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Abstract: The non-intrusive imprecise stochastic simulation (NISS) is a general framework for the 

propagation of imprecise probability models and analysis of reliability. The most appealing character of 

this methodology framework is that, being a pure simulation method, only one precise stochastic 

simulation is needed for implementing the method, and the requirement of performing optimization 

analysis on the response functions can be elegantly avoided. However, for rare failure events, the 

current NISS methods are still computationally expensive. In this paper, the classical line sampling 

developed for precise stochastic simulation is injected into the NISS framework, and two different 

imprecise line sampling (ILS) methods are developed based on two different interpretations of the 

classical line sampling procedure. The first strategy is devised based on the set of hyperplanes 

introduced by the line sampling analysis, while the second strategy is developed based on an integral 

along each individual line. The truncation errors of both methods are measured by sensitivity indices, 

and the variances of all estimators are derived for indicating the statistical errors. A test example and 

three engineering problems of different types are introduced for comparing and demonstrating the 

effectiveness of the two ILS methods.  

Keywords: Uncertainty quantification; Imprecise probability models; Line sampling; Sensitivity 

analysis; Aleatory uncertainty; Epistemic Uncertainty  

 

1. Introduction 

Uncertainty quantification (UQ) is the process of quantitatively characterizing the uncertainty of 

any non-deterministic quantities of interest in numerical simulation. Generally, two kinds of UQ tasks 

are concerned. The first task is forward UQ (also called uncertainty propagation), which aims at 

propagating the uncertainty characterization models from model inputs to outputs, so as to properly 

characterizing the uncertainties of model outputs, and further to perform risk and reliability analysis. 

The second task is backward UQ (also called model updating), which focuses on inferring and updating 

the uncertainty characterization models of model inputs based on experimental measurements of 

responses [1]. To implement the above UQ tasks, three groups of uncertainty characterization models 

have been developed, i.e., the precise probability model, the non-probabilistic models and the 

imprecise probability models.  

Forward UQ based on precise probability models has been widely studied, and a plenty of 

numerical methods, such as the analytical methods based on Taylor series [2], the spectral 

representations [3], the stochastic simulation methods [4], and the probability density evolution method 

[5], have been developed, and shown to be effective for both response uncertainty characterization and 
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reliability analysis. However, for generating precise probability models, plenty of accurate data is 

commonly required, which is almost impossible in real-world applications. To deal with this challenge, 

several kinds of non-probabilistic models, such as the interval/convex models and the fuzzy set theory, 

have been proposed, and numerical methods, such as the intrusive interval finite element analysis as 

well as the non-intrusive optimization methods [6]. The non-probabilistic models are simple but can be 

especially useful when the available data is extremely scarce and/or imprecise. The criticisms of 

non-probabilistic models are commonly twofold. Firstly, in terms of forward UQ, the intrusive methods 

are commonly problem-dependent and can be of limited application, while the non-intrusive 

optimization-based methods may be computationally expensive and perhaps impractical, especially 

when the limit state functions (LSF) are not convex [6]. Secondly, due to scarcity, incompleteness, 

imprecision of available data, two kinds of uncertainties, termed as aleatory uncertainty and epistemic 

uncertainty, are commonly present for each model parameter, and plenty of studies have shown that it 

is necessary to distinguish between these two kinds of uncertainties [7], however, non-probabilistic 

models commonly fail to realize this.  

To fill the above-mentioned gap, the imprecise probability models such as the probability-box 

(p-box) model, evidence theory, and fuzzy probability model, have been devised [8], and shown to be 

able to separately and correctly characterize the two kinds of uncertainties in a unified model 

framework, thus attracting substantial attention. The numerical methods which have been developed for 

propagating imprecise probability models can also be divided into two groups depending on whether 

they are intrusive or non-intrusive. The most well-known intrusive method is the interval Monte Carlo 

simulation (MCS) [9], which is based on firstly generating interval samples, and then estimating the 

bounds of model responses for each interval sample based on, e.g., interval finite element analysis. The 

non-intrusive optimization-based methods have also been developed. For example, in Ref. [10], the 

subset simulation combined with optimization has been extended for estimating the failure probability 

bound; in Ref. [11], the first-order and second-order reliability methods combined with an optimization 

procedure have been extended to reliability analysis associated with evidence theory. All these methods 

need to perform double-loop optimization solver on model response function, thus compared with the 

propagation of precise probability models, they are computationally much more expensive, and 

sometimes the global convergence cannot be achieved especially when the LSFs are non-convex and/or 

non-differentiable.  

The non-intrusive imprecise stochastic simulation (NISS) is a non-intrusive methodology 

framework for efficiently propagating the imprecise probability models [12][13], which has been 

recently developed based on the extended Monte Carlo simulation [14] and high-dimensional model 

representation (HDMR) [15][16]. Two groups of NISS methods, i.e., the local NISS and the global 

NISS, have been developed, and the subset simulation has been injected into both methods so as to 

perform reliability analysis subjected to rare failure events [13]. The NISS owns several advantages. 

Firstly, the computational cost is the same as the one involved in precise stochastic simulation, thus is 

much lower than the above-mentioned methods. Secondly, two kinds of potential estimation errors are 

properly assessed. Thirdly, there is no need to perform optimization on LSF. Thus, the NISS is an 

appealing method for forward UQ of imprecise probability models.  
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The aim of this work is to inject the line sampling [18][19], originally proposed as a generalization 

of axis-parallel importance sampling method for reliability analysis in precise probability models 

[20][21], to the local NISS framework, so as to efficiently estimate the failure probability functions 

associated with rare failure events. Based on the different interpretations of the classical line sampling, 

we developed two imprecise line sampling (ILS) procedures to achieve this target. The first strategy is 

motivated by the rationale that the line sampling can be regarded as repeated first-order reliability 

analysis, and the developed method is termed as hyperplane-based ILS. The second strategy is based on 

the interpretation that a line sampling analysis can be regarded as the combination of a Monte Carlo 

simulation in an (n-1)-dimensional space and a one-dimensional integral along each line, and the 

corresponding proposed method is called Weighted-integral ILS. The two developed ILS methods are 

presented in detail and compared with both analytical and real-world engineering examples. Results 

show that both methods are highly efficient when the LSF is weakly or mildly non-linear.  

The rest of this paper is organized as follows. Section 2 briefly reviews the backgrounds of 

imprecise stochastic simulation and line sampling, followed by the developments of the two ILS 

methods in section 3. A numerical test example and three real-world civil engineering examples are 

introduced in section 4 for demonstrating and comparing the proposed methods. Section 5 gives 

conclusions. 

2. Background of imprecise stochastic simulation and line sampling 

2.1 Problem statement 

The performance function of the structure of interest is denoted by  G g x  with 

 1 , , nx xx  being the n -dimensional input variables. For reliability analysis, the failure domain is 

defined as   : 0 x xF g , and the failure indicator function  FI x  is defined by  =1FI x  if 

Fx ; else,  =0FI x . Let  f
X

x | θ  denote the joint probability density function (PDF) of x , and 

 1, , , ,i m  θ  refers to the vector of distribution parameters. 

In classical reliability analysis, θ  is precisely determined as constant values, and the failure 

probability 
fP  can be formulated by the n-dimensional integral    df FP I f  X

x x x . For 

imprecise probability models, the distribution parameters are uncertain, and their uncertainty 

representing the epistemic uncertainty (lack of knowledge) on x can be characterized, for example, by 

intervals. In this situation, the failure probability will be a function of θ , which is called failure 

probability function with the following expression 

      | df FP I f  X
θ x x θ x   (1) 

For simplification, suppose the input variables x  are characterized by parameterized probability 

box (p-box), then θ  will be characterized by interval variables (usually obtained with interval 

estimation method). Note that the above assumption doesn’t imply that the proposed methods are 

restricted to p-box. In fact, they are applicable for any parameterized imprecise probability models. In 

this paper, all the input variables are assumed to be independent, and the joint PDF is expressed as 

   
1

|
d

n

X d dd
f f x


X

x | θ θ , where dθ  refers to the vector of the distribution parameters of dx . 
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Note that the independence assumption is not crucial for the implementation of our proposed methods. 

they are also applicable cases with dependent inputs, which will be discussed later. 

2.2 Imprecise stochastic simulation 

The NISS developed in Refs. [12][13] is a non-intrusive simulation methodology framework for 

propagating any parameterized imprecise probability model. This framework consists of two groups of 

methods, where the first group of methods is termed as local NISS, and are developed based on the 

cut-HDMR decomposition and extended MCS procedure, while the second group of methods are 

global methods, and are developed based on random sampling (RS)-HDMR and a global version of 

extended MCS procedure. This paper is restricted to local methods.  

Motivated by importance sampling, the extended MCS is based on formulating the failure 

probability function as [14]: 

    
 

 
 *

*

|
= | d

|
f F

f
P I f

f


x θ
θ x x θ x

x θ
  (2) 

where  *|f x θ  is the sampling PDF with the distribution parameters being fixed in a pre-specified 

point *
θ . One can refer to Ref. [14] and [22] for the specification of *

θ . Based on Eq.(2), the failure 

probability function can be estimated with only one set of g-function calls. 

For improving the performance of Eq.(2) in high dimensional space and reducing the estimation 

errors, the HDMR is utilized to decompose the failure probability function as the sum of a series of 

component functions. The general HDMR formula of  fP θ  is as follows: 

        0 1, ,1 1 1
,

m m m

f f fi i fij i j f mi i j i
P P P P P  

   
      θ θ   (3) 

By using cut-HDMR method [15] to expand  fP θ  at the fixed point *
θ , the component probability 

functions on the right side of Eq.(3) can be specified as 
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0
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, = , ,

f f

fi i f i i f

fij i j f i j i j fi i fj j f
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θ

θ

θ

  (4) 

where *
θ  is the aforementioned fixed point chosen within the support domain Θ , *

iθ  denotes the 

1m  dimensional vector containing all elements in *
θ  except *

i , and *

,i jθ  refers to the 2m  

dimensional vector containing all elements in *
θ  except *

i  and *

j . Based on our study, in many 

applications, the higher-order effects of distribution parameters are commonly not as important as the 

first few order effects [17][23], and representing  fP θ  up to second-order can usually provide a 

satisfactory estimation, i.e.: 

      0 1 1 1
,

m m m

f f fi i fij i ji i j i
P P P P  

   
    θ   (5) 

It is obvious that the components above can be directly estimated with classical MCS method which is 

actually a double-loop procedure with a heavy computational burden. NISS method [12] enables to 

estimate the component functions in Eq.(5) with only one set of g-function evaluations, such estimation 

procedure is briefly described below. 
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Generate N  sample points 
       1 , , 1, ,
s s s

nx x s N x  from   *f
X

x | θ  and evaluate 

the corresponding values of 
   1,...,
s

FI s Nx . Then, the unbiased estimators for the first-order 

and second-order component functions are as follows: 
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where  
  *| ,
s

i ir x θ  and 
  *| , ,
s

ij i jr  x θ  are weight coefficients of density, and are defined as 
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  (7) 

Based on Eq.(3), the estimator  ˆ
fP θ  is the sum of all the components in Eq.(6). In fact, higher-order 

component functions can also be estimated with the same set g-function evaluations if needed.  

The above procedure introduces two types of errors, truncation error due to cut-HDMR truncation 

(e.g., Eq.(5)) and statistical error due to MCS. The statistical error, which is also a function of θ , can 

be estimated by computing the variances of estimators in Eq.(6) using the following expressions 
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  (8) 

One the other hand, HDMR can be used to measure the relative importance of component 

functions, also called sensitivity analysis [24]. Ref. [17] shows the definition of sensitivity index 

1 2 ki i iS  of component functions for measuring the effect of uncertainties in distribution parameters on 

failure probability, 
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Θ

Θ
Θ

θ θ θ

θ θ θ
，

  (9) 

where M  refers to the highest order under consideration,  
11 2i i i kk
i ifΘ θ  denotes the instrumental 

joint PDF for 
1 ki iθ , for p-box case,  

11 2i i i kk
i ifΘ θ  is uniform type of PDF defined with the upper 

and lower bound of 
1 ki iθ . In our previous developments, both local and global NISS methods have 

been developed, and in the global NISS, the Sobol’ indices are used, while in the local NISS, the 
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sensitivity indices as shown in this paper were used since it is derived based on cut-HDMR 

decomposition. While cut-HDMR decomposition is utilized, the sensitivity indices utilized in this 

paper in fact measure the average L
2
 distance of component functions to the expansion points, and the 

larger this distance is, the more important is this component. If the sensitivity index equals zero, then it 

implies that the corresponding component function always takes zero value, thus of course has no 

effect on the failure probability function, thus it can be eliminated in searching for the extreme values 

of failure probability.   

Although the above procedure enables to estimate failure probability function with only one set of 

samples, it is still computationally intensive, especially when estimating probabilities associated with 

rare failure events. In Ref. [13], the subset simulation has been extended for solving this problem. 

However, for problems involving moderately nonlinear performance functions, line sampling can be 

more efficient than subset simulation from a numerical viewpoint. This motivates us to inject the line 

sampling into the NISS framework so that the computational cost for mildly nonlinear problems can be 

further reduced. 

2.3 Line sampling  

α
e

 s
z

 s
z

  0h z

 =0h z

 s
c

  1 +


α
e z

s
h c

 
+



α
z e

s
z

  2 +


α
e z

s
h c

  3 +


α
e z

s
h c

   ,
α

e
s

l z
    + =0



α
e z

s s
h c

 

Fig.1 Rationale of Line sampling procedure in standard normal space 

 

In precise probability framework of structural reliability analysis (epistemic uncertainty is not yet 

involved), line sampling is an efficient simulation method especially developed for solving a wide 

range applications with high-dimensional inputs and rare failure events [25]. It formulates a reliability 

problem as a number of conditional one-dimensional reliability problems which are analyzed in 

standard normal space [18]. In line sampling procedure, the important direction, which is usually 

defined as the negative of the steepest descent direction of LSF, must be firstly approximated. This 

assumption arouses one limitation that line sampling is not suitable for strong nonlinear performance 

functions, especially when the important direction cannot be easily estimated [26]. 

As mentioned above, the original space of random variables x  must be transformed to standard 
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normal space where the new variables are denoted by  1= , , nz zz , similarly, the LSF  g x  is then 

transformed to  h z . The probability integral transformation (PIT) formula from original random 

space to standard normal space is expressed as 

   -1= F
X

z x   (10) 

where  F
X

x  is the cumulative density function (CDF) of x ,  -1  is the inverse CDF of 

standard normal distribution. For simplification, denote the transformation as  =Tz x  and the 

inverse transformation as  1=T 
x z . 

Let α  denote the optimal important direction, and the normalized important direction 
α

e  

(which is a unit vector) is defined as follows 

 =
α

e α / α   (11) 

Once 
α

e  is determined, the standard normal space is orthogonally decomposed to a 1-dimensional 

and 1n  dimensional space [27], and vector z  can be written as 

 / /  z z z   (12) 

where / /
z  is parallel to 

α
e , and 

z  is orthogonal to 
α

e , expressed as 

 
/ / =

,

z

  

α

α α

z e

z z e z e
  (13) 

where ,  is the symbol of inner product. Since the standard Gaussian PDF is isotropic [27], the 

scalar z  and vector 
z  are also standard normally distributed.  

The direct MCS is carried out by generating 
zN  samples 

       1
, , 1, ,

s n

zz z s N z  from 

its joint PDF  
Z

z , then the 1n  dimensional sample vector 
 s

z  can be derived with the 

formula 
     

= ,
s s s

 α αz z e z e . Fig.1 provides the rationale of line sampling procedure for the s th 

sample in 2-dimensional standard normal space. As shown in Fig.1, the conditional failure probabilities 

are determined where  
= +

s
z



α
z e z  varies randomly along the line 

   ,
s

l z
α

e . The failure probability 

corresponding to 
 s

z  can be computed by 

 
    s s

fP c     (14) 

where 
 s

c  is the reliability index which is actually the value of z  at intersection point between the 

LSF  =0h z  and the line 
   ,
s

l z
α

e . Different methods can be used for this one-dimensional 

reliability analysis task [28]. One popular way is to consider three specific values 
1c , 

2c , 
3c  of z  

so as that three points 
   1 1, +
s

c h c


α
e z , 

   2 2, +
s

c h c


α
e z  and 

   3 3, +
s

c h c


α
e z  are evaluated. 

Then 
 s

c  can be easily determined by fitting them with second-order polynomial and determine the 

point 
       , 0
s s s

c h c


 
α

e z [29]. According to the theory of advanced first order second moment 

method (AFOSM) [26], in standard normal space, the reliability index 
 s

c  is in fact the minimum 
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distance between the origin point and the failure boundary approximated by a hyperplane. 

By collecting all the values of  s
c , the MCS estimator of failure probability is 

     
1 1

1 1ˆ

 

    
z zN N

s s

f f

s sz z

P P c
N N

  (15) 

And the variance of the above estimator is 

  
 

  
 

 
2

2 2

1 1

1 1ˆ ˆ ˆ=
1 1 

 
   

   
 

z zN N
s s

f f f f f

s sz z z z

V P P P P NP
N N N N

  (16) 

Note that LSF is evaluated only when searching the value of 
 s

c  along each line. To sum up, line 

sampling is an efficient simulation method based on a series of conditional one-dimensional reliability 

analysis, and each one-dimensional reliability analysis is implemented on MC samples from 1n  

dimensional standard normal space orthogonal to 
α

e . From the geometric point of view, line sampling 

can also be regarded as carrying out N  times of AFOSM reliability analysis and taking the mean of 

all the AFOSM results. Although the estimator of failure probability is unbiased independent from the 

choice of important direction, its quality (measured in terms of its variance) strongly depends on the 

selection of an appropriate important direction. Since the determination of important direction is not the 

focus of this paper, it is assumed to be known in the following part.  

Further advances has been made in recent years for improving the efficiency of line sampling, 

such as advanced line sampling [30] to adaptively searching the important direction, and the use of 

surrogate model [31] to approximate the original LSF.   

 

3. Imprecise line sampling method  

In this section, we develop two different strategies for injecting the line sampling into the NISS 

framework for estimating the failure probability function. The first strategy is devised based on the 

geometric interpretation of the reliability index 
 s

c , and is denoted as hyperplane- approximation 

based imprecise line sampling (HA-ILS), while the second one is developed based on the mathematical 

interpretation of the probability computed by integration along each line, and is called 

weighted-integral based imprecise line sampling (WI-ILS).  

3.1 Hyperplane-approximation based imprecise line sampling 

 

 



9 

 

 *: |f
X

X x θ  *Tz x | θ

 *Tz x | θ

 *Tz x | θ

 : |f
X

X x θ

 g x h z :Z z

 *: | ,Z z θ θnewf

fP

    0
s

h z

   s
c θ fP θ

Classical line sampling procedure

The proposed HA-ILS procedure

(renewed PDF)
Auxiliary hyperplane

 s
c

α
e ，

 

Fig.2 Sketch of the concept of hyperplane-approximation method 

 As mentioned in subsection 2.1, *
θ  is a fixed point chosen from the support domain of θ . In 

this strategy, the important direction is determined by fixing θ  at 𝜽∗, and will be kept unchanged 

during the whole analysis process. This utilizes the merit of line sampling that it is unbiased, 

independent of the choice of important direction. As for choosing *
θ , we propose to use the same 

concept in Ref.[14], i.e., the support domain of x  determined by the optimal *
θ  should be the same 

with x  at the whole range of θ . In fact, *
θ  can also be specified at the point around any value of 

interest, as it is expected that the proposed method always performs well close to *
θ . 

Fig.2 shows the general concept of the proposed HA-ILS method. First of all, classical line 

sampling method is applied with θ  being fixed at *
θ , shown as the upper blue box. Note that,  h z  

is the LSF transformed by  *=Tz x | θ  from the original physical model, which keeps unchanged as 

long as the formula  *=Tz x | θ  is fixed. There are two key concepts of the proposed method, as 

shown in the lower red box in Fig.2. One is to introduce auxiliary hyperplane 
   =0
s

h z  to 

approximate the LSF, which can be established based on the reliability index 
 s

c  and the important 

direction 
α

e (a detailed procedure for establishing 
   s

h z  will be discussed later). The other is to 

renew (update) the probability distribution of z  when the distribution parameters of x  changes 

from *
θ  to θ  but the input variables x  remains being transformed by the same formula 

 *=Tz x | θ . For example, when x  follows a normal distribution such that  22,2N , 

( 2) / 2z x   follows standard normal distribution. Then, if the distribution of x  changes to 

 24,4N , ( 2) / 2z x   no longer follows standard normal distribution, but a new distribution 

such that  2~ 1,2z N . As a consequence of the renewal (update) of the probability distribution, x  

and ( )g x  are guaranteed to be consistently transformed by the same formula  *T θ  and can be 
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used for the following reliability analysis. When the analytical formula of the auxiliary LSF as well as 

the new probability distribution of z  w.r.t. 𝜽 are precisely known, the failure probability value at θ  

corresponding to the s th sample can be easily computed. 

Actually, an analytical formula of 
   =0
s

h z  can be easily derived based on the hyperplane 

equation. In n -dimensional space of 𝒛, the equation of a hyperplane is determined by =T ω Z , 

where  1=
T

n ω ， ，  refers to the normalized unit vector orthogonal to the hyperplane, and   

refers to the distance from the origin point to the hyperplane. Hence, when the normalized unit vector 

and the distance are known, the hyperplane can be uniquely determined. In the classical line sampling, 

the reliability index 
 s

c  indicates the distance   and the unit important direction 
α

e  represents 

the normalized unit vector  . As shown in Fig.3, for each sample 
 s

z , the corresponding hyperplane 

is orthogonal to the important direction 
α

e , and contains the intersection point    
+

s s
c



α
z e . Based on 

the rationale of the first-order reliability method, the failure probability of Eq.(14) actually equals to the 

probability mass of the failure domain specified by the auxiliary hyperplane. As a consequence, the 

original failure domain  : 0zF h z  can be approximated by a series of hyperplanes orthogonal to the 

important direction. Thus for the s th line sample, the analytical formula of auxiliary hyperplane is 

expressed as 

  
     

=0
s s

h c 
α

z e z   (17) 

α
e

 s
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 =0
h z
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3
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h
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2z

1z

 2
z

 3
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Fig.3 Interpretation of the auxiliary hyperplane for each line sample in standard normal space 

 

As mentioned above, the model structure  h z  stays unchanged since the transformation 

 *=Tz x | θ  is fixed, and the model structure itself has no relation to the uncertainty characterization 

of model inputs from a theoretical point of view. In fact, the probability mass of failure domain 

determined by the established hyperplane will change w.r.t. θ . Hence the approximated formula 

   s
h z  can be utilized for estimating failure probability function  fP θ  by averaging the failure 
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probability function 
   s

fP θ  across all hyperplanes. 

   s

fP θ  can be estimated by using reliability index, for imprecise variables, the new reliability 

index becomes a function of θ , denoted by 
   s

c θ . If 
   s

h z  follows Gaussian distribution, the 

definition of reliability index can be expressed as 
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θ θ
θ

θ θ
  (18) 

where 
,de

α
 is the d th element in e

α
 ,  

dz θ  and  
dz θ  refer to the renewed mean and standard 

deviation of 
dz  corresponding to the new value θ  (the derivation of renewed mean and standard 

variation will be discussed later). Specifically, when *=θ θ , =0
dz , =1

dz  and 
     

=
s s

c cθ . Then 

the estimator of  fP θ  is as follows, 

           1 1

1 1ˆ =
N Ns s

f fs s
P P c

N N 
   θ θ θ   (19) 

, and the variance of the estimator is  

  
 

      
2

1

1ˆ ˆ
1

N
s

f f

s

Var P c P
N N 

      
   

θ θ θ   (20) 

In the above procedure, we only need to call the LSF when establishing each auxiliary hyperplane, thus 

the computational cost is the same as that of the classical line sampling. It should be noted that the 

estimator in Eq.(19) is biased due to the approximation of limit state function through auxiliary 

hyperplane, the closer θ  is to *
θ , the less biased the estimator will be. 

Based on the rationale of NISS reviewed in subsection 2.1, Eq.(19) can be further decomposed 

with the cut-HDMR, and the estimators of the first two order components are derived as 

  

          

                    

0 1

*

1

* * *

,1

1ˆ =

1ˆ ,

1ˆ , = , , , , +

N s

f s

N s s

fi i i is

N s s s s

fij i j i j i j i i j js

P c
N

P c c
N

P c c c c
N

 

     





  


 




    



       








θ

θ θ θ

 (21) 

where 
   *,
s

i ic  θ  and 
   *

,, ,
s

i j i jc   θ  indicate the first-order and second-order reliability index 

functions, respectively. Note that those reliability index functions can be easily derived by Eq.(18), 

therefore, the component functions can also analytically derived with no additional limit function 

evaluations. The statistical error due to Monte Carlo simulation, which is also a function of θ , can be 

estimated by the variances of the estimators derived as: 
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1ˆ ˆ=
1

1ˆ ˆ,
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θ

θ θ θ

N s

f fs

N s s

fi i i fis

N s s s s

fij i j i j i i j j fijs

Var P c P
N N

Var P c c P
N N

Var P c c c c P
N N

(22) 

With those explicit component functions, parametric sensitivity analysis can be applied based on the 

definition in Eq.(9). The above procedure solves imprecise reliability problems by the auxiliary 

hyperplane approximation of failure boundary, thus is denoted by hyperplane-approximation based 

approach. 

Note that the accuracy of reliability index function given in Eq.(18) depends on the distribution 

type of input variables. For normal and lognormal distributions, 
   s

h z  follows the Gaussian 

distribution, then the definition in Eq.(18) is accurate. However, for other distribution types, a change 

of θ  may result to a non-Gaussian distribution of 
   s

h z , then this definition is not accurate 

anymore. A more detailed discussion about this is given below with normal, lognormal and general 

cases, separately. 

(1) Normal distribution 

First, we discuss the analytical formulation of the renewed mean function  
dz θ  and variance 

function  2

dz θ  utilized in Eq.(18). For normal variable 
dx , the chosen distribution parameters *

dθ  

are specified as *

d  and *

d , the varying parameters 
dθ  are specified as 

d  and 
d , the 

transformation formula is then specified as    * * * =d d d d d dT x x z  | θ . Then 
dz  is regarded as 

a linear transformation of 
dx , it is obvious that 

dz  still follows normal distribution with mean 

parameter      * *=     
dz d d d d dE z  and standard deviation parameter

    *=
dz d d d dVar z    , where  E  and  Var  represent the expectation and variance 

operators respectively.  

For simplification, when all input variables follow normal distribution, the analytical expression 

of first-order reliability indices 
   *,
s

i ic  θ  w.r.t. 
i  and 

i  in Eq.(21) can be derived as 

 

       

   
 

*

, *

2
2 2

, ,*2 1,

=

=

i is s

i i

i

s
s

i

ni
i dd d i

i

c c e

c
c

e e

 







  

 
 












α

α α

  (23) 

The second-order reliability index 
   *

,, ,
s

i j i jc   θ  in Eq.(21) is expressed as 
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s
s
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i is
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s i

i j

nj

j dd d j
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c c e e i j

c
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c e

c

e e
  (24) 

The estimators of the component failure probability functions are then accordingly specified. For 

example,  
      

*

, *1

1ˆ
 




  
      

  
  

 α

N i i s s

fi i is
i

P e c c
N

.  

(2) Lognormal distribution  

For lognormal distribution  2log ,d d dx N   , the PDF of 
dx  is known as 

  
 

2

2

ln

21
=

2

d d

d

x

d

d d

f x e
x





 




  (25) 

where 
d  and 

d  are the expected value and standard deviation of the normal distribution 

associated with 
dx . The mean value and variance of 

dx  are calculated as =

2
d

d
2m e


 

, and 

 1
2 2
d d d2

v e e
  

  , respectively. The transformation formula is specified as 

   * * *ln =d d d d d dT x x z  | θ . 
dz  can be regarded as a linear transformation of ln dx , and as 

ln dx  is following normal distribution  2,d dN   , then 
dz  also follows normal distribution with its 

mean and standard variance as    * *=    
dz d d d d  and   *=   

dz d d d , respectively. The 

formulas of renewed mean and standard variance are actually the same with the case of normal 

distribution type. As a consequence, the subsequent procedure of estimating failure probability function 

is also the same. Since the approximated LSF 
   s

h z  is a linear combination of z , thus it follows a 

Gaussian distribution for normal and lognormal input variables. 

(3) General case 

When 
dx  follows general distribution types with the PDF  |

dX d df x θ , the translation formula 

is     * 1 *| | = θ θ
dd d X d d dT x F x z . For general case, dz  might be non-Gaussian distribution, we 

propose to do classical Monte Carlo simulation to estimate  θfP  instead of using reliability index. 

For any value of θ , generating M  samples 
      1 , , 1, ,
r r

nx x r M , then evaluating the 

corresponding samples 
     1 , , 1, ,
r r

nz z r M  by using transformation formula. Then failure 
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probability can be easily estimated as 

                                     
1 1

1 1

 

    α
z e z

M M
s s r s r

f

r r

P h c
M M

         (26) 

Although it requires resampling for each θ  value, but it will not require additional evaluation of real 

LSF since the formula 
   s

h z  is analytically known. And the following steps for estimating  fP θ  

are the same as those with the case of normal distribution. Note that for dependent input variables, it is 

also necessary to firstly transform the input variables from correlated distribution space into standard 

Gaussian space, then the residual procedures will be almost the same with the independent case. 

3.2 Weighted-integral based imprecise line sampling 

In this subsection, we develop another strategy based on the formula of line sampling integral, 

denoted as weighted-integral ILS (WI-ILS), for injecting the line sampling into the NISS framework.  

Like HA-ILS method, the first step of WI-ILS is also to perform the classical line sampling 

method for the constant cut-HDMR component with the distribution parameters 𝜽 being fixed at *
θ , 

and all the following discussions and developments are based on the standard normal space obtained by 

the fixed transformation  *=Tz x | θ . By differentiating both sides of    *= |F
X

z x θ , one can 

obtain    *d = df
X

z z x | θ x . Thus the integral of failure probability function in Eq.(2) can be 

rewritten as 

  
 

 
 

 

  
  

 
  1 *

1 *

*

* 1 * *0 | 0

| ||
= | d d

| | |
f

g x g T

f Tf
P f

f f T






 
 

XX

X
z θ

X X

z θ θx θ
θ x θ x z z

x θ z θ θ
  (27) 

Based on the rationale of line sampling, decomposing z  as z 
α

z z e  can reshape the 

n-dimensional integral of Eq.(27) orthogonally into a double-loop integral, where the outer loop is a 

(n-1)-dimensional integral in the space of 
z , and the inner loop is a one-dimensional integral in the 

space of z  , thus  fP θ  can be expressed as 

        
  -1 *

*

| 0
= , , d df

g T z
P z z z  



  

 


α
α

z e θ
θ z e θ θ z z   (28) 

where  *, ,z  
α

z e θ θ  denotes the PDF weight, and is expressed as 

  
  
  

-1 *

*

-1 * *

| |
, , =

| |

f T z
z

f T z













X α

α

X α

z e θ θ
z e θ θ

z e θ θ
  (29)  

With the set of samples of 
 s

z  1, ,s N  following (n-1)-dimensional PDF   
z , the estimator 

of  fP θ  is derived as: 

          1 *

*

| 0
1

1ˆ = , , d
s

N
s

f
g T z

s

P z z z
N

 




 



α

α
z e θ

θ z e θ θ   (30) 

Note that the one-dimensional failure domain defined by    1 *| 0
s

g T z
  

α
z e θ  is actually the 

same failure domain along the line 
   ,
s

l z
α

e  which has been discussed in section 2.2. Hence, the 
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integral boundary can be replaced by  
[ , )

s
c  , where  s

c  corresponds to the intersection point 

between the line and limit state boundary. Let 
   s

L θ  denote the integral in Eq.(30) as 

          

*= , , d
s

s s

c
L z z z 

 
 α

θ z e θ θ   (31) 

Specifically, when *=θ θ , =1  and 
      =
s s

L c θ . Thus the estimator of failure probability 

function can be represented as 

      
1

1ˆ =
N

s

f

s

P L
N 

θ θ   (32) 

Similar with the HA-ILS method in subsection 3.1 (see Eq.(20)-(22)), the variance of the above 

estimator, the estimator of cut-HDMR component functions as well as the variance of each component 

can be easily derived, which is omitted here. Actually, the computation of Eq.(31) does not require any 

additional performance function evaluations, thus making it possible that the computational cost of line 

sampling for the estimation of  fP θ  is the same with  *

fP θ . Note that, all the expressions above 

can be easily evaluated through one-dimensional numerical integration and do not involve any other 

approximations.  

Now the main problem is to estimate the value of integral 
   s

L θ , which can be derived 

analytically for some specific distribution types, and a detailed discussion is given below.  

(1) Normal distribution 

For the d th variable,  2,d d dX N   , and  1 *| θd d dx T z  can be specified as 

 
 * * * * *

,+ = +
s

d d d d d d d d dx z z ze    


 
α   (33) 

Then the PDF weight in Eq.(29) can be derived analytically as 

 

     
2 2

* * * * * * *
*

, ,

*2 21
1

+ +
= exp

2 2

s s
n

d d d d d d d d d d d dn d

d
dd d d

z ze z ze       


  

 




         
    

    
  


α α

 (34) 

Then substituting Eq.(34) into Eq.(31) analytically, the integral is expressed as 

      

        
2

1 2
== exp

2 41 2 1 2

s s s

s s c
L

  


 

 
   

         
 

μ,σ   (35) 

One can refer to Appendix A for detailed definition of parameters  ,  , 
 s

 ,  s
 , as well as the 

derivations of the analytical formula in Eq.(35). After that, the estimator of failure probability function 

and the corresponding variance of estimator can be derived accordingly.  

Furtherly, the first-order and second-order failure probability functions can be derived with 

cut-HDMR decomposition, and the integral functions in  *,f i iP  θ  and  *

,, ,f i j i jP   θ  are denoted 

by 
   s

iL  , 
   s

jL  ,
   ,
s

i jL   ,
   ,
s

i jL   ,
   ,
s

i jL   , respectively. The corresponding 

self-defined parameters  ,  , 
 s

 ,  s
  within integral functions are given in Table 1. 
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Table 1 Analytical expressions of parameters  ,  ,  s
 ,  s

  in component integral functions 

Integral 

functions 
     s

   s
  

   s

iL   1 0 
     

2 2
* *
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+
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s s

i i i i i
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*
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(2) Lognormal distribution 

For the lognormal type of distribution, the transformation formula is specified as 

   * * *ln d d dT x   x | θ , decomposing 
dz  with 

 
,

s

d d dz z ze


  , the relation between 
dx  

and dz  can be expressed as 

 
 * * *

,ln +
s

d d d d d dx z ze  


 
α   (36) 

Then the PDF weight   has the following expression 

 
   

2 2**

*2 21
1

ln ln
= exp

2 2

n
n d d d dd

d
dd d d

x x 


  


             
  

   (37) 

Replacing ln dx  with 
 * * *

,+
s

d d d d dz ze  



α , we can find that the analytical expression of   turns 

out to be completely the same as in Eq.(34), obviously, the following procedure for estimating integral 

function 
   s

L θ  as well as the failure probability functions is also the same as normal distribution 

type. 

(3) General case 

When dx  follows general distribution with the PDF  |
dX d df x θ , the relationship between dx  

and dz  becomes    -1 *

,= |
d

s

d X d d dx F z ze


  θ , then PDF weight is  
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d d

d d

s
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s
d
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θ θ

θ θ

  (38)  

And the integral 
   s

L θ  is generally expressed as 

    

    
    

  

1 *

,

1 * *
1

,

| |
= d

| |

d d

s

d d

s
n X X d d d d

s

c s
d

X X d d d d

f F z ze
L z z

f F z ze














 

 


θ θ

θ

θ θ

  (39)  

The accuracy of the above one-dimensional integral depends on the specific formula of PDF and CDF, 

of course, the best way is to derive analytically as normal and lognormal. The following steps for 

estimating  fP θ  are all the same with the former cases. 

 

4. Case studies 

4.1 Analytical example 

Consider a simple analytical example where the LSF is a parabola. The expression for the 

performance function is 

   2

1 2 1 2,g x x x x      (40) 

, where  2

1 1 1~ , X N ,  2

2 2 2~ , X N . The constant   controls the failure probability level 

and   controls the degree of nonlinearity of performance function. The failure probability function 

can be calculated analytically by solving numerically the following one dimensional integral (see 

Appendix B). 

      
2

1

1 2 1 2 2 2 2 2 2

1 1

, , , = + d
  

      
 





 
   
 

fP z z z   (41) 

Let =3.5  and =0.2  such that the failure is a rare event and the failure surface is mildly nonlinear. 

The imprecisions of distribution parameters are defined by intervals  1 -0.5 0.5  ， ,  2 -0.5 0.5  ， , 

 1 0.6,1  ,  2 0.8,1  .  

The fixed distribution parameters *
θ  are chosen to be    * * * *

1 2 1 2, , , = 0,0,1,1    . For this case, 

it is straightforward to locate the important direction as  1,0
T


α

e . Fig.4 shows the plot of the 

first-order component functions estimated by HA-ILS and WI-ILS methods, together with the 

analytical results (dented as ANA) for comparison, where 100 lines with a total of 300 times of 

performance function evaluations are used in both ILS procedures. Fig.4 shows that first-order 

component functions of 
1  and 

1  are accurately estimated by both methods, however, for the 

component of 2  and 2 , the results generated by WI-ILS is in good agreement with the analytical 

solutions, but those generated by HA-ILS show some differences. Thus, WI-ILS shows a better 

performance than HA-ILS in this case. However, it is important to recall that  1,0
T


α

e  with the 

second element equals to zero, indicating that 2x  may not be important for reliability analysis. 

According to Eq.(17), 2x  is not involved in hyperplane formula, then the parameter change associated 
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with 
2x  will not be detected. However, one should note that this does not mean HA-ILS method is not 

applicable for this case. In Fig. 4, the orders of magnitude of 
2  and 

2  are much smaller than 

those of 
1  and 

1 , thus it does not affect considerably the result of the final synthesized estimation 

of the failure probability function if it fails to capture the non-influential behavior. The sensitivity 

indices shown in Table 2 can also validate this conclusion. 

The first- and second-order sensitivity indices computed by the HA-ILS and WI-ILS methods are 

listed in Table 2, together with their standard deviations (SDs) computed by on Eq.(22) as well as the 

analytical results for comparison. It is shown that the results generated by both HA-ILS and WI-ILS 

methods have good consistency with the analytical results, illustrating the effectiveness of the proposed 

two methods. All sensitivity indices associated with 
2x  are close to zero, indicating the parameters of 

2x  are non-influential to failure probability. As a result, the parameters of 
2x  can be fixed at any 

point in the imprecise intervals for subsequent reliability design and optimization. One should note that 

all the first- and second-order component functions are estimated with one set of samples, and higher- 

order components can also be estimated by this set of samples. 

Next, we slightly modify the setting of the test example. The parabola is rotated 45 degrees 

anticlockwise and the g-function becomes 

    
2

1 2 1 2

2 0.2
3.5 +

2 4
   g X X X X   (42) 

The uncertainty characterization of each input variable as well as the fixed parameters *
θ  remain the 

same. The important direction then is calculated to be  2 2, 2 2
T


α

e . In this case, the reference 

results are all calculated by double-loop Monte Carlo method (denoted as DL) with the sample size of 

each inner loop being 10
7
.  

For this case, the sensitivity indices are displayed in Table 3 and the results of the proposed two 

methods match well with the reference solutions. Fig.5 displays the plot of first-order component 

functions. Compared with Fig.4 of the previous case, HA-ILS behaves much better in Fig.5 because the 

two components in important direction 
α

e  become equal. Besides, the plot of HA-ILS w.r.t 
1  and 

2  show a small deviation from the reference results when i  is far from *

i , although the 

corresponding SDs are already smaller than WI-ILS. It indicates HA-ILS converges faster but may go 

to a biased result because of the approximation of LSF. The component functions always equal to zero 

at the expansion point *
θ  due to the definition of cut-HDMR components. All the first-order 

component functions are monotonically increasing w.r.t the respective parameters, then all the 

maximum and minimum values of the first-order component functions locate at the upper and lower 

bound of imprecise parameters, respectively.  
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Fig.4 The plot of first-order component functions in the analytical example 

 

Table 2 The first and second order sensitivity indices of the parabolic LSF in the analytical example  

Methods HA-ILS WI-ILS ANA 

Ncall 300 300 / 

 *

fP   1.4585e-4
(7.5e-6) 

1.4585e-4
(7.5e-6)

 1.4584e-4 

iS  

1  0.5033
(0.0012) 

0.4866
(0.0011) 

0.5008 

2  0.0000
(0.0000) 

0.0002
(4e-5) 

0.0002 

1  0.1339
(0.0003) 

0.1295
(0.0003) 

0.1332 

2  0.00000
(0.0000) 

0.0009
(1e-5) 

0.0010 

ijS  

 1 2,   0.0000
(0.0001) 

0.0005
(0.0001) 

0.0005 

 1 2,   0.0000
(0.0000) 

0.0007
(1e-5) 

0.0007 

 1 1,   0.3628
(0.0008) 

0.3790
(0.0008) 

0.3609 

 1 2,   0.0000
(0.0000) 

0.0024
(4e-5) 

0.0025 

 2 1,   0.0000
(0.0000) 

0.0001
(3e-5) 

0.0001 

 2 2,   0.0000
(0.0000) 

0.0000
(0.0000) 

0.0000 
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Table 3 The sensitivity indices after rotation of the parabola LSF in the analytical example 

Methods HA-ILS WI-ILS DL 

Ncall 300 300 / 

 *

fP   1.7457e-4
(6.1e-6) 

1.7457e-4
(6.1e-6) 

1.7450e-4 

iS  

1  0.2012
(0.0002) 

0.1742
(0.0003) 

0.1912 

2  0.2012
(0.0002) 

0.1842
(0.0003) 

0.1898 

1  0.1102
(0.0000) 

0.1086
(0.0001) 

0.1148 

2  0.0556
(0.0000) 

0.0557
(0.0001) 

0.0573 

ijS  

 1 2,   0.1425
(0.0001) 

0.1414
(0.0002) 

0.1486 

 1 2,   0.0263
(0.0000) 

0.0295
(0.0001) 

0.0308 

 1 1,   0.0905
(0.0001) 

0.1040
(0.0002) 

0.0860 

 1 2,   0.0410
(0.0000) 

0.0437
(0.0001) 

0.0469 

 2 1,   0.0905
(0.0001) 

0.0965
(0.0001) 

0.0999 

 2 2,   0.0410
(0.0000) 

0.0610
(0.0002) 

0.0347 

 

 

Fig.5 The plot of first-order component functions after rotation of the parabola LSF in the analytical 

example 

 

4.2 A shallow foundation model 
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Rock bed
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q

 

Fig.6 The schematic representation of elastic soil layer of shallow foundation model 

 

Table 4 Distribution parameters of input variables for shallow foundation model 

Variables Description Distribution type Mean c.o.v. 

1E [kPa] Young’s modulus of sand layer Lognormal [27000,33000] 10% 

2E [kPa] Young’s modulus of gravel layer Lognormal [90000,110000] 10% 

q [kPa] Load density Lognormal [90,110] 10% 

 

To illustrate the effectiveness of the proposed method to engineering applications, a shallow 

foundation resting over elastic soil is considered [32], and a finite element model considering of 320 

quadrilateral elements is established for simulating the structure [3]. The schematic representation is 

shown in Fig.6. The elastic soil is composed of two layers. The first layer is a sand layer of 9 [m] 

thickness while the second is a gravel layer of 21 [m] thickness resting over a rock bed which is 

assumed as infinitely rigid.  

The Young’s modulus of the sand and gravel layers are characterized by random variables obeying 

lognormal distribution, denoted as 1E  and 2E , respectively. The shallow foundation of 10 [m] width 

applies a distributed load q  of over the elastic soil layer. The load intensity q  is characterized by 

means of a lognormal variable as well. The mean value (denoted by 
1Em , 

2Em  and 
qm ) of the three 

random variables are imprecisely known varying within intervals, and the c.o.v. (coefficient of variance) 

are all assumed to be 0.1, as given in Table 4, thus three mean value are modeled as imprecise 

parameters. The performance function is defined as the threshold level b=0.055 [m] minus the vertical 

displacement at the center of the shallow foundation.  

The expansion point *
θ  are chosen to be     * * *

1 2, , 30000,100000,100 kPaE E q  , the 

important direction is  -0.6270 -0.1394 ,0.7664
T


α

e ， ，  by implementing AFOSM method in standard 

normal space with 42 times of model evaluation. We firstly plot the components for the failure 

probability function with the proposed HA-ILS and WI-ILS procedure in which 100 lines with a total 

of 342 times of model evaluations are involved, as shown in Fig. 7. Since the finite element model of 

shallow foundation is not very cost-demanding, DL method is also plotted as reference results with 

610N   for each failure probability evaluation. It shows that the results of both HA-ILS and WI-ILS 

match well with DL method except that the plot of 
2Em by WI-ILS has a slight difference with the 
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reference results. The plots of HA-ILS keep quite close to the reference plots within the whole range of 

parameters, showing that not too much bias is introduced by LSF approximations when the values of 

parameters move away from the expansion point. This indicates that the real LSF of the shallow 

foundation model may be approximately linear. The plot of SDs shows HA-ILS converges much faster 

than WI-ILS; specifically, when the value of 
1Em  is close to the lower bound 27000, the SD of WI-ILS 

increases sharply while SD of HA-ILS stays at a low value, that means when the values of parameters 

are far away from the expansion point, HA-ILS shows a much better performance. On the other hand, 

all the component values vary monotonous with the corresponding parameters, furtherly, it is 

incremental for q  and diminishing for 1E  and 2E .  

The sensitivity indices estimated by HA-ILS and WI-ILS are listed in Table 5, as well as the value 

of constant component  *

fP  . Among the first-order components, 
1Em  and 

qm  are much more 

influential than 
2Em , and among all orders of components,  

1
,E qm m  is the most influential one, 

indicating that the interaction effect of 
1Em and 

qm  contributes most to failure probability of shallow 

foundation model. Note that the third-order index is also estimated in Table 5 with the value less than 

0.02, that means the third-order component in non-influential in estimating  fP θ , so truncation up to 

second order will not introduce significant errors. Fig.8 shows the 3D plot of the most influential 

second-order component function  
1
,fij E qP m m  as well as its SDs by the proposed two methods. In 

Fig.8 the second-order plots by both methods match well with each other, and the SDs show that 

WI-ILS converges slower than HA-ILS especially in those points far away from *
θ . The maximum 

value of  
1
,fij E qP m m  locates in  42.7 10 ,110 , which is also the maximum point of the 

corresponding first-order plot shown in Fig.7.  
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Fig.7 The plot of first-order component functions for shallow foundation model 

 

Table 5 Sensitivity indices for shallow foundation model 

Methods HA-ILS WI-ILS 

Ncall 342 342 

 *

fP   7.6609e-4
(2.4e-6) 

7.6609e-4
(2.4e-6) 

iS  

1Em  0.1732
(1e-6)

 0.1815
(0.0006) 

2Em  0.0028
(2e-7) 

0.0025
(0.0001) 

qm  0.2341
(1e-6) 

0.2173
(0.0005) 

ijS  

 
1 2
,E Em m  0.0101

(5e-8) 
0.0094

(0.0010) 

 
1
,E qm m  0.5489

(2e-6) 
0.5558

(0.0005) 

 
2
,E qm m  0.0133

(6e-8) 
0.0162

(0.0008) 

ijkS   
1 2
, ,E E qm m m  0.0175

(2e-8) 
0.0173

(0.0014) 
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HA-ILS

WI-ILS

 

Fig.8 The plot of the most influential second-order component function with both HA-ILS and WI-ILS for 

shallow foundation model 

 

4.3 Confined seepage model 

Wh

 

Fig.9 The elevation of the dam in confined seepage model 

 

  Table 6 Distribution parameters of input variables for confined seepage model 

Inputs Description Distribution type Means c.o.v. Bounds 

,1xxk  [10
-7

m/s] 
Horizontal permeability  

of sand soil layer 
Lognormal [4.5,5.5] 100% / 

,1yyk [10
-7

m/s] 
Vertical permeability  

of sand soil layer 
Lognormal [1.8,2.2] 100% / 

,2xxk [10
-6

m/s] 
Horizontal permeability  

of gravel soil layer 
Lognormal [4.5,5.5] 100% / 

,2yyk [10
-6

m/s] 
Vertical permeability  

of gravel soil layer 
Lognormal [1.8,2.2] 100% / 

Dh  [m] 
water height in upstream  

side of dam 
Uniform / / [7,10] 
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Consider a steady state of confined seepage below a dam discussed in Ref. [33], the elevation of 

the dam is shown in Fig.9. The dam rests over soil composed of two permeable layers and one 

impermeable layer, and a cutoff wall is designed in the bottom of the dam for preventing excessive 

seepage. The water height in the upstream side of the dam is denoted by Dh (m) which is modeled as a 

random variable following uniform distribution of     7 ,10U m m . The hydraulic head Wh  over the 

segment AB  with respect to the impermeable layer is equal to  = 20W Dh h m . The water flows 

through two permeable soil layers towards the downstream side of the dam (see segment CD in Fig. 9). 

It is assumed that there is no water flow on any of the boundaries excepted the segments AB and CD. 

The first permeable layer is silty sand, while the second one is composed of silty gravel. The 

permeability of them are modeled as anisotropic and characterized by lognormal random variables, the 

mean (denoted by m , i.e., 
,xx ikm ) and c.o.v. of the horizontal (denoted by 

,xx ik ) and vertical 

permeability (denoted by 
,yy ik ) of the two soil layers are provided in Table 6. Note that the c.o.v. 

associated with each permeability is equal to 100%, indicating a high degree of uncertainty when 

estimating the parameters in engineering applications. The governing partial differential equation of the 

seepage problem is 

 

2 2

, ,2 2
0, 1,2W W

xx i yy i

h h
k k i

x y

 
  

 
  (43) 

    The boundary conditions are the hydraulic head over segments AB and CD. A finite element mesh 

comprising 3413 nodes and 1628 quadratic triangular elements is established for solving the above 

equation. And the seepage q  at the downstream side is measured in volume over time (hour) over 

distance (meter), i.e., the units of q  is  / h/ mL , it can be calculated by 

 ,2 dW

yy
CD

h
q k x

y


 

   (44) 

    The failure event of interest is defined when seepage q  exceeds a prescribed threshold 33  / h/ mL . 

Summarily, the permeability of the permeable layers are modeled as imprecise random variables, while 

water height Dh  is modeled as a precise uniform random variable, and LSF is    33g q x x .  

First, we set the fixed point *
θ  as    * * * *

,1 ,1 ,2 ,2, , , 5,2,50,20xx yy xx yyk k k k  [10
-7

m/s] and 

implementing AFOSM method after transforming into standard normal space, the important direction is 

 0.8094 0.3949,0.2826,0.2491,0.2168
T


α

e ， corresponding to the five variables in Table 6 by using 

152 times of model evaluations. The proposed HA-ILS and WI-ILS are implemented by sampling 100 

lines in which the total number of model evaluation are 452. The computational results of first-order 

component functions are plotted in Fig.10. It is shown that the results of both methods match well with 

each other and there is a clear trend of linear increase among all the first-order functions. The SDs in 

Fig.10 vary in the magnitude of 10−6  which is two orders of magnitude smaller than the 

corresponding component functions, revealing that all the first-order estimators are robustly estimated. 

Since WI-ILS does not involve approximations, so its plot is a relatively more accurate result, and the 
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small deviation in the third subplot of  
,2xxfi kP m  confirms the bias in HA-ILS method. Additionally, 

the plots of SDs also show a slower convergence speed away from *
θ , this indicates that the utilized 

important direction is suboptimal for estimating the actual values of the components as the distance 

between θ  and *
θ  increases. 

The first- and second-order parametric sensitivity indices as well as their SDs and constant 

component  *

fP   are provided in Table 7. Comparing the values of indices one can find that 
,1xxkm  

is the most influential parameter among all the indices, and first-order indices are much larger than 

second-order indices, indicating that the four parameters have a weak interaction effect on failure 

probability. Fig.11 shows the 3D plot of  
,1 ,1
,

xx yyfij k kP m m  and the corresponding SDs for illustrating 

the trend of second-order components with the proposed two methods. By comparing it with Fig.8 in 

shallow foundation model, there exist two maximum points in Fig.11 while there is only one in Fig.8. 

Overall, the plot of first-order and second-order component functions provide a deeper insight into the 

relationship between failure probability and distribution parameters. 

 

 

Fig.10 Plots of first-order component functions for confined seepage model 
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Table 7 The first- and second-order sensitivity indices for confined seepage model 

Methods HA-ILS WI-ILS 

Ncall 452 452 

 *

fP   8.088e-4
(1.8e-5) 

8.088e-4
(1.8e-5) 

iS  

,1xxkm  0.6796
(0.0003) 

0.6714
(0.0004) 

,1yykm  0.1618
(0.0001) 

0.1812
(0.0002) 

,2xxkm  0.0831
(3e-5) 

0.0612
(0.0003) 

,2yykm  0.0646
(2e-5) 

0.0735
(0.0002) 

ijS  

 
,1 ,1
,

xx yyk km m  0.0050
(2e-6) 

0.0060
(9e-5) 

 
,1 ,2
,

xx xxk km m  0.0026
(1e-6) 

0.0018
(1e-5) 

 
,1 ,2
,

xx yyk km m  0.0020
(8e-7) 

0.0024
(8e-6) 

 
,1 ,2
,

yy xxk km m  0.0006
(2e-7) 

0.0006
(4e-6) 

 
,1 ,2
,

yy yyk km m  0.0005
(2e-7) 

0.0007
(4e-6) 

 
,2 ,2

,
xx yyk km m  0.0002

(9e-8) 
0.0002

(3e-6) 

 

 

,1yykm

HA-ILS

WI-ILS

,1yykmxx,1km xx,1km
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Fig.11 Plots of the two most influential second-order component function with both HA-ILS and WI-ILS 

method for confined seepage model 

 

4.4 Transmission tower 

A model partially based on the example in Ref.[34] is considered, which comprises a considerable 

number of uncertain parameters. It consists of a truss structure with 80 bars representing a transmission 

tower (see Fig.12) that behaves within the linear elastic range, and it withstands four static loads in its 
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top nodes. The four loads are applied in direction    sin 3 ,cos 3 ,0     and are characterized as 

deterministic with magnitude F=200 [kN]. Each of the 80 bars contains two random variables, Young's 

modulus, and the cross-section area, so the total number of random variables is 160. The Young's 

modulus in each bar is modeled by a lognormal distribution, denoted by  1 80, ,E E . The 

cross-section area is also modeled considering a lognormal distribution, the area for the corner bars is 

denoted by  1 20, ,c cA A , while the cross-section area for the rest 60 bars is denoted by  21 80, ,A A .  

The c.o.v. of 10% is considered for all the 160 lognormal random variables, the mean value of 

both Young’s modulus and cross-section area of corner bars are modeled as 40 imprecise parameters 

(denoted by 
1 20
, ,E Em m  and 

1 20

, ,c cA A
m m ), while the mean value of the rest random variables are 

precisely known. All the parameters of the random variables are listed in Table 8. The response of 

interest is the displacement of node A located at the top of the transmission tower, which should not 

exceed a prescribed threshold of 0.06 [m]. 

 

Fig.12 Sketch of transmission tower 

 

Table 8 Distribution parameters of 160 imprecise random variables in transmission tower model 

Variable Description Distribution  Mean c.o.v. 

 1 20, ,E E  Young’s modulus of bars 1~20 Lognormal   111.89 2.31 10， [Pa] 10% 

 21 80, ,E E  Young’s modulus of bars 21~80 Lognormal 112.1 10 [Pa] 10% 

 1 20, ,c cA A  Cross-section area of 20 corner bars Lognormal [6700,8200] [
2mm ] 10% 

 21 80, ,A A  Cross-section area of the rest 60 bars Lognormal 4350 [
2mm ] 10% 

 

The expansion points *  of the 40 imprecise parameters are all set at the middle value of the 

intervals. Both methods are implemented with the same set 5000 lines with the total number of 

g-function calls being 15056. Note that line sampling is implemented considering a relatively high 
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number of lines; such number is selected in order to verify and compare the behavior of the proposed 

two methods with crude MCS. The constant HDMR component is estimated by both methods as 

0.0016 with SD being 8.085e
-5

, and the reference result computed by crude MCS is 0.0015 with SD 

computed to be 7.145e
-5

, indicating that the results computed by LS are accurate and robust. With the 

same set of samples, the first-order sensitivity indices as well as the corresponding plots of component 

functions are reported in Fig. 13 and Fig. 14, respectively. The sensitivity indices are normalized by the 

summation of the first two order non-normalized sensitivity indices.  

As can be seen from Fig. 13, the first-order sensitivity indices computed by HA-ILS and WI-ILS 

methods show some differences, which is caused by the failure of computing the indices of the two less 

important components of 17E  and 
17Ac  by HA-ILS. The first-order influential components 

computed by DL are also reported in Fig. 14 for comparison. It is shown that all the first-order 

influential components are accurately estimated by the WI-ILS method. However, while HA-ILS is 

utilized, the estimates of the two most influential components of 16E  and 
16Ac  are accurate, but those 

of the two less important components of  17E  and 
17Ac  is not. The reason has been reported in the 

analytical example, which is due to the inability of identifying these two less influential dimensions in 

the important direction. However, this can be improved by utilizing some other advanced method for 

searching another more accurate MPP, instead of the AFOSM method which does not identify all the 

influential dimensions in this implementation with high accuracy. This indicates that the performance 

of HA-ILS is highly dependent on the identified important direction, to which WI-ILS is much less 

sensitive.  

The six most important second-order component functions computed by WI-ILS method with the 

same set of samples are then reported in Fig. 15. The SDs of all estimates are very small and are not 

reported here. The sensitivity indices of all the influential components reported in Fig. 13 and Fig. 15 

sum up to 0.86, indicating that it is accurate to approximate the failure probability function with these 

components. For higher accuracy, the residual less influential components can be added, and we don’t 

give more details for simplicity.  

16E 17E 18E 11E
19E 12E

17Ac16Ac
18Ac 11Ac 6Ac 1Ac

Fig.13 Barplot of the influential first-order sensitivity indices for transmission tower model 
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Fig.14 Plots of the four most influential first-order component functions for transmission tower model 

16E
17E 16E

16E
16Ac

17Ac

17E
17E

16Ac

17Ac 16Ac

17Ac

(
,

)
fi

j
i

j
P




(
,

)
fi

j
i

j
P




0.2441ijS 

0.0579ijS 
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0.0546ijS 

0.0231ijS  0.0547ijS 

Fig.15 Plots of the six most influential second-order component functions by WI-ILS for transmission 

tower model 

 

5. Conclusions 

The present study was designed to develop efficient simulation methods for reliability analysis 

subjected to rare failure events when the model input variables are characterized by imprecise 

probabilities due to the imperfect knowledge. It is realized by developing two strategies for injecting 

the classical line sampling into the newly developed NISS framework. The first strategy, denoted as 

HA-ILS, is based on establishing a series of auxiliary hyperplanes for approximating the real LSF with 
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the input distribution parameters being fixed, and then evaluating the probability mass of the failure 

domain specified by each hyperplane when the distribution parameters vary. The second strategy, 

abbreviated as WI-ILS, is developed based on the combination of the simulation in (n-1)-dimensional 

subspace and the one-dimensional integral along each line. Analytical formulas of failure probability 

component functions associated with the proposed two methods are discussed in detail when the 

distribution of model inputs are specified as normal or lognormal independent distributions.  

An analytical example and three engineering examples are introduced for demonstrating the two 

proposed methods, and the main conclusions are as follows. Firstly, the results estimated by HA-ILS 

and WI-ILS all match well with the reference results by sharing only one small set of samples, 

indicating that both methods are effective and highly efficient for real applications. Secondly, for 

weakly or mildly non-linear models with small parameter ranges, HA-ILS has generally a faster 

convergence speed than WI-ILS, but in the meantime, it may produce a biased result caused by LSF 

approximations. Thirdly, as θ  is far away from *
θ , the hyperplane approximation of LSF used in 

HA-ILS might become worse especially for non-linear models. As for WI-ILS, although it doesn’t 

involve approximations, but the utilized important direction will become more and more suboptimal 

which will undoubtedly lead to a slower convergence speed of the estimators (that is, larger variance). 

Besides, our method can also evaluate the high-order component functions based on the same set 

of LS samples, and their relative importance is measured by the sensitivity indices. Thus, in our 

development, it really doesn’t matter whether the higher-order effects are influential or not. The 

only difference is that, for higher-order component functions, the statistical errors (measured by 

variances of estimators) can be larger. But for linear or moderately nonlinear problems, the 

statistical errors increases slowly w.r.t to the orders of components. 

Results of the transmission tower show that, for high-dimensional problems with a small 

number of dimensions being influential, the WI-ILS method is still efficient and accurate for all 

cut-HDMR components, whereas, the HA-ILS may be ineffective for estimating the less 

influential components due to the inability of including these dimensions in the important 

directions. This indicates that, the HA-ILS method is highly dependent on the identified directions, 

while WI-ILS is not. 

Future extensions of the two approaches reported herein, that is HA-ILS and WI-ILS, involve 

two main aspects. The first one is the analysis of problems involving several failure criteria, which 

in turn may demand identifying several important directions. Such issue has not been fully 

addressed in the literature, even when applying Line Sampling to purely aleatoric reliability 

problems. The second one is addressing the loss of precision (that is, increased variability) of the 

cut-HDMR estimators when evaluating probabilities for values of the parameter vector θ  that are 

far away from the reference value *
θ . It is envisioned that such problems could be addressed by 

performing a more exhaustive exploration of the uncertain parameter space, by switching from a local 

NISS to its global counterpart.  
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Appendix A : Derivation of failure probability function for Eq.(35)  

The PDF weight   in Eq.(34) can be further expressed by 
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As for the second term, it can be derived further as  
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Let 
 s

 ,  s
 ,   denote the above three terms, respectively, i.e., 
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Note that  ,  , 
 s

 ,  s
  are all functions of distribution parameters μ  and σ , and 1 2  . 

Additionally, 
 s

 ,  s
  vary according to the value of sample  s

dz
 . Then the PDF weight is 

simplified as 

       * 2, , = exp +
s s s

z z z    


 αz e θ θ                   (A.5) 

Taking it into Eq.(31) one derives 
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  can furtherly derived with an analytical solution 
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Then the analytical expression of the integral is finally derived as 
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Appendix B：Derivation of analytical failure probability function of Eq.(41) 

In standard normal space, the performance function in Eq.(40) is expressed as

     
2

1 2 1 1 1 2 2 2, = + +h z z z z       . The boundary of LSF  1 2, =0h z z  can be drawn as shown 

in Fig.B1. Assume that 2 'z  is a realization of 2z , then search the value of 1 'z  that satisfies the 

equation  1 2, ' =0h z z , i.e.,  

 
2
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1 2 2 2
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z z                        (B.1) 

From the view of line sampling, the reliability index associated with 
2 'z  is actually the distance 1d  

shown in Fig.B1, and its value equals to 1 'z . As a consequence, the failure probability can be 

expressed analytically with the following one-dimensional integral, 
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Fig.B1 Geometric sketch for deriving analytical solution of failure probability 
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