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Abstract 

In this work, ammonia (NH3) synthesis from N2 and H2 was carried out in a packed-bed 

dielectric barrier discharge (DBD) reactor, while three kinds of commercial packing materials 

including acidic γ-Al2O3, alkaline γ-Al2O3 and neutral alumina pellets were employed. The 

effect of packing materials on plasma-induced NH3 synthesis was investigated and compared 

with an unpacked DBD reactor. The results show that the presence of packing materials 

enhanced the plasma-induced NH3 synthesis by 15.6% to 44.4% compared to the plasma 

reaction without a packing. The highest NH3 concentration of 1565.5 ppm was obtained over 

the alkaline γ-Al2O3 packed plasma reactor. The improvement of packing materials on plasma-

induced NH3 synthesis followed the order of alkaline γ-Al2O3> neutral γ-Al2O3 > acidic γ-

Al2O3 > blank tube only. A series of characterizations were performed to illustrate the structure-

performance relationships between plasma-induced NH3 synthesis process and packing 

materials. The results showed that the basicity of the packing materials played an important 

role of the plasma-induced NH3 synthesis process. The reaction mechanisms of NH3 synthesis 

in the packed-bed DBD reactor were also discussed. 
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1. Introduction 

Ammonia (NH3) is the world’s second largest chemical product and is a crucial raw 



material in fertilizer and chemical industries. Ammonia could also provide sufficient guarantee 

for ammonia as a power source and hydrogen storage, due to its high hydrogen content of 17.6% 

[1, 2]. Moreover, ammonia has the characteristics of high energy density, convenient storage 

and transportation, appropriate calorific value and high octane-value when using as fuel [3-5]. 

Therefore, ammonia is regarded as an ideal clean and sustainable energy source as the raw 

materials used for ammonia synthesis are renewable and abundant [6].  

Conventional industrial-scale Haber-Bosch (HB) process produces NH3 via a strict 

chemical process which need to create a sustained high pressure (20-40 MPa) and temperature 

(400-600 °C) environment which limit its applications in medium and small scales. Moreover, 

the severe working conditions make this method great energy consuming (1-2% of world's 

primary energy supply) and high CO2 emission (roughly 300 million tons each year) [7]. With 

increasing population growth, the application of HB methods would correspondingly increase 

the energy consuming and CO2 emission, making it more environmentally and economically 

unfavorable. Great efforts have been devoted for HB method improvement in the last 100 years 

to discover greener and more economical friendly sustainable alternatives to the HB process, 

including biochemical processes, electrochemical processes and non-thermal plasma (NTP) 

based processes [8-10]. Among these methods, plasma-based methods are particularly 

promising due to its characteristics of quick start, compact system and the flexibility to combine 

with renewable energy sources to reduce operational cost. 

In general, NTP could generate highly chemically reactive species (e.g., high energy 

electrons, radicals, excited atoms and ions, etc.). These species could collide with reactants and 

even enable thermodynamically unfavorable reactions to proceed even at room temperature 

[11]. The aforementioned electrons and reactive species play important roles to initiate and 

propagate the complex physicochemical reaction matrix in NTP at near room temperature. The 

combination of plasma and heterogeneous catalysis (also known as “plasma-catalysis”) 

appeared to be promising to enhance the reaction performances including NH3 synthesis, 

volatile organic compounds (VOCs) oxidation, CH4 activation and water-gas shift reactions 

[12-15]. The underlying mechanisms of plasma-catalysis have been preliminarily studied and 



ascribed to the interactions between plasma and catalysts. For instance, the electric field could 

be signified by the packing materials and result in generating of more reactive species. These 

species could be transported to the catalyst layer and participate the surface reactions. Moreover, 

the physical properties of the catalysts may also be modified by exposure to a plasma [16, 17]. 

Recently, plasma-catalytic synthesis of NH3 has drawn attention. An early study reported 

NH3 synthesis in a N2-H2 mixture in a strong electric field at ambient pressure. The NH3 yield 

of 0.5% (v/v) was observed when MgO powder was used as a catalyst, which was more than 

50% higher than that of using plasma alone [18]. Mizushima et al. investigated NH3 synthesis 

in a DBD reactor with a tubular membrane-like alumina tube as a catalyst. The presence of a 

series of metal element (Ru, Pt, Ni, and Fe) as the catalytic active phase significantly improved 

the outlet NH3 yield by 40 to 100%, while the highest NH3 concentration was achieved when 

using Ru as the active phase of catalyst at the voltage of 4.5kV and flow rate of 30 mL·min-1 

[19, 20]. Gómez-Ramírez et al. employed a ferroelectric packed-bed reactor for NH3 synthesis 

from N2 and H2 under plasma treatment. Compared with BaTiO3, PZT showed better energy 

efficiency (max. 0.9 g·kWh-1) and higher N2 conversion rate (2.7%), respectively, indicating 

that the ferroelectric materials play both catalytic and electric roles in the plasma-induced 

reactions [21, 22]. More recently, Wang et al. studied the effect of transition metal on plasma-

enhanced catalytic synthesis of NH3 directly from N2 and H2 at near room temperature (∼35 °C) 

and ambient pressure with a specially designed water-electrode equipped DBD reactor, while 

the Ni/Al2O3 catalyst showed the highest NH3 synthesis rate among the tested samples [13]. 

Most of these studies investigated the effect of catalyst compositions (especially the active 

phase) and reaction conditions on the NH3 performance in plasma-catalysis system, while the 

effects of surface characteristics of the packing materials on NH3 synthesis were far from 

clearly understood . In this work, NH3 synthesis from N2 and H2 in a co-axial DBD reactor was 

investigated over three different packing materials including acidic γ-Al2O3, alkaline γ-Al2O3 

and neutral γ-Al2O3. The effects of working conditions, packing materials on NH3 

concentration and energy efficiency was analyzed and compared with the case of using plasma 

alone. A series of material characterizations were performed to illustrate the structure-



performance relationships between the packing material and NH3 synthesis. The NH3 synthesis 

reaction mechanisms were discussed and the reaction performance of plasma-catalytic 

synthesis of NH3 in this work was compared with the literature. 

 

2. Experimental section 

2.1 Experiment setup 

Figure 1 shows the schematic diagram of the experimental setup. For all experiments, the 

reactant gases (N2 and H2) were pre-mixed before being introduced to the DBD reactor. The 

two gas flows were controlled by mass flow controllers (Sevenstars, DB-07, China). Total flow 

rate of all experiments was fixed at 100 mL·min-1 unless otherwise specified. The reactor was 

powered by an AC discharge power source (Suman, CTP-2000K, China). The generated NH3 

was measured using a gas analyzer (Gasmet Dx4000, Finland) with the accuracy of ±3%. 

During the experiments, the DBD reactor was fan-cooled during the experiments. The 

temperature of the outer wall of the DBD reactor was around 90-105°C by an infrared 

thermometer (Omega, OS530, USA). 

 
Figure 1. The schematic diagram of the experimental setup. 

The DBD reactor was a concentric cylinder. A cylindrical quartz tube with an inner 

diameter of 8 mm and wall thickness of 1 mm was used as a discharge barrier. The quartz tube 

was wrapped by a 60 mm-long alumina mesh. The alumina mesh acted as a ground electrode 

in this work. A stainless-steel rod (4 mm in diameter) was placed on the axis of the quartz tube 

and connected to the AC power supply as the high voltage electrode, which resulted in the 

width of discharge gap of 2 mm. The discharge was limited in the space between the stainless-



steel rod and the inner surface of quartz tube. The packing materials (40-60 meshes) were 

randomly packed and held by glass wool in the reactor. All packing materials were of analytic 

grade and purchased from Aladdin Co. Ltd.. 

All the experiments were carried out at ambient pressure. The DBD reactor was energized 

when both N2 and H2 gas flows reached a steady state. The discharge power was measured 

using the Q-U Lissajous method. The applied voltage across the reactor was measured with a 

high voltage probe (Tektronix P6015A, 1000:1, USA), while the voltage across the measuring 

capacitor (1 µF) was measured with a non-source voltage probe (Tektronix TPP0500, USA). 

All signals were monitored by a digital oscilloscope (Tektronix DPO2014, USA). The power 

deposited to the reactor could be calculated as: 

( ) mP W = f C A´ ´                              (1) 

where Cm is the measuring capacitance, f is the AC frequency and A is the area of the Lissajous 

diagram. 

The specific input energy (SIE) defined as energy dissipated to the gas stream per unit 

volume is expressed as follow: 

( ) ( )
( )

-1
-1

P W
kJ L

Q mL min
SIE = 60× ´

×
                         (2) 

where Q denotes the total flow rate. 

Energy efficiency (EE) of the plasma-induced NH3 synthesis process is defined as follows: 

( )-1g kWh out afterM C Q
Energy Efficiency =

P
´ ´

×                  (3) 

where M is the molar mass of NH3, Cout denotes the outlet NH3 concentration and Qafter is the 

outlet gas flow rate after reaction.  

 

2.2 Material characterizations 

The textural properties of the γ-Al2O3 samples were measured using N2 adsorption-

desorption experiments at 77 K. The samples were degassed at 200 °C for 5 h before each 

measurement. The specific surface area (SBET) of the samples were obtained using the 



Brunauer–Emmett–Teller (BET) equation. 

The X-ray diffraction (XRD) patterns of the samples were measured using a Rikagu 

D/max-2000 X-ray diffractometer. The instrument was equipped with a Cu-Kα radiation source, 

All samples were scanned in the range of 10° to 80° with the step size of 0.02°. 

The basicity of the samples was analyzed by temperature-programmed desorption of CO2 

(CO2-TPD). In each test, 100 mg catalyst samples were pre-treated at 250 °C in an Ar flow for 

1 h to remove the weakly adsorbed impurities before being cooled down to 50 °C . The sample 

was then heated to 800 °C at a heating rate of 10 °C�min-1 in a 5 vol.% CO2/Ar flow at the flow 

rate of 40 mL�min-1. The CO2 desorption amount was calculated by the integrating the CO2-

TPD profiles. 

 

3. Results and discussions 

3.1 Characterization of catalysts 

The textural properties of all three γ-Al2O3 samples were obtained using N2 adsorption-

desorption experiment (in Table 1). All three γ-Al2O3 samples show similar physical properties 

in specific surface area (~152 m2·g-1), total pore volumes (~0.26 cm3·g-1) and average pore size 

(centered around 6.7 nm). The XRD patterns of all three samples are given in Figure 2. It is 

obvious that all three patterns show typical diffraction peaks of γ-Al2O3 centered at 37.6°, 

45.9°and 67.0°, corresponding to the cubic structure of γ-Al2O3 crystalline (JCPDS 00-010-

0425). No identical diffraction peaks of species other than γ-Al2O3 are detected, indicating all 

three samples possess the same crystal structures.  

Table 1. Physico-chemical properties of the γ-Al2O3 samples. 

Catalyst 
SBET 

(m2·g-1) 

Total pore 

volume 

(cm3·g-1) 

Average 

pore size 

(nm) 

Amount of CO2 

desorption 

(mmol·g-1) 

Acidic γ-Al2O3 152 0.25 6.7 0.60 

Alkaline γ-Al2O3 154 0.27 6.8 1.13 

Neutral γ-Al2O3 152 0.26 6.7 0.94 



 

Figure 2. XRD patterns of the γ-Al2O3 samples. 

The basicity of all three samples were measured using CO2-TPD experiment and the 

profiles are presented in Figure 3. All CO2-TPD profiles of the γ-Al2O3 show two distinct CO2 

desorption peaks. The peaks located between 100-200°C could be ascribed to the weak basic 

sites on the surfaces of γ-Al2O3, while the peaks centered at 350–450°C belong to the strong 

basic sites [23, 24]. The CO2 desorption amount of all three γ-Al2O3 is calculated based on the 

CO2-TPD profiles (in Table 1). It can be seen that the highest CO2 desorption amount of 1.13 

mmol·g-1 is observed over alkaline γ-Al2O3. The desorption amount of all three γ-Al2O3 follow 

the order of alkaline γ-Al2O3 > neutral Al2O3 > acidic γ-Al2O3, indicating the highest basicity 

of alkaline γ-Al2O3 in this work. 

 
Figure 3. CO2-TPD profiles of the γ-Al2O3 samples. 



3.2 Effect of feeding gas ratio and flow rate 

Figure 4 shows the effect of feeding gas ratio on plasma-catalytic synthesis of NH3 over 

the γ-Al2O3 packed and non-packed DBD reactor at different N2/H2 molar ratios (1:5, 1:3, 1:1, 

3:1 and 5:1) at the SIE of 12.0 kJ·L-1. Compared with the non-packed reactor, the presence of 

packing materials improved the NH3 concentration over the tested N2/H2 molar ratios. It is 

interesting to note that for all packing materials, the highest NH3 concentration is obtained at 

the molar ratio of 1:1 instead of the stoichiometric N2/H2 molar ratio of 1:3. Previous studies 

reported that the dissociation of triple bond in N2 molecules is the rate determining step in NH3 

synthesis due to the higher dissociation energy of N2 (9.8 eV) compared to that of H2 (4.5 eV) 

[13]. Thus, it could be deduced that increasing of N2/H2 may increase the possibilities of 

effective collisions between high energy electrons and N2 molecules, which lead to the 

dissociation of N2 molecules and generate more N· radicals in the plasma regions especially in 

N2-rich conditions [25]. Consequently, the NH3 concentration was increased. Similar optimum 

N2/H2 ratios were reported in Xie et al. and Peng et al.’s work [26, 27].  

Figure 5 presents the effect of gas flow rate on plasma-catalytic synthesis of NH3 at the 

SIE of 12.0 kJ·L-1. The NH3 concentration follows the order of alkaline γ-Al2O3 > neutral 

Al2O3 > acidic γ-Al2O3 > blank tube reactor. The highest NH3 concentration of 2079.1 ppm is 

obtained at the minimum gas flow rate of 50 mL·min-1 over alkaline γ-Al2O3. Further 

increasing the gas flow rate decreases the NH3 concentration. Similar results were widely 

reported for plasma-catalytic reactions as the residence time of gas mixtures were prolonged at 

lower gas flow rate. For a given reactor configuration and constant reaction conditions, the 

number density and electron energy distribution function (EEDF) of generated energetic 

electrons and reactive species were the same [28]. Thus, with longer residence time, the 

possibilities of effective collisions between the electrons and reactive species were enhanced 

no matter on the surfaces of packing materials or in the gas phase, leading to an improvement 

in the generation of more NH3 in the reactor. A similar phenomenon was also reported in the 

plasma processing of N2 and H2 using a non-packed DBD reactor [26]. 



 

Figure 4. Effect of N2/H2 molar ratio on plasma-catalytic synthesis of NH3 over γ-Al2O3 in 

terms of outlet NH3 concentration (Reaction conditions: SIE=12 kJ·L-1, N2/H2 molar ratio=1:3). 

 

Figure 5. Effect of total flow rate on plasma-catalytic synthesis of NH3 over γ-Al2O3 in terms 

of outlet NH3 concentration (Reaction conditions: SIE=12 kJ·L-1, N2/H2 molar ratio=1:3). 

 

3.3 Effect of specific input energy (SIE) 

Figure 6 presents the effect of different packing material on the performance of plasma-

catalytic synthesis of NH3 in terms of NH3 concentration and energy efficiency of the process. 

Clearly, both NH3 concentration and energy efficiency of the plasma-catalytic process increase 

with SIE regardless of the packing material used. As given in Figure 6a, NH3 concentration in 

the blank tube case increases from 124.5 ppm to 1120.6 ppm in the SIE range of 3.71 kJ·L-1 to 

14.52 kJ·L-1. The introduction of alkaline γ-Al2O3 significantly improve the NH3 concentration 

over the tested SIE range by 15.6% to 44.4%, while the enhancement is observed only over 

high SIE in presence of other two types of γ-Al2O3. The highest NH3 concentration of 1565.5 



ppm is obtained over packed DBD reactor at the SIE of 14.55 kJ·L-1. This phenomena indicates 

the role of surface chemistry of the packing material, γ-Al2O3, for NH3 synthesis in plasma 

environment. It is well recognized that increasing the SIE could effectively enhances the 

electric field in the plasma region and result in the generation of more highly energetic electrons 

[29]. As with the case of NH3 synthesis, these species are capable to collide with the N2 and H2 

molecules to generate N·, H· radicals and N2
+ ions [13, 30]. The number densities of these 

species increased with discharge voltage as confirmed using optical emission spectra (OES), 

resulting in the generation of more NH· radicals by recombination, the major precursor of NH3 

formation, in the plasma-catalytic system [31]. Moreover, the reactions between free radicals 

and vibrational excited N2 and H2 molecules were recognized to be more important than ion 

reactions on NH3 synthesis [32]. Similarly, the energy efficiencies of the plasma-catalytic 

process increase with the increased SIE for all cases, while the highest energy efficiency of 

6.58 g·kWh-1 is achieved at the SIE of 14.55 kJ·L-1 over alkaline γ-Al2O3 (Figure 6b). This 

could be ascribed to the activation and dissociation of chemical bonds in N2 and H2 at higher 

SIE, leading to the generation of more NH3. 

 

Figure 6. Effect of SIE on plasma-catalytic synthesis of NH3 over γ-Al2O3: (a) outlet NH3 

concentration, (b) energy efficiency of the process (Reaction conditions: N2/H2 molar ratio = 

1:3; Q=100mL·min-1). 

In this study, it is clear that the performance of plasma-catalytic NH3 synthesis mainly 

depends on the properties of the packing materials. As the physical properties of the packing 

materials were almost the same, it can be deduced that the chemical properties on the γ-Al2O3 



may play a more important role. Previous works also evidenced that in single-stage plasma-

catalytic system, plasma-induced surface reactions played a crucial role as the packing 

materials were directly in contact with plasma discharge besides the reactions in gas phase. In 

plasma region, the generated reactive N· and H· species could also be transported and adsorbed 

on the surface of the packed γ-Al2O3 together with NHx· (x=1, 2) radicals [33]. The metastable 

species like N2(A) may contribute to the adsorption of radicals and accelerate the surface 

reactions. The N2 adsorption-desorption and XRD results showed that the packed γ-Al2O3 

possessed similar physical properties. It could be deduced that the enhancement of electric field 

in the packed-bed DBD reactors were almost the same considering the powder sizes and the 

physical properties [28]. As given in Figure 3, all CO2-TPD profiles of the γ-Al2O3 samples 

shows two major CO2 desorption peaks, and the desorption peaks belong to strong basic sites 

are much larger than that of weak basic sites. The amount of CO2 desorption and maximum 

desorption temperature of CO2 could be used to determine the amount and strength of basic 

sites respectively [24]. Moreover, the basicity of the packed γ-Al2O3 follows the order of 

alkaline γ-Al2O3 > neutral Al2O3 > acidic γ-Al2O3. It was well recognized that the activity of 

NH3 synthesis was closely correlated to the basicity of the catalyst due to the electron-donating 

effect of the basic sites [23]. The surfaces with more strong basics sites tended to offer an 

electron-rich environment in plasma-catalytic synthesis of NH3, and consequently contribute 

to the enhancement of N2 dissociation of the γ-Al2O3 in this work. Considering the synergistic 

effect in the plasma-catalytic synthesis of NH3 occurred between both gas phase and solid phase 

[11]. Thus, the adsorbed N·and NHx (x=1, 2) may follow a stepwise hydrogenation reactions 

with H· in gas phase and on catalyst surfaces, forming NH3 molecules in the plasma-catalytic 

system under both the Eley-Rideal (E-R) mechanisms and the Langmuir-Hinshelwood (L-H) 

mechanisms [13]. Based on the discussions, the reaction mechanisms of plasma-catalytic NH3 

synthesis over γ-Al2O3 were presented in Figure 7. 

 



 
Figure 7. Reaction mechanisms of plasma-catalytic NH3 synthesis over γ-Al2O3. 

 

3.4 Comparisons of reaction performance with literature 

Figure 8 compares the performance of plasma-catalytic synthesis of NH3 in terms of NH3 

concentration and energy efficiency of the process, while the data is derived from the literature. 

It can be seen that the NH3 concentration and energy efficiency of the plasma-catalytic process 

increases simultaneously with the increasing SIE under the given working conditions and fixed 

plasma reactor configuration. This could be ascribed to the generation of more chemically 

reactive radicals from N2 and H2 in the plasma-catalytic systems, while all the generated species 

could contribute to the formation of NHx (x=1,2), the major precursors of NH3, with no energy 

was used to ionize the carrier gas molecules that didn’t participate in the final product (unlike 

the case of waste gas treatment) [34].  

It could be summarized that the energy efficiency and total energy consumption at a 

certain outlet NH3 concentration majorly depended on the reactor configuration and working 

conditions. For example, Xie et al. investigated the one-step synthesis of NH3 in an Al2O3 

packed DBD reactor. The NH3 concentration of 46.3 ppm and energy efficiency of 0.62 g·kWh-

1 was achieved simultaneously at the SIE of 8.4 kJ·L-1 [35]. As with Ruan et al.’s work, a NH3 

outlet concentration of 45 ppm and energy efficiency of 1.70 g·kWh-1 were obtained at a high 

SIE of 124 kJ·L-1 over a Ru/Si-MCM-41 catalyst [36]. Murphy et al. reported a NH3 synthesis 

in a diamond-like-carbon coated α-Al2O3 spheres packed DBD reactor. The outlet NH3 

concentration of 3150 ppm and energy efficiency of 0.18 g·kWh-1 were obtained at the SIE of 

43.4 kJ·L-1 [37]. In this work, a relative high energy efficiency was achieved at low SIE, 



indicating the potential of alkaline γ-Al2O3 as a catalyst for plasma-catalytic process. However, 

the concentration of outlet NH3 was not high enough. Therefore, the balance between total 

energy consumption and reaction performance in terms of NH3 concentration and energy 

efficiency should be considered and optimized for further development and optimization of a 

cost-effective plasma-catalytic process for NH3 synthesis on a wide range of plasma operating 

conditions. 

 

Figure 8. Comparison of NH3 concentration and energy efficiency of plasma-catalytic 

synthesis of NH3 with previous studies (The numerals in the brackets are the corresponding 

SIE of the presented energy efficiency in the literature, unit: kJ·L-1).  

 

4. Conclusions 

NH3 synthesis from N2/H2 mixtures was carried out at ambient pressure in a packed-bed 

DBD reactor, while three kinds of commercial packing materials include acidic γ-Al2O3, 

alkaline γ-Al2O3 and neutral alumina pellets were employed. The outlet NH3 concentration 

increased with increasing SIE of the DBD reactor. The presence of all types of γ-Al2O3 

enhanced the plasma-catalytic synthesis of NH3 compared with the unpacked DBD reactor by 

15.6% to 44.4%. The highest NH3 concentration of 1565.5 ppm was obtained over the alkaline 

γ-Al2O3 packed plasma reactor at the SIE of 14.55 kJ·L-1. The enhancement of packed material 

on plasma-induced NH3 synthesis followed the order of alkaline γ-Al2O3 > neutral γ-Al2O3 > 

acidic γ-Al2O3. The highest energy efficiency of 6.58 g·kWh-1 was also obtained at the SIE of 



14.55 kJ·L-1 over alkaline γ-Al2O3. The effects of N2/H2 molar ratio and gas flow rate on 

plasma-catalytic NH3 synthesis were also studied. The optimum N2/H2 molar ratio in this work 

was 1:1, indicating the N2-rich environment was favorable for NH3 synthesis due to the 

generation of more N radicals under the treatment of plasma, while higher gas flow rate reduced 

the outlet NH3 concentration. A series of characterizations including N2 adsorption-desorption, 

XRD and CO2-TPD were performed to illustrate the structure-performance relationships 

between plasma-induced NH3 synthesis process and the packing materials. Since the physical 

properties of all three γ-Al2O3 are almost the same. The enhancement in reaction performance 

was attributed to basicity of the packing materials due to the electron-donating effect of basic 

sites on catalyst surfaces, as the order of enhancement effect were in consistent with that of 

basicity. The reaction mechanisms of NH3 synthesis in γ-Al2O3 packed-bed DBD reactor were 

proposed. 
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