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Abstract

The target space geometry of abelian vector multiplets in ' = 2 theories in four
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ing time-like dimensional reductions, we obtain theories in Euclidean signature,

where the scalar target spaces carry para-complex versions of special geometry.
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1. Introduction

Theories with 8 supercharges hold an interesting position between semi-
realistic, but analytically un-tractable theories with 4 supercharges, and theo-
ries with more than 8 supercharges, which are analytically tractable, but have
a two-derivative Lagrangian which is completely determined by their matter
content. In contrast, the couplings of theories with 8 supercharges are func-
tions of the scalar fields, and subject to interesting and complicated quantum
corrections. We will refer to theories with 8 conserved real supercharges as
N = 2 theories, irrespective of the space-time dimension. This amounts to
counting supersymmetries in multiples of the minimal number of supercharges
of a four-dimensional theory.

Vector multiplets in AV = 2 theories contain gauge fields together with scalars
and fermions. We will restrict ourselves to abelian vector fields, in which case
one can take linear combinations of vector fields. By supersymmetry this im-
prints itself onto the scalars, leading to an affine structure and a scalar geom-
etry which is ‘special.” In four dimensions, where vector fields can couple to
both electric and magnetic charges, linear transformations of vector fields and
electric-magnetic duality transformations combine to a symplectic group action
on the field strengths and their duals. By supersymmetry this imprints itself on
the scalars, which in four dimensional are complex-valued, and leads to a Kéhler
geometry with ‘special features.” While in rigid supersymmetry the number of
scalar fields and vector fields is balanced, the coupling to Poincaré supergravity
creates a mismatch, because the Poincaré supergravity multiplet contributes an
additional vector field, the graviphoton. An elegant way to handle this is to
employ the gauge equivalence between a theory of n vector multiplets coupled
to Poincaré supergravity and a theory of n+ 1 superconformal vector multiplets
coupled to conformal supergravity (the Weyl multiplet) and one additional aux-
iliary supermultiplet (which we will take to be a hypermultiplet). In the super-
conformal theory there now is a balance between n + 1 scalar fields and n + 1
vector fields. The superconformal symmetry gives the scalar geometry an addi-
tional conical structure. When recovering the Poincaré supergravity theory by
imposing gauge fixing conditions, one scalar is eliminated, which corresponds
to taking the superconformal quotient of the superconformal scalar manifold by
a group action. In this way the scalar geometry of vector multiplets coupled to

Poincaré supergravity can be understood as the projectivisation of the scalar



geometry of the associated superconformal theory.

We will refer to the scalar geometries of five- and four-dimensional vector
multiplets as special geometries. One characteristic feature of five- and four-
dimensional vector multiplets is that all couplings of the two-derivative La-
grangians are encoded in a single function, the Hesse potential. In particular,
the metric of the scalar manifolds of rigid vector multiplets are Hessian met-
rics, that is, the metric coefficients are the second derivatives of a real function,
when written in affine coordinates with respect to a flat torsion-free connection.
While the scalar metrics of local vector multiplets are not Hessian themselves,
they can still be expressed in terms of the Hesse potential of the associated
superconformal theory. In four dimensions, one can alternatively express the
couplings in terms of a holomorphic function, the prepotential. This is in fact
the pre-dominant point of view in the literature. In this review we will emphasize
the role of the Hesse potential because (i) this makes manifest the similarities
between five- and four-dimensional vector multiplets, (ii) the Hesse potential
of four-dimensional vector multiplets transforms covariantly under symplectic
transformations, while the prepotential does not. As a consequence, using the
Hesse potential has advantages in many applications. We will review Hessian
geometry and special real geometry in section 2] electric-magnetic duality in sec-
tion [d and special Kdhler geometry in section [f] Based on this we discuss
five-dimensional vector multiplets in section [3|and four-dimensional vector mul-
tiplets in section [6]

In Table [1] we list the acronyms and defining data of the types of special
geometries relevant for five- and four-dimensional vector multiplets. One recur-
rent theme is that for each type of special geometry there is an affine, a conical

and a projective version, which schematically are related like this:

+Homothety . Quotient ) )
Affine ———  Conical Z————— Projective (1)
Cone

This is meant to indicate that the conical type is a special form of the affine
type, which is characterized by the presence of a homothetic Killing vector field
satisfying certain compatibility conditions. The projective version is obtained
by taking the quotient of the conical version by a group action, which con-
tains the action generated by the homothetic Killing vector field. Conversely,
the conical type of the geometry is realized as a cone which has the projec-

tive geometry as its base. While the affine version corresponds to rigid vector



multiplets, the conical version corresponds to superconformal vector multiplets,
and the projective version corresponds to vector multiplets coupled to Poincaré
supergravity. The relation between conical and projective geometry reflects the
gauge equivalence between conformal supergravity and Poincaré supergravity.
Five- and four-dimensional vector multiplets realize a real and a complex ver-
sion of this scheme with group actions of R>? and of C* by real and by complex
scale transformations, respectively. If we include hypermultiplets, there is as
well a quaternionic version of this scheme. Hypermultiplets can be obtained
by reduction of four-dimensional vector multiplets to three dimensions, followed
by the dualization of the three-dimensional vector fields into scalars. Since hy-
permultiplets only contain scalars and fermions, their scalar geometry does not
change under dimensional reduction, and is of the same type in any dimension
where hypermultiplets can be defined. The upper limit is d = 6, which is the
largest dimension where a supersymmetry algebra with 8 real supercharges can
be constructed. The scalar geometries of hypermultiplets are quaternionic ge-
ometries, more precisely they are hyper-Kéhler for rigid hypermultiplets, hyper-
Kéhler cones (or, conical hyper-Kéhler) for superconformal hypermultiplets,
and quaternionic Kéhler (or, quaternion-Ké&hler) for hypermultiplets coupled to
Poincaré supergravity. While we will focus on vector multiplets in this review,
we will talk about hypermultiplets in the context of dimensional reduction, and
regard their scalar geometries as the quaternionic versions of special geometry.
The real, complex and quaternionic versions of special geometry are related
by dimensional reduction, which induce maps called the r-map and the c-map
between the scalar geometries. This is summarized in Table 2]

When discussing dimensional reduction in section [§] we also include dimen-
sional reduction over time. This allows to construct theories with Fuclidean
supersymmetry. For four-dimensional vector multiples and for hypermultiplets
the special geometry of the scalar manifold is modified, and now is of para-
complex and of para-quaternionic type, respectively.

In addition to reviewing the construction of bosonic Lagrangians and dis-
cussing the resulting scalar geometries, we present a number of important ap-
plications: static BPS black holes in four and in five space-time dimensions
in the presence of Weyl square interactions (sections |§| and ; deformed spe-
cial Kahler geometry and topological string theory (section ; F-functions for

point-particle Lagrangians (section , for the Born-Infeld-dilaton-axion system
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ASR = affine special real (M,g,V)

CASR = conical affine special real (M,g,V,¢&)

PSR = projective special real (M,3) ,M=M/R>°~=H 4 M
g=1yg

ASK = affine special Kéhler (M
CASR = conical affine special Kéahler | (M, J, g,V,&)
PSK = projective special Kahler (M

T™g=1q, H> M=H/UQ)
HES M

Table 1: This table summarizes the acronyms we use for the various special geometries. The
second column contains the essential geometrical data for each type of geometry. V indicates
a ‘special’ connection, which in particular is flat and torsion-free. ¢ indicates a homothetic
Killing vector field which gives the manifold locally the structure of a cone. A ‘bar’ indicates a
‘projectivized’ manifold which has been obtained by taking the orbits of a group action, which
always includes the homothetic Killing vector field £. As usual 7 and ¢ indicate projections
and immersions, respectively, and * a pull-back. We refer to the corresponding sections of
this review for precise definitions.

(section and for a particular STU-model (section . In all these applica-
tions, the Hesse potential plays an important role: the semi-classical entropy
of BPS black holes is obtained from the Hesse potential by Legendre transfor-
mation; the holomorphic anomaly equation of topological string theory is en-
coded in a Hessian structure; point-particle Lagrangians admit a reformulation
in terms of a Hesse potential; the Hesse potential approach to the STU-model
yields important information about the function F' that encodes the Wilsonian
Lagrangian of the model.

The topics and applications we chose to cover in this report are based on
research papers and review articles which we will be referring to in the various
sections comprising this report. The papers we chose to cite represent a small
subset of the many papers that have been published over the past decades on
the subject of special geometry at large. It would be impossible to refer to all
these papers, and hence we have opted to cite only those which we used to write
this report.

Finally, we have assembled extensive appendices on the mathematics and

physics background of the report, for the benefit of the reader.
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Quotient

Five-dimensional vector multiplets: ASR <24 CASR —— PSR

Cone
. . . conical Quotient

Four-dimensional vector multiplets: ASK —— CASK ——= PSK

Cone
J/ conical Quotient l

Hypermultiplets: HK —— HKC —— QK

Cone

Table 2: The real, complex and quaternionic versions of special geometry are related by
the r-map and c-map, which are induced by dimensional reduction. A ‘bar’ indicates the
supergravity version of either map. In the quaternionic case HKC stands for ‘hyper-Kéahler
cone,’” which is commonly used instead of ‘conical hyper-Kéhler’, or CHK, which would be in
line with the terminology we use for vector multiplets. QK stands for quaternionic K&hler.
Precise definitions are given in the respective sections of this review.

2. Hessian geometry and special real geometry

In this section we introduce Hessian geometry, focussing on the aspects that
are relevant for the special geometries of five- and four-dimensional vector mul-
tiplets. A comprehensive treatment of Hessian geometry can be found in [I].
Special emphasis is put on conical Hessian manifolds, that is Hessian manifolds
admitting a homothetic Killing vector field. Such manifolds can be ‘projec-
tivized’, that is the space of orbits of the homothetic Killing vector field carries
a Riemannian metric, which, while not being Hessian, is determined by the Hesse
potential of the conical Hessian manifold. Conical Hessian manifolds admit a
Hesse potential which is a homogeneous function. The special real geometry of
five-dimensional vector multiplets is obtained by restricting to Hesse potentials
which are homogeneous cubic polynomials. The material on conical Hessian and

special real geometry is partly based on [2| [3] [4 [5] [6] [7].

2.1. Hessian manifolds
In this subsection we provide the definition of a Hessian manifold, both in
terms of local coordinates, and coordinate-free.

Definition 1. Hessian manifolds and Hessian metrics in terms of coor-
dinates. A pseudo-Riemannimﬂ manifold (M, g) is called a Hessian manifold
if it admits local coordinates q, such that the metric coefficients are the Hessian
of a real function H, called the Hesse potential:

Gab = 8a8bH = 837bH = Hab . (2)

ISee for a review and for our conventions.
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Such metrics are called Hessian metrics.

The relation is not invariant under general coordinate transformations,
but only under affine transformations. The definition implies that the manifold
can be covered by special coordinate systems, related to each other by affine
transformations, such that holds in every coordinate patch. This is equiva-
lent to the existence of a flat, torsion-free connection V, for which the special
coordinates g% are affine coordinates. Equivalently, the differentials dg® define a
parallel coordinate frame, Vdq® = OE| The flat torsion-free connection V gives
M the structure of an affine manifold. By the Poincaré lemma, the integrability

condition

aagbc = abgac = OcGba (3)

is necessary and locally sufficient for the existence of a Hesse potential. Passing
to general coordinates, we see that the rank three tensor S = Vg must be totally
symmetric. We thus arrive at the following coordinate-free definition:

Definition 2. Hessian manifolds, Hessian metrics and Hessian struc-
tures. A Hessian manifold (M, g, V) is a pseudo-Riemannian manifold (M, g)
equipped with a flat, torsion-free connection V, such that the covariant rank

three tensor S = Vg is totally symmetric. The pair (g,V) defines a Hessian
structure on M, and the metric g is called a Hessian metric.

Locally, a Hessian metric takes the form g = VdH, where the Hesse potential
H is unique up to affine transformations. When using affine coordinates we can
write g = 02H, since the connection V acts by partial derivatives.

We note in passing that one example of a symmetric Hessian manifold which
is prominent in physics is anti-de Sitter space [§]. Applications of Hessian man-
ifolds to superconformal quantum mechanics have been discussed in [9] and
[10, 1T, 12]. Superconformal quantum mechanics on special Kéahler manifolds,
which as we will see later are in particular Hessian manifolds, has been discussed
in [13] [14].

2.2. The dual Hessian structure

Hessian structures always come in pairs. This will play an important role
later when we discuss electric-magnetic duality, special Kéhler geometry, and

black hole entropy functions.

2Frames and connections are reviewed in and
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Definition 3. Dual affine coordinates. If ¢* are V-affine coordinates for a
Hessian metric with Hesse potential H, then

Go := H, := 0, H (4)
are the associated dual affine coordinates.

Note that in general ¢, # Hapq. This reflects that ¢® and ¢, are functions
on M, and not the components of a vector field or differential form. The matrix

H® of metric coefficients with respect to the dual coordinates is determined by

g = Hapdg"dq®” = H**dqqadqs , (5)
which implies that the matrix H ab ig the inverse of the matrix Hyp.

Definition 4. Dual connection on a Hessian manifold. Let (M,g,V) be
a Hessian manifold with Levi-Civita connection D. Then

Vaua =2D -V, (6)
is called the dual connection to V.

Remark 1. Dual Hessian structures and the dual Hesse potential. The
dual connection is flat and torsion-free, and defines a second Hessian structure
on (M, g), called the dual Hessian structure. The V qua-affine coordinates are
the dual coordinates q, introduced above, and the dual Hesse potential Hqya) is
related to H by a Legendre transformation,

Hyyal = ana -H. (7)

The matrix of metric coefficients with respect to the dual Hessian structure is
the inverse matrix H of Hg:

o 82I{dual

H = 2 —dwa
0qa0qp

(8)
We refer to section 2.3 of [1] for more details on the dual Hessian structure.

2.3. Conical Hessian manifolds

We now consider the case where the Hesse potential is a homogeneous func-
tion. This is relevant for both five- and four-dimensional vector multiplet theo-
ries.

Definition 5. Homogeneous functions. A real function H is homogeneous
of degree n in the variables q¢* if

H(\%) = \"H(q%), \eR*. 9)

14



This is equivalent to the Euler relation
LeH =q¢*0,H=nH, (10)

where £ = ¢%0, is the so-called Fuler vector field with respect to the coordinates
q“, and where L¢ is the Lie derivativeﬂ The k-th derivative of a homogeneous
function of degree n is a homogeneous function of degree n — k. In local coor-

dinates, we have the following hierarchy of relations:

¢*Ho=nH, ¢“Hp=mn—1)Hy, ¢“Hupe=(n—2)Hpe,... (11)

Remark 2. Dual coordinates for homogeneous Hesse potentials. For a
Hesse potential which is homogeneous of degree n, the dual coordinates g, = H,
have weight n — 1, while the metric coefficients H,;, have weight n — 2, and the
dual metric coefficients H have weight 2 —n. The Legendre transform defining
the dual Hesse potential simplifies:

Hyyal = ana -H= (TL - ]-)H . (12)
In particular Hyua = —H for n = 0 and Hgua = H for n = 2.

Definition 6. Homogeneous tensor fields. A tensor field T is called ho-
mogeneous of degree n with respect to the action generated by a vector field & if
LT =nT . (13)

We will then also say that T has weight n. The case n = 0 corresponds to the
special case of an tnvariant tensor.

The Lie derivatives
Lg(aa) = —6(1 5 Lg(dqa) = dqa 5 (14)

show that derivatives 0, have weight —1, while differentials dg® have weight
1. Thus the components of a tensor T of type (p,q) and weight n have weight
n+p-—gq.

Example: Consider the case where the metric g has weight n with respect
to the Euler field €. Then

Leg =ng < (Leg)ab = ngab & Le(gar) = (1 — 2)gas - (15)

Here L¢(gay) = £°0cgap denotes the Lie derivative of the components of the

metric considered as functions. This is to be distinguished from (Lgg)er =

3See for a review and our conventions.
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£°V ¢gap, which denotes the components of the tensor L¢g. The weight n — 2 of

the tensor components g,; can be inferred from the following computation:

Leg = Le(9apdq®dq”) = Le(9ap)da®dg” + gapLe(dg)dg” + gapdq® Le(dg")
= (Le(gab) + 29ab)dqdg” = (Leg)apdq®dg” = ngapdg®dg” . (16)
Definition 7. Killing vector fields and homothetic Killing vector fields.
If the metric is a homogeneous tensor of weight n # 0 with respect to the action

generated by a vector field &, then & is called a homothetic Killing vector field
of weight n. If n =0, then £ is called a Killing vector field.

Example: Let g = 0?H be a Hessian metric with a Hesse potential that is
homogeneous of degree n. Then the Euler field £ is a homothetic Killing vector

field, and ¢ has weight n. This follows immediately from g = H,,dq%dq".

Remark 3. Hypersurface orthogonality of the Euler field. If £ is a
homothetic Killing vector field for a Hessian metric g, then £ is g-orthogonal to
the level surfaces H = ¢ of the Hesse potential.

In V-affine coordinates this is manifest, since the dual coordinates are the

components of a gradient:
(n—1)0,H = (n — 1)qa = gapq’ - (17)

Therefore the one-form £° = g,,q%dq® = g(£, -) dual to the Euler field ¢ is exact,
€ = (n—1)dH. A vector T is tangent to the hypersurface H = c¢ if and only
if it is annihilated by the one-form dH (equivalently, if it is orthogonal to the

gradient of H). Therefore the vector field £ is normal to the level surfaces of H:

0=(n—1)dH(T) =& (T) = g(£,T) . (18)

Note that the integrability condition d&® = 0 is a special case of the Frobenius
integrability condition for hypersurfaces, £ A d€” = O

Remark 4. The case n = 1 is to be discarded. Formula shows that
the case n = 1 is special. It corresponds to a linear Hesse potential for which
the metric is totally degenerate, H,, = 0. This case will be discarded in the
following, since we are only interested in non-degenerate metrics.

4Hypersurface orthogonality and the Frobenius theorem are reviewed in
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Remark 5. The case n = 0 needs to be treated separately. The case
n = 0, where ¢ is a genuine Killing vector field, is interesting, but needs to be
treated separately. In the following we will first consider the generic case n # 0
(with n # 1 understood), and then return to the case n = 0.

We would like to have a coordinate-free characterization of Hessian manifolds
which admit homogeneous Hesse potentials. As a first step, we consider pseudo-
Riemannian manifolds equipped with a homothetic Killing vector field which
is the Euler field with respect to an affine structure. At this point it is not
relevant whether the pseudo-Riemannian metric is Hessian or not. Since we
admit indefinite metrics, the Euler field might become null, g(£, &) = 0. We will
need to divide by the function g(¢, ) and therefore we require that & is nowhere
isotropic, that is g(&, &) # 0 on the whole manifold M. Thus £ is either globally
time-like or globally space-like.

Definition 8. n-conical pseudo-Riemannian manifolds. An n-conical
pseudo-Riemannian manifold (M, g, V, £) is a pseudo-Riemannian manifold (M, g)

equipped with a flat, torsion-free connection V and a mowhere isotropic vector
field &, such that

D¢ = %IdTM, Ve = Idray . (19)

Here D is the Levi-Civita connection of the metric g, and DE, V& are endo-
morphism of the tangent bundle TM of M, that is, tensor fields of type (1,1).
FEquivalently one can write

Dx€ = gx . Vxé=X, VX eX(M), (20)
where X(M) are the smooth vector fields on M.

The condition Vx& = X implies that £ is the Euler field with respect to
V-affine coordinates ¢®. Note that if this condition is dropped, we can change
the value of n by rescaling £. One could in particular choose n = 2, which leads
to the standard definition of a metric cone (or Riemannian cone). But since we
are ultimately interested in Hessian manifolds, we insist on the existence of an
affine structure, which prevents us from changing the value of n.

By decomposition of Dx§ = 5 X into its symmetric and anti-symmetric part
we see that this condition is equivalent to £ being a closed, hence hypersurface

orthogonal, and homothetic Killing vector field:

Leg=ng,
pe="T1ael T (21)

2 " = 0.
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In general local coordinates 2™ this reads

L mn:Dmn+Dnm:nmn7
Doty = B 5§ L T D D = )

Remark 6. Standard form of an n-conical metric. If (M,g) is an n-
conical pseudo-Riemannian manifold, then g can locally be written in the from

g=+r""2dr* 4+ r"h , (23)

where h is a pseudo-Riemannian metric on an immersed hypersurface ¢+ : H —
M. For n = 2 this is the local form of a metric cone (R>? x H, dr? + r2h) over
a pseudo-Riemannian manifold (#, h).

We now give a proof following [7], which generalizes the treatment of Riemannian
cones in [I5]. The vector field £ is hypersurface orthogonal and therefore locally
the gradient of a function H, &, = 0,, H. The level surfaces of H are orthogonal
to the integral lines of £. Combining this with the homothetic Killing equation

shows that H is a potential for the metric:
(Le@)mn = Dimn + Dnm = ngmn = Dm0y H = ggmn : (24)
Differentiating the nornﬂ g(&,€) of £ gives
0y (g™" O HOWH) = 2D, (g™ Oy H) O H = 2g™" D0, HOp H = nd,H , (25)
so that upon choosing a suitable integration constant,

We use H as a coordinate along the integral lines of &, and extend this to a
local coordinate system {H,z'} on M. For x' we choose coordinates on the
level surfaces of H, by picking any local coordinates on one level surfaces and
extending them to M by the requirement that points on different level surfaces
have the same coordinates z* if they lie on the same integral line of £&. Since the
level surfaces are orthogonal to the integral lines of £, the metric has a block
structure:

g=gupdH?+ gijd:cidxj . (27)

5Since we work with indefinite metrics, we use the term ‘norm’ for square-norm g(¢, ¢).
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Using that dH (£) = g(£,€) and dx?(€) = 0 we find gy = (nH) ™!, and thus

dH?

9= ¢ st | 0y 2

Introducing a new transverse coordinate r > 0 by r™ = £nH, this becomes
g=+r""2dr? + g;datda? , € =10, . (29)

Note that we have to allow a relative sign between r and H, because H can be
positive or negative, while r is positive. Using that Ledz® = 0, the homothetic

Killing equation L¢g = ng implies

(Leg)ij = rOrgi; = ngij - (30)

Thus the functions g;;(r,z) = g;;(r,z',...,2") are homogeneous of degree n in
p, and therefore

gij(r,z) = r"hiz(x) , (31)

where h;; = h;j(z) only depend on z', but not on r. Thus locally g takes the
form
g =2r""2dr® + r"h;;(z)dz"dx’ . (32)

This is the local standard form of a m-conical metric. For n = 2 this is the
metric on a pseudo-Riemannian cone, see
We observe that while our derivation is not valid for n = 0, the formula we

have obtained still makes sense, since

dr? P

T
is a product metric on R>% x #, with isometric action of £ = rd, by dilatation.
Introducing a new radial coordinate p by dp = %, this becomes the standard

product metric
g = +dp® + h;;dz’da? (34)

on R x H, where the isometric action of £ = J, is now by translation. The
product form of the metric does not follow automatically from the n-conical
conditions with n = 0, which imply L¢g = 0 and d¢” = 0. But if we impose
in addition that £ has constant norm, g(&,£) = ¢ # 0, where we used that ¢ is
nowhere isotropic, we can show that g is a product metric, as follows. We choose

a coordinate p by setting & = 1/|c|0, and extend this to a local coordinate system
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on M by choosing coordinates x* on the hypersurfaces p = const. orthogonal to

the integral lines of £. In this coordinate system
9= 9ppdp” + gij(p, x)da'da’ . (35)

Since g(&,&) = gpplc| = ¢ it follows that g,, = +1, depending on whether ¢ is
time-like or space-like. Since by construction Ledz’ = 0, the Killing equation

L¢g = 0 implies that g;; is independent of p:
(ng)ij = 8pgij =0. (36)

We can therefore interpret g;; as a metric h;; on any of the hypersurfaces p =
const. Thus we have shown that g locally takes the form (A.90)

g = +dp* + hijdxida’ = idr—f + hijdz'da’ | (37)
of a product metric.

Relation to affine coordinates. The standard coordinates (r,2%) on an
n-conical Riemannian manifold can be related to a V-affine coordinate ¢* by
setting

(a*) = (¢",¢') = (r,ra’) . (38)

The Jacobian of this transformation is

Dq) _ | & dwp | _[ 1 0 , (39)
D(r,z7) ag;f’i . %7;1; " atorol
and therefore P 90" 9 P
5:T<97~:T(<9(1r 8q“>:qa3q“ ' o

The coordinates ¢® have weight 1, the derivatives 0, have weight —1, and the
metric coefficients g, are homogeneous functions of degree (n — 2) in ¢*. We
remark that the coordinates ¢® can be viewed as homogeneous coordinates (also
called projective coordinates) for the hypersurfaces r = const., for which x* are
inhomogeneous coordinates.

So far we have not required that the pseudo-Riemannian metric g is Hessian.
By adding this requirement we arrive at the following definition:
Definition 9. n-conical Hessian manifolds. An n-conical Hessian manifold

(M, g,V,&) is an n-conical pseudo-Riemannian (M,g,V,&) manifold which is
Hessian, that is, Vg is totally symmetric.
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Remark 7. n-conical Hessian manifolds admit a Hesse potential which
is homogeneous of degree n. If (M, g, V, §) is an n-conical Hessian manifold
with local affine coordinates ¢%, then the function

1 b
- 41
n =) ¢ 9ab (41)

which is homogeneous of degree n, is a Hesse potential for g.

The function H is manifestly homogeneous of degree n. By differentiating
twice and using the homogeneity relations for gup, we obtain Hgyp, =
0a0pH = gap, which shows that H is indeed a Hesse potential for g,,. We remark
that does not apply to the degenerate case n = 1, which we discard, and

to the interesting case n = 0, which we will consider separately below.

Definition 10. Conical affine coordinates. Let (M,g,V,&) be an n-conical
Hessian manifold. Then V-affine coordinates q* are called conical V-affine co-
ordinates if the Hesse potential is homogeneous of degree n in q®.

The homogeneity of H is only preserved under linear transformations, but
not under translations. Therefore conical V-affine coordinates are unique up
to linear coordinate changes. In the following it is understood that V-affine

coordinates on a conical Hessian manifold are always chosen to be conical.

0-conical Hessian manifolds
We now turn to the special case n = 0, where the Euler field £ acts isometri-
cally on the Hessian metric g. Metrics of this type can be constructed by taking

Hesse potentials of the form
H = alog(bH) , (42)

where a, b are real constants, and where H is a homogeneous function of degree
n > 1E| We will see later that certain constructions involving vector multiplets
(superconformal quotients and dimensional reduction) naturally involve replac-
ing a homogeneous Hesse potential by its logarithm. The constants a,b have
been introduced so that we can match our results with various conventions used
in the physics literature.

Note that the Hesse potential H is not a homogeneous function, since it

transforms with a shift under ¢ — A¢®. However, its k-th derivatives are

SExcept where the determination of signatures is concerned, we only use n # 0, n # 1 in
the following. For physics applications we will need the cases n =2 and n = 3.
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homogeneous functions of degree —k for any k > 1. The tensor § = H,pdq"dq"
is homogeneous of degree zero, and defines a O-conical Hessian metric. The first

derivatives
H,

H

of H are homogeneous of degree —1. They define the coordinate system dual

[ja = Era = aaf{ =a (43)

to the affine coordinates ¢® with respect to the Hesse potential H. The overall
sign of H does not have any effect on expressions which involve derivatives of
H only, since these expressions are invariant under H — —H. In particular,
the Hessian metrics Hoy = 0, ,H and —Hgp, = 0, ,(—H) give rise to the same
Hessian metric Hyy, if we ‘take the log of the Hesse potential.’

Explicitly, the metric coefficients associated with the Hesse potential H are:

HH,, — H,H,
H? '
The following relations implied by the homogeneity of H are useful:

Hay=02,H=a (44)

¢°qa = ¢“H, =nH , Hy¢® = (n—1)qq, , ¢“¢"Hy, = nin—1)H | (45)

The dual affine coordinates g, with respect to H satisfy

I qa ~
Habqb = _aﬁ = —Ya - (46)

To compare the n-conical metric 2 H and the O-conical metric 92H, we evaluate
them on the Euler field &, which is orthogonal to the level surfaces of H and H,

and on a vector field T, which is tangent to the level surfaces.
e Components transversal to the foliation H..

9(5’5) = Habqaqb = n(n - 1)H ) (47)
(&6 = Huaq"¢"=—an. (48)

e
|

The g-norm G(&, ) of £ is constant on M, while the g-norm g(&, &) depends
on the leaf H..

e Mixed components. If T is tangent to H, = {H = c}, then
dH(T)=T"H, =T, =0. (49)
Therefore

g(T,€) = HyT " =T%, =0, §(T,€) = HyT " =0. (50)

22



e Tangential components:

HH 1T — T%qqpT? a , @
= —H,TT° = —g(T,T) . 1
e 7 Hab Hg( ) (51)

These component are proportional for constant H.

g(T,T)=na

Since the tangential components of both metrics are proportional for any fixed
leaf H., their pullbacks to the embedded hypersurfacesﬂ

te *He={qeM|H(qg)=c¢} > M (52)
are proportional:
ge = O%H = £Lj62}~1 . (53)
On the hypersurface H = H.—1:
gu = "0°H = ELW log H . (54)

By choosing a = 1 we can make the pullbacks equal. Note that the transver-
sal components of both metrics are different. In particular both metrics have

different signatures. On a leaf H. we have

ag(T,T) = cg(T,T) , (55)

9(&,€) =n(n—1)c, §(& &) = Hapdg"dg" = —na . (56)
Thus if g and g have the same signature on tangent vectors, ac > 0, then they
have different signature in the transverse direction[]
Remark 8. The dual Hessian structure and dual Hesse potential for a

Hessian manifold with logarithmic Hesse potential. The Hesse potential
Hgya dual to H is defined by

_ 6-Hdual

ﬁab — —cual
04a0qp

(57)

where Heab is_the inverse of Hgy,. By a straightforward computation one finds
Hywa = —H E| This is consistent with , which, however, cannot be applied
directly, because H is not a homogeneous function of degree zero.

"Immersions and embeddings are review in Since we are interested in comparing
local expressions for various tensor fields, there is no loss of generality in assuming that the
hypersurfaces Hgc are embedded.

8Here we use the assumption n > 1, which applies for the application to vector multiplets,
where n = 2 or n = 3. Otherwise all expressions in this section are valid for n # 0, n # 1.

9We remark that in the physics literature, i.p. in [16], the dual Hesse potential was defined
without minus sign. Here we use the definition given in [IJ.
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2.4. Projectivization of conical Hessian manifolds

The relation between the manifolds (M, gar) and (H, g3;) can be interpreted
as a quotient, and (H, gy ) can be viewed as the projectivization of the conical
manifold (M, gar), with respect to the homothetic action of €. This construction
is related to the so-called superconformal quotients in the physics literature.
In particular the real superconformal quotient relating the scalar geometry of
five-dimensional superconformal vector multiplets to the geometry of vector
multiplets coupled to Poincaré supergravity is a special case of the quotient
relating (M, gar) and (H, g3).

If (M,gn,V,€) is a conical Hessian manifold we can consider the space of
orbits M = M/(¢) = M/R>? of the action of ¢ on M. We will assume that
this quotient is well-behaved, so that M is a smooth manifold. To induce a
metric gy; on the quotient, we need a symmetric, second rank co-tensor g3, on
M which is projectable, that is, invariant under the action of &, L¢gy, = 0 and
transversal to the action of &, ¢3,(§,-) = 0. The second condition implies that
g* is not a metric on M, because it has a kernel which contains £. In order that
it projects to a metric g;; on M, the kernel of g}, must be one-dimensional,
that is, it is spanned by £. Since the hypersurfaces H, are transversal to £, any
of them can be used as a a set of representatives for the orbit space M/(€), that
is M = H.. We can view M as a real line bundle, 7 : M — M over M = H,

and the invariant tensor g3, is equal to the pull-back of g; = gy to M:

9 =T =T gn - (58)

The conical metric gp; is neither invariant nor transversal with respect to
the action of &, but there is a natural way to construct a projectable tensor g3,
out of gps using the conical Hessian structure. Moreover, the induced metric gy
agrees, up to conventional normalization, with the pull-back g3 of the conical
metric gy; to H. Since gps transforms with a different weight n under £, we
can obtain an invariant tensor by multiplication with the appropriate power of
H. In fact, we have seen that taking the logarithm of a homogeneous Hesse
potential automatically associates a 0-conical Hessian metric to an n-conical
one. To obtain a projectable tensor, it remains to add an &-invariant symmetric
rank two co-tensor such that the resulting tensor becomes transversal to . For

this it is helpful to consider the one-form

dlog H = H 'H,dq" (59)
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which vanishes on tangent vectors T to the surfaces H = ¢, while being constant

along integral lines of &:
dlog H(T) =0, dlogH(¢)=H 'H,q" =n. (60)

By taking linear combinations between the 0-conical Hessian metric and the

square of this one form, we obtain a family of £-invariant symmetric rank two

co-tensors:
a HHa - HaH —
g\ = a$ dq°dq® = a (H Hyydg®dq® — a(dlog H)?) . (61)

Note that only o = 1 corresponds to a Hessian metric. Now we look for a critical

value a* of o where g](\f;) becomes transversal to &:

0 = %) =aH 2 (HHu — aH,H,) ¢"dq’ = aH *HH, ((1 — a)n — 1) dg’
n—1

= = = x . 62
o - o (62)

Note that as a function of a the norm g(§,&) of £ changes sign at a = o*.

Therefore gg\;) changes signature when crossing the critical value where it de-
generates.

Thus we have identified the projectable tensor
[eY _ a n—1
dis = ol = (- Hadea = Lo r?) ()

which defines a non-degenerate metric g;; on the quotient space M = M/R>0.
Since the hypersurfaces H. are transversal to the integral lines of £, we can
pick any such hypersurface to represent the quotient space. On tangent vectors
T,S to H, gj; agrees, up to a constant factor, with gps, and therefore with the

pull-back of g to H:
g (T,8)e=1 = aH ;TS = agr (T, X)e=1 = agy (T, X) . (64)

We remark that this construction can be viewed as a real analogue of the con-
struction of the Fubini-Study metric on complex projective spaces, which itself
is a special case of the complex version of the superconformal quotient (see for
example [I7]).

Finally we remark that the family gg\?) of &-invariant tensors can be gener-
alized to families of symmetric tensors with given weight k under £. If H has

weight n then metrics of the form

g(k,al,az) — g/ (algjw + as(dlog H)Q) . (65)
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have weight k. This parametrization uses three building blocks: the projectable
invariant tensor g3, the quadratic differential (dlog H)? which vanishes on tan-
gent vectors of the foliation H., and the Hesse potential which determines the
weight. By varying «; and s, the signature can be changed. All symmetric

second rank co-tensors we need are included in this family.

2.5. Special real geometry
2.5.1. Affine special real manifolds as Hessian manifolds

We are now in position to define the scalar geometries five-dimensional vector
multiplets. As we will see in section the geometry of rigid five-dimensional
vector multiplets is Hessian, and the scalar fields, which are the lowest com-
ponents of vector multiplets, are ‘special coordinates’ on the scalar manifoldH
Here special coordinates means affine coordinates with respect to the flat (or
‘special’) connection defining the Hessian structure. Supersymmetry imposes
an additional condition because it implies the presence of a Chern-Simons term
in the Lagrangian, whose gauge invariance (up to surface terms) restricts the
Hesse potential to be a cubic polynomial. This leads to the following definition:
Definition 11. Affine special real manifolds (ASR manifolds). An affine

special real manifold (M, gar, V) is a Hessian manifold with a Hesse potential
that is a cubic polynomial in V-affine coordinates.

We note that this definition is independent of the choice of special coordi-
nates, since affine transformations preserve the degree of a polynomial. The
V-affine coordinates of an ASR manifold are called special real coordinates, or
special coordinates for short.

We can also define a conical version of affine special real geometry, which
turns out to be the geometry of five-dimensional rigid superconformal vector
multiplets, to be introduced in section [3.2}

Definition 12. Conical affine special real manifolds (CASR manifolds).
A conical affine special real manifold (M, gar, V, ) is a 3-conical Hessian man-

ifold whose Hesse potential is a homogeneous cubic polynomial in special coor-
dinates.

Finally, we can apply the quotient construction of section to a CASR

manifold. In this case we will refer to the quotient as the real superconformal

10More precisely the scalar fields are pullbacks from the scalar manifold to space-time of
coordinate maps for the scalar manifold. See

26



quotient, because the resulting quotient manifolds occur as scalar target spaces
for five-dimensional vector multiplet coupled to Poincaré supergravity, as we

will see in section [3:3] This motivates the following definition:

Definition 13. Projective special real manifold (PSR manifold). A pro-
jective special real manifold (M, gy;) is a pseudo-Riemannian manifold which
can be obtained as the real superconformal quotient of a conical affine special

real manifold (M, gy, V, €).
For later use we collect some formulae, which follow from those derived in
the previous sections by specializing to the case n = 3. On a CASR manifold
M we have the family
() HHab - aHaHb
=0T

of &-invariant symmetric rank 2 co-tensor fields. The following tensor fields are

dg*dg® = a (H " Hgadq"dg” — a(dlogbH)?)  (66)

relevant for five-dimensional vector multiplet theories:

e The CASR metric
gn = Hapdg®dq" . (67)

e The &-invariant metric
g5 = aH ™ Hyydq®dg" (68)
which is a conformally rescaled version of the CASR metric gy = Hgpdq®dgb.

e The O-conical Hessian metric

HHu, — H Hy |, ,
gj(vlj) = ad?loghH = aqu dq® . (69)
e The projectable tensor field
2
G = o(H Hadiead - 2o ) (70)

2
= a(H 'Ha — §H72HaHb)dqadqb ;
where we used that o, = % for n = 3. This tensor field projects to the
PSR metric g7 = gn.
We also note the norms of £ with respect to these metrics:

gm(&,6) =6H , ¢\P(&6) =6a, g¢i(6,6) =0, g0 €=-3a. (71)

As observed before, the signature of gg\?) changes at « = a,, =

[SMIN)
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2.5.2. Projective special real manifolds as centroaffine hypersurfaces

The original construction of five-dimensional vector multiplets coupled to
supergravity [I8] did not make use of the superconformal formalism. Instead
the Poincaré supergravity Lagrangian and on-shell supertransformations were
constructed directly. The resulting scalar manifold M was interpreted as a
cubic hypersurface in R™*!, with a metric determined by the homogeneous
cubic polynomial defining the embedding. We will not follow [18] in detail, but
instead review the construction of [2], which realizes M as a so-called centroaffine
hypersurface and allows to recover the local formulae of [I§].

We start with R™+! equipped with its standard flat connection 9. Note that
we do not introduce a metric on R™*! so that the construction is done within the
framework of affine differential geometry. The position vector field £ is defined
by &(p) = p for all p € R*TL. For linear coordinates h! on R"*! and ¢ is the
corresponding Euler field, & = h'0;.

Definition 14. PSR manifolds as centroaffine hypersurfaces. A PSR
manifold M is a connected immersed hypersurface

LM —H:={Y=1} cR"™ (72)
where the homogeneous cubic polynomial
V= Cryxh'h/n® (73)
s assumed to be non-singular in a neighbourhood
U=U.={V=cl-e<c<1l+e} CcR" (74)
of the hypersurface H for some € > 0.

We will assume that M is an embedded submanifold, so that we can identify
M and H. Let us verify that we can recover the alternative Definition
For a homogeneous cubic polynomial, the position vector field £ is everywhere
transversal to H. This allows to define a metric g3 and a torsion-free connection
V on H by decomposing the connection 0, acting on tangent vectors X,Y €

T,H, p € H, into a tangent and a transversal component:
2
BXY:VXY+§QH(X,Y)§. (75)

The factor % is conventional. This construction is a special case of the construc-
tion of a centroaffine hypersurface, see for more details.
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It is useful to introduce the totally symmetric trilinear from
C = Cryxdhtdh’dn® . (76)

By contracting with the position vector £ we obtain the following tensors:

1. The function
C(p,p,p) = Cryxh'h’h% =V | (77)

which defines the embedding.
2. The one-form

1
C(p,p,-) = Cryxh'h’dh® = 3V, (78)

which is proportional to the differential of V, and which therefore vanishes
precisely on tangent vectors of H.

3. The symmetric two-form
1
C(p,-,-) = Cryxhldh’an® = 504V, (79)

which is proportional to the Hessian of the function V. If this two-form is

non-degenerate, it defines a Hessian metric on U C R**!.

Since U is equipped with a 3-conical Hessian metric, we can identify it with the
CASR manifold M of the previous section.

One defines the conjugate or dual coordinates
h] = CIJKthK 5 (80)

so that V = hyh!, dV = 3h;dh!. The dual coordinates h; are, up to a numerical
factor, the dual affine coordinates of the Hessian structure defined by C(p,-,-).

We claim that g4 is proportional to the pullback of the Hessian metric 0dV
to H:

GH(X.Y)y = —30(p. X.Y) =~ By V) (s1)
for all tangent vectors X,Y = T,’H. To show this we extend the tangent vector
fields X,Y to a neighbourhood U = U, of H C R"*! such that X(V) =
Y (V) = 0. In other words the extended vector fields X,Y are tangent to the
local foliation of R™*! by hypersurfaces H. = {V = c¢}. The Hessian of the
function V il

ByV=X{Y (V) - 0OxY)V) = XYV, (82)

11'We refer to for the definition of higher covariant derivatives with respect to vector
fields, and the definition of the Hessian of a function with respect to a general linear connection.
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so that on tangent vector fields of H.:
(0% yV)p = (=0xY)(V)p = =3C(p,p,0xY) , pEH . (83)
In the second step we used the formula
ZW), = Z 01 (Cryh"n/ %) = 32LCpych’BS = 3C(p,p, Z) . (84)
Using we obtain

(ag(,YV)p = 736(pap7 VXY> - QQH(Xv Y)C(papap) = 729H(X7 Y) ) (85)

where we used that C(p, p, -) vanishes on tangent vector of H, and that C(p, p, p)
1 for p € H. Thus gy agrees with f%adv = —3C(p,-,-) on tangent vectors,
and we can therefore extend gy to a Hessian metric g = —%8dV with Hesse
potential —%V in a neighbourhood U, of H. The metric g = hrsydh!dh’ is the
3-conical ASR metric denoted gjs, which occurred previously in the supercon-

formal quotient construction. In local coordinates
1
hry = —ia%Jv = —3Crh . (86)

The torsion-free connection V is not the Levi-Civita connection D of the metric
g = t*g. The connections V and D can be related using a tensor S, which is

defined in terms of the trilinear form C-:

§(5xY.2) = SC(X.Y, 7). (57)

where X, Y, Z are vector fields tangent to H. Now we define a new connection

D by

D=V-8§. (88)

To show that D is the Levi-Civita connection of gz we must prove that D
is metric and torsion-free. The total symmetry of the trilinear form implies
SxY = Sy X, and since V is torsion-free, it follows that D is torsion-free. It

remains to show D is metric, that is

(Dxg)(Y,2) = Xg(Y,Z) — g(DxY,Z) —g(Y,Dx Z) =0, (89)

12Note that compared to [2] the symbols D and V have been exchanged.
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where X,Y,Z are tangent to H. We extend X,Y,Z to U = U, such that
X(V)=Y(V)=Z(V) =0. Substituting in D = V — S and using (75)), together
with the fact that £ is g-orthogonal to tangent vectors, we find

(Dxg)(Y,Z) = Xg(Y,Z)—g(0xY,Z) —g(Y,0xZ) + g(SxY, Z) + g(Y,Sx 2Z)
= (Ox9)(Y,2) +3C(X,Y, Z), (90)

where we used the relation between the difference tensor S and the trilinear

form C in the second step. Now we use that g is Hessian:
1
(Ox9)(Y, Z) = —iai,y,zV =-3C(X,Y,Z) . (91)

and therefore (Dxg)(Y,Z) = 0, as required to show that D is the Levi-Civita
connection of gy. We remark that the metric g;; = gy defined on the hyper-
surface M = H is not a Hessian metric. Moreover, the connections V and D do

not define flat connections on H.

2.6. Conical and projective special real geometry in local coordinates

In this section we derive explicit expressions for various quantities in terms
of local coordinates on the CASR manifold M and on the PSR manifold M = H.
Since we are interested in local expressions we assume that H is embedded into
M, rather than only immersed, and take M to be foliated by hypersurfaces
H.. We will relate the notation and convention used in the previous sections to
those of [I8], where the geometry of five-dimensional vector multiplets coupled
to Poincaré supergravity was derived originally.

As in section and in [I8] affine coordinates on M = U C R"*! are
denoted h!, I = 0,...,n, local coordinates on #H are denoted ¢, x = 1,...,n
and the Hesse potential is denoted V. In section [2:3] these quantities were
denoted ¢%, x' and H, respectively. On M we are using a second coordinate
system, which consists of a coordinate along the integral lines of the Euler field &,
together with coordinates on the level surfaces of the Hesse potential. Since the
Euler field is transversal to H, the CASR manifold M is foliated by hypersurfaces
H. = {V = ¢}. We can extend the coordinates ¢* to M by imposing that two
points p € H and p’ € H, have the same coordinates ¢* is they lie on the same
integral line of £. With regard to the transversal coordinate, the two natural

choices are p and r = e”, defined by

€=h'dy =08, =rd,. 92
P
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The differential ggi of the embedding
te i H 3" —hlcU (93)

allows to pull-back tensor components to .. Following [18] we define the

hl = —\/gal.hf . hre = \/gaﬁhz (94)

for later convenience. Given the definitions

rescaled quantities

V= Crygh!h/hE | h; = Cryxh’hE (95)

for the Hesse potential and for the dual coordinatesﬂ we note the following
relations:

W'hy=V=nhlh;=0=hn"hg, . (96)
The second relation follows because derivatives J, are taken along hypersurfaces
H.. Note that here and in the following some of our relations will differ from
those found in [I8] by factors of V. The reason is that the relations given in [18]
are valid on H, that is for V = 1, whereas we extend these relations to all of M.

We now specify the relevant rank two symmetric tensor fields on M.

e The CASR metric on M is
1 1
g = —5821) = hyydhtdh? | hp; = —ia?Jv = —3Crxh® . (97)

Compared to section this corresponds to the choice H = —%V while

identifying the coordinates h! with the coordinates ¢®.

e The O-conical metric on M is

1
g = — g logV = arsdh’dh’ (98)
1 —2C1 kh 5V + 3hih
arg = —=07;logV = 7K 5 LAy (99)
3" 1%
Compared to section this corresponds to the choices a = —% and

b= —%. We note that with this convention £ has unit norm, gj(\}) &8 =1,
while on tangent vectors 7', .S we find gj(\}) (T,5) = %gM (T, S).

13Remember that the hy then differ from the standard dual coordinates of Hessian geometry
by a factor.
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e The projectable tensor on M is

_ K
gy = 217 Khvf 20k gt ap (100)
sinee 2CT 5 hThSV + 20T hyh
Gh(6) = =3 AR (101)
Note that o
% g
o\ =gi + S dn'dn’ (102)

is the product decomposition of the 0-conical metric into the projectable

tensor and the square of a one-form dual to the Euler field &.

e The PSR metric g3 is the pullback of the CASR metric gps to H, but
differs by a factor % from the pullback of the 0-conical metric gj(\;), which
makes the definition convenient:

Yoy = h1s0:h' 0407 = apshlh;) . (103)

We would also like to give expressions for the horizontal lifts of tensors from H,

or more generally from H,, to M. For this it is useful to note that
hi =Varsh’ , by =Varshyl , high, = Varshih) = Vg, . (104)

We also define
W =g"hry, B =g"h, . (105)

Then the quantities h7 can be used to lift tensors from H to M, and to convert
tensors from coordinates (p, %) to coordinates h!. For example, the components

of the horizontal lift of g, to M are

31 3 —2C’1JKhKV+2h1hJ) (106)

vy _ 3 .
iﬁgsﬁyhlh% = 591J = D) ( V2

To verify this we evaluate the tensor on the left hand side on the coordinate

frame

E=h'or=0,, 0,=0,h"0r. (107)

Firstly, g;]h‘] =0, so that £ is in the kernel. On tangent vectors we find

3 1
<2ngyh”;h%f,> duhlo,h’ = Wgzyh?hihihg = Guv (108)

as required.
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Similarly, the O-conical metric ay; can be decomposed into a term propor-

tional to the horizontal lift of g,, and an orthogonal complement:

_ gwyh%hg + hIhJ

2 (109)

arJg

This can again be verified by evaluation on the coordinate frame 0,,0,. We
find

hih'hsh’
a]Jh[hJ = % =1= 95\}1)(5’5) (110)
and 5 9
a]JauhlavhJ = ?Wgzyh?h%hihi{ - gguv = gj(\;)(amav) ) (111)

while ayshfh! =0 = gj(\}[) (£,0,) = 0, thus verifying that 1) are the coeffi-

cients of the 0-conical metric gg\}). To convert these coefficients from the linear

coordinates h! to the coordinates (p, $*), we compute
2
arjdhldh’ = V‘zgxyh?hzghihi d¢tde¢¥ +V~2hrhshih’dp?

2
= 30myde"de’ +dp® . (112)

Here we have substituted in a;; and used that h’fhl = 0 to simplify the first

term. In the second step we used
E=h'or=09,=& =dp=V"hidh’. (113)

Next, we express the connections D and V in local coordinates ¢* on H,
following [2]. Let X be a vector field tangent to H. Then

X =X"0r=X"0, = X' = X"0,h’ . (114)
Equation becomes
0. (YY0,h) = (V. YY)(9,h') + ggzthYy . (115)
Rewriting in local coordinates we obtain the relation
V.YY=D,YY+ gC’gZYZ (116)
between the connections D and V evaluated on tangent vectors X, Y, where

Cuyz = Cryrd:h' 0,h7 0,05 . (117)
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is the pullback of the trilinear form to H. Combining (115]) and ((116)) we obtain
2
0. (YY0,h!) = (D, YY)(9,h') + YYD, 0 h! = (V.YY)(9,h") + ggthYy

3 2
= YYD, 0,h' = (V,YY — D, YV)9,h! +hlg,, V¥ = 5cg;yyyazhf + ghlgszy

3 2
= Di0yh' = SCF,0:h" + ghfgmy : (118)
The corresponding formula (2.16) in [18] is
I 2 I z 1.1 I 2 I 2 z I
Dahy = —\/3 (goyh’ + T2 hL) & Do h' = S9eh| —\[3T5,0:0" . (119)
Matching with our formula requires
3 2 3\%/?
5 Cny= = \/; vy = Toys = — (2> Crir0:h'0,h”" 0,0 . (120)

The constant tensor Crjx on M can be decomposed as
5 1
212 V2
To verify this decomposition we contract Cjx with the vectors of the frame

E=h1or = 0, and 0, = O.h10;.

3
Crix = hihyhy + §G(IJhK) + 5 Toy-hihh . (121)

e Contraction with three tangent vectors gives precisely the pullback of
Crix to H,

CIJKathathath = Cwyz = C(awa aya 82) . (122)

e Contracting once with the Euler field £ we obtain the two-form C(¢, -, ")
with components Cryxh® on the left hand side. When applying the same
contraction on the right hand side the third term does not contribute, and

the contributions from the first and second term combine in Crjrh*.

We remark that the corresponding formula (2.12) of [18] is recovered for V = 1.
In [I8] one can also find expressions for the curvature tensors of the CASR metric

gy and of the PSR metric g3, but we will not need these for our applications.

3. Five-dimensional vector multiplets

8.1. Rigid vector multiplets

In this section we present rigid five-dimensional vector multiplets, focussing
on the bosonic part of the Lagrangian. We follow [19], where an off-shell real-

ization has been worked out, based on the work of [20] on the superconformal
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case. The components of a five-dimensional rigid off-shell vector multiplet are
(A X0, YY) (123)

where = 0,1,2,3,4 is the Lorentz index, and 4,5 = 1,2 is an internal in-
dex, transforming in the fundamental representation of the R-symmetry group

SU(2)g. R-symmetry indices i, j are raised and lowered using

0 1
(€ij) = (124)
-1 0

and ¢V := sijE A, is a vector field, A%, i = 1,2 is an SU(2)r doublet of
symplectic Majorana spinors, ¢ is a real scalar, and Y% = Y7 are auxiliary

fields, subject to the reality condition
(Y”)* = Ykléki&?lj = Yvij . (125)

Thus Y% has three independent real components. Taking into account the
reality conditions, a vector multiplet has 8 bosonic and 8 fermionic off-shell
degrees of freedom. These reduce to 4 + 4 on-shell degrees of freedom upon
imposing the equations of motion.

We consider an arbitrary number of vector multiplets, labelled by I =

1,...,n. The bosonic part of the Lagrangian worked out in [19] is
1 Iop J 1 I J pv I~/ J ij
L = hIJ 758.“0- 8 g — ZFHVF + }/Z]Y
1 v log
thJKﬂe” AT AT FLFR (126)

Here h;,hiy, hrjix denote derivatives of a function h of the scalar fields o,
hy=0rh, hiy=0f ;h, hijx =07 ;xh. (127)

Since the Chern-Simons term must be gauge invariant up to boundary terms,
hryx must be constant, which implies that A~ must be a cubic polynomial. The
special case where h is a quadratic polynomial corresponds to a free theory,

while lower degrees of h lead to degenerate kinetic terms and can be discarded.

! Note that (¢9) is minus the inverse of (g;;). This choice is consistent with the NW-SE
convention for the SU(2) g indices.
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Thus the scalar manifold of a theory of five-dimensional rigid vector multiplets
is an affine special real manifold, as defined in section [2.5] see Definition
We remark that compared to [I9] we have changed the definition of the
e-tensor by a sign, but we have kept the relation v, p0r = +i€u1por1, Which
determines the sign of the Chern-Simons term, by simultaneously changing the
representation of the Clifford algebra. We refer to [2I] for a systematic discus-
sion of the relative factors and signs between the terms in the supersymmetry
variations and in the Lagrangians of five-dimensional vector multiplets. Note
that in [21], the same convention epja35 = 1 for the e-tensor was used as in this
review, but in combination with a different sign in the relation between v, 50+
and the e-tensor (that is, Vuvpor = —i€upor1) this resulted in a Chern-Simon
term with opposite sign compared to ((126). The choices made in this review

are more convenient for matching with the supergravity literature.

8.2. Rigid superconformal vector multiplets

We next specialize to the case where the vector multiplet theory is super-
conformal, following [20]. Superconformal invariance implies the Hesse potential
must be a homogeneous cubic polynomial, which makes the scalar manifold a
conical affine special real manifold in the sense of Definition For later con-

venience we choose the Hesse potential
h= —%C]JKO'IO'JO'K , (128)
where C7j are constants. Then
hiy = -3Crko™ . hijx =-3Crik (129)
and the rigid superconformal vector multiplet Lagrangian is:
k(1o prw |1 Iap, J Iy Jij
L = 3Cuko <4FWF Wy 000~ VY J)
+ée“"p"*CUKA£Fl;]pF£ , (130)
where we omitted all fermionic terms.

8.8. Superconformal matter multiplets coupled to superconformal gravity

We will follow the superconformal approach to construct a theory of n vec-

tor multiplets coupled to Poincaré supergravity. A comprehensive review of
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the superconformal approach can be found in the textbook [22], and the ele-
ments relevant for this review have been collected in The superconformal
approach is based on the observation that a theory of n vector multiplets and
ng hypermultiplets coupled to Poincaré supergravity is gauge equivalent to a
theory of n + 1 superconformal vector multiplets and ng + 1 superconformal
hypermultiplets coupled to conformal supergravity. Gauge equivalence means
that the Poincaré supergravity theory is obtained from the superconformal the-
ory by gauge fixing those superconformal symmetries that do not belong to the
Poincaré supersymmetry algebra. Conversely, a Poincaré supergravity theory
can be extended to a superconformal theory by adding one vector and one hy-
permultiplet which act as superconformal compensators. That is, the additional

symmetries are introduced by adding new degrees of freedom.

8.8.1. Coupling of vector multiplets

The bosonic Lagrangian for a rigid superconformal vector multiplet theory
was given in . Since we need to start with n + 1 superconformal vector
multiplets we change the range of the indices I,J,...to I,J =0,1,...,n. The
next step is to promote the superconformal symmetry to a local symmetry,
and to add at least one hypermultiplet. Gauging the superconformal symmetry
involves replacing partial derivatives by superconformal covariant derivatives,
which contain the superconformal connections, or, in physics terminology, the
superconformal gauge fields. The superconformal gauge fields belong to the so-
called Weyl multiplet, together with certain auxiliary fields. We refer to for
an overview. Our presentation will follow [23], but we will only retain the con-
nections and auxiliary fields which are relevant for the bosonic vector multiplet
Lagrangian. The bosonic part of the locally superconformally invariant vector

multiplet Lagrangian can be brought to the form

Ly = 3Crko® [;DMUID”U‘] + iFJVF“”J — Y Y9 =30 F T
+é0, Jre e AL FE
+Cryxolo’ o (;R +4D + ?);TWT“”> . (131)
Here
DuUI = (Ou — bu)UI ) (132)
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where b, is the gauge field for dilatations. 7},, and D are auxiliary fields belong-
ing to the Weyl multiplet. In the so-called K-gauge, to be introduced below, R
becomes the Ricci scalar associated to the space-time metric g, with vielbein
ey, and vielbein determinant e. We refer to for details regarding the viel-
bein ad Ricci scalar. In we have adapted the Lagrangian of [23] to our
conventions. This changes the sign in front of the Ricci tensor and removes a

factor —i from the Chern-Simons term 5]

3.8.2. Coupling of hypermultiplets
The bosonic part of the locally superconformal hypermultiplet Lagrangian

is

1 ..
Ly = —ia”QQBDHA?A? +x <_136R +2D + iTwTW> . (133)
Here A, where a = 1,...,2ng + 2 and 4,j = 1,2 encode the 4ng + 4 scalar

degrees of freedom of the hypermultiplets. The quantity x is the so-called hyper-

Kadhler potential and satisfies
eijX = QapALAT . (134)

We refer to for explicit expressions for the covariant derivative D, A and
the quantity Q2,3. The scalar geometry of rigid hypermultiplets is hyper-Kéahler.
If superconformal symmetry is imposed the scalar multiplet is a hyper-Kéhler
cone, that is, it admits a holomorphic and homothetic action of the group H*
of invertible quaternions. The relevant concepts of hyper-Kéahler geometry are
briefly reviewed in

15Note that [23] use an imaginary totally antisymmetric tensor defined by €p1235 = i =
i€01235. Taking this into account the relation which determines the sign of the Chern-Simons
term is the same: Yuvpor = €pvporl = t€pvporl.
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3.3.3. Poincaré supergravity

Combining the bosonic vector multiplet and hypermultiplet Lagrangians, we

obtain:

1 1 -
L = 3Cpko” [QDHJI’D”UJ AL AR O S L i A

1
+§CIJK6_16MVpUTA;€FJpF£

1 3
+§R <C]JKO'IO'JO'K — 2)() + D (2)( + 4OIJKO'IO'JO'K)

3 39
+TabTab <4X + 2C[JK(TIO'JO'K>

1 ..
—551JQQBD,LA;?D#A§? . (135)

The auxiliary field Yé has the field equation Yé = 0 and can be eliminated
trivially. The algebraic field equation for the auxiliary field D can be used to
eliminate y:

X = —2Cpko'o’ o™ . (136)

Substituting this back into the Lagrangian, we obtain
L = 3CLxo™ |ID,0'Dro’ + 2FL prvd 35T F) v
= I1JKO 5 no o” + Z nv — 90 Ly

1
+§CIJK€71€“VPJTALFJPF£

1
+§RC[JKJIO'JO'K

+18TabTabC]JKO'IUJO'K

—%gianBDMA;?DNAf . (137)

In the next step we gauge-fix those superconformal transformations which are
not super-Poincaré transformations. Local dilatations are gauge-fixed by the
so-called D-gauge which imposes that the Einstein-Hilbert term acquires its
canonical form:

Crixolo?o® = k72, (138)
where k = 1/8mGy is the gravitational coupling constant and Gy is Newton’s
gravitational constant. This implies that y = —2x~2, which because of
removes one real scalar degree of freedom from the hypermultiplet sector. The
superconformal symmetries include an SU(2) symmetry which acts in the ad-

joint representation on the hypermultiplet scalars. Gauge fixing this symmetry
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removes another three real scalar degrees of freedom. If we consider only one
hypermultiplet at the superconformal level, i.e. ng = 0, then all bosonic hy-
permultiplet degrees of freedom are removed and we can drop the last line in
E Since we are interested in the vector multiplet Lagrangian, we will
assume this here. Note that since y # 0, consistency of the procedure requires
that at least one superconformal hypermultiplet is present. This hypermultiplet
is needed as a superconformal compensator.

For completeness we briefly mention what happens for ngy > 0. The gauge
fixing removes one hypermultiplet, leaving a theory with ngy hypermultiplets.
The resulting scalar manifold of dimension 4ng is a quaternion-Kéahler man-
ifold. It was shown in [24] that the scalar geometry of hypermultiplets cou-
pled to supergravity is quaternion-Kéahler. In the superconformal approach the
quaternion-Kéhler manifold arises as the superconformal quotient of a hyper-
Kéhler cone [25] 26], 27, 28]. We remark that the hypermultiplet Lagrangian
only couples gravitationally to the vector multiplet Lagrangian, and thus can
always be truncated out consistently. We now return to the case ny = 0.

The special superconformal transformations are gauge-fixed by the so-called
K-gauge, which eliminates the dilatation gauge field: b, = 0. This replaces
the covariant derivatives 'DMO'I by partial derivatives @pl . Then the bosonic

Lagrangian is
1 1
L = 3Cpko” (28M016”0J + P - 301F5VTW>

1 — vpoT
+§C]]K€ 16“[) A{LF;]ng_
18

1
to g Rt ST T (139)

Now we eliminate the auxiliary field 7},, using its algebraic equation of motion

2

T = %C’IJKUIUJFJ(V , (140)
resulting in
3 Ko Tap g, L 1 —1_pvpor 4T pJ K
L = EC]JKO' Ouo' oo’ + ﬁR‘F gC]JKe eMPITA FES
*g(*QCIJKUK +3:2Crapo?aP?CrecpoCcP)FL P . (141)

16 As required for consistency, gauge fixing fermionic superconformal symmetries removes
the fermionic partners of the four hypermultiplet scalars.

41



The scalar fields o/ and couplings C;;x are dimensionful. We define dimen-

sionless scalars h! and couplings C;x by

1
' = kol , Crjx = ECIJK . (142)
The scalars h! satisfy
Cryxh'h/nf =1. (143)
It is convenient to define
hr = Cryxh’hf . (144)

In these new variables the Lagrangian becomes
L = LRt crphfontorn’
22 or2 TIK "

3
-3 (=2Cryxh®™ + 3hihy) Fl,F/m

vptoT

—l—gC]JKe_lE’U‘VpUTAiFJ FE . (145)

We would like to verify that this Lagrangian, which has been obtained using the
superconformal approach, agrees with the bosonic part of the on-shell Poincaré
supergravity Lagrangian constructed in [18]. The scalars h! already have the

same normalization. Following [I8] we define
a[JZ: _2CIJKhK+3h[hJ R (146)

and note that
hy =ar; h' . (147)

To obtain the same normalization of the vector fields as in [I8] we define

. 3
I._ I
A, = \/gAu . (148)

We also note that the scalar fields h! are not independent, because they satisfy
the constraint (143). This implies that h;d,h! = 0. Using this, the bosonic

Lagrangian takes the form

1 3 o I g Lo~y =7
L == ﬁR - @ arj 8#h/ auh - Z arjy F/—“’F ®
K _ vpod A1 17J 17
to/5° 'Cryxe P NALE]FR (149)
Finally, we introduce independent scalars ¢*, x = 1,...,n by solving the con-

straint (143). The metric g,, for the target space of the scalars ¢” is obtained
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by re-writing the scalar term in the Lagrangian. The normalization chosen in
[18] is such that

1 3o 3 ° oh! on’
Top Y — 2 Ioppd  Gh By
29901; /L¢ oMY = 1 GJJ ch O 8(;5”0 a¢y qu) @Y . (150)
The resulting Lagrangian,
1 1 1o ~; =
L = THQR - ﬁgzya,u(ﬁajaugby oy FJVF‘]’“'
+7€ C]JKENVPUAAIFJ Fa'A 5 (151)

616

agrees with the corresponding terms in (2.7) of [I8] upon setting x = 1, and
taking into account a relative sign in the definition of the Riemann tensor. When
setting k = 1 we see that g,, is the PSR metric gy associated with the Hesse
potential V = Crjxh'h’h% and au the restriction of the corresponding 0-
conical metric g( ) = ayydhldh? to H = {V = 1}, with the same normalization
as in Sectlonm Note that for k = 1 we have h! = ¢! and Cryx = Crik.

The decomposition of ary can be used to rewrite the Maxwell terrrﬂ

1o 1
—5 FLFm = —ngyhmhyFI FIme _ ZhIhJFIfVF"‘“’ (152)

1 T v v
= 9T —f]-',w]-“

ng

where we have defined
Fuw =hiFL, . Fi, =hiFl, . (153)

The n field strengths F7, belong to vector fields A}, which are the superpartners
of the scalars ¢* under Poincaré supersymmetry. The additional field strength
F v belongs to a vector field which is part of the Poincaré supergravity multiplet.
In contrast, the F;U correspond to vector fields in the n+1 superconformal vector
multiplets. Thus the decomposition into components tangential and orthogonal
to H corresponds to mapping components of superconformal multiplets to the
corresponding Poincaré vector multiplets. In the superconformal description
there is a manifest linear action of the group GL(n + 1,R) on the field strength
F,, and an associated action of the affine group GL(n + 1,R) x R"*! on the

scalars h’. In the gauge-fixed description this is no longer manifest, because

1TWe set V = 1.
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there are only n independent scalars, but n + 1 vector fields. For this reason it
is often advantageous to work in the superconformal formulation of the theory.

We can now decide which signature we should choose for the CASR metric
defining the superconformal theory. In the Poincaré theory, a 17 and gy, must be
positive definite, in order that the vector and scalar fields have positive kinetic
energy. From the above decomposition of the Maxwell term it is clear that ary
is positive definite if and only if g, is positive definite. Using the relations
— between the metrics, we see that hy; must have Lorentz signature
with the time-like direction along the integral lines of the Euler field & E The
direction normal to H corresponds to the extra ‘compensating’ vector multiplet,

which shows that the kinetic term of the compensator has a flipped sign.

3.4. R2-terms in five dimensions

We briefly describe the coupling of vector multiplets to R2-interactions en-
coded in the square of the Weyl multiplet using the superconformal approach
[29, 23].

The bosonic part of the Lagrangian containing the higher-derivative cou-

plings reads, in the notation used in [ZS]E

Lre = Zerol Ry (M)Reg™ (M)
—3¢; (106" Ty — Fly) Rea®™ T + 3c10! T[DC, Dy The

—cr o' Rap (T™T%. — 30" TT ) + ..., (154)

where R, denotes the Ricci tensor (B.32)), and where we have only displayed
the terms that are relevant for computing Wald’s entropy of static BPS black
holes, see section @ We refer to [23] for the complete set of bosonic terms. The

cy denote arbitrary real constants.

Using (B.96) and (B.98)), we obtain
Rap' (M) = Ry = 3 (Rial = $R3,1) 6y (155)

which, in the K-gauge b, = 0, denotes the Weyl tensor in five dimensions.
For future reference, we collect the bosonic terms in the R?-corrected La-

grangian that are relevant for computing the entropy of static BPS black holes

18 As we have seen, the overall sign of the CASR, metric is not relevant.
19Note that our definition of the Riemann tensor differs from the one in [23] by an overall
minus sign.
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using Wald’s definition of black hole entropy (B.134]),

L = 3CpxoX [% D#O'IDMJJ + iFin“V‘] — SJIFI‘L],, T“V}
+é R (—% x+ Crik O'IO'JO'K)
+Tu T (3 x + % Cryx 0’0’ 0™)
+g7c1 0" Rap™ (M)Reg™ (M)
— 31 (100" Ty, — FL) Rea®™ T + 3c10" T°°[D, Dy The
—cr o’ Rap (T°°T. — in®TT,,) . (156)

4. Electric-magnetic duality

Electric-magnetic duality in four dimensions is a characteristic feature of
Maxwell’s equations in vacuum. It describes the invariance of the combined
system of equations of motion and Bianchi identities for the Maxwell gauge
field A, under rotations of the electric field into the magnetic field and vice-
versa. Electric-magnetic duality is also present in A/ = 2 supergravity theories
coupled to abelian N' = 2 vector multiplets in four dimensions [30, 3], and
continues to hold when allowing for the coupling to a chiral background n [32].
Theories of this type are based on holomorphic functions F(X, ), and electric-
magnetic duality is defined in terms of a symplectic vector constructed from
F(X,n). This will be reviewed in the following subsections.

Non-holomorphic functions F' are also of relevance and occur in various types
of models [33, [34]. We will discuss three applications thereof, namely to point-
particle Lagrangians that depend on coordinates and velocities, as well as on
parameters 7, in section below, to topological string theory in section [7] and
to the Born-Infeld-dilaton-axion system in section

We begin by reviewing the formulation of point-particle Lagrangians in terms
of a function F' given in below, following [33]. When passing over to the
Hamiltonian description, one obtains a description based on a real Hesse poten-
tial associated to F'. In this context, canonical transformations on phase space
play a similar role to electric-magnetic duality transformations in Maxwell-type
theories. Then we turn to electric-magnetic duality in Maxwell-type theories
at the two-derivative level which arise in the A/ = 2 supergravity context, and

subsequently we allow for the presence of a chiral background.
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4.1. Point-particle models and F'-functions

In the following, we will review [33] how general point-particle Lagrangians
(that depend on coordinates and velocities, as well as on real parameters n) can

be recast in terms of a function F' of the form
F(z,z,n) = FO(z) + 20 Q(x,z,7) , (157)

where Q is real. This is achieved with the help of a theorem that states that the
dynamics of these models can be reformulated in terms of a symplectic vector
(X,0F/8X) constructed out of a complex function F of the form (I57)), whose
real part comprises the canonical variables of the associated Hamiltonian.

Let us consider a point-particle model described by a Lagrangian L with n
coordinates ¢ and n velocities ¢?. The associated canonical momenta dL/d¢'
will be denoted by ;. The Hamiltonian H of the system, which follows from L

by Legendre transformation,

H(¢’ 7T) = ¢z T — L(¢a (b) ) (158)

depends on (¢¢, 7;), which are called canonical variables, since they satisfy the
canonical Poisson bracket relations. The variables (¢, ;) can be interpreted
as local coordinates on a symplectic manifold called the classical phase space
of the system. In these coordinates, the symplectic 2-form is dm; A d¢®. This

2-form is preserved under canonical transformations of (¢?, 7;) given by
(bi q;z Uij VA% ¢j
T @ Wi Vil | \m;
where U, V, Z and W denote n x n matrices that satisfy the relations
vtv-wrtz=vtv-ztw=1,
vtw=wtv , zZ"v=v'z. (160)

Thus, the transformation constitutes an element of Sp(2n,R). This trans-
formation leaves the Poisson brackets invariant. The Hamiltonian transforms as
a function under symplectic transformations, i.e. ﬁ(g;), 7) = H(¢, 7). When the
Hamiltonian is invariant under a subset of Sp(2n,R) transformations, this sub-
set describes a symmetry of the system. This invariance is often called duality

invariance.
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Now we give the theorem of [33] that states that the Lagrangian L(¢, )
can be reformulated in terms of a complex function F(x,Z) based on complex
variables 2%, such that the canonical coordinates (¢?, ;) coincide with (twice)
the real part of (x!, F};), where F; = OF (x,%)/0x".

Theorem 1. Point-particle Lagrangians and F-functions. Given a La-
grangian L(¢, ¢) depending on n coordinates (bi_ and n velocities ¢, with cor-
responding Hamiltonian H (¢, ) = ¢' m; — L(@, ¢), there exists a description in

terms of complex coordinates ' = £(¢" +i¢") and a complex function F(x,T),
such that,

2Rez’ = ¢,
2Re Fy(x,T) =7;, where F; = % (161)
The function F(x,Z) can be decomposed as
F(z,z) = FO(z) + 2 Q(z, 7), (162)

where Q is real. The decomposition (162)) may be subjected to the following
equivalence transformation,

FO 5 FO 4g@), Q- Q—Img(), (163)

which results in F(x,%) — F(z,%) + (), and which leaves (x%, F;) invariant.
The Lagrangian and Hamiltonian can then be expressed in terms of F(©) and Q
as,

L=4ImF -], (164)

H=—i(a"F;, —2'F;) —4Im[F — $2' ;] +4Q

= (&' B, -7 F) —4Im[FO — LA FO) — 220 - 2'Q, - #'Q;)

with F; = 8F/6xi,Fi(0) = 9F ) /9zt, Q; = 0Q/0x", and similarly for F;,F}(O)
and Q.

Furthermore, the 2n-vector (z*, F;) denotes a complexification of the phase
space coordinates (¢¢,m;) and transforms precisely as (¢, m;) under symplectic
transformations, i.e.

z! i Uiy 2 2
— = _ . (165)
FZ(I7J_J) Fz(i?,i‘) Wij ‘/ij Fj(l‘,f)

The equations are integrable: the symplectic transformation yields a new
function F(&,&) = FO(z) + 2i Q(Z, ), with Q real.

47



Proof. We refer to [33] for the proof of the theorem. We note the following
relations,

o= b i),
yi = %(Wiig;i)angT' (166)
m

We close this subsection with the following comments. Firstly, we note
that since both H and F(©) — % ' F Z-(O) transform as functions under symplectic

transformations, so does the following combination that appears in (164)),
20 —2'Q; — 7'Q; . (167)

Secondly, the transformation law of 2i$2; = F; — Fl-(o) under symplectic trans-
formations is determined by the transformation behaviour of F; and Fi(o), as
described above. The transformation law of 2i€2; = F;, on the other hand,

follows from the reality of (2,

G = (). (168)
Thirdly, as indicated in (157), the function F(z,Z) may, in general, depend on
a number of real parameters ) that are inert under symplectic transformations.
Without loss of generality, we may take 7 to be solely encoded in €2, and, upon
transformation, in (we can use the equivalence relation to achieve this).
As discussed below in subsection OpF = OF /0n transforms as a function

under symplectic transformations [35].

4.2. Homogeneous F(x,Z,n)

The theorem in subsection did not assume any homogeneity properties
for F'. Here we will focus on the case when F' is homogeneous of degree two
and discuss some of the consequences of homogeneity [33]. This is the case that
is relevant when coupling vector multiplets to supergravity. Moreover, it also
covers other interesting systems, such as the Born-Infeld dilaton-axion system
in an AdS, x S? background, as we will explain in section

Let us consider a function F(z,z,n) = F©)(z) 4 2iQ(z, Z,n) that depends

on a real parameter n, and let us discuss its behaviour under the scaling

x> Ar, np—= A"y (169)
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with A € R\{0}. We take F(©)(z) to be quadratic in z, so that F®) scales
as FO(\z) = A2 FO(z). This scaling behaviour can be extended to the full
function F' if we demand that the canonical pair (¢, 7) given in scales
uniformly as (¢, 7) — A (¢, 7). Then we have

F\z, AZ,A™ ) = X2 F(w,7,7) | (170)
which results in the homogeneity relation
2F =a2'F,+ 3" F,+mnF,, (171)

where F;, = 0F/0n. Inspection of (158) shows that the associated Hamiltonian

H scales with weight two as
H(X ¢ Am X" ) =\ H(¢,7,n) , (172)

so that H satisfies the homogeneity relation,

0H 0H 0H

2H=¢— — —. 173
¢a¢+”a7r+m”an (173)
Using (166)), this can be written as
R P m OH
H=i(z'F,—x Ff)+5na—n. (174)
Next, using that the dependence on 7 is solely contained in €2, we obtain
OH oL
g = — 2| = —4Q, 175
on |¢, on |¢,¢ Y] ( )
where Q, = 0Q/0n. Thus, we can express (L74) as
H=i(ZF—2'F)—2mnQ, . (176)

This relation is in accordance with upon substitution of the homogeneity
relations 2F () (z) = 2 ﬂ(o) and 2Q = 2Q; + 20 + mnQ, that follow from
(1171)).

The Hamiltonian transforms as a function under symplectic transformations.
Since the first term in transforms as a function, it follows that (2, also
transforms as a function. This is in accordance with the general result quoted
at the end of subsection which states that d,F transforms as a function.

In certain situations, such as in the study of BPS black holes in N/ = 2

supergravity theories [36], the discussion needs to be extended to a parameter

49



7 that is complex, so that now we consider a function F(z,z,,7) = F© (z) +
2i Q(x,Z,n,7) that scales as follows (with A € R\{0}),

FAz, A2, \™n, X" 7)) = N2 F(2,Z,1,7) . (177)

The extension to a complex 7 results in the presence of an additional term on

the right hand side of (171 and (173),

2F =2'F; + 2" F, +m(nF, +7Fy) ,

O0H O0H O0H _0H
and hence iy .
Rl m o o

H=i(z'F, xFl)—i-Q(?]an +778n>. (179)

Then, since the dependence on n and 7 is solely contained in 2, we obtain
H=i(z"F,—2'F) —2m(nQ, +71Q;) . (180)

This is in accordance with upon substitution of the homogeneity relations
2FO) (z) = a? FZ-(O) and 2Q = 2'Q; + 2% + m (nQ, + 79Q;) that follow from
(1178)).

The above extends straightforwardly to the case of multiple real or complex

parameters.

4.8. Duality covariant complex variables

The Hamiltonian is given in terms of complex fields z* and Z°. It may
also depend on parameters 7, in which case the transformation law of z* under
symplectic transformations (165) will depend on 7. It is therefore convenient
to introduce duality covariant complex variables t*, whose symplectic transfor-
mation law is independent of 7. These variables ensure that when expanding
the Hamiltonian in powers of 7, the resulting expansion coefficients transform
covariantly under symplectic transformations. This expansion can also be or-
ganized by employing a suitable covariant derivative. We review these aspects
following [33].

We take the Hamiltonian to depend on a single real parameter 7 that
is inert under symplectic transformations. The discussion can be extended to

the case of multiple real external parameters in a straightforward manner. We

50



define complex variables t* by [37],

2Ret! = ¢,
2Re F\V(t) =, . (181)

Then, the vector (¢, Fi(o)(t)) describes a complexification of (¢, ;) that trans-
forms as in (159) under symplectic transformations. This yields the transfor-
mation law
f=Ut+29F (1), (182)
which is independent of 1. The new variables ' are related to the z* by (c.f.
(T61))
2Ret'! =2Rez’

2Re F\V(t) =2Re Fi(x, 7, 1) . (183)
We may now view H either as a function of ¢ and #*, or as a function of z’ and
z". Differentiating H (¢, 7(z,Z,n),n) with respect to 1 yields

oH
(97Tk

on
(97Tk

oH
on

oH
on

om, _ OH
Rex 87] 877

(Fkn+FEn) s

T,T t,t Rex

[oXd
(184)

where F,, = 02F/0ndxz*, etc., and where on the right hand side we used ), =

2Re Fy(x,z,n). Next, we use the conversion formula

Olm z* oOH

Rew OTk T Jlmat

_ 0H
~ Jlmat

0H

on e

Rex

Rex

where N* denotes the inverse of

Ome__ ( 0 8) (Fi + Fy) = —i [Fix — Fy, — Fya + Fy;] = Nige -

~ Olm zt oxt 97
(186)
Note that Nik is a real symmetric matrix.,
7o |20 _ (0 ) Y o WY o Y
Ny = —i | Fy” — Fp +2(Qig + Qg — ez — Uz) - (187)
We obtain
8,7H|t’f = DnHLME , (188)
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where D,, is given by
Dy, =0y +i NV (Fyj + Fyy) (8; — 07) (189)

D,, acts as a covariant derivative for symplectic transformations. Applying
multiple covariant derivatives D,, on any symplectic function depending on z

and 7°, will again yield a symplectic function. For instance, consider applying

D), on H(¢,7(x,,n),7) given in (I64),
D, H(x, 1) = — 4 [af;sz — 2N 9, (Q — Q) B, (O — Qj)} . (190)

As discussed in section while 6;(2 does not transform as a function under
symplectic transformations, there exists a modification of it, given by (190)),

such that the modified expression transforms as a function.

4.4. Mazwell-type theories

Now we turn to Maxwell-type theories in four dimensions, namely, we con-
sider the Maxwell sector of N' = 2 supergravity theories coupled to abelian
N = 2 vector multiplets. Below we will use some of the ingredients that go into
the construction of these theories. We refer to section [6] for a detailed descrip-
tion of these theories. In the following, we review electric-magnetic duality in
these theories, first at the two-derivative level, and then in the presence of an

arbitrary chiral background field.

4.4.1. FElectric-magnetic duality at the two-derivative level

The Wilsonian effective action is a local action that describes the effective
dynamics at long distances [38]. The Wilsonian effective action describing the
coupling of n abelian ' = 2 vector supermultiplets to four-dimensional N = 2
supergravity at the two-derivative level is encoded in a holomorphic function
F(X), called the prepotential, which depends on n + 1 complex scalar fields
XT (I =0,1,...n) and which is a homogeneous function of degree two under

complex rescalings [31],
FOX)=MNF(X) , XeC\{o}, (191)

from which one infers the relations

2F = F X1,
Fy = Fr X7,
0 = FreX¥, (192)
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where Fr = OF/0X!, Fr; = 0°F/0X10X7 | Fryx = 0°F/0X10X/0X XK.

The resulting equations of motion for the abelian gauge fields Ai only in-
volve their field strengths ij. The combined system of equations of motion
and Bianchi identities for the abelian gauge fields are invariant under so-called
electric-magnetic duality transformations, which constitute symplectic Sp(2n +
2,R) transformations [31]. These transformations also induce Sp(2n + 2,R)
transformations of the symplectic vector (X7, F}), as follows [32].

Consider the following Lagrangian for Maxwell fields A{L,

L == (Fuy B/ P 4208, Fol — By /P =20,

—uvl
pvl F ) ’

(193)
where F ﬁff denote the (anti-)selfdual field strengths (c.f. (B.45))), and where
A

Lagrangian of this form arises when considering the part of the A" = 2 Wilsonian

we allow for a linear coupling of the field strengths F to tensors O, ;.

effective Lagrangian that describes the coupling of vector multiplets to N' = 2
supergravity at the two-derivative level, c.f. (430).
We define the dual field strength by

oL

Guir =vV—9€uwpe = - (194)
n T T
Decomposing it into (anti-)selfdual parts ny I
oL
+ .
G/.LVI =+2 aFigfjl y (195)
we obtain

Gh=FuFl+ot, G, =FuF, +0,,. (196)

The Bianchi identities and equations of motion for the abelian gauge fields take
the form

oMFEL-Fy=0, oG, -G,

% puvl = Tuvl

)=0. (197)

The combined system ([197)) is invariant under the transformation

Fiy] Fiy] UI VAL FiVJ
S e Wl (198)
G;:i:VI G;:i:ul WIJ VIJ G;:E/J

where UL, V,7, Wr; and Z!7 are constant real (n + 1) x (n + 1) submatrices.

We demand the transformation matrix in (198]) to be invertible. Since we may
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rescale the field strengths FJV by a real constant, we impose the normalization
det(UTV — WTZ) = 1. Thus, the transformation matrix in belongs to
SL(2n + 2,R).

Next, decomposing the transformed field strenghts F uiyl , C;’i, rasin ,

GIVIZF]JFJVJ—F@:VI, G;VIZF[JF;VJ—F@;DI R (199)

we infer that under , Fj transforms as
Fry=Wi+VifFep) [875 , STy =U, + 25 Fgy. (200)
Then, demanding that Fy; is a symmetric matrix yields the condition
vrw —-wru + 0TV -wTz2)F - F(UTV - Wt 2z)T
+F(Z'v -VvTZ)F =0, (201)

where in this equation F' denotes the matrix F7;. By comparing terms with the
same power of Fr, we infer the conditions UTW = WTU and ZTV =VTZ. In
addition, the combination UTV — W7 Z needs to be proportional to the identity
matrix, since the terms linear in F; need to cancel for general Fy; [39]. These
conditions, when combined with the property that the transformation matrix
belongs to SL(2n 4+ 2,R), imply that the transformation matrix in must
be an element of Sp(2n + 2, R). Indeed, defining

U z
A= , (202)

w Vv

and demanding A to be a symplectic matrix, i.e.
AP =QATQ™t  where Q= , (203)

gives
UV - wr'Z=v'v -Z"w=1,U"W=w"'"U, Z'V=V"Z (204)
as a consequence of A™' A =1, and

ovt —zwt =vuTt —wzt =1,U02" =zuT , wvT =vw?T  (205)
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as a consequence of AA™! = 1.
Furthermore, we infer from (199 that under (198)), the tensors ij ; trans-
form as
ot =0f

pvl = Mupvd

S, 0,,=0.,5:. (206)

pvJ
Next, we note that the transformation (200)) of F7; is induced by the follow-
ing transformation of the scalar fields X7,
XI XI U{] ZIJ XJ

== : (207)
Fy Fy Wi V7 F;

which is the aforementioned Sp(2n+2,R) transformation of the vector (X*, Fr).
Indeed, using (207)), one derives
OF;
X7

= Frg (UKJ+ZKL Frj) =W+ Vi*Fry. (208)
For Nyj; = 2Im F7j, one obtains the transformation law

Nis Nkr [Sfl]KI [Sfl]LJ ;
N = 88T NKE =8 87 (NFE —izKhy) | (209)

where
2 =[S W g ZK7 . (210)

Note that Z is a symmetric matrix by virtue of (205)).
Owing to the symplectic condition (203)), the quantities F can be written

as the derivative of a new function F (X ) with respect to the new coordinates

F(X) = {U™W), X'X7+3(U"V+W"2)/X'F;+ L(Z"V)"F1F,
= FX)+3s0"W), X'X7+(W'Z) ' X"F;+ 5(Z2"V)" FF;,
(211)

where we made use of the homogeneity property (192)). Note that F(X) does not
transform as a function under symplectic transformations , ie. Z*:'(X ) #
F(X). Its geometrical meaning will be discussed in subsection m

Two N = 2 Wilsonian effective Lagrangians that are encoded in F'(X) and

F(X), respectively, represent equivalent vector multiplet theories coupled to
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N = 2 supergravity. On the other hand, symplectic transformations that con-
stitute a symmetry of the theory are transformations (207)) for which

F(X)=F(X), (212)

since they leave the field equations invariant. Differentiating with respect
to X! gives Fy(X) = dF(X)/0X', which means that the transformation law for
Fr(X) given in is induced by substituting X for X in F;(X). This yields
a practical way for checking whether a symplectic transformation constitutes
an invariance of the theory. Note that the property does not imply that
F(X) is an invariant function; inspection of shows that F(X) # F(X),
and hence F(X) # F(X).
4.4.2. Electric-magnetic duality in a chiral background

Let us now briefly summarize various features of electric-magnetic duality
in the presence of a chiral background field [32]. We refer to sections and
[7] for an extensive discussion of supergravity theories in the presence of a chiral
background field, and for the relation with Hessian geometry.

We consider the Wilsonian effective action describing the coupling of ' = 2
supergravity to abelian vector multiplets in the presence of a chiral background
field A. The action is now encoded in a holomorphic function F(X, A) which is

homogeneous of degree two under complex rescalings, i.e.
FOX,AA) = 2 F(X,A) , XeC\{0}, (213)

where w denotes the scaling weight of fl, which we take to be non-vanishing.
From (213)) one infers the relation

2F(X,A) = X! Fi(X,A) + wAFA(X, A), (214)

where we introduced the notation Fj(X,A) = F(X,A)/0XT, FA(X,A) =
OF (X, A)/dA. Symplectic transformations act on (X7, F7(X, A)) as in (207),

X! Ul, x7 + 717 Fi(X, A),
Fi(X,A) = V7 Fy(X,A)+W;; X7, (215)

and they leave A inert. We will now show that F a (X, A) transforms as a

function under symplectic transformations. It follows that the combination
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F(X, A) — %XIFI(X, A) also transforms as a function due to the relation (214J),

F(X,A) - 1XTF(X,A) = F(X,A) - 1XTFi(X, A). (216)

We start from the second relation in (215)) and differentiate with respect to
X7 keeping A fixed. This gives

Fric = (Wrp + Vi* Frp) [Sil]PK ; (217)
where .
0X ESIJ:UIJ+ZIKFKJ(X A) (218)
0. ¢ ’

Taking the transposed of this equation, one verifies that Frg is symmetric in [
and K, i.e. FIK = FKI-

Next, we differentiate the second relation in with respect to A, keeping
X' fixed. This yields

Fra(X,A) = (V,K o ZLK) Frea(X, A) . (219)

Using (217)), we obtain for the transposed of the matrix on the right hand side
of (219),
vI—ZTF =81, (220)

where here F' denotes the symmetric matrix F 7. Hence,

Fra(X,A) = Frea(X, A)[s7" ), (221)

With this result, and using Fi (X, A)[S7] K= A(Fa(X,A))/0XT, we obtain

Fu(X,A) = Fu(X,A), (222)

up to terms that are independent of X7, and which we drop, since they are not
relevant for the vector multiplet Lagrangian. Thus, F4(X, A) transforms as a
function under symplectic transformations.
; — 17 — [y-1117 : .
Defining N;; = 2Im F7; and N'7 = [N7!]"", and using (217), one obtains

the transformation laws

Ni; = Ngi [S_l]KI [3_1]LJ7
N = NELEGSI ST (223)
Frjx = Funp [S_I}MI [S_l]NJ [S_I]PI«

o7



Using (222)), one finds
Faa(X,A) = Faa(X,A) — Far(X,A) Fay(X,A) 217, (224)

where
ZV = [sT g Z"7, (225)

which is symmetric in I and J, see below . This shows that, while F'4 trans-
forms as a function under symplectic transformations, higher derivatives of F
with respect to 151, such as F44, do not transform as functions under symplectic
transformations. Combinations that do transform as symplectic functions can
be generated systematically, as follows [32]. Assume that G(X, A) transforms as
a function under symplectic transformations. Then, also DG(X, /1) transforms

as a symplectic function (c.f. (189)), where

7]
X7’

9
D= — +iFgN 226
a4 M (226)

as one readily verifies using (223]). Consequently one can introduce a hierarchy

of symplectic functions F(™ (X, A), which are modifications of Fi...4,

1 A
F(X,A) = =D" 'Fa(X,4) , n>1. (227)
n!
While F(!) is holomorphic, all the higher F(™) (with n > 2) are non-holomorphic.
This lack of holomorphy is governed by the following equation (with n > 2),

3F< - fn—r)
axr — Z o (228)

where F]JK = FILM NLJNMK.
In section We will relate the covariant derivative (226)) and the holomorphic

anomaly equation (228]) to properties of Hessian structures in the presence of a

chiral background field, (c.f. (479)) and (485)).

5. Special Kahler geometry

In this section we discuss special Kéhler geometry from the mathematical
point of view. The definition is ultimately motivated by physics: special Kéhler
geometry is the geometry of N' = 2 vector multiplets. As we have seen in the pre-

vious section, the field equations of theories of abelian vector fields are invariant
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under symplectic transformations, which generalize the electric-magnetic rota-
tions of Maxwell theory. In A/ = 2 vector multiplets, which contain scalars and
fermions together with vector fields, this extends to an action of the symplectic
group on all fields, which imposes strong constraints on the scalar geometry.
In short, special Kédhler manifolds are Kéhler manifolds equipped with a flat
connection V which is compatible with the symplectic structure, in the sense
that symplectic transformations act linearly on V-affine coordinates. Moreover,
the Kahler metric is Hessian with V as the associated flat connection.

Special Kéhler geometry has undergone various re-formulations over the past
30 years. Our approach blends the original definition [40] in terms of special
coordinates and using the superconformal calculus with the intrinsic construc-
tion of [4I] and the universal construction of [42], which allows to relate the
former two approaches. Other formulations of special Kéhler geometry will be

discussed in section [5.4]

5.1. Affine special Kéihler geometry

We will first present an intrinsic definition, and introduce special real and
special holomorphic coordinates, the Hesse potential and the holomorphic pre-
potential. Then we give two extrinsic constructions, firstly as a Kéahlerian
Lagrangian immersion into a complex symplectic vector space, secondly as a
parabolic affine hypersphere immersed into a real space. The holomorphic pre-
potential and the Hesse potential are the generating functions for these two

immersions.

5.1.1. The intrinsic definition
We start with the relatively recent definition given in [41], which is intrinsic
in the sense of only using data involving the tangent bundle and associated

bundles. Our presentation is based on [41] and [42].

Definition 15. Affine special Kihler manifolds (ASK manifolds). An
affine special Kihler manifold (M, J,g,V) is a Kdhler manifold (M,J,g) en-
dowed with a flat, torsion-free connection V, such that

1. V is symplectic, that is, the Kdahler form w = g(-, J-) is parallel: Vw = 0.
2. VJ is covariantly closed, dvJ = 0.

In the second condition, J € I'(End(T'M)) 2 T'(TM ® T*M) is regarded as

a vector valued one-form, J € Q'(M,TM). This condition can be rephrased as
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VJe€TIM)=T(TM @ T*M ® T*M) being symmetric:
(VxI)(Y) = (VyJ)(X), VX,Y € X(M). (229)

The definition implies that Vg € TH(M) is totally symmetric, and therefore
ASK manifolds are Hessian. On a Hermitian manifold any two of the three ten-
sor fields g, J and w determine the thirdﬂ and this allows to replace condition

2 by the alternative condition
2. Vg € T9(M) is completely symmetric.

Thus we may say that an ASK manifold is a K&hler manifold with a compat-
ible Hessian structure. The associated flat connection V is called the special
connection. If we impose that V-affine coordinates on M are w-Darboux coor-
dinates, this restricts our freedom of making affine transformations to those
where the linear part is symplectic. We will call the corresponding group
Affg,gen) (C*) = Sp(R?™) x C*" C Aff(C?™) the affine symplectic group.

We will now verify the statements made in the preceding paragraphs using
special real coordinates. Since the connection V is flat and torsion-free, we can
choose local V-affine coordinates ¢® which define a parallel coframe e® = dq?,
Ve® = 0 and a parallel frame e, = 9, = %, Ve, =0, see Such coordi-
nates are unique up to affine transformations. The connection V is symplectic,
and therefore

1 1 1
Vw=V (2wabe“ A eb> = iacwabec Re* Neb + iwabV(ea Ae?)=0. (230)

In V-affine coordinate the second term vanishes, and the symplectic form w has
constant coefficients:
Vw=0= 0.we, =0. (231)

We can fix a standard form for the constant antisymmetric matrix wg,. The

conventional choice we make is

1
w = iwabdq“ Adg® = Qapdg® A dg® = 2da’ A dy; | (232)
where
0 1
Qup = . (233)
-1 0
20See
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The coordinates ¢* = (x!,y;) are called special real coordinates, and the split-
ting of the ¢ into ! and y; corresponds to the choice of a polarization, that
is, a splitting of the symplectic vector space T, M, p € M into two maximally
isotropic subspaces. The special real coordinates ¢* are w-Darboux coordinates,
but differ from standard Darboux coordinates by a factor \/5 Choosing spe-
cial real coordinates restricts our freedom to perform coordinate transformations

to affine symplectic transformations,

x x a
— M + , M e Sp(2n,R), a,beR". (234)

y Yy b

Next, we evaluate the condition dyJ = 0 in special real coordinates, using

the rules for the covariant exterior derivative from [AL5.4t
0=dyJ =d(Jie") @eq, + Jie’ @ Ve, . (235)
In the co-frame e* = dq® this condition reduces to
dyJ = (0:J%)(dg" Ndg") ® 0a = 0= G = 0. (236)
To relate this to VJ being symmetric, note that
VxJ = X0,T5)e’ @e. + J5Vx(e® @e.) (237)

reduces in special real coordinates to

VxJ = (X%9,J%)dq" ® 0. (238)
so that
(VxJ)(Y) = XY"8,J5)0. . (239)
Using we see that
dvJ =0< (VxJ)(Y) = (VyJ)(X), VX,Y €X(M), (240)

that is, V.J is symmetric, V.J € T'(Sym?(T*M)®TM). Metric and Kihler form
are related by

w(X,Y) = g(X,JY) & g(X,Y) = —w(X,JY). (241)

21Darboux coordinates are usually normalized such that w = %Qabd{ja Adg® = dzt A dj;.
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In local coordinates this implies
Wab = Jacd Gy < Jab = —Wacd G & JG = g% wep - (242)
In special real coordinates,
(Vx9) (Y, Z) = 0cgap XY 2" . (243)

Expressing gqp in terms of wgy, and J9, and using that w,y, is constant in special

real coordinates, we find
8cgab = _wadacj(liy . (244)

Using we obtain that O.g.p is totally symmetric, which shows that g is
Hessian. It is also clear that for a flat, torsion-free and symplectic connection
V., g being Hessian implies that VJ is symmetric, so that condition 2 in the
definition of an ASK manifold can be replaced by condition 2’.

For later use we collect further local formulae in special real coordinates.
The metric is Hessian,
0’H

= Hupdgdq®, Hayp = —— .
g abq q7 (Lb aqaaqb

(245)
We denote the inverse metric coefficients by H. The inverse of Qg = %wab is

0 -1
QP = 2% = : (246)
1 0

Using that J% = H%we and J¢,J¢ = —d; we obtain,

1
5Qab = 2H"H"Q.; < HypQ"Hy = —4Q44 , (247)

where the numerical factors are due to the normalization of €,;,. The compo-

nents of the complex structure in terms of H,, and €, are:
: 1 e
JY =2H*Q = —EQ‘“HCZ, . (248)

As on any Hessian manifold, there is a dual special connection V gy, = 2D —V,
whose affine coordinates are the dual special real coordinates,

_0H
=5

qo = H, : (249)
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As discussed in section the metric coefficients with respect to ¢, are given

by the inverse matrix H:
g=Hdq,dq,, H*Hg =62, (250)

and the dual Hesse potential is obtained by a Legendre transformation:

o 82Hdual
0q.9qp ’

The dual special coordinates q, are w-Darboux coordinates:

Hab Hyyal = qaqa - H. (251)

1
w = Qupdg® A dg® = 2da’ A dy; = —ZQ“bdqa Adgy = 2du’ A doy | (252)
corresponding to the dual polarization
o =: (207, —2u’) . (253)

Special real coordinates are adapted to the symplectic and Hessian structure
of an ASK manifold. We now turn to the complex aspects of ASK geometry,
following [41]. The complexified tangent bundle Tc M of M decomposes into the
holomorphic tangent bundle (M9 M and the anti-holomorphic tangent bundle
7O M2

TeM =TEOM @70V (254)
which can be characterized as the eigendistributions of the complex structure
J,

TMI = ker(J —il), TMOY =ker(J +il). (255)
Similarly, the complexified cotangent bundle decomposes as TgM = T*(L0 M @
T*ODM. Since dyJ = 0, the projection operator

oo - 1
2
satisfies dyII™H9) = 0. Hence locally II(1:0) = dy ¢ = V¢, where ¢ is a complex,

not necessarily holomorphic vector field, which is unique up to a flat complex

(1+4iJ) e N(TEM @ TEOM) = TeM — THOM (256)

vector field[] In special real coordinates ¢ has an expansionf”)]

) )
_ I
(=X"g7t Wz—ayI ; (257)

22Gee for some background on complex manifolds.

23The relevant properties of the exterior covariant derivative dy are reviewed in

24Compared to [AI] we have changed the relative sign between the two terms of ¢ to be
consistent with our conventions.
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where X!, W; are complex functions on M. Then

d )
nY) —dx! @ — +dW; @ — 2
D gt TWI® 5 (258)

where dX1,dW; € T*19 M| which implies that the functions X!, W; are holo-
morphic. Since Re(IT9) = Idry, it follows that

Re(dX') = da’, Re(dW;) = dyr . (259)

Using that the real differentials da! are linearly independent, it can be shown
that the differentials dX! are linearly independent over C, and therefore the
holomorphic functions X’ define a local holomorphic coordinate system on M
[41, [42]. These are the so-called special holomorphic coordinates, often simply
called special coordinates. Similarly, the functions W; define another holomor-
phic coordinate system on M, which is called the dual (holomorphic) special
coordinate system.

Since 8% is of type (1,0), that is TI(1:0) 3?(1 = %, it follows that

0 0 oWk 0

aXT ~ 9uT T OXT Oyr (260)

The Kihler form w = 2da! A dy; = 1(dXT + dXT) A (dW; + dW}) must be a
(1, 1)-form, therefore

ox7 ™ 7 ox7T = axt

This implies that locally W; is the holomorphic gradient of a function F(X7),

0=dX ' ANdW; =dX' A (261)

called the prepotential, which is determined up to a constant:

oF ow 0’F
W[:7:2F1, 6X§:8X18XJ :ZF]J. (262)

The Kéahler form can be expressed in terms of the prepotential as
w= —%N,def ANdX7 (263)

where

N]J = QImFU = —’i(F[J — F].]) 5 (264)

and where Fj; is the complex conjugate of Fr;. The corresponding Kahler

metric and Hermitian form are

g=NpjdX'dX?, y=g+iw=N;dX' @dX’. (265)

64



Since
0?K

T OXToX7T
the function K is a Kahler potential. The choice of the sign in the definition

Nij K =i(X'F; - F;XT) | (266)

of K is conventional. Sometimes N;; and K are defined with an additional
minus sign. Note that to obtain a model where N;; is positive definite, or
more generally is non-degenerate and carries a specific signature, one may need
to restrict the coordinates X' to a suitable domain. This has to be analysed
model by model.

We have now recovered the original definition of ASK manifolds in terms of
local formulae in special coordinates [40]: an ASK manifold is a Kdhler manifold

where the Kdhler potential admits a holomorphic prepotential@

5.1.2. Eaxtrinsic construction as a Kahlerian Lagrangian immersion

The intrinsic definition of [4I] has an extrinsic counterpart: every simply
connected ASK manifold can be realized as a Kihlerian Lagrangian immer-
sion into the standard complex symplectic vector space V = T*C" = C*" [42].
Lagrangian immersions have a potential, which for ASK manifolds is the holo-
morphic prepotential.

We start with the standard complex symplectic vector space V. = T*C"
equipped with complex Darboux coordinates (X', W7y), the standard complex
symplectic form Q = dX! A dWj, and the standard real structure defined by
complex conjugation 7 : V =V, v — 70 = @E The set of fixed points of the
real structure 7 are the real points V7™ = T*R" =2 R?” C C?". Given these data

we can define the Hermitian form
o= iQ(,T) = (de @ dW; —dW; @ dYI> — gy + iwy (267)

which has complex signature (n,n). Its real part defines a flat Kéhler metric of
real signature (2n,2n), with associate Kéhler form wy, and complex structure
Iy.

Let M be a connected complex manifold of complex dimension n. A holo-

morphic immersion ¢ : M — V is called non-degenerate if gy = ¢*gy is

25Note that Kihler potentials are only determined up to Kihler transformations, and the
formula expressing K in terms of F' provides only a subclass of the Kéahler potentials for a
given ASK metric.

265ee for a few additional remarks regarding complex symplectic manifolds.
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non-degenerate, where ¢* gy denotes the pull-back of the metric gy by ¢ to M,
see In this case gps is a Kéhler metric on M, which in general has in-
definite signature. Therefore non-degenerate holomorphic immersions are also
called Kdhlerian immersions. One can show that ¢*gy being non-degenerate is
equivalent to wys := ¢*wy being non-degenerate, and also to vyps := ¢*yy being
non-degenerate.

A holomorphic immersion ¢ : M — V is called Lagrangian if ¢*Q = 0.
It has been shown in [42] that a Kéhlerian Lagrangian immersion M — V
induces on M the structure of an affine special Ké&hler manifold. Conversely
every simply connected affine special Kéhler manifold admits a Kéhlerian La-
grangian immersion which induces its ASK structure. The immersion is unique
up to transformations of V' which leave the data (Iy,,7) invariant. These

transformations act on complex Darboux coordinates as

X1 X1 Al
— M + , MeSp(@2n,R), Al,B;eC, (268)
W W B

and belong to the subgroup Affg,g2n)(C**) = Sp(2n,R) x C*" of the complex
affine group GL(2n,C) x C?".
The Liouwville form A = WidX'! of V is a potential for the symplectic form:
d\ = —Q. Therefore its pullback ¢*A under the Lagrangian immersion ¢ is
locally exact and admits a holomorphic potential F', defined on some domain
UcCM:
dF = ¢*\ . (269)

The pullbacks X1 = * X1, W = ¢*W; are holomorphic functions on M. Since
¢ is non-degenerate one can pick n independent functions and use them as local
holomorphic coordinates on M. By applying a symplectic transformation if
necessary one can always arrange that X7 are local holomorphic coordinates on
M. In this case the functions W; form a second ‘dual’ holomorphic coordinate
system, which we will discuss in more detail in section [5.1.4l We can always
choose U C M small enough so that ¢ becomes an embedding. In this case we
do not need to distinguish by notation between (X', W;) and (X, W;). If we
use special coordinates X on M then dF = W;dX', implying W; = F; = %.
Note that the integrability condition Fy; = 0;W; = 0;W; = Fjg is satisfied
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since ¢ is Lagrangian. The immersion ¢ locally takes the form
C"oUs XD (XL,Wy) eT*U c C*, (270)

where we identify U with a domain in C™ using the coordinates X!. We can
also identify ¢ with dF and ¢(U) with the graph

OF
X! (x! = 271
{ewy e e v = 5 (o)
of dF over U. With these properties and identifications U C C”™ is called an
affine special Kdhler domain.
We proceed by deriving local expressions for the metric g, Kéhler form
wys and special connection V on M. We decompose the complex Darboux

coordinates on V into their real and imaginary parts:
X =gl 4!, W=y +ivr. (272)
Then

(dz"dvr — du'dyr) + i (dz’ Ady; + du’ Advr)  (273)

N =

VW =gy +iwy =

and
Q= dz! Adyr —duIAdU[+i(duIAdy1+dx1/\dv;) . (274)

By pullback we define the functions &/ = Re(¢*z!), §j; = Re(¢*yr) on M. Since

the immersion is Lagrangian,
Re(¢*Q) = 0 = di! Adj; = da’ A diy (275)
and therefore
wy = di' A djr + dal A dop = 2(diE" A dy) (276)

For a simply connected ASK manifold M, (Z!, ;) are globally defined functions,
but they are only global coordinates if the immersion ¢ is an embedding. By
restricting to a domain U C M where ¢ becomes an embedding, we can use
(21, 97) as coordinates and do not need to distinguish them from (x!,y;) by
notation. They are Darboux coordinates for the Kahler form wj;, and define a
flat, torsion-free, symplectic connection V by Vdz! = 0, Vdy; = 0. One can
show that V is the special connection occurring in the intrinsic definition, and

that (z!,y;) are the corresponding special real coordinates.
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Next, we work out some expressions in terms of special holomorphic coordi-

nates. The pull-back of the Hermitian form ~y is

v = ¢*yw =i (dXT @ dF; — dF; ® dX') = NpydX' @ dX7 (277)
where
Ny =2ImF;; = _OK K =i(X'F; — F;X1) (278)
j = L= 5XTgxJ = I I .

By decomposing vy = ga + iwps we obtain a non-degenerate, in general indef-
inite Kéhler metric

gy = NpydX'dX7 (279)
with associated Kéahler form

Wit = —%N”dXI AdX7 (280)

Thus we have recovered all the local expressions of section [5.1.1

We note that the characteristic property of a Kéhlerian immersion, the non-
degeneracy of gy = ¢*gy corresponds in special coordinates to Fr; = 07, F
having an invertible imaginary part. A holomorphic one-form ¢ = dF' is called
regular if det(ImF7yy) # 0. It follows that locally every regular closed holomor-
phic one-form defines a Lagrangian K&hlerian immersion.

We conclude this section by expanding on some details. Firstly, the image
¢(U) of U C M is not automatically a graph, although this is the generic situa-
tion. For special choices of ¢ the functions X' on U are not independent and do
not define a holomorphic coordinate system on U. This can be detected by Wy
not satisfying the integrability condition for the existence of of a prepotential
F with gradient F; = W;. In this situation one can choose local holomorphic
coordinates z! on U and work with the functions (X7 (z), F7(2)). As we will
discuss in section the map

Z (XI(z),FI(z)) (281)

can be interpreted as a holomorphic section of a line bundle over M. We will
discuss definitions of ASK geometry based on line bundles in section [5.4.3
Finally, only simply connected ASK manifolds admit a global immersion into
V =2 T*C"™. As far as the local description is concerned this is not an issue, as
we can restrict to simply connected submanifolds U C M. In order to obtain a
global construction of general, not necessarily simply connected, ASK manifolds,
the vector space V must be replaced by an affine bundle with fibre V. This will
be discussed in section

68



5.1.3. Extrinsic construction as a parabolic affine hypersphere
Affine special Kdhler manifolds admit a second extrinsic construction, which
is real rather than complex, with the Hesse potential as generating function. Our
presentation follows [43] [44].
In this construction the ASK manifold M is immersed into R?"*! as a hy-
persurface
©: M — R*™ (282)

Using the standard connection 9 (defined by the partial derivative with respect
to linear coordinates) on R?"*! and a vector field ¢ which is transversal to M,
one can give M the structure of an affine hypersphere, see The decompo-
sition

OxY =VxY +g(X,Y)¢ (283)
of derivatives of vector fields X, Y tangent to M defines a torsion-free connection
V and a so-called Blaschke metric ¢ on M. The connection V is flat if the
vector field ¢ is chosen such that its integral lines are parallel on R2"*1, 9¢ =
0, and thus do not intersect at finite points. This makes M a parabolic (or
improper) affine hypersphere. A parabolic affine hypersphere is called special
if there exists an almost complex structure J on M such that J is skew with
respect to the Blaschke metric g, and such that the fundamental form w =
g(+,J+) is V-parallel. It has been shown in [43] that if ¢ : M — R**! is a
special parabolic affine hypersphere with data (J,w, V), then (M, J, g, V) is an
affine special Kéhler manifold. Conversely, any simply connected ASK manifold
admits an immersion as a special parabolic affine hypersphere. The immersion
is unique up to unimodular affine transformations of R2**+1. In terms of V-affine

coordinates (z!,y;) on M, the immersion takes the form
¥ :M%R%H_l 7(1’I,y1) = or = (x17y17H(x7y)) ’ (284)

where H is the Hesse potential of the ASK manifold.
Since any ASK manifold can also be characterized locally by a holomorphic
prepotential F', the Hesse potential H and the prepotential F' determine each

other. It has been shown in [43] that their relation is
H(z,y) = 2Im(F(X (x,y))) — 2Re(Fs(z,y))ImX (z,y) , (285)

where x! = Re(X') and y’ = Re(Fy). That is, the Hesse potential is twice
the Legendre transform of the imaginary part of the prepotential. Note that
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compared to the ‘full’ Legendre transformation which replaces all affine coor-
dinates by their duals, ¢* — ¢, this is a ‘partial’ Legendre transformation,
where u! = Im(X') is replaced by y; = Re(Fy) as an independent variable,

(2l ul) = (21, y1).

5.1.4. Dual coordinate systems

In section we have seen that Hessian structures always come in pairs,
with associated dual affine coordinate systems ¢* and ¢g,. This extends to ASK
manifolds through the existence of a dual (or conjugate) special connection,
v ), which coincides with the dual connection in the Hessian sense. Conse-
quently, apart from the special holomorphic coordinates X! = x! 4 iu! and the
special real coordinates (z!,y;) an ASK manifold has dual special holomorphic
coordinates W; = Fr = y; + iv; and dual special real coordinates (2vy, f2ul),
c.f. (253). For the discussion of dual special connections we follow [42].

Given a connection V and an invertible endomorphism field A € T'(End(TM))

one can define a new connection by
VAX = AV(A71X) . (286)

For a flat connection on a complex manifold (M, J) one can in particular de-

fine the one-parameter family of flat connections V? := vexp(0J),

By Taylor
expanding exp(f.J) and using that J? = —Id, we find that the connections V

and V? are related by
V=V + A%, where A% =¢"V(e )= —sinfe’/V.J. (287)

Note that this family of connections is periodic in 6 and thus is parametrized
by St. If (M,J,w,V) is an ASK manifold with special connection V, then
(M, J,w,V?) is an ASK manifold with special connection V¢, for any value of 6.
As Kéhler manifolds such manifolds are identical. In the physics literature ASK

manifolds are usually identified if their special connections differ by A = e,

see section [B.4.3]

The connection
v2=v =v_-JvJ (288)

is called the connection conjugate to V. The convex combination

D= %(v + v (289)
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of special connections satisfies DJ = 0. For ASK manifolds the connection D
is metric compatible, and since it is by construction also torsion-free, D is the
Levi-Civita connection.

This implies that for ASK manifolds where the complex structure is V-
parallel, VJ = 0 (rather than just dy-closed), the Kéhler metric is flat: VJ =0
implies V = V() = D, so that the Levi-Civita connection D is flat. In local
special coordinates, this corresponds to the case where the Hesse potential and
the prepotential are quadratic polynomials. Physics-wise, these are free theories.

Comparing to @ shows that the conjugate connection V(/) coincides
with the dual connection Vg, in the Hessian hence. This implies that the
special real coordinates with respect to V() are the dual special real coordinates
qo = Hy = (2v7,—2u’). The corresponding dual holomorphic coordinates are

Wr =yr + ivyg.

5.1.5. Symplectic transformations for special complex and special real coordi-
nates

In this section we derive explicit formulae which relate the local expressions
for the metric and other tensors in complex and real special coordinates. We
also study how various quantities transform under symplectic transformations.

We start with comparing the coefficients of the metric in special holomorphic

coordinates X' and in special real coordinates ¢® = (x!,yr):
gy = NpjdX1dX7 = Hypdg®dg® . (290)

We need to express the Hessian (Hgp) of H in terms of the matrices R = (Ryy) =
(2Re(Fry)) and N = (Nyy) = (2Im(F7rs)), which are twice the real and imagi-
nary part, respectively, of the holomorphic Hessian (F7;) of the prepotential F'.

This amounts to performing a coordinate transformation from the real coordi-

nates (2, u!) underlying the complex coordinates X! = ! + iu! to the special

real coordinates ¢® = (x!,y;). By taking derivatives of the relations

X = gcl—i—iul(x,y)7
Fr = yr+ivi(z,y), (291)

we obtain the components of the Jacobians of the coordinate transformations

(x,u) = (,y), (z,y)— (z,u). (292)
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When taking derivatives of a function of the form f(z,u) = f(x,y(x,u)) we

need to employ the chain rule

z Oy ; YK
fo = fml +nyW ) fuI = nyW 5 (293)

where we use the short-hand notation f,r = %, etc.

Using this we obtain the Jacobians

u
Di,y) | o , % L TR (294)
and
D(x,y) _ 1 0 [ 0 . (205)
P\, B ) e -

Together with further relations given in one obtains

N+RN™'R —2RN-!
(Hap) = , (296)
—2N~'R 4Nt

where N=1 = (N17) is the inverse of N = (N;;). As discussed in section
the Hesse potential H is related to the imaginary part of the prepotential by a

Legendre transformation:
H(q) = H(z,y) = 2ImF(z + iu(zx,y)) — 2yrul (z,y) . (297)
We can also express the metric in dual special real coordinates q,:
g = Haydg"dq" = H* dqadqy , (298)

where, as for any Hessian metric, the metric coefficients H® with respect to the

dual coordinates are the inverse of H;, hence

N1 IN-IR
(H) = ’ (299)
%RN*1 i(N + RNIR)
The dual Hesse potential Hqyal,
0%H,
ab dual

= — 300
8(1118(]b ( )
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is related to the Hesse potential by a full Legendre transformatior@
Hyyal = ana -H s (301)

as discussed in section 2.2
Special real coordinates are unique up to affine transformations with linear
part in Sp(R?") = Sp(2n,R). In the following we discard translations and focus
on linear symplectic transformations, under which the coordinates ¢* transform
as
q" = 0%, (302)
where O = (0%,) is a symplectic matrix:

O 0% = Qg = OTQO = Q. (303)

We will call any object transforming in the fundamental representation of Sp(2n, R)
a symplectic vector. Objects p, which transform in the contragradient represen-
tation,

Pa > O, e (304)

where
0,0% =6 = (0,%) =0T (305)
will be called symplectic co-vectors. The matrix € intertwines the two repre-
sentations: if ¢® is a symplectic vector, then Qg,¢® is a symplectic co-vector.
Similarly, we define symplectic tensors as objects which have components with
several upper and lower indices, such that each upper index transforms in the
fundamental and each lower index transforms in the contragradient representa-
tion.
As an example, the metric ¢ = H,pdg®dq® is an invariant symmetric rank
two co-tensor, and since dg® transform in the fundamental representation, the

components Hg, of g transform as follows:
Hup > 0,20, %H,y . (306)

Therefore
H® s 0%,0° ,H* (307)

27We call this a ‘full’ Legendre transformation because it involves all of the variables. In
contrast the Legendre transformation relating the Hesse potential and the prepotential only
involves half of the coordinates, (z,y;) + (2!, u’), and therefore we will call it a ‘partial’
Legendre transformation.
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which implies that the dual coordinates g, = H, transform contragradiently,
da = O g - (308)

Consistency requires that the Hesse potential H must be a symplectic function
since Hy, = 83)bH . The tensor g, is by definition an invariant tensor, and
the complex structure J9 is a symplectic tensor of type (1,1). Therefore all
quantities we have defined using special real coordinates and dual special real
coordinates are tensor components which transform as indicated by their indices.

In contrast, quantities expressed in terms of special holomorphic coordinates
do not transform as tensor components in general. Since X! = 2! +iu!, W; =
yr + vy, where ¢ = (z!,yr) and q, = (207, —2ul), it is clear that (XT, F)T
is a complex linear combination of symplectic vectors and therefore a complex

symplectic vector. As in section we set

U z
0= , (309)
WV

so that
Utv - wrz=viu-z"w=1, v'w=wlu, zZ'v=vTz (310)
and

X' ULX74+Z2YFy, (311)
o= v JFJ + W]JXJ .

The special holomorphic coordinates X' comprise half of the components of a
symplectic vector and therefore do not define a symplectic tensor by themselves.
We have already seen in section that the holomorphic prepotential F'(X7)
is not a symplectic function. There we worked out the explicit transformation
formula for the special case of prepotentials which are homogeneous of degree
two. We will provide a general formula for the transformation of the prepotential
together with a geometrical interpretation in section [5.4.2

Similarly, N;;, N7 and other expressions involving holomorphic indices do
not transform as symplectic tensors, as we have already seen in section |4.4.1
By contracting the symplectic vector (X!, Fr)T with its complex conjugate, we

obtain a symplectic function, namely the Kéahler potential:

K =i(X'F, - F;X1). (312)
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Comparing to section [4] we see that the holomorphic and real formalism
of special geometry are related in a way similar to the relation between the
Lagrangian and Hamiltonian formalism of mechanics. In particular, the real
(Hamiltonian) formalism is covariant with respect to symplectic transforma-
tions, whereas the holomorphic (Lagrangian) formalism is not. We remark that
the functions (¢%) = (xf,y;), always define local coordinates on M, irrespective
of whether the ‘symplectic frame’ (X?, F;) allows a prepotential or not. For
simply connected ASK manifolds ¢ are in fact globally defined functions, since
the immersion ¢ is global. Note, however that they only define a global coordi-
nate system on M if ¢ is a global embedding, which need not be the case even
if ¢ is a global immersion. In contrast, X, which are half of a set of complex
coordinates (X!, Fy) on V, only define local complex coordinates on U C M if
#(U) C V is the graph of amap V — V : X1 — W) = F;(X).

5.2. Conical affine special Kdahler geometry

When extending N' = 2 supersymmetry to A/ = 2 superconformal symme-
try, two additional bosonic symmetries become relevant for vector multiplets:
dilatations R>° and phase transformations U(1). On the scalar fields these are
realized as a holomorphic homothetic action of C* = R>? x U(1). To obtain
a superconformal Lagrangian, the prepotential must be homogeneous of degree
two under complex scale transformations X! — AX?, A\ € C*, while the Hesse
potential must be homogeneous of degree two under real scale transformations
q® — A%, X € R>? and invariant under U(1) transformations. We will follow
[42 [45].

Definition 16. Conical affine special Kiéhler manifolds (CASK man-
ifolds). A conical affine special Kihler manifold (M, g,w,V,§) is an affine

special Kahler manifold (M, g,w, V) equipped with a nowhere null vector field &,
such that

D¢ =VE=1dry , (313)
where D is the Levi-Civita connection of g.
From section we know that (313]) implies that (M, g, V, &) is a 2-conical

Riemannian manifold@ hence a Riemannian cone in the standard sense. Since

(M, g,V) is in addition Hessian, it is a 2-conical Hessian manifold in the sense

28 As usual we admit indefinite signature.
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of Definition [J] given in section [2.3] and admits a Hesse potential which is ho-

mogeneous of degree 2 under the R>%-transformations generated by &:
ng = 29 y LgH =2H . (314)

In addition M is Kéhler, and the ASK conditions imply that the vector field
J¢ is isometric, Ljeg = 0, and preserves the homogeneous Hesse potential,
LjeH = 0. The two vector fields {£, J¢} commute and generate a holomorphic,
homothetic C*-action on M. On a CASK manifold one may choose, at least
locally, conical special real coordinates ¢* = (x!,y;) such that the homothetic

Killing vector field takes the form

P R )
_qaq“_ ozt ylayf

(315)

Such coordinates are unique up to symplectic transformations, since the com-
patibility with the conical structure prevents us from admitting translations. A
holomorphic immersion ¢ : M — V = T*C"™ is called conical if the position
vector field ¢V on V is tangent along ¢. If ¢ : M — V is a conical Kihlerian
Lagrangian immersion of a complex connected manifold (M, J) with induced
data (g,V,£), then (M, J,g,V,&) is a conical affine special Kéhler manifold.
Conversely, any simply connected CASK manifold can be realized as a conical
Kéhlerian Lagrangian immersion [45].

By considering an open subset U C M if necessary, we can assume that ¢
is an embedding. Using this we can easily verify those local formulae that do
not follow from previous results on Hessian manifolds using conical special real
coordinates. For reference we first collect some useful relations following from

homogeneity:
ana =2H 5 anab = Hb =qp, qaquab =2H P anabC =0. (316)

For CASK manifolds the special real coordinates ¢* and dual special real co-
ordinates ¢, = H, are related by q, = Hapq?, ¢* = H®q,. This is a special
feature of Hesse potentials which are homogeneous of degree two, compare .

Using that J§ = —%QMHCI,, and the above homogeneity properties, the

components of J¢ are

1
JE = J%qb0, = iHbeaaa ) (317)
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From this we see immediately that & and J¢ commute, and therefore generate

an abelian transformation group
[, J€] = LeJE = —Lyel=0. (318)

The Lie derivatives of the differentials are

9q* o(J2q°) 4 1 oab
Ledqg® = dg’ =dq®, Ljedq® = €= 2dqg” = —=Q* Hy.dq° . 319
edd” = 5 54 q", Ljedg ap % 5 bedq (319)

The Lie derivatives of the Hesse potential
LeH=2H, LjH-= %Haﬂ“be =0 (320)
show that H is J&-invariant. We also list the Lie derivatives of ¢, = H,
LeH, =H,, LjH,= %HCQCZ’HM =2Quwq" , (321)
and the Lie derivatives of the second derivatives of H
LeHuyy =0, LyeHup = %HCQCdeab =0. (322)

The last equality follows from differentiating H,QH,.; = —4Q,4 upon con-
traction with ¢ and using homogeneity. Combining results, we find that J¢ is
a Killing vector field, Ljeg = Lj¢(Hapdq*dg®) = 0.

In summary we have the following infinitesimal C*-action:
€, JEl=0, Leg=2g, Ljg=0. (323)
Moreover, the action of J¢ is w-Hamiltonian:

w(JE X) g(JE TX) = g(&,X) = ¢"Hyp X" = H, X"

= X"9,H=X(H)=dH(X), VX eX(M), (324)

hence
w(JE,) =dH(-), (325)
with moment maﬂ ) )
H = 5 Hu'a" = 59(6,) (326)

At each point, the vector fields £ and J¢ define two distinguished directions,

which correspond to the radial and angular direction of a complex cone whose

29Gee for a brief review of Hamiltonian vector fields and moment maps.
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base is spanned by the vector fields in (¢, .J€)*. It is useful for the following
discussion of project special Kahler manifolds to decompose the metric and other
tensors into tangential and transversal parts with respect to the C*-action. For

this purpose we introduce the one-forms
a=dH = H,dq¢", B =q"Qaudq®, (327)
which, up to normalization, are dual to the vector fields & and J¢&:
al§)=2H, a(J§)=0, aX)=0,
&) =0, pUE)=H, BX)=0, (328)

for all X € (¢, J§>L The forms «, 3 carry weight 2 under the dilatations
generated by £ and are invariant under the U(1) transformations generated by

J¢&:

L&OZZQOL, LJEOz:(),
LeB=28, LyB=0. (329)

Note that the scaling weight of any tensor which transforms homothetically
under C* can be changed by multiplying it with the appropriate power of the
Hesse potential. In particular any tensor transforming with a definite scaling

weight can be made invariant, and

§J(\?’B’C) = AH ‘'gy + BH 2> + CH2p?
Hap H,H, Qacqcﬂbdqd b
- (a B dg”
( gt ot q'dg®  (330)

is a family of C*-invariant symmetric rank two co-tensor fields which includes
the conformally rescaled metric H 'g,; as the special case A =1,B = C = 0.

We can obtain a tensor field which is transversal to the C*-action by imposing

A
a6 =g PO ) =0 B=—3, C=-24. (33

Thus the transversal part, which has a two-dimension kernel spanned by {£, J¢}
is

5 — A ara, (332

30Here L denotes orthogonality with respect to gy = Hgapdg®dg®.
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where

1 1 1
HY) = = Ha+ ps Hally + 15 Qact™Qag” A’ = —24. (333)

Solving (333 for the CASK metric gp; we obtain
_(_ o, 1 26 el
Hyp = (—2H)H,  + QHH“HZ’ + HQva Qpaq® . (334)

This is an orthogonal decomposition of H,;, into projections onto the distribu-
tions (&, JE)L, (€) and (JE). The signatures of H,, and Hc(lg) are related: if
H[E(;) is positive definite on (¢, J¢)L, then the CASK metric gj; has complex
Lorentz signature (F F & - - - +). The overall sign of H,;, depends on the sign of
the Hesse potential H.

For later use we define the tensor field

2 H

. . 1 2
gv = Hapdg®dq® , Hap = —=Hap + — <4

1

7HaHb + Qacchbdqd> ) (335)
which differs from the CASK metric by an overall factor —% and a sign flip
along the distribution spanned by £ and J¢. Thus gas is positive or negative
definite if the CASK metric gj; has complex Lorentz signature. The tensor H ab

and its inverse H are related to the complex symmetric matrix

_ Nig XEN; X
= F —_—
Niy = Fry +i— N XN (336)
by
R IT+RI'R —RI! A ab 7! IR
Hab = ; H" = 5
—I7'R 71 RI™' T+RI'R

(337)
where Nj; = Ryy +iZ;;. We will see in section [6] that A7 is the coefficient
matrix of the terms quadratic in the abelian field strengths in the Lagrangian
for four-dimensional vector multiplets coupled to Poincaré supergravity. While
its real version H,, is a symplectic tensor, the complex matrix N7 transforms

fractionally linearly under symplectic transformations,
N (WH+VN)U+ZN)7L. (338)

Observe that the relation between ﬁab and N7 is analogous to the one between

H,, and Fyj, in particular both Fr; and N7, transform fractionally linearly.
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Another natural symmetric tensor field on M is the 0-conical Hessian metric
that we obtain by taking the logarithm of the Hesse potential H as a Hesse

potential. Choosing the normalization

H= —% log |H| , (339)
we obtain
g = Hadg®dg" =g ">, (340)
Hyy = 07,H= _ﬁHab + #HQHI) (341)
= Hﬁ? + 47[1{2HaHb - %Qacchbdqd
= %ﬁab - %Qacchbdqd :

This tensor differs from the CASK metric by an overall factor —2H , which makes
it C*-invariant. Its signature differs from the one of H,, by a sign flip along &.
Thus if the CASK metric has complex Lorentz signature (¥, F, +,..., %), then
H,;, has real Lorentz signature (£, T,,...,4), with the time-like direction
generated by J¢.

5.3. Projective special Kdahler geometry

In sections [2.4] and [2.5] we have discussed the real superconformal quotient,
which relates affine and projective special real geometry. Similarly, given a
CASK manifold M we can obtain a projective special Kihler manifold M by
a complex quotient construction. To do this we construct a Kahler metric on
the orbit space M = M/C*, of the C*-action on a CASK manifold M. Since
the CASK metric gy = Hapdq®dg® transforms homothetically, we can make it
C*-invariant through multiplication by a multiple H~'. To obtain a projectable

tensor gﬁ), we then take the transversal part:

=(0) _ 17(0) 1 a b o_ 1 1 1
gM _Habdq dq s Hab __ﬁ ab+@HaHb+ﬁ
As in (332)) we have chosen A’ =1 & A = —%, to be consistent with supergrav-

ity conventions. By projection onto orbits ggg) defines a non-degenerate metric

Qacchbdqd . (342)

Gx; on M, which conversely lifts to §J(\2) under the pullback of the projection
7 : M — M, that is 95\2) =n"gy.
The quotient by the holomorphic homothetic C*-action will be referred to as

the (complex) superconformal quotient. In order for g;; to be well defined, we
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need that ¢g(&,&) = —2H # 0. Moreover, we need to assume that the quotient
by the C*-action is well behaved. This gives rise to the following definitions
[42, [45):

Definition 17. Regular conical affine special Kiéhler manifold. A conical
affine special Kahler manifolds (M, J, g,V ) is called regular if the function
9(&, ) = —2H is nowhere vanishing on M, and if the canonical quotient 7 :

M — M onto the space of orbits of C* on M is a holomorphic submersion onto
a Hausdorff manifold.

Definition 18. Projective special Kéhler manifold (PSK manifold). A
projective special Kihler manifold (M, gy;) is a (possibly indefinite) Kihler man-
ifold which can be obtained as the superconformal quotient of a reqular CASK
manzf()ld (Ma 9gM, va 5)

In supergravity applications, gy; is the metric on the manifold parametrized
by the physical scalar fields, and therefore must be positive definite. The results
of the preceding section imply that the underlying CASK metric must then have
complex Lorentz signature (F,F, =, ..., £), where the time-like directions are
along the orbits of the C*-action generated by (£, J¢). In physics these directions
correspond to an additional vector multiplet acting as a conformal compensator.
Note that an overall sign flip of gas does not change gy;. The tensor field gas
defined in also plays a role in physics. It is proportional to the vector field
metric and therefore must have definite signature. This is automatic if gy; is
positive definite.

The superconformal quotient can be interpreted as a Kahler quotient, that is
as a symplectic quotient consistent with a Kéhler structure, see also[A15] To see
how this work we use the holomorphic parametrization of the CASK manifold
and follow the original construction of [40]. When using special coordinates X7,
the homothetic Killing vector fields take the form

§:XI%+CC, Jf:in% + cc. (343)
The superconformal quotient proceeds in two steps. First the coordinates X!

are restricted to the hypersurface
S={x"e Mli(X'F; — F;X) = -1} . (344)
In physics the condition i(X ! F; — Fy XT) = —1 is called the D-gauge, because it

fixes the local dilatation symmetry which is part of the superconformal group.
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We will discuss the physics aspects in section [6] while a review of the supercon-
formal formalism can be found in [B.4l

Since J¢ acts isometrically on S, one can take the quotient with respect to
the U(1) group action and obtains M = S/U(1). To recognize this construction

as a Kahler quotient, we note that
i(XTFr = FrX") = Ny X' X7 = Koask = Havg"q" = 2H = g(£,€)  (345)

is the norm of the homothetic Killing vector field £, which is proportional to
the Hesse potential, which is the moment map for the Hamiltonian isometric
U(1) action on the CASK manifold M, see (324). This shows that S/U(1) =
M//U(1) is a symplectic quotient with respect to the Hamiltonian isometric
action of J€ on M. Moreover (M, gps) is a Riemannian cone over (.5, gg) with
gn and gg related by gy = dr? +12gg. Since (M, gyr) is Kéhler, it follows that
(S,gs) is Sasakian@ The metric induced by gs on the quotient M = S/U(1) =
M//U(1) is Kéahler, as we will show below, and therefore M//U(1) is a Kéhler
quotient.

To show that the metric is Kéhler, we express the projectable tensor H ég)dq“dqb
in holomorphic coordinates. Rather than performing the coordinate transfor-
mation from special real to special holomorphic coordinates, we start with
gv = NrydX'dX? and construct a tensor which is projectable onto the orbits
of the C*-action. The resulting tensor gﬁ\g) =N 1(3) dX'dX"’ has the components

_ Nig NigXXNyj X*
NynyXMXN © (NynyXMXN)2

N9 = (346)

To see that this is correct we note that the components N 1(3) are homogeneous

of degree —2, so that gj(@) is invariant under £&. Moreover

NOXT=0=N9X", (347)

which shows that gj(\g) is transversal to the actions generated by ¢ and J¢ .
Therefore this tensor field is projectable. The CASK Kéhler potential K =

g(&,€) is a global function, and we can use it provide a global expression for
v ) )
~(0) _88[( OKOK

= — 4

31Gasakian geometry is reviewed in
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where 00K = gy is the CASK metric. By inspection
g = 09 (~log(~K)) , (349)

so that the degenerate symmetric rank two co-tensor field gﬁ}) has a ‘Kahler

like’ potential

K(X,X)=—log(~K) = —log(~N; X' X7) = —log(—i(X'F; — F; X)) .
(350)
Upon projection onto M the ‘Kihler like’ potential K (X, X) becomes a gen-
uine Kéhler potential for g;. We will obtain an expression in terms of local
coordinates on M in section see (372).

Rather than viewing M as an abstract quotient, one usually prefers to realize
it concretely as a submanifold M C S C M. In physics describing M as
a submanifold corresponds to imposing a U(1) gauge on top of the D-gauge.
There is no canonical choice for a U(1) gauge. The only canonical choice would
be to take a hypersurface in S which is orthogonal at every point to orbits of
the U(1)-action. However, S is a contact manifold and the distribution defined
by this condition is a contact distribution, and therefore not integrable@ This
situation is different from the first step, where we defined S as the level set of the
symplectic function g(&, &), which is a moment map for the Hamiltonian U(1)
action generated by J¢, see , . There are two ways to proceed. One
can choose a gauge, for example by imposing that one of the special holomorphic
coordinates is real, such as X° = X°. This will always break the full symplectic
covariance that we have preserved so far, because the orthogonality to the U(1)-
orbits was the only remaining symplectically invariant equation involving £ and
JE.  Alternatively, one can work ‘upstairs,” on S or M using U(1)-invariant
quantities or C*-invariant quantities, respectively. This has the advantage of

preserving symplectic covariance, and we will see how it is done in the following.

5.4. Other formulations of special Kdihler geometry
5.4.1. Formulation in terms of line bundles

In the physics literature, special Kahler geometry is often presented in a
slightly different language where the quantities (X7, Fy) are interpreted as sec-

tions of a line bundle 4™ — M. In this section we explain how this formulation

32Contact structures and their relation to integrability are reviewed in

83



can be recovered from the immersion M — T*C"t! discussed in section

following [45].

The universal line bundle
We start by recalling that on a holomorphic Hermitian vector bundle there
is a unique connection, called the Chern connection, which is simultaneously
holomorphic and Hermitian, see [A:12] Consider the open set of non-isotropic
vectors V' = {v € Vl]y(v,v) # 0} C V = T*C"*! of the vector space V. The
space of complex lines P(V') = {[v] = Cv|v € V'} is the projectivization of
V. Then the trivial vector bundle V := P(V') x V' — P(V’) equipped with the
standard Hermitian metric v = Q(-,~) is a holomorphic Hermitian vector bundle,
with Chern connection d = 9+0. The universal bundleU — P(V") is defined as
the holomorphic line sub-bundle of V whose fibre U, over p = [v] € P(V’) is the
corresponding line Cv. The Chern connection on U is given by the y-orthogonal
projection of the flat Chern connection d of V:
~y(dxv,v)

Ywv) (1

Dxv = mydxv =

where X is a complex vector field on P(V') and v a section of U C V.

Pull-back of universal line bundle to the CASK manifold M
If (M, J,g,V,§) is a regular CASK manifold, then we have the following
commutative diagram:

M2y (352)

M—24 PO

Remark 9. The projectivization P(V’) of the symplectic manifold V' is a con-
tact manifold, see The holomorphic map ¢ is a Legendrian immersion
induced by the holomorphic Lagrangian immersion ¢.

The map f = pom =y 0¢: M — P(V’') defines the pull-back (UM, D)
of the universal bundle (4, D), where we use the same symbol D for the Chern

connection on U and its pull-back to M:

UM — U (353)

pomr=my o

M 2TVl by
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The holomorphic Lagrangian immersion ¢ : M — V can be regarded as a
holomorphic section of UM, as follows: according to the pull-back bundle

UM is defined as
UM = {(m,u) € M x U|(ry o ¢)(m) = my(u)} . (354)

A section of s : P(V') — U of Y — P(V’) has the form s(p) = v, where v, € V
is a vector such that [v,] = p € P(V’). For v, we can choose any vector on
the line p. The pull-back section UM — M has the form ((my o ¢)*s)(m) =
V(ryod)(m)s Where vVir, o4)(m) 18 @ vector on the same line in V' as o(m). If
we choose a section s of U such that s(p) = ¢(m) for p = myp(m), then the
corresponding pull-back section m +— ¢(m) can be identified with ¢. The local

form of ¢, regarded as a section of UM — M is
¢:M—UM (X)) — (X, Fi(X)), (355)

where X are special holomorphic coordinates on M, F; = 0F/0X', and where
F is the prepotential of ¢ regarded as a local holomorphic Lagrangian immersion
¢o:M—V.

Since the Chern connection D on the universal line bundle U/ is defined by

orthogonal projection, the pull-back connection satisfies
Dr¢ =iA}¢, Di¢p=0, (356)

where Dy := Dy, and Dy = Dy,, and where the components A’} of the connection

one-form iA"d X! of the pull-back connection are:

on . 010,0) (01 XTF;—0,F;X7)
wr= (b, d)  i(XKFx — FxXK) (357)
sAh 7(8f¢»¢) - i(an‘]FJ _afFJXJ) B

Mr = (6, d)  i(XKFy — FxXK) =0. (358)

We can also express the pull-back connection with respect to a unitary (unit

norm) section ¢1 = ¢/||8||, ||¢|| := \/|7(0, @)|, where v(¢, ¢) = i( X! Fr—F; X7).
The unitary section ¢; can be interpreted as a section of a principal U (1) bundle

PM s M, to which the holomorphic line bundle Y™ — M is associated. Let D
be a principal connection on P with connection one-form iA;d X! +iApdX?,

so that covariant derivatives of sections of PM take the form
Dropr =iA1¢1, Dro1 = iAoy . (359)
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We require that the pull-back connection on U™ is induced by this principal
connection. Then we can read off the components (A, A5) of the connection
one-form of P by comparing to the covariant derivatives of unit sections
of UM . Using that

_Dip ¢
gl llol?

orlloll, Diér = —H(f||26‘1||¢>ll , (360)

Dr¢y

we find: ) .
Ap = 5A’; , A= 5?’;. (361)

Pull back of the universal line bundle to the PSK manifold M

By choosing a section s : M — M of the C*-bundle 7 : M — M we
can regard M as an embedded submanifold, at least locally. We can also use
¢ : M — P(V') to obtain the pull-back bundle (U™, D) of the universal bundle
(U, D):

uM uM u (362)
M = M "2 p(V)
¢

The local form of the pull-back of ¢ : M — UM by s : M — M to a section
s*¢: M — UM is

s M — UM (¢7) = (X1(C), Fr(Q) (363)

where (% are local holomorphic coordinates on M, and where X! and F; depend
holomorphically on (*. Evaluating the pull-back connection on a holomorphic
section s : M — M we obtain

0u®,0) 0o X Fr — 0, Fr X1

Dys = iAZs =0, XTAls = Bl s = _ _
7 4(0.9) XTFp - Fi X!

s, Dzs=0.
(364)
On a unitary section s; = s/||s|| we pull back the principal connection (A, Af)

of PM to obtain a principal connection with components
Ag = 0, XTAr + 0, XTA;, Ag = 0. XTAr + 0, X1 Az, (365)

The local components (X (¢, ¢), Fr(¢,¢)) of the pull-back of ¢ by a unit section

s1 satisfy
(b, 0) = (¢(s1), (s1)) = (X (¢, O Fr(¢, Q) = F1(¢, OXT(¢,€)) = +1 (366)
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and depend non-holomorphically on the local holomorphic coordinates (*. Eval-

uating the connection on a unit section s; we find

Y(0ath, §) — ’Y(¢78a¢)s

Dysi = iAgs; = () 1 (367)
Dasl —_ iAaSl —_ 7(8a¢7;¢”y)(¢:;()¢78a¢) s1 (368)

Note that for a unitary section (¢, ¢) = £1 and (9,9, d) = —v(¢, 0zd). Also
note that Az = A,. In terms of components (X!(¢, (), F1(¢,¢)) the components
of the connection one form are

i X1 Ba Fr— Fy 3aXI
2 i(XTF,— F X))

iAy = —iA, = — (369)

where i(X!F;—F; XT) = +1, and where we use the notation a 5} b= (adb — (Da)b).

Pull-back of the universal line bundle to space-time N

Our last step is to consider the situation where a physical theory defined
on space-time N contains massless scalar fields with values in a PSK manifold
M. The Lagrangian description of such scalar fields is given by a non-linear
sigma model, see [B.I]for details. The scalar fields are the components of a map
Z: N — M from space-time N into a PSK manifold M. This defines a further

pull-back (UY, D) of the universal bundle to a line bundle over space-time.

unN uM uM u (370)
o I |
N = M =y M " P
x é

Introducing local coordinates x* on space-time, sections of the pull-back of the
universal bundle by a holomorphic section take the following form in terms of

components:
XN —=U  (2) = (X1 (C(2), Fi(¢())) (371)

Given a set of local holomorphic coordinates z* on M, we can choose a local
holomorphic non-vanishing function h on M and set X° = h(z). Then X¢(z) =
h(z)z®, and we can interpret the conical holomorphic special coordinates X! as

local functions on M. Since 2z = X*/X°, the local holomorphic coordinates 2*
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are the ‘inhomogeneous’ special holomorphic coordinates on M associated to the
special holomorphic coordinates X! on M, which can be viewed as projective
coordinates (or homogeneous coordinates) on M [

This construction provides us with a section s : M — M : 2% — X!(2). By
making a holomorphic coordinate transformation z® — ¢ on M we can then
go from special holomorphic coordinates z* to general holomorphic coordinates
¢, Given a holomorphic section (XZ(¢), F1(¢)) of UM — M, we can obtain
an expression for the Kihler metric gy;. Firstly, we locally identify M with an
embedded complex submanifold of M using the section s : M — M : (* —
XT(¢). The metric g;; is obtained by pulling back the projectable tensor g](\g),
see , that we have built out of the K&hler metric gp;. According to
the tensor gjg&) has a ‘Kiihler like’ potential (X, X). Since (X!(z), Fr(z)) are
local holomorphic functions on M, it follows that gy = ¢* §](\2) is a Kahler metric
gx; = 00K with Kéhler potential

K = —log(~i(X" () F1(C) — F1(O)X(0))) - (372)

We also note that the pullback of the Chern connection to the pull back

bundle Uy — N over space-time by a unitary section is

Au(x) = 9" (x)Au(C(2), C(2)) + 0,C% (2) AalC(2), C()) (373)
X' 9, F—F 9, X" i Ny((0,X)X7 - X19,X7)
2 i(XIF,—-F X)) 2 Ni  XKXL ’

where i( X F;—FrX') = N;y X' X7 = 4+1. We will see in section@tha‘u this pull
back connection is equal, up to an overall minus sign, to the U(1) connection
used in the superconformal calculus (see also [B.4)).

5.4.2. Formulation in terms of an affine bundle, and why the prepotential trans-
forms as it does

In this section we elaborate on the following two points:

1. The extrinsic realization of ASK manifolds [42] which we have described
in section 5.1.2] only provides a global construction for simply connected
ASK manifolds. It is desirable to have a generalization which allows the

global construction of general ASK manifolds.

33The terms ‘inhomogeneous coordinate’ and ‘homogeneous/projective coordinate’ are used
here as in projective geometry, for example for coordinates on the complex projective space
P, (C).
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2. The transformation properties of the holomorphic prepotential under sym-
plectic transformations are complicated, and their geometric origin re-
mains obscure. The prepotential is not a symplectic function, and when
deriving its transformation formula by integrating the transformation for-
mula for the symplectic vector (X7, Fy), this leaves the integration
constant undetermined. For a homogeneous prepotential this constant is
absent, and for degree two we found the complicated looking expression
(211)).

We will now report how these issues have been resolved in [46], [47]. The
prepotential F' can be defined as the potential of the Liouville form A = W;dX?,
restricted to a special Lagrangian submanifold L C V' = T*C", where d\|, =
Qi =0and A\ = FrdX! = dF. Here we assume that the complex symplectic
coordinates (X!, W;) on V have been chosen such that L is a graph. Then
Wy =F;=0F/0X T on L. From these expressions it is clear that neither A nor

F' is invariant under symplectic transformations. However the one-form
n=Xlaw; - wrdx?! (374)

is symplectically invariant, and, like the Liouville form, a potential for the com-
plex symplectic form 2, hence closed when restricted to a Lagrangian subman-
ifold LC V:

dn =20, =0. (375)

Consequently 7 is locally exact on L and admits a potential f, which is a

symplectic function, and which is unique up to an additive constant,
ne = —df . (376)

We will call the potential f a Lagrange potential, and note that Lagrange po-

tentials and prepotentials are related by
2F=f+X'Fre f=2F-X'F;. (377)

From the physics literature it is well known that the combination F'— %X IFrisa
symplectic function [32]. We now see that this function is, up to normalization,
the Lagrange potential associated to F'.

Let now M be a connected, but not necessarily simply connected ASK mani-

fold. Then the above applies locally, if we choose a domain U C M which is small
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enough to admit a Lagrangian Kahlerian embedding ¢ : U — V = T*C™ = C2".
Such an embedding identifies U with a Lagrangian submanifold L ¢ C2". On
each such L we have a symplectically invariant one-form n = X'dW; — W;dX!
and can choose a Lagrange potential f. Then (L, f) is called a Lagrangian pair,
and a Lagrangian pair (L, f) is called Kdhlerian if the restriction of the Hermi-
tian form v = i€Q(-,~) is non-degenerate. Lagrangian pairs are related to each
other by a group action. The relevant group is G¢ := Sp(C?") x Heisz,41(C),
where Heisgp,+1(C) is the (2n + 1)-dimensional complex Heisenberg group. The
group G is a central extension of the complex symplectic affine Sp(C?")x C?" C
Aff(C?"). We will see that the central extension is needed to include the free-
dom of shifting Lagrange potentials and prepotentials by a constant, and refer
to for further details about the group G, its subgroups and its represen-

tations. The group G¢ maps a given Lagrangian pair (L, f) to the new pair

g- (L, f) = (p(9)L,g- f) , (378)

where g = (M, s,v) € Gg¢, with M € Sp(C?*), s € C central, v € C?" a
translation, where g is the affine representation of G¢ obtained by ‘forgetting
the centre’, that is by the natural action of (M,v) € Sp(C?*") x C?", and where

g-f:fog_1+Q(-,v)—2S (379)

is the new Lagrange potential. While the first term is the natural action of the
affine group on functions, the second and third term correspond to translations
and to central transformations, respectively. In particular, the third term, which
represents the action of the centre of the group G, corresponds to shifting the
Lagrange potential, and the associated prepotential, by a constant.

To describe the local embedding of an ASK manifold, we can only admit
Lagrangian pairs which are Kéhlerian. The subgroup of G¢ acting on Kahlerian
Lagrangian pairs is Ggx = Sp(R?") x Heiss,+1(C) C Gc, which is a central
extension of the affine symplectic group Aﬂ?gp(Rzn)((CQ”) = Sp(R?") x C?" which
we have encountered before.

We need a further definition. A special Kdhler pair (¢, F') is a Kéhlerian
Lagrangian embedding ¢ : U — ¢(U) C V, which induces on U the restriction
of the ASK structure of M, together with the choice of a prepotential F'. For
each U, one denotes by F(U) the set of all special Kéahler pairs, where only
domains U are admitted where F(U) # (). A Kéhlerian Lagrangian pair (¢, F')
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determines a Lagrangian pair (L, f) with Lagrangian submanifold L := ¢(U)
and Lagrange potential f given by

Q" f =2F - X'W;, (380)

where ¢ has components ¢ = (X!, Wr). Formula relates Lagrange poten-
tials and prepotentials. By assumption the functions X! define special coordi-
nates on U and if we identify U with ¢(U) we can omit ¢* in and relate
F and f as functions of holomorphic special coordinates. Then we are back to
B77).

The group Gsk acts on the special Kéhler pairs F(U) by

where
99 =p(g)od, (382)

with p the same representation of Ggx as above and
1 I 1 11 ! 1 *

where ¢ = (X1, W;) and g¢ = (X', W) are the local expressions for ¢ and
g¢. The somewhat complicated transformation formula for prepotentials
follows from the formula for Lagrange potentials together with .

By specialization to the subgroup Sp(R?") C Gsx we see that under sym-
plectic transformations g = (M, 0,0):

1 1 1 1
F-)F,—§XIW]+§X/IWI/<:>F/—§X/IWI/:F—§XIW[- (384)

This is the standard formula for the transformation of the prepotential, now
derived without the ambiguity of adding a constant. The observation that
F— %X TF; is a symplectic function is now explained by this function being
proportional to the associated Lagrange potential. For CASK manifolds, sym-
plectic transformations act on the set of homogeneous prepotentials of degree
two. Note that two is the only degree of homogeneity for the prepotential, where
Fr has the same degree of homogeneity as X', so that a linear combination of
X' and F; transforms homogeneously.

Let us now turn our attention to how a global construction of ASK manifolds

can be achieved by glueing together special Kahler pairs. We will only give a
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summary and refer the interested reader to [46, [47] for details. The group
Gk acts simply transitively on the set F(U) of special Kéahler pairs for fixed
U C M. One can show that by letting U vary over M one obtains a Ggx
principal bundle P — M, called the bundle of special Kdahler pairs, which comes
equipped with a flat connection. The group Gsx admits a linear representation
p: Gsx — Sp(R?") which defines a flat real symplectic vector bundle (Vg, 2, V)
of rank 2n, such that VQQ = 0. By complex linear extension Vg = Vg ® C we
obtain a flat symplectic holomorphic vector bundle (V¢, 2, V), with VQ = 0,
where we use the same symbol for V,Q and their extensions. The complex
symplectic form Q on V¢ defines a Hermitian metric v = iQ(-, 7-), where 7 is
complex conjugation. Since the group Sp(R?") acts on C?", the complex vector
bundle V¢ is associated to the Ggx principal bundle of special Kahler pairs
through the (extension of the) linear representation p.

One can further show that M being an ASK manifold implies that V¢ admits
a global holomorphic section ® : M — V¢, such that

(VO)'Q = 0, (385)
(V®)"y is non-degenerate. (386)

The map V® : TM — V¢ is a morphism of holomorphic vector bundles.
The global section ® generalizes the global immersion M — V of simply con-
nected ASK manifolds, with conditions and corresponding to the
requirements that ¢ must be symplectic (¢*Q2 = 0) and Kéhlerian (¢*v non-
degenerate). This construction does not yet encode the freedom of making
translations. To include these we need to introduce a flat complex affine bun-
dle A — M modelled on Ve[ which can also be defined as the affine bundle
associated to the principal bundle P — M of special Kahler pairs by the affine
representation p: Ggx — Affgpgen) (C*™) on C?™.

One then obtains the following theorem, which generalizes the construction
of [42):
Theorem 2. Extrinsic construction of general affine special Kahler
manifolds (Theorem 3.5.4 of [47]). Let M be a complex manifold, and
A — M be a flat complex affine bundle modelled on the complex vector bundle

Ve = Ve ® C, where (V,Q,V) is a flat real symplectic vector bundle such that
VQ = 0. If there is a global holomorphic section ® : M — A such that the

34See for the definition of an affine bundle.

92



conditions and (386) are satisfied, then M carries the structure of an
affine special Kdahler manifold, and A is associated to the principal Gsx bundle
of special Kdhler pairs by the affine representation p : Ggx — Aﬁsp(Rgn)(CQ")
acting on C2".

Conversely, if M is an affine special Kdhler manifold, then the associated
complex affine bundle A — M corresponding to the affine representation p :
Gsg — Aﬁsp(Rzn)(CZ”) acting on C*" has a global section ® : M — A, which

satisfies the conditions (385|) and (380)).

5.4.8. Comparison to the literature

In this section we will compare the definitions we have given for affine and
projective special Kéhler geometry with other definitions in the literature. So
far we have covered the original definition [40] of PSK geometry, which was
expressed in terms of special holomorphic coordinates and based on the su-
perconformal tensor calculus; the intrinsic definition of [4I], and the extrinsic
construction of [42], which has extended the earlier work [48] 49] into the frame-
work of special complex geometry, which contains special Kéhler geometry as a
subset. An alternative ‘bilagrangian’ extrinsic construction of ASK manifolds
has been given in [50].

In between [40] and [41] various other formulations of special Kéhler geom-
etry have been presented in the physics literature. Common themes in these
approaches are: (i) to have manifest holomorphic coordinate invariance of the
formalism, that is, to use general holomorphic coordinates instead of special
holomorphic coordinates, and (ii) to avoid using the prepotential explicitly,
because the prepotential is not a symplectic function, and because there are
(non-generic) symplectic frames where no prepotential exists. This leads one to
work with a collection ®(z) = (X!(2), Fr(z)) of holomorphic functions defined
on local coordinate charts, which are glued together by transition functions, and
which are are interpreted as defining a global section of a vector bundle. Equiv-
alently, one can use a unit section ®1(z,2) = (X!(2,2), Fy(z, 2)), which then is
not holomorphic. In this setting special Kéhler geometry is defined by imposing
suitable conditions on this section which allow to define a non-degenerate special
Kahler metric, and, more generally, to obtain all the local expressions needed
to have a well defined vector multiplet Lagrangian. Since these approaches are
covered by excellent reviews, articles and books including [51], 52, 53], (4] 22],
which contain comprehensive bibliographies, we only mention a few selected

papers in the following. The work of [55] gave a geometric definition of PSK
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manifolds in terms of holomorphic vector bundles, which was motivated by the
insight that special Kéhler geometry plays an important role in the geometry of
moduli spaces of Calabi-Yau compactifications of string theory, see also section
The so-called rheonomic approach to supergravity, see [56] for a review,
was applied to N = 2 vector multiplets in [57, 58] to obtain a formulation based
on general holomorphic coordinates. Issues relating to the (non-)existence of
a prepotential were discussed in [59]. This is particularly relevant for gauged
supergravity, that is for supergravity theories with non-abelian gauge symme-
tries or charged matter multiplets, because the gauging breaks the continuous
symplectic symmetry and distinguishes a discrete subset of frames. Gauged su-
pergravity is outside the scope of this review. The formulation of special Kéhler
geometry in terms of real symplectic coordinates was discussed in [60, 61].

For a more detailed comparison between the approach presented in this
review and alternative formulations, we use [53], where various definitions of
special Kéhler geometry have been collected and compared to each other, and
[64], which has extended these definitions to arbitrary target space signature.

For ASK manifolds, the transition functions given in [53] take the form

X! (2) : X (2(5)
© = ew(”)M(ij) S + b(”) . (387)

Fi(2)) Fi(z(5)

Here the indices i, j refer to two overlapping patches U;, U; C M, (M(ij), beijy) €
Sp(R?™) x C?", are transition functions corresponding to affine symplectic trans-
formations, and e’¢») € U(1) are constant U(1) phases. While (M;;), b(;;)) real-
ize the affine representation p of the group Ggk, and therefore can be interpreted
as transition functions of the complex affine bundle A — M, the phases e’
reflect an additional freedom which is not present in [41], [42], where the special
connection V is part of the data defining an ASK manifold. As discussed in sec-
tion special connections always come in S'-families. While the underlying
Kéhler manifold is the same, ASK manifolds with different special connections
from the same S'-family are considered distinct according to the definitions in
[41], [42]. However, this choice does not influence the Kéhler metric and other
data needed to build a vector multiplet Lagrangian, and therefore definitions in
the physics literature do not require to fix the special connection. The phases
e in the transition functions reflect the freedom of choosing different

special connections V ;) and V ;) from the same S'-family on U; and U;. Thus
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compared to the complex affine bundle A — M transition functions of the form
define a bundle which is modified by a ‘twist.” It would be interesting to
describe this twist within the framework of [42] [47]. Moreover, since we are not
aware of explicit examples where the additional freedom of rotating the special
connection is actually used, it would be interesting to find explicit examples.
Let us also have a look at the definition of PSK manifolds given in [53]. In
this case the transition functions between patches U;,U; C M are of the form
XI(Z(z')) _ ef(ij)(z)M(ij) X1 (2())
Fi(z@) Fi(z())

, (388)

where f(;;)(z) are holomorphic functions and M; € Sp(2n + 2,R). Such
transition functions correspond to a product bundle £ ® H — M, where L is a
holomorphic line bundle and # is a flat symplectic vector bundle. If H — M is
trivial we can identify £ with the pull-back line bundle U/ M _y M. If H is non-
trivial, we expect that this bundle will arise when applying the construction
of section to the complex affine bundle A — M. We remark that the
special connection V on M does not induce a flat connection on M, since the
superconformal quotient includes dividing out the isometric U(1)-action which
acts by rotation on the S'-family of special connections. It would be interesting
to have an intrinsic characterization of PSK manifolds, which then could be
related to the constructions in terms of line bundles and vector bundles.
Finally, another global condition which is included explicitly in the definition
[53] of PSK manifolds is that M should be a Kdhler-Hodge manifold. In the
mathematical literature a Kahler manifold M is called a K&hler-Hodge manifold
or Kéahler manifold of restricted type if its Kahler form w defines an integral
cohomology class, [w] € H?(M,Z). For compact M this implies that M is a
projective variety, that is, embeddable into complex projective space. In su-
pergravity a normalization condition for the Kéahler form arises since the fields
transform under the local action of the group U(1), which in the superconformal
approach is part of the superconformal group. One must therefore impose that
these transformations are globally well defined on the scalar manifold. This
also applies to A/ = 1 supergravity, which like A’ = 2 has a local U(1) group
action on its scalar manifold M. For compact M it was shown in [62] that this
implies that the Kihler form must define an even integer class in H?(M,Z).

That the condition is even-ness rather than integrality results from the normal-
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ization of the U(1) charges, which are half-integer valued for fermions. In the
physics literature the term K&ahler-Hodge is used for Kéhler manifolds which
are target spaces of supermultiplets that can be coupled consistently to super-
gravity. Most standard examples for PSK are open domains which have trivial
topology, so that [w] = 0, and the K&hler-Hodge condition is automatically sat-
isfied. For non-compact scalar manifolds with non-trivial topology the global
well-definedness of U(1)-transformations can impose non-trivial conditions. A
recent comprehensive analysis has shown that a scalar manifold M is an ad-
missible target space for chiral supermultiplets coupled to N' = 1 supergravity
if it admits a so-called chiral triple [63]. If space-time is a spin manifold, then
every Kéahler-Hodge manifold admits a chiral triple, irrespective of whether it
is compact or non-compact [63]. In [54] it was shown that ‘projective Kédhler
manifolds’, that is scalar manifolds constructed as Kéahler quotients using the
superconformal calculus are automatically Kéhler-Hodge. Since we have de-
fined PSK manifolds as Kéhler quotients of CASK manifolds, there is no need
to require the Kéahler-Hodge property explicity.

5.5. Special geometry and Calabi- Yau three-folds

The geometry of moduli spaces of Calabi-Yau three-folds provides natural
realizations of special real and special Kahler geometry. These moduli spaces ap-
pear in compactifications of supergravity and of string and M-theory on Calabi-
Yau three-folds. The scalar manifolds in physical applications usually combine
moduli which correspond to deformations of the Calabi-Yau metric with moduli
associated with the deformations of antisymmetric tensor fields. We start with
the discussion of the moduli of the Calabi-Yau metric, and then turn to the
moduli spaces of string compactifications. In this section we assume knowledge
of some mathematical concepts, including holonomy, de Rham and Dolbeault
cohomology Hodge numbers, homology, Poincaré duality, the cup and inter-
section product. Since this material is not needed in other parts of this review,
we will not explain these concepts in detail, but refer the readers to [64] Vol 2
and [65] [66], on which this section is partly based.

A Calabi-Yau n-fold X is a 2n-dimensional compact Riemannian manifold
with holonomy group contained in SU(n) C U(n) C SO(2n). This implies that
X is Kéhler, but it is more restrictive than that, by excluding a subgroup U(1) C

35Some aspects of Dolbeault cohomology are presented in
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U(n) from the holonomy, which implies that the metric is Ricci-flat. Therefore a
Calabi-Yau manifold can alternatively be defined as a Kéhler manifold admitting
a Ricci-flat metricY

We now specialize to Calabi-Yau three-folds. In the following it is under-
stood that the holonomy group is not contained in SU(2) C SU(3), thus ex-
cluding the cases where X = K3 x T? (which is hyper-Kéhler with holonomy
SU(2)), and where X = T (which is flat). The moduli space arising when
dimensionally reducing the Einstein-Hilbert term on X is the space MRgjcc; of
Ricci-flat metrics on X. If the field equations of a higher-dimensional theory of
gravity and matter admit a solution where space-time takes the form R™3 x X
with a metric 11,3 X g, which is the product of the four-dimensional Minkowski
metric 11 3 with a Ricci-flat metric g on X, then the four-dimensional massless
fields corresponding to zero modes of the higher-dimensional metric are: (i) the
four-dimensional graviton, equivalently, linearized fluctuations of the Minkowski
metric 71 3, (ii) four-dimensional vector fields in the adjoint representation of
the isometry group of g, (iii) four-dimensional scalars in one-to-one correspon-
dence with linearly independent solutions of the linearized Einstein equation on
X. If X is a Calabi-Yau three-fold, then there are no continuous isometries
and hence no massless vector fields descending from the higher-dimensional
metric. A Ricci-flat metric on X is consistent with the field equations if the
energy-momentum tensor has no non-zero components along X. In this case
the Einstein equations reduce to the condition that X is Ricci-flat, and scalar
zero modes of the metric parametrize the moduli space of Ricci-flat metrics
on X E The linearized form of the Ricci-flatness condition is a Laplace-type
equation for the so-called Lichnerowicz Laplacian, whose zero modes are the
moduli scalars. They enter into the low-energy effective four-dimensional ac-
tion through a non-linear sigma model with target space MRgjcci, equipped with

the metric

1
G(5Q(1)7 69(2)) = v A 59(1)mn5g(2)pqgmpgnq\/§d6x , (389)

m

where 2™ m = 1,...,6 are coordinates on X, where g = (gmn) is the metric

36For string theory compactifications the metric is only Ricci-flat to leading order in o’ for
n > 2, but this does not affect the following discussion.

37In string theory the Einstein equations receive a’-corrections. This leads to corrections
to the metric on the moduli space, which can be computed using two topologically twisted
versions of string theory [66].
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on X, where dg(;ymn ¢ = 1,2 are infinitesimal deformations of the metric, and
where V is the volume of X.

For Calabi-Yau three-folds Mg is locally isometric to the product of the
moduli space Mpix of complex structures on X and the moduli space NKahler

of Kéhler structures on X,
MRicei = Mepix X Nkanler - (390)

This factorization is a special feature of Calabi-Yau three-folds. The definition
of a Kéhler form requires the choice of a complex structure, and in general the
space Niahler Of Kahler forms of a complex manifold is fibred over its space
Mpix of complex structures. However, for Calabi-Yau three-folds the Kahler
structure and complex structure can locally be varied independently. From the
physics perspective this is predicted by supersymmetry, since in N' = 2 theories
both types of moduli belong to different types of multiplets. In terms of com-
plex coordinates u®, a = 1,2,3 on the Calabi-Yau three-fold X with metric g,
complex structure J and Kéhler form w, deformations of the complex structure
J correspond to deformations of the Kéahler metric g,; which have the form
09gap, 695 and therefore are not Hermitian with respect to the undeformed com-
plex structure J. In contrast deformations of the Kéhler structure correspond
to deformations dg,; of the metric, which are Hermitian with respect to the
complex structure J but change the Kéhler form w of X.

Infinitesimal deformations of a complex structure J € I'(End(7'X)) are gen-
erated by holomorphic vector-valued one forms 7 = 7409, ® dﬂB, or = 0. Two
such forms generate equivalent deformations if they differ by an d-exact form,
therefore complex structure deformations are classified by H!(X, TcX), the first
Dolbeault cohomology group of X with values in the complexified tangent bun-
dle. On a Calabi-Yau three-fold there exists a holomorphic, covariantly constant
(3,0)-form £, called the holomorphic top-form, which is unique up to complex
rescalings 2 — AQ2, where A\ € C*. This provides an isomorphism between Tc X
and A2T¢ X by

¢ = Ype = Qapcd” (391)

which implies the relation
HY (X, TeX) = HY(X, \°T¢X) 2 HoH (X)) | (392)
so that complex structure deformations of Calabi-Yau three-folds are parametrized

by the Dolbeault cohomology group Hg’l(X ), that is, by equivalence classes of
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O-closed (2, 1)-forms modulo d-exact forms, which are related to vector-valued

one-forms by the isomorphism,
Gabe = QapaT’ - (393)

The dimension of H?1(X) (considered as a vector space) is given by the Hodge
number h%! > 0, which is a topological invariant of X. Since there is a one-
to-one correspondence between linearly independent harmonic (p, ¢)-form on X
and elements of H?7(X), one can choose harmonic (2, 1)-forms to generate the
complex structure deformations. The expansion of a general harmonic (2,1)-
form ¢ in a basis ¢4, A=1,..., A%,

p=2"a, 24eC (394)

provides local coordinates 24 on Mpix. The metric on My is induced by the
standard scalar product (a, 8) = fX a A 8 between (2, 1)-forms. To see that
this metric is Kéhler, and more specifically projective special Kahler, one uses
the relation between complex structures on X and the periods of the holomor-
phic top-form 2. Choosing a complex structure on X is equivalent to specifying
a decomposition of the third de-Rham cohomology group into Dolbeault coho-
mology groups,

H3X)=H)(X)e HY'(X) & Hy*(X) & Hy (X)) . (395)

Such a decomposition is obtained by picking one of the b = 1 4+ A% 4+ h2! +1
harmonic forms, where b3 is the third Betti number, and declaring it to be the
holomorphic top form. More precisely, the complex structure does not depend
on the explicit choice of 2, but only on the corresponding ‘complex direction’,
since we can rescale 2 +— AQ, A\ € C*.

We now choose a basis (A, By), I = 0,..., h*" of the third homology group
H3(X,Z) of X, with normalization

Al By =64 =-B;- A", (396)

where - denotes the intersection product (which is defined by counting inter-

section points between submanifolds, weighted with orientation). The periods

X1(2):= AIQ7 Fr(z) == ; Q, (397)
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of the holomorphic top-form depend holomorphically on the complex coordi-

nates z4

homology groups H,(X,Z) and the cohomology groups H% (X, Z)E

on Mcpix. Poincaré duality provides an isomorphism between the

€'+ [C], such that / 8= / [C]AB, (398)
C X
for all g € QP(X). Poincaré duality maps the intersection product of cycles (de-
fined by counting intersection points weighted by orientation) to the cup product
of cohomology cycles (induced by the wedge product of forms). This allows to
define a basis (ay, 8!) of H3(X,Z) dual to the basis (A!, Br) of H3(X,Z):

/A']onZ/oq/\ﬁJ:(5{]7 /BﬁIZ/ﬂIAan—éﬁ. (399)

In terms of this basis the top-form has the expansion
Q=Xla; - Fp. (400)

Since only half of the periods are independent, X’ can be chosen to parametrize
the possible choices of a top-form out of the harmonic three-forms. It follows
that the X! can be used as projective coordinates for Mepix. At this point the
relation to CASK and PSK manifolds becomes obvious. It turns out that the
metric on Mgplk, which is defined by the scalar product between (2,1) forms,

is a Kéhler metric with Kéhler potential
K = —log {z / QA Q] — log [—i (X' (2)Fy(2) — Fr(:)X7(2))] . (4o1)
X

This is a PSK metric, given in terms of a holomorphic section (X7'(z), Fr(z))
of the complex line bundle £ — M = M.pix. The associated CASK metric
also has a natural interpretation. If we do not only choose a complex structure,
but in addition a specific top-form compatible with this structure, the resulting
space, which is parametrized by the independent periods X7, is a complex cone
over Mpix which carries the structure of a CASK manifold.

We now turn to infinitesimal deformations dg,; of the Ricci flat metric which
preserve the complex structure. In local complex coordinates u® on X the Kéhler

forms is given by w = ig,zdu® A di®, and therefore such deformations change

38The ring Z can be replaced by R or C.
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the Kahler form. Since the K&hler form is a closed real (1,1)-form, it defines a
class in

H"'(X,R):= H*(X,R)n H"'(X,C), (402)

which labels Kahler structures on X. Changes of the Kéahler structure are
changes of the Kéhler form by a real (1,1)-form which is closed but not exact.
As representatives one can choose h'! linearly independent harmonic (1,1)-
forms wy, x = 1,...hAY!. Then the expansion of the Kihler form in terms of
this basis,

w=t"w,, t*eR, (403)

provides real coordinates on the space of Nianler of Kéhler structures. We
remark that Mganer € H(X,R) 2 Rhl’l, since when deforming the Kéahler

=

form we need to preserve the positivity of the metric ¢ on X. This can be
expressed by the requirement that the volumes of X and of all its complex
submanifolds must be positive. The top exterior power of the Kéahler form is

proportional to the volume form of (X, g). The volume V of X is given by

1
Vz—/w/\w/\w. (404)
3 Jx

Moreover the Kahler form is a so-called calibrating form for holomorphic curves

C and holomorphic surfaces S in X, that is
1
Vol(C) = / w, Vol(S) = 7/ WwAW. (405)
c 2Js

The conditions

/w>0, /w/\w>0, /w/\w/\w>0 (406)
c s b'e

define the Kdahler cone of X, the space of positive Kéhler classes, which is
NKahler-

Using the basis w,,, the volume takes the form

1
V= gcxyztmtytz ) (407)
where the quantities
Cryz = / Wy Awy A w, (408)
X

are topological invariants, called triple intersection numbers. To explain this

name, we use the isomorphism H?(X,Z) = H,(X,Z) provided by Poincaré
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duality, which maps the cup product of cohomology classes of closed differential
forms to the intersection product of homology classes of closed submanifolds.
This implies that

Cuys = Dy Dy - D, (409)

where Dy, z = 1,... A" = by is the basis of Hy(X,Z) dual to the basis w,
of H%(X,7Z), and where - is the intersection product between homological four-
cycles@

Since the moduli dependence of the volume V' is given by a homogeneous
symmetric polynomial in the Ké&hler moduli t*, we can use it to define a 3-
conical metric, in fact an ASR metric, on Nkanler- Its logarithm log V' defines
the associated 0-conical Hessian metric. The metric on Nxanler obtained by
dimensional reduction of the Einstein-Hilbert action is the metric induced by
the scalar product of (1,1) forms. Its metric coefficients with respect to the
basis w, can be shown to be of the form
9?logV

Cay = Glon, ) = Frpmw

(410)

Thus the metric on the Kéahler cone is 0-conical with a Hesse potential given
by the logarithm of the volume. The associated PSR metric on hypersurfaces
of constant volume also has a natural interpretation. It is the metric on the
moduli space Ny, 0, of Kihler structures at fixed volume. As we have seen in
section this metric is obtained by pulling back either the 3-conical metric
92V or the O-conical metric 8?log V' to the hypersurface N, .. € Nkahler-

In physics applications it is Nf{ahler rather than Nianler which appears as the
target space of a sigma model, and therefore it must carry a positive definite
metric. From section [2.5] we know that the PSR metric is positive definite
if the 0-conical metric 0%logV is positive definite, and equivalently if the 3-
conical metric 92V has real Lorentz signature (1,h''! —1). These conditions
are indeed satisfied in Calabi-Yau compactifications. The distinction between
time-like and space-like directions with respect to 92V in the space of (1,1)-
forms corresponds to the so-called Lefschetz decomposition of H?(X,R) into
‘primitive forms’, which are orthogonal to the Kéhler form w, and the direction

parallel to the K&hler form.

39p4 is the second Betti number of X. Note that for Calabi-Yau three-folds h?9 = h0:2 = 0,
hence by = hl:1.
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A related but different question is to determine the maximal domain in
HY(X,R) = R""" where the PSR metric is positive definite. The boundary
of this region can be characterized using the simpler 3-conical metric 92V by
det(9%V) = 0. Note that the region where the PSR metric is positive definite is
in general larger than the Kéhler cone. Therefore it is important to keep track of
Kéhler cone of the underlying Calabi-Yau manifold when working with an effec-
tive supergravity theory. For example, in [67, [68] it has been shown that naked
singularities which are naively present in some solutions of five-dimensional su-
pergravity are unphysical if the theory is obtained as a Calabi-Yau compactifi-
cation of eleven-dimensional supergravity, because at the singularity the scalar
fields take values which are inside the domain where the PSR metric is positive
definite, but outside the Kéhler cone of the underlying Calabi-Yau manifold. If
the theory is considered as embedded into M-theory one needs to modify the
effective Lagrangian when the boundary of the Kéhler cone is reached, even
though all data in the Lagrangian, and solutions with space or time dependent
moduli, remain smooth at this point. The modification of the Lagrangian cor-
responds to continuing into the Kéhler cone of another Calabi-Yau manifold,
which differs from the original one by a transition which changes the topology.
At the boundary of the Kéahler cone additional massless vector or hypermulti-
plets are present. Integrating out these multiplets induces threshold corrections
to the couplings in the effective Lagrangian for the remaining modes, which
for five-dimensional vector multiplets induce finite shifts of the coefficients of
the Hesse potential [69] 67, [68]. The proper treatment of this subtlety removes
naked singularities which are naively present in domain and black hole solu-
tions with non-constant scalars. In this sense, the Kéahler cone acts as a cosmic
Censor.

So far we have been discussing the moduli space of Ricci-flat metrics on X. In
supergravity and string compactifications, there are additional moduli resulting
from the dimensional reduction of various p-form fields. Massless scalar fields
arise whenever the components of such a p-form along X are harmonic forms
on X. The number of massless scalars is given by the corresponding Hodge
number. Such massless scalars are moduli, unless the effective theory contains
a potential for them, which is not the case for Calabi-Yau compactifications in
the absence of fluxes. A particular role is played by the Kalb-Ramond two-form
field B of string theory. When reducing a type-1I string theory on a Calabi-Yau
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three-fold, the B-field gives rise to h''! real moduli, which naturally combine
with the moduli of the Kahler structure. Defining a complexified Kahler form

and expanding in the basis wy of H1 (X, R),

we=B+iw=2z4, z2€C, A=1,...h"", (411)

we obtain complex coordinates z*

on the moduli space Mxganier of complezified
Kahler structures. This space turns out to be a Kéhler manifold with a Kahler
potential that is obtained from the Hesse potential log V', as follows.

Generally, given a Hessian manifold N of dimension n with local coordinates
t4 and Hesse potential H, we can extend this to a complex manifold M =

A

R"™ x N, with coordinates z* = s# + it". The Hessian metric on N can be

extended to a Kahler metric on M with Kéhler potential
K(z,z) = H(Im(2)) . (412)

This defines a Kihler metric with metric coefficientd20]
o ’°K B 0*°H
IAB = 5 4958

a 48tA6tB ’ (413)

which has an isometry group which contains the n commuting shifts z4
24+ TA, r4 eR.

In the case at hand, we can use the Hesse potential —log V' of a 0-conical
Hessian metric on Mganier s a Kéahler potential for a Kahler metric MKahler@
To see that this metric is actually a PSK metric, we introduce projective coor-
dinates X1, T =0,...h"%" on Mxanler by choosing local holomorphic functions
X1(2) such that X4/X% = 24. Then we define the holomorphic function,
homogeneous of degree two,

P lCABCXAXBXC
3! X0 '
It is straightforward to see that

(414)

—i (XTFy — FrXT)

= L IXPCapo(zt — 24P - 2B)(: — 20) = SXPV . (415)

40We do not correct for the factor 4, which comes from the Jacobian, so that the two metrics
differ by a constant factor. This is does not matter here, since we only want to illustrate the
principle. In applications the normalization is fixed by the Lagrangian of the explicit model
one considers.

41The minus sign is introduced for consistency with the literature.
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Theory Number of vector multiplets | Moduli space | Geometry
M-theory | bt —1 N¥ottor PSR
IA htt MKahler PSK
1B h21 Mpix PSK

Table 3: This table shows which moduli of a Calabi-Yau compactification sit in vector multi-
plets. PSR=projective special real, PSK = projective special Kéahler

Therefore the Kéhler potentials —logV and —log (—z’(XIF‘I — FIX'I)) differ
by a Kéahler transformation and define the same Ké&hler metric on MKahler@
Therefore the metric on Mganler is @ PSK metric with prepotential and
Kahler potential

K = —log (—i(X'F; — F;X")) . (416)

We remark that in string theory the ‘very special’ cubic form of the prepotential
only holds to leading order in perturbation theory and is subject to complicated
corrections.

We conclude by indicating how the moduli of Calabi-Yau compactifications
of eleven-dimensional supergravity and of type-II string theories are distributed
among five- and four-dimensional N/ = 2 supermultiplets. Moduli are either
allocated to vector multiplets, where the geometry of the target space is PSR
or PSK, or to hypermultiplets, where the geometry is quaternionic Kéhler, de-
noted QK in the tables. The dimension of a quaternionic Kéhler manifold is
divisible by four. The maximal dimension of a Ké&hler submanifold of a QK
manifold is half of the total dimension [70]. Hypermultiplets contain a mixture
of moduli of the metric, moduli resulting from reducing p-form gauge fields,
and, for type II string theory, the dilaton and the axion obtained from dualizing
the Kalb-Ramond two-form. The PSK spaces Mcpix and Mxkanier are Kéhler
submanifolds of hypermultiplet target manifolds, at least to lowest order in o'.

Table 3]lists vector multiplet moduli, Table[d]lists hypermultiplet moduli. In
compactifications from eleven to five dimensions, the moduli of the real Kéhler
form split: the volume modulus sits in a hypermultiplet, the remaining Kéhler

moduli parametrizing the fixed volume hypersurface in the Kéahler cone sit in

42Note that the domains where the argument of the logarithm is positive agree. Therefore
both Kéhler potentials are defined over the same domain.
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Theory Number of hypermultiplets | Moduli space Geometry

M-theory/ITIA | h>! 41 Mepix C Munr PSK c QK
1IIB hLl +1 MKahler - MHM PSK C QK

Table 4: This table shows which moduli of a Calabi-Yau compactification sit in hypermulti-
plets. PSK = projective special Kihler, QK = quaternionic Kahler.

vector multiplets. Note that this split is required in order to obtain a PSR
manifold. The volume modulus and the complex structure modulus sit in hy-
permultiplets together with moduli coming from reducing p-form gauge fields.
In compactifications from ten to four dimensions the moduli of the Kéahler form
and those of the Kalb-Ramond B-field combine into complex moduli. Depend-
ing on whether one considers the ITA or IIB theory, either the moduli of the
complexified Kéhler form or the moduli of the complex structure moduli sit in
vector multiplets. The remaining moduli of the metric sit in hypermultiplets to-
gether with the dilaton, the axion obtained by dualizing the Kalb-Ramond field,

and moduli associated to p-form gauge fields in the Ramond-Ramond sector.

6. Four-dimensional vector multiplets

6.1. Rigid vector multiplets

The field content of a four-dimensional rigid abelian vector multiplet is
(X, 94, A,,Y;;) [M]. X denotes a complex scalar field; A, denotes an abelian
gauge field with field strength F' = dA; Q; denotes an SU(2)g doublet of chiral
fermions; Y;; denotes an SU(2)g triplet of scalar fields, i.e. Y;; is a symmetric

matrix satisfying the reality condition
Yij=eueuq Y™ | YU =(Y,)". (417)

Thus, off-shell, an abelian vector multiplet has eight bosonic and eight fermionic
real degrees of freedom.

We are interested in the Lagrangian describing the dynamics of n abelian
vector multiplets. These vector multiplets will be labelled by an index I =
1,...,n. The Lagrangian is encoded [31] in a holomorphic function F(X), called
the prepotential. We denote holomorphic derivatives of F/(X) with respect to X!
by Fr = OF/0X!, Fr; = 0°F/0XT0X 7, etc. We denote the complex conjugate
of X! by X!, and anti-holomorphic derivatives of F(X) by F; = 0F /90X, etc.
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The bosonic part of the Lagrangian reads
L=—Np;0,X"0"X7 + (§iFry Fl "7 — LiFr VY79 +he) , (418)

where
Fl, =20,AL, (419)

and where Ny is given by (264]). Note that the kinetic terms for the scalar

fields and for the abelian gauge fields are determined in terms of Ny,
Lign = =Ny 0, X" 0* X7 — L Ny, FL (420)

The kinetic term for the scalar fields describes a sigma-model, whose target space
is an affine special Kéhler (ASK) manifold. This is a Riemannian manifold with
Kihler metric N;; = 02K (X, X)/0X19X” and Kihler potential .

As discussed in subsection [5.1.1] the metric g of an ASK manifold, when
expressed in terms of special real coordinates ¢* = (2!, y;) = (Re X', Re Fy), is
Hessian,

g= NpjdX1dX’7 = Hydg®dg® , a,b=1,...,2n, (421)

where Hy, = 02H/0q*0q® is determined in terms of the real Hesse potential H.
The Hesse potential H is related to the prepotential F' by Legendre transfor-
mation, c.f. (285]). As in subsection we decompose (X!, Fr) into real and

imaginary parts,

xT = 2l 4+,

Fy yr +ivr . (422)

Next, we perform the Legendre transform of the imaginary part of F' with

respect to u’, thereby replacing u! by y; as independent variables,

H(z,y) = 2Tm F(x + iu) — 2yru’ | (423)
where Ol
m
=y 424
oul Y1 (424)

The latter expresses u as a function of (z,y), locally, and inserting this expres-
sion on the right hand side of (423)) yields H(z,y).
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6.2. Rigid superconformal vector multiplets

Next, we specialize to the case where the vector multiplet theory is super-
conformal. This implies that F(X) must be homogeneous of degree 2 under
complex scalings,

FOX)=MF(X) , AeC*, (425)
from which one infers the relations . The associated Hesse potential is
homogeneous of degree 2, and the scalar manifold is a conical affine special
Kahler manifold.

6.3. Superconformal matter multiplets coupled to conformal supergravity

As in the five-dimensional case, we will follow the superconformal approach
to construct a theory of n abelian vector multiplets coupled to Poincaré su-
pergravity. This is based on the fact that a theory of n vector multiplets and
ng hypermultiplets coupled to Poincaré supergravity is gauge equivalent to a
theory of n + 1 superconformal vector multiplets and ny + 1 superconformal

hypermultiplets coupled to conformal supergravity.

6.3.1. Coupling of vector multiplets

First, we consider the coupling of n+1 abelian vector multiplets to conformal
supergravity at the two-derivative level. The index I labelling these abelian
vector multiplets now runs over I = 0,1,...,n. The component fields of the
abelian vector multiplets carry the Weyl and chiral weights given in Table

Then, using (B.82), we have
D, X' =(0,—-b,+iA,)X". (426)

The bosonic part of the Lagrangian describing the coupling of abelian vector

multiplets to conformal supergravity reads,
L = |[iD*F D, X" —iF; X' (=}R— D) — LiFy; Y57V

+LiF () - X, (P = LX)

—LiF(FY = 1XTTh )Tt — LiE T T h.c.} . (427)
This equals

L=-NyD'"X'D, X" —i(F X" = X"F;) (=R — D)+ L N, Y v/
+(HP R P — N X XT8N X F T S he)
(428)
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6.3.2. Coupling of hypermultiplets

We consider the coupling of » = ny + 1 hypermultiplets that are neutral
with respect to the gauge symmetries of the vector multiplets. We follow the
presentation given in [28)], which is based on sections A;*(¢) of an Sp(r) x Sp(1)
bundle (o = 1,...,2r;i = 1,2) which depend on scalar fields ¢, defined in the
context of a so-called hyper-Kéahler cone of dimension 4r.

The bosonic part of the Lagrangian describing the coupling of hypermulti-

plets to conformal supergravity is given by

—169 Qap Dy A DH AP + x(-ER+ D), (429)
where the hyper-Kéhler potential x and the covariant derivative D, A;%(¢) are
given in (B.94)).

6.3.3. Poincaré supergravity
Combining the bosonic Lagrangians (428) and (429)), we obtain
L = [i(X'"F—X'"F)-x]§ R+ [i (X" Fi — X"F;)+ 5x] D
~NpD*X' D, X7 + L Ny YAV 74 (430)
+ (=i FL R — N XX T Tt
+ENGXTE T 4 he) — 369 Qap DA DHASP
Note that the field D does not have a kinetic term: it appears as a multiplier.
Its field equation yields the condition

x=-2(X"F - X'Fy) . (431)

Similarly, the field equation for Y;; is simply

Y;; =0. (432)
Inserting and into yields
L = i(X'"F—X"'F))$R- N, D'X'D, X’
+ (—giF F P — N XX T Tt (433)

+INGXTE T 4 he) — 369 Qop DA DHAP

Next, we use the symmetries of conformal supergravity to impose gauge condi-

tions. We begin by fixing the freedom to perform dilations (whose generator is
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D, see Table |B.7)), by picking
i(XTF—X'"F;)=x"? , D - gauge. (434)

This is the so-called D-gauge. Here x? = 87G y, where G denotes the Newton’s
constant. With this choice, we obtain the Einstein-Hilbert term (B.62)). In the
following, we set k2 = 1. Note that with the choice ([434)), we obtain

X = -2 ) (435)

which shows that at least one hypermultiplet is needed in order to obtain the
Einstein-Hilbert term . The condition removes one real bosonic de-
gree of freedom in the hypermultiplet sector. Fixing the freedom under SU(2)g
transformations (c.f. (B.94)) removes three additional real degrees of freedom
in the hypermultiplet sector, so that in total, we have removed four real degrees
of freedom. This amounts to removing the bosonic degrees of freedom of one
hypermultiplet. There are then r — 1 = ny physical hypermultiplets left. We
will not consider them any further, and hence we drop them in what follows.

Now we pick the K-gauge , which removes the dilational connection
b, from the covariant derivatives and . Next, varying with respect
to the U(1) connection A, gives (c.f. (373))

Ny (0, X)) X7 — X19,X7)
2 .

A, =1 = 436
H 2 NKLXKXL ( )
In the D-gauge (434)), where Nx X% X1 = —1, this becomes
- L Iy wJ _ IN wJ
AH = 2’L NIJ (X 8MX (8MX )X )lNKLXK)?L:_l 5
= —1i(0,K0,2" — 0,K9,z")
= A,0,2" — Az0, 2", (437)
where 2% = X%/X° denote complex physical scalar fields (a = 1,...,n), and

where K (z,%) denotes the Kéhler potential given in (B.104). This is in agree-
ment with (B.122)). The connection A, is the pull-back to space-time of the
connection A, given in (369)). Finally, varying with respect to T: gives

v

I
T+ —9 N1 X +J

e = 2 T (438)

Thus, at the two-derivative level, the fields A, and ij are auxiliary fields.
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Inserting these various expressions into (433)), using the relation (B.126)) and
dropping terms that involve physical hypermultiplets, we obtain the following

gauge fixed Lagrangian,

L = %R_gaZ aﬂza altgb_i_ (_iiNIJF;VIF“V-FJ +hC)
= 3R—g,;0,2°0"2 + {ImN; F, F*7 — tReNyy Fl, F'*7 (439)
where

NipXP N;oX@

Nr1s 17+ N XEXE

(440)

with Ngp X® X = —1. The resulting Lagrangian describes the bosonic part of
the action for vector multiplets coupled to Poincaré supergravity. It is obtained
from the action for matter multiplets coupled to conformal supergravity by using

two compensating multiplets: one vector multiplet, and one hypermultiplet.

6.4. Coupling to a chiral background
The construction of the action (430]) describing the coupling of abelian vector

multiplets and neutral hypermultiplets to conformal supergravity at the two-
derivative level can be extended, within the superconformal approach, to allow
for the presence of a chiral background field [32]. This is achieved by allowing
the function F(X) that enters in the construction of , to depend on an
additional holomorphic field A, so that now F(X, A). The background field A
is introduced as the lowest component of a chiral supermultiplet. Compatibility
with superconformal symmetry determines the scaling behaviour of the chiral
multiplet, while insisting on a local supersymmetric action implies that the
dependence on the chiral multiplet is holomorphic. Therefore, the function F

has to be (graded) homogeneous of degree two, that is
FOAX,\YA) = \2F(X,A), MeC*, (441)

where w is the weight of A under scale transformations. It follows that F
satisfies the relation,
X'Fr + wAF, =2F. (442)

Here F; and F, denote the derivatives of F(X, A) with respect to X! and A,
respectively.
We denote the component fields of the chiral background superfield with

a caret. We focus on the bosonic component fields, which we denote by 151,
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Eij, F p and by C. Here A and C denote complex scalar fields, appearing at
the #°- and #*-level of the chiral background superfield, respectively, while the
symmetric complex SU(2) tensor B;; and the anti-selfdual Lorentz tensor Fa_b
reside at the 02-level.

In the presence of the chiral background, the action becomes encoded
in F(X,A), and reads as follows,

L = [ DX —iFy X (~§R = D) = §iFyy YAYT = 4iBy; Fayy™o
+%iF[J(Fa;71 _ %XIT;Z)KFab—J _ %XJTab—)
_%iFI(F;ZI _ %XIT(;%)T“H + %iﬁv—ab FAI(F(;bI B %XITJZ,)
+5iFAC — §iFaa(e™ e By B — 265 F~) = LF THT™ 4 b
1 Qo DA D' AP + x(—LR+ 1D). (443)
The last line pertains to the hypermultiplets, as discussed in subsection [6.3.2]

6.4.1. Coupling to R? terms

When identifying the chiral background superfield with the square of the
Weyl superfield, the action will contain higher-derivative curvature terms
proportional to the square of the Weyl tensor. In this case the chiral weight w
in equals w = 2, and the bosonic fields of the chiral background superfield

becomes identified with

A = 4(Ty)?%, (444)
Bij = —32e5,RV)"ap T,

F= = 32R(M). T,
C = G4AR(M) Uy R(M)_f° +32R(V)"%*, R(V) ) — 64T D, DT}, .

In these expressions, we have suppressed all terms that involve fermionic fields.
The curvatures appearing in (444)) are given by

R(V)uw ij = 26[;)/5]1' + V[iukvf}j
ROM)a = R+ 8fialc0y 7 — 1 (T Ty + T/ T0) - (445)

where we recall that R, °? is computed using the spin connection (B.67). Note
that the T2-modification in (445]) exactly cancels the T2-terms contained in fu?,
as can be verified by using the relation (B.80)),

R(M) ot = Cop “ — D 61,10 Y — 20 Ry, !*(T) oy ¥, (446)
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where
Cade = Rade -2 (R[a[c - %Ré[a[('.) 5b] g : (447)

In the K-gauge (B.72)), C,,? denotes the Weyl tensor, and C includes a term
proportional to the square of the anti-selfdual part of the Weyl tensor,

C=640"4,CM"+ ... (448)

The term 7%~ D, DCTCJg in is written out in .

Observe that the U(1) connection A, and the field T, cannot any longer
be eliminated in closed form, as in as in at the two-derivative level,
but only iteratively. In particular, T, can be eliminated iteratively by means

of an expansion of F(X, A) in powers of A,
F(X,A)=> F"(X)A", (449)
n=0

which generates an expansion with infinitely many higher-derivative terms that
are all proportional to C. This results in an action that contains infinitely many
higher-derivative terms that are proportional to the square of the anti-selfdual
part of the Weyl tensor. Such an action is naturally interpreted as a Wilsonian

effective action.

7. Hessian geometry in the presence of a chiral background

In this section, we discuss the geometric meaning of deformations of the
prepotential function F(°)(X) by chiral background fields, such as in . We
begin by considering holomorphic deformations of F(9(X). We use the descrip-
tion of affine special Kéhler manifolds as immersions, to introduce the notion of
deformed affine special Kahler manifolds [72]. We then discuss the existence of a
Hessian structure on these deformed manifolds, and relate the Hessian structure
to the holomorphic anomaly equation for a hierarchy of symplectic functions.

Subsequently, we turn to non-holomorphic deformations of F (O)(X ). We
follow [72].

7.1. Holomorphic deformation of the immersion

We deform the prepotential F(©)(X) by allowing for the presence of a com-
plex deformation parameter Y. The prepotential F(O) (X ) gets replaced by the
generalized prepotential F(X,Y), which is holomorphic in X! and Y.
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7.1.1. Holomorphic family of immersions

The geometric model for the deformation parametrized by T is a map [72]
¢p:M:=MxC—-V, (XL,T)— (X, F/(X,T)), (450)

which can be interpreted as a holomorphic family of immersions ¢+ : M —
V., (X)) = (X!, F/(X,Y)), that define a family of affine special Kéhler
structures on M.

Next, we define a metric and a two-form on M = M x C by pulling back the
canonical Hermitian form ~y given in ,

y=¢*"yw = g+iw = NrjdX'®dX’ +iFydX! ®dY —iFpydY @dX' | (451)

where N;; = —i(Fr;—Fr), and where Fry = 970 F. We assume that +y is non-
degenerate. Denoting the holomorphic coordinates on M by (v4) = (X7, 1),

we obtain for the metric on M,
g =gapdv*di® = NpjdX'dX' +iFpedX1dY —iFjydYdX”?,  (452)
which is a Kéhler metric g45 = 0405K with Kéhler potential
K=—i(X'Fi(X,T) - X" F;(X,Y)) . (453)
The associated Kéhler form is
w= —%NIJde ANdX7 + %F,def AdY — %FITdT AdXT. (454)

The Kéhler metric g4 5 has occured in the deformed sigma model [73], which
provides a field theoretic realization of the set-up just described.

For latter use, we introduce the decomposition
2F1; = Ryy +iN;yy, (455)

where R;; = 2ReFy;, Nyy = 2ImFr;. We denote the inverse of Ny, by
N-1 = (N1).

7.1.2. The Hesse potential
We now define special real coordinates and a Hesse potential in presence of
the deformation. We then show that the Kihler metric g on M given in (452)

is no longer Hessian. There is, however, another metric on M that is Hessian.
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We denote this metric by ¢. We show that M = M x C can be equipped with
a Hessian structure (V, g), where g # g.
We introduce real coordinates (¢%) = (x!,yr) as in (291

X' = il (z,y,0,T), Fr=vyr+ivi(z,y, T,T). (456)

Then, the (generalized) Hesse potential is defined by a Legendre transform of
the generalized prepotential F(X,T),

H(z,y, Y, 1) = 2Im F(z + iu(z,y, T, Y),Y) — 2yru’ (z,y,T,T) . (457)

Note that H is homogeneous of degree two.

We will be interested in the coordinate transformations

($7u7 T? Y) = (x7 y’ T? Y) Y
(m7y7 T? T) H (x7 u’ T? T) * (458)

To convert from one coordinate system to the other one, we use the following for-
mulae when differentiating a function f(z,u, Y, T) = f(z,y(z,u, T,T), T, T),

of | _ of] | Of | dux

Ox! oxl|, Oy |, Ox!’

of | _ Of | dux

oul x|, Oul ’

of of of | Oy

ar - 4 Or | oYK 4
Y or,, " Oyxl, o7 (459)

We refer to where we have collected various formulae with details on the

conversion (458]).
The Kéhler metric g in (452)), when expressed in coordinates (¢%, T, T), takes

the form

2H 2H 2H }
= —— _dq*d¢® dq®dY _dq®dY 4
9= qeag T T e N T et ¢ (460)
where
2 gy N+RN-'R —2RN-!
(8‘98,7) - , (161)
o _9N-'R AN
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and

02H _ 92H _

galar = HmNYVEwr, ois = 2P NYY Fyy

02H 0*H _

By 0T —2NEyr W:_ZN”F”‘ (462)

In the undeformed case (YT = 0), the K&hler metric is also Hessian. In the
deformed case (T # 0), this is not any longer the case. This can be seen as
follows.

First, we note that M can be equipped with a Hessian structure (V,g).
This requires the existence of a flat, torsion-free connection V, which can be
constructed as follows. For fixed Y, the map ¢y : M — V induces an affine
special Kéahler structure, with special connection V and V-affine coordinates
(¢*) = (2", y7). We can extend V to a flat, torsion-free connection on M =

M x C by imposing
Vde' =0, Vdyr=0, VdY =0, VdY =0. (463)

Since M can be covered by special real coordinate systems, we may extend these
relations to M, providing it with the affine structure required to define a flat,
torsion-free connection on M.

Now we define the metric g7 to be the Hessian metric of the (generalized)
Hesse potential . Upon computing its components explicitly, we find that
g™ differs from the Kihler metric g by

02H 0%H _ 92H _ _
H_g=0’H_,, = ——dTdY +2———dYdY + ——dYdY 464
9" —9=Huy = 55y teorar * ator , (464)
where
0?H _ 02H
_ — NUYELF T _F NV FEF

aToT rryr, IToT 1y + rryr,

02H _ L

— = F NYFiyFyry . 465

5TOT iFyy + v Eyy (465)

We remark that these metric coefficients are symplectic functions [32], which
is necessary in order that g” — g is a well defined tensor field (which we know
to be the case, because g and g are both metric tensors). We further remark
that

2H = K — 2iY Py + 2iT Fy (466)

differs from the Kahler potential (453]) by a Ké&hler transformation. Therefore

2H, taken as a Kihler potential, defines the same Kéhler metric ¢ = ¢¥ as
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K. However, when taking K as a Hesse potential one does not get the Hessian
metric g¥. Note that the Hesse potential is the sum of two symplectic
functions, namely K and Im (Y Fy), c.f. subsection

Thus, the Kéahler metric g on M is not Hessian with respect to the affine
structure that we have defined on M | i.e. g#gH.

7.1.8. Deformed affine special Kdhler geometry

Next we show that M carries a deformed version of affine special Kihler
geometry. Namely, we show that (M =M x C, J,g) is a Kéhler manifold with
Kéhler form w, equipped with a flat, torsion-free connection V for which Vw # 0
and dyJ # 0. The non-vanishing of Vw and dv J is controlled by the symplectic
function Fx.

We will call such manifolds deformed affine special Kahler manifolds. Since
our definition involves the map ¢ defined in , this is not an intrinsic defi-
nition, but the name for a specific construction.

We have already established that g is a Kéhler metric with Kéahler form w,
c.f. and . To compare the latter with the two-form 2dz! A dy;, which

is the Kéhler form on M, we compute
2dxt Ndy; = f%N”de ANdX7T — %FITdT ANdXT + %F,def AdY
+%F,Tde AdY + %F,Tde AdY (467)
and therefore the Kahler form can be written as
w = 2dz’ A dy; — %FdeI AdY — %Fmd)_(f AdT . (468)

This shows that 2dxz! A dy;, when considered as a two-form on M , is not of type

(1,1) (since w is, and both differ by pure forms). Using the rewriting
FrydY! AdY = dFy AdY = —d(YTdFy) , (469)

we find ) )
w = 2dz’ A dy; + 5cl(arcmf) + 5d(frdﬂ) . (470)

Thus the difference between the Kéhler forms w of M and 2dz! A dy; of M
is exact. The deformation involves the function Fy = Oy F. The latter is
a symplectic function, c.f. (222]). It contains all the information about the

deformation.
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Next we compute
1
Ve = —zd(Fre) © (dX" AdY) + cc.. (471)

and hence, w is not parallel. Thus, the connection V is not a symplectic con-
nection on M. This shows that while (M ,g,w, V) is Kéhler, it is not special
Kahler. The deformation is controlled by an exact form, which is determined
by the symplectic function Fr.

Next, we show that the complex structure J is not covariantly closed, i.e.
dyJ # 0. To compute the exterior covariant derivative of the complex structure
J, we note that the vector fields 0,1, 9, , Or, Oy define a V-parallel frame which
is dual to the V-parallel co-frame dz’!, dy;, dY,dY. Using this one obtains
V;WZV(;;I_I-I—; 1]6(;]) :%dF]J®%. (472)
Using that dyJ = dJ%, — J* A dve, where e, is any basis of sections of TM,
so that dye, = Ve,, we find

0

1
dyJ = [ —idXT A =dFry+ce. | @ — .
2 (’)yJ

(473)
Note the rewriting

dXT N dFy; = dX' A FrpedY = —d(Fr;dX') = d(FrydY) ,
where we used symmetry of Fr; and the chain rule. Therefore

dyJ = (—id(FrydY) + c.c.) ® ai = (—iFrrdX? NdY +c.c.) ® 9 , (474)
yr yr
which is non-vanishing. As a consistency check, observe that d2v = 0, which
must hold because V is flat. Note that the non-vanishing of dyJ is expressed
in terms of an exact form constructed out of the function Fx.

In summary, (M = M x C, J,g) is a Kéhler manifold with Kéhler form w,
equipped with a flat, torsion-free connection V, with non-vanishing Vw and
dvJ given by and .

For completeness we remark that the pullback of the complex symplectic

form Q of V is non—vanishing@
¢*Q = FrydX! AdY = —d(YdFy) , (475)

where the right hand side is exact and controlled by Fx.

43 Obviously, M cannot be a (locally immersed) Lagrangian submanifold of V' on dimensional
grounds.
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7.1.4. Holomorphic anomaly equation from the Hessian structure

Next, we turn to the study of the integrability condition for the existence
of a Hesse potential H on M , and we reinterpret it as a holomorphic anomaly
equation for a hierarchy of symplectic functions constructed from Fx.

In we showed that M can be equipped with a Hessian structure
(V,g"). Then, in V-affine coordinates Q¢ = (x!,y;,T,Y), the totally sym-
metric covariant rank three tensor S = Vg has components Sgpe = Oagbe
which satisfy the integrability condition Oygpe = Opgea = Ocgap- One particular
integrability relation is

Spiry = Syair (476)

i.e.
Ourglty| = Orglial, (a77)

with metric components given by (c.f. (462) and (465))

g = 2F N'KFgy,
g¥r = —iDyPr, (478)
where the derivative D,
0 0
Dy = — N Fiy — 479
T o], T T exT (479)

is the symplectic covariant derivative that was introduced in ([189)), and which
takes the form (479) when acting on a holomorphic F(X,Y).
We now evaluate equation (477)) in coordinates (X7, X! T, Y), using the

Jacobian (B.54)), to obtain

_ Og¥y| _ O9¥x| , Ogiy Ou” o 9 0
Serrr = oxl | — Ol ouf gzl where x|, — oXT toxT
g,y gt agH.. ouk
Sygry = or |, = or | T ourk ot (480)
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We compute

g4y .0 A KL
oal | = —ZWDTFT —iF " FgyFrr
d9i'y 9 9 i NKL
_ = %\ (P + iNKLFpr F
k|, oxr ~ g ) (e N Fer Fior)
= Firr — Fx"9FprFor —2N"?FrpyFor — Fk " FpyFor
o H —
%?T = —iFryy + P/ Fpe + (Fry + Fry) (iPc?% Fr + Pre?)
o H _
895? = Fixy +iFix"Fpy +i (Fro+ Fip) (iFx " Fpy + Pri")

—iFr"Fry — (Fir + Fin) Fx*" Fpr | (481)

where indices are raised using N'7. Then, the integrability condition (477)
results in 5

a1 PP = Frox N'PNEQFpy Foy . (482)

We now explore the consequences of (482). To this end, we first define

[32] a hierarchy of symplectic functions through covariant derivatives of the

holomorphic symplectic function Fy(X,T),
- - 1
(X, X, T, T) = EDQ*FT , neN, (483)

and ®(©) = 0. Note that ®1) is the only holomorphic function in this hierarchy.
Then, (482]) can be expressed as
00  joNIK 1
= Py Frr = -F/%9,6M09,00 484
%l — 3 gxl LorFrr = 5F; 0y 0, (484)
where F/E = FipgNP/NQK. Thus, the integrability condition (477) results
in (484)) which captures the non-holomorphicity of ®().
Using (484)) as a starting point, one derives, by complete induction, the

following holomorphic anomaly equation,

8<I>(") 1 ok n—1
e = 3 Y 0,000 2, (485)
r=1

which captures the departure from holomorphicity of the ®() with n > 2. In

doing so, one uses [33]

OtFy =0, DyFrjx=0 , [Dy,N"79;=0. (486)
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For example, to derive the anomaly equation for ®®), we need to evaluate
8ID21‘FT = DTajDTFT —+ i(ajNJK)FjraKDTFT
= 3}7}]K8JFT8KDTFT . (487)
Using that Df}_lFT = n!®™ this becomes

2
. — 1_
070 = F/K9,0M 9,03 = iFj”( > 0,290 (488)

r=1
Next, we define
FO(X, X)=dM"(X,X,T=T7=0). (489)
The F(™ (X, X) satisfy the holomorphic anomaly equation

F(n) 1. n—1
aa;zz = SO0, F Dok nz 2 (490)
r=1

Here, FI(O)JK is computed from the undeformed function F(9)(X) = F(X, T)jr=o;
ie. PR — K L.
The hierarchy of equations (485)) can be re-organized into a master anomaly
equation, by introducing
GX, X, 0, T, p)=> pTe" (X, X, T,7), (491)
n=0
where p denotes an expansion parameter. Then, the function G satisfies the

master anomaly equation

%G = %F,JKaJGaKG . (492)

Finally, one may ask whether other components of S = Vg will give rise

to additional non-trivial differential equations. To investigate this, we now con-
sider the component S iy¢ = 0,1 géfT |y, which is constructed out of the metric
component g{f{T = NI FyFyy. Evaluating the relation S,rpy = Syrr =
Oy gﬁT ’Iy in supergravity variables we find that it is identically satisfied. Thus,
the only non-trivial differential equation resulting from g4y and g is encoded

in the relation Sy ryy = Syg1v.
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7.2. Non-holomorphic deformation
Next, we extend the discussion to a non-holomorphic generalized prepoten-
tial F = F(X,X,Y,Y) by considering a non-holomorphic map ¢ : M= V.
Since F' and Fy are no longer holomorphic, they will have non-vanishing
derivatives with respect to X! and Y. To distinguish between these various
derivatives, we will, in the following, use a notation that involves ‘unbarred’

indices I, J, ... and ‘barred’ indices I, J, .. ..

7.2.1. Non-holomorphic deformation of the prepotential
We generalize the map (450)) to

¢ M=MxC—V, (X,7)— (X', F(X,X,T,7T), (493)

where F; = OF/9X!, can be obtained from a generalized prepotential F. We
assume that F' has the form [74]

F(X,X,T,T)=F9(X)+ 2Q(X,X,Y,T), (494)

where F(©) is the undeformed prepotential, and where 2 is a real-valued function
that describes the deformation [

The holomorphic deformation is recovered when 2 is harmonic. This makes
use of the observation that the complex symplectic vector (X7, Fy) does not

uniquely determine the prepotential F' [34]. If we make a transformation
FOX) = FOMX)+g(X.T),

AX X, T,T) = QXX T, 1) - (oK, T) —g(X, 1)), (495)

2i
where g(X, T) is holomorphic, then F' changes by an antiholomorphic function,
F + F + g, and the symplectic vector (X7, F;) and the map ¢ are invariant. If
) is harmonic,

QXX T,T) = f(X, 1) + f(X,T), (496)
we can make a transformation with g = 2if and obtain

F s FOX)+2if(X,T) = F(X,T), (497)

which is a holomorphically deformed prepotential, as considered in subsection
If, however, € is not harmonic, then we have a genuine generalization which

requires us to consider non-holomorphic generalized prepotentials.

44This function is not to be confused with the complex symplectic form on the vector space

V introduced in subsection
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7.2.2. Non-holomorphic deformation and geometry

We proceed by analysing the geometry induced by pulling back the standard
Hermitian form vy of V given by (267) to M using (493)),

v o= —i(FY — FOYXT @ dX7 +2(Q0 + Qrp)dX! © dX7 + 207X © dX?
420, 7dXT @ dX7 4 2Q73dXT @ dY + 2QvdY ®@ dX! + 2Q5pd X! ® dY
+20,3dY @ dX . (498)

By decomposing v = g + iw, we obtain the following metric on M,

g = —i(F) —FOax'dX’ +2(Qrs + Qp)dx'dx’
+207,dXTdX7 + 20, ;dXTdXT + 2Qprd X1 dY 4 2QydYd X!

+2QrdXTdY + 2Q7dTdX" . (499)

This expression shows that g is not Hermitian, and hence not Kahler with
respect to the natural complex structure J. The non-Hermiticity is encoded
in the mixed derivatives €;7, which makes it manifest that it is related to the
non-harmonicity of 2. This metric occurs in the sigma model discussed in [73].

The imaginary part of « defines a two-form on M,

1. _ _ , _
w = %(_@(F;f}) — FOY)axT ndX —i(Qry + Qry)dX! A dX?

—iQz,dXT NdXT 4 iQ7dXT AN dXT — iQppdXT A dY — iQpydY A dX!

—iQppdX T N dY +iQ5dXT A dY . (500)

This two-form is no longer of type (1,1) with respect to the standard complex
structure, which is consistent with the non-Hermiticity of g. However, w is still
closed

dw =10, (501)

and hence (M ,w) iIs a symplectic manifold.
The difference between the symplectic forms w of M and 2dz’ A dy; of M is
exact,

1 1. o - _
w = 2dz’ A dy; + Qd(TdFT) + 5d(nrdzﬂf) + 90F (502)

where 0 = dX! ® 0x1 + dY ® dy. Compared to (470) there is an additional

term which measures the non-holomorphicity of the generalized prepotential.
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7.2.3. The Hesse potential

We introduce real coordinates (¢%) = (x!,y;) by
XI:xI+iuI(xavaaT), FI(X,X',T7T):y1+iv1(x,y7T,T). (503)
We introduce the combinations [73]
Ni]J:N[JiQImFIj:—Z'(FIJ—FI‘jiFIj$FI‘J) (504)
and
Ri[]:R[JiQReFIj:F]J"‘Fjj:tFIjiFfJ. (505)
Note that NT = N_, while RT = R+.
In the presence of a non-holomorphic deformation, the Hesse potential is
defined as the Legendre transform of
L =2ImF — 2Q = 2ImF© + 20 , (506)

c.f. (the normalization used here differs from the one in by a factor
2). As explained in section the function L can be interpreted as a Lagrange
function, and the Hesse potential as the corresponding Hamilton function. Thus,
the Hesse potential associated to F(X, X, Y, Y) is

H(z,y, Y, T) = —i(F — F) —2Q — 2u’y; . (507)

We now compute the associated Hessian metric g7 by taking derivatives of
H with respect to the coordinates (Q4) = (¢%, T, T), where (¢*) = (z!,y;). To
convert from coordinates (z!,u’, Y, YT) to coordinates (Q“) and back, we use
the Jacobians and . We obtain for the components of the Hessian

metric g,

OH Ny +R_N-'Ry —2R_N_'
9q°0g® ; (508)
—2N"'R, 4N"!
O°H . _ _
orlor —i(Fry — Fry) + Rorx N7 (Fyy + Fyy)
0°H _
__ — _2NIK F Fx
dyroT N (Fry + Fry)
together with their complex conjugates, and
0*H ; IJ(F - .
aror — v £ NT(Fry = Fry)(Prg = Feg) = —iDr Py
0’H 92H
= —iDyFy, == =iDrF 509
oYoY ot OYoT iy ry, ( )

124



where

. 0 0
Dy = 0y +iNY (Fy; — Fyj) (aXI — aXI> (510)

is the symplectically covariant derivative introduced in (189)).

As before (c.f. subsection , the Hessian metric g7 differs from the
metric ¢ in (induced by pulling back gy using ¢) by differentials involving
derivatives of H with respect to T, YT,

g" =g+ 0°H|, | (511)
where
2| PH gy 49 P vt EH gy (512)
=y 9TOY oYoY oYoY ’

7.2.4. Hierarchy of non-holomorphic symplectic functions

The function Fy = 0y F' is a non-holomorphic symplectic function, c.f. .
Using the symplectically covariant derivative Dy given in , we construct a
hierarchy of symplectic functions by

_ _ 1 _ _
@(’n+1)(X7X7 T, T) = WD?%F’I‘(X7X7 T, T) , neE NO . (513)

Then, we define symplectic functions F(™ (X, X) by

FM(X,X)=o™(X,X,T,T) B = (514)

The functions F™ (X, X) with n > 2 will satisfy a holomorphic anomaly equa-
tion, whose precise form depends on the details of the non-holomorphic defor-

mation.

7.2.5. The holomorphic anomaly equation of perturbative topological string the-
ory

For a specific deformation, the resulting holomorphic anomaly equation is
the one of perturbative topological string theory [75]. Namely, let us first rescale

F™ s 2iF(")_for convenience. Now we take Y to be real, and F( to be

FO = fO 4 7O 4 aIndet NI . (515)
Here, @ € R is the deformation parameter, and N }3) equals N ﬁ) = —i(F I( 8) o

FI(S)). When a = 0, F(M is the real part of a holomorphic function f™)(X).
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For the a-deformation, the holomorphic anomaly equation satisfied by the F(™)
with n > 2 is given by (see [34])

n—1
aXiKF(n) =iFO" (Z 0, FM g, Fn—) 2(1D18JF(”1)> L n>2,
r=1

(516)
where FI((O)IJ = FI(?C??PN(O)QIN(O)PJ. The covariant derivative Dy, when acting

on a vector Vj, takes the form
DiVy=0;Vy =T 1,5V, (517)

where I'; ;% is the Levi-Civita connection associated with the Kéhler metric of
the undeformed theory (i.e. the Kihler metric computed from F(9(X)). When
a = 0, this anomaly equation reduces to the one given in , upon undoing
the rescaling F(") — 2iF(™ performed above. When o = —1/2, is the
holomorphic anomaly equation of perturbative topological string theory [75] [76].
Let us display the expression for F(?) obtained by solving the anomaly equation
[75L [77 [76],

F<2><X X) =@ = NG (5 —ia PR NG (5 = ia FipoN?)
(1) (0) (0) LQ 17(0)
2a NG f17 — [IN(O)N(O) Frirr = sNGFik Ny Ny Frpol
(518)

with holomorphic input data fM)(X) and f®)(X).

The expressions for the higher (™) (X, X) become very lengthy quickly, see
the expression for F(3)(X X) given in Appendix D of [34]. The non-holomorphicity
of F(")(X, X) is entirely contained in the quantities N I(O) N(IOJ) Observe that
F( is real, while the higher F(™ (n > 2) are not.

7.2.6. Holomorphic anomaly equation from the Hessian structure

The holomorphic anomaly equation (516) is encoded in the underlying Hesse

structure, namely in the relation
S{L’ITT = STCEIT y (519)

which the totally symmetric rank three tensor S = Vg has to satisfy, where
g* denotes the Hessian metric computed in subsection We refer to [72]
for the somewhat technical verification of this assertion, where this was shown

for the case of the anomaly equation for F?). Thus, the holomorphic anomaly
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equation (516)) is intimately related to the existence of a Hessian structure on
M.

8. Dimensional reduction over space and time. Euclidean special ge-
ometry

In this section we will review how the special geometries of five- and four-
dimensional vector multiplets are related to each other, and to the special ge-
ometry of hypermultiplets, by dimensional reduction. We take this opportunity
to also discuss how special geometry gets modified for theories defined on a
Euclidean space‘time,’” by including time-like dimensional reductions. We will
focus on presenting and discussing key facts and results while referring to the

literature for details.

8.1. Space-like and time-like dimensional reductions

Space-like and time-like dimensional reductions of Lagrangians differ by spe-
cific relative signs between terms. We illustrate this with a simple example, a
theory involving a free massless scalar ¢ and an abelian vector field A, in n+1

dimensions,
1 1
S = /d”“x (28#08”0 - 4Fﬂ,,FW> . (520)

Upon dimensional reduction, the vector field A, decomposes into a vector field
A,, and a scalar b = A,, where x is the index of the direction we reduce over.

The reduced Lagrangian, where we only keep the massless modes, is
1 1 1
S = / e (-2 o0 + 5 e0nb™b 4anan> .21

where ¢ = —1 for a space-like reduction and £ = 1 for a time-like reductionﬁ
Thus in a Euclidean theory obtained by time-like dimensional reduction, the
sign of the kinetic term of the scalar b is inverted and the Euclidean action
is indefinite. This distinguishes such Euclidean theories from Euclideanized
theories obtained by Wick rotation, see section for discussion.

For space-like reductions we can combine the real scalars ¢ and b into a com-
plex scalar X = o 4 4b. For time-like reductions there are two ways to proceed.

Either we can use adapted real coordinates which are lightcone coordinates with

45Note that part of the literature on dimensional reduction defines € with the opposite sign.
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respect to the scalar target space, X = o+b, or we can introduce para-complex
coordinates by employing para-complex numbers z = x + ey, =,y € R, where

the para-complex unit e satisfies
=1, e=—e. (522)

The anti-linear involution - is called para-complex conjugation. The para-complex
numbers C := R & eR form a real algebra, but not a number field, and not
even a division algebra. Zero divisors correspond to ‘lightcone directions’, since
(14+e)(1—e) = 0. Nevertheless one can use para-complex numbers to define var-
ious types of structures on differentiable manifolds, which are analogous to those
based on complex numbers, such as complex, Hermitian and Kahler structures.
Para-complex geometries are useful to formulate special geometry in Euclidean
signature [19, [78, [45] [T7], and more recently have taken on a role in generalized
and doubled geometry as well [79, 80, [8T], 82, [83]. We provide some background
information in and refer to [84] for a historical review.

One advantage of working with para-complex scalar fields is that it makes the
similarities between space-like and time-like reductions manifest. In particular

one can introduce an e-complex notation by

i for e=-1,
1 = =i=¢c, 1= —l. (523)

e fore=1,
In e-complex notation, the reduced Lagrangian (521) becomes

1 -1
S = /d”x <_23mxamx — 4anF"m) , where X =o0+4i.b. (524)

8.2. Euclidean and Fuclideanized theories

Before proceeding we need to clarify the distinction between Euclidean and
Euclideanized theories. In this review a ‘Euclidean supersymmetric theory’ or
‘Euclidean supergravity theory’ is a theory with a Lagrangian which is invari-
ant under the Euclidean supersymmetry algebra. This is true in particular for
theories which are obtained by a time-like dimensional reduction, but one can
also construct Euclidean theories ab initio, starting from the Euclidean super-
symmetry algebra, see for example [21], or by analytical continuation of Killing

spinor equations, see for example [85]. In contrast by a ‘Euclideanized theory’
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we refer to a theory which has been obtained from a theory in Lorentz signa-
ture by applying a Wick rotation. From the previous section it is clear that
for four-dimensional theories which can be obtained by dimensional reduction
from five dimensions, the Euclidean and Euclideanized theory will in general
have bosonic Lagrangians which differ by relative signs for some of the scalars.
For theories containing fermions the additional complication arises that reality
condition are signature dependent, which can lead to a doubling of the fermionic
degrees of freedom upon Euclideanization. In four dimensions Majorana spinor
exist in Lorentzian, but not in Euclidean signature, which in particular implies
that there is no Euclidean ‘N = 1’ supersymmetry algebra with four real super-
charges. One can still define a meaningful Euclideanization of four-dimensional
N = 1 theories within the Osterwalder-Schrader formalism [86]. In this ap-
proach one uses a modified Hermiticity condition in the Euclidean theory, and
supersymmetry is encoded in Euclidean Ward identities which become the stan-
dard supersymmetric Ward identities upon continuation to Lorentz signature.
An alternative proposal for the Euclideanization of supersymmetric theories
with extended supersymmetry, where there is no issue with the doubling of
fermionic degrees of freedom, is to modify the Wick rotation such that the re-
sulting theory has an action which is invariant under Fuclidean supersymmetry
[87, 88, [89]. For a certain class of theories, which include the bosonic parts
of four-dimensional vector multiplet theories, Euclidean and Euclideanized ac-
tions can be mapped to each other using that the Hodge dualization of axion-like
scalars does not commute with a Wick rotation [45].

Since Euclidean actions obtained by a time-like reduction can be indefinite,
while a well-behaved Euclidean functional integral requires an Euclidean action
which is bounded from below, one might think that only Euclideanized theo-
ries can provide the proper starting point for defining supersymmetric theories.
However, the situation is more complicated for various reasons. Firstly, in Eu-
clidean signature the Hodge-dualization of p-form fields changes the sign of their
‘kinetic term’ and thus relates definite and indefinite actions[®| Secondly real
integrals can be dominated by complex saddle points and the functional inte-
gral of a supersymmetric theory can be dominated by real BPS solutions to an

indefinite Euclidean action. In particular, this is the case for the D-instanton so-

465ee section
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lutions of type-1IB string theory [90]. At least in simple examples one can show
explicitly that Euclidean and Euclideanized actions can be used alternatively to
perform a saddle point evaluation of the same functional integral, using different
‘integration contours’ in complexified field space [91]. This suggest to construct
theories on space-times of different signatures as different real forms of master
theories on with a complexified field space on a complexified space-time. In this
context it is natural to also consider space-time signature other than Euclidean
and Lorentzian, see below.

Euclidean actions also serve a practical role as part of generating techniques
for stationary solutions of theories in Lorentzian signature [92] [03]. Upon time-
like dimensional reduction one obtains an auxiliary Euclidean theory, whose field
equations are often easier to solve. Solutions of the reduced Euclidean theory
can then be lifted to stationary solutions of the Lorentzian theory. This can be
viewed as generating ‘solitons’ (stationary finite energy solutions of a Lorentzian
theory) from ‘instantons’ (finite action solutions of Euclidean theory). With
proper attention to boundary terms one can show that the instanton action
of certain Euclidean solutions agrees exactly with the ADM mass of the black
hole solutions obtained by lifting [45]. This ‘reduction/oxidation’ method is not

limited to BPS solutions and can be used to generate non-extremal solutions.

Some remarks on general space-time signatures

Once time-like T-dualities are admitted, the web of string dualities relates
theories in different space-time signatures [94, [95, [96]. The maximally super-
symmetric supergravity theories in ten and eleven dimensions can all be related
to real forms of a single complex ortho-symplectic Lie superalgebra [97, [98].
Five- and four-dimensional vector multiplets for all possible space-time signa-
tures have been obtained in [99] 211 [100].

8.3. Reduction from five to four dimensions: the r-map
8.3.1. Reduction without gravity: the rigid r-map

We now turn to the dimensional reduction of the five-dimensional bosonic
vector multiplet Lagrangian , following [19], and treating space-like and
time-like reduction in parallel. Upon reduction, the five-dimensional vector
fields A{L decompose into four-dimensional vector fields A! and scalars b, which

we combine with five-dimensional scalars o! to e-complex scalars X! = of +
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icb!. The four-dimensional field strengths are decomposed into selfdual and

antiselfdual parts according to

1 1
7(an + 7.5mnqupq) . (525)

1 ~
Fi = - (Fimn £ Fon) =
(B & Fun) = 5 2

mn 2

The couplings of the four-dimensional theory are encoded in an e-holomorphic
prepotential F'(X), which up to a constant factor is obtained by extending

the Hesse potential h(c) of the five-dimensional theory from real to e-complex

values: )
F(X)= —gh(a +icb) . (526)
We extend our previous definitions according tﬂ
_ . _ PK
Ryy=Fry+Fr;, Nij=—ic(Frg—Fiy)= IXTOXT
K =i (X'F; — F;X"). (527)

The resulting four-dimensional bosonic Lagrangian takes the form

L ~N7jOm XX + <ZFUF7;;FJ—W" + h.c.) SEE (528)

o1 1
= —NpjOpX'0"X7 — gN”F,{mFJ’”” — —Rye™"IF) o

16 mnepe ’

where we have omitted the auxiliary fields Yé
We now turn to the relation between the scalar manifolds M of the five-
dimensional theory and N of the four-dimensional theory. The ASR metric

gy = hrydo’do’ is mapped to the affine special e-Kdihler metric
gy = Nij(0)do'do? — eNys(o)dbldb’ = Np;dXTdX7 | (529)

with e-holomorphic prepotential . Since the fields b' take values in R™,
where n is the number of five-dimensional vector multiplets, we can identify
N with the tangent bundle of M, that is N = T'M. The metric only
depends on the scalars o and therefore has an isometry group which contains
the constant shifts b! +— b7 4+ 31, where (37) € R™. These isometries are relicts
of the five-dimensional abelian gauge symmetry. Moreover, the metric is

block-diagonal with respect to o! and b!. This decomposition has an invariant

47In [19] N7; and K were defined with the opposite sign. This has been compensated for by
changing the overall sign of F'. Apart from this, some fields have to be rescaled by constant
factors.
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meaning, because the special connection V of the ASR manifold M can be used

to decompose

TxN = TXN"‘A’”EBTXNQOr 2T, MeT,M, XeN=TM, oc=n(X)eM,
(530)
where m: N =TM — M is the canonical projection. The vertical space can be

identified with Tr(xyM = T, M using the projection
Tx NV := ker(drx) =T, M . (531)

While in general there is no canonical complement of Tx NV'* C Tx N, the
connection V defines a horizontal subbundle TN%‘“, which is spanned by vectors
tangent to the horizontal lifts of curves on N. This can be used to identify the

horizontal subspace TXN%Or with the tangent space T, M using the projection:

drx |y nor : Tx NG S T1,M. (532)

A similar construction based on the Levi-Civita connection D is used to
define the so-called Sasaki metric on the tangent bundle N = TM of a Rie-
mannian manifold M, which has a block-diagonal structure like in . The
‘Sasaki-like” metric gy on the tangent bundle N = T'M of an ASR manifold
with metric gps is defined by the special connection V instead of D, and it
comes in two versions, labelled by e, which differ by a relative sign of the metric
along the horizontal and vertical distribution. It has been shown in [I9] that if
(M, gar, V) is an ASR manifold, then N = T'M carries the structure of an affine
special e-Kéhler manifold (N, Jy, gn, V), where the metric gy, the e-complex
structure Jy and the special connection V y can be constructed out of the ASR

data. The map
re : {ASR manifolds} — {ASeK manifolds} : M — N =TM (533)

is called the rigid rmap.

While we have omitted the supersymmetry transformations and fermionic
terms of the Lagrangian, these can be found in [I9]. We remark that by dimen-
sional reduction one can only obtain a subset of the four-dimensional vector
multiplet theories, namely those where the prepotential is a cubic polynomial in
the e-complex special coordinates X’. Such prepotentials are called very special.

However, the only terms not obtained by dimensional reduction are four-fermion
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terms which are proportional to the fourth derivatives Fy i, Fryrp of the pre-
potential. To obtain the general four-dimensional Lagrangian one takes F' to
be a general e-holomorphic function. Then the Lagrangian is only invariant up
to terms generated by variation of terms involving the third derivatives of the
prepotential. The four-fermion terms are determined by imposing that their
variation restores the supersymmetry invariance of the Lagrangian [19].

We remark that Euclidean supersymmetric theories, and in fact supersym-
metric theories on space-times of arbitrary signature can also be constructed
ab initio, rather than by dimensional reduction. In particular, five-dimensional
rigid off shell vector multiplets and their Lagrangians have been obtained for all

signatures (¢,s), t +s =5 in [21].

8.3.2. Reduction with gravity: the supergravity r-map

We now turn to the more interesting case of performing the reduction in
supergravity. When starting in five dimensions with ns) vector multiples cou-
pled to Poincaré supergravity, we end up in four dimensions with n4y = n)+1
vector multiplets coupled to Poincaré supergravity, because the five-dimensional
supergravity multiplet decomposes into the four-dimensional supergravity mul-
tiplet and an additional Kaluza-Klein vector multiplet. The five-dimensional

metric decomposes as
Guvdztde” = —ee? (de* + Apmde™)? + gmndz™dz™ (534)

where g, is the four-dimensional metric with signature (g, +, +,4), A, is the
Kaluza-Klein vector and o is the Kaluza-Klein scalar.

We start from , , with £ = 1 and relabel I = 0,...,n(s) into
a=1,...,n + 1= ngy, so that we can use I,J = 0,...n(4) to label four-
dimensional vector multiplets. It is convenient to work with the constrained
scalars h®, subject to V(h) = Cupch®hPh¢ = 1, instead of the physical scalars

¢”. Upon reduction, one can then define new scalars
y® = 6/3ehe (535)

These are n(4) unconstrained real scalars which encode the Kaluza-Klein scalar
through
V(y) = Caneyy"y* = 66>, (536)

while the physical five-dimensional scalars ¢* can be parametrized by the in-

dependent ratios A /h"®, x = 1,...,n). The real scalars y* are combined
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with the scalar components x® o A¢ of the five-dimensional gauge fields into
e-complex scalars z% := z® + i.y®. With this convention the five-dimensional
gauge symmetry induces an invariance of the four-dimensional theory under real
shifts of the scalars z%, that is under 2% — 2% + r%, with (r%) € R*@. Thus
the scalar manifold looks locally like a higher-dimensional version of the upper
half plane@ For the vector fields it is necessary to take field dependent (z%-
dependent) linear combinations in order to make the four-dimensional gauge
symmetry manifest. Moreover, to arrive at standard four-dimensional conven-
tions, fields need to be rescaled by constant factors, see [45] for details. The

resulting bosonic Lagrangian takes the forn@

1 1 1
L = iR — gabamzaamib + ZIHL/\[[]F;{L”FJW" + ZRQN[]F#n*EmnquZ;]q
1 1 ] -
= iR — gabamzaamib + ZIIDN]JFénFJmn + %RGN]L}F#RF‘HP‘]
1 1
= SR~ GabOp 2 0™ 2" + (4_/\/}JF;;£F+J’”” + h.c.) , (537)
le

which generalizes (439) to the e-complex case. As in the rigid case only a
subclass of four-dimensional theories can be obtained by reduction. Given a
five-dimensional Hesse potential of the form h = Cypch®hPh¢ the e-holomorphic
prepotentials resulting from reduction have the very special form

1 Xexbxe

= 760111)0T )

(538)
where X/, I =0,... ,ng) are related to the physical scalars 2 by 2% = X/ X0,
It was shown in [45] that the superconformal quotient admits an e-complex
generalization, which for € = 1 connects conical affine special para-Kahler man-
ifolds N to projective special para-Kahler manifolds N. In the para-complex
version of the quotient, C* = R>? x U(1) is replaced by C* = R>? x SO(1,1).
The group SO(1,1) replacing U(1) is the abelian factor of the R-symmetry
group SO(1,1) x SU(2) of the four-dimensional Euclidean supersymmetry al-

gebra [19] [45]. With suitable conventions, all local formulae of special Kéhler

48There are other conventions in the supergravity literature where the axion-like scalars are
taken to be the imaginary rather than real parts, in particular the fields S,7T, U of the much
studied STU-model are defined that way.

49Compared to [45], there is an explicit factor ¢ in the last term to account for the different
definition of the e-tensor in Lorentzian signature.
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geometry have e-complex extensions. In particular

_ N XEN; XE
=Fry—te————o— 539
Nrij = Fry—ic Non XXV (539)
generalizes (440]) while
K = —log (—i.(X"F; — F;X")) = —log(—K) (540)

generalizes . The expressions for the projectable tensor, and K =
N;;XTX7 = —1 for the D-gauge are valid for both values of ¢.

Dimensional reduction relates the scalar manifolds of the two theories by
assigning to every PSR manifold M of real dimension n = n(s) a PSeK manifold
N of real dimension 2n + 2 = 2n4y. The additional two scalars come from the
reduction of the five-dimensional supergravity multiplet, one from the metric,

one from the graviphoton. The resulting map
7. : {PSR manifolds} — {PSeK manifolds} , M, + N2 (541)

is called the supergravity r-map.

For dimensional reasons N 22 T'M, which raises the question how to under-
stand the geometry of this map. So far we have considered Poincaré supergravity
in an on-shell formulation. For many purposes, including having full manifest
symplectic covariance, working off-shell, and including higher derivatives, one
needs to have the superconformal off-shell version of the dimensional reduction,
and for the F-map. Here we focus on the scalar geometry. The full off-shell
reductions of five-dimensional superconformal vector and hypermultiplets cou-
pled to the Weyl multiplet can be found in [I0T], [[02]. In the superconformal
setting we have an (n + 1)-dimensional real cone M, over M, and a (2n +4)-
dimensional e-complex cone Na, 4 over N, 2. Since the superconformal the-
ories are gauged versions of rigid superconformal theories, it is natural to apply
the rigid r-map to M, ;. This yields an ASeK manifold N2n+2, which is not
conical. Note that the dimensional reduction of a rigid superconformal sym-
metry breaks conformal symmetry, as follows immediately from our results on
the r-map. The cubic Hesse potential of M,,; 1 maps to a cubic prepotential for
N2n+2, but rigid superconformal symmetry requires a prepotential which is ho-
mogeneous of degree two. To lift the supergravity r-map M,, ++ N, 5 to a map
My 41 — Nojpyq between the associated conical manifolds, one needs to combine

the rigid r-map M, 1 — ]\72”+2 with another map called the ‘conification map’
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con : N2n+2 > Nyp+2, which canonically, that is without arbitrary choices and
only using given data, assigns a cone Ny, 42 to the non-conical manifold N2n+2.

Such a conification map has been constructed, for the case of space-like re-
duction (¢ = 1) in [46},[47} This conification map induces a map Na, o —
Nonio between ASK manifolds and PSK-manifolds of the same dimension,

called the ASK/PSK correspondence. The situation is summarized in the fol-

M
SCI

M

lowing diagram

—— N | = N (542)
ASK/PSK I
SC
= N

7

where ‘SC’ indicates a superconformal quotient. Since the rigid r-map relates a
cubic Hesse potential h(c®) to a cubic prepotential Fii(X*), one expects that
the conification map yields a prepotential of the form Fy(X') = Fy(X*)/X°
for the CASeK manifold N. While this turns out to be correct, we stress that it
is not clear a priori how to formulate the relation between N and N ina way that
is independent of a choice of coordinates. Note that the special coordinates X
on N are unique up to transformations in Sp(2n+2, R) x C2"+2, while the conical
special coordinates X! on N are unique up to transformations in Sp(2n + 4, R).
Understanding the geometric meaning of the conification of N into N requires

in particular to relate these two group action to one another.

The conification map

The concepts of Lagrangian pairs and of special Kéhler pairs, which were
introduced in section [5.4.2] are needed for defining the conification of ASK
manifolds. It turns out that the conification map can be formulated such that
it applies to any ASK-manifold, not only to those which can be obtained using
the rigid r-map:

con : {ASK manifolds} — {CASK manifolds} , Na,, Nopia . (543)

Compared to the previous paragraphs we have shifted n — n — 1 in order to
stress that this construction is valid for any ASK manifold@

50While it should be straightforward to extend this to the para-complex setting, we restrict
ourselves to reviewing published work.

51The case n = 0 can be interpreted as mapping the zero-dimensional ASK manifold {pt}
consisting of a single point to the CASK manifold C with its standard flat metric, correspond-
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Consider the complex symplectic vector space C2"*2 with Darboux coor-
dinates (X!, Wj), where I = 0,...,n. The vector field dyy, is Hamiltonian
with moment map X and the symplectic reductiorﬂ with respect to dy, can
be identified with the symplectic vector space C2" with Darboux coordinates
(X Wy),a=1,...,n:

{x° =1}/(0w,) = C*" . (544)

In sectionwe introduced the group G¢ = Sp(C?") x Heisa,, 1(C) which acts
on Lagrangian pairs by the affine representation p : G¢ — Aﬁsp(czn)((c%). As
shown in [46] and reviewed inthis affine representation can be extended to a
linear symplectic representation of G¢ on C2"+2. Based on this observation, the
conification of ASK manifolds can be formulated locally using Lagrangian pairs
and special Kahler pairs, and then globalized using a principal bundle based on
the subgroup Ggx C G¢. Recall from section that any ASK manifold can
be described locally by a special Kéhler pair (¢, F'), that is an embedding ¢ :
N > U — C2" defined by a prepotential F, where ¢ = dF. The special Kahler
pair (¢, F') determines a Lagrangian pair (L, f), consisting of a Lagrangian
submanifold L C C?" together with a Lagrange potential f. To describe CASK
manifolds in this approach one needs to add the condition that the embedding ¢
is conical, as defined in section The corresponding Lagrangian submanifolds
are called regular Lagrangian cones. Proposition 3.4 of [46] establishes a one-
to-one correspondence between Lagrangian pairs in C?” and regular Lagrangian
cones in C?"*2, provided by two maps called conification con and reduction

red = con— 1.

The action of the group Gsx C G is equivariant with respect
to these maps, which allows to define the conification of special Kéahler pairs.
Up to the action of Ggx the conification works by ‘homogenization’ of the

prepotential,

Fo(Xh ., X™) = Fn(XO, X1 X™) = (XO)? Fe(X1/X%, ..., X"/ X0) .
(545)
Interestingly, only the action of the subgroup G = Sp(R?*") x Heisa,,11(R) pre-

serves the induced Kéhler metric on the Lagrangian cone. This means that the

ing to a quadratic prepotential.
52See for a review of Hamiltonian vector fields, moment maps and symplectic reduc-
tions.
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supergravity r-map admits non-trivial deformations, which at the level of the

prepotential correspond to adding terms of the form
OF = i(apa XX 4+ ¢(X°)?), aga,c €R. (546)

We will discuss the physical interpretation of these deformations below. Having
defined the conification of special Kéahler pairs, the extension to the conification
of general ASK manifolds uses the flat Ggx-principal bundle of special Kéahler
pairs introduced in section[5.4.2] Roughly speaking, starting with a local conifi-
cation of N using a special Kéahler pair (¢, F') one obtains the global conification

N of N by maximal analytical extension of (¢, F'). We refer to [46] for details.

8.83.3. The deformed supergravity r-map

Using the conification N2n+2 — Na,ta we obtain the ASK/PSK corre-
spondence N2n+2 + Na,y2, while composing the rigid r-map with the coni-
fication map we can lift the supergravity r-map to the superconformal level,
My+1 — Napis. More precisely, while the homogenized prepotential
matches with the result of the reduction of five-dimensional vector multiplets,
the conification map allows to include the non-trivial deformations . Such
terms are allowed for four-dimensional vector multiplets, but disappear when
a decompactification limit to five-dimensions is performed [103, 104]. Terms of
the form with ag, = 0 but ¢ # 0 do actually occur in string theory. In
type-1I compactifications on Calabi-Yau three-folds they arise as worldsheet in-
stantons with a coefficient proportional to the Euler number x of the three-fold
[105], [106], while in heterotic compactifications on K3 x T? they are part of the
one-loop corrections and proportional to an expansion coefficient of a (model
dependent) modular form [I07, T08, 109, I10]. We remark that deformations
where ag, # 0 and ¢ = 0 do not have a known realization in string theory. Note
that 6 F in has purely imaginary coefficients, and is therefore distinct from
terms of the form 0F = iCQ 1 XX which arise in ITA-compactifications, where
cor are the components of the second Chern class. Terms of the form SF have
real coefficients, and can be absorbed by a symplectic transformation. Thus
they do not provide a non-trivial deformation, while does.

8.4. Reduction from four to three dimensions: the c-map
8.4.1. Reductions to three dimensions
Compared to the generic situation considered in section 8] reductions to

three dimensions have an enhanced number of scalar fields, because abelian
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vector fields can be dualized into scalars. Consider the generalized Maxwell
Lagrangian )
L(A) = —§F A *F (547)

for a p-form field strength F' = dA in n = t+s dimensions, where ¢ is the number
of time-like dimensions, more precisely, the number of negative eigenvalues of
the metric. By promoting the Bianchi identity dF' = 0 to a field equation using
a Lagrange multiplier (n —p—1)-form B, and subsequently eliminating F' by its
algebraic equation of motion, one arrives, after dropping any boundary terms

resulting from integration by parts, at the dual Lagrangian
~ 1
L(B) = (—)tiG/\*G, (548)

where G = dB is the Hodge dual of F. Note that the sign of the general-
ized Maxwell term flips whenever the number of time-like dimensions (negative
eigenvalues of the metric) is even, in particular in Euclidean signature, while it
remains the same for an odd number of time-like dimensions, in particular in
Lorentzian signatureﬂ

Consider now starting with a four-dimensional action with one €;-complex

scalar and one abelian gauge field.
1 - 1
S = / d'z (28#X8“X - 4FWF’“’> . (549)

Upon reduction to three dimensions we end up with four real scalars: the real
and imaginary partﬁ of X = 0 + i, b, the component p = A, of the four-
dimensional vector field along the direction we reduce over, and the scalar s we
gain by dualizing the three-dimensional abelian vector field A,,. For e; = —1
we take the four-dimensional theory to have signature (— + ++) and consider
both a space-like reduction, e = —1, and a time-like reduction, e5 = 1. For
€1 = 1, we take the four dimensional theory to have signature (+ + ++), and
only a space-like reduction, €5 = —1 is possible.

The corresponding three-dimensional actions are

€1€2

S = / &z (;amgama n %ambamb + %Qampamp - 28m58ms> . (550)

53Irrespective of whether we choose a mostly plus or mostly minus convention for the metric,
the sign of the kinetic energy is preserved in Lorentzian and reversed in Euclidean signature.

54Here and in the following ‘real part’ and ‘imaginary part’ is short for ‘c-real part’ and
‘e-imaginary part,’ respectively.
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For ;1 = e9 = —1 we can combine the four real scalars into one scalar valued in

the quaternions H_; := H,
q=o0+ib+jp+kq, Gg=0—ib—jp—kq, (551)

where 14, j, k anticommute pairwise, and where i*> = j2 = k> = —1. In the
other cases we can combine them into a scalar valued in the algebra H; of para-
quaternions, where two of the complex units are replaced by para-complex units.
For example, for e; = —1, e5 = 1 we can use with j2 = k? = 1@ To
treat both cases in parallel we use an e-quaternionic notation where H. denotes

the quaternions for e = —1 and the para-quaternions for € = 1 The resulting

S = /d% (; mqamq> ) (552)

For theories with several interacting scalars this type of rewriting is not prac-

action takes the form

tical, but it illustrates that the target space geometries that one obtains by
dimensionally reducing four-dimensional vector multiplets are e-quaternionic
geometries. More specifically, when dimensionally reducing vector multiplets
and dualizing all the three-dimensional vector fields, the resulting supersym-
metry representations are hypermultiplets, and the target space geometry is
e-hyper-Kéahler (e-HK) in the rigid and e-quaternionic Kéhler (e-QK), a.k.a.

e-quaternion-Kéhler in the supergravity case.

8.4.2. The rigid c-map

We now turn to the reduction of a four-dimensional bosonic on-shell vector
multiplet Lagrangian of the form (528). This section is based on [78], to which
we refer for detailsﬂ The parameter €; = 41 labels the four-dimensional scalar
target geometry, which is affine special Kéhler for Lorentzian and affine special
para-Kahler for Euclidean space-time signature, with a general £;-holomorphic
prepotential. The second parameter eo = +1 distinguishes between space-like

reduction and time-like reduction, where the latter is only possible if we start in

555ee for a brief review of quaternions, para-quaternions, and the related ‘e-
quaternionic’ geometric structures.

56We write €1,e2 for signs related to the four-dimensional Lagrangian and its reduction
to three dimensions, respectively, while using € when talking about e-complex structures in
general.

57The conventions used in [78] are slightly different from those used in this review, which
leads to various constant rescalings of fields.
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Lorentzian signature. After dualization of the three-dimensional vector fields,

the Lagrangian takes the form

L = —NU(?mXIZ')mX’J + EQ(NIJ — alRIKNKLRLJ)BmpIE)’”pJ (553)

+4€152R1KNKJamplam8,] — 452€2N1J3m818m8J .

Here p’ oc AL are the scalar components of the four-dimensional vector fields
and sy the scalars obtained from dualizing the three-dimensional vector fields.

The target space geometry of the three-dimensional theory is hyper-Kéhler
for e = 5 = —1 [111] and para-hyper-Kéahler for €165 = —1 [78]. It is possible
to combine the real fields (p’,s;) into e-complex coordinates W (where & =
—e1€2) and to make the e-hyper-K&hler geometry of the target space manifest
by finding explicit expressions for the three e-complex structures and for an e-
Kahler potential in terms of the special geometry data of the four-dimensional
theory [78]. Alternatively, one can work in real coordinates. The e;-complex
version of the expression for the Hessian metric on the four-dimensional

scalar target space is

Nij—e1RigNE Ry, 2e1Ri g NK7
(Hab) = . (554)

2€1NIKRKJ 74€1NIJ

Replacing the e;-complex scalars X by special real coordinates ¢, and com-
bining the remaining real scalars into the symplectic vector ¢* = (p!,sy), we
obtain

L = ~Hap(@)0ma"0™¢" + 2 Hat (0)0md®0™ 3" (555)

From this expression it is manifest that we can interpret the target space N
of the three-dimensional theory as the tangent bundle N = T'M of the ASe; K
target manifold M of the four-dimensional theory, equipped with the Sasaki-like
metric

ds%_ 1y = Hap(dq%dg® — e2d§®dqP) . (556)

Similar to the case of the rigid r-map, the special connection V of the ASe; K
manifold M can be used to perform a canonical splitting of T'N into a horizontal
and a vertical distribution. Moreover, the special geometry data of M can be
used to show that N = T'M globally carries the structure of an e-HK manifold.

The map induced by dimensional reduction of four-dimensional vector multiplets
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is called the rigid c-map:

Ceren  {ASe1K manifolds} — {¢ — HK manifolds} , My, +— Ny, X TM .

(557)

Depending on €1, €5 there are three subcases:
1. The spatial c-map, or simply, the (rigid) c-map: &1 = e3 = —1, and
€ = —g169 = 1. This corresponds to the standard, space-like reduction of

vector multiplets in Lorentzian signature, and was first described in [IT1].
All involved scalar target space geometries are positive deﬁnite@

2. The temporal c-map, e = —1,e5 = 1 and € = —e162 = 1. This corresponds
to the time-like reduction of a Lorentzian vector multiplet theory and
relates a positive definite scalar geometry to one with neutral signature.

3. The Euclidean c-map, €1 = 1,69 = —1 and € = —e1e9 = 1. This corre-
sponds to the space-like reduction of a Euclidean vector multiplet theory

and relates two target space geometry with neutral signature.

We remark that instead of setting N = TM, we can alternatively take N =
T*M, since the metric allows to identify tangent spaces with cotangent spaces.
Then

ds%_perr = Hapdg®dg® — eo H*dG,ddy, (558)
where H is the inverse of H,;, and dq, = Habdqb@ Thus the cotangent bundle
of an ASe;K manifold is an e-HK manifold [ITT], [78]. This is a stronger result
than for generic Kéahler manifolds, where it is known that the cotangent bundle
admits the structure of an HK manifold locally, in a neighbourhood of its zero
section [112, 113].

8.4.8. The supergravity c-map and its deformation

We finally turn to the reduction of four-dimensional vector multiplets cou-
pled to supergravity to three dimensions. Our starting point is the bosonic on-
shell Lagrangian in Lorentzian or Euclidean space-time signature, with
a general e1-holomorphic prepotential. The four-dimensional metric is decom-

posed according to

ds? = gudatdz” = —82€¢(d$* + Vidz™)? + e~ gpndaz™dz™ | (559)

58That is, if we impose positive kinetic energy for all fields. Mathematically we can also
consider scalar target spaces with indefinite metrics.

59The integrability condition for the local existence of the functions §,, which are fibre
coordinates on T* M, follows from H,; being the components of a Hessian metric on M.
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where V,,, is the Kaluza-Klein vector and ¢ the Kaluza-Klein scalar. After
reduction to three dimensions, all abelian vector fields are dualized into scalars.

The bosonic field content of the resulting three-dimensional theory is:
e The three-dimensional metric g, .

e The n = n(y e1-complex four-dimensional scalars 24, where n(s) is the

number of four-dimensional vector multiplets.

e The n + 1 real scalars (! oc Al obtained by reducing the n + 1 four-

dimensional vector fields Alﬂ.

e The n+1 real scalars 5 1 obtained by dualizing the n+ 1 three-dimensional

vector fields AL .

e The Kaluza-Klein scalar ¢ and the scalar ¢ obtained by dualizing the

Kaluza-Klein vector V,,.

The three-dimensional metric does not carry local degrees of freedom while
the 4n + 4 real scalars Re(z4),Im(z4), ¢/, 1, ¢, ¢ are the bosonic components
of 4n + 4 hypermultiplets, coupled to three-dimensional Poincaré supergravity.

The three-dimensional Lagrangian is [114] [1'7]
L = LRy gaponatomsB o, g0m 560
3 = 3 3 — 94B9m~= z 1 @0 ¢ ( )
2
-1 L
+ee72? |:am¢ +3 (ClamCI - Clam<1>:|
€2 _4 Tam ~J IJ p K\?
5 Z1j0m( O"C —eal (@n([*RlK@mC ) :

The target space geometry of hypermultiplets coupled to supergravity is
quaternionic-Kahler [24]. For Euclidean hypermultiplets obtained by dimen-
sional reduction the target space geometry is para-quaternionic Kahler [19] [17].
The map between scalar geometries induced by dimensional reduction of four-
dimensional vector multiplets coupled to supergravity is called the supergravity

c-map:
Cle1,e0) * 1PSe1K manifolds} — {e — QK manifolds} , My, 5 Nipya . (561)

The properties of the three types of supergravity c-maps are summarized in
Table [
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c-map Space-time scalar geometry | scalar manifold signature
signature
spatial (1,3) = (1,2) | PSK — QK (2p,2q) — (4p + 4,4q)
temporal | (1,3) — (0,3) | PSK — PQK (2p, 2q) — (2d,2d)
Euclidean | (0,4) — (0,3) | PSPK — PQK | (r,r) — (2d,2d)

Table 5: This table summarizes the relations between the space-time signatures, target space
geometries and target space-signatures for the 3 types of supergravity c-maps. We include the
case where the PSK manifold has indefinite signature, which is mathematically well defined,
but corresponds to a vector multiplet theory where some of the fields have negative kinetic
energy. In this case the QK manifold obtained by the spatial supergravity c-map is also
indefinite. Para-Kéhler and para-QK manifolds always have neutral signature. Manifolds of
dimension 2n map to manifolds of dimension 4n + 4, therefore d = p + ¢ + 2 in row 2 and
d=17+1in row 3.

Showing that the scalar target manifold Ny, 4 of the Lagrangian (560)) is
e-quaternionic Kahler is somewhat involved, in particular if one wants to have
a global description of Ny, 4. There are various ways to describe the geometry

of N, which we discuss in turn.

Supergravity c-map spaces as group bundles

The first description of the geometry of N is based on an observation of [114]
for the case €; = e = —1: when restricting to constant values of z?, the metric
on the corresponding subspace is Kéhler, only depends on the number of vector
multiplets, and is in fact the metric of a Riemannian symmetric space. It was
shown in [4] that if the underlying PSK manifold M is a PSK domain, then the
image under the supergravity c-map is a QK domain of the form N = M x G,
where G is a solvable Lie group, and where the QK metric g5 is a ‘bundle
metric’ g5 = g5 + 9c(p), where ga(p) is a family of left-invariant metric on G
parametrized by p € M. It was also shown in [4] that this construction can be
‘globalized,” that is one can apply the supergravity c-map domain-wise and then
glue together the resulting QK domains consistently and uniquely to obtain a
QK manifold. Moreover, it was shown that the supergravity c-map preserves
geodesic (and hence metric) completeness, that is, if M is complete so is its
image N under the supergravity c-map. Except for the completeness result
(which heavily relies on the involved metrics being definite), the description of
N by gluing domains should also apply to the case where e1e9 = —1. In [17] it

was shown that the image of a PSe;K domain M under C(e,,e,) bakes the form
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N = M x G, with a bundle metric gy = g;7 + gc(p), where G is a solvable Lie
group. The solvable Lie groups G and left-invariant metrics on G were found
to be the following:

1. &1 = ey = —1. This is the standard (spatial) supergravity c-map which
was already considered in [II4]. The solvable Lie group is the Iwasawa
subgroup of U(n + 2,1) and can be identified globally with the complex
hyperbolic space

CH"™? =U(n+2,1)/(U(n+2) x U(1)) (562)

equipped with a positive definite Kéhler metric of constant holomorphic
sectional curvature flm The metric on the resulting QK manifold N =
M x G is positive deﬁnite@

2. g1 = —1, eo = 1. This is the temporal supergravity c-map. The group G
is again the Iwasawa subgroup of U(n + 2, 1), but with a different, indef-
inite left-invariant metric. It can be identified locally with the indefinite

complex hyperbolic space
CH""™ ™M = U(1,n+2)/(UQ1,n+1) x U(1)) (563)

equipped with a pseudo-Kéahler metric of complex signature (1,n+ 1) and
constant holomorphic sectional curvature —1. Note that for non-compact
symmetric spaces of indefinite signature the Iwasawa subgroup does not
act transitively, so that we cannot identify G globally with the above
symmetric space. However, it can be shown that G acts with an open
orbit, thus allowing the identification of G with an open subset of the
symmetric space. The signature of the resulting space M x G is neutral
(2n + 2,2n + 2), as required for a para-quaternionic K&hler manifold.

3. e1 =1, e = —1. This is the Euclidean supergravity c-map. The solvable
Lie group G is the Iwasawa subgroup of SL(n+3,R) and can be identified

locally with para-complex hyperbolic space

CH"*? = SL(n + 3,R)/S(GL(1) x GL(n + 2)) (564)

60The e-holomorphic sectional curvature of an e-Kdhler manifold (M, J,g) is
(R(X,JX)JX, X)/(X N JX,X AN X), where X is a vector field, where (-,-) is the scalar
product between tensors induced by the metric, and where R is the curvature tensor. It can
be interpreted as the sectional curvature of the e-complex line X A JX [115] [1I7].

61We assume, here and in the following case, that the target space metric of the four-
dimensional vector multiplet theory is positive definite.
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equipped with a para-Kéahler metric of real signature (n 4+ 2,n + 2) and
of constant para-holomorphic sectional curvature —1. The signature of
M x G is (2n + 2,2n + 2), as required for a para-quaternionic Kihler

manifold.

The simplest examples for N are the ‘universal hypermultiplets’ obtained by
reducing pure four-dimensional ' = 2 supergravity. In this case M = {pt} and

N is locally isometric to one of the following manifolds:

1. For the spatial supergravity c-map, €1 = €5 = —1, the target space is

globally isometric to
CH?* = SU(2,1)/(U(2) x U(1)) . (565)

This is the ‘universal hypermultiplet’ which is obtained by the reduction
of pure N = 2 supergravity. In general c-map spaces the universal hyper-
multiplet spans a distinguished subspace. Note however, that once string
corrections to the hypermultiplet metric are taken into account the uni-
versal hypermultiplet ceases to be an identifiable, ‘universal’ part of the
scalar manifold [TT6].

2. For the temporal supergravity c-map, e; = —1,e2 = 1, the target space is

locally isometric to
CHY" =U(2,1)/(U(1,1) x U(1)) . (566)

This is target space for a time-like reduction of pure A’ = 2 supergravity.

3. For the Euclidean supergravity c-map, the target space is
CH? = SL(3,R)/S(GL(1) x GL(2)) . (567)

This target space does not only arise in the dimensional reduction of pure
N = 2 Euclidean supergravity [89], but also when dualizing the so-called
double tensor multiplet in Euclidean signature [II7]. This reflects that
Euclidean actions which differ by sign flips can be related by using that
dimensional reduction/lifting, Wick rotation and Hodge dualization do

not commute which each other, see also [45], as discussed in section

Conification of e-HK manifolds

We now turn to another way of describing the scalar manifold N. As in

the case of the supergravity r-map, one can lift the supergravity c-map to the
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superconformal level. Within the superconformal formalism, it is not possible
to formulate hypermultiplets off-shell with a finite number of auxiliary fields.
However, as long as the hypermultiplet manifold has sufficiently many isome-
tries, hypermultiplets can be dualized into tensor multiplets, which admit a
superconformal off-shell representation [I18]. Alternatively, the projective su-
perspace formalism can be used to describe hypermultiplets off-shell, see also
section [B:4.6] Off-shell formulations of the supergravity c-map were obtained
in [IT9] using projective superspace, and in [120, 121] using the superconformal
formalism.

We will review the global geometric construction of the supergravity c-map
given in [I7], which is inspired by the superconformal approach and which pro-
vides all the data necessary for describing the theory at the superconformal level.
This description also allows a complete and relatively short proof that spaces
in the image of the supergravity c-map are global e-quaternionic Kéahler mani-
folds. Moreover, this proof also applies to a one-parameter family of non-trivial
deformations of the metric obtained from the supergravity c-map.

When working with hypermultiplets the situation regarding the scalar target
spaces is the e-quaternionic analogon of the real and complex settings for five-
and four-dimensional vector multiplets. To each e-QK manifold ]\_f4n+4 describ-
ing n 4+ 1 hypermultiplets coupled to Poincaré supergravity, one can associate
an e-HK cone Ny, g, that is an e-HK manifold with a homothetic action of the
group H* of invertible e-quaternions, such that N = N/H*. Conversely N is
an H*-bundle over N. We remark that while it would be more in line with our
terminology for vector multiplets to use the term ‘conical e-HK manifold’, we
follow the literature in using ‘e-HK cone’ instead.

One can obtain the superconformal lift ¢ : Ma, 19 +— Nypys of the super-
gravity c-map ¢ : Mo, — Ni,44 by composing the rigid c-map ¢ : Mo, 1o
M4n+4 =~ TM with a conification map con : M4n+4 > My,+g. The situation is

summarized by the following diagram:

¢
M m (568)

N
I cHK/QK I
sc sc

M N

c

This diagram induces a correspondence between e-HK and ¢’-QK manifolds of
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the same dimension[F2]

The e-HK/QK correspondence

The correspondence can be formulated independently of the supergravity
c-map, and then also applies to e-HK manifolds N which are not in the image
of the rigid c-map, but specify the conditions stated below. The resulting e-
HK/QK correspondence generalizes the HK/QK correspondence of [122], which
was applied to the space-like supergravity c-map in [123] in the context of the
twistor approach, see also section below. We follow [124] 125, [126], who
have extended the HK/QK correspondence to arbitrary signature and to the
para-complex setting.

For an e-HK manifold N to admit a conification N the following conditions
must hold:

1. N admits a time-like or space-like Killing vector field Z, which is e-
holomorphic with respect to an e-complex structure J;, which is part
of e-HK structure. The Killing vector field Z is Hamiltonian with respect
to the corresponding e-Kéahler form wy, that is, there exists a function f
such that df = —w1(Z-,-).

2. The functions f and f1 = f — 39(Z, Z) are nowhere zero.

3. The Killing vector field Z rotates the other two e-complex structures, Jo
and Js, of the e-HK structure, that is, Lz.Jy = 2¢J3.

Having constructed an e-HK cone Ny,1s, one obtains a corresponding e-QK
manifold N4y, 14 by a superconformal quotientﬁ Conversely, given any e-QK
manifold Ny, 4, there always exist the associated e-HK cone (which for e = —1
is also known as the Swann bundle) Ny,;s. One can then obtain an e-HK
manifold Ny, 14 by taking an e-HK quotient, provided that Ny, s admits a tri-
holomorphic Killing vector field X which commutes with the Euler field £ of
the cone Ny, g, acts freely and satisfies a technical condition regarding the level
sets of its moment map. The existence of such a vector field follows from the
existence of a space-like or time-like Killing vector field X on N, again subject

to a technical condition[F4

62Note that € # ¢’ can occur, see Table

63Since the construction involves the moment map of Z explicitly, the correspondence allows
a one-parameter deformation to be discussed in

64We refer to [126] for the details.
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It turns out that the e-HK/QK correspondence can be formulated without
using the e-HK cone Ny,ts explicitly. Roughly speaking, three of the four
extra dimensions of the cone do not play an essential role, so that one can take
a shortcut and relate N4n+4 and ]\74n+4 via a manifold Py, 5 of real dimension
4n + 5. The manifold Py, 45 is a rank one principal bundle over Ny, 4 with
principal action generated by a vector field Xp, and simultaneously a rank one
principal bundle over Ny, 14 with principal action generated by a vector field Zp.
The vector fields X p and Zp are lifts of the Killing vector fields X on N4n+4 and
Z on N4n+4 that we mentioned before. The manifold Py,,5 is a submanifold
of the e-HK cone Ny,4s, and taking quotients of Py,45 with respect to the
principal actions of Xp and Zp is consistent with taking an e-HK quotient and
an e-QK quotient of Ny, s, respectively. The situation is summarized in the

following diagram:

(Na XN7 ZN)
JHZ /HZ
(Pa XP7 ZP)
/{(XPp) /{Zp)
. eHK/QK -
(N, Z) (N, X)
eQK/HK

Explicit expressions for the all relevant geometric data on N ,N,N and P can
be found in [124, 125| [126].

A symplectic parametrization of the supergravity c-map

The space Pjy,45 appears naturally in the dimensional reduction of four-
dimensional vector multiplets, if we use special real coordinate for the CASK
manifold M and insist on maintaining manifest symplectic invariance after di-
mensional reduction. This leads to a reformulation of in terms of a gauged
sigma model with target space Py, 5, which is equivalent to a sigma model with
target space Ny, [127].

This reformulation requires a couple of steps. First we replace the four-

dimensional scalars z# by the projective scalars X! which take values in Mo, o

GagOmzt0mz8 = %0, xTom X7 . (569)
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Here gg}) = 7*gy; is the lift of the PSK metric to the CASK manifold. Since
55\2) has a two-dimensional kernel, this rewriting does not increase the number of
propagating degrees of freedom. The right hand side can be viewed as a gauged
sigma model, where the connection gauging the action of C7 = R>% x U(1).,
on M has been integrated out ] Here

Uu), for e = -1,
U)e, = (570)

GL(L,R), for e1 =1,

is the ej-unitary group which is part of the R-symmetry group of the super-
symmetry algebra. Rewriting the vector field couplings in terms of X7 is trivial
since the matrix N7; = Ry + 4., Zr; is homogeneous of degree zero.

The second step is to make the field redefinition Y := ¢?/2X!, which ab-
sorbs the Kaluza-Klein scalar ¢ into the superconformal scalars X’. If we impose
the D-gauge on X', then ¢ can be expressed as a function of the new scalars
V&

—ie (X'F —F X =1= —i,, (YIF; - F;Y!)=¢? . (571)

From now on we do not regard ¢ as an independent field, but as a function
of the fields Y. Since the fields Y/ are subject to U(1).,-gauge transforma-
tions, the (n + 1) e;-complex scalars Y represent 2n + 1 propagating degrees
of freedom. Geometrically, 2n scalars correspond to excitations transverse to
the CZ -action on M and thus to the independent four-dimensional scalars 2L,
while the additional scalar corresponds to the radial direction of the real cone
M = R>% x S, where S is the e;-Sasakian submanifold of M defined by the
D-gauge.

The third step is to use special real coordinates on M. Since Y! can be
interpreted as special e-holomorphic coordinates on M, we can define associated

special real coordinates ¢% = (z,yr),
YI :$I+i€1u1($,y) ) FI(Y) =y1+i€1v1(x7y) ) (572)

which compared to the usual special real coordinates have been rescaled by a

factor e?/2 involving the Kaluza-Klein scalar ¢.

65This proceeds by imposing the K-gauge b, = 0 on (426)) and then eliminating the U(1)
gauge field A, by its equation of motion, see section @
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The fourth step is to express the vector field coupling matrix N7 in terms
of the tensor field H,, using (337)). Finally, instead of using the tensors H,, and

H,y, it is convenient to express all couplings in terms of the Hessian metric

. 1 1 1
Hab = 83,1) |:2 10g(2H):| = *ﬁHab + @HaHb (573)
where ) )
le — —
H(q¢%) = —§e¢ = §(Y1F[ — YT (574)

is the Hesse potential for the CASe; K-metric on M. Defining ¢ := %(Cl, 51)

and

0 1n+1
(Qap) = (575)
_]ln+1 0

we can rewrite (560)) in the form [127, [17]

1 ~ ~aam A
Lgal)az) = §R3 — Hyyp (amqaamqb - 528mq 0 qb)

+% (¢°Qb0ma”) (¢°Qap0™q")

2 ~ a m
- 2?2 (4°Qb0nd") (4°Qabd™ ")
&1 7 ~a ~b m 7 ~Q m b
+1o3 (0mé + 20 Qu0md") (676 +20° Q™ ") . (576)

This is a non-linear sigma model for 4n + 5 real scalars q“,cj“,é coupled to
gravity. Its target space Py,15 is the total space of the rank one principal
bundle 7 : Py,45 — Ninia which occurs when constructing the supergravity
c-map using the e-HK/QK correspondence. Since the scalar fields ¢* are subject
to U(1)e, gauge transformations, there are only 4n + 4 propagating degrees of

freedom. The symmetric tensor

25152

r7 a A g € a a ~
gp = Hau(dg"dq® — e2d§®dq") — Flz (¢"Qapdq”)® + Iz (¢"Qapdq”)?
&1 72 ~a ~b\2
— 1 (497 + 24" Qapdq’) (577)

defined by the Lagrangian has a one-dimensional kernel and is projectable
with respect to the U(1).,-action. Thus is a gauged non-linear sigma
model (with the U(1),,-connection integrated out), and defines, by projection
onto orbits, a non-linear sigma model with target space N = P/U(1)., and

e-QK metric g5, where gp = gy .

151



As explained in section there is no natural choice of an U(1).,-gauge
which realizes the PSK manifold M canonically as an embedded submanifold
of the CASK manifold M, because the distribution orthogonal to the U(1),-
action is not integrable. Similarly, there is no preferred way to identify N with
a submanifold of P. Instead of making a conventional choice, it is possible and
advantageous to work with the P-valued gauged sigma model. The coordinates
we have constructed on P are either symplectic vectors, ¢%, %, or symplectic
scalars, 45 Fixing a U(1)., gauge requires to impose a condition on ¢* and
symplectic covariance is lost. However for many purposes, including to prove
that (]V4n+4,gﬁ) is e-QK, one can work on Pj,;5 and maintain symplectic
covariance.

Describing the supergravity c-map using a gauged sigma model with target
Py 45 amounts to replacing the diagram by

M—S5N>TM, P~TM xR (578)
SCI ¢HK/QK I/U(l)el
M N

ol

Defining the one-forms
p=H'¢"Vpdq", o=H '¢"Qupdd®, 7=H '¢"Qupdg" (579)
the projectable tensor takes the form
gp = Jrar — €1p° + 2e1690° — al(dqg +7)? (580)

where
grv = Hap(dg"dq® — £2dq°dg") (581)

is the image of g = Hqapdq*dq® under the rigid c-map. The manifold Py, 5 is
defined as TM x R, where R is parametrized by ¢~) The tensor gp is obtained by
twisting the product metric gras —e1d¢? using the one forms p, o, 7. The vector
field 9/ 8(5 leaves gp invariant and generates a principal action on P which allows
to recover TM as a quotient TM = P/R. We remark that one can replace R by
S1, which is indeed the choice usually made in the e-HK/QK correspondence.
The choice R is suitable for the supergravity c-map, where QNS is the dualized
Kaluza-Klein vector. The principal CZ -action on M can be lifted to TM and
to P, which then allows to take a quotient of P by the principal action of
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U(1)e, C Cf,. The tensor gp is invariant under and transversal with respect to
this group action and defines a non-degenerate metric g5y on N = P/U(1).,.

Alternatively, we interpret the diagram [578| such that the rigid c-map is
applied to the CASe,K metric gy = Hapdg®dg® to obtain the e-HK metric
grm = Hap(dgdg® — dG*d@®). The tensor gp is then obtained by a conformal
rescaling and twisting by the one-forms dH = H,dq® and H,d§® in addition to
the modifications which relate grys to gp. Note that for both gy and gps their
relation to gp is determined by the e-HK/QK correspondence (equivalently, by
conification), and therefore is canonical.

Proving that a metric is an e-QK metric is usually difficult, because an
e-QK manifold need not admit any globally defined and integrable e-complex
structures. One advantage of constructing N as a quotient of P = TM x R is
that TM is e-HK. This can be used to construct data on P which by projection
define an e-QK structure on N, thus providing a concise proof that N is e-
QK. We refer to [I7] for details. As shown there, calculations on P can be
translated into calculations on N using local sections. The original proof of
[114] that spaces in the image of spatial supergravity c-map are QK uses an
adapted co-frame on N. The approach of [17] also allows to show that e-QK
manifolds obtained from the supergravity c-map admit integrable e-complex
structures. In particular, the £1-complex structure of M induces an integrable
e1-complex structure on N which is part of the e-QK structureﬁ There also
always exists a second integrable £1-complex structure, which is not part of the
e-QK structure, and which differs from the first integrable structure by a sign
flip on a two-dimensional distribution. A third integrable structure only exists
if the Hessian metric gp; on M has a quadratic Hesse potential, Vgys = 0.

The parametrization of the c-map has turned out to be useful for
obtaining explicit non-extremal black hole and black brane in solutions, as well
as cosmological solutions, for four-dimensional N" = 2 vector multiplets coupled

to Poincaré supergravity, without and with gauging [16] [129] [130] 131}@

66For the spatial supergravity c-map this was first shown in [I28].
67Non-extremal solutions for five-dimensional vector multiplets can be obtained in a similar
way using the r-map [132].

153



From Griffiths to Weil flags

It was observed in [133] and [134] that the spatial supergravity c-map involves
the so-called Weil intermediate Jacobian, which parametrizes Hodge structures
on Calabi-Yau three-folds. Similarly, the rigid c-map involves the so-called Grif-
fiths intermediate Jacobian [49]. While this can be interpreted in the context
of Calabi-Yau compactifications, where the scalar manifold are related to the
moduli spaces of complex and Kéhler structures, the supergravity c-map is well
defined for any theory of N/ = 2 vector multiplets coupled to supergravity.
Therefore, one should be able to understand the appearance of the Griffiths
and Weil Jacobians without reference to Calabi-Yau manifolds. In [4] a geo-
metrical interpretation was given based on the realization of CASK manifolds
as Lagrangian cones in V = C?"*2 = T*C"*! We have already noted that be-
sides the CASK metric gy = Hgapdq®dg® the CASK manifold M admits another
metric gy = ﬁabdq“dqb, which, up to an overall factor, differs by a sign flip
along the distribution spanned by the vector fields £ and J¢ which generate
the C*-action. This operation can be viewed as a reflection on V which in-
duces an Sp(R?"*2) equivariant diffeomorphism between certain flag manifolds
defined over V. These flag manifolds are of the same type as the Griffiths and
and Weil intermediate Jacobians, and have therefore been dubbed Griffiths and
Weil flags, respectively.

From our description of the supergravity c-map it is clear why it involves
a map from Griffiths to Weil flags. In a rigid vector multiplet theory the ma-
trix encoding the vector field couplings is H,p, while in a local vector multiplet
theory it is H,,. The rigid c-map generates a term of the form H,,dG*dq® in
the metric on T'M, which in the three-dimensional Lagrangian corresponds to
the dimensional reduction of the vector field of a rigid vector multiplet theory.
The twisting relating gras to gp involves (among other things) the replace-
ment H,pd§*dg® — HapdG@dq, where the latter term corresponds in the three-
dimensional Lagrangian to the dimensional reduction of the vector fields of local
vector multiplets. Thus the HK/QK part of the supergravity c-map acts as a
reflection on V' which replaces Griffiths flags by Weil flags.

The deformed supergravity c-map
Similar to the ASK/PSK correspondence, the e-QK-metrics obtained from
the e-HK/QK correspondence depend explicitly on the choice of a moment map

for the e-holomorphic vector field Z on N. This results in a one-parameter
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(c)
N
[123]. It has been shown directly, that is without invoking supersymmetry, that

family of metrics g’, with ¢ = 0 corresponding to the supergravity c-map
while the deformation is non-trivial, the metrics g%) with ¢ # 0 are still e-QK
[124 125 126]. In the QK case the deformation corresponds, for a specific value
of ¢, to the one-loop correction to the hypermultiplet metric in type-II Calabi-

Yau compactifications [I35] [136]. Explicit expressions for the generalization of

(577), (580) can be found in [125] [126].

8.4.4. Results on completeness, classification and symmetries of PSR, PSK and
QK manifolds

In this section we collect results on the geodesic completeness, classifica-
tion and isometries of PSR, PSK and QK manifolds. Recall that a pseudo-
Riemannian manifold is called homogeneous if its group of isometries acts tran-
sitively, and globally symmetric if every point is the fixed point of an involutive
isometry. A pseudo-Riemannian manifold is called geodesically complete, if any
geodesic can be extended to infinite affine parameter. If the metric is positive
definite, geodesic completeness is equivalent to metric completeness. Pseudo-
Riemannian symmetric spaces are in particular homogeneous, and homogeneous
spaces are geodesically complete. Locally, symmetric spaces are characterized
by their Riemann tensor being parallel. A manifold of co-homogeneity k is a
manifold where the minimal co-dimension of orbits of the isometry group is k.

It was proved in [4] that for metrics of positive signature the supergravity
r-map and c-map preserve geodesic completeness. This is useful for obtaining
new results in Riemannian geometry, because it allows to generate complete
PSK manifolds from complete PSR manifolds, and complete QK manifolds from
complete PSK manifolds.

The r-map and c-map do not only preserve completeness, but also preserve
isometries and in fact create new ones. The obvious induced isometries are
those descending from higher-dimensional gauge symmetries whenever a vector
field is reduced dimensionally. But there are additional ‘hidden’ symmetries as
well. Without aim for completeness, some relevant references are [114, 137, [39]
138]. There is also a relation between symmetric PSR manifolds and Jordan
algebras, as was already observed in [I8]. This has been studied extensively in
the literature, but lies outside the topic of this review. We refer the interested
reader to [139] T40l T4T] and references therein.

All homogeneous (and thus in particular all symmetric) PSR manifolds have
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been classified in [T42]. A simple criterion for the completeness of PSR manifolds
was proved in [I43]. Complete PSR manifolds of dimension one and two have
been classified in [4] and [I44], respectively. Already in dimension two there are
continuous families of non-isomorphic PSR, spaces. Complete PSR manifolds
based on reducible cubic polynomials have been classified in [145] and belong to
four infinite series, two of which consist of homogenous spaces while the other
two consist of spaces of co-homogeneity one.

Homogeneous (pseudo-)PSK manifolds of the form G/K, where G is a semi-
simple Lie group and K a compact subgroup are automatically symmetric spaces
[146]. Examples of PSK manifolds with co-homogeneity one have been con-
structed by applying the r-map to non-homogeneous PSR manifolds [I45]. A
general criterion of the geodesic completeness of PSK manifolds has been proved
in [T47].

The spatial c-map is a powerful tool for the construction and classification of
quaternionic Kéhler manifolds, which are the most complicated non-exceptional
types of Riemannian manifolds with special holonomy. The hypermultiplet man-
ifolds occurring in supergravity always have negative scalar curvature [24]. Alek-
seevskian spaces, that is homogeneous QK spaces of negative scalar curvature
which admit a completely solvabl@ and simply transitive group of isometries
have been classified in [I48]. The classification of homogeneous QK manifolds
generated by the supergravity c-map [142] contains a class of spaces not con-
tained in the original list of [148]. It was then shown in [I49] that these were the
only cases missing, thus completing the classification. With the exception of the
quaternionic hyperbolic spaces HH™!, all Alekseevsky spaces can be obtained
from the supergravity c-map.

Mathematically the supergravity c-map is extremely useful because it al-
lows the explicit construction of non-homogeneous quaternionic-Kéahler spaces.
Moreover, since it preserves completeness, one can use complete, non-homogeneous
PSK manifolds to obtain complete, non-homogeneous QK manifolds. Two in-
finite families of complete QK manifold of co-homogeneity 1 have been con-
structed in [145].

While the supergravity c-map preserves completeness, this is no longer true

68 A solvable Lie group action is called completely solvable if the generators in the adjoint
representation have real eigenvalues.
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for the deformed supergravity c-map, that is if one includes a non-trivial con-
stant ¢ # 0 in the choice of the moment map for the vector field Z on the partner
manifold under the HK/QK correspondence. However, one can show that every
PSK manifold which exhibits so-called regular boundary behaviour is complete,
and that its image under the deformed supergravity c-map is a complete QK
manifold for ¢ > 0 [I47]. The same is true for complete PSK manifolds with a
cubic prepotential, irrespective of their boundary behaviour [I47]. This allows
to construct a huge class of complete non-homogeneous QK manifolds. The
results of [I47] have a curious implication for physics, where in type-II Calabi-
Yau compactifications the parameter ¢ corresponds to the one-loop correction
to the hypermultiplet metric and is proportional to the Euler number of the
Calabi-Yau three-fold. Given that mirror symmetry is a symmetry of string
theory and maps the Euler number to its negative, is it surprising that whether
the one-loop correction preserves completeness depends on the sign of the Euler
number. Understanding this observation will likely involve to also consider the
effect of further (instanton) corrections to the hypermultiplet metric.

The supergravity c-map also allows to construct homogeneous and non-
homogeneous pseudo-QK and para-QK spaces. Due to the lack of a complete-
ness result comparable to [4] much less is known. The classification of sym-
metric pseudo-QK and para-QK spaces can be obtained from the classification
of pseudo-Riemannian symmetric spaces by analysing their isotropy represen-
tations [I50]. The Hesse potentials of symmetric PSK take the form H = /Q,
where @ is a homogeneous polynomial of degree four. These polynomials have
been determined in [I5I]. They have an immediate geometric interpretation
for the associated QK manifold, because they determine the so-called quartic
Weyl tensor, which is the traceless part of the curvature tensor of a QK man-
ifold. Explicit descriptions for the homogeneous PSK manifolds in the image
of the supergravity c-map, including their prepotentials, Kéhler potentials and

realizations as bounded open domains can be found in [152].

8.4.5. The c-map in string theory

In this review we have focussed on the c-map as a construction in super-
gravity. Originally the c-map was formulated in the context of string theory,
more precisely type-II compactifications on Calabi-Yau three-folds [I11]. By
T-duality type-IIA string theory on X x S}, where X is Calabi-Yau three-fold

and S} is a circle of radius R (in string units), is equivalent to type-1IB string
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theory on X X S}z,l. By taking the limits R — 0 and R — oo one obtains a
relation between type-IIA and type-1IB string theory compactified on the same
Calabi-Yau manifold, thus somewhat complementary to mirror symmetry. This
form of T-duality is often referred to as the c-map, though using the terminol-
ogy of this review it actually combines the supergravity c-map and its inverse,
as follows. Given a type-ITA compactification on X, we have an N' = 2 su-
pergravity theory with ng/’f‘ ) vector multiplets and ng) hypermultiplets and a
scalar manifold M(A) X ]V(A) which is the product of a PSK and a QK mani-
fold. Upon reduction to three dimensions, this becomes supergravity coupled to
nE/A) +1+ n%) hypermultiplets, with scalar manifold ]\_f(’A) X Z\_T(A), where ]\_f(’A)
is the QK manifold obtained by applying the c-map to M y,).

Applying T-duality and lifting back to four dimensions results in an effective
IIB-theory with n%,B) = n%) — 1 vector multiplets and ngf) = n&fn + 1 hyper-
multiplets. The scalar manifold is M(B) X ]V(B), where ]\7[(3) is the image of
Ny = 1\7(’ 4y under the inverse of the supergravity c-map. Note the shifts £1
in the number of multiplets which accounts for the degrees of freedom residing
in the Poincaré supergravity multiplet.

This construction allows the obtain the tree-level hypermultiplet metrics
for the type-ITA/B theory from the vector multiplet metrics of type-1IIB/A.
However type-II hypermultiplet metrics are subject to perturbative and non-
perturbative corrections. The perturbative corrections arise at the one-loop
level and have been discussed above. Non-perturbative corrections have been
studied extensively by combining string dualties with the twistor approach,
see below. For Calabi-Yau three-folds X which are K3-fibrations, the type-11
compactification on X is believed to be dual to a heterotic compactification on
K3 x T? with a suitable choice of an Eg x Eg or Spin(32)/Zy vector bundle
V' — K3. While heterotic hypermultiplet metrics are believed to be exact at
string tree level, they are hard to compute because they are related to the moduli

spaces of vector bundles (instantons) on a K3 surfaces.

8.4.6. The twistor approach and instanton corrections to hypermultiplet metrics

Every quaternonic Kéhler space Nyj, admits an associated twistor space
Z4n+2, which, roughly speaking, is the S = P! bundle obtained by attaching
to each point of Ny, o the sphere {a.J; +bJy + cJs|a® +b% +c? = 1} of complex
structures generated by the endomorphisms Ji, Js, J3 which locally spann the

quaternionic structure. The twistor space can be embedded into the HK cone
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(or Swann bundle) Ny, 14 and thus ‘sits half-ways’ between Nyp and Ny, 4.
Twistor spaces have been used extensively to study the supergravity c-map
and to obtain perturbative and non-perturbative corrections to hypermultiplet
metrics. One advantage of this approach is that it allows to describe quater-
nionic Kéhler spaces in terms of holomorphic data on the twistor space. The
twistor approach is closely related to the projective superspace formulation of
supersymmetry. This is complementary to the approach underlying this re-
view, which focusses on Hessian structures and the superconformal formalism.
We refer the interested reader to the literature, in particular to [I39} [I53] and

references therein.

9. Static BPS black holes and entropy functions in five dimensions

The equations of motion of N' = 2 supergravity coupled to abelian vector
multiplets in four and five space-time dimensions admit static, single-centre, ex-
tremal black hole solutions. These are black hole solutions whose near-horizon
geometry is AdSsy x SP, with p = 2 (p = 3) in four (five) space-time dimen-
sions. These solutions are supported by the Maxwell charges as well as by
the scalar fields of the theory. Asymptotically, these scalar fields take arbi-
trary values. When approaching the event horizon of the black hole (which
at the two-derivative level is a Killing horizon [I54]), the scalar fields flow to
specific values that are entirely determined by the charges of the black hole
[155] [156] [157]. This is the so-called attractor mechanism for extremal black
holes, which can be explained by rewriting the equations of motion as gradient
flow equations: regardless of their asymptotic values, the scalar fields are driven
to specific values at the horizon. When these extremal black hole solutions are
also supersymmetric, they are called BPS black holes.

In this section we study static BPS black holes in five dimensions. They
are electrically charged. The gradient flow equations for these BPS black holes
were originally obtained by studying the supersymmetry preserved by these
solutions [I58] [159]. Here, we derive them by performing a suitable rewriting of
the underlying action [160], 161] .

The near-horizon geometry of these five-dimensional black hole solutions is
described by an AdSy x S? space-time. In this geometry, the attractor values for
the scalar fields at the horizon can be obtained from a variational principle based

on the so-called entropy function for extremal black holes [162]. Evaluating this
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entropy function at the extremum then yields the entropy of the black hole. For
BPS black holes, the horizon values of the scalar fields can also be derived from
a variational principle based on a different entropy function, called BPS entropy
function. The BPS entropy function is constructed from the Hesse potential V
of the CASR manifold discussed in section 2.6l

The above considerations based on the entropy function can be extended to
the case where one considers BPS black hole solutions in N' = 2 supergravity
theories in the presence of higher-derivative terms proportional to the square
of the Weyl tensor [163] 164, 165 23]. We discuss the effect of Weyl square
interactions on the entropy of static BPS black holes.

9.1. Single-centre BPS black hole solutions through gradient flow equations

9.1.1. Action and line element ansatz

The action for N' = 2 Poincaré supergravity at the two-derivative level is
given in (145)). Here we set k2 = 1, i.e. G~1 = 87, and we will denote the scalar
fields h! (I =0,...,n) by X4 (A=0,...,n), so that now

CapcXAXBXC =1, (582)

Correspondingly, we will denote the quantities h; and ar s introduced in ([146])
by X4 and Gap, respectively@

Xa = CapcXPXY=GapX",
Gap = —204cX°+3XaXp. (583)

We note the following useful relations, which will be used in the following,

XA X4 = 1,
XA0,X* = X*9,X4=0,
G0, Xp = —9,X*,
Gapd, X20'XP = G*P9,X,0'Xp. (584)

Next, we display the part of the N’ = 2 Poincaré supergravity action that is

relevant for the purpose of obtaining gradient flow equations for static extremal

69We note that the normalizations used in this section differ slightly from those used in
[160].
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black hole solutions,
5 1 3 A B 3 A pBpv
S = d Ty —4g iR* ZGAB @LX oH X" — gGABF#VF ® . (585)

We are interested in static solutions to the equations of motion, and hence we
take the five-dimensional line element, the one-form gauge fields A4 and the

scalar fields X4 to have the following form in adapted coordinates,

ds% = gudatds” = —fQ(r) dt® + f_l(T) dséH ,
A% = xA(r)dt,
XA = XA, (586)

where ds?; describes four-dimensional Euclidean flat space, which we write in

the form
dsgy = r ' (dr® + r?(d* + sin® 0 dp?)) + r (dip + cos 0 dp)? . (587)

Here 0 € [0, 7], ¢ € [0,27), ¢ € [0,4w). Indeed, by changing the radial coordi-

nate to
pr=4r, (588)
one obtains
2
dsty = dp® + pz (01 + 034 03) =da™dz™ |, m=1,...,4, (589)
where
o = —sinydf+ cosy sinfdy ,
o9 = cosypdf+siny sinfdyp
o3 = di+cosOdyp. (590)

We take the electric field GPXA to be sourced by electric charges which we
denote by ga, up to a normalization constant, so that 8PXA ~ f2GABqp/p,
and hence

2 2
ox? = —gi—g GAByp . (591)

9.1.2. Gradient flow equations
Here we derive first-order flow equations for solutions of the form (586).

These solutions describe single-centre static extremal black holes in a five-

dimensional asymptotically flat space-time. We follow [160].
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Inserting the ansatz (586]) into the action (585) yields,
1
S = 1 /dt dr df dy dip sin 6 (592)
[ _ 37“2f_2(f/)2 _ 37"2GAB(XA)/(XB)/ + 3r2f—2GABX/A X/B

+20, (r2711) |

where ' = 8, . Introducing the radial coordinate
1
== 593
r=2, (393)

and using (584) as well as (591)), this can can be rewritten into

S = i/dtdrd@dg&dw sin @
[—37'2 GAB (a-rXA +fOf XA — ; SfQA>
(apXB+<f&f—1X3-—§squ)
4311 2Gan (00 = 3126%%uc ) (00" = 31600 )
+20, (r*f 71 —2qa x* — 25 quXA)} , (594)

where s = +1.
The last line in (594) denotes a total derivative. Thus, up to a total deriva-
tive term, S is expressed in terms of squares of first-order terms which, when

requiring stationarity of S with respect to variations of the fields, results in
2
O Xa+fo f ' Xa = gSfQA )
2
oxA = 3 f2GAByp . (595)

Contracting the first equation with X4 yields the flow equation for the warp
factor f,

o, f 1= gquXA . (596)
The gradient flow equations then take the equivalent form
O (f'Xa) = %S qa
0.f7 = Zsaax?t,
Xt = ; f2GA8qp . (597)
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It can be checked that the five-dimensional Einstein-, Maxwell- and scalar field
equations of motion derived from (585|) are satisfied by the solutions to the flow

equations (597).
The first flow equation in (597) is solved by

2
fﬁlXA:§3HA , Ha=ha+qat, (598)
where h 4 denote integration constants. Contracting this with X 4 results in
2
ft= 35 Ha X4, (599)

One then verifies that this solves the flow equation for f~! by virtue of the
relation X409, X4 =0, c.f. (584). Thus, the flow equations (597) are solved by

2

filXA = gSHAv
F = 2sHAXA,
XA = —sfXx4. (600)

In the following, we take s = 1 and we assume that the C4pc in are
all positive, so that X4 > 0. Demanding f~' > 0 along the flow, we infer that
H, > 0 along the flow, and hence also hy,q4 > 0. The solution describes a
static, electrically charged extremal black hole solution in five dimension, which
is BPS [159]. The latter can be deduced as follows. The Lagrangian
contains the term g4GAB¢p, also called black hole potential Vgy. It can be

expressed in terms of the five-dimensional central charge,

Zs=qa X", (601)
as
Ver = qaGABqp = 72 + GAB (DaZs) (DpZs) , (602)
where
DAZ5:qA—XAZ5 . (603)

Likewise, the gradient flow equations for f~! and X4 can be expressed in terms
of Zs and D475 [166] 161],

9, X4 = —%fGABDsta

o.ft = Z2z. (604)



The scalar fields X4 stop flowing when D475 = OVA = 1,...,n. The latter
corresponds to a critical point of the black hole potential. If at this critical point
Zs.rit 7 0, then the scalar fields X A attain the constant values X 4 = qa/Zs cxit
and the warp factor f~! becomes f~' = % Zs.erit T- The associated line element
describes the geometry of AdS; x S3, which is the near-horizon geometry of
a static extremal black hole in five dimensions. Thus, when approaching the
horizon of the black hole, the scalar fields X# flow to a critical point of the
black hole potential satisfying D, Zs = 0 with Z5 # 0. Such a a critical
point is a BPS critical point [156].

The black hole potential may have other critical points that are not BPS.
Suppose that the black hole potential admits a second decomposition, in terms
of a real quantity W5 = Q4 X4,

Vin = qaG*Bqp = W2 + GAB D W5 DpWs , (605)

with Wy # Zs, and that it possesses a critical point D4W5 = 0 with W5 # 0.
Then this critical point is non-BPS, and it is associated to a non-BPS static
extremal black hole solution that can be obtained by solving first-order flow
equations of the form , but now with Z5 replaced by Ws. This is so,
because the rewriting of the action using proceeds in exactly the
same manner as the one discussed above. Thus, in certain cases, non-BPS
static extremal black holes solutions may be obtained by solving first-order flow

equations [160].

9.2. Entropy functions for static BPS black holes
9.2.1. Entropy function at the two-derivative level

We consider the solution with s = 1. In the coordinates , the
near-horizon geometry of the BPS black hole is obtained by sending r — 0.
Inspection of shows that in this limit the X“ become constant, while
f7(r) < 1/r. Setting

v
OES (606)

with vo a positive constant, and inserting this into shows that the near-
horizon geometry of a static BPS black hole is AdSy x S2,

dr?

ds? = v (—r?dt? + — )+ % (d6® + sin® 0 dp?) + 2—2 (dy) + cos B dy)® , (607)
T
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with vy = v9/4. In this near-horizon geometry, the gauge potentials Y behave

as x?(r) o« 7, and hence we set
xA(r)=etr, (608)

with constant e?. The near-horizon solution is thus specified by and
, and supported by constant X“4. The values of the X at the horizon
are, according to the attractor mechanism for extremal black holes, specified
by the charges carried by the black hole. These values can be determined by
extremizing the so-called entropy function, to which we now turn.

We consider the reduced Lagrangian F5 which is obtained by evaluating the

Lagrangian (85]) in the near-horizon BPS black hole background (607]), (608)
and integrating over the horizon [167],

1
Fo o= o [avdsdoy=gLs.

3\1/2 1 3 3G A B
= 7T w)” [ 1 3 + ,Lie (609)
4 vy vy 4 vy
The entropy function is then given by the Legendre transform [162]
& =2m (2mqae — F5) . (610)

The entropy function is a function of the constant parameters e?, vy, v, X4.
Extremizing the entropy function with respect to these parameters and evaluat-
ing the entropy function at the extremum, yields the entropy of the static BPS
black hole expressed in terms of the charges g4.

Varying the entropy function £ with respect to the electric fields e and
setting 0. = 0 yields

3m (v3)/?

GapeP =2 ) 611
i ABE Tqa (611)

Varying &5 with respect to v1, v and setting the variations to zero yields

vlz%:GABeAeB. (612)
Inserting (612) into & yields
w2 4172
&= (v3)"" (613)
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which equals the macroscopic entropy Smacro = As/4 of the static black hole,
where A5 denotes the horizon area. Using (611)), we infer

9 A5 9aG*Pqp
E’UQGABe & :T, (614)
and hence A
v =—5q1G""qp . (615)
97

The horizon values of the X4 are determined in terms of the charges g4 by
varying &5 with respect to the X4 and setting x &5 = 0. In doing so, one has
to take into account the constraint (582)), which implies

CapcX2XB5Xx9 =0 (616)

for arbitrary variations 6 X¢. Using the relation for G4p given in (583)), one

obtains for dx &5 = 0,
eAeBoxC (—CABc+3CACEXEXB—|—3CBCEXEXA) =0. (617)

Setting e = v X4, as required for a BPS solution, solves (617) by virtue of
(616)). The scale factor v is determined by inserting this expression into (615)),
which results in

1= VB (618)
Then, using (611)), we infer

8
UQXA:§QA. (619)

This is the so-called attractor equation, whose solution determines the values of
the scalar fields X4 at the horizon in terms of the charges carried by the BPS
black hole. Contracting (619) with X4 yields vy = %qAX 4 and using (582)

one infers vy ~ ¢, and hence Spacro ~ ¢/ [156].
9.2.2. BPS entropy function at the two-derivative level, the Hesse potential and
its dual
The attractor equation can also be derived from a variational principle
based on a different entropy function, which we call the BPS entropy function.
The BPS entropy function is constructed from the Hesse potential V of the
CASR manifold discussed in section [2.6]

1 1
H(Y) = §V(y) =5 Casc YAYEYe, (620)
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where we have introduced
VA =02 x4 (621)

The BPS entropy function reads
2(V,q) =4qaY* —H(Y). (622)
Extremizing with respect to Y4 yields

8
CapcYBYC = 304 (623)

which expresses the Y4 in terms of the charges q4. The value of ¥ at this

extremum is

S(q) = Cape YAYEYC =032, (624)
and hence
2
Smacro = > (q) . (625)

Thus, upon extremization, the electric charges g4 become proportional to the
dual special real coordinates, while the BPS entropy is proportional to the dual
Hesse potential, evaluated on the background, c.f. .

9.2.3. R?-corrected BPS entropy function, the Hesse potential and its dual

Now we allow for the presence of a specific class of R? terms in the N/ = 2
supergravity Lagrangian, namely those arising from the coupling of vector mul-
tiplets to the square of the Weyl multiplet. The effect of these higher derivative
terms on the near-horizon region of static BPS black hole solutions and on the
associated BPS entropy has been thoroughly discussed in [163] [164] 165, 23].
We follow [23].

The coupling of vector multiplets to the square of the Weyl multiplet can
be conveniently described using the superconformal approach to supergravity.
This is reviewed in One salient feature is that the Lagrangian describing
the couplings of vector multiplets to the square of the Weyl multiplet contains
a term proportional to the square of the Weyl tensor, with coupling function
ca XA, where cy4 are constant coefficients [29].

We focus on solutions to the associated equations of motions that have full

supersymmetry. These field configurations satisfy [23],

0, XA=0, F4=4X"Ty , Y9=0, D=0, T,T* = constant .(626)
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The associated line element describes a circle fibred over an AdSs x S? base,

1 dr?
g — 22 £ Y4 402 4 gin? 0dp? | + €% (dip + B)? |
16v2 r2
1 _
B = —4—@26 9 (Tazrdt — Ty cosBdy)
v o= (To1)? + (T23)2 . (627)

Here, To; and Tb3 denote the non-vanishing components of T,;, and they are
associated with (¢,7,0, ). v and e9 are constants. In the following, we focus on

static configurations, and hence set T3 = 0. Introducing the notation (Tp; # 0)

o_’
 4o?
and using v2 = (Tp1)?, the line element (627) may be brought into the form

P To1 (628)

1
(p°)?

Then, demanding p® = 1, in which case e™9 = 4Ty, = 4v > 0, and fixing the

ds® =

—r2dt2+d—r2+d92+d 24
1602 r2 7

di® + Z%cos 9d<pd¢) . (629)

periodicity of ¥ to ¢ € [0,47), the line element becomes the line element for
AdSy x S? given in (607)), with vy = 1/(4v?). This is the near-horizon geometry
of a static BPS black hole supported by electric charges g4 and constant scalar

fields X#. The latter are expressed in terms of the charges through the attractor

equation
qa = 3e? (CapcXPXC —ca(Tn)?) = 3 (CapcXPXC —cav?) , (630)
8T01 32’[)2 ’

where we normalized the charges as in (619)).
In this background, the equation of motion for the auxiliary D-field takes
the form

X = —2Capc XAXBXC +4ca XA (Ty)? . (631)
Then, imposing the normalization of the Einstein-Hilbert term (c.f. (156)),

CapcXAXBXC — gX =4, (632)
yields the constraint
3
Capc X XPXC =1+ 5cAXA(TOl)2 : (633)
Introducing Y4 as in (621)),
1
A A
Y 2v ’ (634)
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we obtain

1 3
Avy)By,C _ 2 A
CapcY Y7V™ = o5+ 15eaV" - (635)
The attractor equation (630) becomes
. 3 3 Byl
4a=qa+ 3504 = gCABCy yo. (636)

The entropy of these static BPS black holes is computed using Wald’s en-
tropy formula (B.134). Using the R2-corrected Lagrangian (156) in the back-
ground ([626]), (629), we obtain

oL

m Epv€po = —CABCXAXBXC . (637)

Note that the contributions proportional to c4 have cancelled out. Then, using

the line element ((629)

2
™
hdQ)=—, 638
S3 \/> 4’[}3 ( )
we obtain for the macroscopic entropy of a static BPS black hole,
2
Smacro = ?CABCyAyByC 5 (639)

with the Y4 expressed in terms of the charges through . The constant v
in the line element is determined through in terms of the charges.
This fully determines the near-horizon geometry of the static BPS black hole.

The attractor equation can be obtained by extremizing the following
BPS entropy function,

S(V,q) =4GaY* - H(Q), (640)

with H(Y) given as in (620]). The BPS entropy function is thus given in terms
of the dual Hesse potential, c.f. . The value of ¥ at the extremum yields the

entropy (639),
Smacro = % E(q) . (641)

10. Static BPS black holes and entropy functions in four dimensions

In four dimensions, the equations of motion of N' = 2 supergravity coupled
to abelian vector multiplets (without or with higher-derivative terms propor-

tional to the square of the Weyl tensor) admit single-centre, dyonic, extremal
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black hole solutions. These are spherically symmetric solutions. When they are
supersymmetric, they are called BPS solutions.
In so-called isotropic coordinates (t,r, 6, ¢), the line element of a spherically

symmetric space-time takes the form
ds® = =€) dt? + e ") (dr? 4 17 (d9? + sin® 0 d¢?)) . (642)

At the two-derivative level, BPS black hole solutions satisfy f = —g [168, [169).
In the following, we will restrict the discussion to the class of solutions with

f = —g, and we will write their line element as
ds? = =2V gg2 4 —2U() (dr* 4 r* (d6* + sin” 0 d¢?)) . (643)

Extremal black hole solutions carry electric and magnetic charges (qr, p!)

associated with the abelian gauge fields Ai of the theory,

dode Fyy' =p' | dodo Goyr = qr , (644)
SZ, SZ,

where we integrate over an asymptotic two-sphere SZ . Here, Ggs denotes the
dual field strength defined in .

These black holes are furthermore supported by complex scalar fields X/
that reside in the vector multiplets. These scalar fields will, generically, have
a non-trivial profile, i.e. X! = XI(r). Asymptotically, the scalar fields take
arbitrary values. When approaching the event horizon, the scalar fields flow to
fixed values that are entirely determined by the charges of the black hole. This
is the attractor mechanism for extremal black holes [I55], 156l 157, [I70]: the
values of the scalar fields at the event horizon are attracted to specific values
given in terms of the charges of the black hole, irrespective of their asymptotic
values at spatial infinity. For BPS black holes at the two-derivative level, the
flow to the event horizon is described by gradient flow equations for the scalar
fields and for the metric factor eV. These first-order flow equations can be
obtained from a reduced action in one dimension, see subsection [10.1

In the near-horizon region r ~ 0, the metric takes the form

d 2
ds? = v, (—r2 dt? + 7;) + v (62 + sin? 0 d¢?) (645)
T

with v; = vy, and describes the line element of an AdSy x S? space-time. Here,

v1 denotes a constant whose value is entirely specified by the charges carried
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by the black hole, through the attractor mechanism. The attractor values for
the scalar fields at the horizon can be obtained from a variational principle
based on the so-called entropy function. Evaluating this entropy function at
the extremum then yields the entropy of the black hole. This entropy function
can be derived from the reduced action evaluated in the near-horizon geometry
, as we will discuss in subsection m

The above considerations based on the entropy function can be extended to
the case where one considers extremal black hole solutions in N' = 2 supergravity
theories in the presence of higher-derivative terms proportional to the square of
the Weyl tensor. Then, for BPS black holes, one still finds v; = vy [36], while
for non-BPS black holes, one generically has vy # ve [I71] [I72]. For further
reading on these topics, we refer to [173] 174 [T75] (176 [177].

There are many other interesting aspects about black hole attractors which
we do not describe in this review. These include: relations between topics in
number theory and BPS black holes [I78], 179, [180]; multicenter bound states
of BPS black holes [I81]; the OSV conjecture [I82] [74]; the 4D /5D connection
between black objects [I83] 184 [I85]; attractors and cosmic censorship [186];
rotating attractors m; the quantum entropy function HEEL Imﬂ; attractor
flows and CFT [190]; a Riemann-Hilbert approach to rotating attractors [I91];
hot attractors [192].

10.1. Single-centre BPS black hole solutions through gradient flow equations

In the following, we will derive gradient flow equations for BPS black hole
solutions in A/ = 2 supergravity theories at the two-derivative level in four
dimensions [193] [194]. These are first-order flow equations that will be obtained
from a reduced action based on the Lagrangian . The latter is evaluated
in the background and subsequently rewritten in terms of squares of first-
order terms. We use the relation to perform the rewriting in terms of
(rescaled) scalar fields X7, rather than in terms of scalar fields 2%, as follows
[195].

We introduce rescaled scalar fields Y/ defined by
Yi=e VX = Upx!, (646)

where U denotes the metric factor in (643). Here, ¢ denotes a phase, with a
U(1)-weight that is opposite to the one of X!. Thus, X! = @ X' denotes a

U(1) invariant variable.

171



Using (B.126)), we evaluate the Lagrangian (439)) in the background (643)),

taking X7 and Y to be functions of r, only. We evaluate the covariant derivative

(B.122),
D, X =0, X +iA, X, (647)

where
A=A +ipd@, (648)

where ¢ is the complex conjugate of @, and where A,. is given by . Then,
NiyD, X D, X7 = Npy XX + A2 (649)

where X! = 9, XI. Observe that in view of N;; X1 X7/ = —1, we have
eV = —_N; Y'Y, (650)

as well as
e VU =Ny (YIYT+ YY), (651)

where we used the homogeneity property Fy g X% = 0. Similarly, using the
homogeneity property of F, the connection A, can be expressed in terms of the

YT as

A= =3 [(Fr— F o, (v — V)~ (VT V1Y ou(Fr— F) . (652)

Extremal black holes carry electric and magnetic charges (q7,p’). Electric
fields E(r) and magnetic charges p; are introduced as (c.f. (644))

I
FJ=E, Fl= %T sinf. (653)

The #-dependence of Fp,! is fixed by rotational invariance.

Rather than using a description based on (p’, E'), we seek a description in
terms of magnetic/electric charges (p!, gr). To introduce electric charges ¢y, we
consider the dual field strengths G, ; defined in . Adopting the conven-

tions where z# = (¢,7,0,¢) and €494 = 1, it follows that, in the background

©43).

oL oL
—2U(r) .2 o L 2U() 2
Gop1=—¢ ) Slnﬁ(9 Ttl——e ) sm@—aEl. (654)

Writing (c.f. (644]))
Goor = Z—; sin ), (655)
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where the #-dependence is again fixed by rotational invariance, we infer

oL
qr = —4me 2V 2 SET (656)

We pass from a description based on (p’, E) to a description based on

(p’, qr) by means of the Legendre transform

L= ( [ ava HL) Ca B (657)

with the Lagrangian L, given in (439)), evaluated in the background (643).
To keep the discussion as simple as possible, let us first consider the case of
electrically charged black holes. Subsequently we extend the discussion to the

case of dyonic black holes.

Using (656)), we obtain

, Jman ]

El = ¢?
47 r?

(658)

The resulting one-dimensional action 47 S14 = f dr L14 reads,

qr [(ImN)_l}U a7
(4 r2)?

_Sld = /d’f‘?"2 U/Q—FNIJX/I)%/J—FAE—%er

d /
—/drd—(r2U). (659)

r

In the following, we will, for notational simplicity, absorb a factor 47 into g,
ie. qr/(4m) — qr.
Next, we rewrite (659) in terms of the rescaled variables Y. Using (651)),

we obtain the intermediate result

-S4 = /drr2 {2 [U/+62URe(Y;2QI)r

+¢2U Ny, (Y’I+ NIK qi;) (Y/J+NJL %) + A2
r r
€2U _q1J e2U
—%ijh {(ImN) 1} QJ_TTQINIJQJ

- / dr dii [r?U" +2e*Y Re (Y7 q1)] . (660)
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Then, using the second identity in (B.128]) we obtain
_Sld = Ssquare + STD 5 (661)
where

Ssquare = /dr r2{2 {U’ + ¢?YRe (Y;2q1> r

+e2U Ny, <Y/I 4 NIK qu;) (Y/J 4 NIL @)
r

7“2
+A2 4 2647 {Im (Y;q’ )} 2 } , (662)
and
Stp = —/dr dii [r2U +2e*Y Re (Y qp)] . (663)

The above results can be easily extended to the case of dyonic black holes,
as follows. First, we view the term ¢(ImA’)~1q in the action (659) as part of

the black hole potential (B.132)),

Von = —$ar [(mN) 1" ¢, =" D2 D;Z + |22, (664)
where Z(X) = —q; X!. Turning on magnetic charges p’ amounts to extending
Z(X) as in (B.130),

Z(X)=p"Fi(X)—q X" = (p' Frs —qs) X' = =@ X", (665)
wherd™|
ar=ar—Fryp’ . (666)

Then, the extension to the dyonic case proceeds by replacing gy with ¢y in (661)),

which results in

Yig 2
Ssquare = /dT 7"2{2 |:U/ + €2UR,9 (2(1I) :|
r
+e2U Ny, <Y’I 4+ NIK 312() (Y/J + NI fé)

+A2 4 268 [Im (YI ar )] i } : (667)

70Here we subject p! to the same rescaling as the gy, i.e. p!/(47) — p?.
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and

Stp = —/dr di (2 U +2eY Re (Y q;)] . (668)

r
Now we vary Ssquare With respect to U and to Y/, respectively. The vanishing
of these variations can be achieved by setting the variation of the individual

squares in Ssquare tO zero,

\alt
U/ = —€2UR€< 7/.2QI) )
y 7NIK§7K
r2’
Im(Y'q) = o0,
A, = 0. (669)

This yields first-order flow equations for Y and for U. Note that these gradient

equations are consistent with one another: the latter is a consequence of the

former by virtue of (651)).

It is convenient to introduce a rescaled version of Z(X), namely
ZV)=p Fr(Y) —arY", (670)

in terms of which the first-order flow equations become

U = e?YReZ(Y),
o _ _
2le — NIKfZY
" are )
ImZ(Y) = 0,
A, = 0. (671)

The gradient flow equations for the Y/ can be rewritten as
(YI _ YI)/ . NIK C]K/712 . pI/T‘2
= 2¢Im =—i ) (672)
(Fy — Fr) Frg N¥7 g5 /r? qr/r?

where here F; = OF(Y)/0Y!. Each of the vectors appearing in this expression
transforms as a symplectic vector under Sp(2n + 2, R) transformations. These
gradient flow equations can be readily integrated,
y!I—y! R+ pl/r H(r)
=1 =1 , (673)
Fr — Fy hr+qr/r Hy(r)
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where (h!,h;) denote integration constants. These integration constants are
constrained by the third equation in (671)), which yields the condition

plhr—qrhf=0. (674)
The metric factor e 2V is then determined by (650]),
eV =H'F(Y)-H Y =H F(Y)-H Y, (675)

where we used . And finally, using , it follows that the fourth equation
in is automatically satisfied by with .

The integrated flow equations and the constraint give rise to BPS
black hole solutions [196]. The equations are called attractor equations:
the scalar fields Y flow to specific values at the horizon of the black hole,
irrespective of their asymptotic values at r = oo. These horizon values are
entirely determined by the charges carried by the BPS black hole. In the near-
horizon region r ~ 0, the metric and the scalar fields Y/ take the form

(ct. (613))

I
—2U U2 I Yhor
= = Y+ = Zhor 676
e 5 p (676)
with
V1 = V2 = Z(Yhor) - Z(Yhor) = pIFI (Yhor) - qIYhIor ) (677)

where the horizon values Y}l = are determined by solving the equations P! =
Qr =0, with

PI
Qr

pI + i(YhIor - thor) )
qr + ) (FI(Yhor) — FI(Yhor)) . (678)

Using (646)), one infers the relation
YhIor = Z(Xhor) Xl{or ) (679)

so that
V1 = V2 = Z(Yhor> - ‘Z(Xhor)|2 . (680)

The gradient flow equations that we obtained were derived from the reduced
action (659) (with g replaced by ¢r) . The equations of motion in four dimen-
sions impose one more condition on the solutions to the field equations derived

from the reduced action, namely the so-called Hamiltonian constraint. For a
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Lagrangian density /—g ( % R + L), it is given by the variation of the action

with respect to g%,
0L
%RQOJFW*%QOO(%RJF,CM):O. (681)
Then, using the Lagrangian (439) as well as the metric ansatz (643)), and re-
placing the gauge fields by their charges, as in (658]), results in

2 J 12 T A 2717
r {U + Ny XX —|—T4VBH}—2[T U} —0, (682)

where Vg denotes the black hole potential (B.129)). We rewrite this as

62U

r2 {U’2 + Ny XU X - "’:TU VBH} =2 [72 U'}/ —255 Vo (689)
Using the first-order flow equation , one readily verifies that the right hand
side of the equation vanishes. This yields the Hamiltonian constraint in the form
[193]

o e2U

U? 4+ Ny XU'X7 = — Ve, (684)
which is satisfied by virtue of . Thus, the Hamiltonian constraint does not

lead to any further restriction.
The black hole potential Vg may have several critical points. Critical points
* that satisfy (D,Z)|« =0Va =1,...,n with Z|, # 0 correspond to BPS black
hole solutions, whose macroscopic entropy is given by Smacro(P,q) = Tv2 =
Vil = 7|Z(Xnor)|?, ¢.f. (723). These BPS solutions are obtained by solving
the flow equations . Critical points satisfying D,Z # 0 do not correspond
to BPS solutions. However, if the black hole potential Vgy admits a second
decomposition in terms of a quantity W(X) (possibly only when restricting to

a subset of charges),
Vin = gD WDW + W2, (685)

with W # Z, such that a critical point that is non-BPS satisfies (D ,W)|. =
0Va = 1,...,n with W], # 0, then this non-BPS critical point describes a
non-BPS black hole solution that can be obtained by solving first-order flow
equations of the form , but now with Z replaced by W [197, 198 [199].
The macroscopic entropy of this non-BPS black hole is given by Smacro(p, q) =
vy = 7|W (Xpor)|?. Thus, in certain cases, non-BPS solutions may be obtained

by solving first-order flow equations [197, 198], [T99].
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10.2. Entropy functions for static BPS black holes

The scalar fields supporting an extremal black hole flow to specific values at
the horizon. These values are entirely specified by the charges carried by the
black hole, and they can be obtained by means of a variational principle based
on a so-called entropy function [162] 200].

BPS black holes constitute a subset of extremal black holes, and hence their
entropy can be obtained from the entropy function mentioned above. How-
ever, their entropy can also be inferred from a so-called BPS entropy function
[2011 [74] associated with supersymmetry enhancement at the horizon. Both
notions of entropy functions give identical results at the semi-classical level. In
the following, we review both notions of entropy functions and their relation,
with/without higher-curvature terms proportional to the square of the Weyl
tensor [172).

10.2.1. Reduced action and entropy function

We consider a local, gauge and general coordinate invariant Lagrangian L
that describes a general system of abelian vector gauge fields, scalar and matter
fields coupled to gravity, with or without higher-derivative terms. We focus on
field configurations in the near-horizon geometry . These field configura-
tions have the symmetries of AdS, x S2. We introduce the associated reduced
action and derive the entropy function from it.

We denote the scalar and matter fields collectively by u,. The field strengths
F,," of the abelian gauge fields Aﬁ are given by : they are given in terms
of the electric field E' and the magnetic charge p’. In the geometry ,
v1, V2, E, u, take constant values, since they are invariant under the AdS, x S2
isometries.

Proceeding as in and , we pass from a description based on
(p?, ET) to a description based of magnetic/electric charges (p’,qr),

oL
qr = —4mw vV PET (686)

Defining the reduced Lagrangian by the integral of the full Lagrangian L

over S2,
F(E,p,v,u) = /d9d¢ vV—gL, (687)
we infer oF
ar=—7r7 - (688)
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This reduced Lagrangian does not transform as a function under electric-
magnetic duality transformations . A quantity that does transform as a
function under electric-magnetic duality transformations is the so-called entropy
function [162],

E(g,p,v,u) = —F(E,p,v,u) — Elqr, (689)

which takes the form of a Legendre transform in view of . Thus, & is the

analogue of the Hamiltonian density associated with the reduced Lagrangian

density , as far as the vector fields are concerned. Under electric-magnetic

duality, it transforms according to £(§, p,v,u) = £(q, p, v, ).

The constant values of the fields vy 2 and u, are determined by demanding

£ to be stationary under variations of v and u,
oe _oe _
ov  Ou

The equations are the attractor equations that determine the values of v

and u at the horizon of the black hole. The Wald entropy is directly proportional

(690)

to the value of £ at the stationary point [162],

Smacro(pa q) 0.8 5 (691)

attractor

Note that the entropy function need not depend on all the fields at the
horizon. The values of some of the fields will then be left unconstrained, but

they will not appear in the expression for the Wald entropy.

10.2.2. Entropy function and black hole potential at the two-derivative level
Consider the Maxwell terms in the two-derivative Lagrangian (439)), which is

part of the Lagrangian describing Poincaré supergravity. The associated reduced
Lagrangian (687)) reads
F_ 1 {ivlpI(/\_f—N)IJpJ . 4i7TU2EI(./\_/—N)IJEJ

}_;EI(NH\T)IJpJ ,

4 47 vy U1
(692)
and the entropy function (689)) is given by (setting v; = vy)
1 _
€= —o— (a1 = Nuxc ") [(ImAN) " (g5 = Nowp™) (693)

which equals the black hole potential given in (B.131)) [193], up to an overall
constant. & transforms as a function under electric-magnetic duality, as can be
verified by noting the transformation property ([338]) of A/.
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10.2.83. The BPS entropy function

The isometries of the near-horizon geometry played a crucial role in
defining the entropy function . On the other hand, when dealing with
BPS black holes, it is supersymmetry enhancement at the horizon that plays
a crucial role in constraining fields in the near-horizon geometry. This gives
rise to a different form of the entropy function for BPS black holes [201], [74], as
follows.

We consider N = 2 supergravity theories coupled to vector multiplets, and
allow for the presence of higher-order derivative interactions involving the square
of the Weyl tensor. As reviewed in section[6.4} the associated Wilsonian effective
action is encoded in a holomorphic function F(X, A) that is homogeneous of
degree two under complex rescalings. Introducing rescaled variables (Y, ),

we have

FOY,\*Y) = N F(Y,Y) , AeC*. (694)

Here the Y are related to the X' by a uniform rescaling, and Y is a complex
scalar field related to the square A = 4(T;;)? by the uniform rescaling, c.f.
(709)).

At the horizon, the fields Y/ and Y flow to constant values thor and Y = —64,
with the Y}L determined by the BPS attractor equations [36],

pPl=0, Q; =0, (695)
where
PLo= iy - Y),
Qr = q+i(F(Y,Y) = Fi(Y,T)). (696)

These equations are those given in , but now in the presence of a chiral
background field T.

The BPS attractor equations can be obtained from a variational prin-
ciple based on an entropy function [201] [74]

E(Y,Y,p,q) = ‘F(KY7T5T) _qI(YI +YI) +pI(FI +FI) ) (697)

where p! and ¢; couple to the corresponding magneto- and electrostatic poten-
tials at the horizon (c.f. [202]) in a way that is consistent with electric-magnetic
duality. The quantity F(Y,Y,Y,T), which will be denoted as BPS free energy,
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is defined by
FY,Y, 0, Y)=—i(YIF —Y'F;) = 2i (YFy — TFy) , (698)

where Fy = OF/OY. Also this expression is compatible with electric-magnetic
duality, i.e. it transforms as a function under electric-magnetic duality, c.f.
[222)) [32]. Varying the BPS entropy function ¥ with respect to the Y, while
keeping the charges and Y fixed, yields the result,

o% =PLo(Fr+ Fr)— Qro(Y! +Y71), (699)

where we made use of the homogeneity of the function F(Y,Y). Assuming that
the matrix N;; = i(Fr; — Frj) is non-degenerate, it follows that stationary
points of ¥ satisfy the BPS attractor equations .

The macroscopic entropy Spacro is equal to the entropy function evaluated
at the attractor point, and hence it is Legendre transform of the free energy F.
Tt is given by [36],

p'Fy — q;Y! — 256 Im FT} . (700)

Sslp)=75| =]
attractor attractor

Here the term 7(p! Fr — q1Y7)|attractor €quals a quarter of the horizon area (in
units where Gy = 1,k% = 87), i.e. v; = vo2 = (P'Fr — @1Y7)|attractor- The
contribution proportional to Fy denotes the deviation from the Bekenstein-
Hawking area law, and is subleading in the limit of large charges. In addition,
the area also depends on Y, and hence it also contains subleading terms. In the
absence of Y-dependent terms, the homogeneity of the function F(Y) implies
that the area scales quadratically with the charges.

In subsection we will show that for BPS black holes, the BPS entropy

(700)) coincides with the one calculated from entropy function (689)).

10.2.4. The BPS entropy function, the generalized Hesse potential and its dual
The BPS free energy F and the BPS entropy function ¥ can be expressed
in terms of the generalized Hesse potential H and its dual, as follows [74].

The generalized Hesse potential H is expressed in terms of real variables

(x",y1) (cf. (456)),
YI:xI+iuI(x7y7TaT) ) FI:yI+ivl(xay7TaT> ) (701)
and defined by a Legendre transform with respect to u!,

H(z,y,T,T) =2Im F(x + iu(z,y, Y, T),T) — 2y1ul(x, y, T, Y). (702)
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Using the homogeneity relation (214]) which, in the present context reads
2F(Y,Y) =Y Fi(Y,T) +2Y Fr(Y,Y), (703)

one obtains

The BPS entropy function ¥ can then be expressed as
E(Z'7y,T7T):2H($,y,T,T)_2q1$1+2p1y[. (705)

The macroscopic BPS entropy (700)) is given by

oH OH
Smacro D,q) =27 (H — xl [ ) ) 706
( ) ail’l . ayI attractor ( )

Thus, upon extremization, the charges (pI ,qr) become proportional to the dual
affine coordinates, while the BPS entropy is proportional to the dual Hesse

potential, evaluated on the background, c.f. @

10.2.5. Entropy functions for N = 2 supergravity theories

In this section, we follow [I72]. We use the normalization Gy = 1, k* = 8,
as in [172].

We consider the Wilsonian effective action describing N/ = 2 vector multi-
plets coupled to N/ = 2 supergravity, in the presence of interactions proportional
to the square of the Weyl multiplet, reviewed in section This requires the
presence of a second compensating supermultiplet, which we take to be a hy-
permultiplet. Additional hypermultiplets may also be added, but play a passive
role in the following. The relevant Lagrangian L is given by , [202].
The components of the Weyl, vector and hypermultiplets are displayed in Tables
B9 and [B.T4

We impose spherical symmetry and derive the reduced Lagrangian (687)). In
a spherically symmetric configuration the field T, can be expressed in terms

of a single complex scalar w [I71],
Ty =—iTy, = iw, (707)

where underlined indices denote tangent-space indices. Consequently we have
A = —4w?. The field strengths F,," of the abelian gauge fields Aft are given in
terms of electric fields £ and magnetic charges p’, as in (653)).
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We restrict to a class of solutions by assuming the following consistent set

of constraints,
RW),w'j = R(A)u, =D X =DA% =0, (708)

where the first two tensors denote the SU(2) x U(1) R-symmetry field strengths.
These constraints are in accord with those that follow from requiring supersym-
metry enhancement at the horizon [202]. Then, since Bij is proportional to
R(V)u';, this field vanishes as well. Furthermore the auxiliary fields Y;; can
be dropped as a result of their equations of motion.

Then, in the AdSs background , the resulting Lagrangian only depends
on the field variables vy, vy, w, D, E', X x, which are all constant, and on
the magnetic charges. We refer to [I72] for the somewhat lengthy expression for
the Lagrangian. We trade these field variables for scale invariant variables

Yi=lpoXx', T= %61)%@2/1 =—1v3w*, U= Z—;,
D=wD+2U'-1), X=wx. (709)

Observe that T is real and negative, and that v/—7Y and U are real and positive.
Note also that the hypermultiplets contribute only through the hyperkahler
potential y.

We compute the entropy function 7 adopting the normalization of the
Lagrangian used in [I72]. Next, we require that £ be stationary with respect to
variations of D and §. This yields D = 0, and expresses ¥ in terms of the other
fields. Upon substitution of these two equations into the entropy function, the

expression for £ simplifies considerably [172],

g(KY7T7U) = %UE(Y;YapaQ)+%UNIJ(Q17FIK,PK) (QJfFJL’PL)
4 _
—ﬁ(yﬁ«} ~YIF)(U - 1) (710)

—i(Fy — Fy) [ YT +RU U —2)—8(1+ U)ﬂ} .

This result that is consistent with electric-magnetic duality [T7T] [172].

The entropy function depends on the variables U, Y and Y, whose
values are determined by demanding stationarity of £. These values are the at-
tractor values. The macroscopic entropy is proportional to the entropy function

taken at the attractor values,

Smacro(p7 Q) =2n& . (711)

attractor
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In the following, we will discuss the extremization of £ with respect to these
variables, first in the absence of R?-terms, and then for BPS black holes in the

presence of R2-terms.

10.2.6. Variational equations without R?-interactions

In the absence of R?-interactions, the function F does not depend on Y, so
that the entropy function (710)) reduces to

EY,Y,T,U) = FUS(Y.Y,p.q)+5UN"(Qr - FixP")(Qs — FsP")
4i

V="

Varying (712)) with respect to Y yields

(Y'Fr —Y!'F) (U -1). (712)

U=1. (713)

The latter implies that the Ricci scalar of the four-dimensional space-time van-

ishes. Here we assumed that (571 Fr—Y? FI) is non-vanishing, which is required

so that Newton’s constant remains finite, c.f. (433). Varying with respect to U
yields,

_ ] _

S+ (Qr— Fix PKYNY (Q) — Fy PY) — —— (Y'F, - Y'E;) =0, (714

( I IK ) ( J JL ) Naws ( I [) (714)

which determines the value of Y in terms of the Y/. This is consistent with the

fact that when the function F' depends exclusively on the Y, the field equation

for T, is algebraic, c.f. (438].
The resulting effective entropy function reads

S(Y7Y7 T? 1) = %Z(Yvyvpv Q) + %NIJ(QI - FIKPK) (Qf - EILPL) ) (715)

which is independent of T. Note that is homogeneous under uniform
rescalings of the charges g; and p’ and the variables Y. This implies that the
entropy will be proportional the the square of the charges. Under infinitesimal
changes of Y/ and Y the entropy function changes according to

6 = PIS(Fr+Fp)— QoY +Y7) (716)
+3i (Qk — Fxne PM) NI 6F; NV (Qp — Fry PY)
—3i(Qx — Fxn PMYN®T6Fy N2 (Qp — Frn PY) =0,

where 6F; = Fr;0Y” and 6Fr; = Fryx 0Y®. This equation determines the

horizon value of the Y/ in terms of the black hole charges (p,qr). Because the
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function F(Y) is homogeneous of second degree, we have Fr Y X = 0. Using
this relation one deduces from that (QJ — Fri PK) Y7 = 0, which is
equivalent to

iY'Fr —Y'F) =p'Fy — ;Y. (717)

Therefore, at the attractor point, we have
Y =i(Y'F -Y'Fy). (718)

Inserting this result into (714) yields

8%

VT = _
S+ N (Qr — Fig PX) (Qs — Fy PE)

(719)

which gives the value of T in terms of the attractor values of the Y. Using

(719) we obtain

8T X
attractor - \/—T
Observe that, for a BPS black hole, @ = P/ = 0 and T = —64, so that

Smacro = 772|attractor in accord with "
The entropy function (715) can be written as

Smacro(pu Q) =21&

(720)

attractor

&= —qr(Y' +Y") +p" (Fr+ Fr) + 5N (a1 — Frep™ ) (a5 = Frop") + Ny Y'Y

(721)
where we used the homogeneity of the function F(Y'). Expressing the Y7 as in
(679), one obtains (using Ny; X X7 = —1)

£=3 (N +2x'X7) (ar — Freep™)(as — Fsrp") (722)

where Fyj is now the second derivative of F(X) with respect to X! and X7.
Comparision with the black hole potential (B.129)) gives £ = % VBH, and hence,

=7 Veu(p,q) - (723)

attractor

Smacro (p> (1) =2r& =T VBH

attractor

10.2.7. BPS black holes with R%-interactions
In the presence of R? interactions, the horizon values of U and Y for extremal
BPS black holes are U = 1 and Y = —64 [202]. Inserting these values into (710)

results in

EY,Y,—64,1) = 1%(Y,Y,p,q) + N7 (Q; — Fix PF) (Q) — Fy PY) (724)

185



Observe that the variational principle based on is only consistent with the
one based on provided that is supplemented by the extremization
equations for U,

8i
V="
“i(Fr — Fy) [ AT 641 - U2 - 16@} ~0, (725)

Z—F(Q]—F]KPK)NIJ(QJ—FJLPL)— (YIFI—YIFI)

and for T,

US —i(YIF — YT [U A=) V(U — 1)}

+2iU [YFyN'(Qy — FyxP) —h.c]

+2i(Fy — F) [QUT FAVEY(1 U)} ~0. (726)
For BPS solutions it can be readily checked that the latter are indeed satisfied.
Using Q; = P’ = 0, we obtain Spacro = T 3|attractor, in accord with .

10.3. Large and small BPS black holes: examples

As an application [203] 204] of the above, let us consider BPS black holes in
an N = 2 supergravity theory coupled to Weyl-square terms, whose Wilsonian
action is encoded in the holomorphic function F(Y,Y) = FO(Y) + FO(Y) T
given by

Y1y o, Y0 Yyt
F(Y,T) = —Yioa g5 T (727)
Here
n
Yo Y =Y?Y3 =3 (Y, a=2,...,n, (728)
a=4

with real constants 74, and c¢;. We define S = —iY't/Y"Y.
We introduce the charge vectors N and M,
N = %P0t
M] = (q07_p1aq27q3a"'aqn) . (729)

There are three bilinear charge combinations that are invariant under SO(n —

1,2; Z)-transformations [205], also referred to as target space duality transfor-

mations,
(M, M) = 2(M0M1 + iMan“be) = 2( —qop' + iqan‘”’qb) ;
(N,N) = 2(N0N1 + N“nabNb> = Q(poql +p“77abpb) ;
M-N = MN"=qp’—ap' +q@p’+ -+ qmp" . (730)
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For instance, the charge bilinears are clearly invariant under the SO(n—1, 2;Z)-

transformation
= q, @ — -p',
o= —q, @« — p°, (731)
p* = p°, da — dqa -

10.53.1. Large BPS black holes

Definition 19. Large BPS black holes. A large single-centre BPS black hole
in four dimensions is a dyonic spherically symmetric BPS black hole carrying
electric/magnetic charges (qr,p'), such that the charge bilinears (M, M), (N, N)
are positive and (M, M)(N,N) — (M - N)? > 1.

This ensures that at the two-derivative level, the black hole has a non-
vanishing horizon area A [201], A = 27(S + S) (N, N), c.f. (737) and (740)

below.

Using (c.f. (696)))

Y-yl =ipl | F (Y, ") - F(Y,Y)=iqr, (732)

one obtains for I = a,
1

a __ _ 1, ab S Q0 a
Y _S+§[ 27 Qb+lsp}7 (733)

where 7% . = §2. Similarly, one finds

p'Fr—qY' = i(Y'F; —Y!Fy) (734)
= (S+5) ( VY + % [ — YUY + e T} + h.c.) :
as well as
ap’ = *(}/O —YO)(Fy - Fy)
= (ly% - 1) [— Yon,Y? + ¢ T} ¥ he.. (735)

Combining these two equations and using (733)) yields
P Fr—qiY! = (S + ) (% (N,N)+ (1 T + h.c.)) : (736)

where the bilinear charge combination (N, N) is defined in (730).
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Using (700)), we obtain for Wald’s entropy (with T = —64)
Smacro = 37 (5 +8) ((N.N) = 512¢1 ) | (737)

where S is evaluated at the horizon. We now determine its value.
Using (732)), one finds that the combinations SS ¢ p° + qop' and (S —
S)q1p° + q1p' — qop° do not explicitly depend on Y°. This results in the

following equations for .S,

SS(N,N)
(S —S)(N,N)

(M,M)—=2(S+S)(c1 TS+ h.c.),
2iM-N+2(S+S5)(c; T~ he), (738)

from which one infers the value of S at the horizon in terms of the charges,

S:\/<M,M><N,N>—(M-N)2 M-N (139)

(N.N)((N,N)—512¢1) "N, N}

The resulting entropy is expressed in terms of the charges as

Smacr():ﬂ-\/<M7M><N5N>_(M'N)2“1_ <5]i72]c\;> . (740)

When ¢; = 0, this equals one quarter of the area of the horizon.

10.3.2. Small BPS black holes

Definition 20. Small BPS black holes. A small BPS black hole in four
dimensions is a BPS black hole carrying electric/magnetic charges (qr,p') such
that the charge combination (M, M)(N,N) — (M - N)? vanishes, and such that
its macroscopic (Wald) entropy Smacro 18, for large charges, given by Smacro X
\/@. Here Q% denotes a linear combination of charge bilinears.

At the two-derivative level, a small BPS black hole is a null-singular solution
to the equations of motion of N/ = 2 supergravity theory. For a small BPS
black hole to have a non-vanishing area of the event horizon, higher-curvature
corrections need to be taken into account [206] 207 208 209]@ When ¢; # 0, a
horizon forms, leading to the cloaking of a null singularity that is present when
¢1 =0 [209]. This requires ¢; < 0, as we will see below.

In the following, we will consider small black holes with charges N/ = 0 in
the model . To compute the horizon value of .S as well as the entropy

"1For a recent discussion and a different viewpoint, see [210} 211].
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of such a small black hole, we proceed s follows. We start by considering a large
BPS black hole which is axion free, i.e. one for which Im.S = 0. We thus set

M - N =0in (739) and in (740), which yields

5 (M, M)
:2 _—_—
S+5 (N.N) 5126,

5 Smacro =T \/<M7M><N7N> _51261 <MaM>(741)

Next, we set (N, N} = 0 in these expressions, which results in

S+S8=/—(M,M)/(128¢1) >0 , Smacro = 27+/—128¢; (M, M) . (742)
Using (736)),
™ (p'Fr—qiY") = —7128¢;1 (S + 9) , (743)

which equals a quarter of the horizon area and needs to be positive, we infer
¢1 < 0, and hence (M, M) > 0. Thus, Siacro equals one half of the horizon area
[209]. Note that S and the entropy only have finite values due to ¢; # 0.

11. Born-Infeld-dilaton-axion system and F-function

In subsection we discussed how to recast point-particle Lagrangians in
terms of functions F' of the form . Here, we will consider the example
of a homogenous function F(z,Z,n) of degree 2, with 7 having scaling weight
m = —2 (c.f. subsection and show that this describes the Born-Infeld-
dilaton-axion system in an AdSs x S? background. We follow [33].

11.1. Homogeneous function F
We consider a function F' that depends on three complex scalar fields X!
(with I =0,1,2), as well as on an external real parameter 7,

1 XI(X2)2

F(XaXﬂ]):*Q X0

+2Q(X, X,1) . (744)

We demand F to be homogeneous of degree 2 under rescalings X’ — A X1 | n —
A™n, with A € R\{0}, as in (169). We leave the scaling weight m arbitrary, for
the time being.

Duality transformations are represented by Sp(6, R) matrices (which are 6 x 6
matrices of the form (160)) acting on (X7, Fy), where F; = OF (X, X, n)/0X".

The external parameter 7 is inert under these transformations.
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Let us assume that the model based on is invariant under S-duality
as well as under a particular T-duality transformation. These symmetry trans-
formations belong to an SL(2,R) x SL(2,R) subgroup of Sp(6,R). The first
SL(2,R) subgroup acts as follows on (X', Fy),

X0 — dX0+CX1, Fy — CLFobel,
Xl aX'4+bX°, F — dF —cF, (745)
X2 — dX2—CF27 F2 — aFg—bXQ,

where a, b, ¢, d are real parameters that satisfy ad — bc = 1. This symmetry is
referred to as S-duality. Let us describe its action on two complex scalar fields
S and T that are given by the scale invariant combinations S = —iX*/X? and
T = —iX?/X". The S-duality transformation (745) acts as
aS —ib 2ic 0N
— T—T+ ——s —
ieS+d T AS(YO2 T

X% Ag XY, (746)

where we view  as a function of S, T, X° and their complex conjugates, and
where
Ag=d+icS. (747)

The second SL(2,R) subgroup is referred to as T-duality group. Here we focus

on a particular T-duality transformation given by

X0 — Fy s Fy — -Xx! s
Xl — _FO 9 Fl = XO ) (748)
X? — X? s Fr - Fy,
which results in
o0 o0 T
-X0° T— T— — X% Ap X°
S+ S+ Ar(X0)2 X0 + a7 | > Ap — Ap ,
(749)
where 5 90
Ap = 172 — .
T=351"+ (X9)2 95 (750)

When a symplectic transformation describes a symmetry of the system, a
convenient method for verifying this consists in performing the substitution

X! s X7 in the derivatives Fy, and checking that this substitution correctly
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induces the symplectic transformation of F;. This will impose restrictions on
the form of F', and hence also on €. Imposing that S-duality (745)) consti-
tutes a symmetry of the model (744) results in the following conditions on the

transformation behaviour of the derivatives of Q [35],

o0\ _ 00
or)y or’

o\’ o0\ 0 (Ag? 0 oN\?
(55).=a (55) + g0 20 —ieaas (xty? (%) |
S
o\’ o0 2ic o\ ?
0o 9L\ _ o 03l
(X 8X0>S X ox0 T A (x0)2 (a:r) ’ (751)

while requiring the particular T-duality transformation (748) to constitute a

symmetry imposes the transformation behaviour [35]

00\" _ 092
95 ). 0S8’

o\’ o 00 0 09
<6T>T_ (Ar —T7) a7 T T X 5%
o0\’ o0 4 oY) oY) oY)
0 — Y0 20 _xo =
(X 8X0>T 9X0 " Ar (X0 05 [ Xoxo T Top| - (72)

Solutions to both (751]) and (752 may be constructed iteratively by assuming

that € possesses a power series expansion in 7,

QX, X,n) = in” QM(X, X) . (753)

n=1

Note that since  and 7 are real, so are the expansion functions Q™. The
latter have to scale as A=™"*2. Once a solution Q) to and has
been found, the full expression can be constructed by solving and
iteratively starting from Q).

So far, we have not made any assumptions about the scaling weight m in
(169). Depending on the choice of m, the expansion will have different
properties. For concreteness, let us take m = —2, which implies that the ex-
pansion functions Q™) in will have to scale as A2**+2. The lowest function
QW will therefore scale as \*. We make an ansatz for Q) that is consistent

with this scaling behaviour,

QW(X, X) = | X1 (5. T,5,T) . (754)
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The equations (751)) and (752) require Q) to be invariant under the S-duality

and T-duality transformations given above, and determine it to be given by

QW = g |X°11 (S +8) 1T, (755)

where we have chosen a particular normalization, for later convenience.
We may now proceed iteratively to determine the higher ("), solving (751)

and (752)) order by order in 7, using the transformation laws (746|) and (749)).
Rather than proceeding in this way, we present an exact solution to (751]) and

(752) that, to lowest order in 7, reduces to (755)),

QX Xom) = bt | /1= bR (54 8) (Tx0 - X0

—/1— 2 (S + 8) (TX0 + TX0)2 Ny (756)

It can be verified that (756 satisfies (751)) and (752)). Note that (756 scales
correctly as Q(AX, A X, A727n) = \2Q(X, X, n).
In the next subsection, we turn to the interpretation of the function F' based

on (736).

11.2. Interpretation: the Born-Infeld-dilaton-axion system in an AdSs x S?
background

The function F' based on describes a Born-Infeld-dilaton-axion system
in an AdS, x S? background, as we proceed to explain.

We consider the Born-Infeld Lagrangian in the presence of a dilaton-axion
field S = ® + i B [212],

L=—g? [\/| detlg,., + g ®1/2 F. ]l - \/| detgwq + \/\ det g, | %BFWI*:”“’ ,

(757)
where here ﬁ’ab = %sabcd Fed with £g123 = 1. In this Lagrangian, the gauge
coupling g appears multiplied by the dilaton field ®, while the term BF; Wﬁ’ my
introduces a scalar field degree of freedom called the axion. The Born-Infeld-
dilaton-axion system described by has duality symmetries that will be
described below.

Let us consider the system in an AdS, x S? background
2

ds® =v; (—r2 dt® + Ci;) + vg (d92 + sin? 9d¢2) ,

Fri=vie , Fpy =vopsinb, (758)
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i.e., let us restrict to field configurations that have the SO(2,1) x SO(3) sym-
metry of AdS, x S2, in which case v1, v, e,p, ®, B are constants. Integrating

over the angular variables and setting vyv, 4w = 1, for convenience, yields

Lie.p,® B) = ~g2 [VT- 20 /T 207 ~1| + Bep,  (759)
where we assume g2 ® e? < 1. To obtain the associated Hamiltonian H,
H(patbq)aB):qe*E(e’paq)aB)7 (760)

we first compute ¢ = dL/de,

14+ g2®p?
=ed Bp. 1
g=e 1—g2<I>e2+ D (761)
Inverting this relation yields
- B
e= 41— -P : (762)
V02 + g2 [92p% + (¢ — Bp)?]
and substituting in (760]) gives
Hm%@Jﬂzg2[¢Luﬂ@ﬁ+¢*<q—3mﬂ—@. (763)
Then, expressing ® and B in terms of S and S results in
H(p,q,8,8) =g~ {\/1+2g22(p,q7575)—1] : (764)
where 2, ;s g 2 (g2
2(p.q.5.8) = CHPIE S LVIST (765)

S+ S
The Hamiltonian depends on canonical coordinates (p, ¢), on an external
parameter g2 as well as on the dilaton-axion field, which describes a background
field. We observe that H scales as H + A2H under (p,q) — X(p,q), g°> —
A"2g2 S+ S, with A € R\{0}. The electric field scales as e — Ae.

Let us now return to the reduced Lagrangian and recast it in the
form L = 4[ImF — QJ, cf. (164), where we introduce the complex variable
x = %(p+ ie), which scales as z — Az. The function F will now depend on the

two complex scalar fields x and S,

F(z,%,8,5,¢%) = F9(2,8) +2iQ(x,7, 5,5, 4%) , (766)
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and is determined as follows. The holomorphic function F(? encodes all the
contributions that are independent of g2, while €, which is real, accounts for all

the terms in the reduced Lagrangian that depend on g2. This yields,

FO@,8) = -1iSa?, (767)

0,755, = Lo Wl T 1R (5135) (x + )

Under the scaling x + Az, g2 — A2 g%, S+ S, F scales as I+ \?F.

Now we note that the function F' given in precisely matches the one
given in and upon identifying

x1
S:—z‘F , z=X2=iTX" | g=n. (768)

The Hamiltonian is invariant under the S- and T-duality transformations
discussed in the previous subsection. We proceed to verify this. The external
parameter g2 is inert under these transformations. Using we infer that the
canonical pair (p, ¢) is given by (2Rez,2Re F}). The T-duality transformation
leaves (z, F,) invariant. Since 2 given in , or equivalently in ,
satisfies X°0Q/0X° = ToQ/OT, S is inert under . Consequently, the
Hamiltonian is invariant under the T-duality transformation . The
S-duality transformation ,

aS —ib

— — 769
icS+d’ (769)
induces the following transformation of the canonical pair (p, q),
p p d —c||p
— = ) (770)
q q —b a q

where a,b,¢,d € R and ad — bc = 1. Hence, ¥ given in (765 is invariant under
S-duality, and so is H.

12. F-function for an STU-model

As an application of electric-magnetic duality in a chiral background, dis-
cussed in section let us consider the STU-model of Sen and Vafa (referred
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to as N = 2 Example D in [2T3]) in the presence of higher curvature inter-
actions proportional to the square of the Weyl tensor. This model possesses
duality symmetries which were used recently in [214] to determine the function
F'. The holomorphic function F' takes the form

F(X,A) = —% +2iQ(X, A) (771)
with A given in . Note that A has scaling weight 2. The model possesses
S-, T- and U-duality symmetries I'o(2)s x To(2)7 x T'o(2)y as well as triality
symmetry. T'g(2) is the subgroup of the group SL(2,Z) defined by restricting
its integer-valued matrix elements a, b, ¢,d (with ad — bc = 1) to a,d € 2Z + 1,
¢ € 27Z and b € Z. Triality symmetry refers to the invariance of the model
under exchanges of the scalar fields § = —iX!'/X% T = —iX?/X? and U =
—iX3/XY. The duality and triality symmetries of the model are very restrictive
and allow for the determination of the function F'. For instance, under S-duality,

the derivatives of € are required to transform in the following way,

o0\ _ o9 o0\ _ o0
or ) oT’ oUu )y aU’
00N 209 _OAST 10 00 2 0As 0909
95)s " a8 s ST 9X0 T (X092 9S 9T U |’
o0\’ o0 4 0Ag 9009
X0 =X —. 2
( aX0>S 9X0 " Ag (X2 95 oT o (772)

Using triality, one obtains similar equations under T- and U-duality.

The equations are non-linear in {2, and where solved [214] by iteration
using the fact that Q(X, A) must be a homogeneous function of second degree,
c.f. . This was achieved by expanding Q(X, fl) in a series expansion in
powers of A (X?)~2 (which has scaling weight zero), with coefficient functions
that depend on S,T,U and on an overall factor /1,

Q(X,A) =A |~ mﬂ + w8, T, U) + i (i)nwm)(s T,U)|.
| A T L oy .
(773)

Note the presence of the logarithmic term, whose inclusion allowed to imple-
ment the duality symmetries of the model, leading to the determination of the
gravitational coupling functions w(™ (S, T,U) by iteration. Additional impor-

tant information about the structure of F' was gleaned from the Hesse potential
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for the model and the associated holomorphic anomaly equation. We refer to
[214] for a detailed discussion thereof.
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A. Mathematics background

A.1. Manifolds, group actions, submanifolds, immersions and embeddings

In this article, manifolds M are understood to be smooth, Hausdorff and
second countable. The Hausdorff separation property requires that any two
points on M can be separated by non-intersecting open neighbourhoods. The
second countability property requires that the topology (set of open subsets) is
generated by a countable collection of open subsets.

The (left) action

GxM—-M, (g2)—~g-zx (A1)
of a group G on a manifold M is called
o transitive, if any two x,y € M are related by the action of G,
o cffective (faithful), if every g € G acts non-trivially on M,

e free, if all group elements different from the identity act on M without

fixed points,

e principal (regular, simply transitively), if G acts both freely and transi-

tively.

e proper, if G is a topological group and G x M — M x M, (g, x) — (g9-x, x)
is a proper map in the topological sense, that is, pre-images of compact

sets are compact.
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Since the orbits of G on M need not all have the same dimension, the space of
orbits M/G is in general not a manifold. Moreover, even if M/G is a smooth
manifold and M is Hausdorff, it can happen that M/G is not Hausdorff. A
sufficient condition for M/G to be Hausdorff is that the action of G is proper,
which is satisfied in particular for compact groups G . If the action of G is both
free and proper, then M — M/G is a G-principal bundle, see Since the
group actions we are interested in involve non-compact groups, we will impose
that quotients are Hausdorff as an explicit condition. Actions of Lie groups on
manifolds can be described using generating vector fields, see

The rank of a smooth map F' : M — N between manifolds M, N is the
rank of the induced linear map Fi : T, M — Tp(,)N between tangent space.
A smooth map F is called an immersion (submersion) if F, is injective (sur-
jective) at every point, that is if rank(F) = dim M (rank(F) = dim N). A
smooth embedding is an immersion that is also a topological embedding, that
is, a homeomorphism F : M — F(M) C N, where F(M) carries the topology
induced by N through restriction. Embedded submanifolds are precisely the
images of smooth embeddings. An immersed submanifold S C N is a subset
which is a manifold such that « : S — N is an injective immersion. Immersed
submanifold are precisely the images of injective immersions.

Note that the image of an immersion need not be a submanifold, since im-
mersions are not required to be invertible. Thus they can have self-intersection
points, for example. Moreover, just requiring an immersion to be invertible does
not make it an embedding, because the topology of the image need not agree
with the submanifold topology induced by N. However, locally an immersion
is an embedding, and if one is interested in local problems one can choose the
domain of an immersion small enough, so that it becomes an embedding. This
is used frequently in the main part of this review.

As an example consider a smooth immersion which maps the real line onto
a ‘figure eight’ shaped figure in R2, such that points = € %Z on the line are
mapped to the self-intersection point of the image. Now restrict to an open
interval a < x < b, equipped with the subspace topology induced by R. For
a < 0,b > 1 the self-intersection point appears at least twice as an image, and
the immersion is not invertible. For a = 0,b = 1, the immersion is invertible,
but not a topological embedding: if we take a Cauchy sequence accumulating

at, say, a = 0, this does not converge to a point in the interval, but the image of
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this sequence will converge to the self-intersection point in the topology induced
by R2. For 0 < a < b < 1 the topology induced by R? is the standard topology
of an open one-dimensional interval, and the immersion becomes an embedding.

For further reading we refer to [215], on which this section is partly based.

A.2. Fibre bundles and sections

The material in - is mostly standard. Our presentation is based on
various sources, including [2T6] 2T7] 2T§].
A smooth fibre bundle
F—-EL M (A.2)

is a smooth manifold E which locally looks like the product M x F of two
smooth manifolds, the base M and the fibre F. More precisely, there is a
smooth surjective map m : E — M such that for all x € M there exists a
neighbourhood U such that 7=1(U) is diffeomorphic to U x F. Given an open
cover {U)|i € I} of M a fibre bundle can be described in terms of an atlas with
charts (U;), p(;)) that are glued together consistently by transitions functions

Ps) = PPy Uy X F = Uijy x F (A.3)

on overlaps Ug;jy = Uy NUgy . The inverse image F, = 7Y (z) & F of x is
called the fibre over z € M. Most of the fibre bundles relevant for us are vector
bundles, where F' is a vector space. Particular cases are the tangent bundle T'M,

the cotangent bundle T* M, and tensor bundles
TM®- - QTMT"M®---T*M . (A.4)

A smooth section of a fibre bundle is a smooth map s : M — E such that
mos = Idy. In addition to global sections, that is sections defined over all
of M, one can consider local sections over domains U C M. Local sections
need not to extend to global sections. By considering all open subsets U C M
together with all sections of E over subsets U, one obtains the sheaf of sections
of E. In our applications it will be clear from context whether sections of vector
bundles (vector fields, tensor fields) are required to exist locally or globally.

An affine bundle modelled on a vector bundle V' — M is a fibre bundle
A — M such that:

e The fibres A, of A over p € M are affine spaces over the vector spaces V,,,
which are the fibres of the vector bundle V.
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e The transition functions of a bundle atlas of A are affine isomorphisms

whose linear parts are the transition functions of V' — M.

Another important class of bundles are principal bundles. For a Lie group
G a G-principal bundle P over a manifold M is a manifold P equipped with a
principal action of G. Since the G-action on P is free and transitive, each orbit
of G on P can be identified with G upon choosing one point on the orbit, which
is identified with the unit element. Thus orbits are loosely speaking copies of
G where we forget where the unit element is located (similar to passing from
a vector space to the associated affine space, or from vector bundles to affine
bundles). The base manifold M of the fibre bundle P — M is the space of
orbits, M = P/G. A principal bundle is trivial, that is P = M x G is a product,
if and only if P admits a global section (which identifies, in each fibre, which
point corresponds to the unit element of the group). By picking a representation
p: G — V of G on a vector space V one can associate to the principal bundle G
a vector bundle with fibre V' and G-action defined by p. One then says that the
vector bundle is associated to the principal bundle. A U(1) principal bundle is
also called a circle bundle. By choosing the representation of U(1) by the action
of SO(2) on the complex plane, one obtains an associated complex line bundle,
that is a vector bundle with fibre C. We refer to [A.12] for more material on

complex vector bundles.

A.3. Vector fields and differential forms
A.8.1. Vector fields and frames

Let M be a smooth manifold. Vector fields are denoted X,Y,... € X(M) =
N(TM )E The local expansion of a vector field with respect to coordinates =™
is 5

X = X" o = X 0 (A.5)

Vector fields operate on functions as first order differential operators (directional
derivatives):

X(f) = X" f . (A.6)
The Lie bracket [X,Y] of two vector fields

(X, Y(f) = XY (f) =Y X(f) = (X" (0nY™) =Y (0 X"))Onf (A7)

"2Where convenient or required by consistency with the physics literature, we will also use
symbols, like &,7,..., or t,s,... for vector fields.
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is again a first order differential operator. The Lie bracket gives the space of
vector fields the structure of a Lie algebra.

Instead of a coordinate frame 0,,, we can more generally expand a vector
field with respect to a local frame e,,, that is a set of vector fields which form

a basis of T, M for all z € U C M, where U is an open neighbourhood,
X =X"e,, . (A.8)

The local sections e,, are generators for the Lie algebra of vector fields, [e,,, e,] =

P
Cmn

The expression of a Lie bracket with respect to frame is:

ep. A frame {e,,} is locally a coordinate frame if and only if 2, = 0 [216].

(X,Y] = (X"en(YP) =Y e (XP)+ XY Ve, . (A.9)

A.3.2. Differential forms, dual frames, exterior derivative

Given a frame {e,,}, the dual co-frame {€™}, which forms a basis for the
one-forms w € QY(M) = I'(T*M) is defined by e™(e,) = 6. In the follow-
ing ‘choosing a frame’ (or co-frame) always means that we choose a dual pair
{e™, e, }. Given a coordinate system, the coordinate differentials dz™ form the
frame dual to the coordinate vector fields 0,,. A co-frame is locally a coordinate

co-frame if de™ = 0. The expansion of a one-form in a coordinate co-frame is
W = Wpdz™ . (A.10)
The wedge product of one-forms is defined by
aNf=aR-BRa. (A.11)

Our convention for the components of a p-form w € QP(M) = T'(APT*M) is

1
W = =Wy, 2T A A d™ (A.12)
p!

Therefore the evaluation of a p-form on vector fields gives:
WX, Xp) = Wiy, Xy X (A.13)

A.3.3. Eaxterior derivative and dual Lie algebra structure of co-frames
The coordinate expression for the exterior derivative dw € QPT1(M) of a
p-form w is:

1
dw = = 0w, .m, AT NAL™ - - - dz™? & (dw)mm,-m, = (PF1) Wi, .m,] -

p!
(A.14)
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Note that we distinguish by brackets between the component (dw)mm, ...m, of the
form dw (a notation used by physicists) and the exterior derivative (dwy,...m, )

of the component wy,,....,, regarded as a function (a notation used by mathe-

maticians),
dwm, --m, = OmWm,...m,dx™ . (A.15)
Our convention for the antisymmetrization symbol [-- -] is such that it includes
a weight factor 1/p!:
1 sign(o
T[myump] = H Z (71) en( )To(ml)ma(mp) ) (A16)
T o€S,

where S}, is the permutation group of p objects.

The generators e of a co-frame satisfy the dual Lie algebra, de™ = —1¢c™ e™A
eP.

The exterior derivative is a natural map QP(M) — QP (M) in the sense

that it commutes with pullbacks of smooth maps f: M — N, that is
frdw=d(f*w) . (A.17)

A.8.4. Interior product and contraction
The interior product tx between a vector field X € X(M) and a p-form
w € OQP(M) is defined by substituting X into the first argument of the form,

that is by contraction over the first index:

(txw)(X1,..., Xp1) =w(X, X1, Xp 1) & (txW)myompys = X Wiy eoomy_ 1 -
(A.18)
We will often write w(X,-) := txw(-).

A.3.5. Lie derivatives

The Lie derwative LxT of a tensor field T € T2(M) := T(Q'TM ®
@Y T*M) with respect to a vector field X is a directional derivative which
is defined using the flow of the vector field X. The Lie derivative is additive

and satisfies the Leibnitz rule,
Lx(T+S)=LxT+LxS, Lx(T®S)=LxT®S+T®LxS, (A.19)

where T, S are tensor fields. To compute the components (LxT)™" """, ...

of the Lie derivative LxT of a tensor field T it is therefore sufficient to know
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the action of Lx on functions f, coordinate vector fields 0, and coordinate

differentials dzP:
Lxf=X"0nf, Lx0p=—(0,X")0,, Lxda? = (0,X")dz". (A.20)
For vector fields Y and one-forms w one obtains:
LxY = [X,)Y]=(X"0,Y" -Y"0,X")0, ,
Lxw = ixdw+d(ixw)=(X"0mnwn + wmonX™)dz" .
The second formula remains valid for p-forms, and is known as Cartan’s magic
formula
Lxw=ixdw+d(ixw), X e€X(M), weQP(M). (A.21)

For computations it is useful to note that

Lxf=X(f)=df(X). (A.22)

A.J4. Pseudo-Riemannian manifolds

A pseudo-Riemannian manifold is a manifold equipped with a symmetric,
non-degenerate rank two co-tensor field, called the metric. Pseudo-Riemannian
manifolds are also referred to as semi-Riemannian manifolds.

Our convention for the symmetrized tensor product of one-forms is
aﬁz%(a®6+ﬂ®a). (A.23)
Therefore the local expression for the metric is
g = Gmndx™dz"™ = %gmn(dxm ® da" 4+ dz" @ da™) . (A.24)

The metric provides a natural isomorphism between vector fields and one forms.

We use the ‘musical’ notation:

X =X"0 = X = Xpdz™ , X = gmn X", (A.25)

W= wpdz™ = wh = w0, , W= ¢ w, , (A.26)

where g™ are the components of the matrix inverse of g,,n.

We do not require that the metric is positive definite, and consider general
signatures (¢, s), where ¢ is the number of time-like and s the number of space-
like dimensions. Since we adopt a ‘mostly plus convention’, ¢ is the number of
negative eigenvalues, and s the number of positive eigenvalues of the matrix gy,
For completeness we define that a Riemannian manifold is a pseudo-Riemannian

manifold with definite signature.
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A.5. Connections

A.5.1. Connections on the tangent bundle
A connection V on TM (also called a connection on M, or an affine or linear

connection on TM) is a bilinear map|§|
V i X(M) xX(M) = X(M) : (X,Y)— VxY, (A.27)
which satisfies
VixY = fVxY, Vx(fY)=X(f)Y + fVxY, (A.28)
for all f € C*°(M). The covariant derivative
Vx :X(M) > X%X(M) : Y —VxY (A.29)
is extended to general tensor fields,
Vx :THM) — TH(M) (A.30)

by imposing linearity and the Leibnitz rule in 78 (M) and C°°(M)-linearity in
X.

We remark that in the literature the expressions ‘covariant derivative’ and
‘connection’ are used variably for V and V x. If one needs to distinguish V from
V x, then the first is called the absolute covariant derivative and the second the
directional covariant derivative.

The connection coefficients 2, and connection one-form w? =~P ™ with

respect to a frame are defined by
Ve, €n="nep (A.31)
or in terms of the dual frame
Ve, €™ = —ypme” . (A.32)

If the frame e, is a coordinate frame, the connection coefficients are denoted
D .
re ..

Vo, 0n =12, 0,. (A.33)

73 Alternatively, one can view V as a map X(M) — Q' (M) ®X(M) which assigns to a vector
field X the vector-valued one-form V.X.
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The torsion and curvature of a connection are the following multilinear maps

TV(X,Y) = VxY-VyX - [X,Y], (A.34)
RYyZ = VxVyZ-VyVxZ-VixyZ, (A.35)

where X,Y,Z € X(M). The torsion and curvature tensor are defined by

T(,X,Y) = oTV(X,Y)), (A.36)
R, Z,X,Y) = a(RYyZ) (A.37)

where o € Q'(M). The components with respect to a frame are:

T = T(€™ enep) =Ty = Tom — Cup » (A.38)
Ry = R(e™, en, ep,€q) = €p(’7§2) - 6:1(’752) (A.39)
+VpaYgn = VgaVpn — CpgVan - (A.40)

For a coordinate frame these expression reduce to

T, = 7T (A.41)
R",. = 0,Im —9,m ¢ Tmre —Imre

A.5.2. The Levi-Civita Connection
The Levi-Connection D on a Riemannian manifold (M,g) is the unique
connection on the tangent bundle TM which is both metric (compatible) and

torsion free:
Dxg=0, TP(X,Y)=0, VX,Y € X(M). (A.42)

Our conventions for the Levi-Civita connection and the Christoffel symbols are
summarized in

A.5.3. Flat, torsion-free connections and affine manifolds
If a connection is flat, RY = 0, it is possible to choose a frame consisting of

parallel vector fields [216], i.e.

Ve en=0=4% =0. (A.43)

€m

If the connection is in addition torsion-free, then this parallel frame is a coordi-

nate frame, since

T(e™, en,ep) =0
v =™ =0, (A.44)

np
m

Tnp =0
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Alternatively, we note that the expression for the torsion tensor with respect
to a frame is

T=é€,®d"+e,Quw,, Q™. (A.45)

If V is flat, we can choose a basis of parallel sections, so that w)), = 0, and then

=dem =0=¢€"=dq", (A.46)

where ¢™

are local functions that provide coordinates underlying the parallel
frame. Such coordinates are called V-affine coordinates and are unique up to
affine transformations. The condition on a coordinate system to be affine is
Vdq™ = 0, that is, that the coordinates define a parallel co-frame.

If a manifold admits a flat, torsion-free connection, it can be covered with
V-affine coordinate charts which are related by affine transition functions. Such
an atlas is called an affine structure. A manifold M equipped with a flat,

torsion-free connection V is called an affine manifold.

A.5.4. Connections on vector bundles
Let E — M be a vector bundle over a manifold M. A connection on E is a
map

V X(M)xT(E) 5> T(E), (X,s)rs Vys, (A.47)

which is linear and satisfies the product rule with respect to sections s € I'(E),
while being C'*°(M)-linear with respect to vector fields X € X(M).

Let E — M be a vector bundle with connection V, and let D be a linear
connection on M. If s € I'(E) is a section of E, then Vs is a section of T*M Q E.
One can then use the connection induced by D and V to define the second

covariant derivative VZs, which is a section of T*M @ T*M ® E:
V25(X,Y) =Vx(Vys) — Vp,ys. (A.48)

Alternative notations are V% y-s or (V?s)x,y .
If E =TM, denoting the connection induced by D on tensor bundles again
by D, we obtain the following formula for the second covariant derivative of a
vector field:
D% yZ=Dx(DyZ)— Dp,vZ . (A.49)
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In local coordinates, the relevant expression are, using the notation D,,, = Dj, :

(DxyZ)? = X"Y"DpDnZ", (A.50)
(Dx(DyZ))? = X™D,,(Y"D,ZP), (A.51)
(DpyyZ)? = X™(D,,Y")D,Z" . (A.52)

We can define the Hessian Ddf of a function f with respect to the linear con-

nection D:

Ddf(X,Y)

XY(f) = (DxY)f = X" Dy (Y"On f) = X™ (DY ™) O f
= X"Y"Dponf . (A.53)
If the connection D is torsion-free,
DxY —-DyX =[X,Y], (A.54)
then the Hessian is symmetric, and the curvature of D can be written
RRyZ =[Dx,Dy|Z — Dixy1Z = DxyZ — DY xZ . (A.55)
For the bundle QP(M, E) = I'(APT*M ® E) of vector-valued p-forms, one
defines the exterior covariant derivative
dy : QF(M,E) — QPTH(M, E) (A.56)
by its action on sections of E. For a basis {s,} of sections one sets
dyse = Vss =Wl @sp, (A.57)

where w? is the connection one-form of V. The exterior covariant derivative of
a general section s = f%s, € Q°(M, E) = I'(E) is determined by the product
rule

dys =df* @ s, + [l @ sp . (A.58)
The extension of dy to forms of degree p > 0 is uniquely determined by linearity

and the product rule:
dy(a®s)=da®s+ (—1)9YaAdys, aecQP(M). (A.59)

The exterior covariant derivative of a vector valued p-form p € QP (M, E) can

be expressed in terms of the covariant derivative by
P

(dvp)(Xo, ... Xp) = Y (-1)'Vx,(p(...,X,...)) (A.60)
=0
+Z(—1)Z+]p([X“X]], .. ,XZ‘, . 7X]‘, .. ) ,
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where Xy, ..., X, are vector fields, and where X indicates that the vector field X
is omitted as an argument. The second exterior derivative of a section s € T'(E)

is related to the curvature of the connection V by
d%s(X,Y)=RYy , VX,Y € X(M),s € (E). (A.61)

Thus dy satisfies d3, = 0 if and only if the connection is flat. If this is the
case, a version of the Poincaré lemma holds which allows to write a dy-closed
vector-valued p-form locally as the dy derivative of a vector valued (p— 1)-form.
In general the Bianchi identity dy Ry = 0 for the curvature implies that d?’v =0.
We refer to [219], [220] for more details on the exterior covariant derivative.

In the case when E =TM, V is a connection on T'M and we can define its

torsion. It is useful to note that the torsion tensor can be expressed as
TV = dyld, (A.62)

where Id = e™ ® e,,, € T'(End(TM)) ~ T(T*M ®@ TM) ~ QY(M,TM) is the
identity endomorphism on 7'M, regarded as a vector-valued one-form. Equation
(A.62)) can be verified using that

dy (e ®e,) =de” ® eq + €% A wZ R ey (A.63)

and evaluating both sides of the equation on vector fields, that is by showing
that TV(X,Y) = (dvId)(X,Y). Instead of general vector fields X,Y, one can
choose X = e,, Y = e, with arbitrary a, b, thus comparing the components with

respect to a frame.

A.6. Pull-back bundles

If f: M — N is a smooth map between smooth manifolds M, N, then one
can pull back any vector bundle 7g : E — N to a vector bundle f*E — M over
M, called the pull-back bundle of M by f, which is constructed as follows:

e The total space of f*FE is

FE = {(m,e) € M x E|f(m) = mp(e)} (A.64)

e The bundle projection is the restriction of the canonical projection 7y :
Mx E— M to f*E:
mrep(m,e) =m. (A.65)
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By construction the fibres of f*E are mapped to fibres of F, more precisely
(f*E)m = Ef(y for all m € M. By restricting the canonical projection m :
M x E — E to f*E we obtain the so-called covering morphism

F:f*E—E :(m,e)— F(m,e)=e, (A.66)
which completes the commutative diagram

FE—Y F (A.67)

Jﬂf"E JTFE
f

M — N

The pull-back f*s € T'(f*E) of a section s € I'(E) is defined by

(f7s)(m) = s(f(m)) . (A.68)

We can also pull back a connection D on E to a connection f*D on f*E . This

pull-back connection is defined by
(f*D)x f*s = Dgrxs , (A.69)
for all vector fields X on M.

A.7. The Frobenius theorem, hypersurfaces, and hypersurface orthogonal vector
fields
This section is partly based on [216] and on [221], Appendix B.
A p-dimensional distribution V = UzcpV; on the tangent bundle TM of a

smooth manifold is a map
M>zw—V,CcT,M, (A.70)

where V, is a p-dimensional subspace of T, M. A distribution is called smooth
if it depends smoothly on p. This means that for each x € M there exists a
neighbourhood U and p linearly independent smooth vector fields defined on
U which span V, for x € U. One may then ask whether there exist on M
smooth p-dimensional submanifolds which are tangent to V. Such submanifolds
are called the integral manifolds of the distribution, and provide a foliation of
M, that is a disjoint decomposition into submanifolds, called the leafs of the

foliation.
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According to the Frobenius theorem a distribution is integrable if and only
if it is involutive, that is if the Lie bracket of any two tangent vector fields is
again a tangent vector field, for all points € M. Distributions which possess
integral manifolds are called (Frobenius-)integrable.

The Frobenius theorem can be given a dual formulation in terms of differen-
tial forms. Given a distribution V' C T'M one can consider the dual distribution
V* C T*M on the cotangent bundle defined by

weV'ewX)=0, VXeV. (A.71)
For differential forms, the integrability condition is

dw = Za(i) A\ 6(1) , (A.72)

where a(;) € V*, and where ;) € QY (M).

A vector field £ is called hypersurface orthogonal if it is orthogonal to a
foliation of M by hypersurfaces. This is equivalent to the statement that the
distribution V' = (£)* is Frobenius integrable. The dual distribution V* on the
cotangent bundle is spanned by the one-form £°, that is V* = ((£)1)* = (&),
because £’(-) = g(¢,-). Specializing the dual version of the Frobenius theorem

to the case of a hypersurface distribution we obtain
A& = N B, (A.73)

for some one-form 3, where we used that the distribution V* is one-dimensional.

This equation is equivalent to
ENAE =0 n0n&y =0, (A.74)

which is the standard criterion used in the literature for verifying the hypersur-
face orthogonality of a vector field. Note that due to the antisymmetrization
the expression &,,,0,,&p) is covariant, since we can replace d,, by any torsion free
covariant derivative. Also note that the integrability condition is satisfied in
particular if the vector field is closed, that is if d&” = 0.
Foliations by hypersurfaces can be described locally as level sets of a function
F:M—R:
M ~Ucer{z € M|F(z) =c}. (A.75)
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The standard normal vector field to such a foliation is n = grad(F) = (dF)*,
with components n™ = ¢""0,, F. Tangent vectors ¢ to the foliation are charac-

terized by any of the following relations:
Imnnt" = g(n,t) =0 =dF(t) =t"0,F . (A.76)

The most general vector field £ normal to the foliation can differ from the
standard normal n by a function f : M — R, that is £ = f(dF)*. Such a vector
field clearly satisfies the integrability condition we derived earlier, since & =
fdF. The standard normal vector field n is distinguished by being ‘closed’, more

precisely by dn” = 0. This is a stronger condition than Frobenius integrability.

A.8. Integral curves, one-parameter groups and quotient manifolds

A one-dimensional distribution on the tangent bundle is always integrable,
because the integrability condition becomes trivial. Such a distribution defines
a smooth vector field X, and its integrability corresponds to the existence of a
family of so-called integral curves, whose tangent vectors are given by X. The
integral curve C,, : ¢t — xz(t) through a given point p € M with coordinate 1z

is found by solving the initial value problem

d
d—f:X(t),tGICR, 2(0) = xp . (A.77)

The flow of the vector field X is defined by
c:IxM—=M, (t,z)— o(t,z)=x(¢) (A.78)

where x(t) = 0,(t) is the integral curve of X with initial condition z(0) = xg.

Further defining
o M—=>M, x(0)=o0¢(z)=0(z,0) = o(x,t) =ou(x) =2(t) (A.79)

we see that o; moves the points of M along the integral curves of X. Since
0s+t = 0p 0 05 and o9 = Id, these transformations form a group, called the
one-parameter transformation group generated by X. If this action is a globally
defined group action of G = U(1) or G = R on M, then the integral curves
are called the orbits of G, and denoted (X). As already discussed in the
space of orbits, denoted M/(X) = M/G, need not be a manifold, in particular
it need not satisfy the Hausdorff separation axiom. However, in many cases,

including those relevant for this review, the quotient is a (Hausdorff) manifold,
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and various structures, such as the metric, complex or symplectic structure
project to the quotient manifolds. Quotient manifolds can also be defined with
respect to the action of higher-dimensional groups. Examples relevant for this
review are the action of the group C* on CASK manifolds and the action of the

group H* on hyper-Kéhler manifolds.

A.9. Metric cones and metric products

In this section we elaborate on some standard definitions, and in particular
adapt them to the pseudo-Riemannian setting.

If (H,h) is a pseudo-Riemannian manifold, then the metric cone (or Rie-
mannian cone) (M, g) over (H,h) is the manifold M = R>? x H equipped with
the metric

g = +dp* + p*h . (A.80)

We note that £ = 0, is a closed homothetic Killing vector field:
Leg=2g, d&®=0. (A.81)
Since ¢ is closed, it is gradient vector field:
& =dH & ¢ = gradH (A.82)
or, in local coordinates =™ on M:
ém =0nH <" =¢gm"0,H . (A.83)

M is foliated by the level surfaces H = ¢ which are orthogonal to &, and H can
be identified with the hypersurface H = 1.
The two equations (A.82)) are the symmetric and anti-symmetric part of

Df = IdTM = Dmgn = 9mn (A84)

where D is the Levi-Civita connection of g. This equation provides a local
characterization of a metric cone:
Remark 10. Let (M, g) be a pseudo-Riemannian manifold of dimension n+1,

equipped with a vector field &, which is nowhere isotropic, that is g(§,&) # 0
everywhere, and which satisfies

DE =1dryy - (A.85)

Then there exist local coordinates (r,2%), i = 1,...,n such that metric g takes
the form o

g = £dr?* + r?h;;dx'dr? (A.86)

where h;; only depend on the coordinates z'.

211



This is a special case of the standard form of an n-conical Riemannian metric,
which we derive in section 2.3
If (H1,h1) and (Ha, ha) are two pseudo-Riemannian manifolds, their metric
product or Riemannian product (M, g) is defined by M = H; x Ha equipped
with the product metric
g = hy, + hyy, (A.87)

In local coordinates (z™,y") on Hy x Haz, this takes the form
9= (h1)ma()da™da™ + (ha)ij(y)dy'dy’ . (A.88)
In applications we encounter product manifolds of the special form
M=RxH=R>"xH, (A.89)

for which the metric takes the form
2 i3 dr? i
g = £dp” + hijdz'dr! = £— + h;dz"dx’ (A.90)
r

where the coordinates 7, p are related by r = e”. The vector field § = 0, =
r0, is a Killing vector field, L¢g = 0, which is closed d¢’ = 0, and therefore
hypersurface orthogonal, and which in addition has constant norm g(&, &) = £1.
The manifold M is foliated by hypersurfaces where p = const., and all these
hypersurfaces are isometric to each other and to (H, h).

The Killing equation can be combined with the closed-ness condition to
DeE=0. (A.91)

Note that this equation does not by itself imply that a metric g locally takes
the form of a product. This requires in addition that the norm of ¢ is
constant, so that surfaces of constant p are isometric to each other. The proof
that this is sufficient to bring the metric to the form is given in section
23

A.10. Affine hyperspheres and centroaffine hypersurfaces

Here we review some facts about affine hyperspheres and centroaffine hyper-
surfaces, following [43] 44, [143]. Consider R™*! equipped with the standard

connection 0 (given by the partial derivative with respect to standard linear
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coordinates), and the standard volume form vol, which is parallel with respect

to 0. Let M be a connected manifold which is immersed as a hypersurface
©: M — R™L, (A.92)

Assume that there exists a vector field & which is transversal along M. Then

volpys = vol(§, -+ ) is a volume form on M, and by decomposing

OxY = VxV+g(X,Y)E, (A.93)
OxE = SX+0(X)E, (A.94)

where X,Y are tangent to M, one obtains on M: (i) a torsion-free connection
V, (ii) a symmetric co-tensor g, (iii) an endomorphism field S and (iv) a one-
form 6. If g is non-degenerate, it defines a pseudo-Riemannian metric on M. It
can be shown that once the orientation of M has been fixed there is a unique
choice for &, called the affine normal such that the induced volume form voly; of
M coincides with the volume form defined by the metric g. If £ is chosen to be
the affine normal, then § = 0 and S can be expressed in terms of the so-called
Blaschke data (g, V).

There are two special cases:

1. A hypersurface is called a parabolic (or improper) affine hypersphere if the
affine normals are parallel, 9¢ = 0, and thus only intersect ‘at co.” One
can show that

=0 S5=0<V flat . (A.95)

Thus parabolic affine hyperspheres carry a flat torsion-free connection.

2. A hypersurface is called a proper affine hypersphere if the lines generated
by the affine normals intersect at a point p € R™*!. For a proper affine
hypersphere S = Ald, A € R*.

The ASK manifolds of four-dimensional vector multiplets are parabolic affine
hyperspheres with additional structure, called special parabolic hyperspheres, see
section [B.1.3)

The PSR manifolds of five-dimensional vector multiplets coupled to super-
gravity, which are discussed in section are, in general, not (proper) affine
hyperspheres, but centroaffine hypersurfaces. According to section 1.1 of [143]

a hypersurface immersion ¢ : M — R™t! is called a centroaffine hypersurface
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immersion if the position vector field ¢ is transversal to the image of M. The
equation
oxY =VxY +¢(X,Y)¢, (A.96)

for XY € X(M) induces on M a connection V, a symmetric tensor field g,
and a V-parallel volume form voly; = det(&,...). The data (V,g,voly) are
called the induced centroaffine data on M. The hypersurface M is called non-
degenerate if g is non-degenerate, definite if g is definite, elliptic if g is negative
definite, and hyperbolic if g is positive definite. Every homogeneous function de-
fines a centroaffine hypersurface embedding, and every centroaffine hypersurface
immersion is locally generated by a homogeneous function. Centroaffine struc-
tures can be characterized intrinsically: a centroaffine manifold (M,V, g, voly)
is a manifold equipped with a torsion-free connection V, a pseudo-Riemannian
metric g and a volume form voly;, subject to three compatibility conditions:
(i) the volume form is V-parallel, (ii) the cubic form C' := Vg is completely

symmetric, and (iii) the curvature tensor R of V is given by

for X,Y,Z € X(M). By Theorem 1.6 of [143] a centroaffine immersion ¢ :
M — R™*! induces on M the structure of a centroaffine manifold. Conversely,
every connected and simply connected centroaffine manifold can be realized as
a centroaffine immersion, which is unique up to SL(m + 1,R) transformations.
Note that in contradistinction to affine hyperspheres, the position vector field &
of a centroaffine hypersurfaces is in general not the affine normal of M m

PSR manifolds, which are the scalar manifolds of five-dimensional vector
multiplets coupled to supergravity, were discussed in section We now
review how they fit into the theory of centroaffine hypersurfaces, following sec-
tion 2.1 of [143]. A PSR manifold is a smooth hypersurface M = H C R™+1
which is realized as the level set V = 1 of a homogeneous cubic polynomial V,
such that 9%V is negative definite on TH. This induces a centroaffine structure
(V,g,voly;) on M.

According to definition 2.2 of [143] an intrinsic projective special real mani-

fold is a centroaffine manifold (M, V, g, voly;) with a positive definite metric g

74We thank the referee for pointing this out to us.
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such that the covariant derivative of the cubic form C' = Vg is given by
(VxCO)Y, Z, W) = g(X,Y)g(Z,W)+g(X, Z)g(W,Y ) +g(X, W)g(Y, Z) (A.98)

for all X,Y,Z, W € X(M).

Theorem 2.3 of [143] relates the extrinsic and intrinsic definitions of PSR
manifolds. The induced centroaffine structure on a PSR manifold gives it the
structure of an intrinsic PSR manifold, and any connected and simply connected
intrinsic PSR manifold can be realized by an immersion ¢ : M — R™*! which

is unique up to SL(m + 1,R) transformations.

A.11. Complex manifolds

An almost complex manifold (M,J) is a real manifold M together with
an almost complex structure J. An almost complex structure J is a section
of End(TM) ~ TM ® T*M, which satisfies J2 = —17,;. Note that an almost
complex manifold is always of even dimension. A complex manifold N of complex
dimension n is a manifold which is locally biholomorphic to C". A complex
manifold automatically carries an almost complex structure (with additional
properties, see below) which is called its complex structure. In terms of local

holomorphic coordinates z* = x* + iy*, the complex structure acts on TM as
JX; =Y, JY,=—X; (A.99)

where X;,Y; is the coordinate frame

0 0
=g Y=g (A.100)

X;,Y; is called a holomorphic frame on (M, J).
As a consequence of the Newlander-Nirenberg theorem, an almost complex
manifold (M, J) is a complex manifold if and only if the Nijenhuis tensor (or

torsion tensor) associated to J, defined by
N;(X,Y):=2(JX,JY] - [X,Y] - JX,JY] - JJX,Y]) , (A.101)

vanishes. An almost complex structure with vanishing torsion tensor is called
an integrable almost complex structure, or simply a complex structure.
For further reading we refer to [I15], on which - are mostly based.

215



A.12. Complex vector bundles

A complex vector bundle E over a manifold M is a vector bundle whose
fibres are complex vector spaces. A one-dimensional complex vector bundle
is called a complex line bundle. A Hermitian metric v on F is a family of
Hermitian scalar products v, on the fibres E,, which varies smoothly with = €
M. Our convention for Hermitian forms is that they are complex linear in the
first and complex anti-linear in the second argument. A Hermitian vector bundle
(E, M,~) is a complex vector bundle (E, M) equipped with a Hermitian metric.
A connection D on a Hermitian vector bundle is called metric compatible, or

metric, or Hermitian if
d(v(s;t)) =~v(Ds,t) + (s, Dt) (A.102)

for all sections s, t.

A holomorphic vector bundle E is a complex vector bundle over a com-
plex manifold M such that the projection 7 : E — M is holomorphic. Every
complex manifold comes equipped with a standard holomorphic vector bun-
dle, the tangent bundle T'M equipped with the complex structure J. Another
canonical complex vector bundle over M is the complexified tangent bundle
TcM = TM ®g C, equipped with the complex linear extension of J. The
complexified tangent bundle can then be split into the eigen-distributions of J,

called the holomorphic and anti-holomorphic tangent bundle,

TeM = TEOM + 7O (A.103)
The maps
1 1
TM - TEOM X — (X =iJX), TM — TOVM : X (X +iJX)
(A.104)

are complex linear and complex anti-linear isomorphisms, respectively, of com-
plex vector bundles. Since T'M is a holomorphic vector bundle over M, so is
TMO M, but the smooth complex vector bundle TV M is not a holomorphic
vector bundle in a natural way.

A complex vector field Z is a section of Tc M and can be decomposed into
its (1,0) and (0,1) parts

1 1
ASRUE 5 (Z=ilZ), ASRES 5 (Z+idZ). (A.105)
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Given local holomorphic coordinates z* = %4y’ we can define local complex

frames

Zi:izl(Xi_iYi)y Z;=

1 .
57 =3 = 5 (Xi+aY3) (A.106)

0
oz
on TWO M and T(O’l)M7 where X,; = %, Y,=JX;, = (%i is a coordinate frame
on T'M.

Like the complexified tangent bundle, all associated complex tensor bundles
admit decompositions into ‘holomorphic’ and ‘anti-holomorphic’ components.
For example complex n-forms can be decomposed into (p, ¢)-forms, p + ¢ = n,
Q" (M) =D, 4=, 9 (M). The de-Rham differential can be decomposed as

d=0+0d, 9=d%9 §=d%Y (A.107)
If the complex structure is integrable, then
Q:QPUM) — QPTRUM) 9 QPY(M) — QP (M) (A.108)

and since 9> = 0 = 92, the de-Rham cohomology admits a refinement called

Dolbeault cohomology:

H™(M)= Y HX(M). (A.109)

n=p+q
A connection D on a holomorphic vector bundle is called a holomorphic con-
nection if it is compatible with the holomorphic structure, that is if 791 Ds =

Os = 0 for all holomorphic sections s, where 70!

is the projection onto the
anti-holomorphic co-tangent bundle, and where 9 = 7%d is the standard anti-
holomorphic partial derivative, i.e. the anti-holomorphic projection of the ex-
terior derivative d. Equivalently, the (0,1)-part of the connection one-form

0.1 — 701, = 0. Equivalently, for holomorphic sections s the covari-

vanishes, w
ant derivative along a complex vector field of type (0, 1) vanishes, Dgs = 0 for
all X € (T M) and s € Tholom (E).

On a holomorphic Hermitian vector bundle there is a unique connection,
called the Chern connection, which is simultaneously Hermitian and holomor-
phic. As an example consider the trivial holomorphic Hermitian vector bundle
C™ x C™ — C", where the Hermitian metric «y is defined by choosing a Hermi-
tian inner product on C™. This vector bundle carries a canonical flat connection

d which is defined by the standard partial derivative, that is by declaring that
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any frame defined by a basis (e;) of C™ is parallel, dxe; = 0 for all complex vec-
tor fields X on C™. The covariant derivative dxv of a section v(P) = v'(P)e;,
P € M along a complex vector field X = X9, + X*9; € ['(TcC") is

dxv = X(")e; = (X0v" + X 0qv')e; = Oxv + Oxv . (A.110)
The connection d is manifestly holomorphic, and it is also Hermitian since
dxy(v,w) = Xv(v,w) = y(dxv,w) + y(v,dgw) . (A.111)

A.13. Hermitian manifolds

An (almost) Hermitian manifold (M, J, g) is an (almost) complex manifold

(M, J) equipped with a J-invariant pseudo-Riemannian metric g,
(J*9)(X,Y)=¢g(JX,JY)=¢g(X,)Y), VXY e X(M). (A.112)

Note that we allow the Riemannian metric to be indefinite. Such manifolds
are often called (almost) pseudo-Hermitian. Also note that the positive and
negative eigenvalues of an (almost) Hermitian metric always come in pairs. One
therefore says that a pseudo Hermitian metric has complex signature (m,n) if
the underlying Riemannian metric has real signature (2m,2n).

The metric g can be extended complex-linearly to the complexified tangent
bundle Tc M. The resulting complex bilinear form has the following properties,

where Z, W are complex vector fields:

9(Z,W) =g(W,Z) , (A.113)
g(Z, W) =g(Z,W), (A.114)
g(Z,W)=0,if ZWeD(THOM), (A.115)
g(Z,Z) >0 ,unless Z =0. (A.116)

Assume that J is integrable, and let 2% = 2 + iy’ be local complex coordinates,
with associated holomorphic frame Z; = %(Xi —1Y;) . Then the components of

the metric are

gix = 29(Z;,Z,) =0, (A117)
gk = 29(Z;,Zr) =0, (A.118)
g = 29(Z;,Z1) =29(Zk, Zj) = gij » (A.119)
Tk = k=09 - (A.120)
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Here we used properties of the complex-linear extension of the metric to Tc M,
and choose the normalization for later convenience. Note that the coefficients

can be arranged as a Hermitian matrix. The metric can be written
, 1 , 3 ,
g =gpdedz" = S (4 @ d2" + dz" @ ) (A.121)

Note that g(Z;, Z;) = %gﬁ, which explains our normalization of g;;.
Given a metric and a compatible (almost) complex structure, one defines

the fundamental two-form w by
w(X,Y):=g(X,JY). (A.122)

The coefficients of the fundamental two-form with respect to the holomorphic

frame Z; are

W;s = QW(ZZ‘, Z]) = QQ(Zi7 JZJ) = 2g(Zi7 —iZj) = _igij
5= 2w(Zy,Zi) =29(2,JZ;) = igy; = ig; = ~wi; - (A.123)
Therefore the fundamental two-form has the expansion

7

YTy

gi; (dz' @ dz’ — dZ’ @ d2") = —%gi‘;dzz ANdZ = §wi3dzz AZ . (A124)

The fundamental two-form is non-degenerate. Given w and J we can there-

fore solve for the metric using that
g(X, V) =w(JX,Y) (A.125)
Moreover the complex structure
JeT(End(TM)) : TM - TM (A.126)
is determined by g and w as
J=g lwel(T*"M @ TM) = T(End(TM)) , (A.127)
where the map ¢~ 'w is defined by
Y = (57 w)(X) & g( V) = w(-, X) . (A.128)

Thus any two of the three compatible data (g,w,J) suffice to determine the
third. To provide the corresponding local formulae, we introduce the compo-

nents of the inverse metric by

9% g5, =05, 9% g5 = 6% (A.129)
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The components (A.123)) of the fundamental form are determined by antisym-
metry. These relations are consistent with complex conjugation, wW;; = w;;.
Evaluating J", = ¢"Pwy, in complex coordinates, we obtain the components of

the complex structure:

Ty = gteg =8y, T =gt = —id) (A.130)

The metric g and the fundamental form w can be combined into a Hermitian
form ~, which defines a Hermitian metric on the complex vector bundle TM.

Its components with respect to the holomorphic frame Z; = % are

v = gijdzi RdF =g+ iw . (A.131)

We remark that our conventions differ from [I15], on which [A.11] [A.12] [A.13]
and are partly based. In particular, we avoid a factor % between the

coefficients of the metric ¢ on M and the Hermitian metric v on the complex
vector bundle T'M, we include a factor % in the definition of the symmetrized
tensor product, we define w in terms of g, J with a relative minus sign, and we
take Hermitian forms complex anti-linear in the second rather than in the first

argument.

A.14. Symplectic manifolds

A symplectic manifold (M,w) is a real manifold equipped with a closed non-
degenerate two-form w, called the symplectic form. Symplectic manifolds are
even dimensional. The tangent spaces (T,M,w,) are symplectic vector spaces
isomorphic to R?” with its standard symplectic form w. Let W be a linear

subspace, ¢ : W — V be the canonical embedding, and
W+ ={veVww) =0, Ywe W} (A.132)
be the ‘symplectically perpendicular’ subspace. Then

e W C V is called isotropic if W C W+. This implies dimW < 1dimV

and (*w is totally degenerate, t*w = 0.

o W C V is called co-isotropic if W+ C W. This implies dim W > %dimV

and W/W+ inherits a symplectic structure from V.

e W C V is called Lagrangian if it is isotropic and co-isotropic, that is if
W+ = W. This implies dim W = % dim V and W is an isotropic subspace

of maximal dimension.

220



o W C V is called symplectic if W n W+ = {0}.

Consider the following example of a co-isotropic subspace. Let {&,n, X1, ..., X,
Y1,...,Y,} be a basis of V 22 R?"*2_ such that

w&n) =1, w(Xi,Y))=wi, (A.133)

with all other components determined by antisymmetry, or else being zero.
Define W as the linear subspace W = (n, X1, ..., X,,,Y1,...,Y,). Then wi =
ker(t*w) = (n) C W, so that W is co-isotropic. The quotient W := W/W+ is

defined by the equivalence relation
w~w Sw—w =an. (A.134)
The projection map onto the quotient is
T W =W, w—w=r(w), (A.135)

where @w = w(w) denotes the equivalence class of w with respect to (A.134]). On

W we can define a two-form @ by
O(X,Y) = (m"0)(X,Y) = (w)(X,Y), (A.136)

which is non-degenerate because we have factored out the kernel of t*w. Choos-

ing the basis {X1,..., X,,,Y1,...,Y,} for W, the components of & are
wij = 0(X,Y)) = wij - (A.137)

A submanifold ¢ : S — M is called a(n) isotropic, co-isotropic, Lagrangian
and symplectic submanifold, respectively, if all its tangent spaces are isotropic,
co-isotropic, Lagrangian and symplectic, respectively. The pullback ¢*w of the
symplectic form is thus totally degenerate on isotropic and symplectic subman-
ifolds, and isotropic submanifolds have maximal dimension % dim M.

An immersion ¢ : S — M is called a Lagrangian immersion if its image is
a Lagrangian submanifold. A vector field X on (M,w) is called a Hamiltonian
vector field if

w(X,)=—-dH(") (A.138)

for a function H, called the Hamiltonian or moment(um) map(ping) of X.
Example of a symplectic quotient. We now give a simple example of a

symplectic quotient (or symplectic reduction), which is useful for understanding
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the complex version of the superconformal quotient relating affine conical to
projective special Kéhler manifolds. Let (M,w) be a symplectic manifold, and
let X be a Hamiltonian vector field which generates a U(1)-action on M. The
level surfaces H, = {H = ¢} = H 1(c) of the moment map are invariant
under the action of X, since Ly H = dH(X) = —w(X, X) = 0. We assume that
the resulting U(1)-action on H,. is such that the orbit space M = H./(X) =
H./U(1) is a smooth manifold. We note that any vector field T which is tangent
to H. must be symplectically perpendicular to X, that is

w(X,T)=—dH(T) =0 (A.139)

In particular X itself is tangent to H.. We choose a vector field £ transversal
to H. by imposing the condition w(¢, X) = dH(§) = 1. Thus in a coordinate
system where we use H as one of the coordinates, £ = Jy. The restriction
we = tiw of w to the immersed hypersurface ¢, : H. — M is degenerate. From
the above it is clear that its kernel is spanned by X, therefore . is a co-isotropic

submanifold. The two-form w, is invariant under X,
Lxw: =dwX,")) + (dw.)(X,-,) =0, (A.140)

because w (X, ) = 0 and dw, = dtfw = 1fdw = 0. Since w, is also transversal
to the action of X (that is, its components in the X-direction vanish), w, can
be projected to the quotient M = H./U(1) to define a two-form @ by 7*w =
we, where m : H. — M is the projection onto the quotient. Since we take a
quotient with respect to the kernel of w, the two-form @ is non-degenerate. It
is also smooth because all maps entering into its construction are by assumption

smooth. To verify that @ is closed we note that dw = 0 implies
0=dw.=d(m"@) =n"dw . (A.141)

Since the projection map is surjective, every tangent vector X of M can be
lifted to a tangent vector X of H.. Therefore

do(X,Y) = (r*de)(X,Y) =0, (A.142)

for all X,Y € X(M), and thus do = 0. This shows that (H./U(1),&

) is a
symplectic manifold. The construction by which it is obtained from (M,w

"5Here H~'(c) denotes the inverse image of ¢ under H, that is, the level set. This notation
is common in the literature about symplectic quotients.
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is called a symplectic quotient, denoted M//U(1). Symplectic quotients can
more generally be defined for symplectic actions of Lie groups G on symplectic
manifolds, and are denoted M//G [222].

A.15. Kdhler manifolds

An (almost) Kdihler manifold (M, g,w) is an (almost) Hermitian manifold
(M, J,g) where the fundamental two-form is closed. We will restrict ourselves
to K&hler manifolds, that is to the case where J is integrable and (M, J) is
a complex manifold. As for Hermitian manifolds we include cases where the
metric is indefinite. We remark that for Hermitian manifolds the condition
dw = 0 is equivalent to J being parallel with respect to the Levi-Civita connec-
tion, DJ = 0. The fundamental form of a Kahler manifold is called its Kdhler
form. Note that (M,w) is a symplectic manifold. Thus Kéhler manifolds are
pseudo-Riemannian manifolds which simultaneously admit a compatible com-
plex structure and a compatible symplectic structure. Another equivalent char-
acterization of a Kdhler manifold is that the Chern connection of the Hermitian
metric v = g 4+ iw on T M is equal to the Levi-Civita connection D of g. Eval-
uating the condition dw = 0 in local holomorphic coordinates we obtain the
integrability condition

N9k = 0591 » (A.143)

or, equivalently,
Ogix = Okgji - (A.144)

Another equivalent characterization is the local existence of a Kahler potential
K, that is of a smooth real function such that

w= —%851( . (A.145)

This follows by combining Poincaré’s lemma with the decomposition of forms
into types (90-lemma): locally w = da, where a = 3 + 3, with 8 € QUO(M).
Since w € QV1(M) and d = 9 + 9, where 9% = 0 = 9%, and where 9,0 act con-

sistently with type (since we assume that the complex structure is integrable):

da=0(B+pB)+0B+B) e (M)=03=0,w=08+03,08=0.
(A.146)
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Hence 8 = 0¢ by the 0-version of the Poincaré lemma, where ¢ is a smooth

complex function. Therefore

w =033 — ¢) = f%c”)‘éK : (A.147)
where K = —2i(p — @). This provides a real potential for the metric,
9,5 = 0:0: K | (A.148)

called the Kahler potential. Note that the Kahler potential is only determined
up to adding the real part of a harmonic function, since K and K + f + f with
J0f = 0 define the same metric. For further reading on Kihler manifolds we
refer to [115] on which this section is partly based.

Since a Kéhler manifold is in particular a symplectic manifold, one can apply
symplectic reduction. If the symplectic group action is in addition holomorphic
and isometric, it preserves the extra structures which distinguish a K&hler man-
ifold from a symplectic manifold, and the quotient carries an induced Kéhler
structure. The Hamiltonian vector fields generating such a group action must be
holomorphic Killing vector fields. Symplectic quotients of Kahler manifolds by
symplectic, holomorphic and isometric group actions are called Kdhler quotients

[223]. One uses the same notation M//G as for symplectic quotients.

A.16. Contact manifolds

A one-form 6 on a manifold M of odd dimension 2n + 1 is called a contact

form if the (2n+1)-form G A (df)™ is a volume, that is, if it is nowhere vanishing,

(OANAON---AdO), £0, Ype M. (A.149)

A contact manifold (M, ) is an odd-dimensional manifold equipped with a con-
tact form. A contact structure on an odd-dimensional manifold M is defined by
the choice of a hyperplane distribution V = Ucp/V, on its tangent bundle T'M,
which is maximally non-integrable, that is non-integrable at every point.

To relate the concepts of contact form and contact structure, we note that
the kernel ker(6) of the one-form 6 defines a hyperplane distribution on T'M.
By the dual version of the Frobenius theorem, the integrability condition for
this distribution is 8 A df = 0, which implies 6 A (df)™ = 0. Thus by definition
a contact distribution is not integrable, and in fact maximally non-integrable,

since the integrability condition does not hold at any point of the manifold.
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Consequently, a contact form determines a contact structure. Since any two one-
forms 6, 6/, which differ by multiplication with a nowhere vanishing function f,
0" = f0 have the same kernel, a contact structure corresponds to an equivalence
class of contact forms. Since § A (df)™ is nowhere vanishing, the kernel of df
defines a one-dimensional distribution on T'M which is complementary to the
contact distribution, that is TM = ker(6) & ker(d6).

To each contact form there is an associated vector field, called the Reeb
vector field R, which is the unique vector field on M such that

O(R)=1, do(R,)=0. (A.150)

Thus R spans the kernel of df and extends any given frame on V' = ker(f) to a
frame on T M.

Contact manifolds can be regarded as the odd-dimensional analogues of sym-
plectic manifolds. Contact and symplectic manifolds can be related by construc-
tions which change the number of dimensions by one.

The symplectification of a contact manifold. Let (M, 6) be a contact
manifold of dimension 2n 4 1. Consider the cone R>? x M over M with coor-
dinate 7 on R>?. Then (R>? x M, w), with w = r2df + 2rdr A 6 is a symplectic
manifold, because dw = 2rdr A df — 2rdr A df = 0, and because w is non-
degenerate, as can be verified using a frame consisting of d, and a frame for M.
Note that we have seen above that the kernels of § and df define complementary
distributions on T'M. Using the variable p, defined by r? = e”, we can write
the cone in ‘product form” (R>? x M, w) = (R x M,w’), where o’ = d(e”9). In
this parametrization we see that the symplectic form is exact. The symplectic
manifold (R x M, d(e?0)) = (R>°,r2d0 + 2rdr A 0) is called the symplectification
(or symplectization) of the contact manifold (M, 6).

Legendrian submanifolds. If 0 is a contact form on a manifold M of
dimension 2n + 1, then df)y is a symplectic form on the contact distribution
V' = kerf. Therefore a subdistribution L C V can only be integrable if it
isotropic with respect to df|y. This implies that 2dim L < dim M — 1 = 2n,
that is dim L < n. Integral manifolds of dimension n which saturate this bound
are called Legendrian submanifolds, and are the counterparts of Lagrangian sub-
manifolds in symplectic geometry. In particular, the Legendrian submanifolds
of a contact manifold lift to Lagrangian submanifolds of its symplectification.

An immersion ¢ : H — M into a contact manifold (M, 0) is called a Legendrian
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immersion if the image of H is a Legendrian submanifold.

For further reading on contact geometry we refer to [224].

A.17. Sasakian Manifolds

The following section is based on various sources, including [I51], [124] [46), [47].

Kéhler manifolds can be thought of as symplectic manifolds with an ad-
ditional pseudo-Riemannian metric subject to compatibility conditions, which
determine a complex structure. Sasakian manifolds are the ‘contact analogue’ of
Kaéhler manifolds, that is contact manifolds equipped with a metric which sat-
isfies certain compatibility conditions. One way to characterize Sasakian mani-
folds is by requiring that their symplectification is Kéhler: A Sasakian manifold
(S,6,9) is a contact manifold (5, 6) equipped with a (pseudo-)Riemannian met-
ric g, such that the Riemannian cone (M,gnr) = (S x RY r2gs + dr?) is a
Kéhler manifold with Kahler form w = 72d6 + 2rdr A . Comparing to the pre-
vious section we see that the Riemannian cone is indeed the symplectification
of the contact manifold (M, ). We remark that the complex structure J relates
the homothetic Killing vector field £ = 70, to the Reeb vector field R = —J¢.

If in addition the Reeb vector field generates a U(1)-action on S such that
M = S/U(1) is a smooth manifold, then M is the Kihler quotient of M, M =
M//U(1) = S/U(1). Moreover, if a Kahler manifold M admits a homothetic
Killing vector field &, which satisfies D€ = Id, then M is a Riemannian cone over
the Sasakian S = {g(&,€&) = 1}. If the quotient M/C* by the holomorphic and
homothetic action generated by &, J¢ defines a smooth manifold, this manifold
is precisely the symplectic quotient with respect to the action of J¢. Finally,
given a Kihler manifold M we can construct a ‘complex cone’ or ‘conical Kéhler
manifold’ M as the total space of a C* bundle over M, such that M = M//(Cm

A.18. Complex symplectic manifolds and complex contact manifolds

The concepts of symplectic and contact geometry, which we have formulated
for real manifolds, can be formulated analogously for complex manifolds. We
illustrate this by examples.

The vector space V. = T*C" = C?" equipped with the complex sym-
plectic form Q = dz’ A dw; is the standard example for a complex symplec-

tic vector space of complex dimension 2n. Its projectivization P(V’), where

76 Another natural name for M would be ‘Kihler cone’ in analogy to Riemannian cone, but
Kaéhler cone is also use for the cone of Kédhler structures on a Calabi-Yau manifold.
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V' = {(z,w) € C*|(z,w) # (0,0)}, is the space V’/ ~, where ~ denotes the

equivalence relation
(z,w) ~ (0" & (Z,w) = Mz,w), IAe€C*. (A.151)

P(V') is a complex contact space with complex symplectification V. In special
geometry projective special Kihler manifolds M can be realized as holomor-
phic Legendrian immersions into P(V”), which lift to holomorphic Lagrangian
immersion of the corresponding conical affine special Kahler manifold M into
V.

A.19. Some groups and their actions

This section is based on [46] 47]. The Heisenberg group Heisg,41(R) is the
nilpotent Lie group obtained as a central extension of the translation group R2",

with group law
1
(s,v)0 (s,0) = (s + s+ iﬂ(v,v’),v + v') , (A.152)

where s,s’ € R are central, v,v’ € R™ are translations, and where Q is the
standard symplectic form on R2". The standard generators p;, ¢;, 2, i =1,...,n

for the Lie algebra bheis,,, | (IR) satisfy
(i, q] = dijz (A.153)

with all other commutators vanishing. The group G' = Sp(R?") x Heisg,+1(R)
is the semi-direct extension of the real Heisenberg group by its group Sp(R*")

of automorphisms, with group law
1
g g = (MM’,S—!—S'—}—2Q(U,MU’),U+MU’> , (A.154)

where M, M’ € Sp(R*") and (s,v) € Heisa,11(R). We use the same notation
g = (M, s,v) for elements of the complexification G¢ = Sp(C?") x Heisz,,41(C).
The quotient map

Ge — Affgyceny = Ge/Z(Ge) : (M, s,v) = (M, v) (A.155)

induces an affine representation p of G, whose restriction to the real subgroup
G provides an affine representation of Affs,gzn) (R2n).

On the complex vector space C*" we choose Darboux coordinates (X I Wr),
such that the complex symplectic form is Q = dX! A dW;. We can embed C?"
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into C?"*? = C? @ C?" with standard coordinates (X°, Wy, X, W;). A linear
representation p : G¢ — Sp(C?"*2) is defined by

1 0 0
g= (M,S,U) = ,D(l‘) = —2s 1 o7 5 0= MTQOU = QOM71U )
v 0 M

(A.156)
where € is the standard representation matrix for the symplectic form on C?".
According to Proposition 3.2.2 of [47] this is a faithful representation which
induces the affine representation p: G¢ — Affsp(czn)((czn) because it preserves
the affine hyperplane {X° = 1} € C?"*2 and the distribution dy,. The orbit
space {X" = 1}/(dw,) is the symplectic reduction of C?"*2 with respect to the
holomorphic Hamiltonian group action generated by Oy, , and p induces p under
this quotient. Similarly, the real symplectic affine space R?" is the symplectic
reduction of the real symplectic vector space R?"+2, with G¢ replaced by its
real subgroup G.
Finally we define the group Gsx = Sp(R?") x Heisa,, +1(C) C G¢. Note that
G C Gggi and that Ggk is a central extension of p(Ggk) = AﬁSp(RZH)(CQn) =
Sp(R?™) x C2". The latter group acts simply transitively on Kihlerian La-
grangian immersions of simply connected ASK manifolds, in other words, it is

the duality group of ASK geometry.

A.20. Para-complex geometry

Here we collect some definitions and statements about para-complex geom-
etry. More details can be found in [19} [78] 45| [17].

A para-complex structure J on a finite-dimensional real vector space V is a
non-trivial involution J € End(V), J # Id, J? = Id, such that the eigenspaces
V* := ker(Id F J) of J are of the same dimension. A para-complex vector
space (V, J) is a real vector space V endowed with a para-complex structure J.
A homomorphism of para-complex vector spaces is a linear map @ : (V,J) —
(V’, J’) such that ®oJ = J'o®. Para-complex vector spaces have even dimension
and admit bases ef such that Jeii = :I:eii. It is easy to see that for dimg V =
2n a para-complex structure is invariant under the group Aut(V,J) := {L €
GL(V)|LJL™'}, where

Aut(V,J) = GL(n,R) x GL(n,R) € GL(V) = GL(2n,R) . (A.157)

228



An almost para-complex structure on a smooth manifold M is an endomor-
phism field J € End(TM) : p — J, such that J, is a para-complex structure
on T,M for all p € M. An almost para-complex manifold (M, J) is a smooth
manifold M endowed with an almost para-complex structure.

If one relaxes the condition that the eigenspaces of J, have equal dimension,
one obtains the concept of an almost product structure. Thus almost para-
complex structures are almost product structure where the dimensions of the
eigendistributions ‘balance.” This creates many analogies with almost complex
manifolds.

An almost para-complex structure J is called integrable if the eigendistri-
butions T+ M := ker(Id F J) are both integrable. An integrable almost para-
complex structure is called a para-complex structure. A para-complex manifold
(M, J) is a manifold M endowed with a para-complex structure J. The Frobe-
nius theorem implies that an almost para-complex structure is integrable if and
only if its Nijenhuis tensor N;(X,Y) = [X,Y]|+[JX,JY]-J[X, JY]-J[JX,Y]
vanishes for all vector fields X,Y on M.

A smooth map @ : (M, Jyr) — (N, Jy) between para-complex manifolds is
called a para-holomorphic map if d®Jy; = Jnd®.

It can be shown that the integrability of the almost para-complex structure
J is equivalent to the existence of local para-complex coordinate systems. This
uses the algebra C' of para-compler numbers, which are also known as split com-
plex numbers of hyperbolic complex numbers. As a real algebra C' is generated

by 1 and the symbol e, subject to the relation e? = 1. The map
S C—>Cixt+ey—ax—ey, z,y€R (A.158)

is called para-complex conjugation and is a C-antilinear involution, which allows
to regard x,y as the real and imaginary part of z = x + ey. The algebra C has
zero-divisors, its group of invertible elements is isomorphic to O(1,1) and has
four connected components separated by the light cone 2z = z? — y? = +1.
The algebra C and the free C-module C™ are para-complex vector spaces of
real dimensions 2 and 2n, respectively, with a para-complex structure given by
multiplication with e. One can show that a smooth manifold M endowed with
an atlas of C"-valued coordinate maps related by para-holomorphic coordinate
transformations admits an integrable para-complex structure. Conversely, any

real manifold with an integrable para-complex structure admits a para-complex
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atlas.

Remark 11. For almost para-complex manifolds it is interesting to consider
the case where only one of the eigendistributions T+ M is integrable. This has
applications in particular in doubled/generalized geometry. Here we focus on the
case were both eigendistributions are integrable, which is relevant for Euclidean
special geometry.

A para-holomorphic map ® : (M,J) — C is called a para-holomorphic
function.

A para-holomorphic vector bundle of rank r is a smooth real vector bundle
W — M of rank 2r whose total space W and base M are para-complex manifolds
and whose projection 7 is a para-holomorphic map. On a para-holomorphic
vector bundle we have a canonical splitting W = W* & W~ induced by the
para-complex structure. The tangent bundle TM — M over any para-complex
manifold M is a para-holomorphic vector bundle. The splitting TM = T+ M &
T~ M can be used to define a real version of Dolbeault cohomology on any
para-complex manifold.

The para-complexified tangent bundle TcM = TM ® C can be equipped
with the C-linear extension of the para-complex structure J. It decomposes

canonically into eigenbundles of J with eigenvalues +e,
TeM =T"°M o T%' M . (A.159)
There is a canonical isomorphism
TM = TYM, X+ %(X +eJX) (A.160)

of real vector bundles which is compatible with the para-complex structures
on the fibre. C-valued differential forms admit a decomposition into types in
analogy with complex-valued differential forms on complex manifolds, which
allows to define a para-complex version of Dolbeault cohomology.

A para-Hermitian vector space (V, J, g) is a para-complex vector space (V, J),
equipped with a pseudo-Euclidean scalar product g for which J is an anti-
isometry,

Jg=g9g(J,J)=—g. (A.161)

Then g is called a para-Hermitian scalar product, and (J, g) a para-Hermitian

structure on V. A para-Hermitian scalar product always has neutral signature.
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The standard para-Hermitian structure on R?™ = R"™ @ R™ is given by

Ie;l: — j:ezz.t , g(e:.tve:,t) =0 , g(ei 6{7) = 6ij s (A162)

% J AR

where e] = e; ®0, and e; =0 De;.
The standard para-Hermitian structure on C™ = R"@®eR™ with basis e;, f; :=

ee; is given by
Jei=fi, Jfi=ei, glei,ej)=—g(fi,f;)=0dij . (A.163)

Any two para-Hermitian vector spaces of the same dimension are isomorphic.
Using any of the two standard realizations R?" or O™, it is straightforward to

show that the para-unitary group
U™(V):=Aut(V,J,9) ={L € GL(V)|LJL™' = J ,L*g = g} (A.164)
of a para-Hermitian vector space of real dimension 2n is

U™ (V)= GL(n,R) Cc Awt(V,J) 2 GL(n,R)XxGL(n,R) C GL(V) 2 GL(2n,R) .

(A.165)
Note that J itself is not an element of the para-unitary group, though it is an
element of the para-unitary Lie algebra.

An (almost) para-Hermitian manifold (M, J, g) is an (almost) para-complex
manifold (M, J) endowed with a pseudo-Riemannian metric g such that J*g =
g(J-, J-) = —g. The two-form w = g(-,J-) = —g(J-,-) is called the fundamental
two-form of the (almost) para-Hermitian manifold (M, J, g). Compared to [19]
we have changed the sign of w to be consistent with our conventions. Note
that it is essential that J is an anti-isometry, and not an isometry, for w to be
antisymmetric.

A para-Kdhler manifold is an almost para-Hermitian manifold (M, J, g) such
that J is parallel with respect to the Levi-Civita connection, DJ = 0. Note
that DJ = 0 implies both dw = 0 and the integrability condition N; = 0.
Alternatively, a para-K&hler manifold is a para-Hermitian manifold with closed
fundamental form. The symplectic form w is called the para-Kdahler form. It
can be shown that for a para-K&hler metric there exists around any point a
real valued function K, called a para-Kahler potential, such that the coefficients
of w and ¢ are given by the mixed second derivatives with respect to para-

holomorphic coordinates.
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An affine special para-Kdhler manifold (M, J, g, V) is a para-Kahler manifold
(M, J, g) endowed with a flat, torsion-free connection such that V is symplectic,
i.e. Vw = 0, and such that dyJ = 0. One can show that any simply con-
nected affine special para-Kéhler manifold can be realized by a para-Kéahlerian
Lagrangian immersion ¢ : M — V into the standard para-complex vector space
V = T*C™ = C?" endowed with the C-valued symplectic form Q = dXT AdW;,
standard para-complex structure Iy, para-complex conjugation 7 and para-
Hermitian form v = g + ew = eQ(-,7-). For a generic choice of para-complex
symplectic coordinates X!, Wy, the image of ¢ is the graph of a map C™ — C™,
and therefore ¢ has a para-holomorphic prepotential F', i.e. ¢ = dF.

A conical affine special para-Kahler manifold (M, J,g,V, &) is an affine spe-
cial para-Kéhler manifold (M, J, g, V) endowed with a vector field £ such that

Vé=DE=1d, (A.166)

where D is the Levi-Civita connection.
One can show that near any point p € M there exist coordinates (¢%) =
(!, yr) such that
£=q%0, =210, + Y10y, - (A.167)

Such coordinates are unique up to linear symplectic transformations, and are
called conical special real coordinates. On conical special para-Kéahler manifolds
it is understood that ‘special coordinates’ means ‘conical special coordinates.” A
para-holomorphic immersion ¢ — V = C?" is called a conical para-holomorphic
immersion if the position vector field ¢V = p € V = T,V is tangent along ¢,
that is, if £V € d¢,T,M. Every simply connected conical special para-Ké&hler
manifold can be realized by a conical para-K&hlerian Lagrangian immersion,
which is unique up to linear symplectic transformations. The corresponding
para-holomorphic prepotential can be chosen to be homogeneous of degree two.

The vector fields £ and J¢ generate an infinitesimal C*-action on the conical
affine special para-Kéahler manifold M. To be able to take a quotient which
defines a para-Kéahler manifold, one needs to make additional assumptions. A
conical affine special para-K&hler manifold (M, J, g, V, &) is called a regular con-
ical affine special Kdihler manifold if the norm ¢(&, &) of & does not vanish on
M and if the quotient map # : M — M = M/C* is a para-holomorphic sub-

mersion onto a Hausdorff manifold. Under these assumptions, the symmetric
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tensor field
30 =-80 (—e(X'F; — Fr X)), (A.168)

which projects onto the orbit space M, induces a para-Kihler metric g on M,
such that §©) = 7*g. A projective special para-Kdihler manifold (M,J,3) is a
para-Kéhler manifold that can be realized locally as the quotient of a regular
conical affine special para-Kéahler manifold M by its C*-action.

With a proper choice of conventions, local formulae for affine special Kéhler
and affine special para-Kahler manifolds are related by the replacement i — e.
Therefore one can use an e-complex terminology which employs the notation
ie = e,i for e = £1. All statements in this section remain true when omitting

‘para’ or replacing it by ‘e-’ and applying the appropriate substitutions for e.

A.21. e-quaternionic geometries

This section is based on [19] [78] [45], [17].

Hypermultiples contains four real scalars and their scalar geometries are
related to the algebra H_; = H of the quaternions, or, for Euclidean space-time
signature, to the algebra H; of para-quaternions. We treat both cases in parallel
by writing H,, where ¢ = +1.

The algebra H. of e-quaternions is the four-dimensional real algebra gener-
ated by three e-complex units 41, i, i3, which pairwise anticommute and satisfy

the e-quaternionic algebra

i1 =2 = —ciz =€, iyig=1i3. (A.169)

An e-quaternionic structure on a real vector space of dimension 4n is a Lie sub-
algebra @@ C End(V') spanned by three pairwise anticommuting endomorphisms
Ji, Jo, J3 which satisfy the e-quaternionic algebra . The Lie group gen-
erated by the Lie algebra generated by J,, a =1,2,3 is

SU(2) = Sp(1) if e=—1,
Sp.(1) = (A.170)
SU(1,1) 2 Sp(2,R) = SL(2,R), if e=1.

Our notation for symplectic groups is such that Sp(2n, R) = Sp(R?"), Sp(2n,C) =
Sp(C?") and

Sp(n) = Sp(2n,C)NU(2n), Sp(k,l)=Sp(2n,C)NU(2k,2l). (A.171)
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In particular, Sp(1) = Sp(2,C) NU(2) = SU(2) is the group often denoted
USp(2) in the physics literature. Also note that Sp(1,1) = Sp(2n,C)NU(1,1) =
SU(1,1) = Sp(2, R).

While there are various types of e-quaternionic geometries, we will only use
two types which can be viewed as generalizations of e-Ké&hler geometry. The
first is realized by rigid hypermultiplets.

An e-hyper-Kdhler manifold (e-HK manifold) is a pseudo-Riemannian mani-
fold (N, g) of dimension 4n = 4k+4l whose holonomy group Hol(N) is contained
in Sp(k,1), where

Sp(k,1) C SO(4k,4l),  if e=—1,
Spe(k,1) = (A.172)

Sp(2n,R) C SO(2n,2n), if e=1.

An e-Kahler manifold has three pairwise anticommuting integrable e-complex
structures I, such that w, = g(I,-, ) are antisymmetric and closed, and there-
fore form an Sp.(1)-triplet of e-K&hler forms. The e-Kéahler metric g admits e-
Kéhler potentials with respect to any of the three e-complex structures, though
in general there is no ‘e-hyper-Kéhler potential,” that is a potential which is
e-Kahler with respect to all three e-complex structures simultaneously. It is
useful to note that the closed-ness of the three forms w, implies the integrabil-
ity of the e-complex structures [223]. The construction of symplectic and Kéhler
quotients has been extended to the so-called hyper-Kéahler quotient [223], which
can be adapted to para-Kahler manifolds.

Hypermultiplets coupled to supergravity display another type of e-quaternionic
geometry. An e-quaternionic Kdahler manifold (e-QK manifold) of real dimen-
sion 4n = 4k + 41 > 4 is a pseudo-Riemannian manifold (NN, g) whose holonomy
group Hol(N) is contained in Sp.(1)-Sp.(k,1). An e-quaternionic Kdihler mani-
fold of real dimension 4 is an Einstein manifold equipped with an e-quaternionic
structure under which the curvature tensor is invariant. In this definition it is
assumed implicitly that the e-HK case is excluded, that is that the holonomy
group is not contained in Sp.(k,l). Due to the presence of the additional fac-
tor Spe(1), an e-QK manifold need not admit any global e-complex structure,
and in particular need not be e-Kéhler. Instead it possesses an e-quaternionic
structure, that is the tangent bundle TN carries a fibre-wise e-quaternionic
structure, which is parallel with respect to a torsion-free connection (here: the

Levi-Civita connection). In addition the locally defined e-complex structures

234



Jo are skew with respect to the metric g, and the distribution spanned by
them is parallel with respect to the Levi-Civita connection. Note that only the
distribution (J,|a = 1,2,3) is invariant under parallel transport, while the in-
dividual structures undergo Sp.(1)-transformations which mix them. Using the
locally defined fundamental forms w, = ¢g(Jo-, ) one can define the four-form
A= 22:1 Wa A We, which is globally defined and closed. It is useful to know
that for manifolds of dimension 4n > 12 the closed-ness of the four-form A al-
ready implies that the manifold e-QK (for € = —1 this is known from [225], 226]).
The ‘generic’ definition given for dimension 4n > 4 is not satisfactory for di-
mension 4, since Hol(N) C Sp.(1) - Sp:(1) only implies that N is orientable:
Hol(N) C SU(2)-SU(2) 2 S0(4), or Hol(N) C SL(2,R)-SL(2,R) = 50(2,2).
The property of the curvature tensor used in the above definition for dimension
4n = 4 is non-trivial and natural, since it follows for dimension 4n > 4 from the
‘generic’ definition.

Every e-QK manifold of dimension 4n can be obtained as the quotient of
a conical e-HK manifold of dimension 4n + 4 by the action of the invertible e-
quaternions H?. Here ‘conical e-HK manifold’ is defined analogously to CASR
and CASK manifolds, and every such manifold defines a e-QK manifold. In the
physics literature conical e-HK manifolds are usually called e-HK cones, while
in the mathematical literature they are known, for ¢ = —1, as the Swann bundle
associated to a QK manifold [225] [226]. One interesting property of e-HK cones
is that they admit an e-HK-potential, that is a potential which is an e-Ké&hler
potential for all three e-complex structures simultaneously. For the case e = —1
we have encountered the HK potential x in the context of the superconformal
construction of the four-dimensional Poincaré supergravity Lagrangian. We
mention for completeness that there also is a quotient construction which relates
QK manifolds to QK manifolds, called quaternionic reduction or quaternionic
quotient [227, 228].

B. Physics background

B.1. Non-linear sigma models and maps between manifolds

Supergravity theories with scalars involve non-linear sigma models coupled
to gravity. Sigma models are theories of massless scalars on a pseudo-Riemannian
space-time (NN, h), which are valued in another pseudo-Riemannian manifold

(M, g), called the target space. More precisely, scalar fields are components of

235



a map
f:(Nh) = (M,g) (B.1)

between two pseudo-Riemannian manifolds. When expressed in local coordi-
nates z = (z!,...,2") on N and ¢ = (¢!,...,¢™) on M, scalar fields become
real-valued local functions on space-time, which are the pull-backs to space-
time of the composition of the map f with coordinate maps. In this section we
explain the relation between the global geometrical description in terms of the
map f and the local description used in the physics literature in some detail. We
remark that we do not aim for the highest degree of generality. In particular,
one can define scalar fields more generally as sections of a pseudo-Riemannian
submersion 7 : P — N. We refer to [229] for a detailed discussion of this gen-
eralization and its potential implications. We also remark that both N and M
can have various signatures, so that it makes sense to discuss sigma models in
the general pseudo-Riemannian set-up. Space-time N has Lorentzian signature,
but in the Euclidean formulation of quantum field theories it is replaced by an
‘Euclidean’ manifold, that is a Riemannian manifold (pseudo-Riemannian man-
ifold of definite signature). Also, string dualities and the idea that space-time
signature might be dynamical in quantum gravity motivate the study of ex-
otic space-times with multiple time-like directions. Similarly, in standard cases
the target manifold has positive signature, to ensure that all scalar fields have
positive signature. However, dimensional reduction over time, which is used
frequently to find stationary solutions, sometimes leads to indefinite signature
target spaces. Moreover, supersymmetric theories on Euclidean space-times
sometimes also require target spaces of indefinite signature.

The standard action of a non-linear sigma model coupled to gravity is the
sum of the Einstein-Hilbert action and of the energy functional (or Dirichlet

functional) for a map between two pseudo-Riemannian manifolds (N, h) and
(M, g),

S[h, f] = /dvolh (;R[h] —(df, df>> . (B.2)

Here R[h] and dvol, are the Ricci scalar and the volume form of (N, h). Since
we have coupled the sigma model to gravity, the metric h is a dynamical field,
while the metric g is fixed and part of the definition of the model. The vector
valued one-form df € QY(N, f*TM) is the differential of the map f : N — M,

and (-,-) is the scalar product induced by the metrics h and g on the vector
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bundle T*N @ f*T'M over N whose fibre over p € N is Ty N & Ty, M.
We introduce the following coordinate maps:
p:NDOV=VCR",  p=y(p) = (' (p),....2"(p)),

e:MDU—-UCR™, qr¢(q) =(p"q),...,¢™(q)) -

By restricting f to V' and composing with the coordinate maps we obtain a

local representation of f as a vector-valued function ¢,

p=poforyy ™t :R" DV — UCR™, (B.4)
z = g(x) = (¢%(a") = (P (f(vT (")) -

The physical scalar fields as defined in the physics literature are the components
¢*(z) of the map f: N — M with respect to the local coordinates {z*}, {p®}.
Each of the above maps has a differential, which assigns to each point of its

domain a linear map between the tangent spaces of domain and target:

df :p = dfy :TyN = TppyM , (B.5)
de :q = dpg :TeM — Ty (B.6)
dy :p = dpp, (TN = Typ)V . (B.7)

The linear maps dy, and di), are invertible at all points. The differential of the

local coordinate expression d¢ : x — d¢, of df at the point x is
doy = (dpodf o (dp) ™)y : TuV 2 R" = Ty = R™ .

Since d¢, € Hom(T,V, TyyU) = TV @ Ty(z)U, we interpret dp € T(V, T*V ®
¢*TU) = QY(V,¢*TU) as a vector-valued one-form on V,

_ a(ba 1 *
d(b = @dl‘ﬂ ® aa €N (V,Qb TZ/{) . (BS)

The local coordinate expression for the metric g restricted to U = U is

Gu = gav(p)dp"dip® . (B.9)

Using that the pull-back is given by ¢(z) = ¢%(f(¢~1(x))), the corresponding

expression for the pull-back metric f*g is
$*g = gab(9(2))do" (x)de" () = gar($())0, 6" 0, ¢ datda” .
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The local expression for (df, df) is

(df, df) = (do, d¢) = W () (gab(6(2))0u0" 0 0") = tra(f*9) , (B.10)

where trj, is the trace defined by contraction with the metric h, and where f*g

is the pullback by f to IV of the metric g. The Lagrangian £ is defined by

S = /dvolhﬁ. (B.11)
In local coordinates it takes the form
Loy = LRIN) — gas(6(2),0°0"6" (.12
and the corresponding equations of motion are
R{tlr — 5 Rl =Ty (B.13)
Ap¢® +T%.0,6°0"¢° =0 , (B.14)

where R[h],, is the Ricci tensor of (N,h). We denote by Aj the pseudo-

Riemannian Laplace operator
Ap = trp (DM DW) = p DI DM (B.15)

where D) is the Levi-Civita connection on (N,h). TI'%,_ are the Christoffel

symbols with respect to the Levi-Civita connection on (M, g). Finally
T = -2 (;EMatter
M /[deth| Sh

is the energy momentum tensor, which is proportional to the variation of the

= 2gaba,u¢aau¢b - hm/gabap(baap¢b (B16)

matter Lagrangian

EMatter = - ‘det<h)|gab8u¢aau¢b (B17)

with respect to the metric h.

The coordinate-free version of the equations of motion is:

Riclh] — %R[h]h =T, where T :=2f"g — (df,df)h, (B.18)
trp, Ddf = 0, (B.19)

where D is the covariant derivative on T* N ® f*T M induced by the Levi-Civita
connections on (N, h) and (M, g). Equation (B.19) is the equation satisfied by a

harmonic map f : (N, h) — (M, g) between two pseudo-Riemannian manifolds.
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To obtain the local coordinate form of trp Ddf, we start with Ddf and eval-

uate it in local coordinates:
D,0,¢" = DM, " + 9,¢"T%,.0,0° , (B.20)

where D™ is the Levi-Civita connection on (N, k), and where 9,,9°T%,, is the
pullback by f to IV of the connection coefficients I'*;, of the connection on M.

Taking the trace using the metric h we obtain
tr, (Ddf) = h* (ngauqsa n rabcaﬂqsbayqf) = Ap¢®+T19,,0,8°9"¢° . (B.21)

We remark that this expression does not require the existence of a metric on
M: the metric g is not used explicitly, and instead of the Levi-Civita connection

we could use any other connection on M.

B.2. Notation and Conventions

Our notation and conventions for space-times with Minkowski signature in
four and in five dimensions are as follows.

We denote space-time indices by , v, ..., and local Lorentz indices by a, b, - - - =
0,1,2,.... Indices ¢, 5, k,--- = 1,2 are reserved for SU(2)g indices.

Our (anti)symmetrization conventions are

[ab] = 1(ab—ba) , (ab) = 3(ab+ ba) (B.22)

and (c.f. (A.23) and (A.11])

dady = L(da®db+db®da),
dandd = da®db—db®da. (B.23)

We take the Lorentz metric 7,5 to have signature (— + +---+). We denote

the vielbein by e,*, and its inverse by e,*,

v

e el =0," , el e, =4,0. (B.24)
The space-time metric g, and the Lorentz metric 7,4, are related by

Guw = € Nap €," - (B.25)
The Christoffel symbols of the Levi-Civita connection read

I, = 39" (200,.9,)x — OrGup) - (B.26)
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‘We note
I?,, = %g”aﬂ Irp = %(‘3“ In|g| , (B.27)

where g = det g,
The Riemann tensor is (c.f. (A.41))

Ru’o =203,17 )5 + TP\ T e = TP 0T s (B.28)

We raise and lower space-time indices by contracting with the space-time metric,
ie.

Rul/pa = gpx Rul/)\o' . (B29)

The Riemann tensor satisfies the pair exchange property R, o0 = Rpopun-
We define covariant derivatives (c.f. (A.49))

DV, = 9,V, —T*.,Vy,
D,V" = 9, V' +TV V. (B.30)
We have
[Du7 DV]VYP = _R,UJ/Ap Vi (B31)

We define the Ricci tensor by
Ry =R =Ry =R (B.32)

It satisfies the property
R,ul/ = RU;L . (B33)

The Ricci scalar is
R=g""R,, . (B.34)

With these conventions, the kinetic terms for physical fields in a gravitational

action take the form (we set k? = 87Gy = 1)
L=3R—350,00"$p— s F"F,, . (B.35)
We define covariant derivatives of vectors V* by
D,V =0,V +w, "V, (B.36)
where w,ﬂb denotes the spin connection,

wuab — 261/[(1 a[ﬂey] b] _ ey[a eb]o’ e,ucalleac , (B37)
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and satisfies the compatibility requirement

0="Dye,* =9ue,* + w,ﬂb ewp — P e, . (B.38)
Defining
Q= 26[561)]”8“61,0, (B.39)
we obtain
Wa be = % (Qabc + Qcab - cha) . (B4O)

The associated Riemann tensor reads
ab ab ac b
R, =2 6[#(,0,,] + 2w, Wy, (B.41)
and it is related to the one in (B.28)) by
Ruupa = Ruyab eap €ob - (B42)

We define the completely antisymmetric Levi-Civita tensor as follows. In

four space-time dimensions, we take

vo abed v A o
et = ec"%e ey et eq” , corz =1,
-1 a b c d
Euvde = € Eabed€u €v EX €0, (B43)
where e~ = |g|~1/2. Similarly, in five space-time dimensions we take

VAo abede LV, N, O

ghri?P = ee e er” e ea” e’ eorazs =1,
—1 a b c d_ e

Euvrop = € Eabedep” € erx“es’ ey, (B.44)

where e~! = [g| /2.
In four dimensions, we define the dual of an antisymmetric tensor field F,;
by

Fab = _% Eabed FCd . (B45)
We denote the selfdual part of Fi, by F (;;, and the anti-selfdual part by F,,,
Fi=1 (Fab + Fab) . (B.46)

In four dimensions, in the context of N' = 2 special geometry, we will en-
counter the SU(2)g valued selfdual tensor field T,s;; and the SU(2)r valued

anti-selfdual tensor field T(g. Accordingly, we introduce the notation

T;;, = % 5ij Tabij )
T, = se;TH, (B.47)
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where the Levi-Civita symbol €;; = —¢;; satisfies

€ij€jk = *51‘]6 s (B48)
with

€12 = 812 =1 (B49)
and €;;e/* = —2. Under Hermitian conjugation (h.c.), selfdual becomes anti-

selfdual and vice-versa. Any SU(2)g index i changes position under h.c., for
instance
(Tupij)* =T (B.50)
B.3. Jacobians
The Jacobians for the coordinate transformations (458) take the form

1 0 0 0
- ou ou ou ou
D(z,u,YT,YT) dzly By, 37T|w,y T I,y (B.51)
D T,7) ‘
(x) y’ ) ) O O ]]_ O
0 0 0 1
and
1 0 0 0
_ o 0 0 0,
D(z,y,YT,T) ETZU o %mu %;Eu (B.52)
D(x,u, T, Y) ' '
0 0 1 0
0 0 0 1
By the chain rule it is straightforward to evaluate
1 0 0 0
D(z,y,Y,7T) B %R *%N %FIT % Fre (B.53)
D T,7) ’ ‘
(xﬂ u? ) ) O 0 ]]- O
0 0 0 1
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where 2F7; = Ry + iNyy. This matrix can easily be inverted,

1 0 0 0
D(z,u,Y,T) N'R —2N"' N'Fix N 'Fy (B.54)
D(z,y, T, T) 0 0 L 0 ' '

0 0 0 1

In order to transform the Kahler metric (452) to special real coordinates (c.f.
(460), the following relations are useful,

OH 0H

I
@ = 44Uy , Tyl = —2u . (B55)

Moreover, using the chain rule, one computes

87)[ 1 1

@y = §(N+RN R)IJ’
ovr|  out| NN,
ousl, — awr|, TP
81}[ 1

The Jacobians for the coordinate transformations (503 are given by

1 0 0 0
D(z,y, 1, T) | 3B+ —3N- 3(Frx+Fry)  5(Fre+ Fry)
D T,Y)
(x7 u’ 9 ) 0 O ]1 0
0 0 0 1
(B.57)
and
1 0 0 0
D(x,u,T,T) | NT'Ry —2NT' NTY(Fry + Fry)  NZU(Fpy o+ Firy)
D T.7)
(‘r7ya 9 ) 0 0 ]]_ 0
0 0 0 1
(B.58)
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This reduces to the results for the Jacobians (B.53|) and (B.54]) when switching

off the non-holomorphic deformation.

B.4. Superconformal formalism in four dimensions

The idea behind the superconformal approach to supergravity consists in
using the superconformal symmetry as a powerful tool for constructing matter-
coupled theories with local Poincaré supersymmetry, and in doing so to gain
insights into the structure of Poincaré supergravity [230, 2311 232, [3T], 25]. We
refer to [22] for a recent detailed discussion.

To illustrate this construction, we begin by reviewing the formulation of

Einstein gravity in four dimensions based on the bosonic conformal algebra.

B.4.1. Gravity as a conformal gauge theory

Consider the following action in four dimensions,
S = [ d'av=g (4 0,0)@"6) + &5 Re?) | (8.59)

where ¢(x) denotes a real scalar field. Note that the sign of the kinetic energy
term of the scalar field is opposite from the one of a physical scalar field, c.f.
(IB.35). This Lagrangian is invariant under local scale transformations, also

called local dilatations or local Weyl transformations, given by
p e, g e PP gy, (B.60)

Here, Ap(x) denotes the local parameter of Weyl transformations.

The field ¢ is called a compensating field (or, compensator), because it
compensates for the non-invariance of the Einstein-Hilbert term under local
scale transformations caused by the transformation properties of the metric,
thus resulting in a Weyl-invariant action. We can eliminate the compensating

field ¢ by performing the gauge-fixing

b e p= g ) (B.61)

Inserting this into (B.59)) results in the Einstein-Hilbert action,

— 1 4 /

Here k2 = 87G y, where G denotes the Newton’s constant. Thus, the Einstein-
Hilbert action can be obtained by starting from an action that possesses invari-

ance under local scale transformations due to the presence of a compensating
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field, and then eliminating the compensating field by going to a particular Weyl
gauge. That is, Einstein gravity emerges from a theory that is initially invariant
under transformations associated with the generators of the bosonic conformal

algebra. We review this algebra next.

B.4.2. The bosonic conformal algebra

The bosonic conformal algebra in four dimensions is isomorphic to so(4, 2),
and contains generators P,, My, K., D associated with translations, Lorentz
transformations, special conformal transformations and dilations, respectively.
These generators satisfy the algebra (we only give the commutators that are

non-vanishing)

[Map, Mea] = 40jaeMapp) = NacMay — e Maa — naaMeb + npaMea
[Pa; Moe] = 2mapPy
[Ka, My] = 2n,3K,
(Pa, Ky = 2(nay D+ May)
[D,P)] = P,
[D,K,] = —K,. (B.63)

To each of these generators, we assign a local parameter, as well as a gauge
field. This is summarized in the Table [B.6] below.

generator P, My K, D
parameter & Aab A% Ap
gauge field e wﬁb fu® by
Weyl weight w || —1 0 1 0

Table B.6: The bosonic conformal algebra: generators, local parameters, gauge fields, Weyl
weights.

The translations F,, which are gauged by e};, play a special rule, and will be

considered separately. Under infinitesimal conformal transformations generated
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by Mgy, Ko, D, the gauge fields transform as follows,

Se,® = —APeu—Ape,”,
5w,‘jb _ aﬂ)\ab + 2wﬂc[a Ao 4)\[; 6“b] 7
5fu = Ok = bu A + w0, Ay = X% fup + Ap [
0by = OuAp +20% e . (B.64)

The commutators of two transformations yield a realization of the con-
formal algebra. The transformation behaviour under dilatations is specified by
the Weyl weight w of each of the gauge fields. The vielbein has weight w = —1,
the field f,* has weight w = 1, while the other gauge fields have w = 0. Note
that all the gauge fields, with the exception of the vielbein, transform under
special conformal transformations.

Next, we introduce a field strength for each of the generators of the conformal
algebra. These field strengths, of the form RWA, transform covariantly under

conformal transformations. They are given by

R,*P) = 2 (8[u + b[u) e + 20.)[““1’ ey = 2Dpe”
Ru™(M) = 20,0, + 2w, cwy™ + 811, ey,
Ry (K) = 28— by) " + 200, fupp »
Ru(D) = 20,by —Afy%eua (B.65)

It can checked that these field strengths transform covariantly under the trans-
formations .

Since we are interested in the construction of Einstein gravity as a gauge
fixed version of a gravitational theory that is invariant under conformal trans-
formations, not all of the gauge fields associated to the conformal algebra can
describe independent gauge fields. To be able to identify the translations gener-
ated by P, with space-time diffeomorphisms, one needs to impose a constraint
on the associated field strength R,,*(P), so as to ensure that the translation
gauge field ef, becomes a vielbein field (frame) over space-time. In addition, the
gauge field f,* for special conformal transformations needs to be eliminated as

an independent gauge field. This is achieved by imposing the constraints

R,*P) = 0,
R, (M)ey” = 0. (B.66)



In this way, two of the gauge fields, namely the spin connection wﬁb and the

gauge field f,* for special conformal transformations, become composite fields,

wzb = wzb(e)—i—%#[aeb]”by,
fu® = —iR,“+ 4e "R, (B.67)

with wl‘jb(e) given by (B.37). The constraint R,,%(P) = 2Dj,e,)* = 0 is the
condition for metric compatibility, but now in the presence of the dilational con-
nection b,. Note that the Riemann tensor computed from the spin connection

(B.67) does not have the pair exchange property mentioned below (B.29). To
obtain the relation for f,®, we expressed the second constraint in (B.66) as

(RW‘“’ + 8, e,,]b]) e’ =0, (B.68)

ab
m

that also contains the gauge field b, c.f. . Then, using the definitions for
the Ricci tensorm and the Ricci scalar,

where RW“b is the Riemann tensor constructed out of the spin connection w

Ry =Ry , R=g"R,,, (B.69)

we obtain

R +2(2f,°+ £, e,") =0, (B.70)

where f,” = f,%e,”. Contracting this relation with e * gives
[t =-%R, (B.71)

Inserting this into (B.70) gives the relation in (B.67)).
As a check of (B.67)), one verifies that when inserting the transformation law

for e,* and for b, into , one correctly reproduces the transformation laws
for wzb and f,* given in .

Upon imposing the constraints , the independent gauge fields in
are the vielbein e,® and the gauge field for dilations b,. Inspection of the

transformation law for the field b, given in (B.64) shows that the value of b,
can be arbitrarily changed by performing a special conformal transformation.

Therefore, we fix b, to the value

b,=0 , K-—gauge, (B.72)

7TWe use the last equation given in (B-32).
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by means of a special conformal transformation. Since this represents a gauge-
fixing of special conformal transformations with gauge parameter g, = A% e,
this is called the K-gauge. In this gauge, special conformal transformations
are no longer independent transformations. Inspection of shows that
in order to stay in the K-gauge 7 the allowed residual special conformal
transformations are

Akp = —30uAp . (B.73)

B.4.3. Weyl multiplet

The extension of the above to supergravity is called the superconformal ap-
proach to supergravity [230} 23T] 232] BT) 25]. The standard superconformal
approach to N' = 2 supergravity in four dimensions is based on the Weyl mul-
tiplet. In its standard formulation, the Weyl multiplet is a supermultiplet with
24424 bosonic and fermionic off-shell degrees of freedomm Let us briefly de-
scribe this multiplet.

The N = 2 superconformal algebra contains the following bosonic genera-
tors: it contains the bosonic conformal algebra discussed in the previous sub-
section as well as two bosonic generators 7' and U7 that generate U(1)g and
SU(2) g R-symmetry transformations, respectively. As before, we assign a local
parameter and a gauge field to each of these bosonic generators. The gauge
fields associated with U(1)g and SU(2)gr R-symmetry transformations will be
denoted by (A,,V,%;). This is summarized in Table below.

bosonic generator | P, My, K, D T U

parameter €A XL Ap Ar A
gauge field en Wi fu by A VY

Table B.7: The N = 2 bosonic subalgebra: generators, local parameters, gauge fields.

The bosonic components of the Weyl multiplet are given by the gauge fields
displayed in table together with a complex anti-selfdual tensor field 7,

"8Recently, a new Weyl multiplet was constructed in [233], called the dilaton Weyl multiplet,
with 24 + 24 off-shell degrees of freedom.
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and a real scalar field D:

(e wi, fu® bpy A V'3, T D) (B.74)

These describe 24 independent bosonic degrees of freedom, as depicted in Table

field || subtraction by gauge transformations || number of degrees of freedom left
eu’ Py, May, D 16—-(4+6+1)=5

wuab composite field

fu® composite field

bu K, 0

A, U)r 4-1=3
V' SU2)r 12-3=9

T, 6

D 1

Table B.8: Counting of bosonic off-shell degrees of freedom: 5+9+ 3+ 6+ 1 = 24.

The component fields of the Weyl multiplet carry a Weyl weight w and a

chiral (U(1)gr) weight ¢. This is summarized for the bosonic components in

table [B.9]

field || e,* b, A, Vi, T; D|wS ™ f.°
will-1 0 o o 1 2] 0 1
c o 0 0 0 -1 0| 0 0

Table B.9: Weyl and chiral weights (w and ¢, respectively) of the Weyl multiplet bosonic
component fields.

As indicated in table the gauge fields w, % and f,,* are composite fields.
Their expressions are obtained by imposing constraints, as in (B.66). While we
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still impose R,,,*(P) = 0, which results in the expression for the spin connection
given in (B.67)), we impose the following constraint on the curvature Rwab(M ),
taking into account that there are additional fields in the Weyl multiplet[™]

Rae"(M) +iR,"(T) = T T + 36,"D =0, (B.75)

where R%(T)) denotes the dual of the U(1)g field strength R,y (T), c.f. (B.45),
where Roy(T) = eqtep” R, (T') with

Ru(T) = 20, A, . (B.76)

Note that all the terms in the linear combination (B.75)) have Weyl weight 2.
The constraint (B.75)) results in

R +2(2f.% + £58,°) +iR(T) — 1T, T+ 26, D =0, (B.77)

where R, = R,.’°, with RW‘“’ the Riemann tensor constructed out of the
spin connection wzb that also contains the gauge field b, c.f. . Then,

contracting gives
R+12f,*+6D =0, (B.78)
where R = R,®. Therefore, we infer
faa:—ﬁR—%D. (B.79)
Inserting this into gives the relation
fut =3 (<R = 3 (D= Y R) e = SiR,(T) + ST 7). (B.80)

B.4.4. Covariant derivatives

In the superconformal approach one introduces covariant derivatives D,, and
D,,. The first one, D,,, denotes a covariant derivative with respect to Lorentz,
dilatations, U(1)r and SU(2) g transformations. The second one, D,,, denotes a
covariant derivative with respect to these transformations as well as with respect
to special conformal transformations@ and it is used to construct actions that

are invariant under superconformal transformations. Let us illustrate this.

79Note that there are additional fermionic terms in this expression which we have suppressed.
80Tere, D,, should not be confused with the Levi-Civita connection (B-30).
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Consider a scalar field ¢ with Weyl weight w and chiral weight c¢. It trans-

forms as
dpp = wAp9,
5T¢ = ic )\T ¢ (B81)

under infinitesimal dilatational and U(1)g transformations. The associated co-

variant derivative of ¢ is
D¢ = (0, —wb, —icA,) . (B.82)

Note that D,¢ = D,¢. Since the dilational connection b, transforms as in
(B.64]) under special conformal transformations, D®¢ undergoes a K-transformation,

SkD% = —2w A% o) | (B.83)

that needs to be compensated for when constructing an invariant action. To

this end, consider evaluating
D,D*=D,D"=D,D¢+2wf," ¢, (B.84)
where
D, D = 9,D — (w + 1)b, D — ic A, D¢ + w,* Dy¢p . (B.85)
Here we used that the covariant derivative D, of a vector V¢ of Weyl weight w
and chiral weight c is
D,V =0, V* —wb,V* —ic AV +w, "V, , (B.86)
c.f. . Then, under K-transformations, D, D" ¢ transforms as
51 (DuD"6) = 4(1 — w)A% Dat (B.87)

Choosing w = 1 renders D,, D*¢ invariant under K-transformations. Then, the
quantity e¢D,, D¢, which has Weyl weight zero, is invariant under both K-
transformations and under local dilations. It can thus be used as a Lagrangian
that is invariant under the transformations associated with the bosonic confor-
mal algebra discussed earlier. It contains the term ¢? f,* o ¢*R, as in .

Similarly, consider evaluating D, D.T, ;l;, where T ;,') has Weyl and chiral

weights w = ¢ = 1, so that

D, T = (9, — b, —iA,) T +w, T, +w, 4T, . (B.88)
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Taking into account that both b, and w,® transform under K-transformations,

c.f. (B.64), we infer
Sk D, T = —2Xg, T —aplt el 1,00 — Nl el o+ (B.89)
This needs to be compensated for in DuDyT;;,

D,D.T); = D,DTLh +2fuTh +4f 6D Tt +af,lbodTa,*
d
= DD+ 2 Ty = Afuta T + 400" e Ty - (B90)

Hence
DMDCT+ = DMDCT:g — 2fuchb . (B.91)

C

It follows that

T*~D,DT} = T~ D,DTH — 2f,° T T . (B.92)

C

This relation will be used in the main text.

B.J.5. Vector multiplets

The field content of a four-dimensional abelian vector multiplet is given by a
complex scalar field X, an abelian gauge ﬁelcﬂ A, an SU(2)g triplet of scalar
fields Y;;, and an SU(2) doublet of chiral fermions €2;, i.e. (X,9Q;, A,,Y%),

where Y;; is a symmetric matrix satisfying the reality condition
Yij = einej YR yu = (Yi)*. (B.93)

Here, i = 1,2 is an SU(2)g index. Thus, off-shell, an abelian vector multiplet
has eight bosonic and eight fermionic real degrees of freedom.

The component fields of a vector multiplet carry a Weyl weight w and a
chiral weight ¢. This is summarized for the bosonic components in Table

B.4.6. Hypermultiplets

The bosonic degrees of freedom of r hypermultiplets are described by 4r real
scalar fields ¢ (A = 1,...,4r) that can be conveniently described in terms of
local sections A;*(¢) of an Sp(r) x Sp(1) bundle (a = 1,...,2r;i = 1,2) [28].

In the main text we set r = ny + 1. The hypermultiplets provide one of the

81Not to be confused with the U(1) gauge field in the Weyl multiplet (B.74)).
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vector multiplet mlzlt)j;rl_et
field || X! A;f YUI A7
w |1 0 2 !
c -1 0 0 0

Table B.10: Weyl and chiral weights (w and ¢, respectively) of the vector and hypermultiplet
bosonic component fields.

compensating multiplets for obtaining Poincaré supergravity. In this review, we
will not be concerned with physical hypermultiplets, and hence set ng = 0.

The hyper-Kéhler potential x and the covariant derivative D,A;%(¢) are
defined by

e X = QapAi®AP,
DyA® = 0 A% —b A%+ 3V, A+ 0,0 Ta% AP, (B.94)

in accordance with the Weyl weight given in Table The connection I'y
takes values in sp(ny + 1), and Qs is a covariantly constant antisymmetric
tensor [28].

B.5. Superconformal formalism in five dimensions
B.5.1. Weyl multiplet

The superconformal approach to AN/ = 2 supergravity in five space-time
dimensions [20, 234} 235] 29] 233] is based on the Weyl multiplet. In its standard
formulation, the Weyl multiplet in five dimensions is a supermultiplet with
32432 bosonic and fermionic off-shell degrees of freedom. When reduced to
four space-time dimensions [I01], it decomposes into the Weyl multiplet in four
dimensions with 24424 bosonic and fermionic off-shell degrees of freedom, and
a vector multiplet with 8+8 bosonic and fermionic off-shell degrees of freedom.

The algebra underlying the superconformal approach is the N' = 2 super-
conformal algebra. In five dimensions, this superalgebra contains the bosonic
generators P,, My, K., D,U;7 associated with translations, Lorentz transfor-
mations, special conformal transformations, dilations and SU(2)r R-symmetry

transformations, respectively. One assigns a local parameter and a gauge field
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to each of these bosonic generators. The gauge fields associated with SU(2)g R-
symmetry transformations will be denoted by V,,*;, which is an anti-hermitian,

traceless matrix in the indices 4, . This is summarized in Table below.

bosonic generator P, My K, D Ui,

parameter € ox XL Ap A
gauge field eu’ wfjb [ by VY

Table B.11: The A/ = 2 bosonic subalgebra: generators, local parameters, gauge fields.

The bosonic components of the Weyl multiplet are given by the gauge fields
displayed in Table together with a real anti-symmetric tensor field T,, and

a real scalar field D:
(eu”, @, fu® b, V', Tan, D) . (B.95)

These describe 32 independent bosonic degrees of freedom.

field || subtraction by gauge transformations || number of degrees of freedom left
e P, May, D 25—-(5+104+1)=9
wu“b composite field
Ju® composite field
by K, 0
V. SU(2)r 15—3=12
Tap 10
D 1

Table B.12: Counting of bosonic off-shell degrees of freedom: 9 + 12 + 10+ 1 = 32.

The component fields of the Weyl multiplet carry a Weyl weight w. This is
summarized for the bosonic components in Table
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field || e, b, Vi Twy D |w,®™ f,°

Table B.13: Weyl weights of the Weyl multiplet bosonic component fields [23].

As indicated in Table [B.12} the gauge fields w,ﬂb and f,* are composite
fields. Their expressions are obtained by imposing constraints on the associated
field strengths R,,,*(P) and R, **(M) [23]

RHVG(P) = QID[Hel,]a =0 s (B96)
e ijab(M) e (28[#wy]ab + 2w[#acwy]cb + 86[#[af,,]b]> =0.

Here, the covariant derivative D,, of a vector V¢ of Weyl weight w is

D,V =09,V* —wb,V* +w,"V, . (B.97)
We infer from (B.96]),
a 1
fa - 7176 R )
a 1 a 1 a
fu® = G -R,* + 3 e, R (B.98)
ector multiplet hyper-
vector muitip multiplet
field || of Al{ YZ]I A
w |1 0 2 3

Table B.14: Weyl weights w of the vector and hypermultiplet bosonic component fields.

B.5.2. Vector multiplets
The field content of a five-dimensional abelian vector multiplet is given by

a real scalar field o, an abelian gauge field A,, an SU(2)g triplet of scalar

82Note that our definition of Ry, **(M) differs from the one in [23] by an overall minus sign.
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fields Y;;, and an SU(2)g doublet of symplectic Majorana fermions \’, i.e.

(o, N}, A, Y'7), where Y is a symmetric matrix satisfying the reality condition

Y;'j = Eik €41 Ykl y Yij = (K)* . (B99)
Here, i = 1,2 is an SU(2)g index. Thus, off-shell, an abelian vector multiplet
has eight bosonic and eight fermionic real degrees of freedom.

The component fields of a vector multiplet carry a Weyl weight w. This is
summarized for the bosonic components in Table

B.5.3. Hypermultiplets

As we mentioned in [B:4.6] the bosonic degrees of freedom of 7 hypermul-
tiplets are described by 4r real scalar fields ¢4 (A = 1,...,4r) that can be
conveniently described in terms of local sections A;*(¢) of an Sp(r) x Sp(1)
bundle (a =1,...,2r;4 = 1,2) [28]. In the main text we set r = ng + 1.

In five space-time dimensions, the hyper-Kéhler potential x and the covariant
derivative D, A;*(¢) are defined by

gij X = QupAi®A”,
DA = 94" — 30, A% + AV A + 0,07 T 4% AP, (B.100)

in accordance with the Weyl weight given in Table The connection I'4g
takes values in sp(ng + 1), and Q,s is a covariantly constant antisymmetric
tensor [23].

B.6. Special holomorphic coordinates

As discussed in subsection the PSK manifold (M, g;;) can be obtained
by a superconformal quotient of a regular CASK manifold (M, gar). As men-
tioned in subsection [5.4.1] one may choose special holomorphic coordinates
2¢ = X%/X% (a = 1,...,n) on the PSK manifold (M, g;;). Here, we provide
a few more details on the relation of these coordinates to the special holomor-
phic coordinates X (I = 0,...,n) on the CASK manifold (M, gps). We give
various conversion formulae that facilitate the construction of the space-time
two-derivative Lagrangian for the z® when viewed as components of a map
Z: N — M from space-time N into the PSK manifold M.

The superconformal quotient proceeds by first restricting the X’ to the
hypersurface

i(XTF—-FX")=1. (B.101)
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Setting

Do (X))
&) = 13760), B (B.102)

the constraint (B.101]) imposes that (X!, F7) has unit norm. Here

(X7 (2), Fr ()l = \/Ii (X1(2) Fr(2) — Fi(2) X1 (2)) | - (B.103)

As discussed in subsection the vector (X!(2), Fr(z)) denotes the compo-
nents of the holomorphic section s*¢ : M — U M of the line bundle UM — M ,
which depends holomorphically on z*. The norm of the vector (X’ (z), Fr(z))
yields the Kéhler potential K (z, z) of g,

e K= =i (X1(2) Fy(2) — Fr(2) X'(2)) | (B-104)
so that
1 _
X1 =e2KE2 x1(z) (B.105)
The C*-action
X1(2) = e 3 X1(2) (B.106)

induces the Kahler transformation
K=K+ f+f (B.107)

on the Kihler potential, while on the symplectic vector (X7, F;(X)) it induces

the U(1)-transformation
(X1, Fr(X)) = e 2D (X1, Fy (X)) . (B.108)
The Kahler potential can be written as
e KED = | X0 (=N 21 27 (B.109)
with Z%(z) = (Z2°,Z2%) = (1,2%), and
Niy=—i(Fr;— Fij) . (B.110)
Using the homogeneity of F(X),
F(X) = (X°)° F(z), (B.111)

we get
Fy=X"(2F(2) —2* Fa) , (B.112)
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where F, = 0F /0z*. Using

Foo = 2F —22%F,+ 222" Fu |
Foo = Fo—2"Fuw,
Foo = Fap, (Bllg)

where Fy, = 02F /02°02°, we obtain

“Np 2727 =i[2(F=F) = (2* = 2*) (Fa + Fa)] (B.114)

and hence

e KED = | X0 [2(F = F) — (2 — 2%) (Fa + Fa)] - (B.115)

The metric gy; on the PSK manifold is, locally, given by
- 0K (z,2)
Jab = "0 ozt
Next, we relate the PSK metric (B.116|) to the CASK metric (B.110]). Dif-

ferentiating e =X yields

(B.116)

005X = [~gup + 0K pK]e ® (B.117)
HXOER (Fap = Far) = [0a10 X°(2) 9510 X°(2)

—0,In X°(2) Oy K — 0,K 0y lnXO(Z)} e K

Using we have
Nap = =i (Far — Fap) (B.118)
and hence we infer from that
s = Nop | XP 4 s D@D XE) . (B19)
where
Do X%(2) = 0,X°(2) —iA? XO(2) = 0,X%(2) + 0. K X°(2) (B.120)

denotes the connection given in (364)), i.e. the covariant derivative under the

transformation (B.106]).
Next, using the connection given in (367]),

D, X' =0, X" + 10,k X, (B.121)
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we introduce the space-time covariant derivative
D X' =0, X" +iA, X" =0, X"+ } (0,K 0,2" — 0 K9,z*) X", (B.122)
which is a covariant derivative for U(1) transformations (B.108). Observe that
D, X" =el?D,X0(2) 0,2 . (B.123)

Now we evaluate the U(1) invariant combination Ny; D, X' D*X”7 subject to

the constraint (B.101)),
_ @ 1 _
Ny D X' DX N, xixo—1 = |X°)? Nap 02" 042" — X0 D, X°DrX°
X0 _ o X
+%5 NoyX70,2D'X° + o N X9,z D X0 . (B.124)
Using )
XX Nyy = X0 D, X(2), (B.125)
as well as (B.119) and (B.123]) we establish
Ny D X DFXY |y, xrx7—1 = Gap Ouz® 02" . (B.126)

We close with the following useful relations. First, we note the relation [236]
N7 = gD, XD, X7 — XT X7 . (B.127)
Then, we recall the definition of N7; in (440]), and we note the relations

N[JXJ = F17
-1 [(Im]\/)_l} 1 - N xTXT 4 x7 X1 (B.128)

B.7. The black hole potential

We consider the Maxwell terms in the two-derivative Lagrangian (439)), and
define pry = Im N7y and vy = ReNpy.
The black hole potential in four dimensions is defined by [156],

Van = g"DaZD4Z + | Z)* = (N + 2X'X7) 41 s (B.129)
where

ZX)=p' Fi(X) - X' =1 X' |, Gr=q1— Fisp’. (B.130)
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Here, (p!,qr) denote magnetic/electric charges as in (644). The black hole
potential transforms as a function under symplectic transformations (198]).
Using (B.128)), the black hole potential can also be written as

Vthffé(mAfAGKpK)KHHAU*WIJOU**AGLPL)- (B.131)

This equals [156], 193]

Ve =—5( q 7 (B.132)

where we have suppressed the indices I, J for notational simplicity. The black

hole potential can be expressed [127] in terms of the tensor field Hy; defined in

(335),
Ven = —3Q° Hau Q" (B.133)
where Q* = (p', qr)".
Extrema of the black hole potential Vg may either correspond to BPS black
holes or to non-BPS black holes. If an extremum satisfies D,Z =0Va=1,...,n
with Z # 0, then it corresponds to a BPS black hole [I56]. Conversely, if

D.Z # 0 at the extremum, then the black hole is non-supersymmetric.

B.8. Wald’s entropy

In a general classical theory of gravity with higher-curvature terms, based on
a diffeomorphism invariant Lagrangian, the entropy of a stationary black hole
is computed using Wald’s definition of black hole entropy [237, 238, 239] 240].
If the higher-curvature terms involve the Riemann tensor, but not derivatives

of the Riemann tensor, Wald’s entropy is given by

oL
S = —1/ —— €€ s (B.134)
macro 1 S aR/,ng pnrepo
where €, denotes the bi-normal tensor associated with a cross-section of the
Killing horizon X, normalized such that €,,e"” = —2. In tangent space
indices, the non-vanishing components are €p; = 1. We have normalized

(B.134)) in such a way that when L = % R, we obtain the area law Syacro = A/4.
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