
function (SHF) method of stochastic process representation as an extension
of the established spectral representation approach [11, 12] to be used to
describe an input process for a PDEM problem. SHFs are defined as a sum-
mation of harmonics with associated power from a described power spectrum
with both random phase and random frequency. The addition of random fre-
quencies over deterministic frequencies actually allows a stochastic process
to be represented with fewer random components than the standard spec-
tral representation approach. Further, due to the relaxed restrictions on
the discretisation of the frequency space, an ensemble of records of an SHF
defined process can more accurately approximate a target power spectrum
function. Although SHF is considered an extension of the spectral repre-
sentation method, the idea of using random frequencies as part of a Fourier
series to simulate random processes is not new. Shinozuka [12] proposed using
independent identically distributed random frequencies to simulate random
processes, with distribution function based upon the scaled power spectrum.
This is similar to the SHF-I (given in Section 2), but without frequency par-
titioning. Shinozuka also used small random frequencies in combination with
the familiar deterministic frequencies in the spectral representation method
[13], essentially nudging the deterministic integer frequencies slightly to re-
duce periodicity in the simulated records.

Although the SHF already presents as a practical tool for process repre-
sentation, particularly in the context of PDEM and has been extended for
non-stationary process representation [14], there remain significant potential
improvements that could further advance and generalise the method. Two
distinct alterations to the definition of the SHF are explored in this work for
the purpose of reducing the number of random components, and increasing
convergence rate of simulated records to the target process statistics:

1. Dependency will be introduced between random frequencies of the SHF
representation. By making the frequencies of the harmonics completely
dependent, the number of required random variables can be effectively
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halved.

2. The SHF formulation allows for a range of frequency interval defini-
tions including overlapping intervals. By focusing on the convergence
of the PDF of simulated records to the Gaussian, the optimal interval
definition is derived.

To begin with, an overview of classical spectral representation work upon
which SHF is based, followed by basic SHF-I and SHF-II representations
is provided in Section 2. This background is necessary to appreciate the
new developments that focus on reduction of random variables. Sections 3
and 4 will focus on the above points 1 and 2 above respectively. These are
explored with a focus on the SHF-II formulation only. Finally, the hypothe-
ses presented in Sections 3 and 4 are then confirmed by way of numerical
experiments in Section 5.

2. Overview of spectral representation and Stochastic Harmonic
Functions

The established SHF process description and extensions thereof discussed
in this work are founded on spectral representation work summarised in [15],
essential features of which are presented here for completeness, and is hence-
forth referred to as ”classical spectral representation”.

2.1. Spectral representation of stochastic processes

Consider a stationary stochastic process X(t) with the autocorrelation
function R0(τ) = E[X(t)X(t + τ)] and the power spectrum density (PSD)
function S0(ω), where

S0(ω) =
1

2π

∫ ∞
−∞

R0(τ)e−iωτdτ (1)

R0(τ) =

∫ ∞
−∞

S0(ω)eiωτdω (2)

Such a process may be expressed as the sum of a series of harmonic functions
with random phases, i.e.,

XSR(t) =
N∑
j=1

A(ωj) cos(ωjt+ φj) (3)
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where φj are independent identically distributed (i.i.d) uniform random vari-
ables over [0, 2π]. The amplitudes of each harmonic, A(ωj), may be derived
from a given spectral density function, S0(ω), via the equivalence of the
autocorrelation function of XSR(t) with the target R0(τ).

A(ωj) ≈ 2
√
S0(ωj)∆ωj. (4)

2.2. Stochastic Harmonic Function representation of stochastic processes

The simulated process XSR(t) tends toward the target process X(t) as N
tends to infinity. However, in the context of reproducing the target power
spectrum, the SHF formulation allows X(t) to be represented exactly with
as few as 2 random variables. The SHF representation is denoted by,

XSHF(t) =
N∑
j=1

A(ω̃j) cos(ω̃jt+ φj), (5)

where again φi are i.i.d random variables uniformly distributed over [0, 2π].
In contrast to Eq.3, the frequencies are random rather than deterministic
variables. To determine the PDF of each ω̃i and their amplitudes A(ω̃j),
as with the previous spectral representation method, the equivalence of the
autocorrelation function of XSHF(t) and the target R0(τ) is considered. First,
the frequency domain of interest is partitioned into non-overlapping intervals.
If said frequency domain is bounded by [ωL, ωU], then the partitioned sub

intervals lie between the points ωL = ω
(P)
0 < ω

(P)
1 < ω

(P)
2 < · · · < ω

(P)
N = ωU

such that ω̃j ∈ [ω
(P)
j−1, ω

(P)
j ]. Then the correlation function of XSHF(t) may be

obtained as,

RXSHF(τ) = E[XSHF(t)XSHF(t+ τ)]

=
N∑
j=1

1

2

∫ ω
(P)
j

ω
(P)
j−1

pω̃j
(ω)A2(ω) cos(ωτ)dω,

(6)

where pω̃j
(ω) is the PDF of ω̃j with support [ω

(P)
j−1, ω

(P)
j ]. Further, utilising

Eq.1, and under the assumption that S0(ω) = 0;ω /∈ [ωL, ωU],

R0(τ) = 2
N∑
j=1

∫ ω
(P)
j

ω
(P)
j−1

S0(ω) cos(ωτ)dω. (7)
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Combining Eq.6 and Eq.7 yields

1

2
pω̃j

(ω)A2(ω) = 2S0(ω). (8)

Therefore, the amplitudes are given by

A(ω̃) = 2

√
S0(ω̃)

pω̃j
(ω̃)

. (9)

This means that for a given PDF pω̃j
(ω), the amplitudes for the SHF process

representation may be determined. In [10], two standards are established
for the shape of pω̃j

(ω). The so called SHF of the first kind (SHF-I) uses
the shape of the normalised power spectrum for each sub-interval, whereas
the SHF of the second kind (SHF-II) uses a uniform distribution for each
sub-interval i.e., for SHF-I,

p
(SHF-I)
ω̃j

(ω̃) =
S0(ω̃)∫ ω(P )

j

ω
(P )
j−1

S0(ω)dω

I
{
ω̃ ∈ [ω

(P)
j−1, ω

(P)
j ]
}
, (10)

A(SHF-I)(ω̃) = 2

√√√√∫ ω
(P)
j

ω
(P)
j−1

S0(ω)dω (11)

and for SHF-II,

p
(SHF-II)
ω̃j

(ω̃) =
1

ω
(P)
j − ω

(P)
j−1

I
{
ω̃ ∈ [ω

(P)
j−1, ω

(P)
j ]
}

(12)

A(SHF-II)(ω̃j) = 2

√
S0(ω̃j)[ω

(P)
j−1 − ω

(P)
j ], (13)

where I{.} is the indicator function with the value being 1 if the event is true
and 0 otherwise. Both methods are shown to yield similar results in [10].
It is noted here that both SHF methods do not simulate ergodic process
records even in the limit (assuming a finite number of harmonics). The
previously introduced spectral representation method will yield records that
are ergodic in the first two statistical moments over multiples of the period.
Conversely, the SHF records are almost certainly not periodic, and even
if all of the random frequencies were chosen with a common multiple, the
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period would vary from record to record. Although SHF-II records would
not exhibit ergodicity in the first two statistical moments, as the length of
the record approaches infinity, where various frequency components in the
non-periodic signal may be considered orthogonal, SHF-I records would be
ergodic in mean and variance, but not in covariance (where τ > 0), due
to constant amplitude across frequency intervals throughout an ensemble
but not constant frequency intervals. In this work, extensions are applied
specifically to the SHF-II formulation, primarily due to the ease of random
frequency generation.

3. Stochastic Harmonic Function representation with dependent
frequencies

The SHF formulations shown in the previous section made use of inde-
pendent random variables for frequencies in non-overlapping bands. In this
setting, two random variables are needed per harmonic. While Eq.5 may
account for the entire second order statistics of a process over the infinite
ensemble of XSHF, even with only a single frequency interval (encompassing
[ωL, ωU]), individual realisations are likely highly unrepresentative of the tar-
get process. This makes using the absolute minimum number of random vari-
ables unsuitable for most practical applications. Indeed in [10], to produce
records that exhibit Gaussianity, around N = 10 harmonics are needed, and
for real scenarios such as earthquake ground motion simulation, N = 50 are
recommended. Although this is a vast reduction on the number of harmonics
usually needed to represent a process using classical spectral representation
methods (where N is usually equal to half the number of sample points in
digital realisations or half the Nyquist rate), further reduction of random
variables without loss of statistical features for individual records would be
of significant benefit. Example use cases include large MCS applications and
analysis of uncertainty propagation such as PDEM.

In this section, reduction of random variables will be achieved by intro-
ducing dependencies between the random frequencies, with all frequencies
ultimately generated from a single seed variable. To realise this, all random
frequencies ω̃j are defined through a function of a single random variable,
i.e.,

ω̃j = fj(λ), (14)

where fj(0) = ω
(P )
j−1 and fj(1) = ω

(P )
j , with λ being a random variable uni-
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formly distributed over [0, 1]. In this case, the SHF representation is

XSHF(t) =
N∑
j=1

A(fj(λ)) cos (fj(λ)t+ φj) . (15)

Hence, the autocorrelation function of the SHF process (counterpart to Eq.6)
becomes

RXSHF(τ) =
N∑
j=1

1

2
E
[
A2(fj(λ)) cos (fj(λ)τ)

]
=

N∑
j=1

1

2

∫ 1

0

pλ(λ)A2(fj(λ)) cos (fj(λ)τ) dλ.

(16)

Similarly to Eq.7, the target autocorrelation function may be re-written,

R0(τ) = 2
N∑
j=1

∫ 1

0

S0(fj(λ)) cos (fj(λ)τ) f ′j(λ)dλ, (17)

where f ′j(λ) =
dfj(λ)

dλ
. Equating the summed terms in Eq.16 with Eq.17 yields

A(fj(λ)) = 2

√
S0(fj(λ))f ′j(λ)

pλ(λ)
, (18)

where pλ(λ) = 1 for the case where all random frequencies are generated
from the same random variable. Further, the most straightforward way to
define the dependency on the random variable is by

fj(λ) = ω
(P)
j−1 + [ω

(P)
j − ω

(P)
j−1]λ, (19)

and hence the harmonic amplitudes may be written as,

A(fj(λ)) = 2

√
S0 (fj(λ))

[
ω

(P)
j − ω

(P)
j−1

]
(20)

By setting up fj(λ) as indicated in Eq.19, not only does it simplify the
formulation of the harmonic amplitudes A(fj(λ)), but it also guarantees a
minimum distance (in the frequency space) between neighbouring harmon-

ics as fj(λ) − fj−1(λ) ≥ min[ω
(P)
j+1 − ω

(P)
j , ω

(P)
j − ω

(P)
j−1]. This feature leads
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to greater orthogonality between neighbouring harmonics for individual pro-
cess records, and hence statistics estimated from individual records will more
closely match the target. This is particularly true for simulated short time
records where overwhelming constructive or destructive interference could
otherwise take place between neighbouring harmonics. However, as shown
in Section 5, where the frequency intervals remain constant, a correspond-
ing effect of guaranteed separation of harmonics in the frequency space can
introduce significant periodicity into the record.

4. Stochastic Harmonic Function representation with variable fre-
quency interval widths

When simulating stochastic processes via SHF with a constant ∆ω it can
be observed that for any power spectrum where spectral density varies over
the frequency domain (i.e., non white noise processes), error in the estimated
spectrum increases with increased power. Although the extent of the error
is dependent on the choice of spectrum representation from the ensemble of
process records, generally if averaging a series of periodograms drawn from
individual records, the higher the power spectrum is at a particular frequency,
the greater the variance in estimated power will be at that frequency over the
ensemble, and hence the larger the error. Figure 1 shows target spectra with
increasing power steps to demonstrate this effect. An averaged periodogram
based upon an ensemble of 1000 records from an SHF-II representation with
constant ∆ω is shown in Figure 1a. The increase in error at higher frequencies
as the power increases is clearly visible, note that this phenomenon also
occurs when utilising classical spectral representation methods.

To mitigate the variation in error across the spectrum, it is suggested that
variable frequency widths are defined as inversely proportional to the power
spectrum bounded by the partitions. The resulting effect increases ensemble
spectrum estimation accuracy at higher powers, equalising the average error
over all frequencies, and increasing overall rate of convergence to the target.
Considering again Figure 1, when reconstructing the spectrum from SHF-
II simulated records with spectrum-relative frequency intervals (shown in
Figure 1b), the variation in reconstruction error is visibly more consistent.

It can also be shown that by utilising SHF-II with the aforementioned
spectrum-relative frequency widths, not only does the bi-variate distribution
of the simulated records converge to the Gaussian (by way of the Lyapunov
Central Limit Theorem, e.g., [16, 17]), but does so at a faster rate with in-
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(a) Example target spectrum with SHF-II re-
construction using constant ∆ω. Note that the
reconstruction variance increases with power
spectrum density

(b) Example target spectrum with SHF-II re-
construction using spectrum-relative ∆ω. Here
reconstruction variance remains constant with
increasing power spectrum density

Figure 1: Comparisons of 40-harmonic SHF-II spectrum reconstructions using different
definitions for frequency width

creasing number of harmonics than established spectral representation meth-
ods with fixed ∆ω. This is demonstrated in Section 4.3, however, first, the
convergence to the Gaussian PDF for classical spectral representation and
for SHF-II are provided for completeness.

4.1. Gaussianity of simulated process records via classical spectral represen-
tation

In [15], the convergence of the bi-variate PDF of simulated process records
between two time instants via classical spectral representation to the Gaus-
sian is proved by way of the Lyapunov CLT which implies that a sequence of
independent random variables G = {G1, G2 · · ·GN} are Gaussian as N tends
to infinity if the following condition is met:

lim
N→∞

1

σ2+δ
G

N∑
j=1

E
[
|Gj − E [Gj]|2+δ

]
= 0, (21)

where σG is the standard deviation of G and δ > 0 (in this case δ = 1
is used). If Eq.21 holds for G = XSR(t) for any two time instants then
pairs of variables ZSR =

(
XSR(tm), XSR(tn)

)
of the simulated processes via
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classical spectral representation exhibit a bi-variate Gaussian PDF with first
and second moments given by:

E
[
ZSR

]
=

(
N∑
j=1

E
[
XSR
j (tm)

]
,
N∑
j=1

E
[
XSR
j (tn)

])
, (22)

σ2
XSR(tm) =

N∑
j=1

σ2
XSR

j (tm), σ2
XSR(tn) =

N∑
j=1

σ2
XSR

j (tn), (23)

Cov
[
XSR(tm), XSR(tn)

]
=

N∑
j=1

Cov
[
XSR
j (tm)XSR

j (tn)
]
, (24)

where XSR
j (t) are the individual harmonic components that make up XSR(t)

as given in Eq.3, i.e.,

XSR
j (tm) = A(ωj) cos(ωjtm + φj), (25)

XSR
j (tn) = A(ωj) cos(ωjtn + φj). (26)

These components are independent for different j as required for Eq.21 on
account of the independence of the phase angles φj. Due to the stationarity
of the process, it is sufficient to test the Gaussianity of the one dimensional
PDF and then assume Gaussianity of the bi-variate. Also, as the individual
harmonics are zero-mean, the term E [Gj] may be discounted. Therefore, the

expected value E
[
|Gj − E [Gj]|2+δ

]
= E

[
|Gj|3

]
= E

[∣∣XSR
j (tm)

∣∣3] is given
as:

E
[∣∣XSR

j (tm)
∣∣3] = E

[
|A(ωj) cos (ωjtm + φj)|3

]
=
A(ωj)

3

2π

∫ 2π

0

|cos (ωjtm + φj)|3 dφj

=
4A(ωj)

3

3π
.

(27)

In the above, the fact that A(ωj) is positive has been used. Hence, assuming
that σ3

G = σ3
XSR(tm) is finite, Eq.21 becomes:

4

3πσ3
XSR(tm)

lim
N→∞

N∑
j=1

A(ωj)
3. (28)
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The limit may be evaluated as follows,

lim
N→∞

N∑
j=1

A(ωj)
3 = lim

N→∞

N∑
j=1

[
2
√
S0(j∆ω)∆ω

]3

= 8 lim
N→∞

(ωu
N

) 3
2

N∑
j=1

[
S0(j∆ω)

] 3
2

≤ 8ω
3
2
U lim
N→∞

(
1

N

) 3
2

N(S0
max)

3
2

= 8(ωUS
0
max)

3
2 lim
N→∞

1√
N

= 0.

(29)

In Eq.29, ωU is the ultimate frequency considered in the decomposition
(above which the process is assumed to have zero power), hence

(
ωU

N

)
= ∆ω,

and S0
max is the maximum power the considered frequency spectrum.

4.2. Gaussianity of simulated process records via SHF-II representation

In the same way as in the previous section, the Gaussianity of SHF-II pro-
cesses can be investigated, however due to the additional random variable, the
evaluation of Eq.21 is more involved. Further, as will be shown, not all SHF-
II simulated processes will exhibit Gaussian PDFs in the limit. Once again,
due to the individual harmonics of Eq.5 having zero-mean, the term E [Gj] in

Eq.21 is discounted. Here, the expected value E
[
|Gj|3

]
= E

[∣∣XSHF
j (tm)

∣∣3]
is given as:

E
[∣∣XSHF

j (tm)
∣∣3] = E

[
|A(ω̃j) cos (ω̃jtm + φj)|3

]
=

∫ ω
(p)
j

ω
(p)
j−1

∫ 2π

0

|A(ω̃j) cos(ω̃j)tm + φj|3
1

2π

1

∆ωj
dω̃jdφj

=
1

2π∆ωj

(
8

3

)∫ ω
(p)
j

ω
(p)
j−1

A(ω̃j)
3dω̃j.

(30)

Again, use has been made of the fact that A(ω̃j) is positive. Assuming that
σ3
G = σ3

XSHF(tm) is finite and using the SHF-II definition of A in Eq.13, Eq.21
becomes:

32

3πσ3
XSHF(tm)

lim
N→∞

N∑
j=1

√
∆ωj

∫ ω
(p)
j

ω
(p)
j−1

S0(ω̃j)
3
2dω̃j (31)
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Upon attempting to evaluate the limit in Eq.31, it becomes clear that the
condition of Gaussianity is dependent upon the nature of the frequency in-
tervals ∆ωj. Therefore, to guarantee Gaussianity for an SHF-II process,
restrictions must be imposed upon ∆ωj. The most familiar case, akin to the
classical spectral representation method, is to use ∆ωj = ωU

N
. In this case,

lim
N→∞

∫ ω
(p)
j

ω
(p)
j−1

S0(ω̃j)
3
2dω̃j = S0(ω̃j)

3
2 ∆ωj, (32)

and hence,

lim
N→∞

N∑
j=1

√
∆ωj

∫ ω
(p)
j

ω
(p)
j−1

S(ω̃j)
3
2dω̃j = lim

N→∞

(ωU

N

) 3
2

N∑
j=1

S0(ω̃j)
3
2

≤ ω
3
2
U lim
N→∞

(
1

N

) 3
2

N(S0
max)

3
2

=
(
S0

maxωU

) 3
2 lim
N→∞

1√
N

= 0.

(33)

For amplitudes with dependent frequencies in Eq.20, the result of Eq.33
holds. Despite the dependencies between frequencies, individual harmonics
are still independent on account of the independence of φj. The frequency
dependence is lost when S0

max is used to replace S(ω̃j) in Eq.33, however the
dependence will effect the convergence rate of the simulated process PDF to
the Gaussian. Specifically, the convergence rate is dependent also on the tar-
get power spectrum. For example, a white noise (constant spectrum) process
will converge to the Gaussian provably faster with a single seed variable for
all random frequencies. This result can be considered as a special case of the
following section.

4.3. Gaussianity of simulated process records via SHF-II representation with
spectrum-relative frequency interval widths

It has been shown that by using a constant ∆ωj for SHF-II process sim-
ulation, as the number of harmonics tend to infinity, the simulated record
tends to exhibit a Gaussian PDF. However, it can also be shown in a similar
manner that by using variable ∆ωj to maintain constant power across all
individual harmonics, not only is the process Gaussian, but it also converges
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to the Gaussian at a higher rate. Consider a new set of frequency intervals
of width ∆ψj defined by

∆ψj = ψj − ψj−1, (34)

where,

ψj = Q−1

(
1

N
Q (ωU) +Q (ψj−1)

)
, (35)

and,

Q(ω) =

∫ ω

0

S0(ω)dω. (36)

This new set of frequency intervals may be evaluated numerically for a given
target power spectrum and covers the same overall space as ∆ωj from j = 0
to ωU with no overlap, therefore,

lim
N→∞

N∑
j=1

S0(ω̃j)∆ωj = lim
N→∞

N∑
j=1

S0(ψ̃j)∆ψj, (37)

and,

S0(ψ̃j)∆ψj ≈
1

N

N∑
j=1

S0(ω̃j)∆ωj = E [ρ] (38)

where ρ is the vector of random variables S0(ω̃)∆ω. Next, referring back to
Eq.33, where Gaussianity in the case of constant frequency intervals was con-
firmed through demonstrating that lim

N→∞

∑N
j=1(S0(ω̃j)∆ωj)

3
2 = 0, we define

the following function,
h(x) = x

3
2 , (39)

and observe that,

lim
N→∞

N∑
j=1

(S0(ω̃j)∆ωj)
3
2 = NE [h(ρ)] , (40)

and,

lim
N→∞

N∑
j=1

(S0(ψ̃j)∆ψj)
3
2 = Nh(E [ρ]). (41)

As h′′(x) is positive for any x > 0 (which is always true for Eq.40 and Eq.41),
h(x) may be considered strictly convex in this case and so Jensen’s inequality
(e.g., [18]) holds, i.e.,

Nh (E [ρ]) ≤ NE [h (ρ)] . (42)
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Hence, not only does this show that Eq.41 tends to zero, it also does so at a
higher rate than Eq.40.

5. Numerical examples

The proposed SHF-II variants in Sections 3 and 4 will be compared to
standard SHF-I and SHF-II in terms of convergence to the target spectrum
and to Gaussianity. For all of the examples, the target spectrum is defined
by the following stationary earthquake model:

S0(ω) = S0

ω4
g + 4ζ2

gω
2
gω

2

(ω2
g − ω2)2 + 4ζ2

gω
2
gω

2
, (43)

where ωg = 25.6, ζg = 0.6, and S0 = 0.5. This spectrum and associated
parameters are chosen to provide a realistic example with a significant change
in power spectrum density over the frequency domain of interest. To compare
rates of convergence to the target spectrum, the following error function is
introduced:

eS =

∑M
j=1

∣∣S(SHF)(ωj)− S0(ωj)
∣∣∑M

j=1 S
0(ωj)

, (44)

where S(SHF)(ωj) is the spectrum reconstructed via SHF. The choice of error
function is largely arbitrary, serving only as a point of reference for com-
parison of different reconstruction methods. In the first numerical example,
the number of generated processes required for the error between the target
and reconstructed spectrum to drop below 2% in Eq.44 for the four different
SHF approaches are presented. The target spectrum is shown in Figure 2
along with an SHF-II reconstruction with 2% error as defined by Eq.44. The
number of averaged records required to achieve this level of accuracy over
256 point samples for 1, 10, and 40 harmonics are shown in Figure 3. Note
that the tests were repeated 100 times with the mean values displayed in the
figures (to reduce variance in the results).

The first observation from Figure 3 is that, as expected, more harmon-
ics per record result in less records required to accurately approximate the
spectrum of the process. It can also be determined that when using only a
single harmonic, SHF-I has an advantage over SHF-II approaches (all three
of which are effectively identical in the case of a single harmonic). This is due
to a similar effect as that demonstrated in Eq.42, and quickly dissipates as
the number of harmonics increase. Next, the same data is shown, normalised
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Figure 2: Target power spectrum S0(ω) defined by Eq.43 with SHF-II reconstruction with
2% error defined by Eq.44.
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Figure 3: Number of generated process records required to achieve 2% error defined by
Eq.44 for numerous SHF approaches. Note that Variant-A refers to SHF with depen-
dent random frequencies and Variant-B to SHF with dependent random frequencies over
intervals of spectrum-relative width
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Figure 4: Number of samples of random variables (number of records × number of random
variables per record) required to achieve 2% error defined by Eq.44 for numerous SHF
approaches. Note that Variant-A & B are as in Figure 3

by number of random variables generated, in Figure 4. This presentation
follows the same trend as the computational times required to generate the
processes, and is highly relevant for probabilistic analyses that benefit from
random variable dimension reduction such as PDEM.

Where the number of random variables required for standard SHF-I and
SHF-II to meet the target accuracy remains relatively unchanged as number
of harmonics increases, Figure 4 now clearly demonstrates the advantage to
using a single random variable as a seed for all random frequencies (SHF-II
variant-A). Further, although SHF-II variant-A is utilising the same number
of random variables per record as SHF-II variant-B, the latter consistently
requires fewer random variables overall (on account of fewer records) to meet
the accuracy requirement for 10 and 40 harmonics.

5.1. Comparison of PDF convergence to the Gaussian

Here, the PDFs of the simulated processes are estimated though scaled
histograms which are then compared to corresponding Gaussian distribu-
tions. The comparison Gaussian distributions are Normal with mean and
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Figure 5: Convergence of the estimated PDF for a single time instant over 5× 106 records
to the Gaussian for numerous SHF approaches. Note that Variant-A & B are as in Figure
3

standard deviation based upon the simulated process records. Gaussianity
in this case will be measured by the estimated PDF’s Kullback–Leibler Di-
vergence [19] from its comparison Gaussian distribution, i.e.,

DKL(j) =
M∑
j=1

pXSHF(t)(xj) log

(
pXSHF(t)(xj)

NXSHF(t)(xj)

)
(45)

where NXSHF(t) = N (µXSHF(t), σ
2
XSHF(t)) is the Normal distribution. In Figure

5, statistics from ensembles of 5×106 process records are processed for a single
point in time for each of the four highlighted SHF representation methods
over 35 harmonics. The high numbers of records are necessary to numerically
distinguish between histogram approximations of the Gaussian PDF. This is
due to the fact that in most cases, for signals with more than ∼ 10 harmonics,
the simulated records are already highly Gaussian.

From Figure 5 it is clear that, as hypothesised in Section 4.3, the spectrum-
relative frequency intervals increased the rate of convergence to the Gaussian
for SHF-II (i.e., SHF-II Variant-B has lower K-L Divergence for all frequen-
cies). Also of note is that > 2 harmonics are required before the standard
SHF-I shows similar Gaussian properties to the standard SHF-II. This is due
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to the fact that the SHF-I approach favours harmonics with higher power (see
Eq.10). This results in individual simulated signals with low numbers of har-
monics having similar amplitude and frequency, hence, the estimated PDF
is more likely to resemble that of a single harmonic. In contrast, the SHF-II
is equally likely to produce high and low amplitude harmonics which, for
ensembles of signals with small numbers of harmonics, skews the estimated
PDF mass towards its centre (and making it appear more Gaussian).

The advantage of the SHF-II variant-B over variant-A in approximating a
Gaussian process is clear, however, there is yet another compelling reason to
choose this approach over variant-A when attempting to reduce the number
of random variables required to effectively model a spectrum-defined process:
A significant shortfall of the SHF-II variant-A is identified when estimating
the simulated process PDF over a single, long record, rather than over an
ensemble at a single time point. Figure 6 shows the K-L Divergence against
the optimal Gaussian distributions for single simulated records. Due to low
frequency tendencies in the signals, more data was needed to estimate the
PDF than in the ensemble case, hence signals of length 200× 106 were simu-
lated. Further, the resulting K-L Divergence was calculated for 10 signals for
every data point, with Figure 6 displaying the mean. This has the effect of
smoothing the result as some simulated signals could be more Gaussian than
others. SHF-II variant-A is significantly less Gaussian than all alternatives.
This is due to the fact that as the frequency intervals are constant, and all
of the random frequencies are generated from the same random variable, the
frequency distance between adjacent harmonics are equal and thus gener-
ated processes are likely to be near-periodic over a small time window (far
less than the total record length). High levels of repetition in the individual
record inhibit efficient convergence to Gaussian statistics over time. This
periodicity can be clearly seen when comparing individual simulated time
records for SHF-II variant-A and variant-B in Figure 7.

6. Conclusion

An overview of classical spectral representation and SHF schemes is pro-
vided alongside two novel extensions of said schemes aiming to not only use
fewer random variables, but also to more efficiently represent Gaussian pro-
cesses. Numerical examples demonstrating spectrum reconstruction accuracy
and estimated PDF convergence to the Gaussian support the arguments pre-
sented in Section 4. The advantages of enhancing the SHF-II representation
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Figure 6: Convergence of the estimated PDF for a single record over 200×106 time points
to the Gaussian for numerous SHF approaches. Note that Variant-A & B are as in Figure
3

Figure 7: Example 500-point time histories simulated from Eq.43 via SHF-II variant-A
and variant-B with 40 harmonics. The red circles draw attention to periodicity in the
signal. Variant-A & B are as in Figure 3
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through random frequency dependency and optimal selection of frequency
intervals are clearly presented.

Of particular interest would also be the effect of such frequency selec-
tion schemes when applied with SHF for representation of non-stationary
processes and is suggested as a potential future investigation.
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