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Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais,

1049-001 Lisboa, Portugal
bDepartment of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69

7ZL, UK

Abstract

The target space geometry of abelian vector multiplets in N = 2 theories in four

and five space-time dimensions is called special geometry. It can be elegantly

formulated in terms of Hessian geometry. In this review, we introduce Hes-

sian geometry, focussing on aspects that are relevant for the special geometries

of four- and five-dimensional vector multiplets. We formulate N = 2 theories

in terms of Hessian structures and give various concrete applications of Hes-

sian geometry, ranging from static BPS black holes in four and five space-time

dimensions to topological string theory, emphasizing the role of the Hesse poten-

tial. We also discuss the r-map and c-map which relate the special geometries

of vector multiplets to each other and to hypermultiplet geometries. By includ-

ing time-like dimensional reductions, we obtain theories in Euclidean signature,

where the scalar target spaces carry para-complex versions of special geometry.
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1. Introduction

Theories with 8 supercharges hold an interesting position between semi-

realistic, but analytically un-tractable theories with 4 supercharges, and theo-

ries with more than 8 supercharges, which are analytically tractable, but have

a two-derivative Lagrangian which is completely determined by their matter

content. In contrast, the couplings of theories with 8 supercharges are func-

tions of the scalar fields, and subject to interesting and complicated quantum

corrections. We will refer to theories with 8 conserved real supercharges as

N = 2 theories, irrespective of the space-time dimension. This amounts to

counting supersymmetries in multiples of the minimal number of supercharges

of a four-dimensional theory.

Vector multiplets inN = 2 theories contain gauge fields together with scalars

and fermions. We will restrict ourselves to abelian vector fields, in which case

one can take linear combinations of vector fields. By supersymmetry this im-

prints itself onto the scalars, leading to an affine structure and a scalar geom-

etry which is ‘special.’ In four dimensions, where vector fields can couple to

both electric and magnetic charges, linear transformations of vector fields and

electric-magnetic duality transformations combine to a symplectic group action

on the field strengths and their duals. By supersymmetry this imprints itself on

the scalars, which in four dimensional are complex-valued, and leads to a Kähler

geometry with ‘special features.’ While in rigid supersymmetry the number of

scalar fields and vector fields is balanced, the coupling to Poincaré supergravity

creates a mismatch, because the Poincaré supergravity multiplet contributes an

additional vector field, the graviphoton. An elegant way to handle this is to

employ the gauge equivalence between a theory of n vector multiplets coupled

to Poincaré supergravity and a theory of n+1 superconformal vector multiplets

coupled to conformal supergravity (the Weyl multiplet) and one additional aux-

iliary supermultiplet (which we will take to be a hypermultiplet). In the super-

conformal theory there now is a balance between n + 1 scalar fields and n + 1

vector fields. The superconformal symmetry gives the scalar geometry an addi-

tional conical structure. When recovering the Poincaré supergravity theory by

imposing gauge fixing conditions, one scalar is eliminated, which corresponds

to taking the superconformal quotient of the superconformal scalar manifold by

a group action. In this way the scalar geometry of vector multiplets coupled to

Poincaré supergravity can be understood as the projectivisation of the scalar
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geometry of the associated superconformal theory.

We will refer to the scalar geometries of five- and four-dimensional vector

multiplets as special geometries. One characteristic feature of five- and four-

dimensional vector multiplets is that all couplings of the two-derivative La-

grangians are encoded in a single function, the Hesse potential. In particular,

the metric of the scalar manifolds of rigid vector multiplets are Hessian met-

rics, that is, the metric coefficients are the second derivatives of a real function,

when written in affine coordinates with respect to a flat torsion-free connection.

While the scalar metrics of local vector multiplets are not Hessian themselves,

they can still be expressed in terms of the Hesse potential of the associated

superconformal theory. In four dimensions, one can alternatively express the

couplings in terms of a holomorphic function, the prepotential. This is in fact

the pre-dominant point of view in the literature. In this review we will emphasize

the role of the Hesse potential because (i) this makes manifest the similarities

between five- and four-dimensional vector multiplets, (ii) the Hesse potential

of four-dimensional vector multiplets transforms covariantly under symplectic

transformations, while the prepotential does not. As a consequence, using the

Hesse potential has advantages in many applications. We will review Hessian

geometry and special real geometry in section 2, electric-magnetic duality in sec-

tion 4, and special Kähler geometry in section 5. Based on this we discuss

five-dimensional vector multiplets in section 3 and four-dimensional vector mul-

tiplets in section 6.

In Table 1 we list the acronyms and defining data of the types of special

geometries relevant for five- and four-dimensional vector multiplets. One recur-

rent theme is that for each type of special geometry there is an affine, a conical

and a projective version, which schematically are related like this:

Affine
+Homothety

// Conical
Quotient

// Projective
Cone

oo (1)

This is meant to indicate that the conical type is a special form of the affine

type, which is characterized by the presence of a homothetic Killing vector field

satisfying certain compatibility conditions. The projective version is obtained

by taking the quotient of the conical version by a group action, which con-

tains the action generated by the homothetic Killing vector field. Conversely,

the conical type of the geometry is realized as a cone which has the projec-

tive geometry as its base. While the affine version corresponds to rigid vector
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multiplets, the conical version corresponds to superconformal vector multiplets,

and the projective version corresponds to vector multiplets coupled to Poincaré

supergravity. The relation between conical and projective geometry reflects the

gauge equivalence between conformal supergravity and Poincaré supergravity.

Five- and four-dimensional vector multiplets realize a real and a complex ver-

sion of this scheme with group actions of R>0 and of C∗ by real and by complex

scale transformations, respectively. If we include hypermultiplets, there is as

well a quaternionic version of this scheme. Hypermultiplets can be obtained

by reduction of four-dimensional vector multiplets to three dimensions, followed

by the dualization of the three-dimensional vector fields into scalars. Since hy-

permultiplets only contain scalars and fermions, their scalar geometry does not

change under dimensional reduction, and is of the same type in any dimension

where hypermultiplets can be defined. The upper limit is d = 6, which is the

largest dimension where a supersymmetry algebra with 8 real supercharges can

be constructed. The scalar geometries of hypermultiplets are quaternionic ge-

ometries, more precisely they are hyper-Kähler for rigid hypermultiplets, hyper-

Kähler cones (or, conical hyper-Kähler) for superconformal hypermultiplets,

and quaternionic Kähler (or, quaternion-Kähler) for hypermultiplets coupled to

Poincaré supergravity. While we will focus on vector multiplets in this review,

we will talk about hypermultiplets in the context of dimensional reduction, and

regard their scalar geometries as the quaternionic versions of special geometry.

The real, complex and quaternionic versions of special geometry are related

by dimensional reduction, which induce maps called the r-map and the c-map

between the scalar geometries. This is summarized in Table 2.

When discussing dimensional reduction in section 8, we also include dimen-

sional reduction over time. This allows to construct theories with Euclidean

supersymmetry. For four-dimensional vector multiples and for hypermultiplets

the special geometry of the scalar manifold is modified, and now is of para-

complex and of para-quaternionic type, respectively.

In addition to reviewing the construction of bosonic Lagrangians and dis-

cussing the resulting scalar geometries, we present a number of important ap-

plications: static BPS black holes in four and in five space-time dimensions

in the presence of Weyl square interactions (sections 9 and 10); deformed spe-

cial Kähler geometry and topological string theory (section 7); F -functions for

point-particle Lagrangians (section 4), for the Born-Infeld-dilaton-axion system
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ASR = affine special real (M, g,∇)

CASR = conical affine special real (M, g,∇, ξ)
PSR = projective special real (M̄, ḡ) , M̄ = M/R>0 ∼= H ι−→M

ḡ = ι∗g

ASK = affine special Kähler (M,J, g,∇)

CASR = conical affine special Kähler (M,J, g,∇, ξ)
PSK = projective special Kähler (M̄, J̄ , ḡ) , M̄ = M/C∗ = M//U(1)

π∗ḡ = ι∗g , H π−→ M̄ = H/U(1)

H ι−→M

Table 1: This table summarizes the acronyms we use for the various special geometries. The
second column contains the essential geometrical data for each type of geometry. ∇ indicates
a ‘special’ connection, which in particular is flat and torsion-free. ξ indicates a homothetic
Killing vector field which gives the manifold locally the structure of a cone. A ‘bar’ indicates a
‘projectivized’ manifold which has been obtained by taking the orbits of a group action, which
always includes the homothetic Killing vector field ξ. As usual π and ι indicate projections
and immersions, respectively, and ∗ a pull-back. We refer to the corresponding sections of
this review for precise definitions.

(section 11) and for a particular STU-model (section 12). In all these applica-

tions, the Hesse potential plays an important role: the semi-classical entropy

of BPS black holes is obtained from the Hesse potential by Legendre transfor-

mation; the holomorphic anomaly equation of topological string theory is en-

coded in a Hessian structure; point-particle Lagrangians admit a reformulation

in terms of a Hesse potential; the Hesse potential approach to the STU-model

yields important information about the function F that encodes the Wilsonian

Lagrangian of the model.

The topics and applications we chose to cover in this report are based on

research papers and review articles which we will be referring to in the various

sections comprising this report. The papers we chose to cite represent a small

subset of the many papers that have been published over the past decades on

the subject of special geometry at large. It would be impossible to refer to all

these papers, and hence we have opted to cite only those which we used to write

this report.

Finally, we have assembled extensive appendices on the mathematics and

physics background of the report, for the benefit of the reader.

11



Five-dimensional vector multiplets: ASR

r

��

conical// CASR
Quotient

// PSR

r̄

��

Cone
oo

Four-dimensional vector multiplets: ASK
conical//

c

��

CASK
Quotient

// PSK
Cone
oo

c̄

��

Hypermultiplets: HK
conical // HKC

Quotient
// QK

Cone
oo

Table 2: The real, complex and quaternionic versions of special geometry are related by
the r-map and c-map, which are induced by dimensional reduction. A ‘bar’ indicates the
supergravity version of either map. In the quaternionic case HKC stands for ‘hyper-Kähler
cone,’ which is commonly used instead of ‘conical hyper-Kähler’, or CHK, which would be in
line with the terminology we use for vector multiplets. QK stands for quaternionic Kähler.
Precise definitions are given in the respective sections of this review.

2. Hessian geometry and special real geometry

In this section we introduce Hessian geometry, focussing on the aspects that

are relevant for the special geometries of five- and four-dimensional vector mul-

tiplets. A comprehensive treatment of Hessian geometry can be found in [1].

Special emphasis is put on conical Hessian manifolds, that is Hessian manifolds

admitting a homothetic Killing vector field. Such manifolds can be ‘projec-

tivized’, that is the space of orbits of the homothetic Killing vector field carries

a Riemannian metric, which, while not being Hessian, is determined by the Hesse

potential of the conical Hessian manifold. Conical Hessian manifolds admit a

Hesse potential which is a homogeneous function. The special real geometry of

five-dimensional vector multiplets is obtained by restricting to Hesse potentials

which are homogeneous cubic polynomials. The material on conical Hessian and

special real geometry is partly based on [2, 3, 4, 5, 6, 7].

2.1. Hessian manifolds

In this subsection we provide the definition of a Hessian manifold, both in

terms of local coordinates, and coordinate-free.

Definition 1. Hessian manifolds and Hessian metrics in terms of coor-
dinates. A pseudo-Riemannian1 manifold (M, g) is called a Hessian manifold
if it admits local coordinates qa, such that the metric coefficients are the Hessian
of a real function H, called the Hesse potential:

gab = ∂a∂bH := ∂2
a,bH := Hab . (2)

1See A.4 for a review and for our conventions.
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Such metrics are called Hessian metrics.

The relation (2) is not invariant under general coordinate transformations,

but only under affine transformations. The definition implies that the manifold

can be covered by special coordinate systems, related to each other by affine

transformations, such that (2) holds in every coordinate patch. This is equiva-

lent to the existence of a flat, torsion-free connection ∇, for which the special

coordinates qa are affine coordinates. Equivalently, the differentials dqa define a

parallel coordinate frame, ∇dqa = 0.2 The flat torsion-free connection ∇ gives

M the structure of an affine manifold. By the Poincaré lemma, the integrability

condition

∂agbc = ∂bgac = ∂cgba (3)

is necessary and locally sufficient for the existence of a Hesse potential. Passing

to general coordinates, we see that the rank three tensor S = ∇g must be totally

symmetric. We thus arrive at the following coordinate-free definition:

Definition 2. Hessian manifolds, Hessian metrics and Hessian struc-
tures. A Hessian manifold (M, g,∇) is a pseudo-Riemannian manifold (M, g)
equipped with a flat, torsion-free connection ∇, such that the covariant rank
three tensor S = ∇g is totally symmetric. The pair (g,∇) defines a Hessian
structure on M , and the metric g is called a Hessian metric.

Locally, a Hessian metric takes the form g = ∇dH, where the Hesse potential

H is unique up to affine transformations. When using affine coordinates we can

write g = ∂2H, since the connection ∇ acts by partial derivatives.

We note in passing that one example of a symmetric Hessian manifold which

is prominent in physics is anti-de Sitter space [8]. Applications of Hessian man-

ifolds to superconformal quantum mechanics have been discussed in [9] and

[10, 11, 12]. Superconformal quantum mechanics on special Kähler manifolds,

which as we will see later are in particular Hessian manifolds, has been discussed

in [13, 14].

2.2. The dual Hessian structure

Hessian structures always come in pairs. This will play an important role

later when we discuss electric-magnetic duality, special Kähler geometry, and

black hole entropy functions.

2Frames and connections are reviewed in A.3 and A.5.
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Definition 3. Dual affine coordinates. If qa are ∇-affine coordinates for a
Hessian metric with Hesse potential H, then

qa := Ha := ∂aH (4)

are the associated dual affine coordinates.

Note that in general qa 6= Habq
b. This reflects that qa and qa are functions

on M , and not the components of a vector field or differential form. The matrix

Hab of metric coefficients with respect to the dual coordinates is determined by

g = Habdq
adqb = Habdqadqb , (5)

which implies that the matrix Hab is the inverse of the matrix Hab.

Definition 4. Dual connection on a Hessian manifold. Let (M, g,∇) be
a Hessian manifold with Levi-Civita connection D. Then

∇dual = 2D −∇ , (6)

is called the dual connection to ∇.

Remark 1. Dual Hessian structures and the dual Hesse potential. The
dual connection is flat and torsion-free, and defines a second Hessian structure
on (M, g), called the dual Hessian structure. The ∇dual-affine coordinates are
the dual coordinates qa introduced above, and the dual Hesse potential Hdual is
related to H by a Legendre transformation,

Hdual = qaHa −H . (7)

The matrix of metric coefficients with respect to the dual Hessian structure is
the inverse matrix Hab of Hab:

Hab =
∂2Hdual

∂qa∂qb
. (8)

We refer to section 2.3 of [1] for more details on the dual Hessian structure.

2.3. Conical Hessian manifolds

We now consider the case where the Hesse potential is a homogeneous func-

tion. This is relevant for both five- and four-dimensional vector multiplet theo-

ries.

Definition 5. Homogeneous functions. A real function H is homogeneous
of degree n in the variables qa if

H(λqa) = λnH(qa) , λ ∈ R∗ . (9)
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This is equivalent to the Euler relation

LξH = qa∂aH = nH , (10)

where ξ = qa∂a is the so-called Euler vector field with respect to the coordinates

qa, and where Lξ is the Lie derivative.3 The k-th derivative of a homogeneous

function of degree n is a homogeneous function of degree n − k. In local coor-

dinates, we have the following hierarchy of relations:

qaHa = nH , qaHab = (n− 1)Hb , qaHabc = (n− 2)Hbc , . . . (11)

Remark 2. Dual coordinates for homogeneous Hesse potentials. For a
Hesse potential which is homogeneous of degree n, the dual coordinates qa = Ha

have weight n− 1, while the metric coefficients Hab have weight n− 2, and the
dual metric coefficients Hab have weight 2−n. The Legendre transform defining
the dual Hesse potential simplifies:

Hdual = qaHa −H = (n− 1)H . (12)

In particular Hdual = −H for n = 0 and Hdual = H for n = 2.

Definition 6. Homogeneous tensor fields. A tensor field T is called ho-
mogeneous of degree n with respect to the action generated by a vector field ξ if

LξT = nT . (13)

We will then also say that T has weight n. The case n = 0 corresponds to the
special case of an invariant tensor.

The Lie derivatives

Lξ(∂a) = −∂a , Lξ(dq
a) = dqa , (14)

show that derivatives ∂a have weight −1, while differentials dqa have weight

1. Thus the components of a tensor T of type (p, q) and weight n have weight

n+ p− q.
Example: Consider the case where the metric g has weight n with respect

to the Euler field ξ. Then

Lξg = ng ⇔ (Lξg)ab = ngab ⇔ Lξ(gab) = (n− 2)gab . (15)

Here Lξ(gab) = ξc∂cgab denotes the Lie derivative of the components of the

metric considered as functions. This is to be distinguished from (Lξg)ab =

3See A.3 for a review and our conventions.
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ξc∇cgab, which denotes the components of the tensor Lξg. The weight n− 2 of

the tensor components gab can be inferred from the following computation:

Lξg = Lξ(gabdq
adqb) = Lξ(gab)dq

adqb + gabLξ(dq
a)dqb + gabdq

aLξ(dq
b)

= (Lξ(gab) + 2gab)dq
adqb = (Lξg)abdq

adqb = ngabdq
adqb . (16)

Definition 7. Killing vector fields and homothetic Killing vector fields.
If the metric is a homogeneous tensor of weight n 6= 0 with respect to the action
generated by a vector field ξ, then ξ is called a homothetic Killing vector field
of weight n. If n = 0, then ξ is called a Killing vector field.

Example: Let g = ∂2H be a Hessian metric with a Hesse potential that is

homogeneous of degree n. Then the Euler field ξ is a homothetic Killing vector

field, and g has weight n. This follows immediately from g = Habdq
adqb.

Remark 3. Hypersurface orthogonality of the Euler field. If ξ is a
homothetic Killing vector field for a Hessian metric g, then ξ is g-orthogonal to
the level surfaces H = c of the Hesse potential.

In ∇-affine coordinates this is manifest, since the dual coordinates are the

components of a gradient:

(n− 1)∂aH = (n− 1)qa = gabq
b . (17)

Therefore the one-form ξ[ = gabq
adqb = g(ξ, ·) dual to the Euler field ξ is exact,

ξ[ = (n − 1)dH. A vector T is tangent to the hypersurface H = c if and only

if it is annihilated by the one-form dH (equivalently, if it is orthogonal to the

gradient of H). Therefore the vector field ξ is normal to the level surfaces of H:

0 = (n− 1)dH(T ) = ξ[(T ) = g(ξ, T ) . (18)

Note that the integrability condition dξ[ = 0 is a special case of the Frobenius

integrability condition for hypersurfaces, ξ[ ∧ dξ[ = 0.4

Remark 4. The case n = 1 is to be discarded. Formula (17) shows that
the case n = 1 is special. It corresponds to a linear Hesse potential for which
the metric is totally degenerate, Hab = 0. This case will be discarded in the
following, since we are only interested in non-degenerate metrics.

4Hypersurface orthogonality and the Frobenius theorem are reviewed in A.7
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Remark 5. The case n = 0 needs to be treated separately. The case
n = 0, where ξ is a genuine Killing vector field, is interesting, but needs to be
treated separately. In the following we will first consider the generic case n 6= 0
(with n 6= 1 understood), and then return to the case n = 0.

We would like to have a coordinate-free characterization of Hessian manifolds

which admit homogeneous Hesse potentials. As a first step, we consider pseudo-

Riemannian manifolds equipped with a homothetic Killing vector field which

is the Euler field with respect to an affine structure. At this point it is not

relevant whether the pseudo-Riemannian metric is Hessian or not. Since we

admit indefinite metrics, the Euler field might become null, g(ξ, ξ) = 0. We will

need to divide by the function g(ξ, ξ) and therefore we require that ξ is nowhere

isotropic, that is g(ξ, ξ) 6= 0 on the whole manifold M . Thus ξ is either globally

time-like or globally space-like.

Definition 8. n-conical pseudo-Riemannian manifolds. An n-conical
pseudo-Riemannian manifold (M, g,∇, ξ) is a pseudo-Riemannian manifold (M, g)
equipped with a flat, torsion-free connection ∇ and a nowhere isotropic vector
field ξ, such that

Dξ =
n

2
IdTM , ∇ξ = IdTM . (19)

Here D is the Levi-Civita connection of the metric g, and Dξ, ∇ξ are endo-
morphism of the tangent bundle TM of M , that is, tensor fields of type (1, 1).
Equivalently one can write

DXξ =
n

2
X , ∇Xξ = X , ∀X ∈ X(M) , (20)

where X(M) are the smooth vector fields on M .

The condition ∇Xξ = X implies that ξ is the Euler field with respect to

∇-affine coordinates qa. Note that if this condition is dropped, we can change

the value of n by rescaling ξ. One could in particular choose n = 2, which leads

to the standard definition of a metric cone (or Riemannian cone). But since we

are ultimately interested in Hessian manifolds, we insist on the existence of an

affine structure, which prevents us from changing the value of n.

By decomposition of DXξ = n
2X into its symmetric and anti-symmetric part

we see that this condition is equivalent to ξ being a closed, hence hypersurface

orthogonal, and homothetic Killing vector field:

Dξ =
n

2
Id⇔

 Lξg = ng ,

dξ[ = 0 .
(21)
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In general local coordinates xm this reads

Dmξn =
n

2
gmn ⇔

 (Lξg)mn = Dmξn +Dnξm = ngmn ,

∂mξn − ∂nξm = 0 .
(22)

Remark 6. Standard form of an n-conical metric. If (M, g) is an n-
conical pseudo-Riemannian manifold, then g can locally be written in the from

g = ±rn−2dr2 + rnh , (23)

where h is a pseudo-Riemannian metric on an immersed hypersurface ι : H →
M . For n = 2 this is the local form of a metric cone (R>0 ×H, dr2 + r2h) over
a pseudo-Riemannian manifold (H, h).

We now give a proof following [7], which generalizes the treatment of Riemannian

cones in [15]. The vector field ξ is hypersurface orthogonal and therefore locally

the gradient of a function H, ξm = ∂mH. The level surfaces of H are orthogonal

to the integral lines of ξ. Combining this with the homothetic Killing equation

shows that H is a potential for the metric:

(Lξg)mn = Dmξn +Dnξm = ngmn ⇒ Dm∂nH =
n

2
gmn . (24)

Differentiating the norm5 g(ξ, ξ) of ξ gives

∂p(g
mn∂mH∂nH) = 2Dp(g

mn∂mH)∂nH = 2gmnDp∂mH∂nH = n∂pH , (25)

so that upon choosing a suitable integration constant,

g(ξ, ξ) = nH . (26)

We use H as a coordinate along the integral lines of ξ, and extend this to a

local coordinate system {H,xi} on M . For xi we choose coordinates on the

level surfaces of H, by picking any local coordinates on one level surfaces and

extending them to M by the requirement that points on different level surfaces

have the same coordinates xi if they lie on the same integral line of ξ. Since the

level surfaces are orthogonal to the integral lines of ξ, the metric has a block

structure:

g = gHHdH
2 + gijdx

idxj . (27)

5Since we work with indefinite metrics, we use the term ‘norm’ for square-norm g(ξ, ξ).
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Using that dH(ξ) = g(ξ, ξ) and dxi(ξ) = 0 we find gHH = (nH)−1, and thus

g =
dH2

nH
+ gijdx

idxj , ξ = nH∂H . (28)

Introducing a new transverse coordinate r > 0 by rn = ±nH, this becomes

g = ±rn−2dr2 + gijdx
idxj , ξ = r∂r . (29)

Note that we have to allow a relative sign between r and H, because H can be

positive or negative, while r is positive. Using that Lξdx
i = 0, the homothetic

Killing equation Lξg = ng implies

(Lξg)ij = r∂rgij = ngij . (30)

Thus the functions gij(r, x) = gij(r, x
1, . . . , xn) are homogeneous of degree n in

ρ, and therefore

gij(r, x) = rnhij(x) , (31)

where hij = hij(x) only depend on xi, but not on r. Thus locally g takes the

form

g = ±rn−2dr2 + rnhij(x)dxidxj . (32)

This is the local standard form of a n-conical metric. For n = 2 this is the

metric on a pseudo-Riemannian cone, see A.9.

We observe that while our derivation is not valid for n = 0, the formula we

have obtained still makes sense, since

g = ±dr
2

r2
+ hijdx

idxj (33)

is a product metric on R>0 ×H, with isometric action of ξ = r∂r by dilatation.

Introducing a new radial coordinate ρ by dρ = dr
r , this becomes the standard

product metric

g = ±dρ2 + hijdx
idxj (34)

on R × H, where the isometric action of ξ = ∂ρ is now by translation. The

product form of the metric does not follow automatically from the n-conical

conditions with n = 0, which imply Lξg = 0 and dξ[ = 0. But if we impose

in addition that ξ has constant norm, g(ξ, ξ) = c 6= 0, where we used that ξ is

nowhere isotropic, we can show that g is a product metric, as follows. We choose

a coordinate ρ by setting ξ =
√
|c|∂ρ and extend this to a local coordinate system
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on M by choosing coordinates xi on the hypersurfaces ρ = const. orthogonal to

the integral lines of ξ. In this coordinate system

g = gρρdρ
2 + gij(ρ, x)dxidxj . (35)

Since g(ξ, ξ) = gρρ|c| = c it follows that gρρ = ±1, depending on whether ξ is

time-like or space-like. Since by construction Lξdx
i = 0, the Killing equation

Lξg = 0 implies that gij is independent of ρ:

(Lξg)ij = ∂ρgij = 0 . (36)

We can therefore interpret gij as a metric hij on any of the hypersurfaces ρ =

const. Thus we have shown that g locally takes the form (A.90)

g = ±dρ2 + hijdx
idxj = ±dr

2

r2
+ hijdx

idxj , (37)

of a product metric.

Relation to affine coordinates. The standard coordinates (r, xi) on an

n-conical Riemannian manifold can be related to a ∇-affine coordinate qa by

setting

(qa) = (q0, qi) = (r, rxi) . (38)

The Jacobian of this transformation is

D(q0, qi)

D(r, xj)
=

 ∂r
∂r |xj

∂r
∂xj |r

∂rxi

∂r |xj
∂rxi

∂xj |r

 =

 1 0

xi rδij

 , (39)

and therefore

ξ = r
∂

∂r
= r

(
∂qa

∂r

∂

∂qa

)
= qa

∂

∂qa
. (40)

The coordinates qa have weight 1, the derivatives ∂a have weight −1, and the

metric coefficients gab are homogeneous functions of degree (n − 2) in qa. We

remark that the coordinates qa can be viewed as homogeneous coordinates (also

called projective coordinates) for the hypersurfaces r = const., for which xi are

inhomogeneous coordinates.

So far we have not required that the pseudo-Riemannian metric g is Hessian.

By adding this requirement we arrive at the following definition:

Definition 9. n-conical Hessian manifolds. An n-conical Hessian manifold
(M, g,∇, ξ) is an n-conical pseudo-Riemannian (M, g,∇, ξ) manifold which is
Hessian, that is, ∇g is totally symmetric.
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Remark 7. n-conical Hessian manifolds admit a Hesse potential which
is homogeneous of degree n. If (M, g,∇, ξ) is an n-conical Hessian manifold
with local affine coordinates qa, then the function

H =
1

n(n− 1)
qaqbgab , (41)

which is homogeneous of degree n, is a Hesse potential for g.

The function H is manifestly homogeneous of degree n. By differentiating

(41) twice and using the homogeneity relations (11) for gab, we obtain Hab =

∂a∂bH = gab, which shows that H is indeed a Hesse potential for gab. We remark

that (41) does not apply to the degenerate case n = 1, which we discard, and

to the interesting case n = 0, which we will consider separately below.

Definition 10. Conical affine coordinates. Let (M, g,∇, ξ) be an n-conical
Hessian manifold. Then ∇-affine coordinates qa are called conical ∇-affine co-
ordinates if the Hesse potential is homogeneous of degree n in qa.

The homogeneity of H is only preserved under linear transformations, but

not under translations. Therefore conical ∇-affine coordinates are unique up

to linear coordinate changes. In the following it is understood that ∇-affine

coordinates on a conical Hessian manifold are always chosen to be conical.

0-conical Hessian manifolds

We now turn to the special case n = 0, where the Euler field ξ acts isometri-

cally on the Hessian metric g. Metrics of this type can be constructed by taking

Hesse potentials of the form

H̃ = a log(bH) , (42)

where a, b are real constants, and where H is a homogeneous function of degree

n > 1.6 We will see later that certain constructions involving vector multiplets

(superconformal quotients and dimensional reduction) naturally involve replac-

ing a homogeneous Hesse potential by its logarithm. The constants a, b have

been introduced so that we can match our results with various conventions used

in the physics literature.

Note that the Hesse potential H̃ is not a homogeneous function, since it

transforms with a shift under qa 7→ λqa. However, its k-th derivatives are

6Except where the determination of signatures is concerned, we only use n 6= 0, n 6= 1 in
the following. For physics applications we will need the cases n = 2 and n = 3.
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homogeneous functions of degree −k for any k ≥ 1. The tensor g̃ = H̃abdq
adqb

is homogeneous of degree zero, and defines a 0-conical Hessian metric. The first

derivatives

q̃a := H̃a = ∂aH̃ = a
Ha

H
(43)

of H̃ are homogeneous of degree −1. They define the coordinate system dual

to the affine coordinates qa with respect to the Hesse potential H̃. The overall

sign of H does not have any effect on expressions which involve derivatives of

H̃ only, since these expressions are invariant under H → −H. In particular,

the Hessian metrics Hab = ∂2
a,bH and −Hab = ∂2

a,b(−H) give rise to the same

Hessian metric H̃ab if we ‘take the log of the Hesse potential.’

Explicitly, the metric coefficients associated with the Hesse potential H̃ are:

H̃ab = ∂2
a,bH̃ = a

HHab −HaHb

H2
. (44)

The following relations implied by the homogeneity of H are useful:

qaqa = qaHa = nH , Habq
b = (n− 1)qa , qaqbHab = n(n− 1)H , (45)

The dual affine coordinates q̃a with respect to H̃ satisfy

H̃abq
b = −aqa

H
= −q̃a . (46)

To compare the n-conical metric ∂2H and the 0-conical metric ∂2H̃, we evaluate

them on the Euler field ξ, which is orthogonal to the level surfaces of H and H̃,

and on a vector field T , which is tangent to the level surfaces.

• Components transversal to the foliation Hc.

g(ξ, ξ) = Habq
aqb = n(n− 1)H , (47)

g̃(ξ, ξ) = H̃abq
aqb = −an . (48)

The g̃-norm g̃(ξ, ξ) of ξ is constant on M , while the g-norm g(ξ, ξ) depends

on the leaf Hc.

• Mixed components. If T is tangent to Hc = {H = c}, then

dH(T ) = T aHa = T aqa = 0 . (49)

Therefore

g(T, ξ) = HabT
aqb = T aqa = 0 , g̃(T, ξ) = H̃abT

aqb = 0 . (50)
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• Tangential components:

g̃(T, T ) = a
HHabT

aT b − T aqaqbT b

H2
=

a

H
HabT

aT b =
a

H
g(T, T ) . (51)

These component are proportional for constant H.

Since the tangential components of both metrics are proportional for any fixed

leaf Hc, their pullbacks to the embedded hypersurfaces7

ιc : Hc = {q ∈M |H(q) = c} →M (52)

are proportional:

gc = ι∗c∂
2H =

c

a
ι∗c∂

2H̃ . (53)

On the hypersurface H = Hc=1:

gH = ι∗∂2H =
1

a
ι∗∂2 logH . (54)

By choosing a = 1 we can make the pullbacks equal. Note that the transver-

sal components of both metrics are different. In particular both metrics have

different signatures. On a leaf Hc we have

ag(T, T ) = cg̃(T, T ) , (55)

g(ξ, ξ) = n(n− 1)c , g̃(ξ, ξ) = H̃abdq
adqb = −na . (56)

Thus if g and g̃ have the same signature on tangent vectors, ac > 0, then they

have different signature in the transverse direction.8

Remark 8. The dual Hessian structure and dual Hesse potential for a
Hessian manifold with logarithmic Hesse potential. The Hesse potential
H̃dual dual to H̃ is defined by

H̃ab =
∂H̃dual

∂q̃a∂q̃b
, (57)

where H̃ab is the inverse of H̃ab. By a straightforward computation one finds
H̃dual = −H̃.9 This is consistent with (12), which, however, cannot be applied
directly, because H̃ is not a homogeneous function of degree zero.

7Immersions and embeddings are review in A.1. Since we are interested in comparing
local expressions for various tensor fields, there is no loss of generality in assuming that the
hypersurfaces Hgc are embedded.

8Here we use the assumption n > 1, which applies for the application to vector multiplets,
where n = 2 or n = 3. Otherwise all expressions in this section are valid for n 6= 0, n 6= 1.

9We remark that in the physics literature, i.p. in [16], the dual Hesse potential was defined
without minus sign. Here we use the definition given in [1].
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2.4. Projectivization of conical Hessian manifolds

The relation between the manifolds (M, gM ) and (H, gH) can be interpreted

as a quotient, and (H, gH) can be viewed as the projectivization of the conical

manifold (M, gM ), with respect to the homothetic action of ξ. This construction

is related to the so-called superconformal quotients in the physics literature.

In particular the real superconformal quotient relating the scalar geometry of

five-dimensional superconformal vector multiplets to the geometry of vector

multiplets coupled to Poincaré supergravity is a special case of the quotient

relating (M, gM ) and (H, gH).

If (M, gM ,∇, ξ) is a conical Hessian manifold we can consider the space of

orbits M̄ = M/〈ξ〉 ∼= M/R>0 of the action of ξ on M . We will assume that

this quotient is well-behaved, so that M̄ is a smooth manifold. To induce a

metric gM̄ on the quotient, we need a symmetric, second rank co-tensor g∗M on

M which is projectable, that is, invariant under the action of ξ, Lξg
∗
M = 0 and

transversal to the action of ξ, g∗M (ξ, ·) = 0. The second condition implies that

g∗ is not a metric on M , because it has a kernel which contains ξ. In order that

it projects to a metric gM̄ on M̄ , the kernel of g∗M must be one-dimensional,

that is, it is spanned by ξ. Since the hypersurfaces Hc are transversal to ξ, any

of them can be used as a a set of representatives for the orbit space M/〈ξ〉, that

is M̄ ∼= Hc. We can view M as a real line bundle, π : M → M̄ over M̄ ∼= H,

and the invariant tensor g∗M is equal to the pull-back of gM̄ = gH to M :

g∗M = π∗gM̄ = π∗gH . (58)

The conical metric gM is neither invariant nor transversal with respect to

the action of ξ, but there is a natural way to construct a projectable tensor g∗M

out of gM using the conical Hessian structure. Moreover, the induced metric gM̄

agrees, up to conventional normalization, with the pull-back gH of the conical

metric gM to H. Since gM transforms with a different weight n under ξ, we

can obtain an invariant tensor by multiplication with the appropriate power of

H. In fact, we have seen that taking the logarithm of a homogeneous Hesse

potential automatically associates a 0-conical Hessian metric to an n-conical

one. To obtain a projectable tensor, it remains to add an ξ-invariant symmetric

rank two co-tensor such that the resulting tensor becomes transversal to ξ. For

this it is helpful to consider the one-form

d logH = H−1Hadq
a (59)
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which vanishes on tangent vectors T to the surfaces H = c, while being constant

along integral lines of ξ:

d logH(T ) = 0 , d logH(ξ) = H−1Haq
a = n . (60)

By taking linear combinations between the 0-conical Hessian metric and the

square of this one form, we obtain a family of ξ-invariant symmetric rank two

co-tensors:

g
(α)
M = a

HHab − αHaHb

H2
dqadqb = a

(
H−1Habdq

adqb − α(d logH)2
)
. (61)

Note that only α = 1 corresponds to a Hessian metric. Now we look for a critical

value α∗ of α where g
(α)
M becomes transversal to ξ:

0 = g
(α)
M (ξ, ·) = aH−2 (HHab − αHaHb) q

adqb = aH−2HHb ((1− α)n− 1) dqb

⇒ α =
n− 1

n
=: α∗ . (62)

Note that as a function of α the norm g(ξ, ξ) of ξ changes sign at α = α∗.

Therefore g
(α)
M changes signature when crossing the critical value where it de-

generates.

Thus we have identified the projectable tensor

g∗M = g
(α∗)
M = a

(
H−1Habdq

adqb − n− 1

n
(d logH)2

)
, (63)

which defines a non-degenerate metric gM̄ on the quotient space M̄ = M/R>0.

Since the hypersurfaces Hc are transversal to the integral lines of ξ, we can

pick any such hypersurface to represent the quotient space. On tangent vectors

T, S to H, g∗M agrees, up to a constant factor, with gM , and therefore with the

pull-back of gM to H:

g∗M (T, S)c=1 = aHabT
aSb = agM (T,X)c=1 = agH(T,X) . (64)

We remark that this construction can be viewed as a real analogue of the con-

struction of the Fubini-Study metric on complex projective spaces, which itself

is a special case of the complex version of the superconformal quotient (see for

example [17]).

Finally we remark that the family g
(α)
M of ξ-invariant tensors can be gener-

alized to families of symmetric tensors with given weight k under ξ. If H has

weight n then metrics of the form

g(k,α1,α2) = Hk/n
(
α1g

∗
M + α2(d logH)2

)
. (65)
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have weight k. This parametrization uses three building blocks: the projectable

invariant tensor g∗M , the quadratic differential (d logH)2 which vanishes on tan-

gent vectors of the foliation Hc, and the Hesse potential which determines the

weight. By varying α1 and α2, the signature can be changed. All symmetric

second rank co-tensors we need are included in this family.

2.5. Special real geometry

2.5.1. Affine special real manifolds as Hessian manifolds

We are now in position to define the scalar geometries five-dimensional vector

multiplets. As we will see in section 3.1 the geometry of rigid five-dimensional

vector multiplets is Hessian, and the scalar fields, which are the lowest com-

ponents of vector multiplets, are ‘special coordinates’ on the scalar manifold.10

Here special coordinates means affine coordinates with respect to the flat (or

‘special’) connection defining the Hessian structure. Supersymmetry imposes

an additional condition because it implies the presence of a Chern-Simons term

in the Lagrangian, whose gauge invariance (up to surface terms) restricts the

Hesse potential to be a cubic polynomial. This leads to the following definition:

Definition 11. Affine special real manifolds (ASR manifolds). An affine
special real manifold (M, gM ,∇) is a Hessian manifold with a Hesse potential
that is a cubic polynomial in ∇-affine coordinates.

We note that this definition is independent of the choice of special coordi-

nates, since affine transformations preserve the degree of a polynomial. The

∇-affine coordinates of an ASR manifold are called special real coordinates, or

special coordinates for short.

We can also define a conical version of affine special real geometry, which

turns out to be the geometry of five-dimensional rigid superconformal vector

multiplets, to be introduced in section 3.2.

Definition 12. Conical affine special real manifolds (CASR manifolds).
A conical affine special real manifold (M, gM ,∇, ξ) is a 3-conical Hessian man-
ifold whose Hesse potential is a homogeneous cubic polynomial in special coor-
dinates.

Finally, we can apply the quotient construction of section 2.4 to a CASR

manifold. In this case we will refer to the quotient as the real superconformal

10More precisely the scalar fields are pullbacks from the scalar manifold to space-time of
coordinate maps for the scalar manifold. See B.1.
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quotient, because the resulting quotient manifolds occur as scalar target spaces

for five-dimensional vector multiplet coupled to Poincaré supergravity, as we

will see in section 3.3. This motivates the following definition:

Definition 13. Projective special real manifold (PSR manifold). A pro-
jective special real manifold (M̄, gM̄ ) is a pseudo-Riemannian manifold which
can be obtained as the real superconformal quotient of a conical affine special
real manifold (M, gM ,∇, ξ).

For later use we collect some formulae, which follow from those derived in

the previous sections by specializing to the case n = 3. On a CASR manifold

M we have the family

g
(α)
M = a

HHab − αHaHb

H2
dqadqb = a

(
H−1Habdq

adqb − α(d log bH)2
)

(66)

of ξ-invariant symmetric rank 2 co-tensor fields. The following tensor fields are

relevant for five-dimensional vector multiplet theories:

• The CASR metric

gM = Habdq
adqb . (67)

• The ξ-invariant metric

g
(0)
M = aH−1Habdq

adqb , (68)

which is a conformally rescaled version of the CASR metric gM = Habdq
adqb.

• The 0-conical Hessian metric

g
(1)
M = a∂2 log bH = a

HHab −HaHb

H2
dqadqb . (69)

• The projectable tensor field

g∗M = a

(
H−1Habdq

adqb − 2

3
(d logH)2

)
(70)

= a(H−1Hab −
2

3
H−2HaHb)dq

adqb ,

where we used that α∗ = 2
3 for n = 3. This tensor field projects to the

PSR metric gM̄ = gH.

We also note the norms of ξ with respect to these metrics:

gM (ξ, ξ) = 6H , g
(0)
M (ξ, ξ) = 6a , g∗M (ξ, ξ) = 0 , g

(1)
M (ξ, ξ) = −3a . (71)

As observed before, the signature of g
(α)
M changes at α = α∗ = 2

3 .
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2.5.2. Projective special real manifolds as centroaffine hypersurfaces

The original construction of five-dimensional vector multiplets coupled to

supergravity [18] did not make use of the superconformal formalism. Instead

the Poincaré supergravity Lagrangian and on-shell supertransformations were

constructed directly. The resulting scalar manifold M̄ was interpreted as a

cubic hypersurface in Rn+1, with a metric determined by the homogeneous

cubic polynomial defining the embedding. We will not follow [18] in detail, but

instead review the construction of [2], which realizes M̄ as a so-called centroaffine

hypersurface and allows to recover the local formulae of [18].

We start with Rn+1 equipped with its standard flat connection ∂. Note that

we do not introduce a metric on Rn+1 so that the construction is done within the

framework of affine differential geometry. The position vector field ξ is defined

by ξ(p) = p for all p ∈ Rn+1. For linear coordinates hI on Rn+1 and ξ is the

corresponding Euler field, ξ = hI∂I .

Definition 14. PSR manifolds as centroaffine hypersurfaces. A PSR
manifold M̄ is a connected immersed hypersurface

ι : M̄ → H := {V = 1} ⊂ Rn+1 (72)

where the homogeneous cubic polynomial

V := CIJKh
IhJhK (73)

is assumed to be non-singular in a neighbourhood

U = Uε = {V = c|1− ε < c < 1 + ε} ⊂ Rn+1 (74)

of the hypersurface H for some ε > 0.

We will assume that M̄ is an embedded submanifold, so that we can identify

M̄ and H. Let us verify that we can recover the alternative Definition 11.

For a homogeneous cubic polynomial, the position vector field ξ is everywhere

transversal to H. This allows to define a metric gH and a torsion-free connection

∇ on H by decomposing the connection ∂, acting on tangent vectors X,Y ∈
TpH, p ∈ H, into a tangent and a transversal component:

∂XY = ∇XY +
2

3
gH(X,Y )ξ . (75)

The factor 2
3 is conventional. This construction is a special case of the construc-

tion of a centroaffine hypersurface, see A.10 for more details.
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It is useful to introduce the totally symmetric trilinear from

C = CIJKdh
IdhJdhK . (76)

By contracting with the position vector ξ we obtain the following tensors:

1. The function

C(p, p, p) = CIJKh
IhJhK = V , (77)

which defines the embedding.

2. The one-form

C(p, p, ·) = CIJKh
IhJdhK =

1

3
dV , (78)

which is proportional to the differential of V, and which therefore vanishes

precisely on tangent vectors of H.

3. The symmetric two-form

C(p, ·, ·) = CIJKh
IdhJdhK =

1

6
∂dV , (79)

which is proportional to the Hessian of the function V. If this two-form is

non-degenerate, it defines a Hessian metric on U ⊂ Rn+1.

Since U is equipped with a 3-conical Hessian metric, we can identify it with the

CASR manifold M of the previous section.

One defines the conjugate or dual coordinates

hI := CIJKh
JhK , (80)

so that V = hIh
I , dV = 3hIdh

I . The dual coordinates hI are, up to a numerical

factor, the dual affine coordinates of the Hessian structure defined by C(p, ·, ·).
We claim that gH is proportional to the pullback of the Hessian metric ∂dV

to H:

gH(X,Y )p = −3C(p,X, Y ) = −1

2
(∂2
X,Y V)|p , (81)

for all tangent vectors X,Y = TpH. To show this we extend the tangent vector

fields X,Y to a neighbourhood U = Uε of H ⊂ Rn+1, such that X(V) =

Y (V) = 0. In other words the extended vector fields X,Y are tangent to the

local foliation of Rn+1 by hypersurfaces Hc = {V = c}. The Hessian of the

function V is11

∂2
X,Y V = X(Y (V))− (∂XY )(V) = XIY JVIJ (82)

11We refer to A.5.4 for the definition of higher covariant derivatives with respect to vector
fields, and the definition of the Hessian of a function with respect to a general linear connection.
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so that on tangent vector fields of H:

(∂2
X,Y V)p = (−∂XY )(V)p = −3C(p, p, ∂XY ) , p ∈ H . (83)

In the second step we used the formula

Z(V)p = ZL∂L(CIJKh
IhJhK) = 3ZLCLJKh

JhK = 3C(p, p, Z) . (84)

Using (75) we obtain

(∂2
X,Y V)p = −3C(p, p,∇XY )− 2gH(X,Y )C(p, p, p) = −2gH(X,Y ) , (85)

where we used that C(p, p, ·) vanishes on tangent vector ofH, and that C(p, p, p) =

1 for p ∈ H. Thus gH agrees with − 1
2∂dV = −3C(p, ·, ·) on tangent vectors,

and we can therefore extend gH to a Hessian metric g = − 1
2∂dV with Hesse

potential − 1
2V in a neighbourhood Uε of H. The metric g = hIJdh

IdhJ is the

3-conical ASR metric denoted gM , which occurred previously in the supercon-

formal quotient construction. In local coordinates

hIJ = −1

2
∂2
I,JV = −3CIJKh

K . (86)

The torsion-free connection ∇ is not the Levi-Civita connection D of the metric

gH = ι∗g. The connections ∇ and D can be related using a tensor S, which is

defined in terms of the trilinear form C:

g(SXY,Z) =
3

2
C(X,Y, Z) , (87)

where X,Y, Z are vector fields tangent to H. Now we define a new connection

D by12

D = ∇− S . (88)

To show that D is the Levi-Civita connection of gH we must prove that D

is metric and torsion-free. The total symmetry of the trilinear form implies

SXY = SYX, and since ∇ is torsion-free, it follows that D is torsion-free. It

remains to show D is metric, that is

(DXg)(Y, Z) = Xg(Y,Z)− g(DXY, Z)− g(Y,DXZ) = 0 , (89)

12Note that compared to [2] the symbols D and ∇ have been exchanged.
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where X,Y, Z are tangent to H. We extend X,Y, Z to U = Uε such that

X(V) = Y (V) = Z(V) = 0. Substituting in D = ∇−S and using (75), together

with the fact that ξ is g-orthogonal to tangent vectors, we find

(DXg)(Y, Z) = Xg(Y,Z)− g(∂XY,Z)− g(Y, ∂XZ) + g(SXY,Z) + g(Y, SXZ)

= (∂Xg)(Y,Z) + 3C(X,Y, Z) , (90)

where we used the relation between the difference tensor S and the trilinear

form C in the second step. Now we use that g is Hessian:

(∂Xg)(Y,Z) = −1

2
∂3
X,Y,ZV = −3C(X,Y, Z) . (91)

and therefore (DXg)(Y,Z) = 0, as required to show that D is the Levi-Civita

connection of gH. We remark that the metric gM̄ = gH defined on the hyper-

surface M̄ = H is not a Hessian metric. Moreover, the connections ∇ and D do

not define flat connections on H.

2.6. Conical and projective special real geometry in local coordinates

In this section we derive explicit expressions for various quantities in terms

of local coordinates on the CASR manifold M and on the PSR manifold M̄ ∼= H.

Since we are interested in local expressions we assume that H is embedded into

M , rather than only immersed, and take M to be foliated by hypersurfaces

Hc. We will relate the notation and convention used in the previous sections to

those of [18], where the geometry of five-dimensional vector multiplets coupled

to Poincaré supergravity was derived originally.

As in section 2.5.2 and in [18] affine coordinates on M ∼= U ⊂ Rn+1 are

denoted hI , I = 0, . . . , n, local coordinates on H are denoted φx, x = 1, . . . , n

and the Hesse potential is denoted V. In section 2.3 these quantities were

denoted qa, xi and H, respectively. On M we are using a second coordinate

system, which consists of a coordinate along the integral lines of the Euler field ξ,

together with coordinates on the level surfaces of the Hesse potential. Since the

Euler field is transversal toH, the CASR manifoldM is foliated by hypersurfaces

Hc = {V = c}. We can extend the coordinates φx to M by imposing that two

points p ∈ H and p′ ∈ Hc have the same coordinates φx is they lie on the same

integral line of ξ. With regard to the transversal coordinate, the two natural

choices are ρ and r = eρ, defined by

ξ = hI∂I = ∂ρ = r∂r . (92)
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The differential ∂hI

∂φx of the embedding

ιc : Hc 3 φx 7→ hI ∈ U (93)

allows to pull-back tensor components to Hc. Following [18] we define the

rescaled quantities

hIx = −
√

3

2
∂xh

I , hIx =

√
3

2
∂xhI (94)

for later convenience. Given the definitions

V = CIJKh
IhJhK , hI = CIJKh

JhK (95)

for the Hesse potential and for the dual coordinates,13 we note the following

relations:

hIhI = V ⇒ hIxhI = 0 = hIhIx . (96)

The second relation follows because derivatives ∂x are taken along hypersurfaces

Hc. Note that here and in the following some of our relations will differ from

those found in [18] by factors of V. The reason is that the relations given in [18]

are valid on H, that is for V = 1, whereas we extend these relations to all of M .

We now specify the relevant rank two symmetric tensor fields on M .

• The CASR metric on M is

gM = −1

2
∂2V = hIJdh

IdhJ , hIJ = −1

2
∂2
I,JV = −3CIJKh

K . (97)

Compared to section 2.3 this corresponds to the choice H = − 1
2V while

identifying the coordinates hI with the coordinates qa.

• The 0-conical metric on M is

g
(1)
M = −1

3
∂2 logV = aIJdh

IdhJ , (98)

aIJ = −1

3
∂2
I,J logV =

−2CIJKh
KV + 3hIhJ
V2

. (99)

Compared to section 2.3 this corresponds to the choices a = − 1
3 and

b = − 1
2 . We note that with this convention ξ has unit norm, g

(1)
M (ξ, ξ) = 1,

while on tangent vectors T, S we find g
(1)
M (T, S) = 3

2V gM (T, S).

13Remember that the hI then differ from the standard dual coordinates of Hessian geometry
by a factor.
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• The projectable tensor on M is

g∗M =
−2CIJKh

KV + 2hIhJ
V2

dhIdhJ , (100)

since

g∗M (ξ, ·) =
−2CIJKh

IhKV + 2hIhIhJ
V2

= 0 . (101)

Note that

g
(1)
M = g∗M +

hIhJ
V2

dhIdhJ (102)

is the product decomposition of the 0-conical metric into the projectable

tensor and the square of a one-form dual to the Euler field ξ.

• The PSR metric gH is the pullback of the CASR metric gM to H, but

differs by a factor 3
2 from the pullback of the 0-conical metric g

(1)
M , which

makes the definition (94) convenient:

gxy = hIJ∂xh
I∂yh

J = aIJh
I
xh

J
y . (103)

We would also like to give expressions for the horizontal lifts of tensors from H,

or more generally from Hc, to M . For this it is useful to note that

hI = VaIJhJ , hIx = VaIJhJx , hIxh
I
y = VaIJhIxhJy = Vgxy . (104)

We also define

hxI = gxyhIy , hIx = gxyhIy . (105)

Then the quantities hxI can be used to lift tensors from H to M , and to convert

tensors from coordinates (ρ, φx) to coordinates hI . For example, the components

of the horizontal lift of gxy to M are

3

2

1

V2
gxyh

x
Ih

y
J =

3

2
g∗IJ =

3

2

(
−2CIJKh

KV + 2hIhJ
V2

)
. (106)

To verify this we evaluate the tensor on the left hand side on the coordinate

frame

ξ = hI∂I = ∂ρ , ∂u = ∂uh
I∂I . (107)

Firstly, g∗IJh
J = 0, so that ξ is in the kernel. On tangent vectors we find(

3

2V2
gxyh

x
Ih

y
J

)
∂uh

I∂vh
J =

1

V2
gxyh

x
Ih

J
yh

I
uh

J
v = guv , (108)

as required.
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Similarly, the 0-conical metric aIJ can be decomposed into a term propor-

tional to the horizontal lift of gxy and an orthogonal complement:

aIJ =
gxyh

x
Ih

y
J + hIhJ
V2

. (109)

This can again be verified by evaluation on the coordinate frame ∂ρ, ∂x. We

find

aIJh
IhJ =

hIh
IhJh

J

V2
= 1 = g

(1)
M (ξ, ξ) (110)

and

aIJ∂uh
I∂vh

J =
2

3V2
gxyh

x
Ih

y
Jh

I
uh

J
v =

2

3
guv = g

(1)
M (∂u, ∂v) , (111)

while aIJh
IhJx = 0 ⇒ g

(1)
M (ξ, ∂x) = 0, thus verifying that (109) are the coeffi-

cients of the 0-conical metric g
(1)
M . To convert these coefficients from the linear

coordinates hI to the coordinates (ρ, φx), we compute

aIJdh
IdhJ = V−2gxyh

x
Ih

y
J

2

3
hIuh

J
v dφ

udφv + V−2hIhJh
IhJdρ2

=
2

3
gxydφ

xdφy + dρ2 . (112)

Here we have substituted in aIJ and used that hxIh
I = 0 to simplify the first

term. In the second step we used

ξ = hI∂I = ∂ρ ⇒ ξ[ = dρ = V−1hIdh
I . (113)

Next, we express the connections D and ∇ in local coordinates φx on H,

following [2]. Let X be a vector field tangent to H. Then

X = XI∂I = Xx∂x ⇒ XI = Xx∂xh
I . (114)

Equation (75) becomes

∂x(Y y∂yh
I) = (∇xY y)(∂yh

I) +
2

3
gxyh

IY y . (115)

Rewriting (87) in local coordinates we obtain the relation

∇xY y = DxY
y +

3

2
CyxzY

z (116)

between the connections D and ∇ evaluated on tangent vectors X,Y , where

Cxyz := CIJK∂xh
I∂yh

J∂zh
K . (117)
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is the pullback of the trilinear form to H. Combining (115) and (116) we obtain

∂x(Y y∂yh
I) = (DxY

y)(∂yh
I) + Y yDx∂yh

I = (∇xY y)(∂yh
I) +

2

3
gxyh

IY y

⇒ Y yDx∂yh
I = (∇xY y −DxY

y)∂yh
I + hIgxyY

y =
3

2
CzxyY

y∂zh
I +

2

3
hIgxyY

y

⇒ Dx∂yh
I =

3

2
Czxy∂zh

I +
2

3
hIgxy . (118)

The corresponding formula (2.16) in [18] is

Dxh
I
y = −

√
2

3

(
gxyh

I + T zxyh
I
z

)
⇔ Dx∂yh

I =
2

3
gxyh

I −
√

2

3
T zxy∂zh

I . (119)

Matching with our formula requires

3

2
Cxyz = −

√
2

3
Txyz ⇒ Txyz = −

(
3

2

)3/2

CIJK∂xh
I∂yh

J∂zh
K . (120)

The constant tensor CIJK on M can be decomposed as

CIJK =
5

2V2
hIhJhK +

3

2
a(IJhK) +

1

V2
Txyzh

x
Ih

y
Jh

z
K . (121)

To verify this decomposition we contract CIJK with the vectors of the frame

ξ = hI∂I = ∂ρ and ∂x = ∂xh
I∂I .

• Contraction with three tangent vectors gives precisely the pullback of

CIJK to Hc

CIJK∂xhI∂yhJ∂zhK = Cxyz = C(∂x, ∂y, ∂z) . (122)

• Contracting once with the Euler field ξ we obtain the two-form C(ξ, ·, ·)
with components CIJKh

K on the left hand side. When applying the same

contraction on the right hand side the third term does not contribute, and

the contributions from the first and second term combine in CIJKh
K .

We remark that the corresponding formula (2.12) of [18] is recovered for V = 1.

In [18] one can also find expressions for the curvature tensors of the CASR metric

gM and of the PSR metric gH, but we will not need these for our applications.

3. Five-dimensional vector multiplets

3.1. Rigid vector multiplets

In this section we present rigid five-dimensional vector multiplets, focussing

on the bosonic part of the Lagrangian. We follow [19], where an off-shell real-

ization has been worked out, based on the work of [20] on the superconformal
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case. The components of a five-dimensional rigid off-shell vector multiplet are

(Aµ, λ
i, σ, Y ij) , (123)

where µ = 0, 1, 2, 3, 4 is the Lorentz index, and i, j = 1, 2 is an internal in-

dex, transforming in the fundamental representation of the R-symmetry group

SU(2)R. R-symmetry indices i, j are raised and lowered using

(εij) =

 0 1

−1 0

 (124)

and εij := εij .
14 Aµ is a vector field, λi, i = 1, 2 is an SU(2)R doublet of

symplectic Majorana spinors, σ is a real scalar, and Y ij = Y ji are auxiliary

fields, subject to the reality condition

(Y ij)∗ = Y klεkiεlj = Yij . (125)

Thus Y ij has three independent real components. Taking into account the

reality conditions, a vector multiplet has 8 bosonic and 8 fermionic off-shell

degrees of freedom. These reduce to 4 + 4 on-shell degrees of freedom upon

imposing the equations of motion.

We consider an arbitrary number of vector multiplets, labelled by I =

1, . . . , n. The bosonic part of the Lagrangian worked out in [19] is

L = hIJ

(
−1

2
∂µσ

I∂µσJ − 1

4
F IµνF

J µν + Y IijY
J ij

)
−hIJK

1

24
εµνλρσAIµF

J
νλF

K
ρσ . (126)

Here hI , hIJ , hIJK denote derivatives of a function h of the scalar fields σI ,

hI = ∂Ih , hIJ = ∂2
I,Jh , hIJK = ∂2

I,J,Kh . (127)

Since the Chern-Simons term must be gauge invariant up to boundary terms,

hIJK must be constant, which implies that h must be a cubic polynomial. The

special case where h is a quadratic polynomial corresponds to a free theory,

while lower degrees of h lead to degenerate kinetic terms and can be discarded.

14Note that (εij) is minus the inverse of (εij). This choice is consistent with the NW-SE
convention for the SU(2)R indices.
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Thus the scalar manifold of a theory of five-dimensional rigid vector multiplets

is an affine special real manifold, as defined in section 2.5, see Definition 11.

We remark that compared to [19] we have changed the definition of the

ε-tensor by a sign, but we have kept the relation γµνρστ = +iεµνρστ1, which

determines the sign of the Chern-Simons term, by simultaneously changing the

representation of the Clifford algebra. We refer to [21] for a systematic discus-

sion of the relative factors and signs between the terms in the supersymmetry

variations and in the Lagrangians of five-dimensional vector multiplets. Note

that in [21], the same convention ε01235 = 1 for the ε-tensor was used as in this

review, but in combination with a different sign in the relation between γµνρστ

and the ε-tensor (that is, γµνρστ = −iεµνρστ1) this resulted in a Chern-Simon

term with opposite sign compared to (126). The choices made in this review

are more convenient for matching with the supergravity literature.

3.2. Rigid superconformal vector multiplets

We next specialize to the case where the vector multiplet theory is super-

conformal, following [20]. Superconformal invariance implies the Hesse potential

must be a homogeneous cubic polynomial, which makes the scalar manifold a

conical affine special real manifold in the sense of Definition 12. For later con-

venience we choose the Hesse potential

h = −1

2
CIJKσ

IσJσK , (128)

where CIJK are constants. Then

hIJ = −3CIJKσ
K , hIJK = −3CIJK , (129)

and the rigid superconformal vector multiplet Lagrangian is:

L = 3CIJKσ
K

(
1

4
F IµνF

J µν +
1

2
∂µσ

I∂µσJ − Y IijY Jij
)

+
1

8
εµνρσλCIJKA

I
µF

J
νρF

K
σλ , (130)

where we omitted all fermionic terms.

3.3. Superconformal matter multiplets coupled to superconformal gravity

We will follow the superconformal approach to construct a theory of n vec-

tor multiplets coupled to Poincaré supergravity. A comprehensive review of
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the superconformal approach can be found in the textbook [22], and the ele-

ments relevant for this review have been collected in B.5. The superconformal

approach is based on the observation that a theory of n vector multiplets and

nH hypermultiplets coupled to Poincaré supergravity is gauge equivalent to a

theory of n + 1 superconformal vector multiplets and nH + 1 superconformal

hypermultiplets coupled to conformal supergravity. Gauge equivalence means

that the Poincaré supergravity theory is obtained from the superconformal the-

ory by gauge fixing those superconformal symmetries that do not belong to the

Poincaré supersymmetry algebra. Conversely, a Poincaré supergravity theory

can be extended to a superconformal theory by adding one vector and one hy-

permultiplet which act as superconformal compensators. That is, the additional

symmetries are introduced by adding new degrees of freedom.

3.3.1. Coupling of vector multiplets

The bosonic Lagrangian for a rigid superconformal vector multiplet theory

was given in (130). Since we need to start with n + 1 superconformal vector

multiplets we change the range of the indices I, J, . . . to I, J = 0, 1, . . . , n. The

next step is to promote the superconformal symmetry to a local symmetry,

and to add at least one hypermultiplet. Gauging the superconformal symmetry

involves replacing partial derivatives by superconformal covariant derivatives,

which contain the superconformal connections, or, in physics terminology, the

superconformal gauge fields. The superconformal gauge fields belong to the so-

called Weyl multiplet, together with certain auxiliary fields. We refer to B.5 for

an overview. Our presentation will follow [23], but we will only retain the con-

nections and auxiliary fields which are relevant for the bosonic vector multiplet

Lagrangian. The bosonic part of the locally superconformally invariant vector

multiplet Lagrangian can be brought to the form

LV = 3CIJKσ
K

[
1

2
DµσIDµσJ +

1

4
F IµνF

µνJ − Y IijY ijJ − 3σIF JµνT
µν

]
+

1

8
CIJKe

−1εµνρστAIµF
J
νρF

K
στ

+CIJKσ
IσJσK

(
1

8
R+ 4D +

39

2
TµνT

µν

)
. (131)

Here

DµσI = (∂µ − bµ)σI , (132)
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where bµ is the gauge field for dilatations. Tµν and D are auxiliary fields belong-

ing to the Weyl multiplet. In the so-called K-gauge, to be introduced below, R

becomes the Ricci scalar associated to the space-time metric gµν with vielbein

eaµ and vielbein determinant e. We refer to B.5 for details regarding the viel-

bein ad Ricci scalar. In (131) we have adapted the Lagrangian of [23] to our

conventions. This changes the sign in front of the Ricci tensor and removes a

factor −i from the Chern-Simons term.15

3.3.2. Coupling of hypermultiplets

The bosonic part of the locally superconformal hypermultiplet Lagrangian

is

LH = −1

2
εijΩαβDµAαi A

β
j + χ

(
− 3

16
R+ 2D +

3

4
TµνT

µν

)
. (133)

Here Aαi , where α = 1, . . . , 2nH + 2 and i, j = 1, 2 encode the 4nH + 4 scalar

degrees of freedom of the hypermultiplets. The quantity χ is the so-called hyper-

Kähler potential and satisfies

εijχ = ΩαβA
α
i A

β
j . (134)

We refer to B.5 for explicit expressions for the covariant derivative DµAαi and

the quantity Ωαβ . The scalar geometry of rigid hypermultiplets is hyper-Kähler.

If superconformal symmetry is imposed the scalar multiplet is a hyper-Kähler

cone, that is, it admits a holomorphic and homothetic action of the group H∗

of invertible quaternions. The relevant concepts of hyper-Kähler geometry are

briefly reviewed in A.21.

15Note that [23] use an imaginary totally antisymmetric tensor defined by ε01235 = i =
iε01235. Taking this into account the relation which determines the sign of the Chern-Simons
term is the same: γµνρστ = εµνρστ1 = iεµνρστ1.
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3.3.3. Poincaré supergravity

Combining the bosonic vector multiplet and hypermultiplet Lagrangians, we

obtain:

L = 3CIJKσ
K

[
1

2
DµσIDµσJ +

1

4
F IµνF

µνJ − Y IijY ijJ − 3σIF JµνT
µν

]
+

1

8
CIJKe

−1εµνρστAIµF
J
νρF

K
στ

+
1

8
R

(
CIJKσ

IσJσK − 3

2
χ

)
+D

(
2χ+ 4CIJKσ

IσJσK
)

+T abTab

(
3

4
χ+

39

2
CIJKσ

IσJσK
)

−1

2
εijΩαβDµAaiDµA

β
j . (135)

The auxiliary field Y Iij has the field equation Y Iij = 0 and can be eliminated

trivially. The algebraic field equation for the auxiliary field D can be used to

eliminate χ:

χ = −2CIJKσ
IσJσK . (136)

Substituting this back into the Lagrangian, we obtain

L = 3CIJKσ
K

[
1

2
DµσIDµσJ +

1

4
F IµνF

µνJ − 3σIF JµνT
µν

]
+

1

8
CIJKe

−1εµνρστAIµF
J
νρF

K
στ

+
1

2
RCIJKσ

IσJσK

+18T abTabCIJKσ
IσJσK

−1

2
εijΩαβDµAaiDµA

β
j . (137)

In the next step we gauge-fix those superconformal transformations which are

not super-Poincaré transformations. Local dilatations are gauge-fixed by the

so-called D-gauge which imposes that the Einstein-Hilbert term acquires its

canonical form:

CIJKσ
IσJσK = κ−2 , (138)

where κ =
√

8πGN is the gravitational coupling constant and GN is Newton’s

gravitational constant. This implies that χ = −2κ−2, which because of (134)

removes one real scalar degree of freedom from the hypermultiplet sector. The

superconformal symmetries include an SU(2) symmetry which acts in the ad-

joint representation on the hypermultiplet scalars. Gauge fixing this symmetry
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removes another three real scalar degrees of freedom. If we consider only one

hypermultiplet at the superconformal level, i.e. nH = 0, then all bosonic hy-

permultiplet degrees of freedom are removed and we can drop the last line in

(137).16 Since we are interested in the vector multiplet Lagrangian, we will

assume this here. Note that since χ 6= 0, consistency of the procedure requires

that at least one superconformal hypermultiplet is present. This hypermultiplet

is needed as a superconformal compensator.

For completeness we briefly mention what happens for nH > 0. The gauge

fixing removes one hypermultiplet, leaving a theory with nH hypermultiplets.

The resulting scalar manifold of dimension 4nH is a quaternion-Kähler man-

ifold. It was shown in [24] that the scalar geometry of hypermultiplets cou-

pled to supergravity is quaternion-Kähler. In the superconformal approach the

quaternion-Kähler manifold arises as the superconformal quotient of a hyper-

Kähler cone [25, 26, 27, 28]. We remark that the hypermultiplet Lagrangian

only couples gravitationally to the vector multiplet Lagrangian, and thus can

always be truncated out consistently. We now return to the case nH = 0.

The special superconformal transformations are gauge-fixed by the so-called

K-gauge, which eliminates the dilatation gauge field: bµ = 0. This replaces

the covariant derivatives DµσI by partial derivatives ∂µσ
I . Then the bosonic

Lagrangian is

L = 3CIJKσ
K

(
1

2
∂µσ

I∂µσJ +
1

4
F IµνF

Jµν − 3σIF JµνT
µν

)
+

1

8
CIJKe

−1εµνρστAIµF
J
νρF

K
στ

+
1

2κ2
R+

18

κ2
TµνT

µν . (139)

Now we eliminate the auxiliary field Tµν using its algebraic equation of motion

Tµν =
κ2

4
CIJKσ

IσJFKµν , (140)

resulting in

L =
3

2
CIJKσ

K∂µσ
I∂µσJ +

1

2κ2
R+

1

8
CIJKe

−1εµνρστAIµF
J
νρF

K
στ

−3

8
(−2CIJKσ

K + 3κ2CIABσ
AσBCJCDσ

CσD)F IµνF
Jµν . (141)

16As required for consistency, gauge fixing fermionic superconformal symmetries removes
the fermionic partners of the four hypermultiplet scalars.
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The scalar fields σI and couplings CIJK are dimensionful. We define dimen-

sionless scalars hI and couplings CIJK by

hI := κσI , CIJK :=
1

κ
CIJK . (142)

The scalars hI satisfy

CIJKhIhJhK = 1 . (143)

It is convenient to define

hI = CIJKhJhK . (144)

In these new variables the Lagrangian becomes

L =
1

2κ2
R+

3

2κ2
CIJKhK∂µhI∂µhJ

−3

8

(
−2CIJKhK + 3hIhJ

)
F IµνF

Jµν

+
κ

8
CIJKe−1εµνρστAIµF

J
νρF

K
στ . (145)

We would like to verify that this Lagrangian, which has been obtained using the

superconformal approach, agrees with the bosonic part of the on-shell Poincaré

supergravity Lagrangian constructed in [18]. The scalars hI already have the

same normalization. Following [18] we define

◦
aIJ := −2CIJKhK + 3hIhJ , (146)

and note that

hI =
◦
aIJ h

J . (147)

To obtain the same normalization of the vector fields as in [18] we define

ÃIµ :=

√
3

2
AIµ . (148)

We also note that the scalar fields hI are not independent, because they satisfy

the constraint (143). This implies that hI∂µh
I = 0. Using this, the bosonic

Lagrangian takes the form

L =
1

2κ2
R− 3

4κ2

◦
aIJ ∂µh

I∂µhJ − 1

4

◦
aIJ F̃

I
µν F̃

Jµν

+
κ

6
√

6
e−1CIJKεµνρσλÃIµF̃ JνρF̃Kσλ . (149)

Finally, we introduce independent scalars φx, x = 1, . . . , n by solving the con-

straint (143). The metric gxy for the target space of the scalars φx is obtained
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by re-writing the scalar term in the Lagrangian. The normalization chosen in

[18] is such that

−1

2
gxy∂µφ

x∂µφy = −3

4

◦
aIJ ∂µh

I∂µhJ = −3

4

◦
aIJ

∂hI

∂φx
∂hJ

∂φy
∂µφ

x∂µφy . (150)

The resulting Lagrangian,

L =
1

2κ2
R− 1

2κ2
gxy∂µφ

x∂µφy − 1

4

◦
aIJ F̃

I
µν F̃

Jµν

+
κ

6
√

6
e−1CIJKεµνρσλÃIµF̃ JνρF̃Kσλ , (151)

agrees with the corresponding terms in (2.7) of [18] upon setting κ = 1, and

taking into account a relative sign in the definition of the Riemann tensor. When

setting κ = 1 we see that gxy is the PSR metric gH associated with the Hesse

potential V = CIJKhIhJhK and
◦
aIJ the restriction of the corresponding 0-

conical metric g
(1)
M = aIJdh

IdhJ to H = {V = 1}, with the same normalization

as in section 2.6. Note that for κ = 1 we have hI = σI and CIJK = CIJK .

The decomposition (109) of aIJ can be used to rewrite the Maxwell term17

−1

4

◦
aIJ F

I
µνF

Jµν = −1

4
gxyh

x
Ih

y
JF

I
µνF

Jµν − 1

4
hIhJF

I
µνF

Jµν (152)

= −1

4
gxyFxµνFyµν −

1

4
FµνFµν ,

where we have defined

Fµν = hIF
I
µν , Fxµν = hxIF

I
µν . (153)

The n field strengths Fxµν belong to vector fields Axµ which are the superpartners

of the scalars φx under Poincaré supersymmetry. The additional field strength

Fµν belongs to a vector field which is part of the Poincaré supergravity multiplet.

In contrast, the F Iµν correspond to vector fields in the n+1 superconformal vector

multiplets. Thus the decomposition into components tangential and orthogonal

to H corresponds to mapping components of superconformal multiplets to the

corresponding Poincaré vector multiplets. In the superconformal description

there is a manifest linear action of the group GL(n+ 1,R) on the field strength

F Iµν , and an associated action of the affine group GL(n + 1,R) n Rn+1 on the

scalars hI . In the gauge-fixed description this is no longer manifest, because

17We set V = 1.

43



there are only n independent scalars, but n+ 1 vector fields. For this reason it

is often advantageous to work in the superconformal formulation of the theory.

We can now decide which signature we should choose for the CASR metric

defining the superconformal theory. In the Poincaré theory,
◦
aIJ and gxy must be

positive definite, in order that the vector and scalar fields have positive kinetic

energy. From the above decomposition of the Maxwell term it is clear that
◦
aIJ

is positive definite if and only if gxy is positive definite. Using the relations

(66) – (71) between the metrics, we see that hIJ must have Lorentz signature

with the time-like direction along the integral lines of the Euler field ξ.18 The

direction normal to H corresponds to the extra ‘compensating’ vector multiplet,

which shows that the kinetic term of the compensator has a flipped sign.

3.4. R2-terms in five dimensions

We briefly describe the coupling of vector multiplets to R2-interactions en-

coded in the square of the Weyl multiplet using the superconformal approach

[29, 23].

The bosonic part of the Lagrangian containing the higher-derivative cou-

plings reads, in the notation used in [23],19

LR2 = 1
64 cI σ

I Rab
cd(M)Rcd

ab(M)

− 3
16cI

(
10σITab − F Iab

)
Rcd

ab T cd + 3
2cIσ

I T ab[Dc,Da]Tbc

−cI σI Rab
(
T acT bc − 1

2η
abT cdTcd

)
+ . . . , (154)

where Rab denotes the Ricci tensor (B.32), and where we have only displayed

the terms that are relevant for computing Wald’s entropy of static BPS black

holes, see section 9. We refer to [23] for the complete set of bosonic terms. The

cI denote arbitrary real constants.

Using (B.96) and (B.98), we obtain

Rab
cd(M) = Rab

cd − 4
3

(
R[a

[c − 1
8Rδ[a

[c
)
δb]

d] , (155)

which, in the K-gauge bµ = 0, denotes the Weyl tensor in five dimensions.

For future reference, we collect the bosonic terms in the R2-corrected La-

grangian that are relevant for computing the entropy of static BPS black holes

18As we have seen, the overall sign of the CASR metric is not relevant.
19Note that our definition of the Riemann tensor differs from the one in [23] by an overall

minus sign.
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using Wald’s definition of black hole entropy (B.134),

L = 3CIJK σ
K
[

1
2 Dµσ

IDµσJ + 1
4F

I
µνF

µνJ − 3σIF Jµν T
µν
]

+ 1
8 R

(
− 3

2 χ+ CIJK σ
IσJσK

)
+TabT

ab
(

3
4 χ+ 39

2 CIJK σ
IσJσK

)
+ 1

64 cI σ
I Rab

cd(M)Rcd
ab(M)

− 3
16cI

(
10σITab − F Iab

)
Rcd

ab T cd + 3
2cIσ

I T ab[Dc,Da]Tbc

−cI σI Rab
(
T acT bc − 1

2η
abT cdTcd

)
. (156)

4. Electric-magnetic duality

Electric-magnetic duality in four dimensions is a characteristic feature of

Maxwell’s equations in vacuum. It describes the invariance of the combined

system of equations of motion and Bianchi identities for the Maxwell gauge

field Aµ under rotations of the electric field into the magnetic field and vice-

versa. Electric-magnetic duality is also present in N = 2 supergravity theories

coupled to abelian N = 2 vector multiplets in four dimensions [30, 31], and

continues to hold when allowing for the coupling to a chiral background η [32].

Theories of this type are based on holomorphic functions F (X, η), and electric-

magnetic duality is defined in terms of a symplectic vector constructed from

F (X, η). This will be reviewed in the following subsections.

Non-holomorphic functions F are also of relevance and occur in various types

of models [33, 34]. We will discuss three applications thereof, namely to point-

particle Lagrangians that depend on coordinates and velocities, as well as on

parameters η, in section 4.1 below, to topological string theory in section 7, and

to the Born-Infeld-dilaton-axion system in section 11.

We begin by reviewing the formulation of point-particle Lagrangians in terms

of a function F given in (157) below, following [33]. When passing over to the

Hamiltonian description, one obtains a description based on a real Hesse poten-

tial associated to F . In this context, canonical transformations on phase space

play a similar role to electric-magnetic duality transformations in Maxwell-type

theories. Then we turn to electric-magnetic duality in Maxwell-type theories

at the two-derivative level which arise in the N = 2 supergravity context, and

subsequently we allow for the presence of a chiral background.
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4.1. Point-particle models and F -functions

In the following, we will review [33] how general point-particle Lagrangians

(that depend on coordinates and velocities, as well as on real parameters η) can

be recast in terms of a function F of the form

F (x, x̄, η) = F (0)(x) + 2iΩ(x, x̄, η) , (157)

where Ω is real. This is achieved with the help of a theorem that states that the

dynamics of these models can be reformulated in terms of a symplectic vector

(X, ∂F/∂X) constructed out of a complex function F of the form (157), whose

real part comprises the canonical variables of the associated Hamiltonian.

Let us consider a point-particle model described by a Lagrangian L with n

coordinates φi and n velocities φ̇i. The associated canonical momenta ∂L/∂φ̇i

will be denoted by πi. The Hamiltonian H of the system, which follows from L

by Legendre transformation,

H(φ, π) = φ̇i πi − L(φ, φ̇) , (158)

depends on (φi, πi), which are called canonical variables, since they satisfy the

canonical Poisson bracket relations. The variables (φi, πi) can be interpreted

as local coordinates on a symplectic manifold called the classical phase space

of the system. In these coordinates, the symplectic 2-form is dπi ∧ dφi. This

2-form is preserved under canonical transformations of (φi, πi) given byφi
πi

 7→
φ̃i
π̃i

 =

U ij Zij

Wij Vi
j


φj
πj

 , (159)

where U, V, Z and W denote n× n matrices that satisfy the relations

UT V −WT Z = V T U − ZT W = 1 ,

UT W = WT U , ZT V = V T Z . (160)

Thus, the transformation (159) constitutes an element of Sp(2n,R). This trans-

formation leaves the Poisson brackets invariant. The Hamiltonian transforms as

a function under symplectic transformations, i.e. H̃(φ̃, π̃) = H(φ, π). When the

Hamiltonian is invariant under a subset of Sp(2n,R) transformations, this sub-

set describes a symmetry of the system. This invariance is often called duality

invariance.
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Now we give the theorem of [33] that states that the Lagrangian L(φ, φ̇)

can be reformulated in terms of a complex function F (x, x̄) based on complex

variables xi, such that the canonical coordinates (φi, πi) coincide with (twice)

the real part of (xi, Fi), where Fi = ∂F (x, x̄)/∂xi.

Theorem 1. Point-particle Lagrangians and F -functions. Given a La-
grangian L(φ, φ̇) depending on n coordinates φi and n velocities φ̇i, with cor-
responding Hamiltonian H(φ, π) = φ̇i πi − L(φ, φ̇), there exists a description in
terms of complex coordinates xi = 1

2 (φi + iφ̇i) and a complex function F (x, x̄),
such that,

2 Rexi =φi ,

2 ReFi(x, x̄) =πi , where Fi =
∂F (x, x̄)

∂xi
. (161)

The function F (x, x̄) can be decomposed as

F (x, x̄) = F (0)(x) + 2iΩ(x, x̄) , (162)

where Ω is real. The decomposition (162) may be subjected to the following
equivalence transformation,

F (0) 7→ F (0) + g(x) , Ω 7→ Ω− Im g(x) , (163)

which results in F (x, x̄) 7→ F (x, x̄) + ḡ(x̄), and which leaves (xi, Fi) invariant.
The Lagrangian and Hamiltonian can then be expressed in terms of F (0) and Ω
as,

L = 4[ImF − Ω] , (164)

H = − i(xi F̄ı̄ − x̄ı̄ Fi)− 4 Im[F − 1
2x

i Fi] + 4 Ω

= − i(xi F̄ı̄ − x̄ı̄ Fi)− 4 Im[F (0) − 1
2x

i F
(0)
i ]− 2(2 Ω− xiΩi − x̄ı̄Ωı̄) ,

with Fi = ∂F/∂xi, F
(0)
i = ∂F (0)/∂xi,Ωi = ∂Ω/∂xi, and similarly for F̄ı̄, F̄

(0)
ı̄

and Ωı̄.
Furthermore, the 2n-vector (xi, Fi) denotes a complexification of the phase

space coordinates (φi, πi) and transforms precisely as (φi, πi) under symplectic
transformations, i.e. xi

Fi(x, x̄)

 7→
 x̃i

F̃i(x̃, ¯̃x)

 =

U ij Zij

Wij Vi
j

 xj

Fj(x, x̄)

 . (165)

The equations (165) are integrable: the symplectic transformation yields a new

function F̃ (x̃, ¯̃x) = F̃ (0)(x̃) + 2i Ω̃(x̃, ¯̃x), with Ω̃ real.
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Proof. We refer to [33] for the proof of the theorem. We note the following
relations,

xi = 1
2

(
φi + i

∂H

∂πi

)
,

yi = 1
2

(
πi − i

∂H

∂φi

)
=
∂F (x, x̄)

∂xi
. (166)

We close this subsection with the following comments. Firstly, we note

that since both H and F (0)− 1
2 x

i F
(0)
i transform as functions under symplectic

transformations, so does the following combination that appears in (164),

2 Ω− xiΩi − x̄ı̄Ωı̄ . (167)

Secondly, the transformation law of 2iΩi = Fi − F (0)
i under symplectic trans-

formations is determined by the transformation behaviour of Fi and F
(0)
i , as

described above. The transformation law of 2iΩı̄ = Fı̄, on the other hand,

follows from the reality of Ω̃,

Ω̃ı̄ = (Ω̃i) . (168)

Thirdly, as indicated in (157), the function F (x, x̄) may, in general, depend on

a number of real parameters η that are inert under symplectic transformations.

Without loss of generality, we may take η to be solely encoded in Ω, and, upon

transformation, in Ω̃ (we can use the equivalence relation (163) to achieve this).

As discussed below in subsection 4.4.2, ∂ηF = ∂F/∂η transforms as a function

under symplectic transformations [35].

4.2. Homogeneous F (x, x̄, η)

The theorem in subsection 4.1 did not assume any homogeneity properties

for F . Here we will focus on the case when F is homogeneous of degree two

and discuss some of the consequences of homogeneity [33]. This is the case that

is relevant when coupling vector multiplets to supergravity. Moreover, it also

covers other interesting systems, such as the Born-Infeld dilaton-axion system

in an AdS2 × S2 background, as we will explain in section 11.

Let us consider a function F (x, x̄, η) = F (0)(x) + 2iΩ(x, x̄, η) that depends

on a real parameter η, and let us discuss its behaviour under the scaling

x 7→ λx , η 7→ λm η (169)
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with λ ∈ R\{0}. We take F (0)(x) to be quadratic in x, so that F (0) scales

as F (0)(λx) = λ2 F (0)(x). This scaling behaviour can be extended to the full

function F if we demand that the canonical pair (φ, π) given in (161) scales

uniformly as (φ, π) 7→ λ (φ, π). Then we have

F (λx, λ x̄, λm η) = λ2 F (x, x̄, η) , (170)

which results in the homogeneity relation

2F = xi Fi + x̄ı̄ Fı̄ +mη Fη , (171)

where Fη = ∂F/∂η. Inspection of (158) shows that the associated Hamiltonian

H scales with weight two as

H(λφ, λ π, λm η) = λ2H(φ, π, η) , (172)

so that H satisfies the homogeneity relation,

2H = φ
∂H

∂φ
+ π

∂H

∂π
+mη

∂H

∂η
. (173)

Using (166), this can be written as

H = i
(
x̄ı̄ Fi − xi F̄ı̄

)
+
m

2
η
∂H

∂η
. (174)

Next, using that the dependence on η is solely contained in Ω, we obtain

∂H

∂η
|φ,π = −∂L

∂η
|φ,φ̇ = −4Ωη , (175)

where Ωη = ∂Ω/∂η. Thus, we can express (174) as

H = i
(
x̄ı̄ Fi − xi F̄ı̄

)
− 2mηΩη . (176)

This relation is in accordance with (164) upon substitution of the homogeneity

relations 2F (0)(x) = xi F
(0)
i and 2 Ω = xiΩi + x̄ı̄Ωı̄ + mηΩη that follow from

(171).

The Hamiltonian transforms as a function under symplectic transformations.

Since the first term in (176) transforms as a function, it follows that Ωη also

transforms as a function. This is in accordance with the general result quoted

at the end of subsection 4.1 which states that ∂ηF transforms as a function.

In certain situations, such as in the study of BPS black holes in N = 2

supergravity theories [36], the discussion needs to be extended to a parameter
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η that is complex, so that now we consider a function F (x, x̄, η, η̄) = F (0)(x) +

2iΩ(x, x̄, η, η̄) that scales as follows (with λ ∈ R\{0}),

F (λx, λ x̄, λm η, λm η̄) = λ2 F (x, x̄, η, η̄) . (177)

The extension to a complex η results in the presence of an additional term on

the right hand side of (171) and (173),

2F =xi Fi + x̄ı̄ Fı̄ +m (η Fη + η̄Fη̄) ,

2H =φ
∂H

∂φ
+ π

∂H

∂π
+m

(
η
∂H

∂η
+ η̄

∂H

∂η̄

)
, (178)

and hence

H = i
(
x̄ı̄ Fi − xi F̄ı̄

)
+
m

2

(
η
∂H

∂η
+ η̄

∂H

∂η̄

)
. (179)

Then, since the dependence on η and η̄ is solely contained in Ω, we obtain

H = i
(
x̄ı̄ Fi − xi F̄ı̄

)
− 2m (ηΩη + η̄Ωη̄) . (180)

This is in accordance with (164) upon substitution of the homogeneity relations

2F (0)(x) = xi F
(0)
i and 2 Ω = xiΩi + x̄ı̄Ωı̄ + m (ηΩη + η̄Ωη̄) that follow from

(178).

The above extends straightforwardly to the case of multiple real or complex

parameters.

4.3. Duality covariant complex variables

The Hamiltonian (164) is given in terms of complex fields xi and x̄ı̄. It may

also depend on parameters η, in which case the transformation law of xi under

symplectic transformations (165) will depend on η. It is therefore convenient

to introduce duality covariant complex variables ti, whose symplectic transfor-

mation law is independent of η. These variables ensure that when expanding

the Hamiltonian in powers of η, the resulting expansion coefficients transform

covariantly under symplectic transformations. This expansion can also be or-

ganized by employing a suitable covariant derivative. We review these aspects

following [33].

We take the Hamiltonian (164) to depend on a single real parameter η that

is inert under symplectic transformations. The discussion can be extended to

the case of multiple real external parameters in a straightforward manner. We
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define complex variables ti by [37],

2 Re ti = φi ,

2 ReF
(0)
i (t) =πi . (181)

Then, the vector (ti, F
(0)
i (t)) describes a complexification of (φi, πi) that trans-

forms as in (159) under symplectic transformations. This yields the transfor-

mation law

t̃i = U ij t
j + ZijF

(0)
j (t) , (182)

which is independent of η. The new variables ti are related to the xi by (c.f.

(161))

2Re ti = 2Rexi ,

2ReF
(0)
i (t) = 2ReFi(x, x̄, η) . (183)

We may now view H either as a function of ti and t̄ı̄, or as a function of xi and

x̄ı̄. Differentiating H(φ, π(x, x̄, η), η) with respect to η yields

∂H

∂η

∣∣∣∣
x,x̄

=
∂H

∂η

∣∣∣∣
φ,π

+
∂H

∂πk

∣∣∣∣
Re x

∂πk
∂η

=
∂H

∂η

∣∣∣∣
t,t̄

+
∂H

∂πk

∣∣∣∣
Re x

(
Fkη + F̄k̄η

)
,

(184)

where Fηk = ∂2F/∂η∂xk, etc., and where on the right hand side we used πk =

2ReFk(x, x̄, η). Next, we use the conversion formula

∂H

∂πk

∣∣∣∣
Re x

=
∂H

∂Imxi

∣∣∣∣
Re x

∂Imxi

∂πk
= − ∂H

∂Imxi

∣∣∣∣
Re x

N̂ ik , (185)

where N̂ ik denotes the inverse of

− ∂πk
∂Imxi

= −i
(

∂

∂xi
− ∂

∂x̄ı̄

)(
Fk + F̄k̄

)
= −i

[
Fik − F̄ı̄k̄ − Fkı̄ + F̄k̄i

]
= N̂ik .

(186)

Note that N̂ik is a real symmetric matrix.,

N̂ik = −i
[
F

(0)
ik − F̄

(0)

ı̄k̄

]
+ 2 (Ωik + Ωı̄k̄ − Ωkı̄ − Ωik̄) . (187)

We obtain

∂ηH|t,t̄ = DηH|x,x̄ , (188)
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where Dη is given by

Dη = ∂η + i N̂ ij
(
Fηj + F̄η̄

)
(∂i − ∂ı̄) . (189)

Dη acts as a covariant derivative for symplectic transformations. Applying

multiple covariant derivatives Dη on any symplectic function depending on xi

and x̄ı̄, will again yield a symplectic function. For instance, consider applying

D2

η on H(φ, π(x, x̄, η), η) given in (164),

D
2

ηH(x, x̄, η) = − 4
[
∂

2

ηΩ− 2 N̂ ij ∂η (Ωi − Ωı̄) ∂η (Ωj − Ω̄)
]
. (190)

As discussed in section 4.4.2, while ∂
2

ηΩ does not transform as a function under

symplectic transformations, there exists a modification of it, given by (190),

such that the modified expression transforms as a function.

4.4. Maxwell-type theories

Now we turn to Maxwell-type theories in four dimensions, namely, we con-

sider the Maxwell sector of N = 2 supergravity theories coupled to abelian

N = 2 vector multiplets. Below we will use some of the ingredients that go into

the construction of these theories. We refer to section 6 for a detailed descrip-

tion of these theories. In the following, we review electric-magnetic duality in

these theories, first at the two-derivative level, and then in the presence of an

arbitrary chiral background field.

4.4.1. Electric-magnetic duality at the two-derivative level

The Wilsonian effective action is a local action that describes the effective

dynamics at long distances [38]. The Wilsonian effective action describing the

coupling of n abelian N = 2 vector supermultiplets to four-dimensional N = 2

supergravity at the two-derivative level is encoded in a holomorphic function

F (X), called the prepotential, which depends on n + 1 complex scalar fields

XI (I = 0, 1, . . . n) and which is a homogeneous function of degree two under

complex rescalings [31],

F (λX) = λ2 F (X) , λ ∈ C\{0} , (191)

from which one infers the relations

2F = FI X
I ,

FI = FIJ X
J ,

0 = FIJK X
K , (192)
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where FI = ∂F/∂XI , FIJ = ∂2F/∂XI∂XJ , FIJK = ∂3F/∂XI∂XJ∂XK .

The resulting equations of motion for the abelian gauge fields AIµ only in-

volve their field strengths F Iµν . The combined system of equations of motion

and Bianchi identities for the abelian gauge fields are invariant under so-called

electric-magnetic duality transformations, which constitute symplectic Sp(2n+

2,R) transformations [31]. These transformations also induce Sp(2n + 2,R)

transformations of the symplectic vector (XI , FI), as follows [32].

Consider the following Lagrangian for Maxwell fields AIµ,

L = − i
4

(
F̄IJ F

+I
µν F

+µνJ + 2O+
µνI F

+µνI − FIJ F−Iµν F−µνJ − 2O−µνI F
−µνI

)
,

(193)

where F±Iµν denote the (anti-)selfdual field strengths (c.f. (B.45)), and where

we allow for a linear coupling of the field strengths F±Iµν to tensors O±µνI . A

Lagrangian of this form arises when considering the part of the N = 2 Wilsonian

effective Lagrangian that describes the coupling of vector multiplets to N = 2

supergravity at the two-derivative level, c.f. (430).

We define the dual field strength by

GµνI =
√
−g εµνρσ

∂L

∂FρσI
. (194)

Decomposing it into (anti-)selfdual parts G±µνI ,

G±µνI = ±2i
∂L

∂F±ρσI
, (195)

we obtain

G+
µνI = F̄IJF

+J
µν +O+

µνI , G−µνI = FIJF
−J
µν +O−µνI . (196)

The Bianchi identities and equations of motion for the abelian gauge fields take

the form

∂µ
(
F+I
µν − F−Iµν

)
= 0 , ∂µ

(
G+
µνI −G

−
µνI

)
= 0 . (197)

The combined system (197) is invariant under the transformationF±Iµν

G±µνI

 7→
 F̃±Iµν

G̃±µνI

 =

 U IJ ZIJ

WIJ V J
I


F±Jµν

G±µνJ

 , (198)

where U IJ , V J
I , WIJ and ZIJ are constant real (n + 1) × (n + 1) submatrices.

We demand the transformation matrix in (198) to be invertible. Since we may
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rescale the field strengths F Iµν by a real constant, we impose the normalization

det(UTV −WTZ) = 1. Thus, the transformation matrix in (198) belongs to

SL(2n+ 2,R).

Next, decomposing the transformed field strenghts F̃±Iµν , G̃
±
µνI as in (196),

G̃+
µνI = ˜̄FIJ F̃

+J
µν + Õ+

µνI , G̃−µνI = F̃IJ F̃
−J
µν + Õ−µνI , (199)

we infer that under (198), FIJ transforms as

F̃IJ = (WIL + VI
KFKL)

[
S−1

]L
J , SIJ = U IJ + ZIKFKJ . (200)

Then, demanding that F̃IJ is a symmetric matrix yields the condition

UTW −WTU + (UTV −WTZ)F − F (UTV −WTZ)T

+F (ZTV − V TZ)F = 0 , (201)

where in this equation F denotes the matrix FIJ . By comparing terms with the

same power of FIJ , we infer the conditions UTW = WTU and ZTV = V TZ. In

addition, the combination UTV −WTZ needs to be proportional to the identity

matrix, since the terms linear in FIJ need to cancel for general FIJ [39]. These

conditions, when combined with the property that the transformation matrix

belongs to SL(2n + 2,R), imply that the transformation matrix in (198) must

be an element of Sp(2n+ 2,R). Indeed, defining

∆ =

 U Z

W V

 , (202)

and demanding ∆ to be a symplectic matrix, i.e.

∆−1 = Ω ∆T Ω−1 where Ω =

 0 1

−1 0

 , (203)

gives

UTV −WTZ = V TU − ZTW = 1 , UTW = WTU , ZTV = V TZ (204)

as a consequence of ∆−1 ∆ = 1, and

UV T − ZWT = V UT −WZT = 1 , UZT = ZUT , WV T = VWT (205)
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as a consequence of ∆ ∆−1 = 1.

Furthermore, we infer from (199) that under (198), the tensors O±µνI trans-

form as

Õ+
µνI = Õ+

µνJ

[
S̄−1

]J
I , Õ−µνI = Õ−µνJ

[
S−1

]J
I . (206)

Next, we note that the transformation (200) of FIJ is induced by the follow-

ing transformation of the scalar fields XI ,XI

FI

 7→
X̃I

F̃I

 =

 U IJ ZIJ

WIJ V J
I


XJ

FJ

 , (207)

which is the aforementioned Sp(2n+2,R) transformation of the vector (XI , FI).

Indeed, using (207), one derives

∂F̃I
∂XJ

= F̃IK
(
UKJ + ZKL FLJ

)
= WIJ + VI

L FLJ . (208)

For NIJ ≡ 2ImFIJ , one obtains the transformation law

ÑIJ = NKL
[
S̄−1

]K
I

[
S−1

]L
J ,

Ñ IJ = S̄IK SJLNKL = SIK SJL
(
NKL − iZKL

)
, (209)

where

ZIJ = [S−1]IKZ
KJ . (210)

Note that Z is a symmetric matrix by virtue of (205).

Owing to the symplectic condition (203), the quantities F̃I can be written

as the derivative of a new function F̃ (X̃) with respect to the new coordinates

X̃I ,

F̃ (X̃) = 1
2

(
UTW

)
IJ
XIXJ + 1

2

(
UTV +WTZ

)
I
JXIFJ + 1

2

(
ZTV

)
IJFIFJ

= F (X) + 1
2

(
UTW

)
IJ
XIXJ +

(
WTZ

)
I
JXIFJ + 1

2

(
ZTV

)
IJFIFJ ,

(211)

where we made use of the homogeneity property (192). Note that F (X) does not

transform as a function under symplectic transformations (207), i.e. F̃ (X̃) 6=
F (X). Its geometrical meaning will be discussed in subsection 5.4.2.

Two N = 2 Wilsonian effective Lagrangians that are encoded in F (X) and

F̃ (X̃), respectively, represent equivalent vector multiplet theories coupled to
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N = 2 supergravity. On the other hand, symplectic transformations that con-

stitute a symmetry of the theory are transformations (207) for which

F̃ (X̃) = F (X̃) , (212)

since they leave the field equations invariant. Differentiating (212) with respect

to X̃I gives F̃I(X̃) = ∂F (X̃)/∂X̃I , which means that the transformation law for

FI(X) given in (207) is induced by substituting X̃ for X in FI(X). This yields

a practical way for checking whether a symplectic transformation constitutes

an invariance of the theory. Note that the property (212) does not imply that

F (X) is an invariant function; inspection of (211) shows that F̃ (X̃) 6= F (X),

and hence F (X̃) 6= F (X).

4.4.2. Electric-magnetic duality in a chiral background

Let us now briefly summarize various features of electric-magnetic duality

in the presence of a chiral background field [32]. We refer to sections 6.4 and

7 for an extensive discussion of supergravity theories in the presence of a chiral

background field, and for the relation with Hessian geometry.

We consider the Wilsonian effective action describing the coupling of N = 2

supergravity to abelian vector multiplets in the presence of a chiral background

field Â. The action is now encoded in a holomorphic function F (X, Â) which is

homogeneous of degree two under complex rescalings, i.e.

F (λX, λwÂ) = λ2 F (X, Â) , λ ∈ C\{0} , (213)

where w denotes the scaling weight of Â, which we take to be non-vanishing.

From (213) one infers the relation

2F (X, Â) = XI FI(X, Â) + wÂFA(X, Â) , (214)

where we introduced the notation FI(X, Â) = ∂F (X, Â)/∂XI , FA(X, Â) =

∂F (X, Â)/∂Â. Symplectic transformations act on (XI , FI(X, Â)) as in (207),

X̃I = U IJ X
J + ZIJ FJ(X, Â),

F̃ I(X̃, Â) = VI
J FJ(X, Â) +WIJ X

J , (215)

and they leave Â inert. We will now show that FA(X, Â) transforms as a

function under symplectic transformations. It follows that the combination

56



F (X, Â)− 1
2X

IFI(X, Â) also transforms as a function due to the relation (214),

F̃ (X̃, Â)− 1
2X̃

I F̃I(X̃, Â) = F (X, Â)− 1
2X

IFI(X, Â) . (216)

We start from the second relation in (215) and differentiate with respect to

XJ keeping Â fixed. This gives

F̃IK =
(
WIP + VI

L FLP
) [
S−1

]P
K , (217)

where
∂X̃I

∂XJ
≡ SIJ = U IJ + ZIK FKJ(X, Â) . (218)

Taking the transposed of this equation, one verifies that F̃IK is symmetric in I

and K, i.e. F̃IK = F̃KI .

Next, we differentiate the second relation in (215) with respect to Â, keeping

XI fixed. This yields

F̃IA(X̃, Â) =
(
VI
K − F̃IL ZLK

)
FKA(X, Â) . (219)

Using (217), we obtain for the transposed of the matrix on the right hand side

of (219),

V T − ZT F̃ = S−1 , (220)

where here F̃ denotes the symmetric matrix F̃IJ . Hence,

F̃IA(X̃, Â) = FKA(X, Â)
[
S−1

]K
I , (221)

With this result, and using FKA(X, Â)
[
S−1

]K
I = ∂(FA(X, Â))/∂X̃I , we obtain

F̃A(X̃, Â) = FA(X, Â) , (222)

up to terms that are independent of XI , and which we drop, since they are not

relevant for the vector multiplet Lagrangian. Thus, FA(X, Â) transforms as a

function under symplectic transformations.

Defining NIJ ≡ 2ImFIJ and N IJ ≡
[
N−1

]IJ
, and using (217), one obtains

the transformation laws

ÑIJ = NKL
[
S̄−1

]K
I

[
S−1

]L
J ,

Ñ IJ = NKL S̄IK SJL , (223)

F̃IJK = FMNP

[
S−1

]M
I

[
S−1

]N
J

[
S−1

]P
K .
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Using (222), one finds

F̃AA(X̃, Â) = FAA(X, Â)− FAI(X, Â)FAJ(X, Â)ZIJ , (224)

where

ZIJ ≡ [S−1]IK Z
KJ , (225)

which is symmetric in I and J , see below (205). This shows that, while FA trans-

forms as a function under symplectic transformations, higher derivatives of F

with respect to Â, such as FAA, do not transform as functions under symplectic

transformations. Combinations that do transform as symplectic functions can

be generated systematically, as follows [32]. Assume that G(X, Â) transforms as

a function under symplectic transformations. Then, also DG(X, Â) transforms

as a symplectic function (c.f. (189)), where

D ≡ ∂

∂Â
+ iFAIN

IJ ∂

∂XJ
, (226)

as one readily verifies using (223). Consequently one can introduce a hierarchy

of symplectic functions F (n)(X, Â), which are modifications of FA···A,

F (n)(X, Â) ≡ 1

n!
Dn−1FA(X, Â) , n ≥ 1 . (227)

While F (1) is holomorphic, all the higher F (n) (with n ≥ 2 ) are non-holomorphic.

This lack of holomorphy is governed by the following equation (with n ≥ 2),

∂F (n)

∂X̄I
= 1

2 F̄I
JK

n−1∑
r=1

∂F (r)

∂XJ

∂F (n−r)

∂XK
, (228)

where F̄I
JK = F̄ILM NLJNMK .

In section 7 we will relate the covariant derivative (226) and the holomorphic

anomaly equation (228) to properties of Hessian structures in the presence of a

chiral background field, (c.f. (479) and (485)).

5. Special Kähler geometry

In this section we discuss special Kähler geometry from the mathematical

point of view. The definition is ultimately motivated by physics: special Kähler

geometry is the geometry ofN = 2 vector multiplets. As we have seen in the pre-

vious section, the field equations of theories of abelian vector fields are invariant
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under symplectic transformations, which generalize the electric-magnetic rota-

tions of Maxwell theory. In N = 2 vector multiplets, which contain scalars and

fermions together with vector fields, this extends to an action of the symplectic

group on all fields, which imposes strong constraints on the scalar geometry.

In short, special Kähler manifolds are Kähler manifolds equipped with a flat

connection ∇ which is compatible with the symplectic structure, in the sense

that symplectic transformations act linearly on ∇-affine coordinates. Moreover,

the Kähler metric is Hessian with ∇ as the associated flat connection.

Special Kähler geometry has undergone various re-formulations over the past

30 years. Our approach blends the original definition [40] in terms of special

coordinates and using the superconformal calculus with the intrinsic construc-

tion of [41] and the universal construction of [42], which allows to relate the

former two approaches. Other formulations of special Kähler geometry will be

discussed in section 5.4.

5.1. Affine special Kähler geometry

We will first present an intrinsic definition, and introduce special real and

special holomorphic coordinates, the Hesse potential and the holomorphic pre-

potential. Then we give two extrinsic constructions, firstly as a Kählerian

Lagrangian immersion into a complex symplectic vector space, secondly as a

parabolic affine hypersphere immersed into a real space. The holomorphic pre-

potential and the Hesse potential are the generating functions for these two

immersions.

5.1.1. The intrinsic definition

We start with the relatively recent definition given in [41], which is intrinsic

in the sense of only using data involving the tangent bundle and associated

bundles. Our presentation is based on [41] and [42].

Definition 15. Affine special Kähler manifolds (ASK manifolds). An
affine special Kähler manifold (M,J, g,∇) is a Kähler manifold (M,J, g) en-
dowed with a flat, torsion-free connection ∇, such that

1. ∇ is symplectic, that is, the Kähler form ω = g(·, J ·) is parallel: ∇ω = 0.

2. ∇J is covariantly closed, d∇J = 0.

In the second condition, J ∈ Γ(End(TM)) ∼= Γ(TM ⊗ T ∗M) is regarded as

a vector valued one-form, J ∈ Ω1(M,TM). This condition can be rephrased as
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∇J ∈ T 1
2(M) = Γ(TM ⊗ T ∗M ⊗ T ∗M) being symmetric:

(∇XJ)(Y ) = (∇Y J)(X) , ∀X,Y ∈ X(M) . (229)

The definition implies that ∇g ∈ T 0
3(M) is totally symmetric, and therefore

ASK manifolds are Hessian. On a Hermitian manifold any two of the three ten-

sor fields g, J and ω determine the third,20 and this allows to replace condition

2 by the alternative condition

2’. ∇g ∈ T 0
3(M) is completely symmetric.

Thus we may say that an ASK manifold is a Kähler manifold with a compat-

ible Hessian structure. The associated flat connection ∇ is called the special

connection. If we impose that ∇-affine coordinates on M are ω-Darboux coor-

dinates, this restricts our freedom of making affine transformations to those

where the linear part is symplectic. We will call the corresponding group

AffSp(R2n)(C2n) = Sp(R2n) nC2n ⊂ Aff(C2n) the affine symplectic group.

We will now verify the statements made in the preceding paragraphs using

special real coordinates. Since the connection ∇ is flat and torsion-free, we can

choose local ∇-affine coordinates qa which define a parallel coframe ea = dqa,

∇ea = 0 and a parallel frame ea = ∂a = ∂
∂qa , ∇ea = 0, see A.5.3. Such coordi-

nates are unique up to affine transformations. The connection ∇ is symplectic,

and therefore

∇ω = ∇
(

1

2
ωabe

a ∧ eb
)

=
1

2
∂cωabe

c ⊗ ea ∧ eb +
1

2
ωab∇(ea ∧ eb) = 0 . (230)

In ∇-affine coordinate the second term vanishes, and the symplectic form ω has

constant coefficients:

∇ω = 0⇒ ∂cωab = 0 . (231)

We can fix a standard form for the constant antisymmetric matrix ωab. The

conventional choice we make is

ω =
1

2
ωabdq

a ∧ dqb = Ωabdq
a ∧ dqb = 2dxI ∧ dyI , (232)

where

Ωab =

 0 1

−1 0

 . (233)

20See A.13
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The coordinates qa = (xI , yI) are called special real coordinates, and the split-

ting of the qa into xI and yI corresponds to the choice of a polarization, that

is, a splitting of the symplectic vector space TpM , p ∈ M into two maximally

isotropic subspaces. The special real coordinates qa are ω-Darboux coordinates,

but differ from standard Darboux coordinates by a factor
√

2.21 Choosing spe-

cial real coordinates restricts our freedom to perform coordinate transformations

to affine symplectic transformations, x

y

 7→M

 x

y

+

 a

b

 , M ∈ Sp(2n,R) , a, b ∈ Rn . (234)

Next, we evaluate the condition d∇J = 0 in special real coordinates, using

the rules for the covariant exterior derivative from A.5.4:

0 = d∇J = d(Jab e
b)⊗ ea + Jab e

b ⊗∇ea . (235)

In the co-frame ea = dqa this condition reduces to

d∇J = (∂cJ
a
b)(dq

c ∧ dqb)⊗ ∂a = 0⇒ ∂[cJ
a
b] = 0 . (236)

To relate this to ∇J being symmetric, note that

∇XJ = Xa(∂aJ
c
b)e

b ⊗ ec + Jcb∇X(eb ⊗ ec) (237)

reduces in special real coordinates to

∇XJ = (Xa∂aJ
c
b)dq

b ⊗ ∂c (238)

so that

(∇XJ)(Y ) = XaY b(∂aJ
c
b)∂c . (239)

Using (236) we see that

d∇J = 0⇔ (∇XJ)(Y ) = (∇Y J)(X) , ∀X,Y ∈ X(M) , (240)

that is, ∇J is symmetric, ∇J ∈ Γ(Sym2(T ∗M)⊗TM). Metric and Kähler form

are related by

ω(X,Y ) = g(X, JY )⇔ g(X,Y ) = −ω(X,JY ) . (241)

21Darboux coordinates are usually normalized such that ω = 1
2

Ωabdq̃
a ∧ dq̃b = dx̃I ∧ dỹI .
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In local coordinates this implies

ωab = gacJ
c
b ⇔ gab = −ωacJcb ⇔ Jab = gacωcb . (242)

In special real coordinates,

(∇Xg)(Y, Z) = ∂cgabX
cY aZb . (243)

Expressing gab in terms of ωab and Jab, and using that ωab is constant in special

real coordinates, we find

∂cgab = −ωad∂cJdb . (244)

Using (236) we obtain that ∂cgab is totally symmetric, which shows that g is

Hessian. It is also clear that for a flat, torsion-free and symplectic connection

∇, g being Hessian implies that ∇J is symmetric, so that condition 2 in the

definition of an ASK manifold can be replaced by condition 2’.

For later use we collect further local formulae in special real coordinates.

The metric is Hessian,

g = Habdq
adqb , Hab =

∂2H

∂qa∂qb
. (245)

We denote the inverse metric coefficients by Hab. The inverse of Ωab = 1
2ωab is

Ωab = 2ωab =

 0 −1

1 0

 . (246)

Using that Jab = Hacωcb and JacJ
c
b = −δab we obtain,

1

2
Ωab = −2HacHbdΩcd ⇔ HabΩ

bcHcd = −4Ωad , (247)

where the numerical factors are due to the normalization of Ωab. The compo-

nents of the complex structure in terms of Hab and Ωab are:

Jab = 2HacΩcb = −1

2
ΩacHcb . (248)

As on any Hessian manifold, there is a dual special connection ∇dual = 2D−∇,

whose affine coordinates are the dual special real coordinates,

qa := Ha :=
∂H

∂qa
. (249)
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As discussed in section 2.2, the metric coefficients with respect to qa are given

by the inverse matrix Hab:

g = Habdqadqb , HacHcb = δac , (250)

and the dual Hesse potential is obtained by a Legendre transformation:

Hab =
∂2Hdual

∂qa∂qb
, Hdual = qaqa −H . (251)

The dual special coordinates qa are ω-Darboux coordinates:

ω = Ωabdq
a ∧ dqb = 2dxI ∧ dyI = −1

4
Ωabdqa ∧ dqb = 2duI ∧ dvI , (252)

corresponding to the dual polarization

qa =: (2vI ,−2uI) . (253)

Special real coordinates are adapted to the symplectic and Hessian structure

of an ASK manifold. We now turn to the complex aspects of ASK geometry,

following [41]. The complexified tangent bundle TCM of M decomposes into the

holomorphic tangent bundle T (1,0)M and the anti-holomorphic tangent bundle

T (0,1)M ,22

TCM = T (1,0)M ⊕ T (0,1)M , (254)

which can be characterized as the eigendistributions of the complex structure

J ,

TM (1,0) = ker(J − i1) , TM (0,1) = ker(J + i1) . (255)

Similarly, the complexified cotangent bundle decomposes as T ∗CM = T ∗(1,0)M⊕
T ∗(0,1)M . Since d∇J = 0, the projection operator

Π(1,0) =
1

2
(1+ iJ) ∈ Γ(T ∗CM ⊗ T (1,0)M) : TCM → T (1,0)M (256)

satisfies d∇Π(1,0) = 0. Hence locally Π(1,0) = d∇ζ = ∇ζ, where ζ is a complex,

not necessarily holomorphic vector field, which is unique up to a flat complex

vector field.23 In special real coordinates ζ has an expansion24

ζ = XI ∂

∂xI
+WI

∂

∂yI
, (257)

22See A.11 for some background on complex manifolds.
23The relevant properties of the exterior covariant derivative d∇ are reviewed in A.5.4.
24Compared to [41] we have changed the relative sign between the two terms of ζ to be

consistent with our conventions.
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where XI ,WI are complex functions on M . Then

Π(1,0) = dXI ⊗ ∂

∂xI
+ dWI ⊗

∂

∂yI
, (258)

where dXI , dWI ∈ T ∗(1,0)M , which implies that the functions XI ,WI are holo-

morphic. Since Re(Π(1,0)) = IdTM it follows that

Re(dXI) = dxI , Re(dWI) = dyI . (259)

Using that the real differentials dxI are linearly independent, it can be shown

that the differentials dXI are linearly independent over C, and therefore the

holomorphic functions XI define a local holomorphic coordinate system on M

[41, 42]. These are the so-called special holomorphic coordinates, often simply

called special coordinates. Similarly, the functions WI define another holomor-

phic coordinate system on M , which is called the dual (holomorphic) special

coordinate system.

Since ∂
∂XI is of type (1, 0), that is Π(1,0) ∂

∂XI = ∂
∂XI , it follows that

∂

∂XI
=

∂

∂xI
+
∂WK

∂XI

∂

∂yK
. (260)

The Kähler form ω = 2dxI ∧ dyI = 1
2 (dXI + dX̄I) ∧ (dWI + dW̄I) must be a

(1, 1)-form, therefore

0 = dXI ∧ dWI = dXI ∧ ∂WI

∂XJ
dXJ ⇒ ∂WI

∂XJ
=
∂WJ

∂XI
. (261)

This implies that locally WI is the holomorphic gradient of a function F (XI),

called the prepotential, which is determined up to a constant:

WI =
∂F

∂XI
=: FI ,

∂WI

∂XJ
=

∂2F

∂XI∂XJ
=: FIJ . (262)

The Kähler form can be expressed in terms of the prepotential as

ω = − i
2
NIJdX

I ∧ dX̄J , (263)

where

NIJ = 2ImFIJ = −i(FIJ − F̄IJ) , (264)

and where F̄IJ is the complex conjugate of FIJ . The corresponding Kähler

metric and Hermitian form are

g = NIJdX
IdX̄J , γ = g + iω = NIJdX

I ⊗ dX̄J . (265)
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Since

NIJ =
∂2K

∂XI∂X̄J
, K = i(XI F̄I − FIX̄I) , (266)

the function K is a Kähler potential. The choice of the sign in the definition

of K is conventional. Sometimes NIJ and K are defined with an additional

minus sign. Note that to obtain a model where NIJ is positive definite, or

more generally is non-degenerate and carries a specific signature, one may need

to restrict the coordinates XI to a suitable domain. This has to be analysed

model by model.

We have now recovered the original definition of ASK manifolds in terms of

local formulae in special coordinates [40]: an ASK manifold is a Kähler manifold

where the Kähler potential admits a holomorphic prepotential.25

5.1.2. Extrinsic construction as a Kählerian Lagrangian immersion

The intrinsic definition of [41] has an extrinsic counterpart: every simply

connected ASK manifold can be realized as a Kählerian Lagrangian immer-

sion into the standard complex symplectic vector space V = T ∗Cn ∼= C2n [42].

Lagrangian immersions have a potential, which for ASK manifolds is the holo-

morphic prepotential.

We start with the standard complex symplectic vector space V = T ∗Cn

equipped with complex Darboux coordinates (XI ,WI), the standard complex

symplectic form Ω = dXI ∧ dWI , and the standard real structure defined by

complex conjugation τ : V → V, v 7→ τv = v̄.26 The set of fixed points of the

real structure τ are the real points V τ = T ∗Rn ∼= R2n ⊂ C2n. Given these data

we can define the Hermitian form

γV = iΩ(·, τ ·) = i
(
dXI ⊗ dW I − dWI ⊗ dX

I
)

= gV + iωV , (267)

which has complex signature (n, n). Its real part defines a flat Kähler metric of

real signature (2n, 2n), with associate Kähler form ωV , and complex structure

IV .

Let M be a connected complex manifold of complex dimension n. A holo-

morphic immersion φ : M → V is called non-degenerate if gM := φ∗gV is

25Note that Kähler potentials are only determined up to Kähler transformations, and the
formula expressing K in terms of F provides only a subclass of the Kähler potentials for a
given ASK metric.

26See A.18 for a few additional remarks regarding complex symplectic manifolds.
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non-degenerate, where φ∗gV denotes the pull-back of the metric gV by φ to M ,

see A.6. In this case gM is a Kähler metric on M , which in general has in-

definite signature. Therefore non-degenerate holomorphic immersions are also

called Kählerian immersions. One can show that φ∗gV being non-degenerate is

equivalent to ωM := φ∗ωV being non-degenerate, and also to γM := φ∗γV being

non-degenerate.

A holomorphic immersion φ : M → V is called Lagrangian if φ∗Ω = 0.

It has been shown in [42] that a Kählerian Lagrangian immersion M → V

induces on M the structure of an affine special Kähler manifold. Conversely

every simply connected affine special Kähler manifold admits a Kählerian La-

grangian immersion which induces its ASK structure. The immersion is unique

up to transformations of V which leave the data (IV ,Ω, τ) invariant. These

transformations act on complex Darboux coordinates as XI

WI

 7→M

 XI

WI

+

 AI

BI

 , M ∈ Sp(2n,R) , AI , BI ∈ C , (268)

and belong to the subgroup AffSp(R2n)(C2n) = Sp(2n,R) n C2n of the complex

affine group GL(2n,C) nC2n.

The Liouville form λ = WIdX
I of V is a potential for the symplectic form:

dλ = −Ω. Therefore its pullback φ∗λ under the Lagrangian immersion φ is

locally exact and admits a holomorphic potential F , defined on some domain

U ⊂M :

dF = φ∗λ . (269)

The pullbacks X̃I = φ∗XI , W̃I = φ∗WI are holomorphic functions on M . Since

φ is non-degenerate one can pick n independent functions and use them as local

holomorphic coordinates on M . By applying a symplectic transformation if

necessary one can always arrange that X̃I are local holomorphic coordinates on

M . In this case the functions W̃I form a second ‘dual’ holomorphic coordinate

system, which we will discuss in more detail in section 5.1.4. We can always

choose U ⊂M small enough so that φ becomes an embedding. In this case we

do not need to distinguish by notation between (XI ,WI) and (X̃I , W̃I). If we

use special coordinates XI on M then dF = WIdX
I , implying WI = FI = ∂F

∂XI .

Note that the integrability condition FIJ = ∂IWJ = ∂JWI = FJI is satisfied
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since φ is Lagrangian. The immersion φ locally takes the form

Cn ⊃ U 3 (XI) 7→ (XI ,WI) ∈ T ∗U ⊂ C2n , (270)

where we identify U with a domain in Cn using the coordinates XI . We can

also identify φ with dF and φ(U) with the graph{
(XI ,WI) ∈ C2n|(XI) ∈ U,WI =

∂F

∂XI

}
(271)

of dF over U . With these properties and identifications U ⊂ Cn is called an

affine special Kähler domain.

We proceed by deriving local expressions for the metric gM , Kähler form

ωM and special connection ∇ on M . We decompose the complex Darboux

coordinates on V into their real and imaginary parts:

XI = xI + iuI , WI = yI + ivI . (272)

Then

γV = gV + iωV =
1

2

(
dxIdvI − duIdyI

)
+ i
(
dxI ∧ dyI + duI ∧ dvI

)
(273)

and

Ω = dxI ∧ dyI − duI ∧ dvI + i
(
duI ∧ dyI + dxI ∧ dvI

)
. (274)

By pullback we define the functions x̃I = Re(φ∗xI), ỹI = Re(φ∗yI) on M . Since

the immersion is Lagrangian,

Re(φ∗Ω) = 0⇒ dx̃I ∧ dỹI = dũI ∧ dṽI , (275)

and therefore

ωM = dx̃I ∧ dỹI + dũI ∧ dṽI = 2(dx̃I ∧ dỹI) . (276)

For a simply connected ASK manifold M , (x̃I , ỹI) are globally defined functions,

but they are only global coordinates if the immersion φ is an embedding. By

restricting to a domain U ⊂ M where φ becomes an embedding, we can use

(x̃I , ỹI) as coordinates and do not need to distinguish them from (xI , yI) by

notation. They are Darboux coordinates for the Kähler form ωM , and define a

flat, torsion-free, symplectic connection ∇ by ∇dxI = 0, ∇dyI = 0. One can

show that ∇ is the special connection occurring in the intrinsic definition, and

that (xI , yI) are the corresponding special real coordinates.
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Next, we work out some expressions in terms of special holomorphic coordi-

nates. The pull-back of the Hermitian form γV is

γM = φ∗γV = i
(
dXI ⊗ dF̄I − dFI ⊗ dX̄I

)
= NIJdX

I ⊗ dX̄J , (277)

where

NIJ = 2ImFIJ =
∂2K

∂XI∂X̄J
, K = i(XI F̄I − FIX̄I) . (278)

By decomposing γM = gM + iωM we obtain a non-degenerate, in general indef-

inite Kähler metric

gM = NIJdX
IdX̄J , (279)

with associated Kähler form

ωM = − i
2
NIJdX

I ∧ dX̄J . (280)

Thus we have recovered all the local expressions of section 5.1.1.

We note that the characteristic property of a Kählerian immersion, the non-

degeneracy of gM = φ∗gV corresponds in special coordinates to FIJ = ∂2
IJF

having an invertible imaginary part. A holomorphic one-form φ = dF is called

regular if det(ImFIJ) 6= 0. It follows that locally every regular closed holomor-

phic one-form defines a Lagrangian Kählerian immersion.

We conclude this section by expanding on some details. Firstly, the image

φ(U) of U ⊂M is not automatically a graph, although this is the generic situa-

tion. For special choices of φ the functions XI on U are not independent and do

not define a holomorphic coordinate system on U . This can be detected by WI

not satisfying the integrability condition for the existence of of a prepotential

F with gradient FI = WI . In this situation one can choose local holomorphic

coordinates zI on U and work with the functions (XI(z), FI(z)). As we will

discuss in section 5.4.1, the map

z 7→ (XI(z), FI(z)) (281)

can be interpreted as a holomorphic section of a line bundle over M . We will

discuss definitions of ASK geometry based on line bundles in section 5.4.3.

Finally, only simply connected ASK manifolds admit a global immersion into

V ∼= T ∗Cn. As far as the local description is concerned this is not an issue, as

we can restrict to simply connected submanifolds U ⊂M . In order to obtain a

global construction of general, not necessarily simply connected, ASK manifolds,

the vector space V must be replaced by an affine bundle with fibre V . This will

be discussed in section 5.4.2.
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5.1.3. Extrinsic construction as a parabolic affine hypersphere

Affine special Kähler manifolds admit a second extrinsic construction, which

is real rather than complex, with the Hesse potential as generating function. Our

presentation follows [43, 44].

In this construction the ASK manifold M is immersed into R2n+1 as a hy-

persurface

ϕ : M → R2n+1 . (282)

Using the standard connection ∂ (defined by the partial derivative with respect

to linear coordinates) on R2n+1 and a vector field ξ which is transversal to M ,

one can give M the structure of an affine hypersphere, see A.10. The decompo-

sition

∂XY = ∇XY + g(X,Y )ξ (283)

of derivatives of vector fields X,Y tangent to M defines a torsion-free connection

∇ and a so-called Blaschke metric g on M . The connection ∇ is flat if the

vector field ξ is chosen such that its integral lines are parallel on R2n+1, ∂ξ =

0, and thus do not intersect at finite points. This makes M a parabolic (or

improper) affine hypersphere. A parabolic affine hypersphere is called special

if there exists an almost complex structure J on M such that J is skew with

respect to the Blaschke metric g, and such that the fundamental form ω =

g(·, J ·) is ∇-parallel. It has been shown in [43] that if ϕ : M → R2n+1 is a

special parabolic affine hypersphere with data (J, ω,∇), then (M,J, g,∇) is an

affine special Kähler manifold. Conversely, any simply connected ASK manifold

admits an immersion as a special parabolic affine hypersphere. The immersion

is unique up to unimodular affine transformations of R2n+1. In terms of ∇-affine

coordinates (xI , yI) on M , the immersion takes the form

ϕ : M → R2n+1 , (xI , yI) 7→ ϕF = (xI , yI , H(x, y)) , (284)

where H is the Hesse potential of the ASK manifold.

Since any ASK manifold can also be characterized locally by a holomorphic

prepotential F , the Hesse potential H and the prepotential F determine each

other. It has been shown in [43] that their relation is

H(x, y) = 2Im(F (X(x, y)))− 2Re(FI(x, y))ImXI(x, y) , (285)

where xI = Re(XI) and yI = Re(FI). That is, the Hesse potential is twice

the Legendre transform of the imaginary part of the prepotential. Note that
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compared to the ‘full’ Legendre transformation which replaces all affine coor-

dinates by their duals, qa 7→ qa, this is a ‘partial’ Legendre transformation,

where uI = Im(XI) is replaced by yI = Re(FI) as an independent variable,

(xI , uI) 7→ (xI , yI).

5.1.4. Dual coordinate systems

In section 2.2 we have seen that Hessian structures always come in pairs,

with associated dual affine coordinate systems qa and qa. This extends to ASK

manifolds through the existence of a dual (or conjugate) special connection,

∇(J), which coincides with the dual connection in the Hessian sense. Conse-

quently, apart from the special holomorphic coordinates XI = xI + iuI and the

special real coordinates (xI , yI) an ASK manifold has dual special holomorphic

coordinates WI = FI = yI + ivI and dual special real coordinates (2vI ,−2uI),

c.f. (253). For the discussion of dual special connections we follow [42].

Given a connection∇ and an invertible endomorphism fieldA ∈ Γ(End(TM))

one can define a new connection by

∇(A)X = A∇(A−1X) . (286)

For a flat connection on a complex manifold (M,J) one can in particular de-

fine the one-parameter family of flat connections ∇θ := ∇exp(θJ). By Taylor

expanding exp(θJ) and using that J2 = −Id, we find that the connections ∇
and ∇θ are related by

∇θ = ∇+Aθ , where Aθ = eθJ∇(e−θJ) = − sin θeθJ∇J . (287)

Note that this family of connections is periodic in θ and thus is parametrized

by S1. If (M,J, ω,∇) is an ASK manifold with special connection ∇, then

(M,J, ω,∇θ) is an ASK manifold with special connection ∇θ, for any value of θ.

As Kähler manifolds such manifolds are identical. In the physics literature ASK

manifolds are usually identified if their special connections differ by A = eθJ ,

see section 5.4.3.

The connection

∇π/2 = ∇(J) = ∇− J∇J (288)

is called the connection conjugate to ∇. The convex combination

D :=
1

2
(∇+∇(J)) (289)
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of special connections satisfies DJ = 0. For ASK manifolds the connection D

is metric compatible, and since it is by construction also torsion-free, D is the

Levi-Civita connection.

This implies that for ASK manifolds where the complex structure is ∇-

parallel, ∇J = 0 (rather than just d∇-closed), the Kähler metric is flat: ∇J = 0

implies ∇ = ∇(J) = D, so that the Levi-Civita connection D is flat. In local

special coordinates, this corresponds to the case where the Hesse potential and

the prepotential are quadratic polynomials. Physics-wise, these are free theories.

Comparing (289) to (6) shows that the conjugate connection ∇(J) coincides

with the dual connection ∇dual in the Hessian hence. This implies that the

special real coordinates with respect to∇(J) are the dual special real coordinates

qa = Ha = (2vI ,−2uI). The corresponding dual holomorphic coordinates are

WI = yI + ivI .

5.1.5. Symplectic transformations for special complex and special real coordi-
nates

In this section we derive explicit formulae which relate the local expressions

for the metric and other tensors in complex and real special coordinates. We

also study how various quantities transform under symplectic transformations.

We start with comparing the coefficients of the metric in special holomorphic

coordinates XI and in special real coordinates qa = (xI , yI):

gM = NIJdX
IdX̄J = Habdq

adqb . (290)

We need to express the Hessian (Hab) of H in terms of the matrices R = (RIJ) =

(2Re(FIJ)) and N = (NIJ) = (2Im(FIJ)), which are twice the real and imagi-

nary part, respectively, of the holomorphic Hessian (FIJ) of the prepotential F .

This amounts to performing a coordinate transformation from the real coordi-

nates (xI , uI) underlying the complex coordinates XI = xI + iuI to the special

real coordinates qa = (xI , yI). By taking derivatives of the relations

XI = xI + iuI(x, y) ,

FI = yI + ivI(x, y) , (291)

we obtain the components of the Jacobians of the coordinate transformations

(x, u) 7→ (x, y) , (x, y) 7→ (x, u) . (292)
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When taking derivatives of a function of the form f̃(x, u) = f(x, y(x, u)) we

need to employ the chain rule

f̃xI = fxI + fyK
∂yK
∂xI

, f̃uI = fyK
∂yK
∂uI

, (293)

where we use the short-hand notation fxI = ∂f
∂xI , etc.

Using this we obtain the Jacobians

D(x, u)

D(x, y)
=

 1 0

∂u
∂x

∣∣
y

∂u
∂y

∣∣∣
x

 =

 1 0

N−1R −2N−1

 (294)

and

D(x, y)

D(x, u)
=

 1 0

∂y
∂x

∣∣∣
u

∂y
∂u

∣∣∣
x

 =

 1 0

1
2R − 1

2N

 . (295)

Together with further relations given in B.3 one obtains

(Hab) =

 N +RN−1R −2RN−1

−2N−1R 4N−1

 , (296)

where N−1 = (N IJ) is the inverse of N = (NIJ). As discussed in section 5.1.3

the Hesse potential H is related to the imaginary part of the prepotential by a

Legendre transformation:

H(q) = H(x, y) = 2ImF (x+ iu(x, y))− 2yIu
I(x, y) . (297)

We can also express the metric in dual special real coordinates qa:

g = Habdq
adqb = Habdqadqb , (298)

where, as for any Hessian metric, the metric coefficients Hab with respect to the

dual coordinates are the inverse of Hab, hence

(Hab) =

 N−1 1
2N
−1R

1
2RN

−1 1
4 (N +RN−1R)

 . (299)

The dual Hesse potential Hdual,

Hab =
∂2Hdual

∂qa∂qb
(300)
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is related to the Hesse potential by a full Legendre transformation27

Hdual = qaqa −H , (301)

as discussed in section 2.2.

Special real coordinates are unique up to affine transformations with linear

part in Sp(R2n) = Sp(2n,R). In the following we discard translations and focus

on linear symplectic transformations, under which the coordinates qa transform

as

qa 7→ Oabqb , (302)

where O = (Oab) is a symplectic matrix:

ObaΩbcOcd = Ωad ⇔ OTΩO = Ω . (303)

We will call any object transforming in the fundamental representation of Sp(2n,R)

a symplectic vector. Objects pa which transform in the contragradient represen-

tation,

pa 7→ O b
a pb , (304)

where

O b
a Ocb = δac ⇔ (O b

a ) = OT,−1 , (305)

will be called symplectic co-vectors. The matrix Ω intertwines the two repre-

sentations: if qa is a symplectic vector, then Ωabq
b is a symplectic co-vector.

Similarly, we define symplectic tensors as objects which have components with

several upper and lower indices, such that each upper index transforms in the

fundamental and each lower index transforms in the contragradient representa-

tion.

As an example, the metric g = Habdq
adqb is an invariant symmetric rank

two co-tensor, and since dqa transform in the fundamental representation, the

components Hab of g transform as follows:

Hab 7→ O b
a O d

c Hcd . (306)

Therefore

Hab 7→ OabOcdHcd , (307)

27We call this a ‘full’ Legendre transformation because it involves all of the variables. In
contrast the Legendre transformation relating the Hesse potential and the prepotential only
involves half of the coordinates, (xI , yI) 7→ (xI , uI), and therefore we will call it a ‘partial’
Legendre transformation.
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which implies that the dual coordinates qa = Ha transform contragradiently,

qa 7→ O b
a qb . (308)

Consistency requires that the Hesse potential H must be a symplectic function

since Hab = ∂2
a,bH. The tensor Ωab is by definition an invariant tensor, and

the complex structure Jab is a symplectic tensor of type (1, 1). Therefore all

quantities we have defined using special real coordinates and dual special real

coordinates are tensor components which transform as indicated by their indices.

In contrast, quantities expressed in terms of special holomorphic coordinates

do not transform as tensor components in general. Since XI = xI + iuI , WI =

yI + ivI , where qa = (xI , yI) and qa = (2vI ,−2uI), it is clear that (XI , FI)
T

is a complex linear combination of symplectic vectors and therefore a complex

symplectic vector. As in section 4.4.1 we set

O =

 U Z

W V

 , (309)

so that

UTV −WTZ = V TU − ZTW = 1 , UTW = WTU , ZTV = V TZ (310)

and

XI 7→ U IJX
J + ZIJFJ , (311)

FI 7→ V J
I FJ +WIJX

J .

The special holomorphic coordinates XI comprise half of the components of a

symplectic vector and therefore do not define a symplectic tensor by themselves.

We have already seen in section 4.4.1 that the holomorphic prepotential F (XI)

is not a symplectic function. There we worked out the explicit transformation

formula for the special case of prepotentials which are homogeneous of degree

two. We will provide a general formula for the transformation of the prepotential

together with a geometrical interpretation in section 5.4.2

Similarly, NIJ , N IJ and other expressions involving holomorphic indices do

not transform as symplectic tensors, as we have already seen in section 4.4.1.

By contracting the symplectic vector (XI , FI)
T with its complex conjugate, we

obtain a symplectic function, namely the Kähler potential:

K = i(XI F̄I − FIX̄I) . (312)
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Comparing to section 4 we see that the holomorphic and real formalism

of special geometry are related in a way similar to the relation between the

Lagrangian and Hamiltonian formalism of mechanics. In particular, the real

(Hamiltonian) formalism is covariant with respect to symplectic transforma-

tions, whereas the holomorphic (Lagrangian) formalism is not. We remark that

the functions (qa) = (xI , yI), always define local coordinates on M , irrespective

of whether the ‘symplectic frame’ (XI , FI) allows a prepotential or not. For

simply connected ASK manifolds qa are in fact globally defined functions, since

the immersion φ is global. Note, however that they only define a global coordi-

nate system on M if φ is a global embedding, which need not be the case even

if φ is a global immersion. In contrast, XI , which are half of a set of complex

coordinates (XI , FI) on V , only define local complex coordinates on U ⊂ M if

φ(U) ⊂ V is the graph of a map V → V : XI 7→WI = FI(X).

5.2. Conical affine special Kähler geometry

When extending N = 2 supersymmetry to N = 2 superconformal symme-

try, two additional bosonic symmetries become relevant for vector multiplets:

dilatations R>0 and phase transformations U(1). On the scalar fields these are

realized as a holomorphic homothetic action of C∗ ∼= R>0 × U(1). To obtain

a superconformal Lagrangian, the prepotential must be homogeneous of degree

two under complex scale transformations XI 7→ λXI , λ ∈ C∗, while the Hesse

potential must be homogeneous of degree two under real scale transformations

qa → λqa, λ ∈ R>0, and invariant under U(1) transformations. We will follow

[42, 45].

Definition 16. Conical affine special Kähler manifolds (CASK man-
ifolds). A conical affine special Kähler manifold (M, g, ω,∇, ξ) is an affine
special Kähler manifold (M, g, ω,∇) equipped with a nowhere null vector field ξ,
such that

Dξ = ∇ξ = IdTM , (313)

where D is the Levi-Civita connection of g.

From section 2.3 we know that (313) implies that (M, g,∇, ξ) is a 2-conical

Riemannian manifold,28 hence a Riemannian cone in the standard sense. Since

(M, g,∇) is in addition Hessian, it is a 2-conical Hessian manifold in the sense

28As usual we admit indefinite signature.
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of Definition 9 given in section 2.3, and admits a Hesse potential which is ho-

mogeneous of degree 2 under the R>0-transformations generated by ξ:

Lξg = 2g , LξH = 2H . (314)

In addition M is Kähler, and the ASK conditions imply that the vector field

Jξ is isometric, LJξg = 0, and preserves the homogeneous Hesse potential,

LJξH = 0. The two vector fields {ξ, Jξ} commute and generate a holomorphic,

homothetic C∗-action on M . On a CASK manifold one may choose, at least

locally, conical special real coordinates qa = (xI , yI) such that the homothetic

Killing vector field takes the form

ξ = qa
∂

∂qa
= xI

∂

∂xI
+ yI

∂

∂yI
. (315)

Such coordinates are unique up to symplectic transformations, since the com-

patibility with the conical structure prevents us from admitting translations. A

holomorphic immersion φ : M → V ∼= T ∗Cn is called conical if the position

vector field ξV on V is tangent along φ. If φ : M → V is a conical Kählerian

Lagrangian immersion of a complex connected manifold (M,J) with induced

data (g,∇, ξ), then (M,J, g,∇, ξ) is a conical affine special Kähler manifold.

Conversely, any simply connected CASK manifold can be realized as a conical

Kählerian Lagrangian immersion [45].

By considering an open subset U ⊂ M if necessary, we can assume that φ

is an embedding. Using this we can easily verify those local formulae that do

not follow from previous results on Hessian manifolds using conical special real

coordinates. For reference we first collect some useful relations following from

homogeneity:

qaHa = 2H , qaHab = Hb = qb , qaqbHab = 2H , qaHabc = 0 . (316)

For CASK manifolds the special real coordinates qa and dual special real co-

ordinates qa = Ha are related by qa = Habq
b, qa = Habqb. This is a special

feature of Hesse potentials which are homogeneous of degree two, compare (45).

Using that Jab = − 1
2ΩacHcb, and the above homogeneity properties, the

components of Jξ are

Jξ = Jabq
b∂a =

1

2
HbΩ

ba∂a . (317)
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From this we see immediately that ξ and Jξ commute, and therefore generate

an abelian transformation group

[ξ, Jξ] = LξJξ = −LJξξ = 0 . (318)

The Lie derivatives of the differentials are

Lξdq
a =

∂qa

∂qb
dqb = dqa , LJξdq

a =
∂(Jac q

c)

∂qb
dqb = −1

2
ΩabHbcdq

c . (319)

The Lie derivatives of the Hesse potential

LξH = 2H , LJξH =
1

2
HaΩabHb = 0 (320)

show that H is Jξ-invariant. We also list the Lie derivatives of qa = Ha

LξHa = Ha , LJξHa =
1

2
HcΩ

cbHba = 2Ωabq
b , (321)

and the Lie derivatives of the second derivatives of H

LξHab = 0 , LJξHab =
1

2
HcΩ

cdHdab = 0 . (322)

The last equality follows from differentiating HabΩ
bcHcd = −4Ωad upon con-

traction with qa and using homogeneity. Combining results, we find that Jξ is

a Killing vector field, LJξg = LJξ(Habdq
adqb) = 0.

In summary we have the following infinitesimal C∗-action:

[ξ, Jξ] = 0 , Lξg = 2g , LJξg = 0 . (323)

Moreover, the action of Jξ is ω-Hamiltonian:

ω(Jξ,X) = g(Jξ, JX) = g(ξ,X) = qaHabX
b = HaX

a

= Xa∂aH = X(H) = dH(X) , ∀X ∈ X(M) , (324)

hence

ω(Jξ, ·) = dH(·) , (325)

with moment map29

H =
1

2
Habq

aqb =
1

2
g(ξ, ξ) . (326)

At each point, the vector fields ξ and Jξ define two distinguished directions,

which correspond to the radial and angular direction of a complex cone whose

29See A.14 for a brief review of Hamiltonian vector fields and moment maps.
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base is spanned by the vector fields in 〈ξ, Jξ〉⊥. It is useful for the following

discussion of project special Kähler manifolds to decompose the metric and other

tensors into tangential and transversal parts with respect to the C∗-action. For

this purpose we introduce the one-forms

α = dH = Hadq
a , β = qaΩabdq

b , (327)

which, up to normalization, are dual to the vector fields ξ and Jξ:

α(ξ) = 2H , α(Jξ) = 0 , α(X) = 0 ,

β(ξ) = 0 , β(Jξ) = H , β(X) = 0 , (328)

for all X ∈ 〈ξ, Jξ〉⊥.30 The forms α, β carry weight 2 under the dilatations

generated by ξ and are invariant under the U(1) transformations generated by

Jξ:

Lξα = 2α , LJξα = 0 ,

Lξβ = 2β , LJξβ = 0 . (329)

Note that the scaling weight of any tensor which transforms homothetically

under C∗ can be changed by multiplying it with the appropriate power of the

Hesse potential. In particular any tensor transforming with a definite scaling

weight can be made invariant, and

g̃
(A,B,C)
M = AH−1gM +BH−2α2 + CH−2β2

=

(
A
Hab

H
+B

HaHb

H2
+ C

Ωacq
cΩbdq

d

H2

)
dqadqb (330)

is a family of C∗-invariant symmetric rank two co-tensor fields which includes

the conformally rescaled metric H−1gM as the special case A = 1, B = C = 0.

We can obtain a tensor field which is transversal to the C∗-action by imposing

g̃
(A,B,C)
M (ξ, ·) = g̃

(A,B,C)
M (Jξ, ·) = 0⇒ B = −A

2
, C = −2A . (331)

Thus the transversal part, which has a two-dimension kernel spanned by {ξ, Jξ}
is

g̃
(0),A′

M = A′H
(0)
ab dq

adqb , (332)

30Here ⊥ denotes orthogonality with respect to gM = Habdq
adqb.
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where

H
(0)
ab = − 1

2H
Hab +

1

4H2
HaHb +

1

H2
Ωacq

cΩbdq
d , A′ = −2A . (333)

Solving (333) for the CASK metric gM we obtain

Hab = (−2H)H
(0)
ab +

1

2H
HaHb +

2

H
Ωacq

cΩbdq
d . (334)

This is an orthogonal decomposition of Hab into projections onto the distribu-

tions 〈ξ, Jξ〉⊥, 〈ξ〉 and 〈Jξ〉. The signatures of Hab and H
(0)
ab are related: if

H
(0)
ab is positive definite on 〈ξ, Jξ〉⊥, then the CASK metric gM has complex

Lorentz signature (∓∓± · · ·±). The overall sign of Hab depends on the sign of

the Hesse potential H.

For later use we define the tensor field

ĝM = Ĥabdq
adqb , Ĥab = −1

2
Hab +

2

H

(
1

4
HaHb + Ωacq

cΩbdq
d

)
, (335)

which differs from the CASK metric by an overall factor − 1
2 and a sign flip

along the distribution spanned by ξ and Jξ. Thus ĝM is positive or negative

definite if the CASK metric gM has complex Lorentz signature. The tensor Ĥab

and its inverse Ĥab are related to the complex symmetric matrix

NIJ = F̄IJ + i
NIKX

KNJLX
L

XMNMNXN
(336)

by

Ĥab =

 I +RI−1R −RI−1

−I−1R I−1

 , Ĥab =

 I−1 I−1R

RI−1 I +RI−1R

 ,

(337)

where NIJ = RIJ + iIIJ . We will see in section 6 that NIJ is the coefficient

matrix of the terms quadratic in the abelian field strengths in the Lagrangian

for four-dimensional vector multiplets coupled to Poincaré supergravity. While

its real version Ĥab is a symplectic tensor, the complex matrix NIJ transforms

fractionally linearly under symplectic transformations,

N 7→ (W + VN )(U + ZN )−1 . (338)

Observe that the relation between Ĥab and NIJ is analogous to the one between

Hab and FIJ , in particular both FIJ and NIJ transform fractionally linearly.
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Another natural symmetric tensor field on M is the 0-conical Hessian metric

that we obtain by taking the logarithm of the Hesse potential H as a Hesse

potential. Choosing the normalization

H̃ = −1

2
log |H| , (339)

we obtain

g̃ = H̃abdq
adqb = g̃

(−1/2,1/2,0)
M , (340)

H̃ab = ∂2
a,bH̃ = − 1

2H
Hab +

1

2H2
HaHb (341)

= H
(0)
ab +

1

4H2
HaHb −

1

H2
Ωacq

cΩbdq
d

=
1

H
Ĥab −

2

H2
Ωacq

cΩbdq
d .

This tensor differs from the CASK metric by an overall factor−2H, which makes

it C∗-invariant. Its signature differs from the one of Hab by a sign flip along ξ.

Thus if the CASK metric has complex Lorentz signature (∓,∓,±, . . . ,±), then

H̃ab has real Lorentz signature (±,∓,±, . . . ,±), with the time-like direction

generated by Jξ.

5.3. Projective special Kähler geometry

In sections 2.4 and 2.5 we have discussed the real superconformal quotient,

which relates affine and projective special real geometry. Similarly, given a

CASK manifold M we can obtain a projective special Kähler manifold M̄ by

a complex quotient construction. To do this we construct a Kähler metric on

the orbit space M̄ = M/C∗, of the C∗-action on a CASK manifold M . Since

the CASK metric gM = Habdq
adqb transforms homothetically, we can make it

C∗-invariant through multiplication by a multiple H−1. To obtain a projectable

tensor g̃
(0)
M , we then take the transversal part:

g̃
(0)
M = H

(0)
ab dq

adqb , H
(0)
ab = − 1

2H
Hab +

1

4H2
HaHb +

1

H2
Ωacq

cΩbdq
d . (342)

As in (332) we have chosen A′ = 1⇔ A = − 1
2 , to be consistent with supergrav-

ity conventions. By projection onto orbits g̃
(0)
M defines a non-degenerate metric

ḡM̄ on M̄ , which conversely lifts to g̃
(0)
M under the pullback of the projection

π : M → M̄ , that is g̃
(0)
M = π∗ḡM̄ .

The quotient by the holomorphic homothetic C∗-action will be referred to as

the (complex) superconformal quotient. In order for ḡM̄ to be well defined, we
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need that g(ξ, ξ) = −2H 6= 0. Moreover, we need to assume that the quotient

by the C∗-action is well behaved. This gives rise to the following definitions

[42, 45]:

Definition 17. Regular conical affine special Kähler manifold. A conical
affine special Kähler manifolds (M,J, g,∇, ξ) is called regular if the function
g(ξ, ξ) = −2H is nowhere vanishing on M , and if the canonical quotient π :
M → M̄ onto the space of orbits of C∗ on M is a holomorphic submersion onto
a Hausdorff manifold.

Definition 18. Projective special Kähler manifold (PSK manifold). A
projective special Kähler manifold (M̄, gM̄ ) is a (possibly indefinite) Kähler man-
ifold which can be obtained as the superconformal quotient of a regular CASK
manifold (M, gM ,∇, ξ).

In supergravity applications, ḡM̄ is the metric on the manifold parametrized

by the physical scalar fields, and therefore must be positive definite. The results

of the preceding section imply that the underlying CASK metric must then have

complex Lorentz signature (∓,∓,±, . . . ,±), where the time-like directions are

along the orbits of the C∗-action generated by 〈ξ, Jξ〉. In physics these directions

correspond to an additional vector multiplet acting as a conformal compensator.

Note that an overall sign flip of gM does not change ḡM̄ . The tensor field ĝM

defined in (335) also plays a role in physics. It is proportional to the vector field

metric and therefore must have definite signature. This is automatic if ḡM̄ is

positive definite.

The superconformal quotient can be interpreted as a Kähler quotient, that is

as a symplectic quotient consistent with a Kähler structure, see also A.15. To see

how this work we use the holomorphic parametrization of the CASK manifold

and follow the original construction of [40]. When using special coordinates XI ,

the homothetic Killing vector fields take the form

ξ = XI ∂

∂XI
+ cc , Jξ = iXI ∂

∂XI
+ cc . (343)

The superconformal quotient proceeds in two steps. First the coordinates XI

are restricted to the hypersurface

S = {XI ∈M |i(XI F̄I − FIX̄I) = −1} . (344)

In physics the condition i(XI F̄I−FIX̄I) = −1 is called the D-gauge, because it

fixes the local dilatation symmetry which is part of the superconformal group.
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We will discuss the physics aspects in section 6, while a review of the supercon-

formal formalism can be found in B.4.

Since Jξ acts isometrically on S, one can take the quotient with respect to

the U(1) group action and obtains M̄ = S/U(1). To recognize this construction

as a Kähler quotient, we note that

i(XI F̄I − FIX̄I) = NIJX
IX̄J = KCASK = Habq

aqb = 2H = g(ξ, ξ) (345)

is the norm of the homothetic Killing vector field ξ, which is proportional to

the Hesse potential, which is the moment map for the Hamiltonian isometric

U(1) action on the CASK manifold M , see (324). This shows that S/U(1) =

M//U(1) is a symplectic quotient with respect to the Hamiltonian isometric

action of Jξ on M . Moreover (M, gM ) is a Riemannian cone over (S, gS) with

gM and gS related by gM = dr2 + r2gS . Since (M, gM ) is Kähler, it follows that

(S, gS) is Sasakian.31 The metric induced by gS on the quotient M̄ = S/U(1) =

M//U(1) is Kähler, as we will show below, and therefore M//U(1) is a Kähler

quotient.

To show that the metric is Kähler, we express the projectable tensorH
(0)
ab dq

adqb

in holomorphic coordinates. Rather than performing the coordinate transfor-

mation from special real to special holomorphic coordinates, we start with

gM = NIJdX
IdX̄J and construct a tensor which is projectable onto the orbits

of the C∗-action. The resulting tensor g̃
(0)
M = N

(0)
IJ dX

IdX̄J has the components

N
(0)
IJ = − NIJ

NMNXM X̄N
+
NIKX̄

KNJLX
L

(NMNXM X̄N )2
. (346)

To see that this is correct we note that the components N
(0)
IJ are homogeneous

of degree −2, so that g̃
(0)
M is invariant under ξ. Moreover

N
(0)
IJ X

I = 0 = N
(0)
IJ X̄

J , (347)

which shows that g̃
(0)
M is transversal to the actions generated by ξ and Jξ .

Therefore this tensor field is projectable. The CASK Kähler potential K =

g(ξ, ξ) is a global function, and we can use it provide a global expression for

g̃
(0)
M :

g̃
(0)
M = −∂∂̄K

K
+
∂K∂̄K

K2
, (348)

31Sasakian geometry is reviewed in A.17.

82



where ∂∂̄K = gM is the CASK metric. By inspection

g̃
(0)
M = ∂∂̄ (− log(−K)) , (349)

so that the degenerate symmetric rank two co-tensor field g̃
(0)
M has a ‘Kähler

like’ potential

K(X, X̄) = − log(−K) = − log(−NIJXIX̄J) = − log(−i(XI F̄I − FIX̄I)) .

(350)

Upon projection onto M̄ the ‘Kähler like’ potential K(X, X̄) becomes a gen-

uine Kähler potential for ḡM̄ . We will obtain an expression in terms of local

coordinates on M̄ in section 5.4.1, see (372).

Rather than viewing M̄ as an abstract quotient, one usually prefers to realize

it concretely as a submanifold M̄ ⊂ S ⊂ M . In physics describing M̄ as

a submanifold corresponds to imposing a U(1) gauge on top of the D-gauge.

There is no canonical choice for a U(1) gauge. The only canonical choice would

be to take a hypersurface in S which is orthogonal at every point to orbits of

the U(1)-action. However, S is a contact manifold and the distribution defined

by this condition is a contact distribution, and therefore not integrable.32 This

situation is different from the first step, where we defined S as the level set of the

symplectic function g(ξ, ξ), which is a moment map for the Hamiltonian U(1)

action generated by Jξ, see (324), (345). There are two ways to proceed. One

can choose a gauge, for example by imposing that one of the special holomorphic

coordinates is real, such as X̄0 = X0. This will always break the full symplectic

covariance that we have preserved so far, because the orthogonality to the U(1)-

orbits was the only remaining symplectically invariant equation involving ξ and

Jξ. Alternatively, one can work ‘upstairs,’ on S or M using U(1)-invariant

quantities or C∗-invariant quantities, respectively. This has the advantage of

preserving symplectic covariance, and we will see how it is done in the following.

5.4. Other formulations of special Kähler geometry

5.4.1. Formulation in terms of line bundles

In the physics literature, special Kähler geometry is often presented in a

slightly different language where the quantities (XI , FI) are interpreted as sec-

tions of a line bundle UM̄ → M̄ . In this section we explain how this formulation

32Contact structures and their relation to integrability are reviewed in A.16.
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can be recovered from the immersion M → T ∗Cn+1 discussed in section 5.1.2,

following [45].

The universal line bundle

We start by recalling that on a holomorphic Hermitian vector bundle there

is a unique connection, called the Chern connection, which is simultaneously

holomorphic and Hermitian, see A.12. Consider the open set of non-isotropic

vectors V ′ = {v ∈ V |γ(v, v) 6= 0} ⊂ V = T ∗Cn+1 of the vector space V . The

space of complex lines P (V ′) = {[v] = Cv|v ∈ V ′} is the projectivization of

V . Then the trivial vector bundle V := P (V ′)× V → P (V ′) equipped with the

standard Hermitian metric γ = Ω(·, ·̄) is a holomorphic Hermitian vector bundle,

with Chern connection d = ∂+ ∂̄. The universal bundle U → P (V ′) is defined as

the holomorphic line sub-bundle of V whose fibre Up over p = [v] ∈ P (V ′) is the

corresponding line Cv. The Chern connection on U is given by the γ-orthogonal

projection of the flat Chern connection d of V:

DXv := πUdXv =
γ(dXv, v)

γ(v, v)
v , (351)

where X is a complex vector field on P (V ′) and v a section of U ⊂ V.

Pull-back of universal line bundle to the CASK manifold M

If (M,J, g,∇, ξ) is a regular CASK manifold, then we have the following

commutative diagram:

M
φ
//

π

��

V ′

πV

��

M̄
φ̄
// P (V ′)

(352)

Remark 9. The projectivization P (V ′) of the symplectic manifold V ′ is a con-
tact manifold, see A.16. The holomorphic map φ̄ is a Legendrian immersion
induced by the holomorphic Lagrangian immersion φ.

The map f = φ̄ ◦ π = πV ◦ φ : M → P (V ′) defines the pull-back (UM ,D)

of the universal bundle (U ,D), where we use the same symbol D for the Chern

connection on U and its pull-back to UM :

UM //

��

U

πU

��

M

φ

OO

φ̄◦π=πV ◦φ // P (V ′)

(353)
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The holomorphic Lagrangian immersion φ : M → V can be regarded as a

holomorphic section of UM , as follows: according to A.6 the pull-back bundle

UM is defined as

UM = {(m,u) ∈M × U|(πV ◦ φ)(m) = πU (u)} . (354)

A section of s : P (V ′)→ U of U → P (V ′) has the form s(p) = vp, where vp ∈ V
is a vector such that [vp] = p ∈ P (V ′). For vp we can choose any vector on

the line p. The pull-back section UM → M has the form ((πV ◦ φ)∗s)(m) =

v(πV ◦φ)(m), where v(πV ◦φ)(m) is a vector on the same line in V as φ(m). If

we choose a section s of U such that s(p) = φ(m) for p = πV φ(m), then the

corresponding pull-back section m 7→ φ(m) can be identified with φ. The local

form of φ, regarded as a section of UM →M is

φ : M → UM : (XI) 7→ (XI , FI(X)) , (355)

where XI are special holomorphic coordinates on M , FI = ∂F/∂XI , and where

F is the prepotential of φ regarded as a local holomorphic Lagrangian immersion

φ : M → V .

Since the Chern connection D on the universal line bundle U is defined by

orthogonal projection, the pull-back connection satisfies

DIφ = iAhIφ , DĪφ = 0 , (356)

whereDI := D∂I andDĪ = D∂Ī , and where the componentsAhI of the connection

one-form iAhI dX
I of the pull-back connection are:

iAhI =
γ(∂Iφ, φ)

γ(φ, φ)
=
i(∂IX

J F̄J − ∂IFJX̄J)

i(XK F̄K − FKX̄K)
, (357)

iAhĪ =
γ(∂Īφ, φ)

γ(φ, φ)
=
i(∂ĪX

J F̄J − ∂ĪFJX̄J)

i(XK F̄K − FKX̄K)
= 0 . (358)

We can also express the pull-back connection with respect to a unitary (unit

norm) section φ1 = φ/||φ||, ||φ|| :=
√
|γ(φ, φ)|, where γ(φ, φ) = i(XI F̄I−FIX̄I).

The unitary section φ1 can be interpreted as a section of a principal U(1) bundle

PM →M , to which the holomorphic line bundle UM →M is associated. Let D
be a principal connection on PM with connection one-form iAIdX

I + iAĪdX̄
I ,

so that covariant derivatives of sections of PM take the form

DIφ1 = iAIφ1 , DĪφ1 = iAĪφ1 . (359)
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We require that the pull-back connection on UM is induced by this principal

connection. Then we can read off the components (AI , AĪ) of the connection

one-form of PM by comparing (359) to the covariant derivatives of unit sections

of UM . Using that

DIφ1 =
DIφ

||φ||
− φ

||φ||2
∂I ||φ|| , DĪφ1 = − φ

||φ||2
∂Ī ||φ|| , (360)

we find:

AI =
1

2
AhI , AĪ =

1

2
AhI . (361)

Pull back of the universal line bundle to the PSK manifold M̄

By choosing a section s : M̄ → M of the C∗-bundle π : M → M̄ we

can regard M̄ as an embedded submanifold, at least locally. We can also use

φ̄ : M̄ → P (V ′) to obtain the pull-back bundle (UM̄ ,D) of the universal bundle

(U ,D):

UM̄ //

��

UM //

��

U

��

M̄
s //

s∗φ

OO

φ̄

11M

φ

OO

πV ◦φ=φ̄◦π
// P (V ′)

(362)

The local form of the pull-back of φ : M → UM by s : M̄ → M to a section

s∗φ : M̄ → UM̄ is

s∗φ : M̄ → UM̄ (ζa) 7→ (XI(ζ), FI(ζ)) , (363)

where ζa are local holomorphic coordinates on M̄ , and where XI and FI depend

holomorphically on ζa. Evaluating the pull-back connection on a holomorphic

section s : M̄ →M we obtain

Das = iAhas = i∂aX
IAhI s =

γ(∂aφ, φ)

γ(φ, φ)
s =

∂aX
I F̄I − ∂aFIX̄I

XI F̄I − FIX̄I
s , Dās = 0 .

(364)

On a unitary section s1 = s/||s|| we pull back the principal connection (AI , AĪ)

of PM to obtain a principal connection with components

Aa = ∂aX
IAI + ∂aXIAĪ , Aā = ∂āX

IAI + ∂āXIAĪ , (365)

The local components (XI(ζ, ζ̄), FI(ζ, ζ̄)) of the pull-back of φ by a unit section

s1 satisfy

γ(φ, φ) = γ(φ(s1), φ(s1)) = i(XI(ζ, ζ̄)F̄I(ζ, ζ̄)− FI(ζ, ζ̄)X̄I(ζ, ζ̄)) = ±1 (366)
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and depend non-holomorphically on the local holomorphic coordinates ζa. Eval-

uating the connection on a unit section s1 we find

Das1 = iAas1 =
γ(∂aφ, φ)− γ(φ, ∂āφ)

2γ(φ, φ)
s1 , (367)

Dās1 = iAās1 =
γ(∂āφ, φ)− γ(φ, ∂aφ)

2γ(φ, φ)
s1 . (368)

Note that for a unitary section γ(φ, φ) = ±1 and γ(∂aφ, φ) = −γ(φ, ∂āφ). Also

note that Aā = Aa. In terms of components (XI(ζ, ζ̄), FI(ζ, ζ̄)) the components

of the connection one form are

iAa = −iAā = − i
2

XI
↔
∂ a F̄I − FI

↔
∂ a X̄

I

i(XI F̄I − FIX̄I)
, (369)

where i(XI F̄I−FIX̄I) = ±1, and where we use the notation a
↔
∂ b = (a∂b− (∂a)b).

Pull-back of the universal line bundle to space-time N

Our last step is to consider the situation where a physical theory defined

on space-time N contains massless scalar fields with values in a PSK manifold

M̄ . The Lagrangian description of such scalar fields is given by a non-linear

sigma model, see B.1 for details. The scalar fields are the components of a map

Z : N → M̄ from space-time N into a PSK manifold M̄ . This defines a further

pull-back (UN ,D) of the universal bundle to a line bundle over space-time.

UN //

��

UM̄ //

��

UM //

��

U

��

N
Z //

X∗φ

OO

X
22M̄

s //

s∗φ

OO

φ̄

11M

φ

OO

πV ◦φ=φ̄◦π
// P (V ′)

(370)

Introducing local coordinates xµ on space-time, sections of the pull-back of the

universal bundle by a holomorphic section take the following form in terms of

components:

X ∗φ : N → UN (xµ) 7→ (XI(ζ(x)), FI(ζ(x))) (371)

Given a set of local holomorphic coordinates za on M̄ , we can choose a local

holomorphic non-vanishing function h on M̄ and set X0 = h(z). Then Xa(z) =

h(z)za, and we can interpret the conical holomorphic special coordinates XI as

local functions on M̄ . Since za = Xa/X0, the local holomorphic coordinates za
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are the ‘inhomogeneous’ special holomorphic coordinates on M̄ associated to the

special holomorphic coordinates XI on M , which can be viewed as projective

coordinates (or homogeneous coordinates) on M̄ .33

This construction provides us with a section s : M̄ → M : za 7→ XI(z). By

making a holomorphic coordinate transformation za 7→ ζa on M̄ we can then

go from special holomorphic coordinates za to general holomorphic coordinates

ζa. Given a holomorphic section (XI(ζ), FI(ζ)) of UM̄ → M̄ , we can obtain

an expression for the Kähler metric gM̄ . Firstly, we locally identify M̄ with an

embedded complex submanifold of M using the section s : M̄ → M : ζa 7→
XI(ζ). The metric gM̄ is obtained by pulling back the projectable tensor g̃

(0)
M ,

see (348), that we have built out of the Kähler metric gM . According to (350)

the tensor g̃
(0)
M has a ‘Kähler like’ potential K(X, X̄). Since (XI(z), FI(z)) are

local holomorphic functions on M̄ , it follows that gM = ι∗g̃
(0)
M is a Kähler metric

gM̄ = ∂∂̄K with Kähler potential

K = − log(−i(XI(ζ)F̄I(ζ̄)− FI(ζ)X̄I(ζ̄))) . (372)

We also note that the pullback of the Chern connection to the pull back

bundle UN → N over space-time by a unitary section is

Aµ(x) = ∂µζ
a(x)Aa(ζ(x), ζ̄(x)) + ∂µζ̄

ā(x)Aā(ζ(x), ζ̄(x)) (373)

= −1

2

XI
↔
∂ µ F̄I − FI

↔
∂ µ X̄

I

i(XI F̄I − FIX̄I)
= − i

2

NIJ((∂µX
I)X̄J −XI∂µX̄

J)

NKLXKX̄L
,

where i(XI F̄I−FIX̄I) = NIJX
IX̄J = ±1. We will see in section 6 that this pull

back connection is equal, up to an overall minus sign, to the U(1) connection

used in the superconformal calculus (see also B.4).

5.4.2. Formulation in terms of an affine bundle, and why the prepotential trans-
forms as it does

In this section we elaborate on the following two points:

1. The extrinsic realization of ASK manifolds [42] which we have described

in section 5.1.2 only provides a global construction for simply connected

ASK manifolds. It is desirable to have a generalization which allows the

global construction of general ASK manifolds.

33The terms ‘inhomogeneous coordinate’ and ‘homogeneous/projective coordinate’ are used
here as in projective geometry, for example for coordinates on the complex projective space
Pn(C).
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2. The transformation properties of the holomorphic prepotential under sym-

plectic transformations are complicated, and their geometric origin re-

mains obscure. The prepotential is not a symplectic function, and when

deriving its transformation formula by integrating the transformation for-

mula (311) for the symplectic vector (XI , FI), this leaves the integration

constant undetermined. For a homogeneous prepotential this constant is

absent, and for degree two we found the complicated looking expression

(211).

We will now report how these issues have been resolved in [46, 47]. The

prepotential F can be defined as the potential of the Liouville form λ = WIdX
I ,

restricted to a special Lagrangian submanifold L ⊂ V = T ∗Cn, where dλ|L =

−Ω|L = 0 and λ|L = FIdX
I = dF . Here we assume that the complex symplectic

coordinates (XI ,WI) on V have been chosen such that L is a graph. Then

WI = FI = ∂F/∂XI on L. From these expressions it is clear that neither λ nor

F is invariant under symplectic transformations. However the one-form

η = XIdWI −WIdX
I (374)

is symplectically invariant, and, like the Liouville form, a potential for the com-

plex symplectic form Ω, hence closed when restricted to a Lagrangian subman-

ifold L ⊂ V :

dη = 2Ω|L = 0 . (375)

Consequently η is locally exact on L and admits a potential f , which is a

symplectic function, and which is unique up to an additive constant,

η|L = −df . (376)

We will call the potential f a Lagrange potential, and note that Lagrange po-

tentials and prepotentials are related by

2F = f +XIFI ⇔ f = 2F −XIFI . (377)

From the physics literature it is well known that the combination F− 1
2X

IFI is a

symplectic function [32]. We now see that this function is, up to normalization,

the Lagrange potential associated to F .

Let now M be a connected, but not necessarily simply connected ASK mani-

fold. Then the above applies locally, if we choose a domain U ⊂M which is small
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enough to admit a Lagrangian Kählerian embedding φ : U → V ∼= T ∗Cn ∼= C2n.

Such an embedding identifies U with a Lagrangian submanifold L ⊂ C2n. On

each such L we have a symplectically invariant one-form η = XIdWI −WIdX
I

and can choose a Lagrange potential f . Then (L, f) is called a Lagrangian pair,

and a Lagrangian pair (L, f) is called Kählerian if the restriction of the Hermi-

tian form γ = iΩ(·, ·) is non-degenerate. Lagrangian pairs are related to each

other by a group action. The relevant group is GC := Sp(C2n) n Heis2n+1(C),

where Heis2n+1(C) is the (2n+ 1)-dimensional complex Heisenberg group. The

group GC is a central extension of the complex symplectic affine Sp(C2n)nC2n ⊂
Aff(C2n). We will see that the central extension is needed to include the free-

dom of shifting Lagrange potentials and prepotentials by a constant, and refer

to A.19 for further details about the group GC, its subgroups and its represen-

tations. The group GC maps a given Lagrangian pair (L, f) to the new pair

g · (L, f) = (ρ̄(g)L, g · f) , (378)

where g = (M, s, v) ∈ GC, with M ∈ Sp(C2n), s ∈ C central, v ∈ C2n a

translation, where ρ̄ is the affine representation of GC obtained by ‘forgetting

the centre’, that is by the natural action of (M,v) ∈ Sp(C2n)nC2n, and where

g · f = f ◦ g−1 + Ω(·, v)− 2s (379)

is the new Lagrange potential. While the first term is the natural action of the

affine group on functions, the second and third term correspond to translations

and to central transformations, respectively. In particular, the third term, which

represents the action of the centre of the group GC, corresponds to shifting the

Lagrange potential, and the associated prepotential, by a constant.

To describe the local embedding of an ASK manifold, we can only admit

Lagrangian pairs which are Kählerian. The subgroup of GC acting on Kählerian

Lagrangian pairs is GSK = Sp(R2n) n Heis2n+1(C) ⊂ GC, which is a central

extension of the affine symplectic group AffSp(R2n)(C2n) = Sp(R2n)nC2n which

we have encountered before.

We need a further definition. A special Kähler pair (φ, F ) is a Kählerian

Lagrangian embedding φ : U → φ(U) ⊂ V , which induces on U the restriction

of the ASK structure of M , together with the choice of a prepotential F . For

each U , one denotes by F(U) the set of all special Kähler pairs, where only

domains U are admitted where F(U) 6= ∅. A Kählerian Lagrangian pair (φ, F )
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determines a Lagrangian pair (L, f) with Lagrangian submanifold L := φ(U)

and Lagrange potential f given by

φ∗f = 2F −XIWI , (380)

where φ has components φ = (XI ,WI). Formula (380) relates Lagrange poten-

tials and prepotentials. By assumption the functions XI define special coordi-

nates on U and if we identify U with φ(U) we can omit φ∗ in (380) and relate

F and f as functions of holomorphic special coordinates. Then we are back to

(377).

The group GSK acts on the special Kähler pairs F(U) by

g · (φ, F ) := (gφ , g · F ) , (381)

where

gφ = ρ̄(g) ◦ φ , (382)

with ρ̄ the same representation of GSK as above and

g · F := F − 1

2
XIWI +

1

2
X ′IW ′I +

1

2
(gφ)∗Ω(·, v)− s , (383)

where φ = (XI ,WI) and gφ = (X ′I ,W ′I) are the local expressions for φ and

gφ. The somewhat complicated transformation formula (383) for prepotentials

follows from the formula (379) for Lagrange potentials together with (380).

By specialization to the subgroup Sp(R2n) ⊂ GSK we see that under sym-

plectic transformations g = (M, 0, 0):

F → F ′ − 1

2
XIWI +

1

2
X ′IW ′I ⇔ F ′ − 1

2
X ′IW ′I = F − 1

2
XIWI . (384)

This is the standard formula for the transformation of the prepotential, now

derived without the ambiguity of adding a constant. The observation that

F − 1
2X

IFI is a symplectic function is now explained by this function being

proportional to the associated Lagrange potential. For CASK manifolds, sym-

plectic transformations act on the set of homogeneous prepotentials of degree

two. Note that two is the only degree of homogeneity for the prepotential, where

FI has the same degree of homogeneity as XI , so that a linear combination of

XI and FI transforms homogeneously.

Let us now turn our attention to how a global construction of ASK manifolds

can be achieved by glueing together special Kähler pairs. We will only give a
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summary and refer the interested reader to [46, 47] for details. The group

GSK acts simply transitively on the set F(U) of special Kähler pairs for fixed

U ⊂ M . One can show that by letting U vary over M one obtains a GSK

principal bundle P →M , called the bundle of special Kähler pairs, which comes

equipped with a flat connection. The group GSK admits a linear representation

ρ : GSK → Sp(R2n) which defines a flat real symplectic vector bundle (VR,Ω,∇)

of rank 2n, such that ∇Ω = 0. By complex linear extension VC = VR ⊗ C we

obtain a flat symplectic holomorphic vector bundle (VC,Ω,∇), with ∇Ω = 0,

where we use the same symbol for ∇,Ω and their extensions. The complex

symplectic form Ω on VC defines a Hermitian metric γ = iΩ(·, τ ·), where τ is

complex conjugation. Since the group Sp(R2n) acts on C2n, the complex vector

bundle VC is associated to the GSK principal bundle of special Kähler pairs

through the (extension of the) linear representation ρ.

One can further show that M being an ASK manifold implies that VC admits

a global holomorphic section Φ : M → VC, such that

(∇Φ)∗Ω = 0 , (385)

(∇Φ)∗γ is non-degenerate. (386)

The map ∇Φ : TM → VC is a morphism of holomorphic vector bundles.

The global section Φ generalizes the global immersion M → V of simply con-

nected ASK manifolds, with conditions (385) and (386) corresponding to the

requirements that φ must be symplectic (φ∗Ω = 0) and Kählerian (φ∗γ non-

degenerate). This construction does not yet encode the freedom of making

translations. To include these we need to introduce a flat complex affine bun-

dle A → M modelled on VC,34 which can also be defined as the affine bundle

associated to the principal bundle P →M of special Kähler pairs by the affine

representation ρ̄ : GSK → AffSp(R2n)(C2n) on C2n.

One then obtains the following theorem, which generalizes the construction

of [42]:

Theorem 2. Extrinsic construction of general affine special Kähler
manifolds (Theorem 3.5.4 of [47]). Let M be a complex manifold, and
A → M be a flat complex affine bundle modelled on the complex vector bundle
VC = VR ⊗ C, where (V,Ω,∇) is a flat real symplectic vector bundle such that
∇Ω = 0. If there is a global holomorphic section Φ : M → A such that the

34See A.1 for the definition of an affine bundle.
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conditions (385) and (386) are satisfied, then M carries the structure of an
affine special Kähler manifold, and A is associated to the principal GSK bundle
of special Kähler pairs by the affine representation ρ̄ : GSK → AffSp(R2n)(C2n)

acting on C2n.
Conversely, if M is an affine special Kähler manifold, then the associated

complex affine bundle A → M corresponding to the affine representation ρ̄ :
GSK → AffSp(R2n)(C2n) acting on C2n has a global section Φ : M → A, which
satisfies the conditions (385) and (386).

5.4.3. Comparison to the literature

In this section we will compare the definitions we have given for affine and

projective special Kähler geometry with other definitions in the literature. So

far we have covered the original definition [40] of PSK geometry, which was

expressed in terms of special holomorphic coordinates and based on the su-

perconformal tensor calculus; the intrinsic definition of [41], and the extrinsic

construction of [42], which has extended the earlier work [48, 49] into the frame-

work of special complex geometry, which contains special Kähler geometry as a

subset. An alternative ‘bilagrangian’ extrinsic construction of ASK manifolds

has been given in [50].

In between [40] and [41] various other formulations of special Kähler geom-

etry have been presented in the physics literature. Common themes in these

approaches are: (i) to have manifest holomorphic coordinate invariance of the

formalism, that is, to use general holomorphic coordinates instead of special

holomorphic coordinates, and (ii) to avoid using the prepotential explicitly,

because the prepotential is not a symplectic function, and because there are

(non-generic) symplectic frames where no prepotential exists. This leads one to

work with a collection Φ(z) = (XI(z), FI(z)) of holomorphic functions defined

on local coordinate charts, which are glued together by transition functions, and

which are are interpreted as defining a global section of a vector bundle. Equiv-

alently, one can use a unit section Φ1(z, z̄) = (XI(z, z̄), FI(z, z̄)), which then is

not holomorphic. In this setting special Kähler geometry is defined by imposing

suitable conditions on this section which allow to define a non-degenerate special

Kähler metric, and, more generally, to obtain all the local expressions needed

to have a well defined vector multiplet Lagrangian. Since these approaches are

covered by excellent reviews, articles and books including [51, 52, 53, 54, 22],

which contain comprehensive bibliographies, we only mention a few selected

papers in the following. The work of [55] gave a geometric definition of PSK
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manifolds in terms of holomorphic vector bundles, which was motivated by the

insight that special Kähler geometry plays an important role in the geometry of

moduli spaces of Calabi-Yau compactifications of string theory, see also section

5.5. The so-called rheonomic approach to supergravity, see [56] for a review,

was applied to N = 2 vector multiplets in [57, 58] to obtain a formulation based

on general holomorphic coordinates. Issues relating to the (non-)existence of

a prepotential were discussed in [59]. This is particularly relevant for gauged

supergravity, that is for supergravity theories with non-abelian gauge symme-

tries or charged matter multiplets, because the gauging breaks the continuous

symplectic symmetry and distinguishes a discrete subset of frames. Gauged su-

pergravity is outside the scope of this review. The formulation of special Kähler

geometry in terms of real symplectic coordinates was discussed in [60, 61].

For a more detailed comparison between the approach presented in this

review and alternative formulations, we use [53], where various definitions of

special Kähler geometry have been collected and compared to each other, and

[54], which has extended these definitions to arbitrary target space signature.

For ASK manifolds, the transition functions given in [53] take the form XI(z(i))

FI(z(i))

 = eic(ij)M(ij)

 XI(z(j))

FI(z(j))

+ b(ij) . (387)

Here the indices i, j refer to two overlapping patches Ui, Uj ⊂M , (M(ij), b(ij)) ∈
Sp(R2n)×C2n, are transition functions corresponding to affine symplectic trans-

formations, and eic(ij) ∈ U(1) are constant U(1) phases. While (M(ij), b(ij)) real-

ize the affine representation ρ̄ of the groupGSK , and therefore can be interpreted

as transition functions of the complex affine bundle A → M , the phases eic(ij)

reflect an additional freedom which is not present in [41], [42], where the special

connection ∇ is part of the data defining an ASK manifold. As discussed in sec-

tion 5.1.4, special connections always come in S1-families. While the underlying

Kähler manifold is the same, ASK manifolds with different special connections

from the same S1-family are considered distinct according to the definitions in

[41], [42]. However, this choice does not influence the Kähler metric and other

data needed to build a vector multiplet Lagrangian, and therefore definitions in

the physics literature do not require to fix the special connection. The phases

eic(ij) in the transition functions (387) reflect the freedom of choosing different

special connections ∇(i) and ∇(j) from the same S1-family on Ui and Uj . Thus
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compared to the complex affine bundle A→M transition functions of the form

(387) define a bundle which is modified by a ‘twist.’ It would be interesting to

describe this twist within the framework of [42, 47]. Moreover, since we are not

aware of explicit examples where the additional freedom of rotating the special

connection is actually used, it would be interesting to find explicit examples.

Let us also have a look at the definition of PSK manifolds given in [53]. In

this case the transition functions between patches Ui, Uj ⊂ M̄ are of the form XI(z(i))

FI(z(i))

 = ef(ij)(z)M(ij)

 XI(z(j))

FI(z(j))

 , (388)

where f(ij)(z) are holomorphic functions and M(ij) ∈ Sp(2n + 2,R). Such

transition functions correspond to a product bundle L ⊗H → M̄ , where L is a

holomorphic line bundle and H is a flat symplectic vector bundle. If H → M̄ is

trivial we can identify L with the pull-back line bundle UM̄ → M̄ . If H is non-

trivial, we expect that this bundle will arise when applying the construction

of section 5.4.1 to the complex affine bundle A → M . We remark that the

special connection ∇ on M does not induce a flat connection on M̄ , since the

superconformal quotient includes dividing out the isometric U(1)-action which

acts by rotation on the S1-family of special connections. It would be interesting

to have an intrinsic characterization of PSK manifolds, which then could be

related to the constructions in terms of line bundles and vector bundles.

Finally, another global condition which is included explicitly in the definition

[53] of PSK manifolds is that M̄ should be a Kähler-Hodge manifold. In the

mathematical literature a Kähler manifold M̄ is called a Kähler-Hodge manifold

or Kähler manifold of restricted type if its Kähler form ω defines an integral

cohomology class, [ω] ∈ H2(M̄,Z). For compact M̄ this implies that M̄ is a

projective variety, that is, embeddable into complex projective space. In su-

pergravity a normalization condition for the Kähler form arises since the fields

transform under the local action of the group U(1), which in the superconformal

approach is part of the superconformal group. One must therefore impose that

these transformations are globally well defined on the scalar manifold. This

also applies to N = 1 supergravity, which like N = 2 has a local U(1) group

action on its scalar manifold M̄ . For compact M̄ it was shown in [62] that this

implies that the Kähler form must define an even integer class in H2(M̄,Z).

That the condition is even-ness rather than integrality results from the normal-
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ization of the U(1) charges, which are half-integer valued for fermions. In the

physics literature the term Kähler-Hodge is used for Kähler manifolds which

are target spaces of supermultiplets that can be coupled consistently to super-

gravity. Most standard examples for PSK are open domains which have trivial

topology, so that [ω] = 0, and the Kähler-Hodge condition is automatically sat-

isfied. For non-compact scalar manifolds with non-trivial topology the global

well-definedness of U(1)-transformations can impose non-trivial conditions. A

recent comprehensive analysis has shown that a scalar manifold M̄ is an ad-

missible target space for chiral supermultiplets coupled to N = 1 supergravity

if it admits a so-called chiral triple [63]. If space-time is a spin manifold, then

every Kähler-Hodge manifold admits a chiral triple, irrespective of whether it

is compact or non-compact [63]. In [54] it was shown that ‘projective Kähler

manifolds’, that is scalar manifolds constructed as Kähler quotients using the

superconformal calculus are automatically Kähler-Hodge. Since we have de-

fined PSK manifolds as Kähler quotients of CASK manifolds, there is no need

to require the Kähler-Hodge property explicity.

5.5. Special geometry and Calabi-Yau three-folds

The geometry of moduli spaces of Calabi-Yau three-folds provides natural

realizations of special real and special Kähler geometry. These moduli spaces ap-

pear in compactifications of supergravity and of string and M-theory on Calabi-

Yau three-folds. The scalar manifolds in physical applications usually combine

moduli which correspond to deformations of the Calabi-Yau metric with moduli

associated with the deformations of antisymmetric tensor fields. We start with

the discussion of the moduli of the Calabi-Yau metric, and then turn to the

moduli spaces of string compactifications. In this section we assume knowledge

of some mathematical concepts, including holonomy, de Rham and Dolbeault

cohomology,35 Hodge numbers, homology, Poincaré duality, the cup and inter-

section product. Since this material is not needed in other parts of this review,

we will not explain these concepts in detail, but refer the readers to [64] Vol 2

and [65, 66], on which this section is partly based.

A Calabi-Yau n-fold X is a 2n-dimensional compact Riemannian manifold

with holonomy group contained in SU(n) ⊂ U(n) ⊂ SO(2n). This implies that

X is Kähler, but it is more restrictive than that, by excluding a subgroup U(1) ⊂

35Some aspects of Dolbeault cohomology are presented in A.11.
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U(n) from the holonomy, which implies that the metric is Ricci-flat. Therefore a

Calabi-Yau manifold can alternatively be defined as a Kähler manifold admitting

a Ricci-flat metric.36

We now specialize to Calabi-Yau three-folds. In the following it is under-

stood that the holonomy group is not contained in SU(2) ⊂ SU(3), thus ex-

cluding the cases where X = K3 × T 2 (which is hyper-Kähler with holonomy

SU(2)), and where X = T 6 (which is flat). The moduli space arising when

dimensionally reducing the Einstein-Hilbert term on X is the space MRicci of

Ricci-flat metrics on X. If the field equations of a higher-dimensional theory of

gravity and matter admit a solution where space-time takes the form R1,3 ×X
with a metric η1,3 × g, which is the product of the four-dimensional Minkowski

metric η1,3 with a Ricci-flat metric g on X, then the four-dimensional massless

fields corresponding to zero modes of the higher-dimensional metric are: (i) the

four-dimensional graviton, equivalently, linearized fluctuations of the Minkowski

metric η1,3, (ii) four-dimensional vector fields in the adjoint representation of

the isometry group of g, (iii) four-dimensional scalars in one-to-one correspon-

dence with linearly independent solutions of the linearized Einstein equation on

X. If X is a Calabi-Yau three-fold, then there are no continuous isometries

and hence no massless vector fields descending from the higher-dimensional

metric. A Ricci-flat metric on X is consistent with the field equations if the

energy-momentum tensor has no non-zero components along X. In this case

the Einstein equations reduce to the condition that X is Ricci-flat, and scalar

zero modes of the metric parametrize the moduli space of Ricci-flat metrics

on X.37 The linearized form of the Ricci-flatness condition is a Laplace-type

equation for the so-called Lichnerowicz Laplacian, whose zero modes are the

moduli scalars. They enter into the low-energy effective four-dimensional ac-

tion through a non-linear sigma model with target spaceMRicci, equipped with

the metric

G(δg(1), δg(2)) =
1

V

∫
X

δg(1)mnδg(2)pqg
mpgnq

√
gd6x , (389)

where xm,m = 1, . . . , 6 are coordinates on X, where g = (gmn) is the metric

36For string theory compactifications the metric is only Ricci-flat to leading order in α′ for
n > 2, but this does not affect the following discussion.

37In string theory the Einstein equations receive α′-corrections. This leads to corrections
to the metric on the moduli space, which can be computed using two topologically twisted
versions of string theory [66].
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on X, where δg(i)mn i = 1, 2 are infinitesimal deformations of the metric, and

where V is the volume of X.

For Calabi-Yau three-folds MRicci is locally isometric to the product of the

moduli space Mcplx of complex structures on X and the moduli space NKahler

of Kähler structures on X,

MRicci
∼=Mcplx ×NKahler . (390)

This factorization is a special feature of Calabi-Yau three-folds. The definition

of a Kähler form requires the choice of a complex structure, and in general the

space NKahler of Kähler forms of a complex manifold is fibred over its space

Mcplx of complex structures. However, for Calabi-Yau three-folds the Kähler

structure and complex structure can locally be varied independently. From the

physics perspective this is predicted by supersymmetry, since in N = 2 theories

both types of moduli belong to different types of multiplets. In terms of com-

plex coordinates ua, a = 1, 2, 3 on the Calabi-Yau three-fold X with metric g,

complex structure J and Kähler form ω, deformations of the complex structure

J correspond to deformations of the Kähler metric gab̄ which have the form

δgab, δgāb̄ and therefore are not Hermitian with respect to the undeformed com-

plex structure J . In contrast deformations of the Kähler structure correspond

to deformations δgab̄ of the metric, which are Hermitian with respect to the

complex structure J but change the Kähler form ω of X.

Infinitesimal deformations of a complex structure J ∈ Γ(End(TX)) are gen-

erated by holomorphic vector-valued one forms τ = τa
b̄
∂a ⊗ dūb̄, ∂̄τ = 0. Two

such forms generate equivalent deformations if they differ by an ∂̄-exact form,

therefore complex structure deformations are classified by H1(X,TCX), the first

Dolbeault cohomology group of X with values in the complexified tangent bun-

dle. On a Calabi-Yau three-fold there exists a holomorphic, covariantly constant

(3, 0)-form Ω, called the holomorphic top-form, which is unique up to complex

rescalings Ω→ λΩ, where λ ∈ C∗. This provides an isomorphism between TCX

and Λ2T ∗CX by

φa 7→ ψbc = Ωabcφ
a , (391)

which implies the relation

H1(X,TCX) ∼= H1(X,Λ2T ∗CX) ∼= H2,1

∂̄
(X) , (392)

so that complex structure deformations of Calabi-Yau three-folds are parametrized

by the Dolbeault cohomology group H2,1

∂̄
(X), that is, by equivalence classes of
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∂̄-closed (2, 1)-forms modulo ∂̄-exact forms, which are related to vector-valued

one-forms by the isomorphism,

φabc̄ = Ωabdτ
d
c̄ . (393)

The dimension of H2,1(X) (considered as a vector space) is given by the Hodge

number h2,1 ≥ 0, which is a topological invariant of X. Since there is a one-

to-one correspondence between linearly independent harmonic (p, q)-form on X

and elements of Hp,q(X), one can choose harmonic (2, 1)-forms to generate the

complex structure deformations. The expansion of a general harmonic (2, 1)-

form φ in a basis φA, A = 1, . . . , h2,1,

φ = zAφA , zA ∈ C (394)

provides local coordinates zA onMcplx. The metric onMcplx is induced by the

standard scalar product (α, β) =
∫
X
α ∧ ∗β between (2, 1)-forms. To see that

this metric is Kähler, and more specifically projective special Kähler, one uses

the relation between complex structures on X and the periods of the holomor-

phic top-form Ω. Choosing a complex structure on X is equivalent to specifying

a decomposition of the third de-Rham cohomology group into Dolbeault coho-

mology groups,

H3(X) = H3,0

∂̄
(X)⊕H2,1

∂̄
(X)⊕H1,2

∂̄
(X)⊕H0,3

∂̄
(X) . (395)

Such a decomposition is obtained by picking one of the b3 = 1 + h2,1 + h2,1 + 1

harmonic forms, where b3 is the third Betti number, and declaring it to be the

holomorphic top form. More precisely, the complex structure does not depend

on the explicit choice of Ω, but only on the corresponding ‘complex direction’,

since we can rescale Ω 7→ λΩ, λ ∈ C∗.
We now choose a basis (AI , BI), I = 0, . . . , h2,1 of the third homology group

H3(X,Z) of X, with normalization

AI ·BJ = δIJ = −BJ ·AI , (396)

where · denotes the intersection product (which is defined by counting inter-

section points between submanifolds, weighted with orientation). The periods

XI(z) :=

∫
AI

Ω , FI(z) :=

∫
BI

Ω , (397)

99



of the holomorphic top-form depend holomorphically on the complex coordi-

nates zA on Mcplx. Poincaré duality provides an isomorphism between the

homology groups Hp(X,Z) and the cohomology groups H6−p(X,Z),38

C 7→ [C] , such that

∫
C

β =

∫
X

[C] ∧ β , (398)

for all β ∈ Ωp(X). Poincaré duality maps the intersection product of cycles (de-

fined by counting intersection points weighted by orientation) to the cup product

of cohomology cycles (induced by the wedge product of forms). This allows to

define a basis (αI , β
I) of H3(X,Z) dual to the basis (AI , BI) of H3(X,Z):∫

AJ

αI =

∫
αI ∧ βJ = δIJ ,

∫
BJ

βI =

∫
βI ∧ αJ = −δIJ . (399)

In terms of this basis the top-form has the expansion

Ω = XIαI − FIβI . (400)

Since only half of the periods are independent, XI can be chosen to parametrize

the possible choices of a top-form out of the harmonic three-forms. It follows

that the XI can be used as projective coordinates for Mcplx. At this point the

relation to CASK and PSK manifolds becomes obvious. It turns out that the

metric on Mcplx, which is defined by the scalar product between (2, 1) forms,

is a Kähler metric with Kähler potential

K = − log

[
i

∫
X

Ω ∧ Ω̄

]
= − log

[
−i
(
XI(z)F̄I(z)− FI(z)X̄I(z)

)]
. (401)

This is a PSK metric, given in terms of a holomorphic section (XI(z), FI(z))

of the complex line bundle L → M̄ = Mcplx. The associated CASK metric

also has a natural interpretation. If we do not only choose a complex structure,

but in addition a specific top-form compatible with this structure, the resulting

space, which is parametrized by the independent periods XI , is a complex cone

over Mcplx which carries the structure of a CASK manifold.

We now turn to infinitesimal deformations δgab̄ of the Ricci flat metric which

preserve the complex structure. In local complex coordinates ua onX the Kähler

forms is given by ω = igab̄du
a ∧ dūb̄, and therefore such deformations change

38The ring Z can be replaced by R or C.
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the Kähler form. Since the Kähler form is a closed real (1, 1)-form, it defines a

class in

H1,1(X,R) := H2(X,R) ∩H1,1(X,C) , (402)

which labels Kähler structures on X. Changes of the Kähler structure are

changes of the Kähler form by a real (1, 1)-form which is closed but not exact.

As representatives one can choose h1,1 linearly independent harmonic (1, 1)-

forms ωx, x = 1, . . . h1,1. Then the expansion of the Kähler form in terms of

this basis,

ω = txωx , tx ∈ R , (403)

provides real coordinates on the space of NKahler of Kähler structures. We

remark that NKahler ( H1,1(X,R) ∼= Rh1,1

, since when deforming the Kähler

form we need to preserve the positivity of the metric g on X. This can be

expressed by the requirement that the volumes of X and of all its complex

submanifolds must be positive. The top exterior power of the Kähler form is

proportional to the volume form of (X, g). The volume V of X is given by

V =
1

3!

∫
X

ω ∧ ω ∧ ω . (404)

Moreover the Kähler form is a so-called calibrating form for holomorphic curves

C and holomorphic surfaces S in X, that is

Vol(C) =

∫
C

ω , Vol(S) =
1

2

∫
S

ω ∧ ω . (405)

The conditions ∫
C

ω > 0 ,

∫
S

ω ∧ ω > 0 ,

∫
X

ω ∧ ω ∧ ω > 0 (406)

define the Kähler cone of X, the space of positive Kähler classes, which is

NKahler.

Using the basis ωx, the volume takes the form

V =
1

3!
Cxyzt

xtytz , (407)

where the quantities

Cxyz :=

∫
X

ωx ∧ ωy ∧ ωz (408)

are topological invariants, called triple intersection numbers. To explain this

name, we use the isomorphism H2(X,Z) ∼= H4(X,Z) provided by Poincaré
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duality, which maps the cup product of cohomology classes of closed differential

forms to the intersection product of homology classes of closed submanifolds.

This implies that

Cxyz = Dx ·Dy ·Dz , (409)

where Dx, x = 1, . . . h1,1 = b2 is the basis of H4(X,Z) dual to the basis ωx

of H2(X,Z), and where · is the intersection product between homological four-

cycles.39

Since the moduli dependence of the volume V is given by a homogeneous

symmetric polynomial in the Kähler moduli tx, we can use it to define a 3-

conical metric, in fact an ASR metric, on NKahler. Its logarithm log V defines

the associated 0-conical Hessian metric. The metric on NKahler obtained by

dimensional reduction of the Einstein-Hilbert action is the metric induced by

the scalar product of (1, 1) forms. Its metric coefficients with respect to the

basis ωx can be shown to be of the form

Gxy = G(ωx, ωy) =
∂2 log V

∂tx∂ty
. (410)

Thus the metric on the Kähler cone is 0-conical with a Hesse potential given

by the logarithm of the volume. The associated PSR metric on hypersurfaces

of constant volume also has a natural interpretation. It is the metric on the

moduli space N V
Kahler of Kähler structures at fixed volume. As we have seen in

section 2.5 this metric is obtained by pulling back either the 3-conical metric

∂2V or the 0-conical metric ∂2 log V to the hypersurface N V
Kahler ⊂ NKahler.

In physics applications it is N V
Kahler rather than NKahler which appears as the

target space of a sigma model, and therefore it must carry a positive definite

metric. From section 2.5 we know that the PSR metric is positive definite

if the 0-conical metric ∂2 log V is positive definite, and equivalently if the 3-

conical metric ∂2V has real Lorentz signature (1, h1,1 − 1). These conditions

are indeed satisfied in Calabi-Yau compactifications. The distinction between

time-like and space-like directions with respect to ∂2V in the space of (1, 1)-

forms corresponds to the so-called Lefschetz decomposition of H2(X,R) into

‘primitive forms’, which are orthogonal to the Kähler form ω, and the direction

parallel to the Kähler form.

39b2 is the second Betti number of X. Note that for Calabi-Yau three-folds h2,0 = h0,2 = 0,
hence b2 = h1,1.
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A related but different question is to determine the maximal domain in

H1,1(X,R) ∼= Rh1,1

where the PSR metric is positive definite. The boundary

of this region can be characterized using the simpler 3-conical metric ∂2V by

det(∂2V ) = 0. Note that the region where the PSR metric is positive definite is

in general larger than the Kähler cone. Therefore it is important to keep track of

Kähler cone of the underlying Calabi-Yau manifold when working with an effec-

tive supergravity theory. For example, in [67, 68] it has been shown that naked

singularities which are naively present in some solutions of five-dimensional su-

pergravity are unphysical if the theory is obtained as a Calabi-Yau compactifi-

cation of eleven-dimensional supergravity, because at the singularity the scalar

fields take values which are inside the domain where the PSR metric is positive

definite, but outside the Kähler cone of the underlying Calabi-Yau manifold. If

the theory is considered as embedded into M-theory one needs to modify the

effective Lagrangian when the boundary of the Kähler cone is reached, even

though all data in the Lagrangian, and solutions with space or time dependent

moduli, remain smooth at this point. The modification of the Lagrangian cor-

responds to continuing into the Kähler cone of another Calabi-Yau manifold,

which differs from the original one by a transition which changes the topology.

At the boundary of the Kähler cone additional massless vector or hypermulti-

plets are present. Integrating out these multiplets induces threshold corrections

to the couplings in the effective Lagrangian for the remaining modes, which

for five-dimensional vector multiplets induce finite shifts of the coefficients of

the Hesse potential [69, 67, 68]. The proper treatment of this subtlety removes

naked singularities which are naively present in domain and black hole solu-

tions with non-constant scalars. In this sense, the Kähler cone acts as a cosmic

censor.

So far we have been discussing the moduli space of Ricci-flat metrics onX. In

supergravity and string compactifications, there are additional moduli resulting

from the dimensional reduction of various p-form fields. Massless scalar fields

arise whenever the components of such a p-form along X are harmonic forms

on X. The number of massless scalars is given by the corresponding Hodge

number. Such massless scalars are moduli, unless the effective theory contains

a potential for them, which is not the case for Calabi-Yau compactifications in

the absence of fluxes. A particular role is played by the Kalb-Ramond two-form

field B of string theory. When reducing a type-II string theory on a Calabi-Yau
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three-fold, the B-field gives rise to h1,1 real moduli, which naturally combine

with the moduli of the Kähler structure. Defining a complexified Kähler form

and expanding in the basis ωA of H1,1(X,R),

ωC = B + iω = zAωA , zA ∈ C , A = 1, . . . h1,1 , (411)

we obtain complex coordinates zA on the moduli spaceMKahler of complexified

Kähler structures. This space turns out to be a Kähler manifold with a Kähler

potential that is obtained from the Hesse potential log V , as follows.

Generally, given a Hessian manifold N of dimension n with local coordinates

tA and Hesse potential H, we can extend this to a complex manifold M ∼=
Rn × N , with coordinates zA = sA + itA. The Hessian metric on N can be

extended to a Kähler metric on M with Kähler potential

K(z, z̄) = H(Im(z)) . (412)

This defines a Kähler metric with metric coefficients40

gAB̄ =
∂2K

∂zA∂z̄B̄
= 4

∂2H

∂tA∂tB
, (413)

which has an isometry group which contains the n commuting shifts zA 7→
zA + rA, rA ∈ R.

In the case at hand, we can use the Hesse potential − log V of a 0-conical

Hessian metric on NKahler as a Kähler potential for a Kähler metricMKahler.
41

To see that this metric is actually a PSK metric, we introduce projective coor-

dinates XI , I = 0, . . . h1,1 on MKahler by choosing local holomorphic functions

XI(z) such that XA/X0 = zA. Then we define the holomorphic function,

homogeneous of degree two,

F =
1

3!

CABCX
AXBXC

X0
. (414)

It is straightforward to see that

−i
(
XI F̄I − FIX̄I

)
= − i

3!
|X0|2CABC(zA − z̄Ā)(zB − z̄B̄)(zC − z̄C̄) = 8|X0|2V . (415)

40We do not correct for the factor 4, which comes from the Jacobian, so that the two metrics
differ by a constant factor. This is does not matter here, since we only want to illustrate the
principle. In applications the normalization is fixed by the Lagrangian of the explicit model
one considers.

41The minus sign is introduced for consistency with the literature.
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Theory Number of vector multiplets Moduli space Geometry

M-theory h1,1 − 1 N V
Kahler PSR

II A h1,1 MKahler PSK

II B h2,1 Mcplx PSK

Table 3: This table shows which moduli of a Calabi-Yau compactification sit in vector multi-
plets. PSR=projective special real, PSK = projective special Kähler

Therefore the Kähler potentials − log V and − log
(
−i(XI F̄I − FIX̄I)

)
differ

by a Kähler transformation and define the same Kähler metric on MKahler.
42

Therefore the metric on MKahler is a PSK metric with prepotential (414) and

Kähler potential

K = − log
(
−i(XI F̄I − FIX̄I)

)
. (416)

We remark that in string theory the ‘very special’ cubic form of the prepotential

only holds to leading order in perturbation theory and is subject to complicated

corrections.

We conclude by indicating how the moduli of Calabi-Yau compactifications

of eleven-dimensional supergravity and of type-II string theories are distributed

among five- and four-dimensional N = 2 supermultiplets. Moduli are either

allocated to vector multiplets, where the geometry of the target space is PSR

or PSK, or to hypermultiplets, where the geometry is quaternionic Kähler, de-

noted QK in the tables. The dimension of a quaternionic Kähler manifold is

divisible by four. The maximal dimension of a Kähler submanifold of a QK

manifold is half of the total dimension [70]. Hypermultiplets contain a mixture

of moduli of the metric, moduli resulting from reducing p-form gauge fields,

and, for type II string theory, the dilaton and the axion obtained from dualizing

the Kalb-Ramond two-form. The PSK spaces Mcplx and MKahler are Kähler

submanifolds of hypermultiplet target manifolds, at least to lowest order in α′.

Table 3 lists vector multiplet moduli, Table 4 lists hypermultiplet moduli. In

compactifications from eleven to five dimensions, the moduli of the real Kähler

form split: the volume modulus sits in a hypermultiplet, the remaining Kähler

moduli parametrizing the fixed volume hypersurface in the Kähler cone sit in

42Note that the domains where the argument of the logarithm is positive agree. Therefore
both Kähler potentials are defined over the same domain.
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Theory Number of hypermultiplets Moduli space Geometry

M-theory/IIA h2,1 + 1 Mcplx ⊂MHM PSK ⊂ QK

II B h1,1 + 1 MKahler ⊂MHM PSK ⊂ QK

Table 4: This table shows which moduli of a Calabi-Yau compactification sit in hypermulti-
plets. PSK = projective special Kähler, QK = quaternionic Kähler.

vector multiplets. Note that this split is required in order to obtain a PSR

manifold. The volume modulus and the complex structure modulus sit in hy-

permultiplets together with moduli coming from reducing p-form gauge fields.

In compactifications from ten to four dimensions the moduli of the Kähler form

and those of the Kalb-Ramond B-field combine into complex moduli. Depend-

ing on whether one considers the IIA or IIB theory, either the moduli of the

complexified Kähler form or the moduli of the complex structure moduli sit in

vector multiplets. The remaining moduli of the metric sit in hypermultiplets to-

gether with the dilaton, the axion obtained by dualizing the Kalb-Ramond field,

and moduli associated to p-form gauge fields in the Ramond-Ramond sector.

6. Four-dimensional vector multiplets

6.1. Rigid vector multiplets

The field content of a four-dimensional rigid abelian vector multiplet is

(X,Ωi, Aµ, Yij) [71]. X denotes a complex scalar field; Aµ denotes an abelian

gauge field with field strength F = dA; Ωi denotes an SU(2)R doublet of chiral

fermions; Yij denotes an SU(2)R triplet of scalar fields, i.e. Yij is a symmetric

matrix satisfying the reality condition

Yij = εik εjl Y
kl , Y ij = (Yij)

∗ . (417)

Thus, off-shell, an abelian vector multiplet has eight bosonic and eight fermionic

real degrees of freedom.

We are interested in the Lagrangian describing the dynamics of n abelian

vector multiplets. These vector multiplets will be labelled by an index I =

1, . . . , n. The Lagrangian is encoded [31] in a holomorphic function F (X), called

the prepotential. We denote holomorphic derivatives of F (X) with respect toXI

by FI = ∂F/∂XI , FIJ = ∂2F/∂XI∂XJ , etc. We denote the complex conjugate

of XI by X̄I , and anti-holomorphic derivatives of F̄ (X̄) by F̄I = ∂F̄ /∂X̄I , etc.
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The bosonic part of the Lagrangian reads

L = −NIJ ∂µXI ∂µX̄J +
(

1
4 i FIJ F

−I
µν F

µν−J − 1
8 i FIJ Y

I
ijY

J ij + h.c.
)
, (418)

where

F Iµν = 2∂[µA
I
ν] , (419)

and where NIJ is given by (264). Note that the kinetic terms for the scalar

fields and for the abelian gauge fields are determined in terms of NIJ ,

Lkin = −NIJ ∂µXI ∂µX̄J − 1
8 NIJ F

I
µνF

µνJ . (420)

The kinetic term for the scalar fields describes a sigma-model, whose target space

is an affine special Kähler (ASK) manifold. This is a Riemannian manifold with

Kähler metric NIJ = ∂2K(X, X̄)/∂XI∂X̄J and Kähler potential (266).

As discussed in subsection 5.1.1, the metric g of an ASK manifold, when

expressed in terms of special real coordinates qa = (xI , yI) = (ReXI ,ReFI), is

Hessian,

g = NIJ dX
IdX̄J = Habdq

adqb , a, b = 1, . . . , 2n , (421)

where Hab = ∂2H/∂qa∂qb is determined in terms of the real Hesse potential H.

The Hesse potential H is related to the prepotential F by Legendre transfor-

mation, c.f. (285). As in subsection 5.1.4, we decompose (XI , FI) into real and

imaginary parts,

XI = xI + iuI ,

FI = yI + ivI . (422)

Next, we perform the Legendre transform of the imaginary part of F with

respect to uI , thereby replacing uI by yI as independent variables,

H(x, y) = 2 ImF (x+ iu)− 2 yI u
I , (423)

where
∂ImF

∂uI
= yI . (424)

The latter expresses u as a function of (x, y), locally, and inserting this expres-

sion on the right hand side of (423) yields H(x, y).
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6.2. Rigid superconformal vector multiplets

Next, we specialize to the case where the vector multiplet theory is super-

conformal. This implies that F (X) must be homogeneous of degree 2 under

complex scalings,

F (λX) = λ2 F (X) , λ ∈ C∗ , (425)

from which one infers the relations (192). The associated Hesse potential is

homogeneous of degree 2, and the scalar manifold is a conical affine special

Kähler manifold.

6.3. Superconformal matter multiplets coupled to conformal supergravity

As in the five-dimensional case, we will follow the superconformal approach

to construct a theory of n abelian vector multiplets coupled to Poincaré su-

pergravity. This is based on the fact that a theory of n vector multiplets and

nH hypermultiplets coupled to Poincaré supergravity is gauge equivalent to a

theory of n + 1 superconformal vector multiplets and nH + 1 superconformal

hypermultiplets coupled to conformal supergravity.

6.3.1. Coupling of vector multiplets

First, we consider the coupling of n+1 abelian vector multiplets to conformal

supergravity at the two-derivative level. The index I labelling these abelian

vector multiplets now runs over I = 0, 1, . . . , n. The component fields of the

abelian vector multiplets carry the Weyl and chiral weights given in Table B.14.

Then, using (B.82), we have

DµXI = (∂µ − bµ + i Aµ)XI . (426)

The bosonic part of the Lagrangian describing the coupling of abelian vector

multiplets to conformal supergravity reads,

L =
[
iDµFI DµX̄I − iFI X̄I(− 1

6R−D)− 1
8 iFIJ Y

I
ijY

Jij

+ 1
4 iFIJ(F−Iµν − 1

2X̄
IT−µν)(Fµν−J − 1

2X̄
JTµν−)

− 1
4 iFI(F

+I
µν − 1

2X
IT+
µν)Tµν+ − 1

8 iF T
+
µνT

µν+ + h.c.
]
. (427)

This equals

L = −NIJDµXI DµX̄J − i
(
FI X̄

I −XI F̄I
)

(− 1
6R−D) + 1

8 NIJ Y
I
ijY

Jij

+
(
− 1

4 iF̄IJF
+I
µν F

µν+J − 1
16NIJX

IXJT+
µνT

µν+ + 1
4 NIJX

I F+J
µν T

µν+ + h.c.
)
.

(428)
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6.3.2. Coupling of hypermultiplets

We consider the coupling of r = nH + 1 hypermultiplets that are neutral

with respect to the gauge symmetries of the vector multiplets. We follow the

presentation given in [28], which is based on sections Ai
α(φ) of an Sp(r)×Sp(1)

bundle (α = 1, . . . , 2r; i = 1, 2) which depend on scalar fields φA, defined in the

context of a so-called hyper-Kähler cone of dimension 4r.

The bosonic part of the Lagrangian describing the coupling of hypermulti-

plets to conformal supergravity is given by

− 1
2ε
ij Ω̄αβ DµAiαDµAjβ + χ(− 1

6R+ 1
2D) , (429)

where the hyper-Kähler potential χ and the covariant derivative DµAiα(φ) are

given in (B.94).

6.3.3. Poincaré supergravity

Combining the bosonic Lagrangians (428) and (429), we obtain

L =
[
i
(
X̄I FI −XI F̄I

)
− χ

]
1
6 R+

[
i
(
X̄I FI −XI F̄I

)
+ 1

2χ
]
D

−NIJDµXI DµX̄J + 1
8 NIJ Y

I
ijY

Jij (430)

+
(
− 1

4 iF̄IJF
+I
µν F

µν+J − 1
16NIJX

IXJT+
µνT

µν+

+ 1
4 NIJX

I F+J
µν T

µν+ + h.c.
)
− 1

2ε
ij Ω̄αβ DµAiαDµAjβ .

Note that the field D does not have a kinetic term: it appears as a multiplier.

Its field equation yields the condition

χ = −2i
(
X̄I FI −XI F̄I

)
. (431)

Similarly, the field equation for Yij is simply

Yij = 0 . (432)

Inserting (431) and (432) into (430) yields

L = i
(
X̄I FI −XI F̄I

)
1
2 R−NIJD

µXI DµX̄J

+
(
− 1

4 iF̄IJF
+I
µν F

µν+J − 1
16NIJX

IXJT+
µνT

µν+ (433)

+ 1
4 NIJX

I F+J
µν T

µν+ + h.c.
)
− 1

2ε
ij Ω̄αβ DµAiαDµAjβ .

Next, we use the symmetries of conformal supergravity to impose gauge condi-

tions. We begin by fixing the freedom to perform dilations (whose generator is
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D, see Table B.7), by picking

i
(
X̄I FI −XI F̄I

)
= κ−2 , D− gauge . (434)

This is the so-called D-gauge. Here κ2 = 8πGN , where GN denotes the Newton’s

constant. With this choice, we obtain the Einstein-Hilbert term (B.62). In the

following, we set κ2 = 1. Note that with the choice (434), we obtain

χ = −2 , (435)

which shows that at least one hypermultiplet is needed in order to obtain the

Einstein-Hilbert term (B.62). The condition (435) removes one real bosonic de-

gree of freedom in the hypermultiplet sector. Fixing the freedom under SU(2)R

transformations (c.f. (B.94)) removes three additional real degrees of freedom

in the hypermultiplet sector, so that in total, we have removed four real degrees

of freedom. This amounts to removing the bosonic degrees of freedom of one

hypermultiplet. There are then r − 1 = nH physical hypermultiplets left. We

will not consider them any further, and hence we drop them in what follows.

Now we pick the K-gauge (B.72), which removes the dilational connection

bµ from the covariant derivatives (426) and (B.94). Next, varying with respect

to the U(1) connection Aµ gives (c.f. (373))

Aµ = 1
2 i
NIJ

(
(∂µX

I) X̄J −XI ∂µX̄
J
)

NKLXKX̄L
. (436)

In the D-gauge (434), where NKLX
KX̄L = −1, this becomes

Aµ = 1
2 iNIJ

(
XI ∂µX̄

J − (∂µX
I) X̄J

)
|NKLXKX̄L=−1

,

= − 1
2 i (∂aK ∂µz

a − ∂āK∂µz̄a)

= Aa ∂µz
a −Aā∂µz̄a , (437)

where za = Xa/X0 denote complex physical scalar fields (a = 1, . . . , n), and

where K(z, z̄) denotes the Kähler potential given in (B.104). This is in agree-

ment with (B.122). The connection Aµ is the pull-back to space-time of the

connection Aa given in (369). Finally, varying with respect to T+
µν gives

T+
µν = 2

NIJX
I

NKLXKXL
F+J
µν . (438)

Thus, at the two-derivative level, the fields Aµ and T±µν are auxiliary fields.
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Inserting these various expressions into (433), using the relation (B.126) and

dropping terms that involve physical hypermultiplets, we obtain the following

gauge fixed Lagrangian,

L = 1
2 R− gab̄ ∂µz

a ∂µz̄b +
(
− 1

4 iNIJF
+I
µν F

µν+J + h.c.
)

= 1
2R− gab̄ ∂µz

a ∂µz̄b + 1
4 ImNIJ F Iµν FµνJ − i

4ReNIJ F Iµν F̃µνJ ,(439)

where

NIJ = F̄IJ + i
NIPX

P NJQX
Q

NKLXKXL
(440)

with NKLX
KX̄L = −1. The resulting Lagrangian describes the bosonic part of

the action for vector multiplets coupled to Poincaré supergravity. It is obtained

from the action for matter multiplets coupled to conformal supergravity by using

two compensating multiplets: one vector multiplet, and one hypermultiplet.

6.4. Coupling to a chiral background

The construction of the action (430) describing the coupling of abelian vector

multiplets and neutral hypermultiplets to conformal supergravity at the two-

derivative level can be extended, within the superconformal approach, to allow

for the presence of a chiral background field [32]. This is achieved by allowing

the function F (X) that enters in the construction of (430), to depend on an

additional holomorphic field Â, so that now F (X, Â). The background field Â

is introduced as the lowest component of a chiral supermultiplet. Compatibility

with superconformal symmetry determines the scaling behaviour of the chiral

multiplet, while insisting on a local supersymmetric action implies that the

dependence on the chiral multiplet is holomorphic. Therefore, the function F

has to be (graded) homogeneous of degree two, that is

F (λX, λwÂ) = λ2F (X, Â) , λ ∈ C∗ , (441)

where w is the weight of Â under scale transformations. It follows that F

satisfies the relation,

XIFI + wÂFA = 2F . (442)

Here FI and FA denote the derivatives of F (X, Â) with respect to XI and Â,

respectively.

We denote the component fields of the chiral background superfield with

a caret. We focus on the bosonic component fields, which we denote by Â,
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B̂ij , F̂
−
ab and by Ĉ. Here Â and Ĉ denote complex scalar fields, appearing at

the θ0- and θ4-level of the chiral background superfield, respectively, while the

symmetric complex SU(2) tensor B̂ij and the anti-selfdual Lorentz tensor F̂−ab

reside at the θ2-level.

In the presence of the chiral background, the action (430) becomes encoded

in F (X, Â), and reads as follows,

L =
[
iDµFI DµX̄I − iFI X̄I(− 1

6R−D)− 1
8 iFIJ Y

I
ijY

Jij − 1
4 iB̂ij FAIY

Iij

+ 1
4 iFIJ(F−Iab −

1
2X̄

IT−ab)(F
ab−J − 1

2X̄
JT ab−)

− 1
8 iFI(F

+I
ab −

1
2X

IT+
ab)T

ab+ + 1
2 iF̂

−ab FAI(F
−I
ab −

1
2X̄

IT−ab)

+ 1
2 iFAĈ −

1
8 iFAA(εikεjlB̂ijB̂kl − 2F̂−abF̂

−ab)− 1
8 iF T

+
abT

ab+ + h.c.
]

− 1
2ε
ij Ω̄αβ DµAiαDµAjβ + χ(− 1

6R+ 1
2D) . (443)

The last line pertains to the hypermultiplets, as discussed in subsection 6.3.2.

6.4.1. Coupling to R2 terms

When identifying the chiral background superfield with the square of the

Weyl superfield, the action (443) will contain higher-derivative curvature terms

proportional to the square of the Weyl tensor. In this case the chiral weight w

in (441) equals w = 2, and the bosonic fields of the chiral background superfield

becomes identified with

Â = 4 (T−ab)
2 , (444)

B̂ij = −32 εk(iR(V)kj)ab T
ab− ,

F̂−ab = 32R(M)cd
ab T cd− ,

Ĉ = 64R(M)−cdabR(M)−cd
ab + 32R(V)−ab kl R(V)−ab

l
k − 64T ab−DaD

cT+
cb .

In these expressions, we have suppressed all terms that involve fermionic fields.

The curvatures appearing in (444) are given by

R(V)µν
i
j = 2∂[µViν]j + Vi[µkV

k
ν]j

R(M)ab
cd = Rab

cd + 8f[a
[cδb]

d] − 1
8

(
T cd+ T−ab + T+

ab T
cd−
)
, (445)

where we recall that Rab
cd is computed using the spin connection (B.67). Note

that the T 2-modification in (445) exactly cancels the T 2-terms contained in fµ
a,

as can be verified by using the relation (B.80),

R(M)ab
cd = Cab

cd −D δ[a
[cδb]

d] − 2i R̃[a
[c(T ) δb]

d] , (446)
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where

Cab
cd = Rab

cd − 2
(
R[a

[c − 1
6Rδ[a

[c
)
δb]

d] . (447)

In the K-gauge (B.72), Cab
cd denotes the Weyl tensor, and Ĉ includes a term

proportional to the square of the anti-selfdual part of the Weyl tensor,

Ĉ = 64C−cdab C
−
cd
ab + . . . (448)

The term T ab−DaD
cT+
cb in (444) is written out in (B.92).

Observe that the U(1) connection Aµ and the field T−ab cannot any longer

be eliminated in closed form, as in (436) as in (438) at the two-derivative level,

but only iteratively. In particular, T−ab can be eliminated iteratively by means

of an expansion of F (X, Â) in powers of Â,

F (X, Â) =

∞∑
n=0

F (n)(X) Ân , (449)

which generates an expansion with infinitely many higher-derivative terms that

are all proportional to Ĉ. This results in an action that contains infinitely many

higher-derivative terms that are proportional to the square of the anti-selfdual

part of the Weyl tensor. Such an action is naturally interpreted as a Wilsonian

effective action.

7. Hessian geometry in the presence of a chiral background

In this section, we discuss the geometric meaning of deformations of the

prepotential function F (0)(X) by chiral background fields, such as in (441). We

begin by considering holomorphic deformations of F (0)(X). We use the descrip-

tion of affine special Kähler manifolds as immersions, to introduce the notion of

deformed affine special Kähler manifolds [72]. We then discuss the existence of a

Hessian structure on these deformed manifolds, and relate the Hessian structure

to the holomorphic anomaly equation for a hierarchy of symplectic functions.

Subsequently, we turn to non-holomorphic deformations of F (0)(X). We

follow [72].

7.1. Holomorphic deformation of the immersion

We deform the prepotential F (0)(X) by allowing for the presence of a com-

plex deformation parameter Υ. The prepotential F (0)(X) gets replaced by the

generalized prepotential F (X,Υ), which is holomorphic in XI and Υ.
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7.1.1. Holomorphic family of immersions

The geometric model for the deformation parametrized by Υ is a map [72]

φ : M̂ := M × C→ V , (XI ,Υ) 7→ (XI , FI(X,Υ)) , (450)

which can be interpreted as a holomorphic family of immersions φΥ : M →
V , (XI) 7→ (XI , FI(X,Υ)), that define a family of affine special Kähler

structures on M .

Next, we define a metric and a two-form on M̂ = M ×C by pulling back the

canonical Hermitian form γV given in (267),

γ = φ∗γV = g+ iω = NIJdX
I⊗dX̄J + iF̄IΥdX

I⊗dῩ− iFIΥdΥ⊗dX̄I , (451)

where NIJ = −i(FIJ−F̄IJ), and where FIΥ = ∂I∂ΥF . We assume that γ is non-

degenerate. Denoting the holomorphic coordinates on M̂ by (vA) = (XI ,Υ),

we obtain for the metric on M̂ ,

g = gAB̄ dv
Adv̄B = NIJdX

IdX̄J + iF̄IΥdX
IdῩ− iFJΥdΥdX̄J , (452)

which is a Kähler metric gAB̄ = ∂A∂B̄K with Kähler potential

K = −i
(
X̄IFI(X,Υ)−XI F̄I(X̄, Ῡ)

)
. (453)

The associated Kähler form is

ω = − i
2
NIJdX

I ∧ dX̄J +
1

2
F̄IΥdX

I ∧ dῩ− 1

2
FIΥdΥ ∧ dX̄I . (454)

The Kähler metric gAB̄ has occured in the deformed sigma model [73], which

provides a field theoretic realization of the set-up just described.

For latter use, we introduce the decomposition

2FIJ = RIJ + iNIJ , (455)

where RIJ = 2 ReFIJ , NIJ = 2 ImFIJ . We denote the inverse of NIJ by

N−1 = (N IJ).

7.1.2. The Hesse potential

We now define special real coordinates and a Hesse potential in presence of

the deformation. We then show that the Kähler metric g on M̂ given in (452)

is no longer Hessian. There is, however, another metric on M̂ that is Hessian.
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We denote this metric by gH . We show that M̂ = M ×C can be equipped with

a Hessian structure (∇, gH), where gH 6= g.

We introduce real coordinates (qa) = (xI , yI) as in (291)

XI = xI + iuI(x, y,Υ, Ῡ) , FI = yI + ivI(x, y,Υ, Ῡ) . (456)

Then, the (generalized) Hesse potential is defined by a Legendre transform of

the generalized prepotential F (X,Υ),

H(x, y,Υ, Ῡ) = 2 ImF (x+ iu(x, y,Υ, Ῡ),Υ)− 2yIu
I(x, y,Υ, Ῡ) . (457)

Note that H is homogeneous of degree two.

We will be interested in the coordinate transformations

(x, u,Υ, Ῡ) 7→ (x, y,Υ, Ῡ) ,

(x, y,Υ, Ῡ) 7→ (x, u,Υ, Ῡ) . (458)

To convert from one coordinate system to the other one, we use the following for-

mulae when differentiating a function f̃(x, u,Υ, Ῡ) = f(x, y(x, u,Υ, Ῡ),Υ, Ῡ),

∂f̃

∂xI

∣∣∣∣∣
u

=
∂f

∂xI

∣∣∣∣
y

+
∂f

∂yK

∣∣∣∣
x

∂yK
∂xI

,

∂f̃

∂uI

∣∣∣∣∣
x

=
∂f

∂yK

∣∣∣∣
x

∂yK
∂uI

,

∂f̃

∂Υ

∣∣∣∣∣
x,u

=
∂f

∂Υ

∣∣∣∣
x,y

+
∂f

∂yK

∣∣∣∣
x

∂yK
∂Υ

. (459)

We refer to B.3, where we have collected various formulae with details on the

conversion (458).

The Kähler metric g in (452), when expressed in coordinates (qa,Υ, Ῡ), takes

the form

g =
∂2H

∂qa∂qb
dqadqb +

∂2H

∂qa∂Υ
dqadΥ +

∂2H

∂qa∂Ῡ
dqadῩ , (460)

where (
∂2H

∂qa∂qb

)
=

 N +RN−1R −2RN−1

−2N−1R 4N−1

 , (461)
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and

∂2H

∂xI∂Υ
= 2F̄IMN

MNFNΥ ,
∂2H

∂xI∂Ῡ
= 2FIMN

MN F̄NΥ ,

∂2H

∂yI∂Υ
= −2N IJFJΥ ,

∂2H

∂yI∂Ῡ
= −2N IJ F̄JΥ . (462)

In the undeformed case (Υ = 0), the Kähler metric is also Hessian. In the

deformed case (Υ 6= 0), this is not any longer the case. This can be seen as

follows.

First, we note that M̂ can be equipped with a Hessian structure (∇, gH).

This requires the existence of a flat, torsion-free connection ∇, which can be

constructed as follows. For fixed Υ, the map φΥ : M → V induces an affine

special Kähler structure, with special connection ∇ and ∇-affine coordinates

(qa) = (xI , yI). We can extend ∇ to a flat, torsion-free connection on M̂ =

M × C by imposing

∇dxI = 0 , ∇dyI = 0 , ∇dΥ = 0 , ∇dῩ = 0 . (463)

Since M can be covered by special real coordinate systems, we may extend these

relations to M̂ , providing it with the affine structure required to define a flat,

torsion-free connection on M̂ .

Now we define the metric gH to be the Hessian metric of the (generalized)

Hesse potential (457). Upon computing its components explicitly, we find that

gH differs from the Kähler metric g by

gH − g = ∂2H|x,y =
∂2H

∂Υ∂Υ
dΥdΥ + 2

∂2H

∂Υ∂Ῡ
dΥdῩ +

∂2H

∂Ῡ∂Ῡ
dῩdῩ , (464)

where

∂2H

∂Υ∂Ῡ
= N IJFIΥF̄JΥ ,

∂2H

∂Υ∂Υ
= −iFΥΥ +N IJFIΥFJΥ ,

∂2H

∂Ῡ∂Ῡ
= iF̄ΥΥ +N IJ F̄IΥF̄JΥ . (465)

We remark that these metric coefficients are symplectic functions [32], which

is necessary in order that gH − g is a well defined tensor field (which we know

to be the case, because gH and g are both metric tensors). We further remark

that

2H = K − 2iΥFΥ + 2iῩF̄Υ (466)

differs from the Kähler potential (453) by a Kähler transformation. Therefore

2H, taken as a Kähler potential, defines the same Kähler metric g = gK as
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K. However, when taking K as a Hesse potential one does not get the Hessian

metric gH . Note that the Hesse potential (466) is the sum of two symplectic

functions, namely K and Im (ΥFΥ), c.f. subsection 4.1.

Thus, the Kähler metric g on M̂ is not Hessian with respect to the affine

structure that we have defined on M̂ , i.e. g 6= gH .

7.1.3. Deformed affine special Kähler geometry

Next we show that M̂ carries a deformed version of affine special Kähler

geometry. Namely, we show that (M̂ = M × C, J, g) is a Kähler manifold with

Kähler form ω, equipped with a flat, torsion-free connection∇ for which∇ω 6= 0

and d∇J 6= 0. The non-vanishing of ∇ω and d∇J is controlled by the symplectic

function FΥ.

We will call such manifolds deformed affine special Kähler manifolds. Since

our definition involves the map φ defined in (450), this is not an intrinsic defi-

nition, but the name for a specific construction.

We have already established that g is a Kähler metric with Kähler form ω,

c.f. (452) and (454). To compare the latter with the two-form 2dxI ∧dyI , which

is the Kähler form on M , we compute

2dxI ∧ dyI = − i
2
NIJdX

I ∧ dX̄J − 1

2
FIΥdΥ ∧ dX̄I +

1

2
F̄IΥdX

I ∧ dῩ

+
1

2
FIΥdX

I ∧ dΥ +
1

2
F̄IΥdX̄

I ∧ dῩ , (467)

and therefore the Kähler form can be written as

ω = 2dxI ∧ dyI −
1

2
FIΥdX

I ∧ dΥ− 1

2
F̄IΥdX̄

I ∧ dῩ . (468)

This shows that 2dxI ∧dyI , when considered as a two-form on M̂ , is not of type

(1, 1) (since ω is, and both differ by pure forms). Using the rewriting

FIΥdY
I ∧ dΥ = dFΥ ∧ dΥ = −d(ΥdFΥ) , (469)

we find

ω = 2dxI ∧ dyI +
1

2
d(ΥdFΥ) +

1

2
d(ῩdF̄Υ) . (470)

Thus the difference between the Kähler forms ω of M̂ and 2dxI ∧ dyI of M

is exact. The deformation involves the function FΥ = ∂ΥF . The latter is

a symplectic function, c.f. (222). It contains all the information about the

deformation.
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Next we compute

∇ω = −1

2
d(FIΥ)⊗ (dXI ∧ dΥ) + c.c. , (471)

and hence, ω is not parallel. Thus, the connection ∇ is not a symplectic con-

nection on M̂ . This shows that while (M̂, g, ω,∇) is Kähler, it is not special

Kähler. The deformation is controlled by an exact form, which is determined

by the symplectic function FΥ.

Next, we show that the complex structure J is not covariantly closed, i.e.

d∇J 6= 0. To compute the exterior covariant derivative of the complex structure

J , we note that the vector fields ∂xI , ∂yI , ∂Υ, ∂Ῡ define a ∇-parallel frame which

is dual to the ∇-parallel co-frame dxI , dyI , dΥ, dῩ. Using this one obtains

∇ ∂

∂XI
= ∇

(
1

2

∂

∂xI
+

1

2
FIJ

∂

∂yJ

)
=

1

2
dFIJ ⊗

∂

∂yJ
. (472)

Using that d∇J = dJaea − Ja ∧ d∇ea where ea is any basis of sections of TM̂ ,

so that d∇ea = ∇ea, we find

d∇J =

(
−idXI ∧ 1

2
dFIJ + c.c.

)
⊗ ∂

∂yJ
. (473)

Note the rewriting

dXI ∧ dFIJ = dXI ∧ FIJΥdΥ = −d(FIJdX
I) = d(FIΥdΥ) ,

where we used symmetry of FIJ and the chain rule. Therefore

d∇J = (−id(FIΥdΥ) + c.c.)⊗ ∂

∂yI
=
(
−iFIJΥdX

J ∧ dΥ + c.c.
)
⊗ ∂

∂yI
, (474)

which is non-vanishing. As a consistency check, observe that d2
∇ = 0, which

must hold because ∇ is flat. Note that the non-vanishing of d∇J is expressed

in terms of an exact form constructed out of the function FΥ.

In summary, (M̂ = M × C, J, g) is a Kähler manifold with Kähler form ω,

equipped with a flat, torsion-free connection ∇, with non-vanishing ∇ω and

d∇J given by (471) and (474).

For completeness we remark that the pullback of the complex symplectic

form Ω of V is non-vanishing,43

φ∗Ω = FIΥdX
I ∧ dΥ = −d(ΥdFΥ) , (475)

where the right hand side is exact and controlled by FΥ.

43Obviously, M̂ cannot be a (locally immersed) Lagrangian submanifold of V on dimensional
grounds.
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7.1.4. Holomorphic anomaly equation from the Hessian structure

Next, we turn to the study of the integrability condition for the existence

of a Hesse potential H on M̂ , and we reinterpret it as a holomorphic anomaly

equation for a hierarchy of symplectic functions constructed from FΥ.

In (463) we showed that M̂ can be equipped with a Hessian structure

(∇, gH). Then, in ∇-affine coordinates Qa = (xI , yI ,Υ, Ῡ), the totally sym-

metric covariant rank three tensor S = ∇gH has components Sabc = ∂agbc

which satisfy the integrability condition ∂agbc = ∂bgca = ∂cgab. One particular

integrability relation is

SxIΥΥ = SΥxIΥ , (476)

i.e.

∂xIgHΥΥ

∣∣
y

= ∂Υg
H
xIΥ

∣∣
x,y

, (477)

with metric components given by (c.f. (462) and (465))

gHxIΥ = 2F̄IJN
JKFKΥ ,

gHΥΥ = −iDΥFΥ , (478)

where the derivative DΥ,

DΥ =
∂

∂Υ

∣∣∣∣
X

+ iN IJFJΥ
∂

∂XI
, (479)

is the symplectic covariant derivative that was introduced in (189), and which

takes the form (479) when acting on a holomorphic F (X,Υ).

We now evaluate equation (477) in coordinates (XI , X̄I ,Υ, Ῡ), using the

Jacobian (B.54), to obtain

SxIΥΥ =
∂gHΥΥ

∂xI

∣∣∣∣
y

=
∂gHΥΥ

∂xI

∣∣∣∣
u

+
∂gHΥΥ

∂uK
∂uK

∂xI
, where

∂

∂xI

∣∣∣∣
u

=
∂

∂XI
+

∂

∂X̄I
,

SΥxIΥ =
∂gHxIΥ

∂Υ

∣∣∣∣
x,y

=
∂gHxIΥ

∂Υ

∣∣∣∣
x,u

+
∂gHxIΥ

∂uK
∂uK

∂Υ
. (480)
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We compute

∂gHΥΥ

∂xI

∣∣∣∣
u

= −i ∂

∂X̄I
DΥFΥ − iF̄ĪKLFKΥFLΥ ,

∂gHΥΥ

∂uK

∣∣∣∣
x

=

(
∂

∂XK
− ∂

∂X̄K

)(
FΥΥ + iNKLFKΥFLΥ

)
= FKΥΥ − FKPQFPΥFQΥ − 2NPQFKPΥFQΥ − F̄KPQFPΥFQΥ ,

∂gHxIΥ

∂Υ

∣∣∣∣
x,u

= −iFIΥΥ + FΥI
JFJΥ +

(
FIJ + F̄IJ

) (
iFΥ

JKFKΥ + FΥΥ
J
)
,

∂gHxIΥ

∂uK

∣∣∣∣
x

= FIKΥ + iFIK
LFLΥ + i

(
FIL + F̄IL

) (
iFK

LPFPΥ + FΥK
L
)

−iF̄IKLFLΥ −
(
FIL + F̄IL

)
F̄K

LPFPΥ , (481)

where indices are raised using N IJ . Then, the integrability condition (477)

results in
∂

∂X̄I
DΥFΥ = F̄IJKN

JPNKQFPΥFQΥ . (482)

We now explore the consequences of (482). To this end, we first define

[32] a hierarchy of symplectic functions through covariant derivatives of the

holomorphic symplectic function FΥ(X,Υ),

Φ(n)(X, X̄,Υ, Ῡ) =
1

n!
Dn−1

Υ FΥ , n ∈ N , (483)

and Φ(0) = 0. Note that Φ(1) is the only holomorphic function in this hierarchy.

Then, (482) can be expressed as

∂Φ(2)

∂X̄I
=
i

2

∂NJK

∂X̄I
FJΥFKΥ =

1

2
F̄ JKI ∂JΦ(1)∂KΦ(1) , (484)

where F̄ JKI = F̄IPQN
PJNQK . Thus, the integrability condition (477) results

in (484) which captures the non-holomorphicity of Φ(2).

Using (484) as a starting point, one derives, by complete induction, the

following holomorphic anomaly equation,

∂Φ(n)

∂X̄I
=

1

2
F̄ JKI

n−1∑
r=1

∂JΦ(r)∂KΦ(n−r) , n ≥ 2 , (485)

which captures the departure from holomorphicity of the Φ(n), with n ≥ 2. In

doing so, one uses [33]

∂ĪFΥ = 0 , DΥF̄IJK = 0 , [DΥ, N
IJ∂J ] = 0 . (486)
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For example, to derive the anomaly equation for Φ(3), we need to evaluate

∂ĪD
2
ΥFΥ = DΥ∂ĪDΥFΥ + i(∂ĪN

JK)FJΥ∂KDΥFΥ

= 3F̄ JKI ∂JFΥ∂KDΥFΥ . (487)

Using that Dn−1
Υ FΥ = n!Φ(n) this becomes

∂ĪΦ
(3) = F̄ JKI ∂JΦ(1)∂KΦ(2) =

1

2
F̄ JKI

2∑
r=1

∂JΦ(r)∂KΦ(3−r) . (488)

Next, we define

F (n)(X, X̄) = Φ(n)(X, X̄,Υ = Ῡ = 0) . (489)

The F (n)(X, X̄) satisfy the holomorphic anomaly equation

∂F (n)

∂X̄I
=

1

2
F̄

(0)JK
I

n−1∑
r=1

∂JF
(r)∂KF

(n−r) , n ≥ 2 . (490)

Here, F̄
(0)JK
I is computed from the undeformed function F (0)(X) = F (X,Υ)|Υ=0,

i.e. F̄
(0)JK
I = F̄ JKI |Υ=0.

The hierarchy of equations (485) can be re-organized into a master anomaly

equation, by introducing

G(X, X̄,Υ, Ῡ, µ) =

∞∑
n=0

µn+1Φ(n+1)(X, X̄,Υ, Ῡ) , (491)

where µ denotes an expansion parameter. Then, the function G satisfies the

master anomaly equation

∂

∂X̄I
G =

1

2
F̄ JKI ∂JG∂KG . (492)

Finally, one may ask whether other components of S = ∇gH will give rise

to additional non-trivial differential equations. To investigate this, we now con-

sider the component SxIΥῩ = ∂xIgH
ΥῩ

∣∣
y
, which is constructed out of the metric

component gH
ΥῩ

= N IJFIΥF̄JΥ. Evaluating the relation SxIΥῩ = SῩxIΥ =

∂Ῡ g
H
xIΥ

∣∣
x,y

in supergravity variables we find that it is identically satisfied. Thus,

the only non-trivial differential equation resulting from gHΥΥ and gH
ΥῩ

is encoded

in the relation SxIΥΥ = SΥxIΥ.
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7.2. Non-holomorphic deformation

Next, we extend the discussion to a non-holomorphic generalized prepoten-

tial F = F (X, X̄,Υ, Ῡ) by considering a non-holomorphic map φ : M̂ → V .

Since F and FΥ are no longer holomorphic, they will have non-vanishing

derivatives with respect to X̄I and Ῡ. To distinguish between these various

derivatives, we will, in the following, use a notation that involves ‘unbarred’

indices I, J, . . . and ‘barred’ indices Ī , J̄ , . . ..

7.2.1. Non-holomorphic deformation of the prepotential

We generalize the map (450) to

φ : M̂ = M × C→ V , (XI ,Υ) 7→ (XI , FI(X, X̄,Υ, Ῡ)) , (493)

where FI = ∂F/∂XI , can be obtained from a generalized prepotential F . We

assume that F has the form [74]

F (X, X̄,Υ, Ῡ) = F (0)(X) + 2iΩ(X, X̄,Υ, Ῡ) , (494)

where F (0) is the undeformed prepotential, and where Ω is a real-valued function

that describes the deformation.44

The holomorphic deformation is recovered when Ω is harmonic. This makes

use of the observation that the complex symplectic vector (XI , FI) does not

uniquely determine the prepotential F [34]. If we make a transformation

F (0)(X) 7→ F (0)(X) + g(X,Υ) ,

Ω(X, X̄,Υ, Ῡ) 7→ Ω(X, X̄,Υ, Ῡ)− 1

2i
(g(X,Υ)− ḡ(X̄, Ῡ)) , (495)

where g(X,Υ) is holomorphic, then F changes by an antiholomorphic function,

F 7→ F + ḡ, and the symplectic vector (XI , FI) and the map φ are invariant. If

Ω is harmonic,

Ω(X, X̄,Υ, Ῡ) = f(X,Υ) + f̄(X̄, Ῡ) , (496)

we can make a transformation with g = 2if and obtain

F 7→ F (0)(X) + 2if(X,Υ) =: F (X,Υ) , (497)

which is a holomorphically deformed prepotential, as considered in subsection

7.1. If, however, Ω is not harmonic, then we have a genuine generalization which

requires us to consider non-holomorphic generalized prepotentials.

44This function is not to be confused with the complex symplectic form on the vector space
V introduced in subsection 5.1.2.
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7.2.2. Non-holomorphic deformation and geometry

We proceed by analysing the geometry induced by pulling back the standard

Hermitian form γV of V given by (267) to M̂ using (493),

γ = −i(F (0)
IJ − F̄

(0)

ĪJ̄
)dXI ⊗ dX̄J + 2(ΩIJ + ΩĪJ̄)dXI ⊗ dX̄J + 2ΩĪJdX

I ⊗ dXJ

+2ΩIJ̄dX̄
I ⊗ dX̄J + 2ΩĪῩdX

I ⊗ dῩ + 2ΩIΥdΥ⊗ dX̄I + 2ΩĪΥdX
I ⊗ dΥ

+2ΩIῩdῩ⊗ dX̄I . (498)

By decomposing γ = g + iω, we obtain the following metric on M̂ ,

g = −i(F (0)
IJ − F̄

(0)

ĪJ̄
)dXIdX̄J + 2(ΩIJ + ΩĪJ̄)dXIdX̄J

+2ΩĪJdX
IdXJ + 2ΩIJ̄dX̄

IdX̄J + 2ΩĪῩdX
IdῩ + 2ΩIΥdΥdX̄I

+2ΩĪΥdX
IdΥ + 2ΩIῩdῩdX̄I . (499)

This expression shows that g is not Hermitian, and hence not Kähler with

respect to the natural complex structure J . The non-Hermiticity is encoded

in the mixed derivatives ΩIJ̄ , which makes it manifest that it is related to the

non-harmonicity of Ω. This metric occurs in the sigma model discussed in [73].

The imaginary part of γ defines a two-form on M̂ ,

ω =
1

2i
(−i(F (0)

IJ − F̄
(0)

ĪJ̄
))dXI ∧ dX̄J − i(ΩĪJ̄ + ΩIJ)dXI ∧ dX̄J

−iΩĪJdXI ∧ dXJ + iΩIJ̄dX̄
I ∧ dX̄J − iΩĪῩdXI ∧ dῩ− iΩIΥdΥ ∧ dX̄I

−iΩĪΥdXI ∧ dΥ + iΩIῩdX̄
I ∧ dῩ . (500)

This two-form is no longer of type (1, 1) with respect to the standard complex

structure, which is consistent with the non-Hermiticity of g. However, ω is still

closed

dω = 0 , (501)

and hence (M̂, ω) is a symplectic manifold.

The difference between the symplectic forms ω of M̂ and 2dxI ∧ dyI of M is

exact,

ω = 2dxI ∧ dyI +
1

2
d(ΥdFΥ) +

1

2
d(ῩdF̄Ῡ) + ∂∂F , (502)

where ∂ = dXI ⊗ ∂XI + dΥ ⊗ ∂Υ. Compared to (470) there is an additional

term which measures the non-holomorphicity of the generalized prepotential.
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7.2.3. The Hesse potential

We introduce real coordinates (qa) = (xI , yI) by

XI = xI + iuI(x, y,Υ, Ῡ) , FI(X, X̄,Υ, Ῡ) = yI + ivI(x, y,Υ, Ῡ) . (503)

We introduce the combinations [73]

N±IJ = NIJ ± 2ImFIJ̄ = −i(FIJ − F̄ĪJ̄ ± FIJ̄ ∓ F̄ĪJ) (504)

and

R±IJ = RIJ ± 2ReFIJ̄ = FIJ + F̄ĪJ̄ ± FIJ̄ ± F̄ĪJ . (505)

Note that NT
− = N−, while RT± = R∓.

In the presence of a non-holomorphic deformation, the Hesse potential is

defined as the Legendre transform of

L = 2ImF − 2Ω = 2ImF (0) + 2Ω , (506)

c.f. (164) (the normalization used here differs from the one in (164) by a factor

2). As explained in section 4.1, the function L can be interpreted as a Lagrange

function, and the Hesse potential as the corresponding Hamilton function. Thus,

the Hesse potential associated to F (X, X̄,Υ, Ῡ) is

H(x, y,Υ, Ῡ) = −i(F − F̄ )− 2Ω− 2uIyI . (507)

We now compute the associated Hessian metric gH by taking derivatives of

H with respect to the coordinates (QA) = (qa,Υ, Ῡ), where (qa) = (xI , yI). To

convert from coordinates (xI , uI ,Υ, Ῡ) to coordinates (QA) and back, we use

the Jacobians (B.57) and (B.58). We obtain for the components of the Hessian

metric gH ,

∂H

∂qa∂qb
=

 N+ +R−N
−1
− R+ −2R−N

−1
−

−2N−1
− R+ 4N−1

−

 , (508)

∂2H

∂xI∂Υ
= −i(FIΥ − F̄ĪΥ) +R−IKN

KJ
− (FJΥ + F̄J̄Υ) ,

∂2H

∂yI∂Υ
= −2N IK

− (FKΥ + F̄K̄Υ) ,

together with their complex conjugates, and

∂2H

∂Υ∂Ῡ
= −iFΥῩ +N IJ

− (F̄ĪῩ − F̄IῩ)(FΥJ − FΥJ̄) = −iDΥFῩ ,

∂2H

∂Υ∂Υ
= −iDΥFΥ ,

∂2H

∂Ῡ∂Ῡ
= iDΥFΥ , (509)
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where

DΥ = ∂Υ + iN IJ
− (FΥJ − FΥJ̄)

(
∂

∂XI
− ∂

∂X̄I

)
(510)

is the symplectically covariant derivative introduced in (189).

As before (c.f. subsection 7.1.2), the Hessian metric gH differs from the

metric g in (499) (induced by pulling back gV using φ) by differentials involving

derivatives of H with respect to Υ, Ῡ,

gH = g + ∂2H
∣∣
x,y

, (511)

where

∂2H
∣∣
x,y

=
∂2H

∂Υ∂Υ
dΥdΥ + 2

∂2H

∂Υ∂Ῡ
dΥdῩ +

∂2H

∂Ῡ∂Ῡ
dῩdῩ . (512)

7.2.4. Hierarchy of non-holomorphic symplectic functions

The function FΥ = ∂ΥF is a non-holomorphic symplectic function, c.f. (222).

Using the symplectically covariant derivative DΥ given in (510), we construct a

hierarchy of symplectic functions by

Φ(n+1)(X, X̄,Υ, Ῡ) =
1

(n+ 1)!
Dn

ΥFΥ(X, X̄,Υ, Ῡ) , n ∈ N0 . (513)

Then, we define symplectic functions F (n)(X, X̄) by

F (n)(X, X̄) = Φ(n)(X, X̄,Υ, Ῡ)
∣∣∣
Υ=Ῡ=0

, n ≥ 1 . (514)

The functions F (n)(X, X̄) with n ≥ 2 will satisfy a holomorphic anomaly equa-

tion, whose precise form depends on the details of the non-holomorphic defor-

mation.

7.2.5. The holomorphic anomaly equation of perturbative topological string the-
ory

For a specific deformation, the resulting holomorphic anomaly equation is

the one of perturbative topological string theory [75]. Namely, let us first rescale

F (n) 7→ 2iF (n), for convenience. Now we take Υ to be real, and F (1) to be

F (1) = f (1) + f̄ (1) + α ln detN
(0)
IJ . (515)

Here, α ∈ R is the deformation parameter, and N
(0)
IJ equals N

(0)
IJ = −i(F (0)

IJ −
F̄

(0)
IJ ). When α = 0, F (1) is the real part of a holomorphic function f (1)(X).
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For the α-deformation, the holomorphic anomaly equation satisfied by the F (n)

with n ≥ 2 is given by (see [34])

∂

∂X̄K
F (n) = iF̄

(0)IJ
K

(
n−1∑
r=1

∂IF
(r)∂JF

(n−r) − 2αDI∂JF
(n−1)

)
, n ≥ 2 ,

(516)

where F̄
(0)IJ
K = F̄

(0)
KQPN

(0)QIN (0)PJ . The covariant derivative DI , when acting

on a vector VJ , takes the form

DIVJ = ∂IVJ − ΓIJ
KVK , (517)

where ΓIJ
K is the Levi-Civita connection associated with the Kähler metric of

the undeformed theory (i.e. the Kähler metric computed from F (0)(X)). When

α = 0, this anomaly equation reduces to the one given in (490), upon undoing

the rescaling F (n) 7→ 2iF (n) performed above. When α = −1/2, (516) is the

holomorphic anomaly equation of perturbative topological string theory [75, 76].

Let us display the expression for F (2) obtained by solving the anomaly equation

[75, 77, 76],

F (2)(X, X̄) = f (2) −N IJ
(0)

(
f

(1)
I − iαF

(0)
IKLN

KL
(0)

)(
f

(1)
J − iαF

(0)
JPQN

PQ
(0)

)
+2αN IJ

(0)f
(1)
IJ − α

2
[
iN IJ

(0)N
KL
(0) F

(0)
IJKL −

2
3N

IJ
(0)F

(0)
IKLN

KP
(0) N

LQ
(0) F

(0)
JPQ

]
,

(518)

with holomorphic input data f (1)(X) and f (2)(X).

The expressions for the higher F (n)(X, X̄) become very lengthy quickly, see

the expression for F (3)(X X̄) given in Appendix D of [34]. The non-holomorphicity

of F (n)(X, X̄) is entirely contained in the quantities N
(0)
IJ , N

IJ
(0). Observe that

F (1) is real, while the higher F (n) (n ≥ 2) are not.

7.2.6. Holomorphic anomaly equation from the Hessian structure

The holomorphic anomaly equation (516) is encoded in the underlying Hesse

structure, namely in the relation

SxIΥΥ = SΥxIΥ , (519)

which the totally symmetric rank three tensor S = ∇gH has to satisfy, where

gH denotes the Hessian metric computed in subsection 7.2.3. We refer to [72]

for the somewhat technical verification of this assertion, where this was shown

for the case of the anomaly equation for F (2). Thus, the holomorphic anomaly
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equation (516) is intimately related to the existence of a Hessian structure on

M̂ .

8. Dimensional reduction over space and time. Euclidean special ge-
ometry

In this section we will review how the special geometries of five- and four-

dimensional vector multiplets are related to each other, and to the special ge-

ometry of hypermultiplets, by dimensional reduction. We take this opportunity

to also discuss how special geometry gets modified for theories defined on a

Euclidean space‘time,’ by including time-like dimensional reductions. We will

focus on presenting and discussing key facts and results while referring to the

literature for details.

8.1. Space-like and time-like dimensional reductions

Space-like and time-like dimensional reductions of Lagrangians differ by spe-

cific relative signs between terms. We illustrate this with a simple example, a

theory involving a free massless scalar σ and an abelian vector field Aµ in n+ 1

dimensions,

S =

∫
dn+1x

(
−1

2
∂µσ∂

µσ − 1

4
FµνF

µν

)
. (520)

Upon dimensional reduction, the vector field Aµ decomposes into a vector field

Am and a scalar b = A∗, where ∗ is the index of the direction we reduce over.

The reduced Lagrangian, where we only keep the massless modes, is

S =

∫
dnx

(
−1

2
∂mσ∂

mσ +
1

2
ε∂mb∂

mb− 1

4
FmnF

mn

)
, (521)

where ε = −1 for a space-like reduction and ε = 1 for a time-like reduction.45

Thus in a Euclidean theory obtained by time-like dimensional reduction, the

sign of the kinetic term of the scalar b is inverted and the Euclidean action

is indefinite. This distinguishes such Euclidean theories from Euclideanized

theories obtained by Wick rotation, see section 8.2 for discussion.

For space-like reductions we can combine the real scalars σ and b into a com-

plex scalar X = σ+ ib. For time-like reductions there are two ways to proceed.

Either we can use adapted real coordinates which are lightcone coordinates with

45Note that part of the literature on dimensional reduction defines ε with the opposite sign.
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respect to the scalar target space, X± = σ±b, or we can introduce para-complex

coordinates by employing para-complex numbers z = x + ey, x, y ∈ R, where

the para-complex unit e satisfies

e2 = 1 , ē = −e . (522)

The anti-linear involution ·̄ is called para-complex conjugation. The para-complex

numbers C := R ⊕ eR form a real algebra, but not a number field, and not

even a division algebra. Zero divisors correspond to ‘lightcone directions’, since

(1+e)(1−e) = 0. Nevertheless one can use para-complex numbers to define var-

ious types of structures on differentiable manifolds, which are analogous to those

based on complex numbers, such as complex, Hermitian and Kähler structures.

Para-complex geometries are useful to formulate special geometry in Euclidean

signature [19, 78, 45, 17], and more recently have taken on a role in generalized

and doubled geometry as well [79, 80, 81, 82, 83]. We provide some background

information in A.20, and refer to [84] for a historical review.

One advantage of working with para-complex scalar fields is that it makes the

similarities between space-like and time-like reductions manifest. In particular

one can introduce an ε-complex notation by

iε =


i for ε = −1 ,

e for ε = 1 ,

 ⇒ i2ε = ε , iε = −iε . (523)

In ε-complex notation, the reduced Lagrangian (521) becomes

S =

∫
dnx

(
−1

2
∂mX∂

mX̄ − 1

4
FmnF

mn

)
, where X = σ + iεb . (524)

8.2. Euclidean and Euclideanized theories

Before proceeding we need to clarify the distinction between Euclidean and

Euclideanized theories. In this review a ‘Euclidean supersymmetric theory’ or

‘Euclidean supergravity theory’ is a theory with a Lagrangian which is invari-

ant under the Euclidean supersymmetry algebra. This is true in particular for

theories which are obtained by a time-like dimensional reduction, but one can

also construct Euclidean theories ab initio, starting from the Euclidean super-

symmetry algebra, see for example [21], or by analytical continuation of Killing

spinor equations, see for example [85]. In contrast by a ‘Euclideanized theory’
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we refer to a theory which has been obtained from a theory in Lorentz signa-

ture by applying a Wick rotation. From the previous section it is clear that

for four-dimensional theories which can be obtained by dimensional reduction

from five dimensions, the Euclidean and Euclideanized theory will in general

have bosonic Lagrangians which differ by relative signs for some of the scalars.

For theories containing fermions the additional complication arises that reality

condition are signature dependent, which can lead to a doubling of the fermionic

degrees of freedom upon Euclideanization. In four dimensions Majorana spinor

exist in Lorentzian, but not in Euclidean signature, which in particular implies

that there is no Euclidean ‘N = 1’ supersymmetry algebra with four real super-

charges. One can still define a meaningful Euclideanization of four-dimensional

N = 1 theories within the Osterwalder-Schrader formalism [86]. In this ap-

proach one uses a modified Hermiticity condition in the Euclidean theory, and

supersymmetry is encoded in Euclidean Ward identities which become the stan-

dard supersymmetric Ward identities upon continuation to Lorentz signature.

An alternative proposal for the Euclideanization of supersymmetric theories

with extended supersymmetry, where there is no issue with the doubling of

fermionic degrees of freedom, is to modify the Wick rotation such that the re-

sulting theory has an action which is invariant under Euclidean supersymmetry

[87, 88, 89]. For a certain class of theories, which include the bosonic parts

of four-dimensional vector multiplet theories, Euclidean and Euclideanized ac-

tions can be mapped to each other using that the Hodge dualization of axion-like

scalars does not commute with a Wick rotation [45].

Since Euclidean actions obtained by a time-like reduction can be indefinite,

while a well-behaved Euclidean functional integral requires an Euclidean action

which is bounded from below, one might think that only Euclideanized theo-

ries can provide the proper starting point for defining supersymmetric theories.

However, the situation is more complicated for various reasons. Firstly, in Eu-

clidean signature the Hodge-dualization of p-form fields changes the sign of their

‘kinetic term’ and thus relates definite and indefinite actions.46 Secondly real

integrals can be dominated by complex saddle points and the functional inte-

gral of a supersymmetric theory can be dominated by real BPS solutions to an

indefinite Euclidean action. In particular, this is the case for the D-instanton so-

46See section 8.4.1.
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lutions of type-IIB string theory [90]. At least in simple examples one can show

explicitly that Euclidean and Euclideanized actions can be used alternatively to

perform a saddle point evaluation of the same functional integral, using different

‘integration contours’ in complexified field space [91]. This suggest to construct

theories on space-times of different signatures as different real forms of master

theories on with a complexified field space on a complexified space-time. In this

context it is natural to also consider space-time signature other than Euclidean

and Lorentzian, see below.

Euclidean actions also serve a practical role as part of generating techniques

for stationary solutions of theories in Lorentzian signature [92, 93]. Upon time-

like dimensional reduction one obtains an auxiliary Euclidean theory, whose field

equations are often easier to solve. Solutions of the reduced Euclidean theory

can then be lifted to stationary solutions of the Lorentzian theory. This can be

viewed as generating ‘solitons’ (stationary finite energy solutions of a Lorentzian

theory) from ‘instantons’ (finite action solutions of Euclidean theory). With

proper attention to boundary terms one can show that the instanton action

of certain Euclidean solutions agrees exactly with the ADM mass of the black

hole solutions obtained by lifting [45]. This ‘reduction/oxidation’ method is not

limited to BPS solutions and can be used to generate non-extremal solutions.

Some remarks on general space-time signatures

Once time-like T-dualities are admitted, the web of string dualities relates

theories in different space-time signatures [94, 95, 96]. The maximally super-

symmetric supergravity theories in ten and eleven dimensions can all be related

to real forms of a single complex ortho-symplectic Lie superalgebra [97, 98].

Five- and four-dimensional vector multiplets for all possible space-time signa-

tures have been obtained in [99, 21, 100].

8.3. Reduction from five to four dimensions: the r-map

8.3.1. Reduction without gravity: the rigid r-map

We now turn to the dimensional reduction of the five-dimensional bosonic

vector multiplet Lagrangian (126), following [19], and treating space-like and

time-like reduction in parallel. Upon reduction, the five-dimensional vector

fields AIµ decompose into four-dimensional vector fields AIm and scalars bI , which

we combine with five-dimensional scalars σI to ε-complex scalars XI = σI +
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iεb
I . The four-dimensional field strengths are decomposed into selfdual and

antiselfdual parts according to

F±mn =
1

2
(Fmn ± F̃mn) =

1

2
(Fmn ±

1

2iε
εmnpqF

pq) . (525)

The couplings of the four-dimensional theory are encoded in an ε-holomorphic

prepotential F (X), which up to a constant factor is obtained by extending

the Hesse potential h(σ) of the five-dimensional theory from real to ε-complex

values:

F (X) = − 1

2iε
h(σ + iεb) . (526)

We extend our previous definitions according to47

RIJ = FIJ + F̄IJ , NIJ = −iε(FIJ − F̄IJ) =
∂2K

∂XI∂X̄J
,

K = iε(X
I F̄I − FIX̄I) . (527)

The resulting four-dimensional bosonic Lagrangian takes the form

L = −NIJ∂mX∂mX̄ +

(
iε
4
FIJF

I−
mnF

J−mn + h.c.

)
+ · · · (528)

= −NIJ∂mXI∂mX̄J − 1

8
NIJF

I
mnF

Jmn − 1

16
RIJε

mnpqF ImnF
J
pq + · · · ,

where we have omitted the auxiliary fields Y Iij .

We now turn to the relation between the scalar manifolds M of the five-

dimensional theory and N of the four-dimensional theory. The ASR metric

gM = hIJdσ
IdσJ is mapped to the affine special ε-Kähler metric

gN = NIJ(σ)dσIdσJ − εNIJ(σ)dbIdbJ = NIJdX
IdX̄J , (529)

with ε-holomorphic prepotential (526). Since the fields bI take values in Rn,

where n is the number of five-dimensional vector multiplets, we can identify

N with the tangent bundle of M , that is N ∼= TM . The metric (529) only

depends on the scalars σI and therefore has an isometry group which contains

the constant shifts bI 7→ bI + βI , where (βI) ∈ Rn. These isometries are relicts

of the five-dimensional abelian gauge symmetry. Moreover, the metric (529) is

block-diagonal with respect to σI and bI . This decomposition has an invariant

47In [19] NIJ and K were defined with the opposite sign. This has been compensated for by
changing the overall sign of F . Apart from this, some fields have to be rescaled by constant
factors.
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meaning, because the special connection ∇ of the ASR manifold M can be used

to decompose

TXN = TXN
vert⊕TXNhor

∇
∼= TσM⊕TσM , X ∈ N = TM , σ = π(X) ∈M ,

(530)

where π : N = TM →M is the canonical projection. The vertical space can be

identified with Tπ(X)M = TσM using the projection

TXN
vert := ker(dπX) ∼= TσM . (531)

While in general there is no canonical complement of TXN
vert ⊂ TXN , the

connection∇ defines a horizontal subbundle TNhor
∇ , which is spanned by vectors

tangent to the horizontal lifts of curves on N . This can be used to identify the

horizontal subspace TXN
hor
∇ with the tangent space TσM using the projection:

dπX |TXNhor
∇

: TXN
hor
∇

∼=−→ TσM . (532)

A similar construction based on the Levi-Civita connection D is used to

define the so-called Sasaki metric on the tangent bundle N = TM of a Rie-

mannian manifold M , which has a block-diagonal structure like in (529). The

‘Sasaki-like’ metric gN on the tangent bundle N = TM of an ASR manifold

with metric gM is defined by the special connection ∇ instead of D, and it

comes in two versions, labelled by ε, which differ by a relative sign of the metric

along the horizontal and vertical distribution. It has been shown in [19] that if

(M, gM ,∇) is an ASR manifold, then N = TM carries the structure of an affine

special ε-Kähler manifold (N, JN , gN ,∇N ), where the metric gN , the ε-complex

structure JN and the special connection ∇N can be constructed out of the ASR

data. The map

rε : {ASR manifolds} → {ASεK manifolds} : M 7→ N = TM (533)

is called the rigid r-map.

While we have omitted the supersymmetry transformations and fermionic

terms of the Lagrangian, these can be found in [19]. We remark that by dimen-

sional reduction one can only obtain a subset of the four-dimensional vector

multiplet theories, namely those where the prepotential is a cubic polynomial in

the ε-complex special coordinates XI . Such prepotentials are called very special.

However, the only terms not obtained by dimensional reduction are four-fermion
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terms which are proportional to the fourth derivatives FIJKL, F̄IJKL of the pre-

potential. To obtain the general four-dimensional Lagrangian one takes F to

be a general ε-holomorphic function. Then the Lagrangian is only invariant up

to terms generated by variation of terms involving the third derivatives of the

prepotential. The four-fermion terms are determined by imposing that their

variation restores the supersymmetry invariance of the Lagrangian [19].

We remark that Euclidean supersymmetric theories, and in fact supersym-

metric theories on space-times of arbitrary signature can also be constructed

ab initio, rather than by dimensional reduction. In particular, five-dimensional

rigid off shell vector multiplets and their Lagrangians have been obtained for all

signatures (t, s), t+ s = 5 in [21].

8.3.2. Reduction with gravity: the supergravity r-map

We now turn to the more interesting case of performing the reduction in

supergravity. When starting in five dimensions with n(5) vector multiples cou-

pled to Poincaré supergravity, we end up in four dimensions with n(4) = n(5) +1

vector multiplets coupled to Poincaré supergravity, because the five-dimensional

supergravity multiplet decomposes into the four-dimensional supergravity mul-

tiplet and an additional Kaluza-Klein vector multiplet. The five-dimensional

metric decomposes as

gµνdx
µdxν = −εe2σ (dx∗ +Amdxm)

2
+ gmndx

mdxn , (534)

where gmn is the four-dimensional metric with signature (ε,+,+,+), Am is the

Kaluza-Klein vector and σ is the Kaluza-Klein scalar.

We start from (149), (150), (151) with κ = 1 and relabel I = 0, . . . , n(5) into

a = 1, . . . , n(5) + 1 = n(4), so that we can use I, J = 0, . . . n(4) to label four-

dimensional vector multiplets. It is convenient to work with the constrained

scalars ha, subject to V(h) = Cabch
ahbhc = 1, instead of the physical scalars

φx. Upon reduction, one can then define new scalars

ya := 61/3eσha . (535)

These are n(4) unconstrained real scalars which encode the Kaluza-Klein scalar

through

V(y) = Cabcy
aybyc = 6e3σ , (536)

while the physical five-dimensional scalars φx can be parametrized by the in-

dependent ratios hx/hn(4) , x = 1, . . . , n(5). The real scalars ya are combined
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with the scalar components xa ∝ Aa∗ of the five-dimensional gauge fields into

ε-complex scalars za := xa + iεy
a. With this convention the five-dimensional

gauge symmetry induces an invariance of the four-dimensional theory under real

shifts of the scalars za, that is under za 7→ za + ra, with (ra) ∈ Rn(4) . Thus

the scalar manifold looks locally like a higher-dimensional version of the upper

half plane.48 For the vector fields it is necessary to take field dependent (xa-

dependent) linear combinations in order to make the four-dimensional gauge

symmetry manifest. Moreover, to arrive at standard four-dimensional conven-

tions, fields need to be rescaled by constant factors, see [45] for details. The

resulting bosonic Lagrangian takes the form49

L =
1

2
R− ḡab∂mza∂mz̄b +

1

4
ImNIJF ImnF Jmn +

ε

4
ReNIJF Imn

1

2
εmnpqF Jpq

=
1

2
R− ḡab∂mza∂mz̄b +

1

4
ImNIJF ImnF Jmn +

εiε
4

ReNIJF ImnF̃ J|pq

=
1

2
R− ḡab∂mza∂mz̄b +

(
1

4iε
NIJF+I

mnF
+Jmn + h.c.

)
, (537)

which generalizes (439) to the ε-complex case. As in the rigid case only a

subclass of four-dimensional theories can be obtained by reduction. Given a

five-dimensional Hesse potential of the form h = Cabch
ahbhc the ε-holomorphic

prepotentials resulting from reduction have the very special form

F = −1

6
Cabc

XaXbXc

X0
, (538)

where XI , I = 0, . . . , n
(4)
V are related to the physical scalars za by za = Xa/X0.

It was shown in [45] that the superconformal quotient admits an ε-complex

generalization, which for ε = 1 connects conical affine special para-Kähler man-

ifolds N to projective special para-Kähler manifolds N̄ . In the para-complex

version of the quotient, C∗ = R>0 × U(1) is replaced by C∗ = R>0 × SO(1, 1).

The group SO(1, 1) replacing U(1) is the abelian factor of the R-symmetry

group SO(1, 1) × SU(2) of the four-dimensional Euclidean supersymmetry al-

gebra [19, 45]. With suitable conventions, all local formulae of special Kähler

48There are other conventions in the supergravity literature where the axion-like scalars are
taken to be the imaginary rather than real parts, in particular the fields S, T, U of the much
studied STU-model are defined that way.

49Compared to [45], there is an explicit factor ε in the last term to account for the different
definition of the ε-tensor in Lorentzian signature.
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geometry have ε-complex extensions. In particular

NIJ = F̄IJ − iε
NIKX

KNJLX
L

NMNXMXN
(539)

generalizes (440) while

K̄ = − log
(
−iε(XI F̄I − FIX̄I)

)
= − log(−K) (540)

generalizes (350). The expressions (346) for the projectable tensor, and K =

NIJX
IX̄J = −1 for the D-gauge are valid for both values of ε.

Dimensional reduction relates the scalar manifolds of the two theories by

assigning to every PSR manifold M̄ of real dimension n = n(5) a PSεK manifold

N̄ of real dimension 2n+ 2 = 2n(4). The additional two scalars come from the

reduction of the five-dimensional supergravity multiplet, one from the metric,

one from the graviphoton. The resulting map

r̄ε : {PSR manifolds} → {PSεK manifolds} , M̄n 7→ N̄2n+2 (541)

is called the supergravity r-map.

For dimensional reasons N̄ 6∼= TM̄ , which raises the question how to under-

stand the geometry of this map. So far we have considered Poincaré supergravity

in an on-shell formulation. For many purposes, including having full manifest

symplectic covariance, working off-shell, and including higher derivatives, one

needs to have the superconformal off-shell version of the dimensional reduction,

and for the r̄-map. Here we focus on the scalar geometry. The full off-shell

reductions of five-dimensional superconformal vector and hypermultiplets cou-

pled to the Weyl multiplet can be found in [101, 102]. In the superconformal

setting we have an (n+ 1)-dimensional real cone Mn+1 over M̄n and a (2n+ 4)-

dimensional ε-complex cone N2n+4 over N̄2n+2. Since the superconformal the-

ories are gauged versions of rigid superconformal theories, it is natural to apply

the rigid r-map to Mn+1. This yields an ASεK manifold N̂2n+2, which is not

conical. Note that the dimensional reduction of a rigid superconformal sym-

metry breaks conformal symmetry, as follows immediately from our results on

the r-map. The cubic Hesse potential of M̄n+1 maps to a cubic prepotential for

N̂2n+2, but rigid superconformal symmetry requires a prepotential which is ho-

mogeneous of degree two. To lift the supergravity r-map M̄n 7→ N̄2n+2 to a map

Mn+1 7→ N2n+4 between the associated conical manifolds, one needs to combine

the rigid r-map Mn+1 7→ N̂2n+2 with another map called the ‘conification map’
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con : N̂2n+2 7→ N4n+2, which canonically, that is without arbitrary choices and

only using given data, assigns a cone N4n+2 to the non-conical manifold N̂2n+2.

Such a conification map has been constructed, for the case of space-like re-

duction (ε = 1) in [46],[47].50 This conification map induces a map N̂2n+2 7→
N̄2n+2 between ASK manifolds and PSK-manifolds of the same dimension,

called the ASK/PSK correspondence. The situation is summarized in the fol-

lowing diagram

M � r //
_

SC
��

N̂ � con //
�

ASK/PSK

))

N_

SC
��

M̄ �
r̄

// N̄

(542)

where ‘SC’ indicates a superconformal quotient. Since the rigid r-map relates a

cubic Hesse potential h(σa) to a cubic prepotential FN̂ (Xa), one expects that

the conification map yields a prepotential of the form FN (XI) = FN̂ (Xa)/X0

for the CASεK manifold N . While this turns out to be correct, we stress that it

is not clear a priori how to formulate the relation between N̂ and N in a way that

is independent of a choice of coordinates. Note that the special coordinates Xa

on N̂ are unique up to transformations in Sp(2n+2,R)nC2n+2, while the conical

special coordinates XI on N are unique up to transformations in Sp(2n+ 4,R).

Understanding the geometric meaning of the conification of N̂ into N requires

in particular to relate these two group action to one another.

The conification map

The concepts of Lagrangian pairs and of special Kähler pairs, which were

introduced in section 5.4.2, are needed for defining the conification of ASK

manifolds. It turns out that the conification map can be formulated such that

it applies to any ASK-manifold, not only to those which can be obtained using

the rigid r-map:

con : {ASK manifolds} → {CASK manifolds} , N̂2n 7→ N2n+2 . (543)

Compared to the previous paragraphs we have shifted n 7→ n − 1 in order to

stress that this construction is valid for any ASK manifold.51

50While it should be straightforward to extend this to the para-complex setting, we restrict
ourselves to reviewing published work.

51The case n = 0 can be interpreted as mapping the zero-dimensional ASK manifold {pt}
consisting of a single point to the CASK manifold C with its standard flat metric, correspond-
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Consider the complex symplectic vector space C2n+2 with Darboux coor-

dinates (XI ,WI), where I = 0, . . . , n. The vector field ∂W0
is Hamiltonian

with moment map X0 and the symplectic reduction52 with respect to ∂W0
can

be identified with the symplectic vector space C2n with Darboux coordinates

(Xa,Wa), a = 1, . . . , n:

{X0 = 1}/〈∂W0
〉 ∼= C2n . (544)

In section 5.4.2 we introduced the group GC = Sp(C2n)nHeis2n+1(C) which acts

on Lagrangian pairs by the affine representation ρ̄ : GC → AffSp(C2n)(C2n). As

shown in [46] and reviewed in A.19 this affine representation can be extended to a

linear symplectic representation of GC on C2n+2. Based on this observation, the

conification of ASK manifolds can be formulated locally using Lagrangian pairs

and special Kähler pairs, and then globalized using a principal bundle based on

the subgroup GSK ⊂ GC. Recall from section 5.4.2 that any ASK manifold can

be described locally by a special Kähler pair (φ, F ), that is an embedding φ :

N̂ ⊃ U → C2n defined by a prepotential F , where φ = dF . The special Kähler

pair (φ, F ) determines a Lagrangian pair (L, f), consisting of a Lagrangian

submanifold L ⊂ C2n together with a Lagrange potential f . To describe CASK

manifolds in this approach one needs to add the condition that the embedding φ

is conical, as defined in section 5.2. The corresponding Lagrangian submanifolds

are called regular Lagrangian cones. Proposition 3.4 of [46] establishes a one-

to-one correspondence between Lagrangian pairs in C2n and regular Lagrangian

cones in C2n+2, provided by two maps called conification con and reduction

red = con−1. The action of the group GSK ⊂ GC is equivariant with respect

to these maps, which allows to define the conification of special Kähler pairs.

Up to the action of GSK the conification works by ‘homogenization’ of the

prepotential,

FN̂ (X1, . . . , Xn) 7→ FN (X0, X1, . . . Xn) = (X0)2FN̂ (X1/X0, . . . , Xn/X0) .

(545)

Interestingly, only the action of the subgroup G = Sp(R2n) n Heis2n+1(R) pre-

serves the induced Kähler metric on the Lagrangian cone. This means that the

ing to a quadratic prepotential.
52See A.14 for a review of Hamiltonian vector fields, moment maps and symplectic reduc-

tions.
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supergravity r-map admits non-trivial deformations, which at the level of the

prepotential correspond to adding terms of the form

δF = i(a0aX
0Xa + c(X0)2) , a0a, c ∈ R . (546)

We will discuss the physical interpretation of these deformations below. Having

defined the conification of special Kähler pairs, the extension to the conification

of general ASK manifolds uses the flat GSK-principal bundle of special Kähler

pairs introduced in section 5.4.2. Roughly speaking, starting with a local conifi-

cation of N̂ using a special Kähler pair (φ, F ) one obtains the global conification

N of N̂ by maximal analytical extension of (φ, F ). We refer to [46] for details.

8.3.3. The deformed supergravity r-map

Using the conification N̂2n+2 7→ N2n+4 we obtain the ASK/PSK corre-

spondence N̂2n+2 7→ N̄2n+2, while composing the rigid r-map with the coni-

fication map we can lift the supergravity r-map to the superconformal level,

Mn+1 7→ N2n+4. More precisely, while the homogenized prepotential (545)

matches with the result of the reduction of five-dimensional vector multiplets,

the conification map allows to include the non-trivial deformations (546). Such

terms are allowed for four-dimensional vector multiplets, but disappear when

a decompactification limit to five-dimensions is performed [103, 104]. Terms of

the form (546) with a0a = 0 but c 6= 0 do actually occur in string theory. In

type-II compactifications on Calabi-Yau three-folds they arise as worldsheet in-

stantons with a coefficient proportional to the Euler number χ of the three-fold

[105, 106], while in heterotic compactifications on K3× T 2 they are part of the

one-loop corrections and proportional to an expansion coefficient of a (model

dependent) modular form [107, 108, 109, 110]. We remark that deformations

where a0a 6= 0 and c = 0 do not have a known realization in string theory. Note

that δF in (546) has purely imaginary coefficients, and is therefore distinct from

terms of the form δ̂F = 1
24c2IX

0XI , which arise in IIA-compactifications, where

c2I are the components of the second Chern class. Terms of the form δ̂F have

real coefficients, and can be absorbed by a symplectic transformation. Thus

they do not provide a non-trivial deformation, while (546) does.

8.4. Reduction from four to three dimensions: the c-map

8.4.1. Reductions to three dimensions

Compared to the generic situation considered in section 8.1, reductions to

three dimensions have an enhanced number of scalar fields, because abelian
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vector fields can be dualized into scalars. Consider the generalized Maxwell

Lagrangian

L(A) = −1

2
F ∧ ∗F (547)

for a p-form field strength F = dA in n = t+s dimensions, where t is the number

of time-like dimensions, more precisely, the number of negative eigenvalues of

the metric. By promoting the Bianchi identity dF = 0 to a field equation using

a Lagrange multiplier (n−p−1)-form B, and subsequently eliminating F by its

algebraic equation of motion, one arrives, after dropping any boundary terms

resulting from integration by parts, at the dual Lagrangian

L̃(B) = (−)t
1

2
G ∧ ∗G , (548)

where G = dB is the Hodge dual of F . Note that the sign of the general-

ized Maxwell term flips whenever the number of time-like dimensions (negative

eigenvalues of the metric) is even, in particular in Euclidean signature, while it

remains the same for an odd number of time-like dimensions, in particular in

Lorentzian signature.53

Consider now starting with a four-dimensional action with one ε1-complex

scalar and one abelian gauge field.

S =

∫
d4x

(
−1

2
∂µX∂

µX̄ − 1

4
FµνF

µν

)
. (549)

Upon reduction to three dimensions we end up with four real scalars: the real

and imaginary parts54 of X = σ + iε1b, the component p = A∗ of the four-

dimensional vector field along the direction we reduce over, and the scalar s we

gain by dualizing the three-dimensional abelian vector field Am. For ε1 = −1

we take the four-dimensional theory to have signature (− + ++) and consider

both a space-like reduction, ε2 = −1, and a time-like reduction, ε2 = 1. For

ε1 = 1, we take the four dimensional theory to have signature (+ + ++), and

only a space-like reduction, ε2 = −1 is possible.

The corresponding three-dimensional actions are

S =

∫
d3x

(
−1

2
∂mσ∂

mσ +
ε1

2
∂mb∂

mb+
ε2

2
∂mp∂

mp− ε1ε2

2
∂ms∂

ms

)
. (550)

53Irrespective of whether we choose a mostly plus or mostly minus convention for the metric,
the sign of the kinetic energy is preserved in Lorentzian and reversed in Euclidean signature.

54Here and in the following ‘real part’ and ‘imaginary part’ is short for ‘ε-real part’ and
‘ε-imaginary part,’ respectively.
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For ε1 = ε2 = −1 we can combine the four real scalars into one scalar valued in

the quaternions H−1 := H,

q = σ + ib+ jp+ kq , q̄ = σ − ib− jp− kq , (551)

where i, j, k anticommute pairwise, and where i2 = j2 = k2 = −1. In the

other cases we can combine them into a scalar valued in the algebra H1 of para-

quaternions, where two of the complex units are replaced by para-complex units.

For example, for ε1 = −1, ε2 = 1 we can use (551) with j2 = k2 = 1.55 To

treat both cases in parallel we use an ε-quaternionic notation where Hε denotes

the quaternions for ε = −1 and the para-quaternions for ε = 1.56 The resulting

action takes the form

S =

∫
d3x

(
−1

2
∂mq∂

mq̄

)
. (552)

For theories with several interacting scalars this type of rewriting is not prac-

tical, but it illustrates that the target space geometries that one obtains by

dimensionally reducing four-dimensional vector multiplets are ε-quaternionic

geometries. More specifically, when dimensionally reducing vector multiplets

and dualizing all the three-dimensional vector fields, the resulting supersym-

metry representations are hypermultiplets, and the target space geometry is

ε-hyper-Kähler (ε-HK) in the rigid and ε-quaternionic Kähler (ε-QK), a.k.a.

ε-quaternion-Kähler in the supergravity case.

8.4.2. The rigid c-map

We now turn to the reduction of a four-dimensional bosonic on-shell vector

multiplet Lagrangian of the form (528). This section is based on [78], to which

we refer for details.57 The parameter ε1 = ±1 labels the four-dimensional scalar

target geometry, which is affine special Kähler for Lorentzian and affine special

para-Kähler for Euclidean space-time signature, with a general ε1-holomorphic

prepotential. The second parameter ε2 = ±1 distinguishes between space-like

reduction and time-like reduction, where the latter is only possible if we start in

55See A.21 for a brief review of quaternions, para-quaternions, and the related ‘ε-
quaternionic’ geometric structures.

56We write ε1, ε2 for signs related to the four-dimensional Lagrangian and its reduction
to three dimensions, respectively, while using ε when talking about ε-complex structures in
general.

57The conventions used in [78] are slightly different from those used in this review, which
leads to various constant rescalings of fields.
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Lorentzian signature. After dualization of the three-dimensional vector fields,

the Lagrangian takes the form

L = −NIJ∂mXI∂mX̄J + ε2(NIJ − ε1RIKN
KLRLJ)∂mp

I∂mpJ (553)

+4ε1ε2RIKN
KJ∂mp

I∂msJ − 4ε2ε2N
IJ∂msI∂

msJ .

Here pI ∝ AI∗ are the scalar components of the four-dimensional vector fields

and sI the scalars obtained from dualizing the three-dimensional vector fields.

The target space geometry of the three-dimensional theory is hyper-Kähler

for ε1 = ε2 = −1 [111] and para-hyper-Kähler for ε1ε2 = −1 [78]. It is possible

to combine the real fields (pI , sI) into ε-complex coordinates WI (where ε =

−ε1ε2) and to make the ε-hyper-Kähler geometry of the target space manifest

by finding explicit expressions for the three ε-complex structures and for an ε-

Kähler potential in terms of the special geometry data of the four-dimensional

theory [78]. Alternatively, one can work in real coordinates. The ε1-complex

version of the expression (296) for the Hessian metric on the four-dimensional

scalar target space is

(Hab) =

 NIJ − ε1RIKN
KJRJL 2ε1RIKN

KJ

2ε1N
IKRKJ −4ε1N

IJ

 . (554)

Replacing the ε1-complex scalars XI by special real coordinates qa, and com-

bining the remaining real scalars into the symplectic vector q̂a = (pI , sI), we

obtain

L = −Hab(q)∂mq
a∂mqb + ε2Hab(q)∂mq̂

a∂mq̂b . (555)

From this expression it is manifest that we can interpret the target space N

of the three-dimensional theory as the tangent bundle N = TM of the ASε1K

target manifold M of the four-dimensional theory, equipped with the Sasaki-like

metric

ds2
N=TM = Hab(dq

adqb − ε2dq̂
adq̂b) . (556)

Similar to the case of the rigid r-map, the special connection ∇ of the ASε1K

manifold M can be used to perform a canonical splitting of TN into a horizontal

and a vertical distribution. Moreover, the special geometry data of M can be

used to show that N = TM globally carries the structure of an ε-HK manifold.

The map induced by dimensional reduction of four-dimensional vector multiplets
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is called the rigid c-map:

cε1,ε2 : {ASε1K manifolds} → {ε−HK manifolds} , M2n 7→ N4n
∼= TM .

(557)

Depending on ε1, ε2 there are three subcases:

1. The spatial c-map, or simply, the (rigid) c-map: ε1 = ε2 = −1, and

ε = −ε1ε2 = 1. This corresponds to the standard, space-like reduction of

vector multiplets in Lorentzian signature, and was first described in [111].

All involved scalar target space geometries are positive definite.58

2. The temporal c-map, ε = −1, ε2 = 1 and ε = −ε1ε2 = 1. This corresponds

to the time-like reduction of a Lorentzian vector multiplet theory and

relates a positive definite scalar geometry to one with neutral signature.

3. The Euclidean c-map, ε1 = 1, ε2 = −1 and ε = −ε1ε2 = 1. This corre-

sponds to the space-like reduction of a Euclidean vector multiplet theory

and relates two target space geometry with neutral signature.

We remark that instead of setting N = TM , we can alternatively take N =

T ∗M , since the metric allows to identify tangent spaces with cotangent spaces.

Then

ds2
N=T∗M = Habdq

adqb − ε2H
abdq̂adq̂b , (558)

where Hab is the inverse of Hab and dq̂a = Habdq
b.59 Thus the cotangent bundle

of an ASε1K manifold is an ε-HK manifold [111, 78]. This is a stronger result

than for generic Kähler manifolds, where it is known that the cotangent bundle

admits the structure of an HK manifold locally, in a neighbourhood of its zero

section [112, 113].

8.4.3. The supergravity c-map and its deformation

We finally turn to the reduction of four-dimensional vector multiplets cou-

pled to supergravity to three dimensions. Our starting point is the bosonic on-

shell Lagrangian (537) in Lorentzian or Euclidean space-time signature, with

a general ε1-holomorphic prepotential. The four-dimensional metric is decom-

posed according to

ds2
4 = gµνdx

µdxν = −ε2e
φ(dx∗ + Vmdx

m)2 + e−φgmndx
mdxn , (559)

58That is, if we impose positive kinetic energy for all fields. Mathematically we can also
consider scalar target spaces with indefinite metrics.

59The integrability condition for the local existence of the functions q̂a, which are fibre
coordinates on T ∗M , follows from Hab being the components of a Hessian metric on M .
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where Vm is the Kaluza-Klein vector and φ the Kaluza-Klein scalar. After

reduction to three dimensions, all abelian vector fields are dualized into scalars.

The bosonic field content of the resulting three-dimensional theory is:

• The three-dimensional metric gmn.

• The n = n(4) ε1-complex four-dimensional scalars zA, where n(4) is the

number of four-dimensional vector multiplets.

• The n + 1 real scalars ζI ∝ AI∗ obtained by reducing the n + 1 four-

dimensional vector fields AIµ.

• The n+1 real scalars ζ̃I obtained by dualizing the n+1 three-dimensional

vector fields AIm.

• The Kaluza-Klein scalar φ and the scalar φ̃ obtained by dualizing the

Kaluza-Klein vector Vm.

The three-dimensional metric does not carry local degrees of freedom while

the 4n + 4 real scalars Re(zA), Im(zA), ζI , ζ̃I , φ, φ̃ are the bosonic components

of 4n+ 4 hypermultiplets, coupled to three-dimensional Poincaré supergravity.

The three-dimensional Lagrangian is [114, 17]

L
(ε1,ε2)
3 =

1

2
R3 − ḡAB̄∂mzA∂mz̄B̄ −

1

4
∂mφ∂

mφ (560)

+ε1e
−2φ

[
∂mφ̃+

1

2

(
ζI∂mζ̃I − ζ̃I∂mζI

)]2

−ε2

2
e−φ

[
IIJ∂mζI∂mζJ − ε1IIJ

(
∂mζ̃I −RIK∂mζK

)2
]
.

The target space geometry of hypermultiplets coupled to supergravity is

quaternionic-Kähler [24]. For Euclidean hypermultiplets obtained by dimen-

sional reduction the target space geometry is para-quaternionic Kähler [19, 17].

The map between scalar geometries induced by dimensional reduction of four-

dimensional vector multiplets coupled to supergravity is called the supergravity

c-map:

c̄(ε1,ε2) : {PSε1K manifolds} → {ε−QK manifolds} , M̄2n 7→ N̄4n+4 . (561)

The properties of the three types of supergravity c-maps are summarized in

Table 5.
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c-map Space-time scalar geometry scalar manifold signature

signature

spatial (1, 3) 7→ (1, 2) PSK 7→ QK (2p, 2q) 7→ (4p+ 4, 4q)

temporal (1, 3) 7→ (0, 3) PSK 7→ PQK (2p, 2q) 7→ (2d, 2d)

Euclidean (0, 4) 7→ (0, 3) PSPK 7→ PQK (r, r) 7→ (2d, 2d)

Table 5: This table summarizes the relations between the space-time signatures, target space
geometries and target space-signatures for the 3 types of supergravity c-maps. We include the
case where the PSK manifold has indefinite signature, which is mathematically well defined,
but corresponds to a vector multiplet theory where some of the fields have negative kinetic
energy. In this case the QK manifold obtained by the spatial supergravity c-map is also
indefinite. Para-Kähler and para-QK manifolds always have neutral signature. Manifolds of
dimension 2n map to manifolds of dimension 4n + 4, therefore d = p + q + 2 in row 2 and
d = r + 1 in row 3.

Showing that the scalar target manifold N̄4n+4 of the Lagrangian (560) is

ε-quaternionic Kähler is somewhat involved, in particular if one wants to have

a global description of N̄4n+4. There are various ways to describe the geometry

of N̄ , which we discuss in turn.

Supergravity c-map spaces as group bundles

The first description of the geometry of N̄ is based on an observation of [114]

for the case ε1 = ε2 = −1: when restricting to constant values of zi, the metric

on the corresponding subspace is Kähler, only depends on the number of vector

multiplets, and is in fact the metric of a Riemannian symmetric space. It was

shown in [4] that if the underlying PSK manifold M̄ is a PSK domain, then the

image under the supergravity c-map is a QK domain of the form N̄ = M̄ ×G,

where G is a solvable Lie group, and where the QK metric gN̄ is a ‘bundle

metric’ gN̄ = gM̄ + gG(p), where gG(p) is a family of left-invariant metric on G

parametrized by p ∈ M̄ . It was also shown in [4] that this construction can be

‘globalized,’ that is one can apply the supergravity c-map domain-wise and then

glue together the resulting QK domains consistently and uniquely to obtain a

QK manifold. Moreover, it was shown that the supergravity c-map preserves

geodesic (and hence metric) completeness, that is, if M̄ is complete so is its

image N̄ under the supergravity c-map. Except for the completeness result

(which heavily relies on the involved metrics being definite), the description of

N̄ by gluing domains should also apply to the case where ε1ε2 = −1. In [17] it

was shown that the image of a PSε1K domain M̄ under c(ε1,ε2) takes the form
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N̄ = M̄ ×G, with a bundle metric gN̄ = gM̄ + gG(p), where G is a solvable Lie

group. The solvable Lie groups G and left-invariant metrics on G were found

to be the following:

1. ε1 = ε2 = −1. This is the standard (spatial) supergravity c-map which

was already considered in [114]. The solvable Lie group is the Iwasawa

subgroup of U(n + 2, 1) and can be identified globally with the complex

hyperbolic space

CHn+2 = U(n+ 2, 1)/(U(n+ 2)× U(1)) (562)

equipped with a positive definite Kähler metric of constant holomorphic

sectional curvature −1.60 The metric on the resulting QK manifold N̄ =

M̄ ×G is positive definite.61

2. ε1 = −1, ε2 = 1. This is the temporal supergravity c-map. The group G

is again the Iwasawa subgroup of U(n+ 2, 1), but with a different, indef-

inite left-invariant metric. It can be identified locally with the indefinite

complex hyperbolic space

CH1,n+1 ∼= U(1, n+ 2)/(U(1, n+ 1)× U(1)) (563)

equipped with a pseudo-Kähler metric of complex signature (1, n+ 1) and

constant holomorphic sectional curvature −1. Note that for non-compact

symmetric spaces of indefinite signature the Iwasawa subgroup does not

act transitively, so that we cannot identify G globally with the above

symmetric space. However, it can be shown that G acts with an open

orbit, thus allowing the identification of G with an open subset of the

symmetric space. The signature of the resulting space M̄ × G is neutral

(2n+ 2, 2n+ 2), as required for a para-quaternionic Kähler manifold.

3. ε1 = 1, ε2 = −1. This is the Euclidean supergravity c-map. The solvable

Lie group G is the Iwasawa subgroup of SL(n+3,R) and can be identified

locally with para-complex hyperbolic space

CHn+2 ∼= SL(n+ 3,R)/S(GL(1)×GL(n+ 2)) (564)

60The ε-holomorphic sectional curvature of an ε-Kähler manifold (M,J, g) is
〈(R(X, JX)JX,X〉/〈X ∧ JX,X ∧ X〉, where X is a vector field, where 〈·, ·〉 is the scalar
product between tensors induced by the metric, and where R is the curvature tensor. It can
be interpreted as the sectional curvature of the ε-complex line X ∧ JX [115, 17].

61We assume, here and in the following case, that the target space metric of the four-
dimensional vector multiplet theory is positive definite.
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equipped with a para-Kähler metric of real signature (n + 2, n + 2) and

of constant para-holomorphic sectional curvature −1. The signature of

M̄ × G is (2n + 2, 2n + 2), as required for a para-quaternionic Kähler

manifold.

The simplest examples for N̄ are the ‘universal hypermultiplets’ obtained by

reducing pure four-dimensional N = 2 supergravity. In this case M̄ = {pt} and

N̄ is locally isometric to one of the following manifolds:

1. For the spatial supergravity c-map, ε1 = ε2 = −1, the target space is

globally isometric to

CH2 ∼= SU(2, 1)/(U(2)× U(1)) . (565)

This is the ‘universal hypermultiplet’ which is obtained by the reduction

of pure N = 2 supergravity. In general c-map spaces the universal hyper-

multiplet spans a distinguished subspace. Note however, that once string

corrections to the hypermultiplet metric are taken into account the uni-

versal hypermultiplet ceases to be an identifiable, ‘universal’ part of the

scalar manifold [116].

2. For the temporal supergravity c-map, ε1 = −1, ε2 = 1, the target space is

locally isometric to

CH1,1 ∼= U(2, 1)/(U(1, 1)× U(1)) . (566)

This is target space for a time-like reduction of pure N = 2 supergravity.

3. For the Euclidean supergravity c-map, the target space is

CH2 ∼= SL(3,R)/S(GL(1)×GL(2)) . (567)

This target space does not only arise in the dimensional reduction of pure

N = 2 Euclidean supergravity [89], but also when dualizing the so-called

double tensor multiplet in Euclidean signature [117]. This reflects that

Euclidean actions which differ by sign flips can be related by using that

dimensional reduction/lifting, Wick rotation and Hodge dualization do

not commute which each other, see also [45], as discussed in section 8.2.

Conification of ε-HK manifolds

We now turn to another way of describing the scalar manifold N̄ . As in

the case of the supergravity r-map, one can lift the supergravity c-map to the
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superconformal level. Within the superconformal formalism, it is not possible

to formulate hypermultiplets off-shell with a finite number of auxiliary fields.

However, as long as the hypermultiplet manifold has sufficiently many isome-

tries, hypermultiplets can be dualized into tensor multiplets, which admit a

superconformal off-shell representation [118]. Alternatively, the projective su-

perspace formalism can be used to describe hypermultiplets off-shell, see also

section 8.4.6. Off-shell formulations of the supergravity c-map were obtained

in [119] using projective superspace, and in [120, 121] using the superconformal

formalism.

We will review the global geometric construction of the supergravity c-map

given in [17], which is inspired by the superconformal approach and which pro-

vides all the data necessary for describing the theory at the superconformal level.

This description also allows a complete and relatively short proof that spaces

in the image of the supergravity c-map are global ε-quaternionic Kähler mani-

folds. Moreover, this proof also applies to a one-parameter family of non-trivial

deformations of the metric obtained from the supergravity c-map.

When working with hypermultiplets the situation regarding the scalar target

spaces is the ε-quaternionic analogon of the real and complex settings for five-

and four-dimensional vector multiplets. To each ε-QK manifold N̄4n+4 describ-

ing n + 1 hypermultiplets coupled to Poincaré supergravity, one can associate

an ε-HK cone N4n+8, that is an ε-HK manifold with a homothetic action of the

group H∗ε of invertible ε-quaternions, such that N̄ ∼= N/H∗ε. Conversely N is

an H∗ε-bundle over N̄ . We remark that while it would be more in line with our

terminology for vector multiplets to use the term ‘conical ε-HK manifold’, we

follow the literature in using ‘ε-HK cone’ instead.

One can obtain the superconformal lift c̃ : M2n+2 7→ N4n+8 of the super-

gravity c-map c : M̄2n 7→ N̄4n+4 by composing the rigid c-map c : M2n+2 7→
M̂4n+4

∼= TM with a conification map con : M̂4n+4 7→M4n+8. The situation is

summarized by the following diagram:

M � c //
_

SC
��

c̃

((
N̂

� con //
�

εHK/QK

))

N_

SC
��

M̄ �
c̄

// N̄

(568)

This diagram induces a correspondence between ε-HK and ε′-QK manifolds of
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the same dimension.62

The ε-HK/QK correspondence

The correspondence can be formulated independently of the supergravity

c-map, and then also applies to ε-HK manifolds N̂ which are not in the image

of the rigid c-map, but specify the conditions stated below. The resulting ε-

HK/QK correspondence generalizes the HK/QK correspondence of [122], which

was applied to the space-like supergravity c-map in [123] in the context of the

twistor approach, see also section 8.4.6 below. We follow [124, 125, 126], who

have extended the HK/QK correspondence to arbitrary signature and to the

para-complex setting.

For an ε-HK manifold N̂ to admit a conification N the following conditions

must hold:

1. N̂ admits a time-like or space-like Killing vector field Z, which is ε-

holomorphic with respect to an ε-complex structure J1, which is part

of ε-HK structure. The Killing vector field Z is Hamiltonian with respect

to the corresponding ε-Kähler form ω1, that is, there exists a function f

such that df = −ω1(Z·, ·).
2. The functions f and f1 = f − 1

2g(Z,Z) are nowhere zero.

3. The Killing vector field Z rotates the other two ε-complex structures, J2

and J3, of the ε-HK structure, that is, LZJ2 = 2εJ3.

Having constructed an ε-HK cone N4n+8, one obtains a corresponding ε-QK

manifold N4n+4 by a superconformal quotient.63 Conversely, given any ε-QK

manifold N̄4n+4, there always exist the associated ε-HK cone (which for ε = −1

is also known as the Swann bundle) N4n+8. One can then obtain an ε-HK

manifold N4n+4 by taking an ε-HK quotient, provided that N4n+8 admits a tri-

holomorphic Killing vector field XN which commutes with the Euler field ξ of

the cone N4n+8, acts freely and satisfies a technical condition regarding the level

sets of its moment map. The existence of such a vector field follows from the

existence of a space-like or time-like Killing vector field X on N̄ , again subject

to a technical condition.64

62Note that ε 6= ε′ can occur, see Table 5.
63Since the construction involves the moment map of Z explicitly, the correspondence allows

a one-parameter deformation to be discussed in 8.4.3.
64We refer to [126] for the details.
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It turns out that the ε-HK/QK correspondence can be formulated without

using the ε-HK cone N4n+8 explicitly. Roughly speaking, three of the four

extra dimensions of the cone do not play an essential role, so that one can take

a shortcut and relate N̂4n+4 and N̄4n+4 via a manifold P4n+5 of real dimension

4n + 5. The manifold P4n+5 is a rank one principal bundle over N4n+4 with

principal action generated by a vector field XP , and simultaneously a rank one

principal bundle over N̄4n+4 with principal action generated by a vector field ZP .

The vector fields XP and ZP are lifts of the Killing vector fields X on N̄4n+4 and

Z on N̂4n+4 that we mentioned before. The manifold P4n+5 is a submanifold

of the ε-HK cone N4n+8, and taking quotients of P4n+5 with respect to the

principal actions of XP and ZP is consistent with taking an ε-HK quotient and

an ε-QK quotient of N4n+8, respectively. The situation is summarized in the

following diagram:

(N,XN , ZN )

/H∗ε

		

/H∗ε

��

(P,XP , ZP )

/〈XP 〉

xx

/〈ZP 〉

&&

?�

OO

(N̂ , Z)
εHK/QK

// (N̄ ,X)
εQK/HK

oo

Explicit expressions for the all relevant geometric data on N̂ , N̄ ,N and P can

be found in [124, 125, 126].

A symplectic parametrization of the supergravity c-map

The space P4n+5 appears naturally in the dimensional reduction of four-

dimensional vector multiplets, if we use special real coordinate for the CASK

manifold M and insist on maintaining manifest symplectic invariance after di-

mensional reduction. This leads to a reformulation of (560) in terms of a gauged

sigma model with target space P4n+5, which is equivalent to a sigma model with

target space N̄4n+4 [127].

This reformulation requires a couple of steps. First we replace the four-

dimensional scalars zA by the projective scalars XI which take values in M2n+2:

ḡAB̄∂mz
A∂mz̄B̄ = g̃

(0)
IJ ∂mX

I∂mX̄J . (569)
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Here g̃
(0)
M = π∗ḡM̄ is the lift of the PSK metric to the CASK manifold. Since

g̃
(0)
M has a two-dimensional kernel, this rewriting does not increase the number of

propagating degrees of freedom. The right hand side can be viewed as a gauged

sigma model, where the connection gauging the action of C∗ε1 ∼= R>0 × U(1)ε1

on M has been integrated out.65 Here

U(1)ε1 =


U(1) , for ε1 = −1 ,

GL(1,R) , for ε1 = 1 ,

(570)

is the ε1-unitary group which is part of the R-symmetry group of the super-

symmetry algebra. Rewriting the vector field couplings in terms of XI is trivial

since the matrix NIJ = RIJ + iε1IIJ is homogeneous of degree zero.

The second step is to make the field redefinition Y I := eφ/2XI , which ab-

sorbs the Kaluza-Klein scalar φ into the superconformal scalarsXI . If we impose

the D-gauge on XI , then φ can be expressed as a function of the new scalars

Y I :

−iε1(XI F̄I − FIX̄I) = 1⇒ −iε1(Y I F̄I − FI Ȳ I) = eφ . (571)

From now on we do not regard φ as an independent field, but as a function

of the fields Y I . Since the fields Y I are subject to U(1)ε1 -gauge transforma-

tions, the (n + 1) ε1-complex scalars Y I represent 2n + 1 propagating degrees

of freedom. Geometrically, 2n scalars correspond to excitations transverse to

the C∗ε1 -action on M and thus to the independent four-dimensional scalars zi,

while the additional scalar corresponds to the radial direction of the real cone

M = R>0 × S, where S is the ε1-Sasakian submanifold of M defined by the

D-gauge.

The third step is to use special real coordinates on M . Since Y I can be

interpreted as special ε-holomorphic coordinates on M , we can define associated

special real coordinates qa = (xI , yI),

Y I = xI + iε1u
I(x, y) , FI(Y ) = yI + iε1vI(x, y) , (572)

which compared to the usual special real coordinates have been rescaled by a

factor eφ/2 involving the Kaluza-Klein scalar φ.

65This proceeds by imposing the K-gauge bµ = 0 on (426) and then eliminating the U(1)
gauge field Aµ by its equation of motion, see section 6.
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The fourth step is to express the vector field coupling matrix NIJ in terms

of the tensor field Ĥab using (337). Finally, instead of using the tensors Hab and

Ĥab it is convenient to express all couplings in terms of the Hessian metric

H̃ab = ∂2
a,b

[
−1

2
log(−2H)

]
= − 1

2H
Hab +

1

2H2
HaHb (573)

where

H(qa) = −1

2
eφ =

iε
2

(Y I F̄I − FI Ȳ I) (574)

is the Hesse potential for the CASε1K-metric on M . Defining q̂a := 1
2 (ζI , ζ̃I)

and

(Ωab) =

 0 1n+1

−1n+1 0

 (575)

we can rewrite (560) in the form [127, 17]

L
(ε1,ε2)
3 =

1

2
R3 − H̃ab

(
∂mq

a∂mqb − ε2∂mq̂
a∂mq̂b

)
+
ε1

H2

(
qaΩab∂mq

b
) (
qaΩab∂

mqb
)

−2ε1ε2

H2

(
qaΩab∂mq̂

b
) (
qaΩab∂

mq̂b
)

+
ε1

4H2

(
∂mφ̃+ 2q̂aΩab∂mq̂

b
)(

∂mφ̃+ 2q̂aΩab∂
mq̂b

)
. (576)

This is a non-linear sigma model for 4n + 5 real scalars qa, q̂a, φ̃ coupled to

gravity. Its target space P4n+5 is the total space of the rank one principal

bundle π : P4n+5 → N̄4n+4 which occurs when constructing the supergravity

c-map using the ε-HK/QK correspondence. Since the scalar fields qa are subject

to U(1)ε1 gauge transformations, there are only 4n + 4 propagating degrees of

freedom. The symmetric tensor

gP = H̃ab(dq
adqb − ε2dq̂

adq̂b)− ε1

H2
(qaΩabdq

b)2 +
2ε1ε2

H2
(qaΩabdq̂

b)2

− ε1

4H2
(dφ̃2 + 2q̂aΩabdq̂

b)2 (577)

defined by the Lagrangian (576) has a one-dimensional kernel and is projectable

with respect to the U(1)ε1-action. Thus (576) is a gauged non-linear sigma

model (with the U(1)ε1-connection integrated out), and defines, by projection

onto orbits, a non-linear sigma model with target space N̄ = P/U(1)ε1 and

ε-QK metric gN̄ , where gP = π∗gN̄ .
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As explained in section 5.3, there is no natural choice of an U(1)ε1-gauge

which realizes the PSK manifold M̄ canonically as an embedded submanifold

of the CASK manifold M , because the distribution orthogonal to the U(1)ε1 -

action is not integrable. Similarly, there is no preferred way to identify N̄ with

a submanifold of P . Instead of making a conventional choice, it is possible and

advantageous to work with the P -valued gauged sigma model. The coordinates

we have constructed on P are either symplectic vectors, qa, q̂a, or symplectic

scalars, φ̃. Fixing a U(1)ε1 gauge requires to impose a condition on qa and

symplectic covariance is lost. However for many purposes, including to prove

that (N̄4n+4, gN̄ ) is ε-QK, one can work on P4n+5 and maintain symplectic

covariance.

Describing the supergravity c-map using a gauged sigma model with target

P4n+5 amounts to replacing the diagram (568) by

M � c //
_

SC
��

N̂ ∼= TM � //
�

εHK/QK

++

P ∼= TM × R_

/U(1)ε1

��

M̄ �
c̄

// N̄

(578)

Defining the one-forms

ρ = H−1qaΩabdq
b , σ = H−1qaΩabdq̂

b , τ = H−1q̂aΩabdq̂
b (579)

the projectable tensor (577) takes the form

gP = g̃TM − ε1ρ
2 + 2ε1ε2σ

2 − ε1(dφ̃+ τ)2 (580)

where

g̃TM = H̃ab(dq
adqb − ε2dq̂

adq̂b) (581)

is the image of g̃M = H̃abdq
adqb under the rigid c-map. The manifold P4n+5 is

defined as TM×R, where R is parametrized by φ̃. The tensor gP is obtained by

twisting the product metric g̃TM −ε1dφ̃
2 using the one forms ρ, σ, τ . The vector

field ∂/∂φ̃ leaves gP invariant and generates a principal action on P which allows

to recover TM as a quotient TM ∼= P/R. We remark that one can replace R by

S1, which is indeed the choice usually made in the ε-HK/QK correspondence.

The choice R is suitable for the supergravity c-map, where φ̃ is the dualized

Kaluza-Klein vector. The principal C∗ε1 -action on M can be lifted to TM and

to P , which then allows to take a quotient of P by the principal action of
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U(1)ε1 ⊂ C∗ε1 . The tensor gP is invariant under and transversal with respect to

this group action and defines a non-degenerate metric gN̄ on N̄ = P/U(1)ε1 .

Alternatively, we interpret the diagram 578 such that the rigid c-map is

applied to the CASε1K metric gM = Habdq
adqb to obtain the ε-HK metric

gTM = Hab(dq
adqb − dq̂adq̂b). The tensor gP is then obtained by a conformal

rescaling and twisting by the one-forms dH̃ = H̃adq
a and H̃adq̂

a in addition to

the modifications which relate g̃TM to gP . Note that for both gM and g̃M their

relation to gP is determined by the ε-HK/QK correspondence (equivalently, by

conification), and therefore is canonical.

Proving that a metric is an ε-QK metric is usually difficult, because an

ε-QK manifold need not admit any globally defined and integrable ε-complex

structures. One advantage of constructing N̄ as a quotient of P ∼= TM × R is

that TM is ε-HK. This can be used to construct data on P which by projection

define an ε-QK structure on N̄ , thus providing a concise proof that N̄ is ε-

QK. We refer to [17] for details. As shown there, calculations on P can be

translated into calculations on N̄ using local sections. The original proof of

[114] that spaces in the image of spatial supergravity c-map are QK uses an

adapted co-frame on N̄ . The approach of [17] also allows to show that ε-QK

manifolds obtained from the supergravity c-map admit integrable ε-complex

structures. In particular, the ε1-complex structure of M induces an integrable

ε1-complex structure on N̄ which is part of the ε-QK structure.66 There also

always exists a second integrable ε1-complex structure, which is not part of the

ε-QK structure, and which differs from the first integrable structure by a sign

flip on a two-dimensional distribution. A third integrable structure only exists

if the Hessian metric gM on M has a quadratic Hesse potential, ∇gM = 0.

The parametrization (576) of the c-map has turned out to be useful for

obtaining explicit non-extremal black hole and black brane in solutions, as well

as cosmological solutions, for four-dimensional N = 2 vector multiplets coupled

to Poincaré supergravity, without and with gauging [16, 129, 130, 131].67

66For the spatial supergravity c-map this was first shown in [128].
67Non-extremal solutions for five-dimensional vector multiplets can be obtained in a similar

way using the r-map [132].
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From Griffiths to Weil flags

It was observed in [133] and [134] that the spatial supergravity c-map involves

the so-called Weil intermediate Jacobian, which parametrizes Hodge structures

on Calabi-Yau three-folds. Similarly, the rigid c-map involves the so-called Grif-

fiths intermediate Jacobian [49]. While this can be interpreted in the context

of Calabi-Yau compactifications, where the scalar manifold are related to the

moduli spaces of complex and Kähler structures, the supergravity c-map is well

defined for any theory of N = 2 vector multiplets coupled to supergravity.

Therefore, one should be able to understand the appearance of the Griffiths

and Weil Jacobians without reference to Calabi-Yau manifolds. In [4] a geo-

metrical interpretation was given based on the realization of CASK manifolds

as Lagrangian cones in V = C2n+2 = T ∗Cn+1 We have already noted that be-

sides the CASK metric gM = Habdq
adqb the CASK manifold M admits another

metric ĝM = Ĥabdq
adqb, which, up to an overall factor, differs by a sign flip

along the distribution spanned by the vector fields ξ and Jξ which generate

the C∗-action. This operation can be viewed as a reflection on V which in-

duces an Sp(R2n+2) equivariant diffeomorphism between certain flag manifolds

defined over V . These flag manifolds are of the same type as the Griffiths and

and Weil intermediate Jacobians, and have therefore been dubbed Griffiths and

Weil flags, respectively.

From our description of the supergravity c-map it is clear why it involves

a map from Griffiths to Weil flags. In a rigid vector multiplet theory the ma-

trix encoding the vector field couplings is Hab, while in a local vector multiplet

theory it is Ĥab. The rigid c-map generates a term of the form Habdq̂
adq̂b in

the metric on TM , which in the three-dimensional Lagrangian corresponds to

the dimensional reduction of the vector field of a rigid vector multiplet theory.

The twisting relating gTM to gP involves (among other things) the replace-

ment Habdq̂
adq̂b 7→ Ĥabdq̂

adq̂b, where the latter term corresponds in the three-

dimensional Lagrangian to the dimensional reduction of the vector fields of local

vector multiplets. Thus the HK/QK part of the supergravity c-map acts as a

reflection on V which replaces Griffiths flags by Weil flags.

The deformed supergravity c-map

Similar to the ASK/PSK correspondence, the ε-QK-metrics obtained from

the ε-HK/QK correspondence depend explicitly on the choice of a moment map

for the ε-holomorphic vector field Z on N̂ . This results in a one-parameter
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family of metrics g
(c)

N̄
, with c = 0 corresponding to the supergravity c-map

[123]. It has been shown directly, that is without invoking supersymmetry, that

while the deformation is non-trivial, the metrics g
(c)

N̄
with c 6= 0 are still ε-QK

[124, 125, 126]. In the QK case the deformation corresponds, for a specific value

of c, to the one-loop correction to the hypermultiplet metric in type-II Calabi-

Yau compactifications [135, 136]. Explicit expressions for the generalization of

(577), (580) can be found in [125, 126].

8.4.4. Results on completeness, classification and symmetries of PSR, PSK and
QK manifolds

In this section we collect results on the geodesic completeness, classifica-

tion and isometries of PSR, PSK and QK manifolds. Recall that a pseudo-

Riemannian manifold is called homogeneous if its group of isometries acts tran-

sitively, and globally symmetric if every point is the fixed point of an involutive

isometry. A pseudo-Riemannian manifold is called geodesically complete, if any

geodesic can be extended to infinite affine parameter. If the metric is positive

definite, geodesic completeness is equivalent to metric completeness. Pseudo-

Riemannian symmetric spaces are in particular homogeneous, and homogeneous

spaces are geodesically complete. Locally, symmetric spaces are characterized

by their Riemann tensor being parallel. A manifold of co-homogeneity k is a

manifold where the minimal co-dimension of orbits of the isometry group is k.

It was proved in [4] that for metrics of positive signature the supergravity

r-map and c-map preserve geodesic completeness. This is useful for obtaining

new results in Riemannian geometry, because it allows to generate complete

PSK manifolds from complete PSR manifolds, and complete QK manifolds from

complete PSK manifolds.

The r-map and c-map do not only preserve completeness, but also preserve

isometries and in fact create new ones. The obvious induced isometries are

those descending from higher-dimensional gauge symmetries whenever a vector

field is reduced dimensionally. But there are additional ‘hidden’ symmetries as

well. Without aim for completeness, some relevant references are [114, 137, 39,

138]. There is also a relation between symmetric PSR manifolds and Jordan

algebras, as was already observed in [18]. This has been studied extensively in

the literature, but lies outside the topic of this review. We refer the interested

reader to [139, 140, 141] and references therein.

All homogeneous (and thus in particular all symmetric) PSR manifolds have
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been classified in [142]. A simple criterion for the completeness of PSR manifolds

was proved in [143]. Complete PSR manifolds of dimension one and two have

been classified in [4] and [144], respectively. Already in dimension two there are

continuous families of non-isomorphic PSR spaces. Complete PSR manifolds

based on reducible cubic polynomials have been classified in [145] and belong to

four infinite series, two of which consist of homogenous spaces while the other

two consist of spaces of co-homogeneity one.

Homogeneous (pseudo-)PSK manifolds of the form G/K, where G is a semi-

simple Lie group and K a compact subgroup are automatically symmetric spaces

[146]. Examples of PSK manifolds with co-homogeneity one have been con-

structed by applying the r-map to non-homogeneous PSR manifolds [145]. A

general criterion of the geodesic completeness of PSK manifolds has been proved

in [147].

The spatial c-map is a powerful tool for the construction and classification of

quaternionic Kähler manifolds, which are the most complicated non-exceptional

types of Riemannian manifolds with special holonomy. The hypermultiplet man-

ifolds occurring in supergravity always have negative scalar curvature [24]. Alek-

seevskian spaces, that is homogeneous QK spaces of negative scalar curvature

which admit a completely solvable68 and simply transitive group of isometries

have been classified in [148]. The classification of homogeneous QK manifolds

generated by the supergravity c-map [142] contains a class of spaces not con-

tained in the original list of [148]. It was then shown in [149] that these were the

only cases missing, thus completing the classification. With the exception of the

quaternionic hyperbolic spaces HHn+1, all Alekseevsky spaces can be obtained

from the supergravity c-map.

Mathematically the supergravity c-map is extremely useful because it al-

lows the explicit construction of non-homogeneous quaternionic-Kähler spaces.

Moreover, since it preserves completeness, one can use complete, non-homogeneous

PSK manifolds to obtain complete, non-homogeneous QK manifolds. Two in-

finite families of complete QK manifold of co-homogeneity 1 have been con-

structed in [145].

While the supergravity c-map preserves completeness, this is no longer true

68A solvable Lie group action is called completely solvable if the generators in the adjoint
representation have real eigenvalues.
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for the deformed supergravity c-map, that is if one includes a non-trivial con-

stant c 6= 0 in the choice of the moment map for the vector field Z on the partner

manifold under the HK/QK correspondence. However, one can show that every

PSK manifold which exhibits so-called regular boundary behaviour is complete,

and that its image under the deformed supergravity c-map is a complete QK

manifold for c ≥ 0 [147]. The same is true for complete PSK manifolds with a

cubic prepotential, irrespective of their boundary behaviour [147]. This allows

to construct a huge class of complete non-homogeneous QK manifolds. The

results of [147] have a curious implication for physics, where in type-II Calabi-

Yau compactifications the parameter c corresponds to the one-loop correction

to the hypermultiplet metric and is proportional to the Euler number of the

Calabi-Yau three-fold. Given that mirror symmetry is a symmetry of string

theory and maps the Euler number to its negative, is it surprising that whether

the one-loop correction preserves completeness depends on the sign of the Euler

number. Understanding this observation will likely involve to also consider the

effect of further (instanton) corrections to the hypermultiplet metric.

The supergravity c-map also allows to construct homogeneous and non-

homogeneous pseudo-QK and para-QK spaces. Due to the lack of a complete-

ness result comparable to [4] much less is known. The classification of sym-

metric pseudo-QK and para-QK spaces can be obtained from the classification

of pseudo-Riemannian symmetric spaces by analysing their isotropy represen-

tations [150]. The Hesse potentials of symmetric PSK take the form H =
√
Q,

where Q is a homogeneous polynomial of degree four. These polynomials have

been determined in [151]. They have an immediate geometric interpretation

for the associated QK manifold, because they determine the so-called quartic

Weyl tensor, which is the traceless part of the curvature tensor of a QK man-

ifold. Explicit descriptions for the homogeneous PSK manifolds in the image

of the supergravity c-map, including their prepotentials, Kähler potentials and

realizations as bounded open domains can be found in [152].

8.4.5. The c-map in string theory

In this review we have focussed on the c-map as a construction in super-

gravity. Originally the c-map was formulated in the context of string theory,

more precisely type-II compactifications on Calabi-Yau three-folds [111]. By

T-duality type-IIA string theory on X × S1
R, where X is Calabi-Yau three-fold

and S1
R is a circle of radius R (in string units), is equivalent to type-IIB string
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theory on X × S1
R−1 . By taking the limits R → 0 and R → ∞ one obtains a

relation between type-IIA and type-IIB string theory compactified on the same

Calabi-Yau manifold, thus somewhat complementary to mirror symmetry. This

form of T-duality is often referred to as the c-map, though using the terminol-

ogy of this review it actually combines the supergravity c-map and its inverse,

as follows. Given a type-IIA compactification on X, we have an N = 2 su-

pergravity theory with n
(A)
V vector multiplets and n

(A)
H hypermultiplets and a

scalar manifold M̄(A) × N̄(A) which is the product of a PSK and a QK mani-

fold. Upon reduction to three dimensions, this becomes supergravity coupled to

n
(A)
V + 1 + n

(A)
H hypermultiplets, with scalar manifold N̄ ′(A) × N̄(A), where N̄ ′(A)

is the QK manifold obtained by applying the c-map to M̄(A).

Applying T-duality and lifting back to four dimensions results in an effective

IIB-theory with n
(B)
V = n

(A)
H − 1 vector multiplets and n

(B)
H = n

(A)
V + 1 hyper-

multiplets. The scalar manifold is M̄(B) × N̄(B), where M̄(B) is the image of

N̄(B) = N̄ ′(A) under the inverse of the supergravity c-map. Note the shifts ±1

in the number of multiplets which accounts for the degrees of freedom residing

in the Poincaré supergravity multiplet.

This construction allows the obtain the tree-level hypermultiplet metrics

for the type-IIA/B theory from the vector multiplet metrics of type-IIB/A.

However type-II hypermultiplet metrics are subject to perturbative and non-

perturbative corrections. The perturbative corrections arise at the one-loop

level and have been discussed above. Non-perturbative corrections have been

studied extensively by combining string dualties with the twistor approach,

see below. For Calabi-Yau three-folds X which are K3-fibrations, the type-II

compactification on X is believed to be dual to a heterotic compactification on

K3 × T 2 with a suitable choice of an E8 × E8 or Spin(32)/Z2 vector bundle

V → K3. While heterotic hypermultiplet metrics are believed to be exact at

string tree level, they are hard to compute because they are related to the moduli

spaces of vector bundles (instantons) on a K3 surfaces.

8.4.6. The twistor approach and instanton corrections to hypermultiplet metrics

Every quaternonic Kähler space N̄4n admits an associated twistor space

Z4n+2, which, roughly speaking, is the S2 ∼= P 1
C bundle obtained by attaching

to each point of N̄4n+2 the sphere {aJ1 + bJ2 + cJ3|a2 + b2 + c2 = 1} of complex

structures generated by the endomorphisms J1, J2, J3 which locally spann the

quaternionic structure. The twistor space can be embedded into the HK cone
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(or Swann bundle) N4n+4 and thus ‘sits half-ways’ between N̄4n and N4n+4.

Twistor spaces have been used extensively to study the supergravity c-map

and to obtain perturbative and non-perturbative corrections to hypermultiplet

metrics. One advantage of this approach is that it allows to describe quater-

nionic Kähler spaces in terms of holomorphic data on the twistor space. The

twistor approach is closely related to the projective superspace formulation of

supersymmetry. This is complementary to the approach underlying this re-

view, which focusses on Hessian structures and the superconformal formalism.

We refer the interested reader to the literature, in particular to [139, 153] and

references therein.

9. Static BPS black holes and entropy functions in five dimensions

The equations of motion of N = 2 supergravity coupled to abelian vector

multiplets in four and five space-time dimensions admit static, single-centre, ex-

tremal black hole solutions. These are black hole solutions whose near-horizon

geometry is AdS2 × Sp, with p = 2 (p = 3) in four (five) space-time dimen-

sions. These solutions are supported by the Maxwell charges as well as by

the scalar fields of the theory. Asymptotically, these scalar fields take arbi-

trary values. When approaching the event horizon of the black hole (which

at the two-derivative level is a Killing horizon [154]), the scalar fields flow to

specific values that are entirely determined by the charges of the black hole

[155, 156, 157]. This is the so-called attractor mechanism for extremal black

holes, which can be explained by rewriting the equations of motion as gradient

flow equations: regardless of their asymptotic values, the scalar fields are driven

to specific values at the horizon. When these extremal black hole solutions are

also supersymmetric, they are called BPS black holes.

In this section we study static BPS black holes in five dimensions. They

are electrically charged. The gradient flow equations for these BPS black holes

were originally obtained by studying the supersymmetry preserved by these

solutions [158, 159]. Here, we derive them by performing a suitable rewriting of

the underlying action [160, 161] .

The near-horizon geometry of these five-dimensional black hole solutions is

described by an AdS2×S3 space-time. In this geometry, the attractor values for

the scalar fields at the horizon can be obtained from a variational principle based

on the so-called entropy function for extremal black holes [162]. Evaluating this
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entropy function at the extremum then yields the entropy of the black hole. For

BPS black holes, the horizon values of the scalar fields can also be derived from

a variational principle based on a different entropy function, called BPS entropy

function. The BPS entropy function is constructed from the Hesse potential V
of the CASR manifold discussed in section 2.6.

The above considerations based on the entropy function can be extended to

the case where one considers BPS black hole solutions in N = 2 supergravity

theories in the presence of higher-derivative terms proportional to the square

of the Weyl tensor [163, 164, 165, 23]. We discuss the effect of Weyl square

interactions on the entropy of static BPS black holes.

9.1. Single-centre BPS black hole solutions through gradient flow equations

9.1.1. Action and line element ansatz

The action for N = 2 Poincaré supergravity at the two-derivative level is

given in (145). Here we set κ2 = 1, i.e. G−1 = 8π, and we will denote the scalar

fields hI (I = 0, . . . , n) by XA (A = 0, . . . , n), so that now

CABCX
AXBXC = 1 . (582)

Correspondingly, we will denote the quantities hI and
◦
aIJ introduced in (146)

by XA and GAB , respectively,69

XA = CABCX
BXC = GAB X

B ,

GAB = −2CABCX
C + 3XAXB . (583)

We note the following useful relations, which will be used in the following,

XAX
A = 1 ,

XA ∂µX
A = XA∂µXA = 0 ,

GAB ∂µXB = −∂µXA ,

GAB∂µX
A∂µXB = GAB∂µXA∂

µXB . (584)

Next, we display the part of the N = 2 Poincaré supergravity action that is

relevant for the purpose of obtaining gradient flow equations for static extremal

69We note that the normalizations used in this section differ slightly from those used in
[160].
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black hole solutions,

S =

∫
d5x
√
−g
(

1

2
R− 3

4
GAB ∂µX

A ∂µXB − 3

8
GABF

A
µν F

Bµν

)
. (585)

We are interested in static solutions to the equations of motion, and hence we

take the five-dimensional line element, the one-form gauge fields AA and the

scalar fields XA to have the following form in adapted coordinates,

ds2
5 = gµν dx

µ dxν = −f2(r) dt2 + f−1(r) ds2
GH ,

AA = χA(r) dt ,

XA = XA(r) , (586)

where ds2
GH describes four-dimensional Euclidean flat space, which we write in

the form

ds2
GH = r−1

(
dr2 + r2(dθ2 + sin2 θ dϕ2)

)
+ r (dψ + cos θ dϕ)2 . (587)

Here θ ∈ [0, π], ϕ ∈ [0, 2π), ψ ∈ [0, 4π). Indeed, by changing the radial coordi-

nate to

ρ2 = 4 r , (588)

one obtains

ds2
GH = dρ2 +

ρ2

4

(
σ2

1 + σ2
2 + σ2

3

)
= dxmdxm , m = 1, . . . , 4 , (589)

where

σ1 = − sinψ dθ + cosψ sin θ dϕ ,

σ2 = cosψ dθ + sinψ sin θ dϕ ,

σ3 = dψ + cos θ dϕ . (590)

We take the electric field ∂ρχ
A to be sourced by electric charges which we

denote by qA, up to a normalization constant, so that ∂ρχ
A ∼ f2GABqB/ρ

3,

and hence

∂rχ
A = −2

3

f2

r2
GABqB . (591)

9.1.2. Gradient flow equations

Here we derive first-order flow equations for solutions of the form (586).

These solutions describe single-centre static extremal black holes in a five-

dimensional asymptotically flat space-time. We follow [160].
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Inserting the ansatz (586) into the action (585) yields,

S =
1

4

∫
dt dr dθ dϕ dψ sin θ (592)[

− 3r2f−2(f ′)2 − 3r2GAB(XA)′(XB)′ + 3r2f−2GABχ
′A χ′B

+2∂r
(
r2f−1f ′

) ]
,

where ′ = ∂r . Introducing the radial coordinate

τ =
1

r
, (593)

and using (584) as well as (591), this can can be rewritten into

S =
1

4

∫
dt dr dθ dϕ dψ sin θ[

−3 τ2GAB
(
∂τXA + f ∂τf

−1XA −
2

3
s f qA

)
(
∂τXB + f ∂τf

−1XB −
2

3
s f qB

)
+3τ2f−2GAB

(
∂τχ

A − 2

3
f2GACqC

)(
∂τχ

B − 2

3
f2GBDqD

)
+2∂r

(
r2f−1f ′ − 2qA χ

A − 2 s f qAX
A
)]
, (594)

where s = ±1.

The last line in (594) denotes a total derivative. Thus, up to a total deriva-

tive term, S is expressed in terms of squares of first-order terms which, when

requiring stationarity of S with respect to variations of the fields, results in

∂τXA + f ∂τf
−1XA =

2

3
s f qA ,

∂τχ
A =

2

3
f2GABqB . (595)

Contracting the first equation with XA yields the flow equation for the warp

factor f ,

∂τf
−1 =

2

3
s qAX

A . (596)

The gradient flow equations (595) then take the equivalent form

∂τ
(
f−1XA

)
=

2

3
s qA ,

∂τf
−1 =

2

3
s qAX

A ,

∂τχ
A =

2

3
f2GABqB . (597)
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It can be checked that the five-dimensional Einstein-, Maxwell- and scalar field

equations of motion derived from (585) are satisfied by the solutions to the flow

equations (597).

The first flow equation in (597) is solved by

f−1XA =
2

3
sHA , HA = hA + qA τ , (598)

where hA denote integration constants. Contracting this with XA results in

f−1 =
2

3
sHAX

A . (599)

One then verifies that this solves the flow equation for f−1 by virtue of the

relation XA∂τX
A = 0, c.f. (584). Thus, the flow equations (597) are solved by

f−1XA =
2

3
sHA ,

f−1 =
2

3
sHAX

A ,

χA = −s f XA . (600)

In the following, we take s = 1 and we assume that the CABC in (582) are

all positive, so that XA > 0. Demanding f−1 > 0 along the flow, we infer that

HA > 0 along the flow, and hence also hA, qA > 0. The solution describes a

static, electrically charged extremal black hole solution in five dimension, which

is BPS [159]. The latter can be deduced as follows. The Lagrangian (594)

contains the term qAG
ABqB , also called black hole potential VBH. It can be

expressed in terms of the five-dimensional central charge,

Z5 = qAX
A , (601)

as

VBH = qAG
ABqB = Z2

5 +GAB (DAZ5) (DBZ5) , (602)

where

DAZ5 = qA −XAZ5 . (603)

Likewise, the gradient flow equations for f−1 and XA can be expressed in terms

of Z5 and DAZ5 [166, 161],

∂τX
A = −2

3
f GAB DBZ5 ,

∂τf
−1 =

2

3
Z5 . (604)
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The scalar fields XA stop flowing when DAZ5 = 0∀A = 1, . . . , n. The latter

corresponds to a critical point of the black hole potential. If at this critical point

Z5,crit 6= 0, then the scalar fields XA attain the constant values XA = qA/Z5,crit,

and the warp factor f−1 becomes f−1 = 2
3 Z5,crit τ . The associated line element

describes the geometry of AdS2 × S3, which is the near-horizon geometry of

a static extremal black hole in five dimensions. Thus, when approaching the

horizon of the black hole, the scalar fields XA flow to a critical point of the

black hole potential (602) satisfying DAZ5 = 0 with Z5 6= 0. Such a a critical

point is a BPS critical point [156].

The black hole potential may have other critical points that are not BPS.

Suppose that the black hole potential admits a second decomposition, in terms

of a real quantity W5 = QAX
A,

VBH = qAG
ABqB = W 2

5 +GABDAW5DBW5 , (605)

with W5 6= Z5, and that it possesses a critical point DAW5 = 0 with W5 6= 0.

Then this critical point is non-BPS, and it is associated to a non-BPS static

extremal black hole solution that can be obtained by solving first-order flow

equations of the form (604), but now with Z5 replaced by W5. This is so,

because the rewriting of the action (592) using (605) proceeds in exactly the

same manner as the one discussed above. Thus, in certain cases, non-BPS

static extremal black holes solutions may be obtained by solving first-order flow

equations [160].

9.2. Entropy functions for static BPS black holes

9.2.1. Entropy function at the two-derivative level

We consider the solution (600) with s = 1. In the coordinates (587), the

near-horizon geometry of the BPS black hole is obtained by sending r → 0.

Inspection of (600) shows that in this limit the XA become constant, while

f−1(r) ∝ 1/r. Setting

f−1(r) =
v2

4 r
, (606)

with v2 a positive constant, and inserting this into (586) shows that the near-

horizon geometry of a static BPS black hole is AdS2 × S3,

ds2
5 = v1(−r2dt2 +

dr2

r2
) +

v2

4

(
dθ2 + sin2 θ dϕ2

)
+
v2

4
(dψ + cos θ dϕ)

2
, (607)
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with v1 = v2/4. In this near-horizon geometry, the gauge potentials χA behave

as χA(r) ∝ r, and hence we set

χA(r) = eA r , (608)

with constant eA. The near-horizon solution is thus specified by (607) and

(608), and supported by constant XA. The values of the XA at the horizon

are, according to the attractor mechanism for extremal black holes, specified

by the charges carried by the black hole. These values can be determined by

extremizing the so-called entropy function, to which we now turn.

We consider the reduced Lagrangian F5 which is obtained by evaluating the

Lagrangian (585) in the near-horizon BPS black hole background (607), (608)

and integrating over the horizon [167],

F5 =
1

8π

∫
dψ dθ dφ

√
−g L5 ,

= π
v1 (v3

2)1/2

4

[
− 1

v1
+

3

v2
+

3

4

GAB e
A eB

v2
1

]
. (609)

The entropy function is then given by the Legendre transform [162]

E5 = 2π
(
2π qA e

A −F5

)
. (610)

The entropy function is a function of the constant parameters eA, v1, v2, X
A.

Extremizing the entropy function with respect to these parameters and evaluat-

ing the entropy function at the extremum, yields the entropy of the static BPS

black hole expressed in terms of the charges qA.

Varying the entropy function E5 with respect to the electric fields eA and

setting ∂eE5 = 0 yields

3π

8

(v3
2)1/2

v1
GAB e

B = 2π qA . (611)

Varying E5 with respect to v1, v2 and setting the variations to zero yields

v1 =
v2

4
= GAB e

A eB . (612)

Inserting (612) into E5 yields

E5 =
π2

2

(
v3

2

)1/2
, (613)
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which equals the macroscopic entropy Smacro = A5/4 of the static black hole,

where A5 denotes the horizon area. Using (611), we infer

9

4
v2GAB e

A eB =
qAG

AB qB
4π2

, (614)

and hence

v2
2 =

4

9π2
qAG

AB qB . (615)

The horizon values of the XA are determined in terms of the charges qA by

varying E5 with respect to the XA and setting δXE5 = 0. In doing so, one has

to take into account the constraint (582), which implies

CABCX
AXBδXC = 0 (616)

for arbitrary variations δXC . Using the relation for GAB given in (583), one

obtains for δXE5 = 0,

eAeBδXC
(
−CABC + 3CACEX

EXB + 3CBCEX
EXA

)
= 0 . (617)

Setting eA = γ XA, as required for a BPS solution, solves (617) by virtue of

(616). The scale factor γ is determined by inserting this expression into (615),

which results in

γ =
1

2

√
v2 . (618)

Then, using (611), we infer

v2XA =
8

3
qA . (619)

This is the so-called attractor equation, whose solution determines the values of

the scalar fields XA at the horizon in terms of the charges carried by the BPS

black hole. Contracting (619) with XA yields v2 = 8
3qAX

A, and using (582)

one infers v2 ∼ q, and hence Smacro ∼ q3/2 [156].

9.2.2. BPS entropy function at the two-derivative level, the Hesse potential and
its dual

The attractor equation (619) can also be derived from a variational principle

based on a different entropy function, which we call the BPS entropy function.

The BPS entropy function is constructed from the Hesse potential V of the

CASR manifold discussed in section 2.6,

H(Y) =
1

2
V(Y) =

1

2
CABC YA YB YC , (620)
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where we have introduced

YA = v
1/2
2 XA . (621)

The BPS entropy function reads

Σ(Y, q) = 4 qA YA −H(Y) . (622)

Extremizing with respect to YA yields

CABC YB YC =
8

3
qA , (623)

which expresses the YA in terms of the charges qA. The value of Σ at this

extremum is

Σ(q) = CABC YA YB YC = v
3/2
2 , (624)

and hence

Smacro =
π2

2
Σ(q) . (625)

Thus, upon extremization, the electric charges qA become proportional to the

dual special real coordinates, while the BPS entropy is proportional to the dual

Hesse potential, evaluated on the background, c.f. (7).

9.2.3. R2-corrected BPS entropy function, the Hesse potential and its dual

Now we allow for the presence of a specific class of R2 terms in the N = 2

supergravity Lagrangian, namely those arising from the coupling of vector mul-

tiplets to the square of the Weyl multiplet. The effect of these higher derivative

terms on the near-horizon region of static BPS black hole solutions and on the

associated BPS entropy has been thoroughly discussed in [163, 164, 165, 23].

We follow [23].

The coupling of vector multiplets to the square of the Weyl multiplet can

be conveniently described using the superconformal approach to supergravity.

This is reviewed in B.5. One salient feature is that the Lagrangian describing

the couplings of vector multiplets to the square of the Weyl multiplet contains

a term proportional to the square of the Weyl tensor, with coupling function

cAX
A, where cA are constant coefficients [29].

We focus on solutions to the associated equations of motions that have full

supersymmetry. These field configurations satisfy [23],

∂µX
A = 0 , FAab = 4XA Tab , Y ij = 0 , D = 0 , TabT

ab = constant .(626)
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The associated line element describes a circle fibred over an AdS2 × S2 base,

ds2 =
1

16v2

(
−r2dt2 +

dr2

r2
+ dθ2 + sin2 θdϕ2

)
+ e2g (dψ +B)

2
,

B = − 1

4v2
e−g (T23 r dt− T01 cos θ dϕ) ,

v =
√

(T01)2 + (T23)2 . (627)

Here, T01 and T23 denote the non-vanishing components of Tab, and they are

associated with (t, r, θ, ϕ). v and eg are constants. In the following, we focus on

static configurations, and hence set T23 = 0. Introducing the notation (T01 6= 0)

p0 =
e−g

4v2
T01 (628)

and using v2 = (T01)2, the line element (627) may be brought into the form

ds2 =
1

16v2

(
−r2dt2 +

dr2

r2
+ dθ2 + dϕ2 +

1

(p0)2
dψ2 +

2

p0
cos θdϕdψ

)
. (629)

Then, demanding p0 = 1, in which case e−g = 4T01 = 4v > 0, and fixing the

periodicity of ψ to ψ ∈ [0, 4π), the line element becomes the line element for

AdS2×S3 given in (607), with v2 = 1/(4v2). This is the near-horizon geometry

of a static BPS black hole supported by electric charges qA and constant scalar

fields XA. The latter are expressed in terms of the charges through the attractor

equation

qA =
3eg

8T01

(
CABCX

BXC − cA(T01)2
)

=
3

32v2

(
CABCX

BXC − cA v2
)
, (630)

where we normalized the charges as in (619).

In this background, the equation of motion for the auxiliary D-field takes

the form

χ = −2CABCX
AXBXC + 4cAX

A(T01)2 . (631)

Then, imposing the normalization of the Einstein-Hilbert term (c.f. (156)),

CABCX
AXBXC − 3

2
χ = 4 , (632)

yields the constraint

CABCX
AXBXC = 1 +

3

2
cAX

A(T01)2 . (633)

Introducing YA as in (621),

YA =
1

2v
XA , (634)
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we obtain

CABCYAYBYC =
1

8v3
+

3

16
cAYA . (635)

The attractor equation (630) becomes

q̂A ≡ qA +
3

32
cA =

3

8
CABCYBYC . (636)

The entropy of these static BPS black holes is computed using Wald’s en-

tropy formula (B.134). Using the R2-corrected Lagrangian (156) in the back-

ground (626), (629), we obtain

∂L

∂Rµνρσ
εµνερσ = −CABCXAXBXC . (637)

Note that the contributions proportional to cA have cancelled out. Then, using

the line element (629) ∫
S3

√
h dΩ =

π2

4v3
, (638)

we obtain for the macroscopic entropy of a static BPS black hole,

Smacro =
π2

2
CABCYAYBYC , (639)

with the YA expressed in terms of the charges through (636). The constant v

in the line element (629) is determined through (635) in terms of the charges.

This fully determines the near-horizon geometry of the static BPS black hole.

The attractor equation (636) can be obtained by extremizing the following

BPS entropy function,

Σ(Y, q) = 4 q̂A YA −H(Y) , (640)

with H(Y) given as in (620). The BPS entropy function is thus given in terms

of the dual Hesse potential, c.f. (7). The value of Σ at the extremum yields the

entropy (639),

Smacro =
π2

2
Σ(q) . (641)

10. Static BPS black holes and entropy functions in four dimensions

In four dimensions, the equations of motion of N = 2 supergravity coupled

to abelian vector multiplets (without or with higher-derivative terms propor-

tional to the square of the Weyl tensor) admit single-centre, dyonic, extremal
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black hole solutions. These are spherically symmetric solutions. When they are

supersymmetric, they are called BPS solutions.

In so-called isotropic coordinates (t, r, θ, φ), the line element of a spherically

symmetric space-time takes the form

ds2 = −e2g(r) dt2 + e2f(r)
(
dr2 + r2 (dθ2 + sin2 θ dφ2)

)
. (642)

At the two-derivative level, BPS black hole solutions satisfy f = −g [168, 169].

In the following, we will restrict the discussion to the class of solutions with

f = −g, and we will write their line element as

ds2 = −e2U(r) dt2 + e−2U(r)
(
dr2 + r2 (dθ2 + sin2 θ dφ2)

)
. (643)

Extremal black hole solutions carry electric and magnetic charges (qI , p
I)

associated with the abelian gauge fields AIµ of the theory,∫
S2
∞

dθdφFθφ
I = pI ,

∫
S2
∞

dθdφGθφ I = qI , (644)

where we integrate over an asymptotic two-sphere S2
∞. Here, Gθφ I denotes the

dual field strength defined in (194).

These black holes are furthermore supported by complex scalar fields XI

that reside in the vector multiplets. These scalar fields will, generically, have

a non-trivial profile, i.e. XI = XI(r). Asymptotically, the scalar fields take

arbitrary values. When approaching the event horizon, the scalar fields flow to

fixed values that are entirely determined by the charges of the black hole. This

is the attractor mechanism for extremal black holes [155, 156, 157, 170]: the

values of the scalar fields at the event horizon are attracted to specific values

given in terms of the charges of the black hole, irrespective of their asymptotic

values at spatial infinity. For BPS black holes at the two-derivative level, the

flow to the event horizon is described by gradient flow equations for the scalar

fields and for the metric factor eU . These first-order flow equations can be

obtained from a reduced action in one dimension, see subsection 10.1.

In the near-horizon region r ≈ 0, the metric (643) takes the form

ds2 = v1

(
−r2 dt2 +

dr2

r2

)
+ v2 (dθ2 + sin2 θ dφ2) , (645)

with v1 = v2, and describes the line element of an AdS2×S2 space-time. Here,

v1 denotes a constant whose value is entirely specified by the charges carried
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by the black hole, through the attractor mechanism. The attractor values for

the scalar fields at the horizon can be obtained from a variational principle

based on the so-called entropy function. Evaluating this entropy function at

the extremum then yields the entropy of the black hole. This entropy function

can be derived from the reduced action evaluated in the near-horizon geometry

(645), as we will discuss in subsection 10.2.

The above considerations based on the entropy function can be extended to

the case where one considers extremal black hole solutions inN = 2 supergravity

theories in the presence of higher-derivative terms proportional to the square of

the Weyl tensor. Then, for BPS black holes, one still finds v1 = v2 [36], while

for non-BPS black holes, one generically has v1 6= v2 [171, 172]. For further

reading on these topics, we refer to [173, 174, 175, 176, 177].

There are many other interesting aspects about black hole attractors which

we do not describe in this review. These include: relations between topics in

number theory and BPS black holes [178, 179, 180]; multicenter bound states

of BPS black holes [181]; the OSV conjecture [182, 74]; the 4D/5D connection

between black objects [183, 184, 185]; attractors and cosmic censorship [186];

rotating attractors [187]; the quantum entropy function [188, 189]; attractor

flows and CFT [190]; a Riemann-Hilbert approach to rotating attractors [191];

hot attractors [192].

10.1. Single-centre BPS black hole solutions through gradient flow equations

In the following, we will derive gradient flow equations for BPS black hole

solutions in N = 2 supergravity theories at the two-derivative level in four

dimensions [193, 194]. These are first-order flow equations that will be obtained

from a reduced action based on the Lagrangian (439). The latter is evaluated

in the background (643) and subsequently rewritten in terms of squares of first-

order terms. We use the relation (B.126) to perform the rewriting in terms of

(rescaled) scalar fields XI , rather than in terms of scalar fields za, as follows

[195].

We introduce rescaled scalar fields Y I defined by

Y I = e−U X̃I = e−U ϕ̄XI , (646)

where U denotes the metric factor in (643). Here, ϕ̄ denotes a phase, with a

U(1)-weight that is opposite to the one of XI . Thus, X̃I = ϕ̄XI denotes a

U(1) invariant variable.
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Using (B.126), we evaluate the Lagrangian (439) in the background (643),

takingXI and Y I to be functions of r, only. We evaluate the covariant derivative

(B.122),

ϕ̄DrXI = ∂rX̃
I + i Âr X̃

I , (647)

where

Âr = Ar + iϕ ∂rϕ̄ , (648)

where ϕ is the complex conjugate of ϕ̄, and where Ar is given by (437). Then,

NIJ DrXI DrX̄J = NIJ X̃
′I ¯̃X ′J + Â2

r , (649)

where X̃ ′I = ∂rX̃
I . Observe that in view of NIJX

I X̄J = −1, we have

e−2U = −NIJ Y I Ȳ J , (650)

as well as

e−2U U ′ = 1
2 NIJ

(
Y ′I Ȳ J + Y I Ȳ ′J

)
, (651)

where we used the homogeneity property FIJKX
K = 0. Similarly, using the

homogeneity property of FI , the connection Âr can be expressed in terms of the

Y I as

Âr = − 1
2 e

2U
[
(FI − F̄I) ∂r(Y I − Ȳ I)− (Y I − Ȳ I) ∂r(FI − F̄I)

]
. (652)

Extremal black holes carry electric and magnetic charges (qI , p
I). Electric

fields EI(r) and magnetic charges pI are introduced as (c.f. (644))

Frt
I = EI , Fθφ

I =
pI

4π
sin θ . (653)

The θ-dependence of Fθφ
I is fixed by rotational invariance.

Rather than using a description based on (pI , EI), we seek a description in

terms of magnetic/electric charges (pI , qI). To introduce electric charges qI , we

consider the dual field strengths GµνI defined in (194). Adopting the conven-

tions where xµ = (t, r, θ, φ) and εtrθφ = 1, it follows that, in the background

(643),

Gθφ I = −e−2U(r) r2 sin θ
∂L

∂FrtI
= −e−2U(r) r2 sin θ

∂L

∂EI
. (654)

Writing (c.f. (644))

Gθφ I =
qI
4π

sin θ , (655)
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where the θ-dependence is again fixed by rotational invariance, we infer

qI = −4π e−2U(r) r2 ∂L

∂EI
. (656)

We pass from a description based on (pI , EI) to a description based on

(pI , qI) by means of the Legendre transform

L1d =

(∫
dθ dφ

√
−g L

)
+ qI E

I , (657)

with the Lagrangian L, given in (439), evaluated in the background (643).

To keep the discussion as simple as possible, let us first consider the case of

electrically charged black holes. Subsequently we extend the discussion to the

case of dyonic black holes.

Using (656), we obtain

EI = e2U

[
(ImN )

−1
]IJ

qJ

4π r2
. (658)

The resulting one-dimensional action 4π S1d ≡
∫
dr L1d reads,

−S1d =

∫
dr r2

U ′2 +NIJ X̃
′I ¯̃X ′J + Â2

r − 1
2 e

2U
qI

[
(ImN )

−1
]IJ

qJ

(4π r2)2


−
∫
dr

d

dr

(
r2 U ′

)
. (659)

In the following, we will, for notational simplicity, absorb a factor 4π into qI ,

i.e. qI/(4π)→ qI .

Next, we rewrite (659) in terms of the rescaled variables Y I . Using (651),

we obtain the intermediate result

−S1d =

∫
dr r2

{
2

[
U ′ + e2URe

(Y I qI
r2

)]2

+e2U NIJ

(
Y ′I + N IK qK

r2

) (
Ȳ ′J +NJL qL

r2

)
+ Â2

r

− 1
2

e2U

r4
qI

[
(ImN )

−1
]IJ

qJ −
e2U

r4
qI N

IJ qJ

−2e4U

[
Re

(
Y I qI
r2

)]2 }
−
∫
dr

d

dr

[
r2 U ′ + 2e2U Re

(
Y I qI

)]
. (660)
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Then, using the second identity in (B.128) we obtain

−S1d = Ssquare + STD , (661)

where

Ssquare =

∫
dr r2

{
2
[
U ′ + e2URe

(
Y I qI
r2

)]2
+e2U NIJ

(
Y ′I +N IK qK

r2

) (
Ȳ ′J +NJL qL

r2

)
+Â2

r + 2e4U

[
Im

(
Y I qI
r2

)]2 }
, (662)

and

STD = −
∫
dr

d

dr

[
r2 U ′ + 2 e2U Re

(
Y I qI

)]
. (663)

The above results can be easily extended to the case of dyonic black holes,

as follows. First, we view the term q(ImN )−1q in the action (659) as part of

the black hole potential (B.132),

VBH = − 1
2 qI

[
(ImN )−1

]IJ
qJ = gi̄DiZ D̄̄Z̄ + |Z|2 , (664)

where Z(X) = −qI XI . Turning on magnetic charges pI amounts to extending

Z(X) as in (B.130),

Z(X) = pI FI(X)− qI XI =
(
pI FIJ − qJ

)
XJ = −q̂I XI , (665)

where70

q̂I = qI − FIJ pJ . (666)

Then, the extension to the dyonic case proceeds by replacing qI with q̂I in (661),

which results in

Ssquare =

∫
dr r2

{
2
[
U ′ + e2URe

(
Y I q̂I
r2

)]2
+e2U NIJ

(
Y ′I +N IK

¯̂qK
r2

) (
Ȳ ′J +NJL q̂L

r2

)
+Â2

r + 2e4U

[
Im

(
Y I q̂I
r2

)]2 }
, (667)

70Here we subject pI to the same rescaling as the qI , i.e. pI/(4π)→ pI .
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and

STD = −
∫
dr

d

dr

[
r2 U ′ + 2 e2U Re

(
Y I q̂I

)]
. (668)

Now we vary Ssquare with respect to U and to Y I , respectively. The vanishing

of these variations can be achieved by setting the variation of the individual

squares in Ssquare to zero,

U ′ = −e2URe

(
Y I q̂I
r2

)
,

Y ′I = −N IK
¯̂qK
r2

,

Im
(
Y I q̂I

)
= 0 ,

Âr = 0 . (669)

This yields first-order flow equations for Y I and for U . Note that these gradient

equations are consistent with one another: the latter is a consequence of the

former by virtue of (651).

It is convenient to introduce a rescaled version of Z(X), namely

Z(Y ) = pI FI(Y )− qI Y I , (670)

in terms of which the first-order flow equations become

r2 U ′ = e2U ReZ(Y ) ,

r2 Y ′I = N IK ∂

∂Ȳ K
Z̄(Ȳ ) ,

ImZ(Y ) = 0 ,

Âr = 0 . (671)

The gradient flow equations for the Y I can be rewritten as(Y I − Ȳ I)′

(FI − F̄I)′

 = 2i Im

 N IK q̂K/r
2

F̄IK N
KJ q̂J/r

2

 = −i

pI/r2

qI/r
2

 , (672)

where here FI = ∂F (Y )/∂Y I . Each of the vectors appearing in this expression

transforms as a symplectic vector under Sp(2n + 2,R) transformations. These

gradient flow equations can be readily integrated,Y I − Ȳ I
FI − F̄I

 = i

hI + pI/r

hI + qI/r

 = i

HI(r)

HI(r)

 , (673)
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where (hI , hI) denote integration constants. These integration constants are

constrained by the third equation in (671), which yields the condition

pI hI − qI hI = 0 . (674)

The metric factor e−2U is then determined by (650),

e−2U = HI FI(Y )−HI Y
I = HI F̄I(Ȳ )−HI Ȳ

I , (675)

where we used (673). And finally, using (652), it follows that the fourth equation

in (671) is automatically satisfied by (673) with (674).

The integrated flow equations (673) and the constraint (674) give rise to BPS

black hole solutions [196]. The equations (673) are called attractor equations:

the scalar fields Y I flow to specific values at the horizon of the black hole,

irrespective of their asymptotic values at r = ∞. These horizon values are

entirely determined by the charges carried by the BPS black hole. In the near-

horizon region r ≈ 0, the metric (643) and the scalar fields Y I take the form

(c.f. (645))

e−2U =
v2

r2
, Y I =

Y Ihor

r
, (676)

with

v1 = v2 = Z(Yhor) = Z̄(Ȳhor) = pIFI(Yhor)− qIY Ihor , (677)

where the horizon values Y Ihor are determined by solving the equations PI =

QI = 0, with

PI ≡ pI + i(Y Ihor − Ȳ Ihor) ,

QI ≡ qI + i
(
FI(Yhor)− F̄I(Ȳhor)

)
. (678)

Using (646), one infers the relation

Y Ihor = Z̄(X̄hor)X
I
hor , (679)

so that

v1 = v2 = Z(Yhor) = |Z(Xhor)|2 . (680)

The gradient flow equations that we obtained were derived from the reduced

action (659) (with qI replaced by q̂I) . The equations of motion in four dimen-

sions impose one more condition on the solutions to the field equations derived

from the reduced action, namely the so-called Hamiltonian constraint. For a
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Lagrangian density
√
−g ( 1

2 R + LM ) , it is given by the variation of the action

with respect to g00,

1
2 R00 +

δLM
δg00

− 1
2 g00

(
1
2 R + LM

)
= 0 . (681)

Then, using the Lagrangian (439) as well as the metric ansatz (643), and re-

placing the gauge fields by their charges, as in (658), results in

r2

{
U ′2 + NIJ X̃

I′ ¯̃XJ′ +
e2U

r4
VBH

}
− 2

[
r2 U ′

]′
= 0 , (682)

where VBH denotes the black hole potential (B.129). We rewrite this as

r2

{
U ′2 + NIJ X̃

I′ ¯̃XJ′ − e2U

r4
VBH

}
= 2

[
r2 U ′

]′
− 2

e2U

r2
VBH . (683)

Using the first-order flow equation (671), one readily verifies that the right hand

side of the equation vanishes. This yields the Hamiltonian constraint in the form

[193]

U ′2 + NIJ X̃
I′ ¯̃XJ′ =

e2U

r4
VBH , (684)

which is satisfied by virtue of (671). Thus, the Hamiltonian constraint does not

lead to any further restriction.

The black hole potential VBH may have several critical points. Critical points

∗ that satisfy (DaZ)|∗ = 0 ∀ a = 1, . . . , n with Z|∗ 6= 0 correspond to BPS black

hole solutions, whose macroscopic entropy is given by Smacro(p, q) = πv2 =

πVBH|∗ = π|Z(Xhor)|2, c.f. (723). These BPS solutions are obtained by solving

the flow equations (671). Critical points satisfying DaZ 6= 0 do not correspond

to BPS solutions. However, if the black hole potential VBH admits a second

decomposition in terms of a quantity W (X) (possibly only when restricting to

a subset of charges),

VBH = gab̄DaW D̄b̄W̄ + |W |2 , (685)

with W 6= Z, such that a critical point that is non-BPS satisfies (DaW )|∗ =

0 ∀ a = 1, . . . , n with W |∗ 6= 0, then this non-BPS critical point describes a

non-BPS black hole solution that can be obtained by solving first-order flow

equations of the form (671), but now with Z replaced by W [197, 198, 199].

The macroscopic entropy of this non-BPS black hole is given by Smacro(p, q) =

πv2 = π|W (Xhor)|2. Thus, in certain cases, non-BPS solutions may be obtained

by solving first-order flow equations [197, 198, 199].
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10.2. Entropy functions for static BPS black holes

The scalar fields supporting an extremal black hole flow to specific values at

the horizon. These values are entirely specified by the charges carried by the

black hole, and they can be obtained by means of a variational principle based

on a so-called entropy function [162, 200].

BPS black holes constitute a subset of extremal black holes, and hence their

entropy can be obtained from the entropy function mentioned above. How-

ever, their entropy can also be inferred from a so-called BPS entropy function

[201, 74] associated with supersymmetry enhancement at the horizon. Both

notions of entropy functions give identical results at the semi-classical level. In

the following, we review both notions of entropy functions and their relation,

with/without higher-curvature terms proportional to the square of the Weyl

tensor [172].

10.2.1. Reduced action and entropy function

We consider a local, gauge and general coordinate invariant Lagrangian L

that describes a general system of abelian vector gauge fields, scalar and matter

fields coupled to gravity, with or without higher-derivative terms. We focus on

field configurations in the near-horizon geometry (645). These field configura-

tions have the symmetries of AdS2 × S2. We introduce the associated reduced

action and derive the entropy function from it.

We denote the scalar and matter fields collectively by uα. The field strengths

Fµν
I of the abelian gauge fields AIµ are given by (653): they are given in terms

of the electric field EI and the magnetic charge pI . In the geometry (645),

v1, v2, E, uα take constant values, since they are invariant under the AdS2 × S2

isometries.

Proceeding as in (657) and (654), we pass from a description based on

(pI , EI) to a description based of magnetic/electric charges (pI , qI),

qI = −4π v1v2
∂L

∂EI
. (686)

Defining the reduced Lagrangian by the integral of the full Lagrangian L

over S2,

F(E, p, v, u) =

∫
dθ dφ

√
−g L , (687)

we infer

qI = − ∂F
∂EI

. (688)
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This reduced Lagrangian does not transform as a function under electric-

magnetic duality transformations (198). A quantity that does transform as a

function under electric-magnetic duality transformations is the so-called entropy

function [162],

E(q, p, v, u) = −F(E, p, v, u)− EIqI , (689)

which takes the form of a Legendre transform in view of (688). Thus, E is the

analogue of the Hamiltonian density associated with the reduced Lagrangian

density (687), as far as the vector fields are concerned. Under electric-magnetic

duality, it transforms according to Ẽ(q̃, p̃, v, u) = E(q, p, v, u).

The constant values of the fields v1,2 and uα are determined by demanding

E to be stationary under variations of v and u,

∂E
∂v

=
∂E
∂u

= 0 . (690)

The equations (690) are the attractor equations that determine the values of v

and u at the horizon of the black hole. The Wald entropy is directly proportional

to the value of E at the stationary point [162],

Smacro(p, q) ∝ E
∣∣∣
attractor

. (691)

Note that the entropy function need not depend on all the fields at the

horizon. The values of some of the fields will then be left unconstrained, but

they will not appear in the expression for the Wald entropy.

10.2.2. Entropy function and black hole potential at the two-derivative level

Consider the Maxwell terms in the two-derivative Lagrangian (439), which is

part of the Lagrangian describing Poincaré supergravity. The associated reduced

Lagrangian (687) reads

F = 1
4

{
iv1 p

I(N̄ − N )IJ p
J

4π v2
− 4iπ v2E

I(N̄ − N )IJ E
J

v1

}
− 1

2E
I(N + N̄ )IJ p

J ,

(692)

and the entropy function (689) is given by (setting v1 = v2)

E = − 1

8π
(qI −NIK pK) [(ImN )−1]IJ (qJ − N̄JL pL) , (693)

which equals the black hole potential given in (B.131) [193], up to an overall

constant. E transforms as a function under electric-magnetic duality, as can be

verified by noting the transformation property (338) of N .
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10.2.3. The BPS entropy function

The isometries of the near-horizon geometry (645) played a crucial role in

defining the entropy function (689). On the other hand, when dealing with

BPS black holes, it is supersymmetry enhancement at the horizon that plays

a crucial role in constraining fields in the near-horizon geometry. This gives

rise to a different form of the entropy function for BPS black holes [201, 74], as

follows.

We consider N = 2 supergravity theories coupled to vector multiplets, and

allow for the presence of higher-order derivative interactions involving the square

of the Weyl tensor. As reviewed in section 6.4, the associated Wilsonian effective

action is encoded in a holomorphic function F (X, Â) that is homogeneous of

degree two under complex rescalings. Introducing rescaled variables (Y I ,Υ),

we have

F (λY, λ2Υ) = λ2 F (Y,Υ) , λ ∈ C∗ . (694)

Here the Y I are related to the XI by a uniform rescaling, and Υ is a complex

scalar field related to the square Â = 4(T−ab)
2 by the uniform rescaling, c.f.

(709).

At the horizon, the fields Y I and Υ flow to constant values Y Ihor and Υ = −64,

with the Y Ihor determined by the BPS attractor equations [36],

PI = 0 , QI = 0 , (695)

where

PI ≡ pI + i(Y I − Ȳ I) ,

QI ≡ qI + i(FI(Y,Υ)− F̄I(Ȳ , Ῡ)) . (696)

These equations are those given in (678), but now in the presence of a chiral

background field Υ.

The BPS attractor equations (695) can be obtained from a variational prin-

ciple based on an entropy function [201, 74]

Σ(Y, Ȳ , p, q) = F(Y, Ȳ ,Υ, Ῡ)− qI(Y I + Ȳ I) + pI(FI + F̄I) , (697)

where pI and qI couple to the corresponding magneto- and electrostatic poten-

tials at the horizon (c.f. [202]) in a way that is consistent with electric-magnetic

duality. The quantity F(Y, Ȳ ,Υ, Ῡ), which will be denoted as BPS free energy,
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is defined by

F(Y, Ȳ ,Υ, Ῡ) = −i
(
Ȳ IFI − Y I F̄I

)
− 2i

(
ΥFΥ − ῩF̄Υ

)
, (698)

where FΥ = ∂F/∂Υ. Also this expression is compatible with electric-magnetic

duality, i.e. it transforms as a function under electric-magnetic duality, c.f.

(222) [32]. Varying the BPS entropy function Σ with respect to the Y I , while

keeping the charges and Υ fixed, yields the result,

δΣ = PI δ(FI + F̄I)−QI δ(Y I + Ȳ I) , (699)

where we made use of the homogeneity of the function F (Y,Υ). Assuming that

the matrix NIJ = i(F̄IJ − FIJ) is non-degenerate, it follows that stationary

points of Σ satisfy the BPS attractor equations (695).

The macroscopic entropy Smacro is equal to the entropy function evaluated

at the attractor point, and hence it is Legendre transform of the free energy F .

It is given by [36],

Smacro(p, q) = πΣ
∣∣∣
attractor

= π
[
pIFI − qIY I − 256 ImFΥ

]
attractor

. (700)

Here the term π(pIFI − qIY I)|attractor equals a quarter of the horizon area (in

units where GN = 1, κ2 = 8π), i.e. v1 = v2 = (pIFI − qIY
I)|attractor. The

contribution proportional to FΥ denotes the deviation from the Bekenstein-

Hawking area law, and is subleading in the limit of large charges. In addition,

the area also depends on Υ, and hence it also contains subleading terms. In the

absence of Υ-dependent terms, the homogeneity of the function F (Y ) implies

that the area scales quadratically with the charges.

In subsection 10.2.7, we will show that for BPS black holes, the BPS entropy

(700) coincides with the one calculated from entropy function (689).

10.2.4. The BPS entropy function, the generalized Hesse potential and its dual

The BPS free energy F and the BPS entropy function Σ can be expressed

in terms of the generalized Hesse potential H and its dual, as follows [74].

The generalized Hesse potential H is expressed in terms of real variables

(xI , yI) (c.f. (456)),

Y I = xI + iuI(x, y,Υ, Ῡ) , FI = yI + ivI(x, y,Υ, Ῡ) , (701)

and defined by a Legendre transform with respect to uI ,

H(x, y,Υ, Ῡ) = 2 ImF (x+ iu(x, y,Υ, Ῡ),Υ)− 2yIu
I(x, y,Υ, Ῡ) . (702)
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Using the homogeneity relation (214) which, in the present context reads

2F (Y,Υ) = Y I FI(Y,Υ) + 2 ΥFΥ(Y,Υ) , (703)

one obtains

H(x, y,Υ, Ῡ) = 1
2 F(Y, Ȳ ,Υ, Ῡ) . (704)

The BPS entropy function Σ can then be expressed as

Σ(x, y,Υ, Ῡ) = 2H(x, y,Υ, Ῡ)− 2 qI x
I + 2 pI yI . (705)

The macroscopic BPS entropy (700) is given by

Smacro(p, q) = 2π

(
H − xI ∂H

∂xI
− yI

∂H

∂yI

)
attractor

. (706)

Thus, upon extremization, the charges (pI , qI) become proportional to the dual

affine coordinates, while the BPS entropy is proportional to the dual Hesse

potential, evaluated on the background, c.f. (7).

10.2.5. Entropy functions for N = 2 supergravity theories

In this section, we follow [172]. We use the normalization GN = 1, κ2 = 8π,

as in [172].

We consider the Wilsonian effective action describing N = 2 vector multi-

plets coupled to N = 2 supergravity, in the presence of interactions proportional

to the square of the Weyl multiplet, reviewed in section 6.4. This requires the

presence of a second compensating supermultiplet, which we take to be a hy-

permultiplet. Additional hypermultiplets may also be added, but play a passive

role in the following. The relevant Lagrangian L is given by (443), (444) [202].

The components of the Weyl, vector and hypermultiplets are displayed in Tables

B.9 and B.14.

We impose spherical symmetry and derive the reduced Lagrangian (687). In

a spherically symmetric configuration the field Tab
ij can be expressed in terms

of a single complex scalar w [171],

T−rt = −i T−θφ = 1
2 w , (707)

where underlined indices denote tangent-space indices. Consequently we have

Â = −4w2. The field strengths Fµν
I of the abelian gauge fields AIµ are given in

terms of electric fields EI and magnetic charges pI , as in (653).
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We restrict to a class of solutions by assuming the following consistent set

of constraints,

R(V)µν
i
j = R(A)µν = DµXI = DµAiα = 0 , (708)

where the first two tensors denote the SU(2)×U(1) R-symmetry field strengths.

These constraints are in accord with those that follow from requiring supersym-

metry enhancement at the horizon [202]. Then, since B̂ij is proportional to

R(V)µν
i
j , this field vanishes as well. Furthermore the auxiliary fields Yij

I can

be dropped as a result of their equations of motion.

Then, in the AdS2 background (645), the resulting Lagrangian only depends

on the field variables v1, v2, w, D, EI , XI , χ, which are all constant, and on

the magnetic charges. We refer to [172] for the somewhat lengthy expression for

the Lagrangian. We trade these field variables for scale invariant variables

Y I = 1
4v2 w̄ X

I , Υ = 1
16v

2
2 w̄

2 Â = − 1
4v

2
2 |w|4 , U =

v1

v2
,

D̃ = v2D + 2
3 (U−1 − 1) , χ̃ = v2 χ . (709)

Observe that Υ is real and negative, and that
√
−Υ and U are real and positive.

Note also that the hypermultiplets contribute only through the hyperkähler

potential χ.

We compute the entropy function (689), adopting the normalization of the

Lagrangian used in [172]. Next, we require that E be stationary with respect to

variations of D̃ and χ̃. This yields D̃ = 0, and expresses χ̃ in terms of the other

fields. Upon substitution of these two equations into the entropy function, the

expression for E simplifies considerably [172],

E(Y, Ȳ ,Υ, U) = 1
2U Σ(Y, Ȳ , p, q) + 1

2U N
IJ(QI − FIKPK) (QJ − F̄JLPL)

− 4i√
−Υ

(Ȳ IFI − Y I F̄I)(U − 1) (710)

−i(FΥ − F̄Υ)
[
− 2UΥ + 32(U + U−1 − 2)− 8(1 + U)

√
−Υ
]
.

This result that is consistent with electric-magnetic duality [171, 172].

The entropy function (710) depends on the variables U , Υ and Y I , whose

values are determined by demanding stationarity of E . These values are the at-

tractor values. The macroscopic entropy is proportional to the entropy function

taken at the attractor values,

Smacro(p, q) = 2πE
∣∣∣
attractor

. (711)
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In the following, we will discuss the extremization of E with respect to these

variables, first in the absence of R2-terms, and then for BPS black holes in the

presence of R2-terms.

10.2.6. Variational equations without R2-interactions

In the absence of R2-interactions, the function F does not depend on Υ, so

that the entropy function (710) reduces to

E(Y, Ȳ ,Υ, U) = 1
2U Σ(Y, Ȳ , p, q) + 1

2U N
IJ(QI − FIKPK) (QJ − F̄JLPL)

− 4i√
−Υ

(Ȳ IFI − Y I F̄I)(U − 1) . (712)

Varying (712) with respect to Υ yields

U = 1 . (713)

The latter implies that the Ricci scalar of the four-dimensional space-time van-

ishes. Here we assumed that
(
Ȳ IFI − Y I F̄I

)
is non-vanishing, which is required

so that Newton’s constant remains finite, c.f. (433). Varying with respect to U

yields,

Σ +
(
QI − FIK PK

)
N IJ

(
QJ − F̄JL PL

)
− 8i√
−Υ

(
Ȳ IFI − Y I F̄I

)
= 0 , (714)

which determines the value of Υ in terms of the Y I . This is consistent with the

fact that when the function F depends exclusively on the Y I , the field equation

for T−ab is algebraic, c.f. (438).

The resulting effective entropy function reads

E(Y, Ȳ ,Υ, 1) = 1
2Σ(Y, Ȳ , p, q) + 1

2N
IJ(QI − FIKPK) (QJ − F̄JLPL) , (715)

which is independent of Υ. Note that (715) is homogeneous under uniform

rescalings of the charges qI and pI and the variables Y I . This implies that the

entropy will be proportional the the square of the charges. Under infinitesimal

changes of Y I and Ȳ I the entropy function (715) changes according to

δE = PI δ(FI + F̄I)−QI δ(Y I + Ȳ I) (716)

+ 1
2 i
(
QK − F̄KM PM

)
NKI δFIJ N

JL
(
QL − F̄LN PN

)
− 1

2 i
(
QK − FKM PM

)
NKI δF̄IJ N

JL
(
QL − FLN PN

)
= 0 ,

where δFI = FIJ δY
J and δFIJ = FIJK δY

K . This equation determines the

horizon value of the Y I in terms of the black hole charges (pI , qI). Because the
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function F (Y ) is homogeneous of second degree, we have FIJKY
K = 0. Using

this relation one deduces from (716) that
(
QJ − FJK PK

)
Y J = 0, which is

equivalent to

i(Ȳ IFI − Y I F̄I) = pIFI − qIY I . (717)

Therefore, at the attractor point, we have

Σ = i(Ȳ IFI − Y I F̄I) . (718)

Inserting this result into (714) yields

√
−Υ =

8 Σ

Σ +N IJ (QI − FIK PK)
(
QJ − F̄JL PL

) , (719)

which gives the value of Υ in terms of the attractor values of the Y I . Using

(719) we obtain

Smacro(p, q) = 2π E
∣∣∣
attractor

=
8πΣ√
−Υ

∣∣∣
attractor

. (720)

Observe that, for a BPS black hole, QI = PJ = 0 and Υ = −64, so that

Smacro = πΣ|attractor in accord with (700).

The entropy function (715) can be written as

E = −qI(Y I + Ȳ I)+pI(FI + F̄I)+ 1
2N

IJ(qI−FIKpK)(qJ− F̄JLpL)+NIJY
I Ȳ J ,

(721)

where we used the homogeneity of the function F (Y ). Expressing the Y I as in

(679), one obtains (using NIJX
IX̄J = −1)

E = 1
2

(
N IJ + 2XIX̄J

)
(qI − FIKpK)(qJ − F̄JLpL) , (722)

where FIJ is now the second derivative of F (X) with respect to XI and XJ .

Comparision with the black hole potential (B.129) gives E = 1
2 VBH, and hence,

Smacro(p, q) = 2π E
∣∣∣
attractor

= π VBH

∣∣∣
attractor

= π VBH(p, q) . (723)

10.2.7. BPS black holes with R2-interactions

In the presence of R2 interactions, the horizon values of U and Υ for extremal

BPS black holes are U = 1 and Υ = −64 [202]. Inserting these values into (710)

results in

E(Y, Ȳ ,−64, 1) = 1
2Σ(Y, Ȳ , p, q) + 1

2N
IJ
(
QI − FIK PK

) (
QJ − F̄JL PL

)
.(724)
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Observe that the variational principle based on (724) is only consistent with the

one based on (710) provided that (724) is supplemented by the extremization

equations for U ,

Σ +
(
QI − FIK PK

)
N IJ

(
QJ − F̄JL PL

)
− 8i√
−Υ

(Ȳ IFI − Y I F̄I)

−i(FΥ − F̄Υ)
[
− 4Υ + 64(1− U−2)− 16

√
−Υ
]

= 0 , (725)

and for Υ,

UΣ− i(Ȳ IFI − Y I F̄I)
[
U + 4(−Υ)−1/2(U − 1)

]
+2iU

[
ΥFIΥN

IJ(QJ − F̄JKPK)− h.c.
]

+2i(FΥ − F̄Υ)
[
2UΥ + 4

√
−Υ(1 + U)

]
= 0 . (726)

For BPS solutions it can be readily checked that the latter are indeed satisfied.

Using QI = PJ = 0, we obtain Smacro = πΣ|attractor, in accord with (700).

10.3. Large and small BPS black holes: examples

As an application [203, 204] of the above, let us consider BPS black holes in

an N = 2 supergravity theory coupled to Weyl-square terms, whose Wilsonian

action is encoded in the holomorphic function F (Y,Υ) = F (0)(Y ) + F (1)(Y ) Υ

given by

F (Y,Υ) = −Y
1Y aηabY

b

Y 0
+ c1

Y 1

Y 0
Υ . (727)

Here

Y aηabY
b = Y 2Y 3 −

n∑
a=4

(Y a)2 , a = 2, . . . , n , (728)

with real constants ηab and c1. We define S = −iY 1/Y 0.

We introduce the charge vectors N I and MI ,

N I = (p0, q1, p
2, p3, . . . , pn) ,

MI = (q0,−p1, q2, q3, . . . , qn) . (729)

There are three bilinear charge combinations that are invariant under SO(n −
1, 2;Z)-transformations [205], also referred to as target space duality transfor-

mations,

〈M,M〉 = 2
(
M0M1 + 1

4Maη
abMb

)
= 2
(
− q0p

1 + 1
4qaη

abqb

)
,

〈N,N〉 = 2
(
N0N1 +NaηabN

b
)

= 2
(
p0q1 + paηabp

b
)
,

M ·N = MIN
I = q0p

0 − q1p
1 + q2p

2 + · · ·+ qnp
n . (730)
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For instance, the charge bilinears are clearly invariant under the SO(n−1, 2;Z)-

transformation

p0 → q1 ,

p1 → −q0 ,

pa → pa ,

q0 → −p1 ,

q1 → p0 ,

qa → qa .

(731)

10.3.1. Large BPS black holes

Definition 19. Large BPS black holes. A large single-centre BPS black hole
in four dimensions is a dyonic spherically symmetric BPS black hole carrying
electric/magnetic charges (qI , p

I), such that the charge bilinears 〈M,M〉, 〈N,N〉
are positive and 〈M,M〉〈N,N〉 − (M ·N)2 � 1.

This ensures that at the two-derivative level, the black hole has a non-

vanishing horizon area A [201], A = 2π(S + S̄) 〈N,N〉, c.f. (737) and (740)

below.

Using (c.f. (696))

Y I − Ȳ I = i pI , FI(Y,Υ)− F̄I(Ȳ , Ῡ) = i qI , (732)

one obtains for I = a,

Y a =
1

S + S̄

[
− 1

2η
abqb + iS̄ pa

]
, (733)

where ηab ηbc = δac. Similarly, one finds

pIFI − qIY I = i(Ȳ IFI − Y I F̄I) (734)

= (S + S̄)
(
Ȳ aηabY

b +
Ȳ 0

Y 0

[
− Y aηabY b + c1 Υ

]
+ h.c.

)
,

as well as

q1 p
0 = −(Y 0 − Ȳ 0)(F1 − F̄1)

=
( Ȳ 0

Y 0
− 1
)[
− Y aηabY b + c1 Υ

]
+ h.c. . (735)

Combining these two equations and using (733) yields

pIFI − qIY I = (S + S̄)
(

1
2 〈N,N〉+ (c1 Υ + h.c.)

)
, (736)

where the bilinear charge combination 〈N,N〉 is defined in (730).
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Using (700), we obtain for Wald’s entropy (with Υ = −64)

Smacro = 1
2 π (S + S̄)

(
〈N,N〉 − 512 c1

)
, (737)

where S is evaluated at the horizon. We now determine its value.

Using (732), one finds that the combinations SS̄ q1 p
0 + q0 p

1 and i(S̄ −
S) q1 p

0 + q1 p
1 − q0 p

0 do not explicitly depend on Y 0. This results in the

following equations for S,

SS̄ 〈N,N〉 = 〈M,M〉 − 2(S + S̄)(c1 ΥS + h.c.) ,

(S − S̄) 〈N,N〉 = 2iM ·N + 2 (S + S̄) (c1 Υ− h.c.) , (738)

from which one infers the value of S at the horizon in terms of the charges,

S =

√
〈M,M〉〈N,N〉 − (M ·N)2

〈N,N〉 (〈N,N〉 − 512 c1)
+ i

M ·N
〈N,N〉

. (739)

The resulting entropy is expressed in terms of the charges as

Smacro = π
√
〈M,M〉〈N,N〉 − (M ·N)2

√
1− 512 c1
〈N,N〉

. (740)

When c1 = 0, this equals one quarter of the area of the horizon.

10.3.2. Small BPS black holes

Definition 20. Small BPS black holes. A small BPS black hole in four
dimensions is a BPS black hole carrying electric/magnetic charges (qI , p

I) such
that the charge combination 〈M,M〉〈N,N〉 − (M ·N)2 vanishes, and such that
its macroscopic (Wald) entropy Smacro is, for large charges, given by Smacro ∝√
Q2. Here Q2 denotes a linear combination of charge bilinears.

At the two-derivative level, a small BPS black hole is a null-singular solution

to the equations of motion of N = 2 supergravity theory. For a small BPS

black hole to have a non-vanishing area of the event horizon, higher-curvature

corrections need to be taken into account [206, 207, 208, 209].71 When c1 6= 0, a

horizon forms, leading to the cloaking of a null singularity that is present when

c1 = 0 [209]. This requires c1 < 0, as we will see below.

In the following, we will consider small black holes with charges N I = 0 in

the model (727). To compute the horizon value of S as well as the entropy (700)

71For a recent discussion and a different viewpoint, see [210, 211].
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of such a small black hole, we proceed s follows. We start by considering a large

BPS black hole which is axion free, i.e. one for which ImS = 0. We thus set

M ·N = 0 in (739) and in (740), which yields

S + S̄ = 2

√
〈M,M〉

〈N,N〉 − 512 c1
, Smacro = π

√
〈M,M〉〈N,N〉 − 512 c1 〈M,M〉.(741)

Next, we set 〈N,N〉 = 0 in these expressions, which results in

S + S̄ =
√
−〈M,M〉/(128 c1) > 0 , Smacro = 2π

√
−128 c1 〈M,M〉 . (742)

Using (736),

π
(
pIFI − qIY I

)
= −π 128c1 (S + S̄) , (743)

which equals a quarter of the horizon area and needs to be positive, we infer

c1 < 0, and hence 〈M,M〉 > 0. Thus, Smacro equals one half of the horizon area

[209]. Note that S and the entropy only have finite values due to c1 6= 0.

11. Born-Infeld-dilaton-axion system and F -function

In subsection 4.1 we discussed how to recast point-particle Lagrangians in

terms of functions F of the form (157). Here, we will consider the example

of a homogenous function F (x, x̄, η) of degree 2, with η having scaling weight

m = −2 (c.f. subsection 4.2) and show that this describes the Born-Infeld-

dilaton-axion system in an AdS2 × S2 background. We follow [33].

11.1. Homogeneous function F

We consider a function F that depends on three complex scalar fields XI

(with I = 0, 1, 2), as well as on an external real parameter η,

F (X, X̄, η) = − 1
2

X1(X2)2

X0
+ 2iΩ(X, X̄, η) . (744)

We demand F to be homogeneous of degree 2 under rescalings XI 7→ λXI , η 7→
λm η, with λ ∈ R\{0}, as in (169). We leave the scaling weight m arbitrary, for

the time being.

Duality transformations are represented by Sp(6,R) matrices (which are 6×6

matrices of the form (160)) acting on (XI , FI), where FI = ∂F (X, X̄, η)/∂XI .

The external parameter η is inert under these transformations.
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Let us assume that the model based on (744) is invariant under S-duality

as well as under a particular T-duality transformation. These symmetry trans-

formations belong to an SL(2,R) × SL(2,R) subgroup of Sp(6,R). The first

SL(2,R) subgroup acts as follows on (XI , FI),

X0 7→ dX0 + cX1 ,

X1 7→ aX1 + bX0 ,

X2 7→ dX2 − c F2 ,

F0 7→ aF0 − b F1 ,

F1 7→ dF1 − c F0 ,

F2 7→ aF2 − bX2 ,

(745)

where a, b, c, d are real parameters that satisfy ad − bc = 1. This symmetry is

referred to as S-duality. Let us describe its action on two complex scalar fields

S and T that are given by the scale invariant combinations S = −iX1/X0 and

T = −iX2/X0. The S-duality transformation (745) acts as

S 7→ aS − ib
icS + d

, T 7→ T +
2i c

∆S (Y 0)2

∂Ω

∂T
, X0 7→ ∆SX

0 , (746)

where we view Ω as a function of S, T,X0 and their complex conjugates, and

where

∆S = d+ ic S . (747)

The second SL(2,R) subgroup is referred to as T-duality group. Here we focus

on a particular T-duality transformation given by

X0 7→ F1 ,

X1 7→ −F0 ,

X2 7→ X2 ,

F0 7→ −X1 ,

F1 7→ X0 ,

F2 7→ F2 ,

(748)

which results in

S 7→ S +
2

∆T(X0)2

[
−X0 ∂Ω

∂X0
+ T

∂Ω

∂T

]
, T 7→ T

∆T
, X0 7→ ∆TX

0 ,

(749)

where

∆T = 1
2T

2 +
2

(X0)2

∂Ω

∂S
. (750)

When a symplectic transformation describes a symmetry of the system, a

convenient method for verifying this consists in performing the substitution

XI 7→ X̃I in the derivatives FI , and checking that this substitution correctly
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induces the symplectic transformation of FI . This will impose restrictions on

the form of F , and hence also on Ω. Imposing that S-duality (745) consti-

tutes a symmetry of the model (744) results in the following conditions on the

transformation behaviour of the derivatives of Ω [35],(
∂Ω

∂T

)′
S

=
∂Ω

∂T
,(

∂Ω

∂S

)′
S

= ∆S
2

(
∂Ω

∂S

)
+
∂
(
∆S

2
)

∂S

[
− 1

2X
0 ∂Ω

∂X0
− ic 2∆S (X0)2

(
∂Ω

∂T

)2
]
,

(
X0 ∂Ω

∂X0

)′
S

=X0 ∂Ω

∂X0
+

2ic

∆S (X0)2

(
∂Ω

∂T

)2

, (751)

while requiring the particular T-duality transformation (748) to constitute a

symmetry imposes the transformation behaviour [35](
∂Ω

∂S

)′
T

=
∂Ω

∂S
,(

∂Ω

∂T

)′
T

=
(
∆T − T 2

) ∂Ω

∂T
+ T X0 ∂Ω

∂X0
,(

X0 ∂Ω

∂X0

)′
T

=X0 ∂Ω

∂X0
+

4

∆T (X0)2

∂Ω

∂S

[
−X0 ∂Ω

∂X0
+ T

∂Ω

∂T

]
. (752)

Solutions to both (751) and (752) may be constructed iteratively by assuming

that Ω possesses a power series expansion in η,

Ω(X, X̄, η) =

∞∑
n=1

ηn Ω(n)(X, X̄) . (753)

Note that since Ω and η are real, so are the expansion functions Ω(n). The

latter have to scale as λ−mn+2. Once a solution Ω(1) to (751) and (752) has

been found, the full expression (753) can be constructed by solving (751) and

(752) iteratively starting from Ω(1).

So far, we have not made any assumptions about the scaling weight m in

(169). Depending on the choice of m, the expansion (753) will have different

properties. For concreteness, let us take m = −2, which implies that the ex-

pansion functions Ω(n) in (753) will have to scale as λ2n+2. The lowest function

Ω(1) will therefore scale as λ4. We make an ansatz for Ω(1) that is consistent

with this scaling behaviour,

Ω(1)(X, X̄) = |X0|4 g(S, T, S̄, T̄ ) . (754)
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The equations (751) and (752) require Ω(1) to be invariant under the S-duality

and T-duality transformations given above, and determine it to be given by

Ω(1) = 1
8 |X

0|4 (S + S̄)2 |T |4 , (755)

where we have chosen a particular normalization, for later convenience.

We may now proceed iteratively to determine the higher Ω(n), solving (751)

and (752) order by order in η, using the transformation laws (746) and (749)).

Rather than proceeding in this way, we present an exact solution to (751) and

(752) that, to lowest order in η, reduces to (755),

Ω(X, X̄, η) = 1
8 η
−2

[ √
1− 1

2η
2 (S + S̄) (TX0 − T̄ X̄0)2

−
√

1− 1
2η

2 (S + S̄) (TX0 + T̄ X̄0)2

]2

. (756)

It can be verified that (756) satisfies (751) and (752). Note that (756) scales

correctly as Ω(λX, λX̄, λ−2 η) = λ2 Ω(X, X̄, η).

In the next subsection, we turn to the interpretation of the function F based

on (756).

11.2. Interpretation: the Born-Infeld-dilaton-axion system in an AdS2 × S2

background

The function F based on (756) describes a Born-Infeld-dilaton-axion system

in an AdS2 × S2 background, as we proceed to explain.

We consider the Born-Infeld Lagrangian in the presence of a dilaton-axion

field S = Φ + i B [212],

L = −g−2

[√
|det[gµν + gΦ1/2 Fµν ]| −

√
|det gµν |

]
+
√
|det gµν | 1

4 B Fµν F̃
µν ,

(757)

where here F̃ab = 1
2εabcd F

cd with ε0123 = 1. In this Lagrangian, the gauge

coupling g appears multiplied by the dilaton field Φ, while the term BFµν F̃
µν

introduces a scalar field degree of freedom called the axion. The Born-Infeld-

dilaton-axion system described by (757) has duality symmetries that will be

described below.

Let us consider the system (757) in an AdS2 × S2 background

ds2 = v1

(
−r2 dt2 +

dr2

r2

)
+ v2

(
dθ2 + sin2 θ dφ2

)
,

Frt = v1 e , Fθφ = v2 p sin θ , (758)
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i.e., let us restrict to field configurations that have the SO(2, 1) × SO(3) sym-

metry of AdS2 × S2, in which case v1, v2, e, p,Φ, B are constants. Integrating

over the angular variables and setting v1v2 4π = 1, for convenience, yields

L(e, p,Φ, B) = −g−2
[√

1− g2 Φ e2
√

1 + g2 Φ p2 − 1
]

+B ep , (759)

where we assume g2 Φ e2 < 1. To obtain the associated Hamiltonian H,

H(p, q,Φ, B) = q e− L(e, p,Φ, B) , (760)

we first compute q = ∂L/∂e,

q = eΦ

√
1 + g2 Φ p2

1− g2 Φ e2
+B p . (761)

Inverting this relation yields

e =
q −B p√

Φ2 + g2 Φ [Φ2 p2 + (q −B p)2]
, (762)

and substituting in (760) gives

H(p, q,Φ, B) = g−2

[√
1 + g2[Φ p2 + Φ−1 (q −B p)2

]− 1

]
. (763)

Then, expressing Φ and B in terms of S and S̄ results in

H(p, q, S, S̄) = g−2

[√
1 + 2 g2 Σ(p, q, S, S̄)− 1

]
, (764)

where

Σ(p, q, S, S̄) =
q2 + ip q(S − S̄) + p2 |S|2

S + S̄
. (765)

The Hamiltonian (764) depends on canonical coordinates (p, q), on an external

parameter g2 as well as on the dilaton-axion field, which describes a background

field. We observe that H scales as H 7→ λ2H under (p, q) 7→ λ(p, q) , g2 7→
λ−2 g2 , S 7→ S, with λ ∈ R\{0}. The electric field (762) scales as e 7→ λe.

Let us now return to the reduced Lagrangian (759) and recast it in the

form L = 4 [ImF − Ω], c.f. (164), where we introduce the complex variable

x = 1
2 (p+ ie), which scales as x 7→ λx. The function F will now depend on the

two complex scalar fields x and S,

F (x, x̄, S, S̄, g2) = F (0)(x, S) + 2iΩ(x, x̄, S, S̄, g2) , (766)

193



and is determined as follows. The holomorphic function F (0) encodes all the

contributions that are independent of g2, while Ω, which is real, accounts for all

the terms in the reduced Lagrangian that depend on g2. This yields,

F (0)(x, S) = − 1
2 i S x

2 , (767)

Ω(x, x̄, S, S̄, g2) = 1
8 g
−2

(√
1 + 1

2g
2 (S + S̄) (x+ x̄)2

−
√

1 + 1
2g

2 (S + S̄) (x− x̄)2

)2

.

Under the scaling x 7→ λx, g2 7→ λ−2 g2 , S 7→ S, F scales as F 7→ λ2F .

Now we note that the function F given in (767) precisely matches the one

given in (744) and (756) upon identifying

S = −iX
1

X0
, x = X2 = i T X0 , g = η . (768)

The Hamiltonian (764) is invariant under the S- and T-duality transformations

discussed in the previous subsection. We proceed to verify this. The external

parameter g2 is inert under these transformations. Using (161) we infer that the

canonical pair (p, q) is given by (2 Rex, 2 ReFx). The T-duality transformation

(748) leaves (x, Fx) invariant. Since Ω given in (767), or equivalently in (756),

satisfies X0∂Ω/∂X0 = T∂Ω/∂T , S is inert under (748). Consequently, the

Hamiltonian (764) is invariant under the T-duality transformation (748). The

S-duality transformation (745),

S 7→ aS − ib
icS + d

, (769)

induces the following transformation of the canonical pair (p, q),p
q

 7→
p̃
q̃

 =

 d −c

−b a


p
q

 , (770)

where a, b, c, d ∈ R and ad− bc = 1. Hence, Σ given in (765) is invariant under

S-duality, and so is H.

12. F -function for an STU-model

As an application of electric-magnetic duality in a chiral background, dis-

cussed in section 4.4.2, let us consider the STU-model of Sen and Vafa (referred
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to as N = 2 Example D in [213]) in the presence of higher curvature inter-

actions proportional to the square of the Weyl tensor. This model possesses

duality symmetries which were used recently in [214] to determine the function

F . The holomorphic function F takes the form

F (X, Â) = −X
1X2X3

X0
+ 2iΩ(X, Â) , (771)

with Â given in (444). Note that Â has scaling weight 2. The model possesses

S-, T- and U-duality symmetries Γ0(2)S × Γ0(2)T × Γ0(2)U as well as triality

symmetry. Γ0(2) is the subgroup of the group SL(2,Z) defined by restricting

its integer-valued matrix elements a, b, c, d (with ad− bc = 1) to a, d ∈ 2Z + 1,

c ∈ 2Z and b ∈ Z. Triality symmetry refers to the invariance of the model

under exchanges of the scalar fields S = −iX1/X0, T = −iX2/X0 and U =

−iX3/X0. The duality and triality symmetries of the model are very restrictive

and allow for the determination of the function F . For instance, under S-duality,

the derivatives of Ω are required to transform in the following way,(
∂Ω

∂T

)′
S

=
∂Ω

∂T
,

(
∂Ω

∂U

)′
S

=
∂Ω

∂U
,

(
∂Ω

∂S

)′
S

−∆S
2 ∂Ω

∂S
=
∂∆S

∂S

[
−∆SX

0 ∂Ω

∂X0
− 2

(X0)2

∂∆S

∂S

∂Ω

∂T

∂Ω

∂U

]
,

(
X0 ∂Ω

∂X0

)′
S

= X0 ∂Ω

∂X0
+

4

∆S (X0)2

∂∆S

∂S

∂Ω

∂T

∂Ω

∂U
. (772)

Using triality, one obtains similar equations under T- and U-duality.

The equations (772) are non-linear in Ω, and where solved [214] by iteration

using the fact that Ω(X, Â) must be a homogeneous function of second degree,

c.f. (213). This was achieved by expanding Ω(X, Â) in a series expansion in

powers of Â (X0)−2 (which has scaling weight zero), with coefficient functions

that depend on S, T, U and on an overall factor Â,

Ω(X, Â) = Â

[
γ ln

(X0)2

Â
+ ω(1)(S, T, U) +

∞∑
n=1

( Â

(X0)2

)n
ω(n+1)(S, T, U)

]
.

(773)

Note the presence of the logarithmic term, whose inclusion allowed to imple-

ment the duality symmetries of the model, leading to the determination of the

gravitational coupling functions ω(n)(S, T, U) by iteration. Additional impor-

tant information about the structure of F was gleaned from the Hesse potential

195



for the model and the associated holomorphic anomaly equation. We refer to

[214] for a detailed discussion thereof.
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A. Mathematics background

A.1. Manifolds, group actions, submanifolds, immersions and embeddings

In this article, manifolds M are understood to be smooth, Hausdorff and

second countable. The Hausdorff separation property requires that any two

points on M can be separated by non-intersecting open neighbourhoods. The

second countability property requires that the topology (set of open subsets) is

generated by a countable collection of open subsets.

The (left) action

G×M →M , (g, x) 7→ g · x (A.1)

of a group G on a manifold M is called

• transitive, if any two x, y ∈M are related by the action of G,

• effective (faithful), if every g ∈ G acts non-trivially on M ,

• free, if all group elements different from the identity act on M without

fixed points,

• principal (regular, simply transitively), if G acts both freely and transi-

tively.

• proper, if G is a topological group and G×M →M ×M, (g, x) 7→ (g ·x, x)

is a proper map in the topological sense, that is, pre-images of compact

sets are compact.
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Since the orbits of G on M need not all have the same dimension, the space of

orbits M/G is in general not a manifold. Moreover, even if M/G is a smooth

manifold and M is Hausdorff, it can happen that M/G is not Hausdorff. A

sufficient condition for M/G to be Hausdorff is that the action of G is proper,

which is satisfied in particular for compact groups G . If the action of G is both

free and proper, then M → M/G is a G-principal bundle, see A.2. Since the

group actions we are interested in involve non-compact groups, we will impose

that quotients are Hausdorff as an explicit condition. Actions of Lie groups on

manifolds can be described using generating vector fields, see A.8.

The rank of a smooth map F : M → N between manifolds M,N is the

rank of the induced linear map F∗ : TpM → TF (p)N between tangent space.

A smooth map F is called an immersion (submersion) if F∗ is injective (sur-

jective) at every point, that is if rank(F ) = dimM (rank(F ) = dimN). A

smooth embedding is an immersion that is also a topological embedding, that

is, a homeomorphism F : M → F (M) ⊂ N , where F (M) carries the topology

induced by N through restriction. Embedded submanifolds are precisely the

images of smooth embeddings. An immersed submanifold S ⊂ N is a subset

which is a manifold such that ι : S → N is an injective immersion. Immersed

submanifold are precisely the images of injective immersions.

Note that the image of an immersion need not be a submanifold, since im-

mersions are not required to be invertible. Thus they can have self-intersection

points, for example. Moreover, just requiring an immersion to be invertible does

not make it an embedding, because the topology of the image need not agree

with the submanifold topology induced by N . However, locally an immersion

is an embedding, and if one is interested in local problems one can choose the

domain of an immersion small enough, so that it becomes an embedding. This

is used frequently in the main part of this review.

As an example consider a smooth immersion which maps the real line onto

a ‘figure eight’ shaped figure in R2, such that points x ∈ 1
2Z on the line are

mapped to the self-intersection point of the image. Now restrict to an open

interval a < x < b, equipped with the subspace topology induced by R. For

a < 0, b > 1 the self-intersection point appears at least twice as an image, and

the immersion is not invertible. For a = 0, b = 1, the immersion is invertible,

but not a topological embedding: if we take a Cauchy sequence accumulating

at, say, a = 0, this does not converge to a point in the interval, but the image of
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this sequence will converge to the self-intersection point in the topology induced

by R2. For 0 < a < b < 1 the topology induced by R2 is the standard topology

of an open one-dimensional interval, and the immersion becomes an embedding.

For further reading we refer to [215], on which this section is partly based.

A.2. Fibre bundles and sections

The material in A.2 – A.6 is mostly standard. Our presentation is based on

various sources, including [216, 217, 218].

A smooth fibre bundle

F −→ E
π−→M (A.2)

is a smooth manifold E which locally looks like the product M × F of two

smooth manifolds, the base M and the fibre F . More precisely, there is a

smooth surjective map π : E → M such that for all x ∈ M there exists a

neighbourhood U such that π−1(U) is diffeomorphic to U × F . Given an open

cover {U(i)|i ∈ I} of M a fibre bundle can be described in terms of an atlas with

charts (U(i), ϕ(i)) that are glued together consistently by transitions functions

φ(ij) = ϕ(i)ϕ
−1
(j) : U(ij) × F → U(ij) × F (A.3)

on overlaps U(ij) = U(i) ∩ U(j) . The inverse image Fx = π−1(x) ∼= F of x is

called the fibre over x ∈M . Most of the fibre bundles relevant for us are vector

bundles, where F is a vector space. Particular cases are the tangent bundle TM ,

the cotangent bundle T ∗M , and tensor bundles

TM ⊗ · · · ⊗ TM ⊗ T ∗M ⊗ · · · ⊗ T ∗M . (A.4)

A smooth section of a fibre bundle is a smooth map s : M → E such that

π ◦ s = IdM . In addition to global sections, that is sections defined over all

of M , one can consider local sections over domains U ⊂ M . Local sections

need not to extend to global sections. By considering all open subsets U ⊂ M

together with all sections of E over subsets U , one obtains the sheaf of sections

of E. In our applications it will be clear from context whether sections of vector

bundles (vector fields, tensor fields) are required to exist locally or globally.

An affine bundle modelled on a vector bundle V → M is a fibre bundle

A→M such that:

• The fibres Ap of A over p ∈M are affine spaces over the vector spaces Vp,

which are the fibres of the vector bundle V .
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• The transition functions of a bundle atlas of A are affine isomorphisms

whose linear parts are the transition functions of V →M .

Another important class of bundles are principal bundles. For a Lie group

G a G-principal bundle P over a manifold M is a manifold P equipped with a

principal action of G. Since the G-action on P is free and transitive, each orbit

of G on P can be identified with G upon choosing one point on the orbit, which

is identified with the unit element. Thus orbits are loosely speaking copies of

G where we forget where the unit element is located (similar to passing from

a vector space to the associated affine space, or from vector bundles to affine

bundles). The base manifold M of the fibre bundle P → M is the space of

orbits, M = P/G. A principal bundle is trivial, that is P = M×G is a product,

if and only if P admits a global section (which identifies, in each fibre, which

point corresponds to the unit element of the group). By picking a representation

ρ : G→ V of G on a vector space V one can associate to the principal bundle G

a vector bundle with fibre V and G-action defined by ρ. One then says that the

vector bundle is associated to the principal bundle. A U(1) principal bundle is

also called a circle bundle. By choosing the representation of U(1) by the action

of SO(2) on the complex plane, one obtains an associated complex line bundle,

that is a vector bundle with fibre C. We refer to A.12 for more material on

complex vector bundles.

A.3. Vector fields and differential forms

A.3.1. Vector fields and frames

Let M be a smooth manifold. Vector fields are denoted X,Y, . . . ∈ X(M) =

Γ(TM).72 The local expansion of a vector field with respect to coordinates xm

is

X = Xm ∂

∂xm
= Xm∂m . (A.5)

Vector fields operate on functions as first order differential operators (directional

derivatives):

X(f) = Xm∂mf . (A.6)

The Lie bracket [X,Y ] of two vector fields

[X,Y ](f) = XY (f)− Y X(f) = (Xm(∂mY
n)− Y m(∂mX

n)) ∂nf (A.7)

72Where convenient or required by consistency with the physics literature, we will also use
symbols, like ξ, η, . . ., or t, s, . . . for vector fields.
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is again a first order differential operator. The Lie bracket gives the space of

vector fields the structure of a Lie algebra.

Instead of a coordinate frame ∂m, we can more generally expand a vector

field with respect to a local frame em, that is a set of vector fields which form

a basis of TxM for all x ∈ U ⊂M , where U is an open neighbourhood,

X = Xmem . (A.8)

The local sections em are generators for the Lie algebra of vector fields, [em, en] =

cpmnep. A frame {em} is locally a coordinate frame if and only if cpmn = 0 [216].

The expression of a Lie bracket with respect to frame is:

[X,Y ] = (Xmem(Y p)− Y mem(Xp) +XmY ncpmn) ep . (A.9)

A.3.2. Differential forms, dual frames, exterior derivative

Given a frame {em}, the dual co-frame {em}, which forms a basis for the

one-forms ω ∈ Ω1(M) = Γ(T ∗M) is defined by em(en) = δmn . In the follow-

ing ‘choosing a frame’ (or co-frame) always means that we choose a dual pair

{em, en}. Given a coordinate system, the coordinate differentials dxm form the

frame dual to the coordinate vector fields ∂m. A co-frame is locally a coordinate

co-frame if dem = 0. The expansion of a one-form in a coordinate co-frame is

ω = ωmdx
m . (A.10)

The wedge product of one-forms is defined by

α ∧ β = α⊗ β − β ⊗ α . (A.11)

Our convention for the components of a p-form ω ∈ Ωp(M) = Γ(ΛpT ∗M) is

ω =
1

p!
ωm1···mp

dxm1 ∧ · · · ∧ dxmp . (A.12)

Therefore the evaluation of a p-form on vector fields gives:

ω(X1, . . . , Xp) = ωm1···mp
Xm1

1 · · ·Xmp
p . (A.13)

A.3.3. Exterior derivative and dual Lie algebra structure of co-frames

The coordinate expression for the exterior derivative dω ∈ Ωp+1(M) of a

p-form ω is:

dω =
1

p!
∂mωm1···mp

dxm∧dxm1∧· · · dxmp ⇔ (dω)mm1···mp
= (p+1)∂[mωm1···mp] .

(A.14)
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Note that we distinguish by brackets between the component (dω)mm1···mp of the

form dω (a notation used by physicists) and the exterior derivative (dωm1···mp
)

of the component ωm1···mp
regarded as a function (a notation used by mathe-

maticians),

dωm1···mp = ∂mωm1···mpdx
m . (A.15)

Our convention for the antisymmetrization symbol [· · · ] is such that it includes

a weight factor 1/p!:

T[m1···mp] =
1

p!

∑
σ∈Sp

(−1)sign(σ)Tσ(m1)···σ(mp) , (A.16)

where Sp is the permutation group of p objects.

The generators em of a co-frame satisfy the dual Lie algebra, dem = − 1
2c
m
npe

n∧
ep.

The exterior derivative is a natural map Ωp(M) → Ωp+1(M) in the sense

that it commutes with pullbacks of smooth maps f : M → N , that is

f∗dω = d(f∗ω) . (A.17)

A.3.4. Interior product and contraction

The interior product ιX between a vector field X ∈ X(M) and a p-form

ω ∈ Ωp(M) is defined by substituting X into the first argument of the form,

that is by contraction over the first index:

(ιXω)(X1, . . . , Xp−1) = ω(X,X1, . . . , Xp−1)⇔ (ιXω)m1···mp−1
= Xmωmm1···mp−1

.

(A.18)

We will often write ω(X, ·) := ιXω(·).

A.3.5. Lie derivatives

The Lie derivative LXT of a tensor field T ∈ T pq (M) := Γ(
⊗p

TM ⊗⊗q
T ∗M) with respect to a vector field X is a directional derivative which

is defined using the flow of the vector field X. The Lie derivative is additive

and satisfies the Leibnitz rule,

LX(T + S) = LXT + LXS , LX(T ⊗ S) = LXT ⊗ S + T ⊗ LXS , (A.19)

where T, S are tensor fields. To compute the components (LXT )
m1···mp

n1···nq

of the Lie derivative LXT of a tensor field T it is therefore sufficient to know
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the action of LX on functions f , coordinate vector fields ∂p and coordinate

differentials dxp:

LXf = Xm∂mf , LX∂p = −(∂pX
n)∂n , LXdx

p = (∂nX
p)dxn . (A.20)

For vector fields Y and one-forms ω one obtains:

LXY = [X,Y ] = (Xm∂mY
n − Y m∂mXn)∂n ,

LXω = iXdω + d(iXω) = (Xm∂mωn + ωm∂nX
m)dxn .

The second formula remains valid for p-forms, and is known as Cartan’s magic

formula

LXω = iXdω + d(iXω) , X ∈ X(M) , ω ∈ Ωp(M) . (A.21)

For computations it is useful to note that

LXf = X(f) = df(X) . (A.22)

A.4. Pseudo-Riemannian manifolds

A pseudo-Riemannian manifold is a manifold equipped with a symmetric,

non-degenerate rank two co-tensor field, called the metric. Pseudo-Riemannian

manifolds are also referred to as semi-Riemannian manifolds.

Our convention for the symmetrized tensor product of one-forms is

αβ =
1

2
(α⊗ β + β ⊗ α) . (A.23)

Therefore the local expression for the metric is

g = gmndx
mdxn =

1

2
gmn(dxm ⊗ dxn + dxn ⊗ dxm) . (A.24)

The metric provides a natural isomorphism between vector fields and one forms.

We use the ‘musical’ notation:

X = Xm∂m ⇒ X[ = Xmdx
m , Xm = gmnX

n , (A.25)

ω = ωmdx
m ⇒ ω] = ωm∂m , ωm = gmnωn , (A.26)

where gmn are the components of the matrix inverse of gmn.

We do not require that the metric is positive definite, and consider general

signatures (t, s), where t is the number of time-like and s the number of space-

like dimensions. Since we adopt a ‘mostly plus convention’, t is the number of

negative eigenvalues, and s the number of positive eigenvalues of the matrix gmn.

For completeness we define that a Riemannian manifold is a pseudo-Riemannian

manifold with definite signature.
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A.5. Connections

A.5.1. Connections on the tangent bundle

A connection ∇ on TM (also called a connection on M , or an affine or linear

connection on TM) is a bilinear map73

∇ : X(M)× X(M)→ X(M) : (X,Y ) 7→ ∇XY , (A.27)

which satisfies

∇fXY = f∇XY , ∇X(fY ) = X(f)Y + f∇XY , (A.28)

for all f ∈ C∞(M). The covariant derivative

∇X : X(M)→ X(M) : Y 7→ ∇XY (A.29)

is extended to general tensor fields,

∇X : T pq (M)→ T pq (M) (A.30)

by imposing linearity and the Leibnitz rule in T pq (M) and C∞(M)-linearity in

X.

We remark that in the literature the expressions ‘covariant derivative’ and

‘connection’ are used variably for ∇ and ∇X . If one needs to distinguish ∇ from

∇X , then the first is called the absolute covariant derivative and the second the

directional covariant derivative.

The connection coefficients γpmn and connection one-form ωpn = γpmne
m with

respect to a frame are defined by

∇emen = γpmnep (A.31)

or in terms of the dual frame

∇epem = −γmpnen . (A.32)

If the frame em is a coordinate frame, the connection coefficients are denoted

Γpmn:

∇∂m∂n = Γpmn∂p . (A.33)

73Alternatively, one can view ∇ as a map X(M)→ Ω1(M)⊗X(M) which assigns to a vector
field X the vector-valued one-form ∇X.
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The torsion and curvature of a connection are the following multilinear maps

T∇(X,Y ) = ∇XY −∇YX − [X,Y ] , (A.34)

R∇X,Y Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z , (A.35)

where X,Y, Z ∈ X(M). The torsion and curvature tensor are defined by

T (α,X, Y ) = α(T∇(X,Y )) , (A.36)

R(α,Z,X, Y ) = α(R∇X,Y Z) (A.37)

where α ∈ Ω1(M). The components with respect to a frame are:

Tmnp = T (em, en, ep) = γmnp − γmpn − cmnp , (A.38)

Rmnpq = R(em, en, ep, eq) = ep(γ
m
qn)− eq(γmpn) (A.39)

+γmpaγ
a
qn − γmqaγapn − capqγman . (A.40)

For a coordinate frame these expression reduce to

Tmpq = Γmpq − Γmqp , (A.41)

Rmnpq = ∂pΓ
m
qn − ∂qΓmpn + ΓmpaΓaqn − ΓmqaΓapn .

A.5.2. The Levi-Civita Connection

The Levi-Connection D on a Riemannian manifold (M, g) is the unique

connection on the tangent bundle TM which is both metric (compatible) and

torsion free:

DXg = 0 , TD(X,Y ) = 0 , ∀X,Y ∈ X(M) . (A.42)

Our conventions for the Levi-Civita connection and the Christoffel symbols are

summarized in B.2.

A.5.3. Flat, torsion-free connections and affine manifolds

If a connection is flat, R∇ = 0, it is possible to choose a frame consisting of

parallel vector fields [216], i.e.

∇emen = 0⇒ γpmn = 0 . (A.43)

If the connection is in addition torsion-free, then this parallel frame is a coordi-

nate frame, since

T (em, en, ep) = 0

γmnp = 0

⇒ cmnp = 0 . (A.44)
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Alternatively, we note that the expression for the torsion tensor with respect

to a frame is

T = em ⊗ dem + en ⊗ ωnm ⊗ em . (A.45)

If ∇ is flat, we can choose a basis of parallel sections, so that ωnm = 0, and then

T = 0

ωnm = 0

⇒ dem = 0⇒ em = dqm , (A.46)

where qm are local functions that provide coordinates underlying the parallel

frame. Such coordinates are called ∇-affine coordinates and are unique up to

affine transformations. The condition on a coordinate system to be affine is

∇dqm = 0, that is, that the coordinates define a parallel co-frame.

If a manifold admits a flat, torsion-free connection, it can be covered with

∇-affine coordinate charts which are related by affine transition functions. Such

an atlas is called an affine structure. A manifold M equipped with a flat,

torsion-free connection ∇ is called an affine manifold.

A.5.4. Connections on vector bundles

Let E →M be a vector bundle over a manifold M . A connection on E is a

map

∇ : X(M)× Γ(E)→ Γ(E) , (X, s) 7→ ∇Xs , (A.47)

which is linear and satisfies the product rule with respect to sections s ∈ Γ(E),

while being C∞(M)-linear with respect to vector fields X ∈ X(M).

Let E → M be a vector bundle with connection ∇, and let D be a linear

connection on M . If s ∈ Γ(E) is a section of E, then ∇s is a section of T ∗M⊗E.

One can then use the connection induced by D and ∇ to define the second

covariant derivative ∇2s, which is a section of T ∗M ⊗ T ∗M ⊗ E:

∇2s(X,Y ) = ∇X(∇Y s)−∇DXY s . (A.48)

Alternative notations are ∇2
X,Y s or (∇2s)X,Y .

If E = TM , denoting the connection induced by D on tensor bundles again

by D, we obtain the following formula for the second covariant derivative of a

vector field:

D2
X,Y Z = DX(DY Z)−DDXY Z . (A.49)
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In local coordinates, the relevant expression are, using the notation Dm = D∂m :

(D2
X,Y Z)p = XmY nDmDnZ

p , (A.50)

(DX(DY Z))p = XmDm(Y nDnZ
p) , (A.51)

(DDXY Z)p = Xm(DmY
n)DnZ

p . (A.52)

We can define the Hessian Ddf of a function f with respect to the linear con-

nection D:

Ddf(X,Y ) = XY (f)− (DXY )f = XmDm(Y n∂nf)−Xm(DmY
n)∂nf

= XmY nDm∂nf . (A.53)

If the connection D is torsion-free,

DXY −DYX = [X,Y ] , (A.54)

then the Hessian is symmetric, and the curvature of D can be written

RDX,Y Z = [DX , DY ]Z −D[X,Y ]Z = D2
X,Y Z −D2

Y,XZ . (A.55)

For the bundle Ωp(M,E) = Γ(ΛpT ∗M ⊗ E) of vector-valued p-forms, one

defines the exterior covariant derivative

d∇ : Ωp(M,E)→ Ωp+1(M,E) (A.56)

by its action on sections of E. For a basis {sa} of sections one sets

d∇sa := ∇sa = ωba ⊗ sb , (A.57)

where ωba is the connection one-form of ∇. The exterior covariant derivative of

a general section s = fasa ∈ Ω0(M,E) = Γ(E) is determined by the product

rule

d∇s = dfa ⊗ sa + faωba ⊗ sb . (A.58)

The extension of d∇ to forms of degree p > 0 is uniquely determined by linearity

and the product rule:

d∇(α⊗ s) = dα⊗ s+ (−1)deg(α)α ∧ d∇s , α ∈ Ωp(M) . (A.59)

The exterior covariant derivative of a vector valued p-form ρ ∈ Ωp(M,E) can

be expressed in terms of the covariant derivative by

(d∇ρ)(X0, . . . , Xp) =

p∑
l=0

(−1)l∇Xl
(ρ(. . . , X̂l, . . .)) (A.60)

+
∑
i<j

(−1)i+jρ([Xi, Xj ], . . . , X̂i, . . . , X̂j , . . .) ,
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where X0, . . . , Xp are vector fields, and where X̂ indicates that the vector field X̂

is omitted as an argument. The second exterior derivative of a section s ∈ Γ(E)

is related to the curvature of the connection ∇ by

d2
∇s(X,Y ) = R∇X,Y , ∀X,Y ∈ X(M) , s ∈ Γ(E) . (A.61)

Thus d∇ satisfies d2
∇ = 0 if and only if the connection is flat. If this is the

case, a version of the Poincaré lemma holds which allows to write a d∇-closed

vector-valued p-form locally as the d∇ derivative of a vector valued (p−1)-form.

In general the Bianchi identity d∇R∇ = 0 for the curvature implies that d3
∇ = 0.

We refer to [219], [220] for more details on the exterior covariant derivative.

In the case when E = TM , ∇ is a connection on TM and we can define its

torsion. It is useful to note that the torsion tensor can be expressed as

T∇ = d∇Id , (A.62)

where Id = em ⊗ em ∈ Γ(End(TM)) ' Γ(T ∗M ⊗ TM) ' Ω1(M,TM) is the

identity endomorphism on TM , regarded as a vector-valued one-form. Equation

(A.62) can be verified using that

d∇ (ea ⊗ ea) = dea ⊗ ea + ea ∧ ωba ⊗ eb (A.63)

and evaluating both sides of the equation on vector fields, that is by showing

that T∇(X,Y ) = (d∇Id)(X,Y ). Instead of general vector fields X,Y , one can

choose X = ea, Y = eb with arbitrary a, b, thus comparing the components with

respect to a frame.

A.6. Pull-back bundles

If f : M → N is a smooth map between smooth manifolds M,N , then one

can pull back any vector bundle πE : E → N to a vector bundle f∗E →M over

M , called the pull-back bundle of M by f , which is constructed as follows:

• The total space of f∗E is

f∗E := {(m, e) ∈M × E|f(m) = πE(e)} (A.64)

• The bundle projection is the restriction of the canonical projection π1 :

M × E →M to f∗E:

πf∗E(m, e) = m . (A.65)
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By construction the fibres of f∗E are mapped to fibres of E, more precisely

(f∗E)m ∼= Ef(m) for all m ∈ M . By restricting the canonical projection π2 :

M × E → E to f∗E we obtain the so-called covering morphism

F : f∗E → E : (m, e) 7→ F (m, e) = e , (A.66)

which completes the commutative diagram

f∗E
F //

πf∗E

��

E

πE

��

M
f

// N

(A.67)

The pull-back f∗s ∈ Γ(f∗E) of a section s ∈ Γ(E) is defined by

(f∗s)(m) = s(f(m)) . (A.68)

We can also pull back a connection D on E to a connection f∗D on f∗E . This

pull-back connection is defined by

(f∗D)Xf
∗s := DdfXs , (A.69)

for all vector fields X on M .

A.7. The Frobenius theorem, hypersurfaces, and hypersurface orthogonal vector
fields

This section is partly based on [216] and on [221], Appendix B.

A p-dimensional distribution V = ∪x∈MVx on the tangent bundle TM of a

smooth manifold is a map

M 3 x 7→ Vx ⊂ TxM , (A.70)

where Vx is a p-dimensional subspace of TxM . A distribution is called smooth

if it depends smoothly on p. This means that for each x ∈ M there exists a

neighbourhood U and p linearly independent smooth vector fields defined on

U which span Vx for x ∈ U . One may then ask whether there exist on M

smooth p-dimensional submanifolds which are tangent to V . Such submanifolds

are called the integral manifolds of the distribution, and provide a foliation of

M , that is a disjoint decomposition into submanifolds, called the leafs of the

foliation.
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According to the Frobenius theorem a distribution is integrable if and only

if it is involutive, that is if the Lie bracket of any two tangent vector fields is

again a tangent vector field, for all points x ∈ M . Distributions which possess

integral manifolds are called (Frobenius-)integrable.

The Frobenius theorem can be given a dual formulation in terms of differen-

tial forms. Given a distribution V ⊂ TM one can consider the dual distribution

V ∗ ⊂ T ∗M on the cotangent bundle defined by

ω ∈ V ∗ ⇔ ω(X) = 0 , ∀X ∈ V . (A.71)

For differential forms, the integrability condition is

dω =
∑
i

α(i) ∧ β(i) , (A.72)

where α(i) ∈ V ∗, and where β(i) ∈ Ω1(M).

A vector field ξ is called hypersurface orthogonal if it is orthogonal to a

foliation of M by hypersurfaces. This is equivalent to the statement that the

distribution V = 〈ξ〉⊥ is Frobenius integrable. The dual distribution V ∗ on the

cotangent bundle is spanned by the one-form ξ[, that is V ∗ = (〈ξ〉⊥)∗ = 〈ξ[〉,
because ξ[(·) = g(ξ, ·). Specializing the dual version of the Frobenius theorem

to the case of a hypersurface distribution we obtain

dξ[ = ξ[ ∧ β , (A.73)

for some one-form β, where we used that the distribution V ∗ is one-dimensional.

This equation is equivalent to

ξ[ ∧ dξ[ = 0⇔ ξ[m∂nξp] = 0 , (A.74)

which is the standard criterion used in the literature for verifying the hypersur-

face orthogonality of a vector field. Note that due to the antisymmetrization

the expression ξ[m∂nξp] is covariant, since we can replace ∂n by any torsion free

covariant derivative. Also note that the integrability condition is satisfied in

particular if the vector field is closed, that is if dξ[ = 0.

Foliations by hypersurfaces can be described locally as level sets of a function

F : M → R:

M ' ∪c∈R{x ∈M |F (x) = c} . (A.75)
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The standard normal vector field to such a foliation is n = grad(F ) = (dF )],

with components nm = gmn∂nF . Tangent vectors t to the foliation are charac-

terized by any of the following relations:

gmnn
mtn = g(n, t) = 0 = dF (t) = tm∂mF . (A.76)

The most general vector field ξ normal to the foliation can differ from the

standard normal n by a function f : M → R, that is ξ = f(dF )]. Such a vector

field clearly satisfies the integrability condition we derived earlier, since ξ[ =

fdF . The standard normal vector field n is distinguished by being ‘closed’, more

precisely by dn[ = 0. This is a stronger condition than Frobenius integrability.

A.8. Integral curves, one-parameter groups and quotient manifolds

A one-dimensional distribution on the tangent bundle is always integrable,

because the integrability condition becomes trivial. Such a distribution defines

a smooth vector field X, and its integrability corresponds to the existence of a

family of so-called integral curves, whose tangent vectors are given by X. The

integral curve Cx0
: t 7→ x(t) through a given point p ∈ M with coordinate x0

is found by solving the initial value problem

dx

dt
= X(t) , t ∈ I ⊂ R , x(0) = x0 . (A.77)

The flow of the vector field X is defined by

σ : I ×M →M , (t, x) 7→ σ(t, x) = x(t) (A.78)

where x(t) = σx(t) is the integral curve of X with initial condition x(0) = x0.

Further defining

σt : M →M , x(0) = σ0(x) = σ(x, 0) 7→ σ(x, t) = σt(x) = x(t) (A.79)

we see that σt moves the points of M along the integral curves of X. Since

σs+t = σt ◦ σs and σ0 = Id, these transformations form a group, called the

one-parameter transformation group generated by X. If this action is a globally

defined group action of G = U(1) or G = R on M , then the integral curves

are called the orbits of G, and denoted 〈X〉. As already discussed in A.1, the

space of orbits, denoted M/〈X〉 = M/G, need not be a manifold, in particular

it need not satisfy the Hausdorff separation axiom. However, in many cases,

including those relevant for this review, the quotient is a (Hausdorff) manifold,
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and various structures, such as the metric, complex or symplectic structure

project to the quotient manifolds. Quotient manifolds can also be defined with

respect to the action of higher-dimensional groups. Examples relevant for this

review are the action of the group C∗ on CASK manifolds and the action of the

group H∗ on hyper-Kähler manifolds.

A.9. Metric cones and metric products

In this section we elaborate on some standard definitions, and in particular

adapt them to the pseudo-Riemannian setting.

If (H, h) is a pseudo-Riemannian manifold, then the metric cone (or Rie-

mannian cone) (M, g) over (H, h) is the manifold M = R>0×H equipped with

the metric

g = ±dρ2 + ρ2h . (A.80)

We note that ξ = ∂ρ is a closed homothetic Killing vector field:

Lξg = 2g , dξ[ = 0 . (A.81)

Since ξ is closed, it is gradient vector field:

ξ[ = dH ⇔ ξ = gradH (A.82)

or, in local coordinates xm on M :

ξm = ∂mH ⇔ ξm = gmn∂nH . (A.83)

M is foliated by the level surfaces H = c which are orthogonal to ξ, and H can

be identified with the hypersurface H = 1.

The two equations (A.82) are the symmetric and anti-symmetric part of

Dξ = IdTM ⇔ Dmξn = gmn , (A.84)

where D is the Levi-Civita connection of g. This equation provides a local

characterization of a metric cone:

Remark 10. Let (M, g) be a pseudo-Riemannian manifold of dimension n+ 1,
equipped with a vector field ξ, which is nowhere isotropic, that is g(ξ, ξ) 6= 0
everywhere, and which satisfies

Dξ = IdTM . (A.85)

Then there exist local coordinates (r, xi), i = 1, . . . , n such that metric g takes
the form

g = ±dr2 + r2hijdx
idxj , (A.86)

where hij only depend on the coordinates xi.
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This is a special case of the standard form of an n-conical Riemannian metric,

which we derive in section 2.3.

If (H1, h1) and (H2, h2) are two pseudo-Riemannian manifolds, their metric

product or Riemannian product (M, g) is defined by M = H1 × H2 equipped

with the product metric

g = hH1
+ hH2

. (A.87)

In local coordinates (xm, yi) on H1 ×H2, this takes the form

g = (h1)mn(x)dxmdxn + (h2)ij(y)dyidyj . (A.88)

In applications we encounter product manifolds of the special form

M = R×H ∼= R>0 ×H , (A.89)

for which the metric takes the form

g = ±dρ2 + hijdx
idxj = ±dr

2

r2
+ hijdx

idxj , (A.90)

where the coordinates r, ρ are related by r = eρ. The vector field ξ = ∂ρ =

r∂r is a Killing vector field, Lξg = 0, which is closed dξ[ = 0, and therefore

hypersurface orthogonal, and which in addition has constant norm g(ξ, ξ) = ±1.

The manifold M is foliated by hypersurfaces where ρ = const., and all these

hypersurfaces are isometric to each other and to (H, h).

The Killing equation can be combined with the closed-ness condition to

Dξ = 0 . (A.91)

Note that this equation does not by itself imply that a metric g locally takes

the form (A.90) of a product. This requires in addition that the norm of ξ is

constant, so that surfaces of constant ρ are isometric to each other. The proof

that this is sufficient to bring the metric to the form (A.90) is given in section

2.3.

A.10. Affine hyperspheres and centroaffine hypersurfaces

Here we review some facts about affine hyperspheres and centroaffine hyper-

surfaces, following [43, 44, 143]. Consider Rm+1 equipped with the standard

connection ∂ (given by the partial derivative with respect to standard linear
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coordinates), and the standard volume form vol, which is parallel with respect

to ∂. Let M be a connected manifold which is immersed as a hypersurface

ϕ : M → Rm+1 . (A.92)

Assume that there exists a vector field ξ which is transversal along M . Then

volM = vol(ξ, · · · ) is a volume form on M , and by decomposing

∂XY = ∇XY + g(X,Y )ξ , (A.93)

∂Xξ = SX + θ(X)ξ , (A.94)

where X,Y are tangent to M , one obtains on M : (i) a torsion-free connection

∇, (ii) a symmetric co-tensor g, (iii) an endomorphism field S and (iv) a one-

form θ. If g is non-degenerate, it defines a pseudo-Riemannian metric on M . It

can be shown that once the orientation of M has been fixed there is a unique

choice for ξ, called the affine normal such that the induced volume form volM of

M coincides with the volume form defined by the metric g. If ξ is chosen to be

the affine normal, then θ = 0 and S can be expressed in terms of the so-called

Blaschke data (g,∇).

There are two special cases:

1. A hypersurface is called a parabolic (or improper) affine hypersphere if the

affine normals are parallel, ∂ξ = 0, and thus only intersect ‘at ∞.’ One

can show that

∂ξ = 0⇔ S = 0⇔ ∇ flat . (A.95)

Thus parabolic affine hyperspheres carry a flat torsion-free connection.

2. A hypersurface is called a proper affine hypersphere if the lines generated

by the affine normals intersect at a point p ∈ Rm+1. For a proper affine

hypersphere S = λId, λ ∈ R∗.

The ASK manifolds of four-dimensional vector multiplets are parabolic affine

hyperspheres with additional structure, called special parabolic hyperspheres, see

section 5.1.3.

The PSR manifolds of five-dimensional vector multiplets coupled to super-

gravity, which are discussed in section 2.5.2, are, in general, not (proper) affine

hyperspheres, but centroaffine hypersurfaces. According to section 1.1 of [143]

a hypersurface immersion ϕ : M → Rm+1 is called a centroaffine hypersurface
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immersion if the position vector field ξ is transversal to the image of M . The

equation

∂XY = ∇XY + g(X,Y )ξ , (A.96)

for X,Y ∈ X(M) induces on M a connection ∇, a symmetric tensor field g,

and a ∇-parallel volume form volM = det(ξ, . . .). The data (∇, g, volM ) are

called the induced centroaffine data on M . The hypersurface M is called non-

degenerate if g is non-degenerate, definite if g is definite, elliptic if g is negative

definite, and hyperbolic if g is positive definite. Every homogeneous function de-

fines a centroaffine hypersurface embedding, and every centroaffine hypersurface

immersion is locally generated by a homogeneous function. Centroaffine struc-

tures can be characterized intrinsically: a centroaffine manifold (M,∇, g, volM )

is a manifold equipped with a torsion-free connection ∇, a pseudo-Riemannian

metric g and a volume form volM , subject to three compatibility conditions:

(i) the volume form is ∇-parallel, (ii) the cubic form C := ∇g is completely

symmetric, and (iii) the curvature tensor R of ∇ is given by

R(X,Y )Z = −(g(Y,Z)X − g(X,Z))Y ) (A.97)

for X,Y, Z ∈ X(M). By Theorem 1.6 of [143] a centroaffine immersion ϕ :

M → Rm+1 induces on M the structure of a centroaffine manifold. Conversely,

every connected and simply connected centroaffine manifold can be realized as

a centroaffine immersion, which is unique up to SL(m+ 1,R) transformations.

Note that in contradistinction to affine hyperspheres, the position vector field ξ

of a centroaffine hypersurfaces is in general not the affine normal of M .74

PSR manifolds, which are the scalar manifolds of five-dimensional vector

multiplets coupled to supergravity, were discussed in section 2.5.2. We now

review how they fit into the theory of centroaffine hypersurfaces, following sec-

tion 2.1 of [143]. A PSR manifold is a smooth hypersurface M̄ ∼= H ⊂ Rm+1,

which is realized as the level set V = 1 of a homogeneous cubic polynomial V,

such that ∂2V is negative definite on TH. This induces a centroaffine structure

(∇, g, volM̄ ) on M̄ .

According to definition 2.2 of [143] an intrinsic projective special real mani-

fold is a centroaffine manifold (M̄,∇, g, volM̄ ) with a positive definite metric g

74We thank the referee for pointing this out to us.
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such that the covariant derivative of the cubic form C = ∇g is given by

(∇XC)(Y,Z,W ) = g(X,Y )g(Z,W )+g(X,Z)g(W,Y )+g(X,W )g(Y,Z) (A.98)

for all X,Y, Z,W ∈ X(M̄).

Theorem 2.3 of [143] relates the extrinsic and intrinsic definitions of PSR

manifolds. The induced centroaffine structure on a PSR manifold gives it the

structure of an intrinsic PSR manifold, and any connected and simply connected

intrinsic PSR manifold can be realized by an immersion ϕ : M̄ → Rm+1 which

is unique up to SL(m+ 1,R) transformations.

A.11. Complex manifolds

An almost complex manifold (M,J) is a real manifold M together with

an almost complex structure J . An almost complex structure J is a section

of End(TM) ' TM ⊗ T ∗M , which satisfies J2 = −1TM . Note that an almost

complex manifold is always of even dimension. A complex manifoldN of complex

dimension n is a manifold which is locally biholomorphic to Cn. A complex

manifold automatically carries an almost complex structure (with additional

properties, see below) which is called its complex structure. In terms of local

holomorphic coordinates zi = xi + iyi, the complex structure acts on TM as

JXi = Yi , JYi = −Xi (A.99)

where Xi, Yi is the coordinate frame

Xi =
∂

∂xi
, Yi =

∂

∂yi
. (A.100)

Xi, Yi is called a holomorphic frame on (M,J).

As a consequence of the Newlander-Nirenberg theorem, an almost complex

manifold (M,J) is a complex manifold if and only if the Nijenhuis tensor (or

torsion tensor) associated to J , defined by

NJ(X,Y ) := 2 ([JX, JY ]− [X,Y ]− J [X,JY ]− J [JX, Y ]) , (A.101)

vanishes. An almost complex structure with vanishing torsion tensor is called

an integrable almost complex structure, or simply a complex structure.

For further reading we refer to [115], on which A.11 – A.13 are mostly based.
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A.12. Complex vector bundles

A complex vector bundle E over a manifold M is a vector bundle whose

fibres are complex vector spaces. A one-dimensional complex vector bundle

is called a complex line bundle. A Hermitian metric γ on E is a family of

Hermitian scalar products γx on the fibres Ex, which varies smoothly with x ∈
M . Our convention for Hermitian forms is that they are complex linear in the

first and complex anti-linear in the second argument. A Hermitian vector bundle

(E,M, γ) is a complex vector bundle (E,M) equipped with a Hermitian metric.

A connection D on a Hermitian vector bundle is called metric compatible, or

metric, or Hermitian if

d (γ(s, t)) = γ(Ds, t) + γ(s,Dt) (A.102)

for all sections s, t.

A holomorphic vector bundle E is a complex vector bundle over a com-

plex manifold M such that the projection π : E → M is holomorphic. Every

complex manifold comes equipped with a standard holomorphic vector bun-

dle, the tangent bundle TM equipped with the complex structure J . Another

canonical complex vector bundle over M is the complexified tangent bundle

TCM = TM ⊗R C, equipped with the complex linear extension of J . The

complexified tangent bundle can then be split into the eigen-distributions of J ,

called the holomorphic and anti-holomorphic tangent bundle,

TCM = T (1,0)M + T (0,1)M . (A.103)

The maps

TM → T (1,0)M : X 7→ 1

2
(X− iJX) , TM → T (0,1)M : X 7→ 1

2
(X+ iJX) ,

(A.104)

are complex linear and complex anti-linear isomorphisms, respectively, of com-

plex vector bundles. Since TM is a holomorphic vector bundle over M , so is

T (1,0)M , but the smooth complex vector bundle T (0,1)M is not a holomorphic

vector bundle in a natural way.

A complex vector field Z is a section of TCM and can be decomposed into

its (1, 0) and (0, 1) parts

Z(1,0) =
1

2
(Z − iJZ) , Z(0,1) =

1

2
(Z + iJZ) . (A.105)
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Given local holomorphic coordinates zi = xi+iyi we can define local complex

frames

Zi =
∂

∂zi
=

1

2
(Xi − iYi) , Zi =

∂

∂z̄i
=

1

2
(Xi + iYi) , (A.106)

on T (1,0)M and T (0,1)M , where Xi = ∂
∂xi , Yi = JXi = ∂

∂yi is a coordinate frame

on TM .

Like the complexified tangent bundle, all associated complex tensor bundles

admit decompositions into ‘holomorphic’ and ‘anti-holomorphic’ components.

For example complex n-forms can be decomposed into (p, q)-forms, p + q = n,

Ωn(M) =
⊕

p+q=n Ωp,q(M). The de-Rham differential can be decomposed as

d = ∂ + ∂̄ , ∂ = d(1,0) , ∂̄ = d(0,1) . (A.107)

If the complex structure is integrable, then

∂ : Ωp,q(M)→ Ωp+1,q(M) , ∂̄ : Ωp,q(M)→ Ωp,q+1(M) , (A.108)

and since ∂2 = 0 = ∂̄2, the de-Rham cohomology admits a refinement called

Dolbeault cohomology:

Hn(M) =
∑

n=p+q

Hp,q

∂̄
(M) . (A.109)

A connection D on a holomorphic vector bundle is called a holomorphic con-

nection if it is compatible with the holomorphic structure, that is if π0,1Ds =

∂s = 0 for all holomorphic sections s, where π0,1 is the projection onto the

anti-holomorphic co-tangent bundle, and where ∂ = π0,1d is the standard anti-

holomorphic partial derivative, i.e. the anti-holomorphic projection of the ex-

terior derivative d. Equivalently, the (0, 1)-part of the connection one-form

vanishes, ω0,1 = π0,1ω = 0. Equivalently, for holomorphic sections s the covari-

ant derivative along a complex vector field of type (0, 1) vanishes, DX̄s = 0 for

all X ∈ Γ(T (1,0)M) and s ∈ Γholom(E).

On a holomorphic Hermitian vector bundle there is a unique connection,

called the Chern connection, which is simultaneously Hermitian and holomor-

phic. As an example consider the trivial holomorphic Hermitian vector bundle

Cn ×Cm → Cn, where the Hermitian metric γ is defined by choosing a Hermi-

tian inner product on Cm. This vector bundle carries a canonical flat connection

d which is defined by the standard partial derivative, that is by declaring that
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any frame defined by a basis (ei) of Cm is parallel, dXei = 0 for all complex vec-

tor fields X on Cn. The covariant derivative dXv of a section v(P ) = vi(P )ei,

P ∈M along a complex vector field X = Xa∂a +X ā∂ā ∈ Γ(TCCn) is

dXv = X(vi)ei = (Xa∂av
i +X ā∂āv

i)ei = ∂Xv + ∂Xv . (A.110)

The connection d is manifestly holomorphic, and it is also Hermitian since

dXγ(v, w) = Xγ(v, w) = γ(dXv, w) + γ(v, dX̄w) . (A.111)

A.13. Hermitian manifolds

An (almost) Hermitian manifold (M,J, g) is an (almost) complex manifold

(M,J) equipped with a J-invariant pseudo-Riemannian metric g,

(J∗g)(X,Y ) = g(JX, JY ) = g(X,Y ) , ∀X,Y ∈ X(M) . (A.112)

Note that we allow the Riemannian metric to be indefinite. Such manifolds

are often called (almost) pseudo-Hermitian. Also note that the positive and

negative eigenvalues of an (almost) Hermitian metric always come in pairs. One

therefore says that a pseudo Hermitian metric has complex signature (m,n) if

the underlying Riemannian metric has real signature (2m, 2n).

The metric g can be extended complex-linearly to the complexified tangent

bundle TCM . The resulting complex bilinear form has the following properties,

where Z,W are complex vector fields:

g(Z,W ) = g(W,Z) , (A.113)

g(Z̄, W̄ ) = g(Z,W ) , (A.114)

g(Z,W ) = 0 , if Z,W ∈ Γ(T (1,0)M) , (A.115)

g(Z̄, Z) > 0 ,unless Z = 0 . (A.116)

Assume that J is integrable, and let zi = xi + iyi be local complex coordinates,

with associated holomorphic frame Zi = 1
2 (Xi − iYi) . Then the components of

the metric are

gjk := 2g(Zj , Zk) = 0 , (A.117)

gj̄k̄ := 2g(Zj , Zk) = 0 , (A.118)

gjk̄ := 2g(Zj , Zk) = 2g(Zk, Zj) = gk̄j , (A.119)

gjk̄ = gj̄k = gkj̄ . (A.120)
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Here we used properties of the complex-linear extension of the metric to TCM ,

and choose the normalization for later convenience. Note that the coefficients

can be arranged as a Hermitian matrix. The metric can be written

g = gjk̄dz
jdzk =

1

2
gjk̄
(
dzj ⊗ dzk + dzk ⊗ dzj

)
. (A.121)

Note that g(Zi, Z̄j) = 1
2gij̄ , which explains our normalization of gij̄ .

Given a metric and a compatible (almost) complex structure, one defines

the fundamental two-form ω by

ω(X,Y ) := g(X, JY ) . (A.122)

The coefficients of the fundamental two-form with respect to the holomorphic

frame Zi are

ωij̄ = 2ω(Zi, Z̄j) = 2g(Zi, JZ̄j) = 2g(Zi,−iZ̄j) = −igij̄
ωj̄i = 2ω(Z̄j , Zi) = 2g(Z̄j , JZi) = igj̄i = igij̄ = −ωij̄ . (A.123)

Therefore the fundamental two-form has the expansion

ω = − i
2
gij̄
(
dzi ⊗ dz̄j − dz̄j ⊗ dzi

)
= − i

2
gij̄dz

i ∧ dzj =
1

2
ωij̄dz

i ∧ zj . (A.124)

The fundamental two-form is non-degenerate. Given ω and J we can there-

fore solve for the metric using that

g(X,Y ) = ω(JX, Y ) (A.125)

Moreover the complex structure

J ∈ Γ(End(TM)) : TM → TM (A.126)

is determined by g and ω as

J = g−1ω ∈ Γ(T ∗M ⊗ TM) ∼= Γ(End(TM)) , (A.127)

where the map g−1ω is defined by

Y = (g−1ω)(X)⇔ g(·, Y ) = ω(·, X) . (A.128)

Thus any two of the three compatible data (g, ω, J) suffice to determine the

third. To provide the corresponding local formulae, we introduce the compo-

nents of the inverse metric by

gik̄gk̄j = δij , gīkgkj̄ = δīj̄ . (A.129)
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The components (A.123) of the fundamental form are determined by antisym-

metry. These relations are consistent with complex conjugation, ωij̄ = ωīj .

Evaluating Jmn = gmpωpn in complex coordinates, we obtain the components of

the complex structure:

J ij = gik̄ωk̄j = iδij , J ī j̄ = gīkωkj̄ = −iδīj̄ . (A.130)

The metric g and the fundamental form ω can be combined into a Hermitian

form γ, which defines a Hermitian metric on the complex vector bundle TM .

Its components with respect to the holomorphic frame Zi = ∂
∂zi are

γ = gij̄dz
i ⊗ dzj = g + iω . (A.131)

We remark that our conventions differ from [115], on which A.11, A.12, A.13,

and A.15 are partly based. In particular, we avoid a factor 1
2 between the

coefficients of the metric g on M and the Hermitian metric γ on the complex

vector bundle TM , we include a factor 1
2 in the definition of the symmetrized

tensor product, we define ω in terms of g, J with a relative minus sign, and we

take Hermitian forms complex anti-linear in the second rather than in the first

argument.

A.14. Symplectic manifolds

A symplectic manifold (M,ω) is a real manifold equipped with a closed non-

degenerate two-form ω, called the symplectic form. Symplectic manifolds are

even dimensional. The tangent spaces (TpM,ωp) are symplectic vector spaces

isomorphic to R2n with its standard symplectic form ω. Let W be a linear

subspace, ι : W → V be the canonical embedding, and

W⊥ = {v ∈ V |ω(v, w) = 0 , ∀w ∈W} (A.132)

be the ‘symplectically perpendicular’ subspace. Then

• W ⊂ V is called isotropic if W ⊂ W⊥. This implies dimW ≤ 1
2 dimV

and ι∗ω is totally degenerate, ι∗ω = 0.

• W ⊂ V is called co-isotropic if W⊥ ⊂ W . This implies dimW ≥ 1
2 dimV

and W/W⊥ inherits a symplectic structure from V .

• W ⊂ V is called Lagrangian if it is isotropic and co-isotropic, that is if

W⊥ = W . This implies dimW = 1
2 dimV and W is an isotropic subspace

of maximal dimension.
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• W ⊂ V is called symplectic if W ∩W⊥ = {0}.

Consider the following example of a co-isotropic subspace. Let {ξ, η,X1, . . . , Xn,

Y1, . . . , Yn} be a basis of V ∼= R2n+2, such that

ω(ξ, η) = 1 , ω(Xi, Yj) = ωij , (A.133)

with all other components determined by antisymmetry, or else being zero.

Define W as the linear subspace W = 〈η,X1, . . . , Xn, Y1, . . . , Yn〉. Then W⊥ =

ker(ι∗ω) = 〈η〉 ⊂ W , so that W is co-isotropic. The quotient W̄ := W/W⊥ is

defined by the equivalence relation

w ∼ w′ ⇔ w − w′ = αη . (A.134)

The projection map onto the quotient is

π : W → W̄ , w 7→ w̄ = π(w) , (A.135)

where w̄ = π(w) denotes the equivalence class of w with respect to (A.134). On

W̄ we can define a two-form ω̄ by

ω̄(X̄, Ȳ ) = (π∗ω̄)(X,Y ) = (ι∗ω)(X,Y ) , (A.136)

which is non-degenerate because we have factored out the kernel of ι∗ω. Choos-

ing the basis {X̄1, . . . , X̄n, Ȳ1, . . . , Ȳn} for W̄ , the components of ω̄ are

ω̄ij = ω̄(X̄i, Ȳj) = ωij . (A.137)

A submanifold ι : S → M is called a(n) isotropic, co-isotropic, Lagrangian

and symplectic submanifold, respectively, if all its tangent spaces are isotropic,

co-isotropic, Lagrangian and symplectic, respectively. The pullback ι∗ω of the

symplectic form is thus totally degenerate on isotropic and symplectic subman-

ifolds, and isotropic submanifolds have maximal dimension 1
2 dimM .

An immersion ι : S → M is called a Lagrangian immersion if its image is

a Lagrangian submanifold. A vector field X on (M,ω) is called a Hamiltonian

vector field if

ω(X, ·) = −dH(·) (A.138)

for a function H, called the Hamiltonian or moment(um) map(ping) of X.

Example of a symplectic quotient. We now give a simple example of a

symplectic quotient (or symplectic reduction), which is useful for understanding
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the complex version of the superconformal quotient relating affine conical to

projective special Kähler manifolds. Let (M,ω) be a symplectic manifold, and

let X be a Hamiltonian vector field which generates a U(1)-action on M . The

level surfaces Hc = {H = c} = H−1(c) of the moment map H75 are invariant

under the action of X, since LXH = dH(X) = −ω(X,X) = 0. We assume that

the resulting U(1)-action on Hc is such that the orbit space M̄ = Hc/〈X〉 =

Hc/U(1) is a smooth manifold. We note that any vector field T which is tangent

to Hc must be symplectically perpendicular to X, that is

ω(X,T ) = −dH(T ) = 0 . (A.139)

In particular X itself is tangent to Hc. We choose a vector field ξ transversal

to Hc by imposing the condition ω(ξ,X) = dH(ξ) = 1. Thus in a coordinate

system where we use H as one of the coordinates, ξ = ∂H . The restriction

ωc := ι∗cω of ω to the immersed hypersurface ιc : Hc → M is degenerate. From

the above it is clear that its kernel is spanned by X, thereforeHc is a co-isotropic

submanifold. The two-form ωc is invariant under X,

LXωc = d(ωc(X, ·)) + (dωc)(X, ·, ·) = 0 , (A.140)

because ωc(X, ·) = 0 and dωc = dι∗cω = ι∗cdω = 0. Since ωc is also transversal

to the action of X (that is, its components in the X-direction vanish), ωc can

be projected to the quotient M̄ = Hc/U(1) to define a two-form ω̄ by π∗ω̄ =

ωc, where π : Hc → M̄ is the projection onto the quotient. Since we take a

quotient with respect to the kernel of ωc, the two-form ω̄ is non-degenerate. It

is also smooth because all maps entering into its construction are by assumption

smooth. To verify that ω̄ is closed we note that dω = 0 implies

0 = dωc = d(π∗ω̄) = π∗dω̄ . (A.141)

Since the projection map is surjective, every tangent vector X̄ of M̄ can be

lifted to a tangent vector X of Hc. Therefore

dω̄(X̄, Ȳ ) = (π∗dω̄)(X,Y ) = 0 , (A.142)

for all X̄, Ȳ ∈ X(M̄), and thus dω̄ = 0. This shows that (Hc/U(1), ω̄) is a

symplectic manifold. The construction by which it is obtained from (M,ω)

75Here H−1(c) denotes the inverse image of c under H, that is, the level set. This notation
is common in the literature about symplectic quotients.

222



is called a symplectic quotient, denoted M//U(1). Symplectic quotients can

more generally be defined for symplectic actions of Lie groups G on symplectic

manifolds, and are denoted M//G [222].

A.15. Kähler manifolds

An (almost) Kähler manifold (M, g, ω) is an (almost) Hermitian manifold

(M,J, g) where the fundamental two-form is closed. We will restrict ourselves

to Kähler manifolds, that is to the case where J is integrable and (M,J) is

a complex manifold. As for Hermitian manifolds we include cases where the

metric is indefinite. We remark that for Hermitian manifolds the condition

dω = 0 is equivalent to J being parallel with respect to the Levi-Civita connec-

tion, DJ = 0. The fundamental form of a Kähler manifold is called its Kähler

form. Note that (M,ω) is a symplectic manifold. Thus Kähler manifolds are

pseudo-Riemannian manifolds which simultaneously admit a compatible com-

plex structure and a compatible symplectic structure. Another equivalent char-

acterization of a Kähler manifold is that the Chern connection of the Hermitian

metric γ = g + iω on TM is equal to the Levi-Civita connection D of g. Eval-

uating the condition dω = 0 in local holomorphic coordinates we obtain the

integrability condition

∂lgjk̄ = ∂jglk̄ , (A.143)

or, equivalently,

∂l̄gjk̄ = ∂k̄gjl̄ . (A.144)

Another equivalent characterization is the local existence of a Kähler potential

K, that is of a smooth real function such that

ω = − i
2
∂∂K . (A.145)

This follows by combining Poincaré’s lemma with the decomposition of forms

into types (∂∂̄-lemma): locally ω = dα, where α = β + β̄, with β ∈ Ω1,0(M).

Since ω ∈ Ω1,1(M) and d = ∂ + ∂̄, where ∂2 = 0 = ∂̄2, and where ∂, ∂̄ act con-

sistently with type (since we assume that the complex structure is integrable):

dα = ∂(β + β̄) + ∂̄(β + β̄) ∈ Ω1,1(M)⇒ ∂β = 0 , ω = ∂̄β + ∂β̄ , ∂̄β̄ = 0 .

(A.146)

223



Hence β = ∂ϕ by the ∂-version of the Poincaré lemma, where ϕ is a smooth

complex function. Therefore

ω = ∂∂̄(ϕ̄− ϕ) = − i
2
∂∂̄K , (A.147)

where K = −2i(ϕ− ϕ̄). This provides a real potential for the metric,

gik̄ = ∂i∂k̄K , (A.148)

called the Kähler potential. Note that the Kähler potential is only determined

up to adding the real part of a harmonic function, since K and K + f + f̄ with

∂̄f = 0 define the same metric. For further reading on Kähler manifolds we

refer to [115] on which this section is partly based.

Since a Kähler manifold is in particular a symplectic manifold, one can apply

symplectic reduction. If the symplectic group action is in addition holomorphic

and isometric, it preserves the extra structures which distinguish a Kähler man-

ifold from a symplectic manifold, and the quotient carries an induced Kähler

structure. The Hamiltonian vector fields generating such a group action must be

holomorphic Killing vector fields. Symplectic quotients of Kähler manifolds by

symplectic, holomorphic and isometric group actions are called Kähler quotients

[223]. One uses the same notation M//G as for symplectic quotients.

A.16. Contact manifolds

A one-form θ on a manifold M of odd dimension 2n + 1 is called a contact

form if the (2n+1)-form θ∧(dθ)n is a volume, that is, if it is nowhere vanishing,

(θ ∧ dθ ∧ · · · ∧ dθ)p 6= 0 , ∀p ∈M . (A.149)

A contact manifold (M, θ) is an odd-dimensional manifold equipped with a con-

tact form. A contact structure on an odd-dimensional manifold M is defined by

the choice of a hyperplane distribution V = ∪∈MVx on its tangent bundle TM ,

which is maximally non-integrable, that is non-integrable at every point.

To relate the concepts of contact form and contact structure, we note that

the kernel ker(θ) of the one-form θ defines a hyperplane distribution on TM .

By the dual version of the Frobenius theorem, the integrability condition for

this distribution is θ ∧ dθ = 0, which implies θ ∧ (dθ)n = 0. Thus by definition

a contact distribution is not integrable, and in fact maximally non-integrable,

since the integrability condition does not hold at any point of the manifold.
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Consequently, a contact form determines a contact structure. Since any two one-

forms θ, θ′, which differ by multiplication with a nowhere vanishing function f ,

θ′ = fθ have the same kernel, a contact structure corresponds to an equivalence

class of contact forms. Since θ ∧ (dθ)n is nowhere vanishing, the kernel of dθ

defines a one-dimensional distribution on TM which is complementary to the

contact distribution, that is TM = ker(θ)⊕ ker(dθ).

To each contact form there is an associated vector field, called the Reeb

vector field R, which is the unique vector field on M such that

θ(R) = 1 , dθ(R, ·) = 0 . (A.150)

Thus R spans the kernel of dθ and extends any given frame on V = ker(θ) to a

frame on TM .

Contact manifolds can be regarded as the odd-dimensional analogues of sym-

plectic manifolds. Contact and symplectic manifolds can be related by construc-

tions which change the number of dimensions by one.

The symplectification of a contact manifold. Let (M, θ) be a contact

manifold of dimension 2n + 1. Consider the cone R>0 ×M over M with coor-

dinate r on R>0. Then (R>0 ×M,ω), with ω = r2dθ+ 2rdr ∧ θ is a symplectic

manifold, because dω = 2rdr ∧ dθ − 2rdr ∧ dθ = 0, and because ω is non-

degenerate, as can be verified using a frame consisting of ∂r and a frame for M .

Note that we have seen above that the kernels of θ and dθ define complementary

distributions on TM . Using the variable ρ, defined by r2 = eρ, we can write

the cone in ‘product form’: (R>0 ×M,ω) ∼= (R×M,ω′), where ω′ = d(eρθ). In

this parametrization we see that the symplectic form is exact. The symplectic

manifold (R×M,d(eρθ)) ∼= (R>0, r2dθ+2rdr∧θ) is called the symplectification

(or symplectization) of the contact manifold (M, θ).

Legendrian submanifolds. If θ is a contact form on a manifold M of

dimension 2n + 1, then dθ|V is a symplectic form on the contact distribution

V = kerθ. Therefore a subdistribution L ⊂ V can only be integrable if it

isotropic with respect to dθ|V . This implies that 2 dimL ≤ dimM − 1 = 2n,

that is dimL ≤ n. Integral manifolds of dimension n which saturate this bound

are called Legendrian submanifolds, and are the counterparts of Lagrangian sub-

manifolds in symplectic geometry. In particular, the Legendrian submanifolds

of a contact manifold lift to Lagrangian submanifolds of its symplectification.

An immersion ι : H →M into a contact manifold (M, θ) is called a Legendrian
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immersion if the image of H is a Legendrian submanifold.

For further reading on contact geometry we refer to [224].

A.17. Sasakian Manifolds

The following section is based on various sources, including [151, 124, 46, 47].

Kähler manifolds can be thought of as symplectic manifolds with an ad-

ditional pseudo-Riemannian metric subject to compatibility conditions, which

determine a complex structure. Sasakian manifolds are the ‘contact analogue’ of

Kähler manifolds, that is contact manifolds equipped with a metric which sat-

isfies certain compatibility conditions. One way to characterize Sasakian mani-

folds is by requiring that their symplectification is Kähler: A Sasakian manifold

(S, θ, g) is a contact manifold (S, θ) equipped with a (pseudo-)Riemannian met-

ric g, such that the Riemannian cone (M, gM ) = (S × R>0, r2gS + dr2) is a

Kähler manifold with Kähler form ω = r2dθ+ 2rdr ∧ θ. Comparing to the pre-

vious section we see that the Riemannian cone is indeed the symplectification

of the contact manifold (M, θ). We remark that the complex structure J relates

the homothetic Killing vector field ξ = r∂r to the Reeb vector field R = −Jξ.
If in addition the Reeb vector field generates a U(1)-action on S such that

M̄ = S/U(1) is a smooth manifold, then M̄ is the Kähler quotient of M , M̄ =

M//U(1) = S/U(1). Moreover, if a Kähler manifold M admits a homothetic

Killing vector field ξ, which satisfies Dξ = Id, then M is a Riemannian cone over

the Sasakian S = {g(ξ, ξ) = 1}. If the quotient M/C∗ by the holomorphic and

homothetic action generated by ξ, Jξ defines a smooth manifold, this manifold

is precisely the symplectic quotient with respect to the action of Jξ. Finally,

given a Kähler manifold M̄ we can construct a ‘complex cone’ or ‘conical Kähler

manifold’ M as the total space of a C∗ bundle over M̄ , such that M̄ = M//C.76

A.18. Complex symplectic manifolds and complex contact manifolds

The concepts of symplectic and contact geometry, which we have formulated

for real manifolds, can be formulated analogously for complex manifolds. We

illustrate this by examples.

The vector space V = T ∗Cn ∼= C2n equipped with the complex sym-

plectic form Ω = dzi ∧ dwi is the standard example for a complex symplec-

tic vector space of complex dimension 2n. Its projectivization P (V ′), where

76Another natural name for M would be ‘Kähler cone’ in analogy to Riemannian cone, but
Kähler cone is also use for the cone of Kähler structures on a Calabi-Yau manifold.
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V ′ = {(z, w) ∈ C2n|(z, w) 6= (0, 0)}, is the space V ′/ ∼, where ∼ denotes the

equivalence relation

(z, w) ∼ (z′, w′)⇔ (z′, w′) = λ(z, w) , ∃λ ∈ C∗ . (A.151)

P (V ′) is a complex contact space with complex symplectification V . In special

geometry projective special Kähler manifolds M̄ can be realized as holomor-

phic Legendrian immersions into P (V ′), which lift to holomorphic Lagrangian

immersion of the corresponding conical affine special Kähler manifold M into

V .

A.19. Some groups and their actions

This section is based on [46, 47]. The Heisenberg group Heis2n+1(R) is the

nilpotent Lie group obtained as a central extension of the translation group R2n,

with group law

(s, v) ◦ (s′, v′) =

(
s+ s′ +

1

2
Ω(v, v′), v + v′

)
, (A.152)

where s, s′ ∈ R are central, v, v′ ∈ Rn are translations, and where Ω is the

standard symplectic form on R2n. The standard generators pi, qi, z, i = 1, . . . , n

for the Lie algebra heis2n+1(R) satisfy

[pi, qj ] = δijz , (A.153)

with all other commutators vanishing. The group G = Sp(R2n) n Heis2n+1(R)

is the semi-direct extension of the real Heisenberg group by its group Sp(R2n)

of automorphisms, with group law

g · g′ =

(
MM ′, s+ s′ +

1

2
Ω(v,Mv′), v +Mv′

)
, (A.154)

where M,M ′ ∈ Sp(R2n) and (s, v) ∈ Heis2n+1(R). We use the same notation

g = (M, s, v) for elements of the complexification GC = Sp(C2n)nHeis2n+1(C).

The quotient map

GC → AffSp(C2n) = GC/Z(GC) : (M, s, v) 7→ (M,v) (A.155)

induces an affine representation ρ̄ of GC, whose restriction to the real subgroup

G provides an affine representation of AffSp(R2n)(R2n).

On the complex vector space C2n we choose Darboux coordinates (XI ,WI),

such that the complex symplectic form is Ω = dXI ∧ dWI . We can embed C2n
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into C2n+2 = C2 ⊕ C2n with standard coordinates (X0,W0, X
i,Wi). A linear

representation ρ : GC → Sp(C2n+2) is defined by

g = (M, s, v) 7→ ρ(x) =


1 0 0

−2s 1 v̂T

v 0 M

 , v̂ := MTΩ0v = Ω0M
−1v ,

(A.156)

where Ω0 is the standard representation matrix for the symplectic form on C2n.

According to Proposition 3.2.2 of [47] this is a faithful representation which

induces the affine representation ρ̄ : GC → AffSp(C2n)(C2n) because it preserves

the affine hyperplane {X0 = 1} ⊂ C2n+2 and the distribution ∂W0 . The orbit

space {X0 = 1}/〈∂W0
〉 is the symplectic reduction of C2n+2 with respect to the

holomorphic Hamiltonian group action generated by ∂W0
, and ρ induces ρ̄ under

this quotient. Similarly, the real symplectic affine space R2n is the symplectic

reduction of the real symplectic vector space R2n+2, with GC replaced by its

real subgroup G.

Finally we define the group GSK = Sp(R2n)nHeis2n+1(C) ⊂ GC. Note that

G ⊂ GSK and that GSK is a central extension of ρ̄(GSK) = AffSp(R2n)(C2n) =

Sp(R2n) n C2n. The latter group acts simply transitively on Kählerian La-

grangian immersions of simply connected ASK manifolds, in other words, it is

the duality group of ASK geometry.

A.20. Para-complex geometry

Here we collect some definitions and statements about para-complex geom-

etry. More details can be found in [19, 78, 45, 17].

A para-complex structure J on a finite-dimensional real vector space V is a

non-trivial involution J ∈ End(V ), J 6= Id, J2 = Id, such that the eigenspaces

V ± := ker(Id ∓ J) of J are of the same dimension. A para-complex vector

space (V, J) is a real vector space V endowed with a para-complex structure J .

A homomorphism of para-complex vector spaces is a linear map Φ : (V, J) →
(V ′, J ′) such that Φ◦J = J ′◦Φ. Para-complex vector spaces have even dimension

and admit bases e±i such that Je±i = ±e±i . It is easy to see that for dimR V =

2n a para-complex structure is invariant under the group Aut(V, J) := {L ∈
GL(V )|LJL−1}, where

Aut(V, J) ∼= GL(n,R)×GL(n,R) ⊂ GL(V ) ∼= GL(2n,R) . (A.157)
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An almost para-complex structure on a smooth manifold M is an endomor-

phism field J ∈ End(TM) : p 7→ Jp such that Jp is a para-complex structure

on TpM for all p ∈ M . An almost para-complex manifold (M,J) is a smooth

manifold M endowed with an almost para-complex structure.

If one relaxes the condition that the eigenspaces of Jp have equal dimension,

one obtains the concept of an almost product structure. Thus almost para-

complex structures are almost product structure where the dimensions of the

eigendistributions ‘balance.’ This creates many analogies with almost complex

manifolds.

An almost para-complex structure J is called integrable if the eigendistri-

butions T±M := ker(Id ∓ J) are both integrable. An integrable almost para-

complex structure is called a para-complex structure. A para-complex manifold

(M,J) is a manifold M endowed with a para-complex structure J . The Frobe-

nius theorem implies that an almost para-complex structure is integrable if and

only if its Nijenhuis tensor NJ(X,Y ) = [X,Y ]+[JX, JY ]−J [X, JY ]−J [JX, Y ]

vanishes for all vector fields X,Y on M .

A smooth map Φ : (M,JM ) → (N, JN ) between para-complex manifolds is

called a para-holomorphic map if dΦJM = JNdΦ.

It can be shown that the integrability of the almost para-complex structure

J is equivalent to the existence of local para-complex coordinate systems. This

uses the algebra C of para-complex numbers, which are also known as split com-

plex numbers of hyperbolic complex numbers. As a real algebra C is generated

by 1 and the symbol e, subject to the relation e2 = 1. The map

·̄ : C → C , x+ ey 7→ x− ey , x, y ∈ R (A.158)

is called para-complex conjugation and is a C-antilinear involution, which allows

to regard x, y as the real and imaginary part of z = x+ ey. The algebra C has

zero-divisors, its group of invertible elements is isomorphic to O(1, 1) and has

four connected components separated by the light cone zz̄ = x2 − y2 = ±1.

The algebra C and the free C-module Cn are para-complex vector spaces of

real dimensions 2 and 2n, respectively, with a para-complex structure given by

multiplication with e. One can show that a smooth manifold M endowed with

an atlas of Cn-valued coordinate maps related by para-holomorphic coordinate

transformations admits an integrable para-complex structure. Conversely, any

real manifold with an integrable para-complex structure admits a para-complex
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atlas.

Remark 11. For almost para-complex manifolds it is interesting to consider
the case where only one of the eigendistributions T±M is integrable. This has
applications in particular in doubled/generalized geometry. Here we focus on the
case were both eigendistributions are integrable, which is relevant for Euclidean
special geometry.

A para-holomorphic map Φ : (M,J) → C is called a para-holomorphic

function.

A para-holomorphic vector bundle of rank r is a smooth real vector bundle

W →M of rank 2r whose total spaceW and baseM are para-complex manifolds

and whose projection π is a para-holomorphic map. On a para-holomorphic

vector bundle we have a canonical splitting W = W+ ⊕W− induced by the

para-complex structure. The tangent bundle TM →M over any para-complex

manifold M is a para-holomorphic vector bundle. The splitting TM = T+M ⊕
T−M can be used to define a real version of Dolbeault cohomology on any

para-complex manifold.

The para-complexified tangent bundle TCM = TM ⊗ C can be equipped

with the C-linear extension of the para-complex structure J . It decomposes

canonically into eigenbundles of J with eigenvalues ±e,

TCM = T 1,0M ⊕ T 0,1M . (A.159)

There is a canonical isomorphism

TM
∼=−→ T 1,0M , X 7→ 1

2
(X + eJX) (A.160)

of real vector bundles which is compatible with the para-complex structures

on the fibre. C-valued differential forms admit a decomposition into types in

analogy with complex-valued differential forms on complex manifolds, which

allows to define a para-complex version of Dolbeault cohomology.

A para-Hermitian vector space (V, J, g) is a para-complex vector space (V, J),

equipped with a pseudo-Euclidean scalar product g for which J is an anti-

isometry,

J∗g = g(J ·, J ·) = −g . (A.161)

Then g is called a para-Hermitian scalar product, and (J, g) a para-Hermitian

structure on V . A para-Hermitian scalar product always has neutral signature.
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The standard para-Hermitian structure on R2n = Rn ⊕ Rn is given by

Ie±i = ±e±i , g(e±i , e
±
j ) = 0 , g(e±i , e

∓
j ) = δij , (A.162)

where e+
i = ei ⊕ 0, and e−i = 0⊕ ei.

The standard para-Hermitian structure on Cn = Rn⊕eRn with basis ei, fi :=

eei is given by

Jei = fi , Jfi = ei , g(ei, ej) = −g(fi, fj) = δij . (A.163)

Any two para-Hermitian vector spaces of the same dimension are isomorphic.

Using any of the two standard realizations R2n or Cn, it is straightforward to

show that the para-unitary group

Uπ(V ) := Aut(V, J, g) = {L ∈ GL(V )|LJL−1 = J , L∗g = g} (A.164)

of a para-Hermitian vector space of real dimension 2n is

Uπ(V ) ∼= GL(n,R) ⊂ Aut(V, J) ∼= GL(n,R)×GL(n,R) ⊂ GL(V ) ∼= GL(2n,R) .

(A.165)

Note that J itself is not an element of the para-unitary group, though it is an

element of the para-unitary Lie algebra.

An (almost) para-Hermitian manifold (M,J, g) is an (almost) para-complex

manifold (M,J) endowed with a pseudo-Riemannian metric g such that J∗g =

g(J ·, J ·) = −g. The two-form ω = g(·, J ·) = −g(J ·, ·) is called the fundamental

two-form of the (almost) para-Hermitian manifold (M,J, g). Compared to [19]

we have changed the sign of ω to be consistent with our conventions. Note

that it is essential that J is an anti-isometry, and not an isometry, for ω to be

antisymmetric.

A para-Kähler manifold is an almost para-Hermitian manifold (M,J, g) such

that J is parallel with respect to the Levi-Civita connection, DJ = 0. Note

that DJ = 0 implies both dω = 0 and the integrability condition NJ = 0.

Alternatively, a para-Kähler manifold is a para-Hermitian manifold with closed

fundamental form. The symplectic form ω is called the para-Kähler form. It

can be shown that for a para-Kähler metric there exists around any point a

real valued function K, called a para-Kähler potential, such that the coefficients

of ω and g are given by the mixed second derivatives with respect to para-

holomorphic coordinates.
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An affine special para-Kähler manifold (M,J, g,∇) is a para-Kähler manifold

(M,J, g) endowed with a flat, torsion-free connection such that ∇ is symplectic,

i.e. ∇ω = 0, and such that d∇J = 0. One can show that any simply con-

nected affine special para-Kähler manifold can be realized by a para-Kählerian

Lagrangian immersion φ : M → V into the standard para-complex vector space

V = T ∗Cn ∼= C2n endowed with the C-valued symplectic form Ω = dXI ∧dWI ,

standard para-complex structure IV , para-complex conjugation τ and para-

Hermitian form γ = g + eω = eΩ(·, τ ·). For a generic choice of para-complex

symplectic coordinates XI ,WI , the image of φ is the graph of a map Cn → Cn,

and therefore φ has a para-holomorphic prepotential F , i.e. φ = dF .

A conical affine special para-Kähler manifold (M,J, g,∇, ξ) is an affine spe-

cial para-Kähler manifold (M,J, g,∇) endowed with a vector field ξ such that

∇ξ = Dξ = Id , (A.166)

where D is the Levi-Civita connection.

One can show that near any point p ∈ M there exist coordinates (qa) =

(xI , yI) such that

ξ = qa∂a = xI∂xI + yI∂yI . (A.167)

Such coordinates are unique up to linear symplectic transformations, and are

called conical special real coordinates. On conical special para-Kähler manifolds

it is understood that ‘special coordinates’ means ‘conical special coordinates.’ A

para-holomorphic immersion φ→ V = C2n is called a conical para-holomorphic

immersion if the position vector field ξV = p ∈ V ∼= TpV is tangent along φ,

that is, if ξV ∈ dφpTpM . Every simply connected conical special para-Kähler

manifold can be realized by a conical para-Kählerian Lagrangian immersion,

which is unique up to linear symplectic transformations. The corresponding

para-holomorphic prepotential can be chosen to be homogeneous of degree two.

The vector fields ξ and Jξ generate an infinitesimal C∗-action on the conical

affine special para-Kähler manifold M . To be able to take a quotient which

defines a para-Kähler manifold, one needs to make additional assumptions. A

conical affine special para-Kähler manifold (M,J, g,∇, ξ) is called a regular con-

ical affine special Kähler manifold if the norm g(ξ, ξ) of ξ does not vanish on

M and if the quotient map π : M → M̄ = M/C∗ is a para-holomorphic sub-

mersion onto a Hausdorff manifold. Under these assumptions, the symmetric
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tensor field

g̃(0) = −∂∂̄
(
−e(XI F̄I − FIX̄I)

)
, (A.168)

which projects onto the orbit space M̄ , induces a para-Kähler metric ḡ on M̄ ,

such that g̃(0) = π∗ḡ. A projective special para-Kähler manifold (M̄, J̄ , ḡ) is a

para-Kähler manifold that can be realized locally as the quotient of a regular

conical affine special para-Kähler manifold M by its C∗-action.

With a proper choice of conventions, local formulae for affine special Kähler

and affine special para-Kähler manifolds are related by the replacement i → e.

Therefore one can use an ε-complex terminology which employs the notation

iε = e, i for ε = ±1. All statements in this section remain true when omitting

‘para’ or replacing it by ‘ε-’ and applying the appropriate substitutions for e.

A.21. ε-quaternionic geometries

This section is based on [19, 78, 45, 17].

Hypermultiples contains four real scalars and their scalar geometries are

related to the algebra H−1 = H of the quaternions, or, for Euclidean space-time

signature, to the algebra H1 of para-quaternions. We treat both cases in parallel

by writing Hε, where ε = ±1.

The algebra Hε of ε-quaternions is the four-dimensional real algebra gener-

ated by three ε-complex units i1, i2, i3, which pairwise anticommute and satisfy

the ε-quaternionic algebra

i21 = i22 = −εi23 = ε , i1i2 = i3. (A.169)

An ε-quaternionic structure on a real vector space of dimension 4n is a Lie sub-

algebra Q ⊂ End(V ) spanned by three pairwise anticommuting endomorphisms

J1, J2, J3 which satisfy the ε-quaternionic algebra (A.169). The Lie group gen-

erated by the Lie algebra generated by Jα, α = 1, 2, 3 is

Spε(1) =


SU(2) ∼= Sp(1) , if ε = −1 ,

SU(1, 1) ∼= Sp(2,R) ∼= SL(2,R) , if ε = 1 .

(A.170)

Our notation for symplectic groups is such that Sp(2n,R) = Sp(R2n), Sp(2n,C) =

Sp(C2n) and

Sp(n) = Sp(2n,C) ∩ U(2n) , Sp(k, l) = Sp(2n,C) ∩ U(2k, 2l) . (A.171)
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In particular, Sp(1) = Sp(2,C) ∩ U(2) = SU(2) is the group often denoted

USp(2) in the physics literature. Also note that Sp(1, 1) = Sp(2n,C)∩U(1, 1) =

SU(1, 1) ∼= Sp(2,R).

While there are various types of ε-quaternionic geometries, we will only use

two types which can be viewed as generalizations of ε-Kähler geometry. The

first is realized by rigid hypermultiplets.

An ε-hyper-Kähler manifold (ε-HK manifold) is a pseudo-Riemannian mani-

fold (N, g) of dimension 4n = 4k+4l whose holonomy group Hol(N) is contained

in Spε(k, l), where

Spε(k, l) =


Sp(k, l) ⊂ SO(4k, 4l) , if ε = −1 ,

Sp(2n,R) ⊂ SO(2n, 2n) , if ε = 1 .

(A.172)

An ε-Kähler manifold has three pairwise anticommuting integrable ε-complex

structures Iα, such that ωα = g(Iα·, ·) are antisymmetric and closed, and there-

fore form an Spε(1)-triplet of ε-Kähler forms. The ε-Kähler metric g admits ε-

Kähler potentials with respect to any of the three ε-complex structures, though

in general there is no ‘ε-hyper-Kähler potential,’ that is a potential which is

ε-Kähler with respect to all three ε-complex structures simultaneously. It is

useful to note that the closed-ness of the three forms ωα implies the integrabil-

ity of the ε-complex structures [223]. The construction of symplectic and Kähler

quotients has been extended to the so-called hyper-Kähler quotient [223], which

can be adapted to para-Kähler manifolds.

Hypermultiplets coupled to supergravity display another type of ε-quaternionic

geometry. An ε-quaternionic Kähler manifold (ε-QK manifold) of real dimen-

sion 4n = 4k+ 4l > 4 is a pseudo-Riemannian manifold (N, g) whose holonomy

group Hol(N) is contained in Spε(1) ·Spε(k, l). An ε-quaternionic Kähler mani-

fold of real dimension 4 is an Einstein manifold equipped with an ε-quaternionic

structure under which the curvature tensor is invariant. In this definition it is

assumed implicitly that the ε-HK case is excluded, that is that the holonomy

group is not contained in Spε(k, l). Due to the presence of the additional fac-

tor Spε(1), an ε-QK manifold need not admit any global ε-complex structure,

and in particular need not be ε-Kähler. Instead it possesses an ε-quaternionic

structure, that is the tangent bundle TN carries a fibre-wise ε-quaternionic

structure, which is parallel with respect to a torsion-free connection (here: the

Levi-Civita connection). In addition the locally defined ε-complex structures
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Jα are skew with respect to the metric g, and the distribution spanned by

them is parallel with respect to the Levi-Civita connection. Note that only the

distribution 〈Jα|α = 1, 2, 3〉 is invariant under parallel transport, while the in-

dividual structures undergo Spε(1)-transformations which mix them. Using the

locally defined fundamental forms ωα = g(Jα·, ·) one can define the four-form

Λ =
∑3
α=1 ωα ∧ ωα, which is globally defined and closed. It is useful to know

that for manifolds of dimension 4n ≥ 12 the closed-ness of the four-form Λ al-

ready implies that the manifold ε-QK (for ε = −1 this is known from [225, 226]).

The ‘generic’ definition given for dimension 4n > 4 is not satisfactory for di-

mension 4, since Hol(N) ⊂ Spε(1) · Spε(1) only implies that N is orientable:

Hol(N) ⊂ SU(2) ·SU(2) ∼= SO(4), or Hol(N) ⊂ SL(2,R) ·SL(2,R) ∼= SO(2, 2).

The property of the curvature tensor used in the above definition for dimension

4n = 4 is non-trivial and natural, since it follows for dimension 4n > 4 from the

‘generic’ definition.

Every ε-QK manifold of dimension 4n can be obtained as the quotient of

a conical ε-HK manifold of dimension 4n + 4 by the action of the invertible ε-

quaternions H∗ε. Here ‘conical ε-HK manifold’ is defined analogously to CASR

and CASK manifolds, and every such manifold defines a ε-QK manifold. In the

physics literature conical ε-HK manifolds are usually called ε-HK cones, while

in the mathematical literature they are known, for ε = −1, as the Swann bundle

associated to a QK manifold [225, 226]. One interesting property of ε-HK cones

is that they admit an ε-HK-potential, that is a potential which is an ε-Kähler

potential for all three ε-complex structures simultaneously. For the case ε = −1

we have encountered the HK potential χ in the context of the superconformal

construction of the four-dimensional Poincaré supergravity Lagrangian. We

mention for completeness that there also is a quotient construction which relates

QK manifolds to QK manifolds, called quaternionic reduction or quaternionic

quotient [227, 228].

B. Physics background

B.1. Non-linear sigma models and maps between manifolds

Supergravity theories with scalars involve non-linear sigma models coupled

to gravity. Sigma models are theories of massless scalars on a pseudo-Riemannian

space-time (N,h), which are valued in another pseudo-Riemannian manifold

(M, g), called the target space. More precisely, scalar fields are components of
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a map

f : (N,h)→ (M, g) (B.1)

between two pseudo-Riemannian manifolds. When expressed in local coordi-

nates x = (x1, . . . , xn) on N and ϕ = (ϕ1, . . . , ϕm) on M , scalar fields become

real-valued local functions on space-time, which are the pull-backs to space-

time of the composition of the map f with coordinate maps. In this section we

explain the relation between the global geometrical description in terms of the

map f and the local description used in the physics literature in some detail. We

remark that we do not aim for the highest degree of generality. In particular,

one can define scalar fields more generally as sections of a pseudo-Riemannian

submersion π : P → N . We refer to [229] for a detailed discussion of this gen-

eralization and its potential implications. We also remark that both N and M

can have various signatures, so that it makes sense to discuss sigma models in

the general pseudo-Riemannian set-up. Space-time N has Lorentzian signature,

but in the Euclidean formulation of quantum field theories it is replaced by an

‘Euclidean’ manifold, that is a Riemannian manifold (pseudo-Riemannian man-

ifold of definite signature). Also, string dualities and the idea that space-time

signature might be dynamical in quantum gravity motivate the study of ex-

otic space-times with multiple time-like directions. Similarly, in standard cases

the target manifold has positive signature, to ensure that all scalar fields have

positive signature. However, dimensional reduction over time, which is used

frequently to find stationary solutions, sometimes leads to indefinite signature

target spaces. Moreover, supersymmetric theories on Euclidean space-times

sometimes also require target spaces of indefinite signature.

The standard action of a non-linear sigma model coupled to gravity is the

sum of the Einstein-Hilbert action and of the energy functional (or Dirichlet

functional) for a map between two pseudo-Riemannian manifolds (N,h) and

(M, g),

S[h, f ] =

∫
d volh

(
1

2
R[h]− 〈df, df〉

)
. (B.2)

Here R[h] and d volh are the Ricci scalar and the volume form of (N,h). Since

we have coupled the sigma model to gravity, the metric h is a dynamical field,

while the metric g is fixed and part of the definition of the model. The vector

valued one-form df ∈ Ω1(N, f∗TM) is the differential of the map f : N → M ,

and 〈·, ·〉 is the scalar product induced by the metrics h and g on the vector
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bundle T ∗N ⊗ f∗TM over N whose fibre over p ∈ N is T ∗pN ⊗ Tf(p)M .

We introduce the following coordinate maps:

ψ : N ⊃ V → V ⊂ Rn , p 7→ ψ(p) = (x1(p), . . . , xn(p)) ,

ϕ : M ⊃ U → U ⊂ Rm , q 7→ ϕ(q) = (ϕ1(q), . . . , ϕm(q)) .

(B.3)

By restricting f to V and composing with the coordinate maps we obtain a

local representation of f as a vector-valued function φ,

φ = ϕ ◦ f ◦ ψ−1 : Rn ⊃ V → U ⊂ Rm , (B.4)

x 7→ φ(x) := (φa(xµ)) := (ϕa(f(ψ−1(xµ)))) .

The physical scalar fields as defined in the physics literature are the components

φa(x) of the map f : N →M with respect to the local coordinates {xµ}, {ϕa}.
Each of the above maps has a differential, which assigns to each point of its

domain a linear map between the tangent spaces of domain and target:

df : p 7→ dfp : TpN → Tf(p)M , (B.5)

dϕ : q 7→ dϕq : TqM → Tϕ(q)U , (B.6)

dψ : p 7→ dψp : TpN → Tψ(p)V . (B.7)

The linear maps dϕq and dψp are invertible at all points. The differential of the

local coordinate expression dφ : x 7→ dφx of df at the point x is

dφx = (dϕ ◦ df ◦ (dψ)−1)x : TxV ∼= Rn → Tφ(x)U ∼= Rm .

Since dφx ∈ Hom(TxV, Tφ(x)U) ∼= T ∗xV ⊗ Tφ(x)U , we interpret dφ ∈ Γ(V, T ∗V ⊗
φ∗TU) = Ω1(V, φ∗TU) as a vector-valued one-form on V,

dφ =
∂φa

∂xµ
dxµ ⊗ ∂a ∈ Ω1(V, φ∗TU) . (B.8)

The local coordinate expression for the metric g restricted to U ∼= U is

gU = gab(ϕ)dϕadϕb . (B.9)

Using that the pull-back is given by φa(x) = ϕa(f(ψ−1(x))), the corresponding

expression for the pull-back metric f∗g is

φ∗g = gab(φ(x))dφa(x)dφb(x) = gab(φ(x))∂µφ
a∂νφ

bdxµdxν .
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The local expression for 〈df, df〉 is

〈df, df〉 = 〈dφ, dφ〉 = hµν(x)
(
gab(φ(x))∂µφ

a∂νφ
b
)

= trh(f∗g) , (B.10)

where trh is the trace defined by contraction with the metric h, and where f∗g

is the pullback by f to N of the metric g. The Lagrangian L is defined by

S =

∫
d volhL . (B.11)

In local coordinates it takes the form

L|V =
1

2
R[h]− gab(φ(x))∂µφ

a∂µφb , (B.12)

and the corresponding equations of motion are

R[h]µν −
1

2
R[h]hµν = Tµν , (B.13)

∆hφ
a + Γabc∂µφ

b∂µφc = 0 , (B.14)

where R[h]µν is the Ricci tensor of (N,h). We denote by ∆h the pseudo-

Riemannian Laplace operator

∆h = trh(D(h)D(h)) = hµνD(h)
µ D(h)

ν , (B.15)

where D(h) is the Levi-Civita connection on (N,h). Γabc are the Christoffel

symbols with respect to the Levi-Civita connection on (M, g). Finally

Tµν :=
−2√
|deth|

δLMatter

δhµν
= 2gab∂µφ

a∂νφ
b − hµνgab∂ρφa∂ρφb (B.16)

is the energy momentum tensor, which is proportional to the variation of the

matter Lagrangian

LMatter = −
√
|det(h)|gab∂µφa∂µφb (B.17)

with respect to the metric h.

The coordinate-free version of the equations of motion is:

Ric[h]− 1

2
R[h]h = T , where T := 2f∗g − 〈df, df〉h , (B.18)

trhDdf = 0 , (B.19)

where D is the covariant derivative on T ∗N⊗f∗TM induced by the Levi-Civita

connections on (N,h) and (M, g). Equation (B.19) is the equation satisfied by a

harmonic map f : (N,h)→ (M, g) between two pseudo-Riemannian manifolds.
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To obtain the local coordinate form of trhDdf , we start with Ddf and eval-

uate it in local coordinates:

Dµ∂νφ
a = D(h)

µ ∂νφ
a + ∂µφ

bΓabc∂νφ
c , (B.20)

where D(h) is the Levi-Civita connection on (N,h), and where ∂µφ
bΓabc is the

pullback by f to N of the connection coefficients Γabc of the connection on M .

Taking the trace using the metric h we obtain

trh(Ddf) = hµν
(
D(h)
µ ∂νφ

a + Γabc∂µφ
b∂νφ

c
)

= ∆hφ
a+Γabc∂µφ

b∂µφc . (B.21)

We remark that this expression does not require the existence of a metric on

M : the metric g is not used explicitly, and instead of the Levi-Civita connection

we could use any other connection on M .

B.2. Notation and Conventions

Our notation and conventions for space-times with Minkowski signature in

four and in five dimensions are as follows.

We denote space-time indices by µ, ν, . . . , and local Lorentz indices by a, b, · · · =
0, 1, 2, . . . . Indices i, j, k, · · · = 1, 2 are reserved for SU(2)R indices.

Our (anti)symmetrization conventions are

[ab] = 1
2 (ab− ba) , (ab) = 1

2 (ab+ ba) (B.22)

and (c.f. (A.23) and (A.11))

da db = 1
2 (da⊗ db+ db⊗ da) ,

da ∧ db = da⊗ db− db⊗ da . (B.23)

We take the Lorentz metric ηab to have signature (−+ + · · ·+). We denote

the vielbein by eµ
a, and its inverse by ea

µ,

eµ
a ea

ν = δµ
ν , ea

ν eν
b = δa

b . (B.24)

The space-time metric gµν and the Lorentz metric ηab are related by

gµν = eµ
a ηab eν

b . (B.25)

The Christoffel symbols of the Levi-Civita connection read

Γµνρ = 1
2 g

µλ
(
2 ∂(νgρ)λ − ∂λgνρ

)
. (B.26)
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We note

Γρρµ = 1
2 g

λρ∂µ gλρ = 1
2 ∂µ ln |g| , (B.27)

where g = det gµν .

The Riemann tensor is (c.f. (A.41))

Rµν
ρ
σ = 2∂[µΓρν]σ + Γρµλ Γλνσ − Γρνλ Γλµσ . (B.28)

We raise and lower space-time indices by contracting with the space-time metric,

i.e.

Rµνρσ = gρλRµν
λ
σ . (B.29)

The Riemann tensor satisfies the pair exchange property Rµνρσ = Rρσµν .

We define covariant derivatives (c.f. (A.49))

DµVν = ∂µVν − Γλµν Vλ ,

DµV
ν = ∂µV

ν + Γνµλ V
λ . (B.30)

We have

[Dµ, Dν ]Vρ = −Rµνλρ Vλ . (B.31)

We define the Ricci tensor by

Rµν = Rλµλν = Rλµ
λ
ν = Rµ

λ
νλ . (B.32)

It satisfies the property

Rµν = Rνµ . (B.33)

The Ricci scalar is

R = gµν Rµν . (B.34)

With these conventions, the kinetic terms for physical fields in a gravitational

action take the form (we set κ2 = 8πGN = 1)

L = 1
2R−

1
2∂µφ∂

µφ− 1
4F

µνFµν . (B.35)

We define covariant derivatives of vectors V a by

DµV a = ∂µV
a + ωµ

ab Vb , (B.36)

where ωµ
ab denotes the spin connection,

ωµ
ab = 2eν[a ∂[µeν]

b] − eν[a eb]σ eµc∂νeσ
c , (B.37)
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and satisfies the compatibility requirement

0 = Dµeνa = ∂µeν
a + ωµ

ab eνb − Γρµν eρ
a . (B.38)

Defining

Ω c
ab = 2e µ[a e

ν
b] ∂µe

c
ν , (B.39)

we obtain

ωa bc = 1
2 (Ωabc + Ωcab − Ωbca) . (B.40)

The associated Riemann tensor reads

Rµν
ab = 2 ∂[µων]

ab + 2ω[µ
ac ων]c

b , (B.41)

and it is related to the one in (B.28) by

Rµν
ρ
σ = Rµν

ab ea
ρ eσb . (B.42)

We define the completely antisymmetric Levi-Civita tensor as follows. In

four space-time dimensions, we take

εµνλσ = e εabcd ea
µ eb

ν ec
λ ed

σ , ε0123 = 1 ,

εµνλσ = e−1 εabcd eµ
a eν

b eλ
c eσ

d , (B.43)

where e−1 = |g|−1/2. Similarly, in five space-time dimensions we take

εµνλσρ = e εabcde ea
µ eb

ν ec
λ ed

σ ee
ρ , ε01235 = 1 ,

εµνλσρ = e−1 εabcde eµ
a eν

b eλ
c eσ

d eρ
e , (B.44)

where e−1 = |g|−1/2.

In four dimensions, we define the dual of an antisymmetric tensor field Fab

by

F̃ab = − i
2 εabcd F

cd . (B.45)

We denote the selfdual part of Fab by F+
ab, and the anti-selfdual part by F−ab,

F±ab = 1
2

(
Fab ± F̃ab

)
. (B.46)

In four dimensions, in the context of N = 2 special geometry, we will en-

counter the SU(2)R valued selfdual tensor field Tabij and the SU(2)R valued

anti-selfdual tensor field T ijab. Accordingly, we introduce the notation

T+
ab = 1

2 ε
ij Tabij ,

T−ab = 1
2 εij T

ij
ab , (B.47)
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where the Levi-Civita symbol εij = −εji satisfies

εijε
jk = −δik , (B.48)

with

ε12 = ε12 = 1 (B.49)

and εijε
ji = −2. Under Hermitian conjugation (h.c.), selfdual becomes anti-

selfdual and vice-versa. Any SU(2)R index i changes position under h.c., for

instance

(Tab ij)
∗ = T ijab . (B.50)

B.3. Jacobians

The Jacobians for the coordinate transformations (458) take the form

D(x, u,Υ, Ῡ)

D(x, y,Υ, Ῡ)
=



1 0 0 0

∂u
∂x

∣∣
y

∂u
∂y

∣∣∣
x

∂u
∂Υ

∣∣
x,y

∂u
∂Ῡ

∣∣
x,y

0 0 1 0

0 0 0 1


(B.51)

and

D(x, y,Υ, Ῡ)

D(x, u,Υ, Ῡ)
=



1 0 0 0

∂y
∂x

∣∣∣
u

∂y
∂u

∣∣∣
x

∂y
∂Υ

∣∣∣
x,u

∂y
∂Ῡ

∣∣∣
x,u

0 0 1 0

0 0 0 1


. (B.52)

By the chain rule it is straightforward to evaluate

D(x, y,Υ, Ῡ)

D(x, u,Υ, Ῡ)
=



1 0 0 0

1
2R − 1

2N
1
2FIΥ

1
2 F̄IΥ

0 0 1 0

0 0 0 1


, (B.53)
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where 2FIJ = RIJ + iNIJ . This matrix can easily be inverted,

D(x, u,Υ, Ῡ)

D(x, y,Υ, Ῡ)
=



1 0 0 0

N−1R −2N−1 N−1FIΥ N−1F̄IΥ

0 0 1 0

0 0 0 1


. (B.54)

In order to transform the Kähler metric (452) to special real coordinates (c.f.

(460)), the following relations are useful,

∂H

∂xI
= 2vI ,

∂H

∂yI
= −2uI . (B.55)

Moreover, using the chain rule, one computes

∂vI
∂xJ

∣∣∣∣
y

=
1

2

(
N +RN−1R

)
IJ

,

∂vI
∂yJ

∣∣∣∣
x

= −∂u
J

∂xI

∣∣∣∣
y

= 2
(
N−1

)IJ
,

∂vI
∂uJ

∣∣∣∣
x

=
1

2
RIJ . (B.56)

The Jacobians for the coordinate transformations (503) are given by

D(x, y,Υ, Ῡ)

D(x, u,Υ, Ῡ)
=



1 0 0 0

1
2R+ − 1

2N−
1
2 (FIΥ + F̄ĪΥ) 1

2 (F̄ĪῩ + FIῩ)

0 0 1 0

0 0 0 1


(B.57)

and

D(x, u,Υ, Ῡ)

D(x, y,Υ, Ῡ)
=



1 0 0 0

N−1
− R+ −2N−1

− N−1
− (FIΥ + F̄ĪΥ) N−1

− (F̄ĪῩ + FIῩ)

0 0 1 0

0 0 0 1


.

(B.58)
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This reduces to the results for the Jacobians (B.53) and (B.54) when switching

off the non-holomorphic deformation.

B.4. Superconformal formalism in four dimensions

The idea behind the superconformal approach to supergravity consists in

using the superconformal symmetry as a powerful tool for constructing matter-

coupled theories with local Poincaré supersymmetry, and in doing so to gain

insights into the structure of Poincaré supergravity [230, 231, 232, 31, 25]. We

refer to [22] for a recent detailed discussion.

To illustrate this construction, we begin by reviewing the formulation of

Einstein gravity in four dimensions based on the bosonic conformal algebra.

B.4.1. Gravity as a conformal gauge theory

Consider the following action in four dimensions,

S =

∫
d4x
√
−g
(

1
2 (∂µφ)(∂µφ) + 1

12 Rφ
2
)
, (B.59)

where φ(x) denotes a real scalar field. Note that the sign of the kinetic energy

term of the scalar field is opposite from the one of a physical scalar field, c.f.

(B.35). This Lagrangian is invariant under local scale transformations, also

called local dilatations or local Weyl transformations, given by

φ 7→ eλD φ , gµν 7→ e−2λD gµν . (B.60)

Here, λD(x) denotes the local parameter of Weyl transformations.

The field φ is called a compensating field (or, compensator), because it

compensates for the non-invariance of the Einstein-Hilbert term under local

scale transformations caused by the transformation properties of the metric,

thus resulting in a Weyl-invariant action. We can eliminate the compensating

field φ by performing the gauge-fixing

φ 7→ eλD φ ≡
√

6

κ2
. (B.61)

Inserting this into (B.59) results in the Einstein-Hilbert action,

S =
1

2κ2

∫
d4x
√
−g R . (B.62)

Here κ2 = 8πGN , where GN denotes the Newton’s constant. Thus, the Einstein-

Hilbert action can be obtained by starting from an action that possesses invari-

ance under local scale transformations due to the presence of a compensating
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field, and then eliminating the compensating field by going to a particular Weyl

gauge. That is, Einstein gravity emerges from a theory that is initially invariant

under transformations associated with the generators of the bosonic conformal

algebra. We review this algebra next.

B.4.2. The bosonic conformal algebra

The bosonic conformal algebra in four dimensions is isomorphic to so(4, 2),

and contains generators Pa,Mab,Ka, D associated with translations, Lorentz

transformations, special conformal transformations and dilations, respectively.

These generators satisfy the algebra (we only give the commutators that are

non-vanishing)[
Mab,Mcd

]
= 4 η[a[cMd]b] = ηacMdb − ηbcMda − ηadMcb + ηbdMca ,[

Pa,Mbc

]
= 2 ηa[bPc] ,[

Ka,Mbc

]
= 2 ηa[bKc] ,[

Pa,Kb

]
= 2 (ηabD +Mab) ,[

D,Pa
]

= Pa ,[
D,Ka

]
= −Ka . (B.63)

To each of these generators, we assign a local parameter, as well as a gauge

field. This is summarized in the Table B.6 below.

generator Pa Mab Ka D

parameter ξa λab λaK λD

gauge field eµ
a ωabµ fµ

a bµ

Weyl weight w −1 0 1 0

Table B.6: The bosonic conformal algebra: generators, local parameters, gauge fields, Weyl
weights.

The translations Pa, which are gauged by eaµ, play a special rule, and will be

considered separately. Under infinitesimal conformal transformations generated
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by Mab,Ka, D, the gauge fields transform as follows,

δeµ
a = −λab eµb − λD eµa ,

δωabµ = ∂µλ
ab + 2ωµc

[a λb]c − 4λ
[a
K eµ

b] ,

δfµ
a = ∂µλ

a
K − bµ λaK + ωµ

ab λKb − λab fµb + λD fµ
a ,

δbµ = ∂µλD + 2λaK eµa . (B.64)

The commutators of two transformations (B.64) yield a realization of the con-

formal algebra. The transformation behaviour under dilatations is specified by

the Weyl weight w of each of the gauge fields. The vielbein has weight w = −1,

the field fµ
a has weight w = 1, while the other gauge fields have w = 0. Note

that all the gauge fields, with the exception of the vielbein, transform under

special conformal transformations.

Next, we introduce a field strength for each of the generators of the conformal

algebra. These field strengths, of the form Rµν
A, transform covariantly under

conformal transformations. They are given by

Rµν
a(P ) = 2

(
∂[µ + b[µ

)
eν]

a + 2ω[µ
ab eν]b = 2D[µeν]

a ,

Rµν
ab(M) = 2∂[µων]

ab + 2ω[µ
a
c ων]

cb + 8f[µ
[a eν]

b] ,

Rµν
a(K) = 2

(
∂[µ − b[µ

)
fν]

a + 2ω[µ
ab fν]b ,

Rµν(D) = 2∂[µbν] − 4f[µ
a eν]a . (B.65)

It can checked that these field strengths transform covariantly under the trans-

formations (B.64).

Since we are interested in the construction of Einstein gravity as a gauge

fixed version of a gravitational theory that is invariant under conformal trans-

formations, not all of the gauge fields associated to the conformal algebra can

describe independent gauge fields. To be able to identify the translations gener-

ated by Pa with space-time diffeomorphisms, one needs to impose a constraint

on the associated field strength Rµν
a(P ), so as to ensure that the translation

gauge field eaµ becomes a vielbein field (frame) over space-time. In addition, the

gauge field fµ
a for special conformal transformations needs to be eliminated as

an independent gauge field. This is achieved by imposing the constraints

Rµν
a(P ) = 0 ,

Rµν
ab(M) eb

ν = 0 . (B.66)
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In this way, two of the gauge fields, namely the spin connection ωabµ and the

gauge field fµ
a for special conformal transformations, become composite fields,

ωabµ = ωabµ (e) + 2eµ
[a eb]ν bν ,

fµ
a = − 1

4 Rµ
a + 1

24eµ
aR , (B.67)

with ωabµ (e) given by (B.37). The constraint Rµν
a(P ) = 2D[µeν]

a = 0 is the

condition for metric compatibility, but now in the presence of the dilational con-

nection bµ. Note that the Riemann tensor computed from the spin connection

(B.67) does not have the pair exchange property mentioned below (B.29). To

obtain the relation for fµ
a, we expressed the second constraint in (B.66) as(
Rµν

ab + 8f[µ
[a eν]

b]
)
eb
ν = 0 , (B.68)

where Rµν
ab is the Riemann tensor constructed out of the spin connection ωabµ

that also contains the gauge field bµ, c.f. (B.67). Then, using the definitions for

the Ricci tensor77 and the Ricci scalar,

Rµν = Rµρν
ρ , R = gµν Rµν , (B.69)

we obtain

Rµ
a + 2 (2fµ

a + fν
ν eµ

a) = 0 , (B.70)

where fν
ν = fν

a ea
ν . Contracting this relation with ea

µ gives

fµ
µ = − 1

12 R , (B.71)

Inserting this into (B.70) gives the relation in (B.67).

As a check of (B.67), one verifies that when inserting the transformation law

for eµ
a and for bµ into (B.67), one correctly reproduces the transformation laws

for ωabµ and fµ
a given in (B.64).

Upon imposing the constraints (B.66), the independent gauge fields in (B.67)

are the vielbein eµ
a and the gauge field for dilations bµ. Inspection of the

transformation law for the field bµ given in (B.64) shows that the value of bµ

can be arbitrarily changed by performing a special conformal transformation.

Therefore, we fix bµ to the value

bµ = 0 , K− gauge , (B.72)

77We use the last equation given in (B.32).
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by means of a special conformal transformation. Since this represents a gauge-

fixing of special conformal transformations with gauge parameter λKµ ≡ λaK eaµ,

this is called the K-gauge. In this gauge, special conformal transformations

are no longer independent transformations. Inspection of (B.64) shows that

in order to stay in the K-gauge (B.72), the allowed residual special conformal

transformations are

λKµ = − 1
2 ∂µλD . (B.73)

B.4.3. Weyl multiplet

The extension of the above to supergravity is called the superconformal ap-

proach to supergravity [230, 231, 232, 31, 25]. The standard superconformal

approach to N = 2 supergravity in four dimensions is based on the Weyl mul-

tiplet. In its standard formulation, the Weyl multiplet is a supermultiplet with

24+24 bosonic and fermionic off-shell degrees of freedom.78 Let us briefly de-

scribe this multiplet.

The N = 2 superconformal algebra contains the following bosonic genera-

tors: it contains the bosonic conformal algebra discussed in the previous sub-

section as well as two bosonic generators T and Ui
j that generate U(1)R and

SU(2)R R-symmetry transformations, respectively. As before, we assign a local

parameter and a gauge field to each of these bosonic generators. The gauge

fields associated with U(1)R and SU(2)R R-symmetry transformations will be

denoted by (Aµ,Vµij). This is summarized in Table B.7 below.

bosonic generator Pa Mab Ka D T U ji

parameter ξa λab λaK λD λT λij

gauge field eµ
a ωabµ fµ

a bµ Aµ Vµij

Table B.7: The N = 2 bosonic subalgebra: generators, local parameters, gauge fields.

The bosonic components of the Weyl multiplet are given by the gauge fields

displayed in table B.7, together with a complex anti-selfdual tensor field T−ab

78Recently, a new Weyl multiplet was constructed in [233], called the dilaton Weyl multiplet,
with 24 + 24 off-shell degrees of freedom.
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and a real scalar field D:

(eµ
a, ωabµ , fµ

a, bµ, Aµ,Vµij , T−ab, D) . (B.74)

These describe 24 independent bosonic degrees of freedom, as depicted in Table

B.8.

field subtraction by gauge transformations number of degrees of freedom left

eµ
a Pa,Mab, D 16− (4 + 6 + 1) = 5

ωµ
ab composite field

fµ
a composite field

bµ Ka 0

Aµ U(1)R 4− 1 = 3

Vµij SU(2)R 12− 3 = 9

T−ab 6

D 1

Table B.8: Counting of bosonic off-shell degrees of freedom: 5 + 9 + 3 + 6 + 1 = 24.

The component fields of the Weyl multiplet carry a Weyl weight w and a

chiral (U(1)R) weight c. This is summarized for the bosonic components in

table B.9.

field eµ
a bµ Aµ Vµij T−ab D ωµ

ab fµ
a

w −1 0 0 0 1 2 0 1

c 0 0 0 0 −1 0 0 0

Table B.9: Weyl and chiral weights (w and c, respectively) of the Weyl multiplet bosonic
component fields.

As indicated in table B.9, the gauge fields ωµ
ab and fµ

a are composite fields.

Their expressions are obtained by imposing constraints, as in (B.66). While we
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still impose Rµν
a(P ) = 0, which results in the expression for the spin connection

given in (B.67), we impose the following constraint on the curvature Rµν
ab(M),

taking into account that there are additional fields in the Weyl multiplet,79

Rac
bc(M) + iR̃a

b(T )− 1
4T
−
ac T

+bc + 3
2 δa

bD = 0 , (B.75)

where R̃ab(T ) denotes the dual of the U(1)R field strength Rab(T ), c.f. (B.45),

where Rab(T ) = ea
µeb

ν Rµν(T ) with

Rµν(T ) = 2∂[µAν] . (B.76)

Note that all the terms in the linear combination (B.75) have Weyl weight 2.

The constraint (B.75) results in

Ra
b + 2

(
2fa

b + fc
c δa

b
)

+ iR̃a
b(T )− 1

4T
−
ac T

+bc + 3
2 δa

bD = 0 , (B.77)

where Ra
b = Rac

bc, with Rµν
ab the Riemann tensor constructed out of the

spin connection ωabµ that also contains the gauge field bµ, c.f. (B.67). Then,

contracting (B.77) gives

R+ 12fa
a + 6D = 0 , (B.78)

where R = Ra
a. Therefore, we infer

fa
a = − 1

12 R−
1
2 D . (B.79)

Inserting this into (B.77) gives the relation

fµ
a = 1

2

(
− 1

2Rµ
a − 1

4

(
D − 1

3 R
)
eµ
a − 1

2 iR̃µ
a(T ) + 1

8T
−
µbT

ab+
)
. (B.80)

B.4.4. Covariant derivatives

In the superconformal approach one introduces covariant derivatives Dµ and

Dµ. The first one, Dµ, denotes a covariant derivative with respect to Lorentz,

dilatations, U(1)R and SU(2)R transformations. The second one, Dµ, denotes a

covariant derivative with respect to these transformations as well as with respect

to special conformal transformations,80 and it is used to construct actions that

are invariant under superconformal transformations. Let us illustrate this.

79Note that there are additional fermionic terms in this expression which we have suppressed.
80Here, Dµ should not be confused with the Levi-Civita connection (B.30).
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Consider a scalar field φ with Weyl weight w and chiral weight c. It trans-

forms as

δDφ = wλD φ ,

δTφ = ic λT φ (B.81)

under infinitesimal dilatational and U(1)R transformations. The associated co-

variant derivative of φ is

Dµφ = (∂µ − w bµ − icAµ)φ . (B.82)

Note that Dµφ = Dµφ. Since the dilational connection bµ transforms as in

(B.64) under special conformal transformations, Daφ undergoes aK-transformation,

δKDaφ = −2wλaKφ , (B.83)

that needs to be compensated for when constructing an invariant action. To

this end, consider evaluating

DµD
aφ = DµDaφ = DµDaφ+ 2w fµ

a φ , (B.84)

where

DµDaφ = ∂µDaφ− (w + 1)bµDaφ− icAµDaφ+ ωµ
abDbφ . (B.85)

Here we used that the covariant derivative Dµ of a vector V a of Weyl weight w

and chiral weight c is

DµV a = ∂µV
a − w bµV a − icAµV a + ωµ

abVb , (B.86)

c.f. (B.36). Then, under K-transformations, DµD
µφ transforms as

δK (DµD
µφ) = 4(1− w)λaK Daφ . (B.87)

Choosing w = 1 renders DµD
µφ invariant under K-transformations. Then, the

quantity eφDµD
µφ, which has Weyl weight zero, is invariant under both K-

transformations and under local dilations. It can thus be used as a Lagrangian

that is invariant under the transformations associated with the bosonic confor-

mal algebra discussed earlier. It contains the term φ2 fµ
µ ∝ φ2R, as in (B.59).

Similarly, consider evaluating DµDcT
+
ab, where T+

ab has Weyl and chiral

weights w = c = 1, so that

DνT ab+ = (∂ν − bν − iAν)T ab+ + ων
adTd

b+ + ων
bdT ad

+ . (B.88)
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Taking into account that both bν and ων
ab transform under K-transformations,

c.f. (B.64), we infer

δKDνT ab+ = −2λKν T
ab+ − 4λ

[a
K e

d]
ν Td

b+ − 4λ
[b
K e

d]
ν T

a
d

+ . (B.89)

This needs to be compensated for in DµDνT
+
ab,

DµDcT
+
ab = DµDcT+

ab + 2fµcT
+
ab + 4fµ

[a δd]
c Td

b+ + 4fµ
[b δd]

c T
a
d

+

= DµDcT+
ab + 2fµcT

+
ab − 4fµ[a T

+
b]c + 4fµ

d ηc[aT
+
b]d . (B.90)

Hence

DµD
cT+
cb = DµDcT+

cb − 2fµ
cT+
cb . (B.91)

It follows that

T ab−DaD
cT+
cb = T ab−DaDcT+

cb − 2fa
c T ab−T+

cb . (B.92)

This relation will be used in the main text.

B.4.5. Vector multiplets

The field content of a four-dimensional abelian vector multiplet is given by a

complex scalar field X, an abelian gauge field81 Aµ, an SU(2)R triplet of scalar

fields Yij , and an SU(2) doublet of chiral fermions Ωi, i.e. (X,Ωi, Aµ, Y
ij),

where Yij is a symmetric matrix satisfying the reality condition

Yij = εik εjl Y
kl , Y ij = (Yij)

∗ . (B.93)

Here, i = 1, 2 is an SU(2)R index. Thus, off-shell, an abelian vector multiplet

has eight bosonic and eight fermionic real degrees of freedom.

The component fields of a vector multiplet carry a Weyl weight w and a

chiral weight c. This is summarized for the bosonic components in Table B.10.

B.4.6. Hypermultiplets

The bosonic degrees of freedom of r hypermultiplets are described by 4r real

scalar fields φA (A = 1, . . . , 4r) that can be conveniently described in terms of

local sections Ai
α(φ) of an Sp(r) × Sp(1) bundle (α = 1, . . . , 2r; i = 1, 2) [28].

In the main text we set r = nH + 1. The hypermultiplets provide one of the

81Not to be confused with the U(1) gauge field in the Weyl multiplet (B.74).
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vector multiplet
hyper-

multiplet

field XI A I
µ Y I

ij Aαi

w 1 0 2 1

c −1 0 0 0

Table B.10: Weyl and chiral weights (w and c, respectively) of the vector and hypermultiplet
bosonic component fields.

compensating multiplets for obtaining Poincaré supergravity. In this review, we

will not be concerned with physical hypermultiplets, and hence set nH = 0.

The hyper-Kähler potential χ and the covariant derivative DµAiα(φ) are

defined by

εij χ = Ω̄αβAi
αAj

β ,

DµAiα = ∂µAi
α − bµAiα + 1

2Vµi
jAj

α + ∂µφ
A ΓA

α
β Ai

β , (B.94)

in accordance with the Weyl weight given in Table B.10. The connection ΓA
α
β

takes values in sp(nH + 1), and Ω̄αβ is a covariantly constant antisymmetric

tensor [28].

B.5. Superconformal formalism in five dimensions

B.5.1. Weyl multiplet

The superconformal approach to N = 2 supergravity in five space-time

dimensions [20, 234, 235, 29, 233] is based on the Weyl multiplet. In its standard

formulation, the Weyl multiplet in five dimensions is a supermultiplet with

32+32 bosonic and fermionic off-shell degrees of freedom. When reduced to

four space-time dimensions [101], it decomposes into the Weyl multiplet in four

dimensions with 24+24 bosonic and fermionic off-shell degrees of freedom, and

a vector multiplet with 8+8 bosonic and fermionic off-shell degrees of freedom.

The algebra underlying the superconformal approach is the N = 2 super-

conformal algebra. In five dimensions, this superalgebra contains the bosonic

generators Pa,Mab,Ka, D, Ui
j associated with translations, Lorentz transfor-

mations, special conformal transformations, dilations and SU(2)R R-symmetry

transformations, respectively. One assigns a local parameter and a gauge field
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to each of these bosonic generators. The gauge fields associated with SU(2)R R-

symmetry transformations will be denoted by Vµij , which is an anti-hermitian,

traceless matrix in the indices i, j. This is summarized in Table B.11 below.

bosonic generator Pa Mab Ka D U ji

parameter ξa λab λaK λD λij

gauge field eµ
a ωabµ fµ

a bµ Vµij

Table B.11: The N = 2 bosonic subalgebra: generators, local parameters, gauge fields.

The bosonic components of the Weyl multiplet are given by the gauge fields

displayed in Table B.12 together with a real anti-symmetric tensor field Tab and

a real scalar field D:

(eµ
a, ωabµ , fµ

a, bµ,Vµij , Tab, D) . (B.95)

These describe 32 independent bosonic degrees of freedom.

field subtraction by gauge transformations number of degrees of freedom left

eµ
a Pa,Mab, D 25− (5 + 10 + 1) = 9

ωµ
ab composite field

fµ
a composite field

bµ Ka 0

Vµij SU(2)R 15− 3 = 12

Tab 10

D 1

Table B.12: Counting of bosonic off-shell degrees of freedom: 9 + 12 + 10 + 1 = 32.

The component fields of the Weyl multiplet carry a Weyl weight w. This is

summarized for the bosonic components in Table B.13.
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field eµ
a bµ Vµij Tab D ωµ

ab fµ
a

w −1 0 0 1 2 0 1

Table B.13: Weyl weights of the Weyl multiplet bosonic component fields [23].

As indicated in Table B.12, the gauge fields ωµ
ab and fµ

a are composite

fields. Their expressions are obtained by imposing constraints on the associated

field strengths Rµν
a(P ) and Rµν

ab(M) [23],82

Rµν
a(P ) = 2D[µeν]

a = 0 , (B.96)

ea
µRµν

ab(M) = ea
µ
(

2∂[µων]
ab + 2ω[µ

acων]c
b + 8e[µ

[afν]
b]
)

= 0 .

Here, the covariant derivative Dµ of a vector V a of Weyl weight w is

DµV a = ∂µV
a − w bµV a + ωµ

abVb . (B.97)

We infer from (B.96),

fa
a = − 1

16
R ,

fµ
a =

1

6

(
−Rµa +

1

8
eµ
aR

)
. (B.98)

vector multiplet
hyper-

multiplet

field σI A I
µ Y I

ij Ai
α

w 1 0 2 3
2

Table B.14: Weyl weights w of the vector and hypermultiplet bosonic component fields.

B.5.2. Vector multiplets

The field content of a five-dimensional abelian vector multiplet is given by

a real scalar field σ, an abelian gauge field Aµ, an SU(2)R triplet of scalar

82Note that our definition of Rµνab(M) differs from the one in [23] by an overall minus sign.
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fields Yij , and an SU(2)R doublet of symplectic Majorana fermions λi, i.e.

(σ, λi, Aµ, Y
ij), where Y ij is a symmetric matrix satisfying the reality condition

Yij = εik εjl Y
kl , Y ij = (Yij)

∗ . (B.99)

Here, i = 1, 2 is an SU(2)R index. Thus, off-shell, an abelian vector multiplet

has eight bosonic and eight fermionic real degrees of freedom.

The component fields of a vector multiplet carry a Weyl weight w. This is

summarized for the bosonic components in Table B.14.

B.5.3. Hypermultiplets

As we mentioned in B.4.6, the bosonic degrees of freedom of r hypermul-

tiplets are described by 4r real scalar fields φA (A = 1, . . . , 4r) that can be

conveniently described in terms of local sections Ai
α(φ) of an Sp(r) × Sp(1)

bundle (α = 1, . . . , 2r; i = 1, 2) [28]. In the main text we set r = nH + 1.

In five space-time dimensions, the hyper-Kähler potential χ and the covariant

derivative DµAiα(φ) are defined by

εij χ = ΩαβAi
αAj

β ,

DµAiα = ∂µAi
α − 3

2bµAi
α + 1

2Vµi
jAj

α + ∂µφ
A ΓA

α
β Ai

β , (B.100)

in accordance with the Weyl weight given in Table B.14. The connection ΓA
α
β

takes values in sp(nH + 1), and Ωαβ is a covariantly constant antisymmetric

tensor [23].

B.6. Special holomorphic coordinates

As discussed in subsection 5.3, the PSK manifold (M̄, gM̄ ) can be obtained

by a superconformal quotient of a regular CASK manifold (M, gM ). As men-

tioned in subsection 5.4.1, one may choose special holomorphic coordinates

za = Xa/X0 (a = 1, . . . , n) on the PSK manifold (M̄, gM̄ ). Here, we provide

a few more details on the relation of these coordinates to the special holomor-

phic coordinates XI (I = 0, . . . , n) on the CASK manifold (M, gM ). We give

various conversion formulae that facilitate the construction of the space-time

two-derivative Lagrangian for the za when viewed as components of a map

Z : N → M̄ from space-time N into the PSK manifold M̄ .

The superconformal quotient proceeds by first restricting the XI to the

hypersurface

i
(
X̄I FI − F̄I XI

)
= 1 . (B.101)
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Setting

(XI , FI) =
(XI(z), FI(z))

||(XI(z), FI(z))||
, (B.102)

the constraint (B.101) imposes that (XI , FI) has unit norm. Here

||(XI(z), FI(z))|| =
√
|i
(
X̄I(z̄)FI(z)− F̄I(z̄)XI(z)

)
| . (B.103)

As discussed in subsection 5.4.1, the vector (XI(z), FI(z)) denotes the compo-

nents of the holomorphic section s∗φ : M̄ → UM̄ of the line bundle UM̄ → M̄ ,

which depends holomorphically on za. The norm of the vector (XI(z), FI(z))

yields the Kähler potential K(z, z̄) of gM̄ ,

e−K(z,z̄) = i
(
X̄I(z̄)FI(z)− F̄I(z̄)XI(z)

)
, (B.104)

so that

XI = e
1
2K(z,z̄)XI(z) . (B.105)

The C∗-action

XI(z) 7→ e−f(z)XI(z) (B.106)

induces the Kähler transformation

K 7→ K + f + f̄ (B.107)

on the Kähler potential, while on the symplectic vector (XI , FI(X)) it induces

the U(1)-transformation

(XI , FI(X)) 7→ e−
1
2 (f−f̄) (XI , FI(X)) . (B.108)

The Kähler potential (B.104) can be written as

e−K(z,z̄) = |X0(z)|2
(
−NIJ ZI Z̄J

)
, (B.109)

with ZI(z) = (Z0, Za) = (1, za), and

NIJ = −i
(
FIJ − F̄IJ

)
. (B.110)

Using the homogeneity of F (X),

F (X) =
(
X0
)2 F(z) , (B.111)

we get

F0 = X0 (2F(z)− za Fa) , (B.112)
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where Fa = ∂F/∂za. Using

F00 = 2F − 2za Fa + za zb Fab ,

F0b = Fb − za Fab ,

Fab = Fab , (B.113)

where Fab = ∂2F/∂za∂zb, we obtain

−NIJ ZI Z̄J = i
[
2
(
F − F̄

)
− (za − z̄a)

(
Fa + F̄a

)]
, (B.114)

and hence

e−K(z,z̄) = i |X0(z)|2
[
2
(
F − F̄

)
− (za − z̄a)

(
Fa + F̄a

)]
. (B.115)

The metric gM̄ on the PSK manifold is, locally, given by

gab̄ =
∂2K(z, z̄)

∂za ∂z̄b
. (B.116)

Next, we relate the PSK metric (B.116) to the CASK metric (B.110). Dif-

ferentiating e−K yields

∂a∂b̄e
−K = [−gab̄ + ∂aK ∂b̄K] e−K (B.117)

= i |X0(z)|2
(
Fab − F̄ab

)
−
[
∂a lnX0(z) ∂b̄ ln X̄0(z̄)

−∂a lnX0(z) ∂b̄K − ∂aK ∂b̄ ln X̄0(z̄)
]
e−K .

Using (B.113) we have

Nab = −i
(
Fab − F̄ab

)
, (B.118)

and hence we infer from (B.117) that

gab̄ = Nab |X0|2 +
1

|X0(z)|2
DaX0(z)Db̄ X̄0(z̄) , (B.119)

where

DaX0(z) = ∂aX
0(z)− iAha X0(z) = ∂aX

0(z) + ∂aKX0(z) (B.120)

denotes the connection given in (364), i.e. the covariant derivative under the

transformation (B.106).

Next, using the connection given in (367),

DaXI = ∂aX
I + 1

2∂aKXI , (B.121)
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we introduce the space-time covariant derivative

DµXI = ∂µX
I + iAµX

I = ∂µX
I + 1

2 (∂aK ∂µz
a − ∂āK∂µz̄a)XI , (B.122)

which is a covariant derivative for U(1) transformations (B.108). Observe that

DµX0 = eK/2DaX0(z) ∂µz
a . (B.123)

Now we evaluate the U(1) invariant combination NIJ DµXI DµX̄J subject to

the constraint (B.101),

NIJ DµXI DµX̄J |−NIJXIX̄J=1 = |X0|2Nab ∂µza ∂µz̄b −
1

|X0|2
DµX0DµX̄0

+
X0

X̄0
NaJX̄

J ∂µz
aDµX̄0 +

X̄0

X0
NIaX

I ∂µz̄
aDµX0 . (B.124)

Using

X0 X̄J NaJ =
1

X0(z)
DaX0(z) , (B.125)

as well as (B.119) and (B.123) we establish

NIJ DµXI DµX̄J |−NIJXIX̄J=1 = gab̄ ∂µz
a ∂µz̄b . (B.126)

We close with the following useful relations. First, we note the relation [236]

N IJ = gab̄DaXI D̄b̄X̄J −XI X̄J . (B.127)

Then, we recall the definition of NIJ in (440), and we note the relations

NIJ XJ = FI ,

− 1
2

[
(ImN )

−1
]
IJ = N IJ +XI X̄J +XJ X̄I . (B.128)

B.7. The black hole potential

We consider the Maxwell terms in the two-derivative Lagrangian (439), and

define µIJ = ImNIJ and νIJ = ReNIJ .

The black hole potential in four dimensions is defined by [156],

VBH = gab̄DaZD̄b̄Z̄ + |Z|2 =
(
N IJ + 2XIX̄J

)
q̂I ¯̂qJ , (B.129)

where

Z(X) = pI FI(X)− qI XI = −q̂I XI , q̂I = qI − FIJ pJ . (B.130)
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Here, (pI , qI) denote magnetic/electric charges as in (644). The black hole

potential transforms as a function under symplectic transformations (198).

Using (B.128), the black hole potential can also be written as

VBH = −1

2
(qI −NIK pK) [(ImN )−1]IJ (qJ − N̄JL pL) . (B.131)

This equals [156, 193]

VBH = − 1
2 (p q)

µ+ νµ−1ν −νµ−1

−µ−1ν µ−1


p
q

 , (B.132)

where we have suppressed the indices I, J for notational simplicity. The black

hole potential can be expressed [127] in terms of the tensor field Ĥab defined in

(335),

VBH = − 1
2Q

a ĤabQ
b , (B.133)

where Qa = (pI , qI)
T .

Extrema of the black hole potential VBH may either correspond to BPS black

holes or to non-BPS black holes. If an extremum satisfiesDaZ = 0 ∀ a = 1, . . . , n

with Z 6= 0, then it corresponds to a BPS black hole [156]. Conversely, if

DaZ 6= 0 at the extremum, then the black hole is non-supersymmetric.

B.8. Wald’s entropy

In a general classical theory of gravity with higher-curvature terms, based on

a diffeomorphism invariant Lagrangian, the entropy of a stationary black hole

is computed using Wald’s definition of black hole entropy [237, 238, 239, 240].

If the higher-curvature terms involve the Riemann tensor, but not derivatives

of the Riemann tensor, Wald’s entropy is given by

Smacro = − 1
4

∫
Σhor

∂L

∂Rµνρσ
εµνερσ , (B.134)

where εµν denotes the bi-normal tensor associated with a cross-section of the

Killing horizon Σhor, normalized such that εµνε
µν = −2. In tangent space

indices, the non-vanishing components are ε01 = ±1. We have normalized

(B.134) in such a way that when L = 1
2 R, we obtain the area law Smacro = A/4.
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General matter coupled N=2 supergravity, Nucl. Phys. B476 (1996) 397–

417. arXiv:hep-th/9603004, doi:10.1016/0550-3213(96)00344-6.

[52] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré,

T. Magri, N = 2 supergravity and N = 2 super Yang-Mills theory on gen-

eral scalar manifolds: Symplectic covariance, gaugings and the momentum

map, J. Geom. Phys. 23 (1997) 111–189. arXiv:hep-th/9605032.

[53] B. Craps, F. Roose, W. Troost, A. Van Proeyen, What is special Kaehler

geometry?, Nucl. Phys. B503 (1997) 565–613. arXiv:hep-th/9703082,

doi:10.1016/S0550-3213(97)00408-2.

265

http://arxiv.org/abs/math/9911079
http://arxiv.org/abs/math/9911079
http://arxiv.org/abs/math/0107037
http://arxiv.org/abs/0905.2844
http://dx.doi.org/10.1088/1126-6708/2009/07/066
http://arxiv.org/abs/1702.02400
http://dx.doi.org/10.1007/s11005-017-1032-1
http://arxiv.org/abs/math/9901069
http://arxiv.org/abs/hep-th/9603004
http://dx.doi.org/10.1016/0550-3213(96)00344-6
http://arxiv.org/abs/hep-th/9605032
http://arxiv.org/abs/hep-th/9703082
http://dx.doi.org/10.1016/S0550-3213(97)00408-2


[54] M. A. Lledo, O. Macia, A. Van Proeyen, V. S. Varadarajan, Special geom-

etry for arbitrary signatures, IRMA Lect. Math. Theor. Phys. 16 (2010)

85–147. arXiv:hep-th/0612210.

[55] A. Strominger, Special Geometry, Commun. Math. Phys. 133 (1990) 163–

180. doi:10.1007/BF02096559.

[56] L. Castellani, R. D’Auria, P. Fre, Supergravity and superstrings: A Geo-

metric perspective. Vol. 2: Supergravity, World Scientific, 1991.

[57] L. Castellani, R. D’Auria, S. Ferrara, Special geometry without special

coordinates, Class. Quant. Grav. 7 (1990) 1767–1790. doi:10.1088/

0264-9381/7/10/009.

[58] L. Castellani, R. D’Auria, S. Ferrara, Special Kahler geometry: an intrin-

sic formulation from N=2 space-time supersymmetry, Phys. Lett. B241

(1990) 57. doi:10.1016/0370-2693(90)91486-U.

[59] A. Ceresole, R. D’Auria, S. Ferrara, A. Van Proeyen, On electromagnetic

duality in locally supersymmetric N=2 Yang-Mills theory, arXiv:hep-th/

9412200.

[60] S. Ferrara, O. Macia, Observations on the Darboux coordinates for rigid

special geometry, JHEP 05 (2006) 008. arXiv:hep-th/0602262, doi:

10.1088/1126-6708/2006/05/008.

[61] S. Ferrara, O. Macia, Real symplectic formulation of local special geom-

etry, Phys. Lett. B637 (2006) 102–106. arXiv:hep-th/0603111, doi:

10.1016/j.physletb.2006.04.010.

[62] E. Witten, J. Bagger, Quantization of Newton’s Constant in Certain Su-

pergravity Theories, Phys. Lett. 115B (1982) 202–206. doi:10.1016/

0370-2693(82)90644-X.

[63] V. Cortés, C. I. Lazaroiu, C. S. Shahbazi, N = 1 Geometric Supergravity

and chiral triples on Riemann surfaces , Communications in Mathematical

Physics (2019), arXiv:1810.12353, doi:10.1007/s00220-019-03476-7.

[64] M. B. Green, S. J. H., E. Witten, Superstring theory (2 vols), Cambridge

University Press, 1987.

266

http://arxiv.org/abs/hep-th/0612210
http://dx.doi.org/10.1007/BF02096559
http://dx.doi.org/10.1088/0264-9381/7/10/009
http://dx.doi.org/10.1088/0264-9381/7/10/009
http://dx.doi.org/10.1016/0370-2693(90)91486-U
http://arxiv.org/abs/hep-th/9412200
http://arxiv.org/abs/hep-th/9412200
http://arxiv.org/abs/hep-th/0602262
http://dx.doi.org/10.1088/1126-6708/2006/05/008
http://dx.doi.org/10.1088/1126-6708/2006/05/008
http://arxiv.org/abs/hep-th/0603111
http://dx.doi.org/10.1016/j.physletb.2006.04.010
http://dx.doi.org/10.1016/j.physletb.2006.04.010
http://dx.doi.org/10.1016/0370-2693(82)90644-X
http://dx.doi.org/10.1016/0370-2693(82)90644-X
http://arxiv.org/abs/1810.12353
http://dx.doi.org/10.1007/s00220-019-03476-7


[65] P. Candelas, Lectures on complex manifolds, in: L. Alvarez-Gaume (Ed.),

Superstrings ’87, 1987.

[66] T. Hubsch, Calabi-Yau Manifolds, World Scientific, 1991.

[67] R. Kallosh, T. Mohaupt, M. Shmakova, Excision of singularities by

stringy domain walls, J.Math.Phys. 42 (2001) 3071–3081. arXiv:hep-th/

0010271, doi:10.1063/1.1373424.

[68] C. Mayer, T. Mohaupt, The Kähler cone as cosmic censor, Class. Quant.

Grav. 21 (2004) 1879–1896. arXiv:hep-th/0312008, doi:10.1088/

0264-9381/21/7/010.

[69] E. Witten, Phase Transitions In M-Theory And F-Theory, Nucl.

Phys. B471 (1996) 195–216. arXiv:hep-th/9603150, doi:10.1016/

0550-3213(96)00212-X.

[70] D. V. Alekseevsky, S. Marchiafava, Hermitian and kähler submanifolds of

a quaternionic kähler manifold, Osaka J. Math. 38 (4) (2001) 869.

[71] P. Fayet, Fermi-Bose Hypersymmetry, Nucl. Phys. B113 (1976) 135. doi:

10.1016/0550-3213(76)90458-2.

[72] G. L. Cardoso, T. Mohaupt, Hessian geometry and the holomorphic

anomaly, JHEP 02 (2016) 161. arXiv:1511.06658, doi:10.1007/

JHEP02(2016)161.

[73] G. L. Cardoso, A. Veliz-Osorio, On the sigma-model of deformed special

geometry, Nucl. Phys. B872 (2013) 228–252. arXiv:1212.4364, doi:

10.1016/j.nuclphysb.2013.04.001.

[74] G. L. Cardoso, B. de Wit, J. Kappeli, T. Mohaupt, Black hole partition

functions and duality, JHEP 03 (2006) 074. arXiv:hep-th/0601108, doi:

10.1088/1126-6708/2006/03/074.

[75] M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Kodaira-Spencer theory

of gravity and exact results for quantum string amplitudes, Commun.

Math. Phys. 165 (1994) 311–428. arXiv:hep-th/9309140, doi:10.1007/

BF02099774.

267

http://arxiv.org/abs/hep-th/0010271
http://arxiv.org/abs/hep-th/0010271
http://dx.doi.org/10.1063/1.1373424
http://arxiv.org/abs/hep-th/0312008
http://dx.doi.org/10.1088/0264-9381/21/7/010
http://dx.doi.org/10.1088/0264-9381/21/7/010
http://arxiv.org/abs/hep-th/9603150
http://dx.doi.org/10.1016/0550-3213(96)00212-X
http://dx.doi.org/10.1016/0550-3213(96)00212-X
http://dx.doi.org/10.1016/0550-3213(76)90458-2
http://dx.doi.org/10.1016/0550-3213(76)90458-2
http://arxiv.org/abs/1511.06658
http://dx.doi.org/10.1007/JHEP02(2016)161
http://dx.doi.org/10.1007/JHEP02(2016)161
http://arxiv.org/abs/1212.4364
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.001
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.001
http://arxiv.org/abs/hep-th/0601108
http://dx.doi.org/10.1088/1126-6708/2006/03/074
http://dx.doi.org/10.1088/1126-6708/2006/03/074
http://arxiv.org/abs/hep-th/9309140
http://dx.doi.org/10.1007/BF02099774
http://dx.doi.org/10.1007/BF02099774


[76] T. W. Grimm, A. Klemm, M. Marino, M. Weiss, Direct Integration of

the Topological String, JHEP 08 (2007) 058. arXiv:hep-th/0702187,

doi:10.1088/1126-6708/2007/08/058.

[77] M. Aganagic, V. Bouchard, A. Klemm, Topological Strings and (Almost)

Modular Forms, Commun. Math. Phys. 277 (2008) 771–819. arXiv:

hep-th/0607100, doi:10.1007/s00220-007-0383-3.

[78] V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of

Euclidean supersymmetry. II: Hypermultiplets and the c-map, JHEP 06

(2005) 025. arXiv:hep-th/0503094.

[79] I. Vaisman, On the geometry of double field theory, J. Math. Phys. 53

(2012) 033509. arXiv:1203.0836, doi:10.1063/1.3694739.

[80] I. Vaisman, Towards a double field theory on para-Hermitian manifolds,

J. Math. Phys. 54 (2013) 123507. arXiv:1209.0152, doi:10.1063/1.

4848777.

[81] L. Freidel, F. J. Rudolph, D. Svoboda, Generalised Kinematics for Double

Field Theory, JHEP 11 (2017) 175. arXiv:1706.07089, doi:10.1007/

JHEP11(2017)175.

[82] L. Freidel, F. J. Rudolph, D. Svoboda, A Unique Connection for Born

Geometry, arXiv:1806.05992.

[83] V. E. Marotta, R. J. Szabo, Para-Hermitian Geometry, Dualities and

Generalized Flux Backgrounds, arXiv:1810.03953.

[84] V. Cruceanu, P. Fortuny, P. M. Gadea, A survey of paracomplex geometry,

Rocky Mountain J Math 26 (1996) 83–115.

[85] J. B. Gutowski, W. Sabra, Euclidean N=2 Supergravity, Phys. Lett. B718

(2012) 610–614. arXiv:1209.2029, doi:10.1016/j.physletb.2012.10.

050.

[86] H. Nicolai, A Possible constructive approach to super φ3 in four-

dimensions. 1. Euclidean formulation of the model, Nucl. Phys. B140

(1978) 294.

268

http://arxiv.org/abs/hep-th/0702187
http://dx.doi.org/10.1088/1126-6708/2007/08/058
http://arxiv.org/abs/hep-th/0607100
http://arxiv.org/abs/hep-th/0607100
http://dx.doi.org/10.1007/s00220-007-0383-3
http://arxiv.org/abs/hep-th/0503094
http://arxiv.org/abs/1203.0836
http://dx.doi.org/10.1063/1.3694739
http://arxiv.org/abs/1209.0152
http://dx.doi.org/10.1063/1.4848777
http://dx.doi.org/10.1063/1.4848777
http://arxiv.org/abs/1706.07089
http://dx.doi.org/10.1007/JHEP11(2017)175
http://dx.doi.org/10.1007/JHEP11(2017)175
http://arxiv.org/abs/1806.05992
http://arxiv.org/abs/1810.03953
http://arxiv.org/abs/1209.2029
http://dx.doi.org/10.1016/j.physletb.2012.10.050
http://dx.doi.org/10.1016/j.physletb.2012.10.050


[87] P. van Nieuwenhuizen, A. Waldron, A continuous Wick rotation for spinor

fields and supersymmetry in Euclidean space, arXiv:hep-th/9611043.

[88] P. van Nieuwenhuizen, A. Waldron, On euclidean spinors and wick rota-

tions, Phys. Lett. B389 (1996) 29–36. arXiv:hep-th/9608174.

[89] U. Theis, P. Van Nieuwenhuizen, Ward identities for N = 2 rigid and local

supersymmetry in Euclidean space, Class. Quant. Grav. 18 (2001) 5469–

5486. arXiv:hep-th/0108204, doi:10.1088/0264-9381/18/24/311.

[90] G. W. Gibbons, M. B. Green, M. J. Perry, Instantons and Seven-Branes

in Type IIB Superstring Theory, Phys. Lett. B370 (1996) 37–44. arXiv:

hep-th/9511080, doi:10.1016/0370-2693(95)01565-5.

[91] T. Mohaupt, K. Waite, Euclidean Actions, Instantons, Solitons and Su-

persymmetry, J. Phys. A44 (2011) 175403. arXiv:1011.6301, doi:

10.1088/1751-8113/44/17/175403.

[92] D. Gal’tsov, O. Rytchkov, Generating branes via sigma-models, Phys.

Rev. D 58 (1998) 122001.

[93] K. S. Stelle, BPS branes in supergravity, lecture notes (1998). arXiv:

hep-th/9803116.

[94] C. Hull, Duality and the signature of space-time, JHEP 9811 (1998) 017.

arXiv:hep-th/9807127.

[95] C. M. Hull, Timelike T-duality, de Sitter space, large N gauge theories and

topological field theory, JHEP 07 (1998) 021. arXiv:hep-th/9806146.

[96] C. M. Hull, R. R. Khuri, Branes, times and dualities, Nucl.Phys. B536

(1998) 219–244. arXiv:hep-th/9808069, doi:10.1016/S0550-3213(98)

00691-9.

[97] E. Bergshoeff, A. Van Proeyen, The Many faces of OSp(1|32), Class.

Quant. Grav. 17 (2000) 3277–3304. arXiv:hep-th/0003261, doi:10.

1088/0264-9381/17/16/312.

[98] E. A. Bergshoeff, J. Hartong, A. Ploegh, J. Rosseel, D. Van den Bleeken,

Pseudo-supersymmetry and a tale of alternate realities, JHEP 07 (2007)

067. arXiv:arXiv:0704.3559[hep-th].

269

http://arxiv.org/abs/hep-th/9611043
http://arxiv.org/abs/hep-th/9608174
http://arxiv.org/abs/hep-th/0108204
http://dx.doi.org/10.1088/0264-9381/18/24/311
http://arxiv.org/abs/hep-th/9511080
http://arxiv.org/abs/hep-th/9511080
http://dx.doi.org/10.1016/0370-2693(95)01565-5
http://arxiv.org/abs/1011.6301
http://dx.doi.org/10.1088/1751-8113/44/17/175403
http://dx.doi.org/10.1088/1751-8113/44/17/175403
http://arxiv.org/abs/hep-th/9803116
http://arxiv.org/abs/hep-th/9803116
http://arxiv.org/abs/hep-th/9807127
http://arxiv.org/abs/hep-th/9806146
http://arxiv.org/abs/hep-th/9808069
http://dx.doi.org/10.1016/S0550-3213(98)00691-9
http://dx.doi.org/10.1016/S0550-3213(98)00691-9
http://arxiv.org/abs/hep-th/0003261
http://dx.doi.org/10.1088/0264-9381/17/16/312
http://dx.doi.org/10.1088/0264-9381/17/16/312
http://arxiv.org/abs/arXiv:0704.3559 [hep-th]


[99] W. Sabra, Special geometry and space–time signature, Phys. Lett. B773

(2017) 191–195. arXiv:1706.05162, doi:10.1016/j.physletb.2017.

08.021.

[100] V. Cortés, L. Gall, T. Mohaupt, Four-dimensional vector multiplets in

arbitrary signature, arXiv:1907.12067.

[101] N. Banerjee, B. de Wit, S. Katmadas, The Off-Shell 4D/5D Connection,

JHEP 03 (2012) 061. arXiv:1112.5371, doi:10.1007/JHEP03(2012)

061.

[102] B. de Wit, V. Reys, Euclidean supergravity, JHEP 12 (2017) 011. arXiv:

1706.04973, doi:10.1007/JHEP12(2017)011.

[103] I. Antoniadis, S. Ferrara, T. R. Taylor, N=2 Heterotic Superstring and

its Dual Theory in Five Dimensions, Nucl. Phys. B460 (1996) 489–505.

arXiv:hep-th/9511108, doi:10.1016/0550-3213(95)00659-1.

[104] J. Louis, T. Mohaupt, M. Zagermann, Effective actions near singularities,

JHEP 02 (2003) 053. arXiv:hep-th/0301125.

[105] M. T. Grisaru, A. E. M. van de Ven, D. Zanon, Four Loop Divergences

for the N=1 Supersymmetric Nonlinear Sigma Model in Two-Dimensions,

Nucl. Phys. B277 (1986) 409–428. doi:10.1016/0550-3213(86)90449-9.

[106] S. Hosono, A. Klemm, S. Theisen, S.-T. Yau, Mirror symmetry, mirror

map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys.

167 (1995) 301–350. arXiv:hep-th/9308122, doi:10.1007/BF02100589.

[107] A. Ceresole, R. D’Auria, S. Ferrara, A. Van Proeyen, Duality transfor-

mations in supersymmetric Yang-Mills theories coupled to supergrav-

ity, Nucl. Phys. B444 (1995) 92–124. arXiv:hep-th/9502072, doi:

10.1016/0550-3213(95)00175-R.

[108] B. de Wit, V. Kaplunovsky, J. Louis, D. Lust, Perturbative couplings of

vector multiplets in n=2 heterotic string vacua, Nucl. Phys. B451 (1995)

53–95. arXiv:hep-th/9504006.

[109] I. Antoniadis, S. Ferrara, E. Gava, K. S. Narain, T. R. Taylor, Per-

turbative prepotential and monodromies in N=2 heterotic superstring,

270

http://arxiv.org/abs/1706.05162
http://dx.doi.org/10.1016/j.physletb.2017.08.021
http://dx.doi.org/10.1016/j.physletb.2017.08.021
http://arxiv.org/abs/1907.12067
http://arxiv.org/abs/1112.5371
http://dx.doi.org/10.1007/JHEP03(2012)061
http://dx.doi.org/10.1007/JHEP03(2012)061
http://arxiv.org/abs/1706.04973
http://arxiv.org/abs/1706.04973
http://dx.doi.org/10.1007/JHEP12(2017)011
http://arxiv.org/abs/hep-th/9511108
http://dx.doi.org/10.1016/0550-3213(95)00659-1
http://arxiv.org/abs/hep-th/0301125
http://dx.doi.org/10.1016/0550-3213(86)90449-9
http://arxiv.org/abs/hep-th/9308122
http://dx.doi.org/10.1007/BF02100589
http://arxiv.org/abs/hep-th/9502072
http://dx.doi.org/10.1016/0550-3213(95)00175-R
http://dx.doi.org/10.1016/0550-3213(95)00175-R
http://arxiv.org/abs/hep-th/9504006


Nucl. Phys. B447 (1995) 35–61. arXiv:hep-th/9504034, doi:10.1016/

0550-3213(95)00240-S.

[110] J. A. Harvey, G. W. Moore, Algebras, BPS states, and strings,

Nucl.Phys. B463 (1996) 315–368. arXiv:hep-th/9510182, doi:10.1016/

0550-3213(95)00605-2.

[111] S. Cecotti, S. Ferrara, L. Girardello, Geometry of Type II Superstrings

and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A4

(1989) 2475. doi:10.1142/S0217751X89000972.

[112] D. Kaledin, Hyperkaehler structures on total spaces of holomorphic cotan-

gent bundles, arXiv:alg-geom/9710029.

[113] J. Gates, S. James, S. M. Kuzenko, 4D N = 2 supersymmetric off-shell

sigma models on the cotangent bundles of Kaehler manifolds, Fortsch.

Phys. 48 (2000) 115–118. arXiv:hep-th/9903013.

[114] S. Ferrara, S. Sabharwal, Quaternionic Manifolds for Type II Superstring

Vacua of Calabi-Yau Spaces, Nucl. Phys. B332 (1990) 317. doi:10.1016/

0550-3213(90)90097-W.

[115] W. Ballmann, Lectures on Kähler Manifolds, European Mathematical So-

ciety, 2006.

[116] P. S. Aspinwall, Compactification, geometry and duality: N = 2, arXiv:

hep-th/0001001.

[117] U. Theis, S. Vandoren, Instantons in the double-tensor multiplet, JHEP

09 (2002) 059. arXiv:hep-th/0208145.

[118] B. de Wit, F. Saueressig, Off-shell N = 2 tensor supermultiplets, JHEP

09 (2006) 062. arXiv:hep-th/0606148.

[119] M. Rocek, C. Vafa, S. Vandoren, Hypermultiplets and topological strings,

JHEP 02 (2006) 062. arXiv:hep-th/0512206, doi:10.1088/1126-6708/

2006/02/062.

[120] B. de Wit, F. Saueressig, Tensor supermultiplets and toric quaternion-

Kaehler geometry, Fortsch. Phys. 55 (2007) 699–704. arXiv:hep-th/

0701223, doi:10.1002/prop.200610371.

271

http://arxiv.org/abs/hep-th/9504034
http://dx.doi.org/10.1016/0550-3213(95)00240-S
http://dx.doi.org/10.1016/0550-3213(95)00240-S
http://arxiv.org/abs/hep-th/9510182
http://dx.doi.org/10.1016/0550-3213(95)00605-2
http://dx.doi.org/10.1016/0550-3213(95)00605-2
http://dx.doi.org/10.1142/S0217751X89000972
http://arxiv.org/abs/alg-geom/9710029
http://arxiv.org/abs/hep-th/9903013
http://dx.doi.org/10.1016/0550-3213(90)90097-W
http://dx.doi.org/10.1016/0550-3213(90)90097-W
http://arxiv.org/abs/hep-th/0001001
http://arxiv.org/abs/hep-th/0001001
http://arxiv.org/abs/hep-th/0208145
http://arxiv.org/abs/hep-th/0606148
http://arxiv.org/abs/hep-th/0512206
http://dx.doi.org/10.1088/1126-6708/2006/02/062
http://dx.doi.org/10.1088/1126-6708/2006/02/062
http://arxiv.org/abs/hep-th/0701223
http://arxiv.org/abs/hep-th/0701223
http://dx.doi.org/10.1002/prop.200610371


[121] N. Banerjee, B. de Wit, S. Katmadas, The off-shell c-map, JHEP 01 (2016)

156. arXiv:1512.06686, doi:10.1007/JHEP01(2016)156.

[122] A. Haydys, Hyper-kähler and quaternionic kähler manifolds with s1-

symmetries, J. Geom. Phys. 58 (2008) 293–306.

[123] S. Alexandrov, D. Persson, B. Pioline, Wall-crossing, Rogers dilogarithm,

and the QK/HK correspondence, JHEP 1112 (2011) 027. arXiv:1110.

0466, doi:10.1007/JHEP12(2011)027.

[124] D. V. Alekseevsky, V. Cortés, T. Mohaupt, Conification of Kähler and

hyper-Kähler manifolds, Commun. Math. Phys. 324 (2013) 637–655.

arXiv:1205.2964, doi:10.1007/s00220-013-1812-0.

[125] D. V. Alekseevsky, V. Cortés, M. Dyckmanns, T. Mohaupt, Quaternionic

Kähler metrics associated with special Kähler manifolds, J.Geom.Phys.

92 (2015) 271–287. arXiv:1305.3549, doi:10.1016/j.geomphys.2014.

12.012.

[126] M. Dyckmanns, O. Vaughan, The para-HK/QK correspondence, J.

Geom. Phys. 116 (2017) 244–257. arXiv:1601.05001, doi:10.1016/j.

geomphys.2017.01.024.

[127] T. Mohaupt, O. Vaughan, The Hesse potential, the c-map and black

hole solutions, JHEP 07 (2012) 163. arXiv:1112.2876, doi:10.1007/

JHEP07(2012)163.

[128] V. Cortés, J. Louis, P. Smyth, H. Triendl, On certain Kähler quotients of

quaternionic Kähler manifolds, Commun.Math.Phys. 317 (2013) 787–816.

arXiv:1111.0679, doi:10.1007/s00220-012-1541-9.

[129] P. Dempster, D. Errington, T. Mohaupt, Nernst branes from special

geometry, JHEP 05 (2015) 079. arXiv:1501.07863, doi:10.1007/

JHEP05(2015)079.

[130] P. Dempster, D. Errington, J. Gutowski, T. Mohaupt, Five-dimensional

Nernst branes from special geometry, JHEP 11 (2016) 114. arXiv:1609.

05062, doi:10.1007/JHEP11(2016)114.

272

http://arxiv.org/abs/1512.06686
http://dx.doi.org/10.1007/JHEP01(2016)156
http://arxiv.org/abs/1110.0466
http://arxiv.org/abs/1110.0466
http://dx.doi.org/10.1007/JHEP12(2011)027
http://arxiv.org/abs/1205.2964
http://dx.doi.org/10.1007/s00220-013-1812-0
http://arxiv.org/abs/1305.3549
http://dx.doi.org/10.1016/j.geomphys.2014.12.012
http://dx.doi.org/10.1016/j.geomphys.2014.12.012
http://arxiv.org/abs/1601.05001
http://dx.doi.org/10.1016/j.geomphys.2017.01.024
http://dx.doi.org/10.1016/j.geomphys.2017.01.024
http://arxiv.org/abs/1112.2876
http://dx.doi.org/10.1007/JHEP07(2012)163
http://dx.doi.org/10.1007/JHEP07(2012)163
http://arxiv.org/abs/1111.0679
http://dx.doi.org/10.1007/s00220-012-1541-9
http://arxiv.org/abs/1501.07863
http://dx.doi.org/10.1007/JHEP05(2015)079
http://dx.doi.org/10.1007/JHEP05(2015)079
http://arxiv.org/abs/1609.05062
http://arxiv.org/abs/1609.05062
http://dx.doi.org/10.1007/JHEP11(2016)114


[131] J. Gutowski, T. Mohaupt, G. Pope, From static to cosmological solutions

of N = 2 supergravity, JHEP 08 (2019) 172. arXiv:1905.09167, doi:

10.1007/JHEP08(2019)172.

[132] T. Mohaupt, O. Vaughan, Non-extremal Black Holes, Harmonic Func-

tions, and Attractor Equations, Class. Quant. Grav. 27 (2010) 235008.

arXiv:1006.3439, doi:10.1088/0264-9381/27/23/235008.

[133] N. Hitchin, Quaternionic Kähler moduli spaces, in: Riemannian topol-

ogy and geometric structures on manifolds, Vol. 271 of Progr. Math.,
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