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This paper coincides with recent publications of international Standards, which provide 

methods of predicting the performance of both heavyweight and lightweight buildings in 

terms of airborne sound insulation and impact sound isolation, from the performance of 

individual elements such as walls and floors. The performances of the elements are 

characterized by the sound reduction index and the impact sound pressure level. To predict 

the sound pressure level due to vibrating sources (i.e. mechanical installations, water services 

and other appliances), source data is required in a form appropriate as input for prediction 

models similar to the above, i.e. as equivalent single quantities and frequency band-averaged 

values. Three quantities are required for estimating the structure-borne power for a wide 

range of installation conditions: activity (the free velocity or the blocked force of the 

operating source), source mobility (or the inverse, impedance) and receiver mobility (or 

impedance) of the connected building element. Methods are described for obtaining these 

source quantities, including by using laboratory reception plates. The paper concludes with 

a proposed database, based on laboratory measurements and simple mobility calculations, 

which provides a practical approach to predicting structure-borne sound in buildings.  

 
Primary subject classification: 51; Secondary subject classification: 43  

1 INTRODUCTION 

  

 Structure-borne sound in buildings is generated by vibrating or impacting sources, which 

inject vibrations through the contacts with building elements. The vibrations propagate throughout 

the building and eventually radiate sound into adjacent spaces or non-adjacent spaces in the 

building. To predict structure-borne sound, a sub-structuring approach is required for both the 

passive1, 2 (e.g. walls and floors involved in the sound transmission) and active components  (e.g. 

plant equipment and water services, acting as the sound sources). Procedures are in place for the 

passive components in international Standards3, 4. The sound reduction indices and impact sound 

pressure levels of the building elements of interest are measured in Standard test facilities5. The 

measured data is modified, to include edge effects and dissipative losses, then incorporated into 

the building sound propagation models for prediction of in-situ performance. The prediction 

models also require input data for junctions between building elements, measured in Standard test 

facilities6.  
 For the active components, the source quantities also require laboratory measurements, to 

provide input data for the building propagation models. For airborne sources, there is a menu of 

Standards for measuring the sound power levels7, incorporated into a present Standard8. This 

Standard also deals with structure-borne sound source prediction using input data in the form of 
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installed power (power transmitted to the receiving building element to which the source is 

connected) but is only applicable to heavyweight buildings and is rather difficult to use. This 

Standard is now under review, to simplify the method for heavyweight buildings and to deal with 

lightweight buildings. 

 There is not yet a comprehensive menu of methods and data for structure-borne sound 

sources, but there has been recent progress on both source characterization9, providing input data 

for prediction in any type of buildings, and prediction of in-situ performance10 and a description 

of advances in this area forms the core of this paper. The paper concentrates on lightweight 

buildings, since the most recent developments have been on building elements, such as 

framed/ribbed cavity walls and floors. Note that some elements, such as cross-laminated timber 

(CLT) constructions or hybrid concrete systems (e.g. screed-on-wood), do not necessarily behave 

like lightweight structures3. 

2 MODELLING BUILDING SOUND PROPAGATION  

 

2.1. Empirical approach 

  

Sound propagation models in building are empirical or involve sub-structuring. In an example 

of the former and to address structure-borne sound in inhomogeneous lightweight buildings, 

Schöpfer et al treat the whole building as a ‘black box’ to give the transmission function, the ratio 

of the sound pressure ‘anywhere’ in the building and an injected vibration power ‘elsewhere’ in 

the building11. Fig. 1 shows a selection of transmission functions for lightweight building systems. 

The injected power is measured as the cross-spectrum of the contact force and response velocity 

at an excitation point. The force was generated and recorded by an instrumented shaker (i.e. with 

in-line force transducer) or by an instrumented hammer, shown in Fig. 1(d). The response velocity 

is recorded using a matched pair of accelerometers about the excitation point. The transmission 

function is the level difference between spatial average sound pressure level (ref 2*10-5 pa) in the 

receiver room of interest and the spatial average power level (ref 10-12 W) over the excited 

wall/floor of interest. The transmission function is now defined and its measurement specified in 

the series EN ISO 108486.   

Fig. 1 shows that the ensemble ranges are of the order of 10-20 dB. The trend curves are 

generally monotonic and point to simple functions of frequency. There is the potential to create 

data bases as simple prediction tools, and there are ongoing field measurements, and work on how 

building types could be grouped and classified.  

 

 

 

 

 



 

 

  

            
 

Fig. 1 - Field measured transmission functions: (a) horizontal transmission through plasterboard 

on timber wall; (b) diagonal transmission through the same wall above and below a timber-joist 

floor; (c) vertical transmission through timber-joist floor; (d) force hammer excitation with 

matched accelerometer pair, after [11]. 

  

2.2. Sub-structuring approach 

 

In the alternative sub-structuring approach, the building elements (e.g. walls or floors), 

including junctions, are measured under laboratory conditions and then fictively joined to form the 

whole building. The sound propagation models are a reduced form of Statistical Energy Analysis 

(SEA)12, 13, in that junctions between adjacent spaces only are considered3, 4, 14.  
 

 

 

 

 

 

 

 

 

 

Fig. 2 – Direct and flanking paths for horizontal airborne sound transmission; for clarity, the 

flanking paths are only shown for one junction 
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Consider airborne sound transmission between horizontally adjacent rooms. The Standard 

ISO 12354-1 approach3 is to consider each possible transmission path separately, shown in Fig.2, 

and then to sum their contributions. The procedures for transferring the laboratory data into in situ 

performance values are documented for heavyweight (Type A) constructions. Type A 

constructions are generally concrete floors and masonry walls, the junctions of which give a 

decrease in vibration level of less than 6 dB. Therefore the structural reverberation time at low 

frequencies is primarily determined by the connected elements. The following applies to the 

recently included lightweight (Type B) constructions15, 16. Type B constructions are generally of 

framed or ribbed plates of timber or other lightweight materials and the junctions have little 

influence on the structural reverberation time. For the direct path, the in-situ sound reduction index 

Rsitu of the separating wall is obtained from laboratory measurement of sound reduction index R. 

For lightweight constructions there is no need to correct for loss factor, i.e. the ratio is of the 

reverberation times of the wall in situ and in the laboratory. According to ISO 12354-13, the 

flanking transmission path between element i in the source room and element j in the adjacent 

receiving room is characterized by Rij defined as the sound power radiated by element j in the 

receiving room due to incident sound on element i in the source room and calculated from the 

performance of the elements along the path as 

𝑅𝑖𝑗 =
𝑅𝑖+𝑅𝑗

2
+ 𝐷̅𝑣,𝑖𝑗,𝑛 + 10𝑙𝑜𝑔 (

𝑆𝑠

𝑙0𝑙𝑖𝑗
) dB (1) 

 𝐷̅𝑣,𝑖𝑗,𝑛 is the normalized direction averaged junction velocity level difference, Ri, Rj the sound 

reduction index of element i and j (the walls are assumed bare for  clarity) assuming resonant 

transmission only, using the element radiation efficiencies3,  SS the surface area of the element 

separating the two rooms, lij the junction length and lo a reference length (lo = 1m). Fig. 3 shows 

an example calculation of the horizontal transmission through a timber cavity wall where direct 

path and flanking contributions are shown.  

 

Fig. 3 - Sound insulation across a cavity wall with parallel floor joists: measured (solid line); 

laboratory measurement of wall alone (dotted line); predicted value including flanking paths 

(dashed line), after [15]. 



 

 

The coincidence dip, evident in the measurement of the wall alone, is not evident in the field 

measurement, showing that the timber cavity wall is probably not exactly the same as the one 

tested in laboratory. However, the example demonstrates that Standard methods are in place for 

predicting sound transmission in heavyweight and now in lightweight buildings; although 

obtaining the correct input data is not always straightforward.  

For impact sound transmission, a similar sub-structuring approach is used as shown in Fig. 4, 

but where a reference active component (the well-known standard tapping machine) is on the floor 

of interest. According to the corresponding Standard ISO 12354-24, a flanking impact sound level 

Ln,ij  can then be defined as the sound pressure level radiated by element j in the receiving room 

generated by the tapping machine on element i in the source room; Ln,ij can be calculated from the 

performance of the elements along the path, including the (direct) impact sound level Ln,i  of the 

impacted floor, measured in laboratory4 with no flanking paths 

 

𝐿𝑛,𝑖𝑗 = 𝐿𝑛,𝑖 +
𝑅𝑖−𝑅𝑗

2
− 𝐷̅𝑣,𝑖𝑗,𝑛 − 10𝑙𝑜𝑔 (

𝑆𝑠

𝑙0𝑙𝑖𝑗
) dB                                  (2) 

 

 

 

 

 

 

 

 

Fig. 4 – Direct and flanking paths for vertical impact sound transmission; for clarity, the flanking 

paths are only shown for one junction. 

 

The sub-structuring approach, used for impact sound transmission, can be used for service 

equipment transmission10. The supporting building element i is characterized using a new quantity 

called unit power sound pressure level (Lne,0,i) defined as the sound pressure level radiated in a 

laboratory with no flanking paths when a structure-borne sound source of unit power is connected 

to element i. From Lne,0,i , the equipment sound pressure level Lne,i can be estimated using Eqn. (3), 

where the equipment contact power LW,contact,i is measured according to standard EN 156579, using 

the mobility approach described in Section 3  

 𝐿𝑛𝑒,𝑖 = 𝐿𝑛𝑒,0,𝑖 + 𝐿𝑊,𝑐𝑜𝑛𝑡𝑎𝑐𝑡,𝑖 − 𝐿𝑊0                                  (3) 

 

LW0 is the unit power level in dB ref. 10-12 Watt (LW0 = 120 dB). The sound pressure level generated 

in-situ by any equipment connected to element i can therefore be obtained by using Lne,i as input 

Receiving room 

source room 

Tapping machine 

Direct path 

Flanking path 



 

 

data in the prediction method for impact sound4, i.e. by replacing Ln,i with Lne,i in Eqn. (2) for any 

path ij.  For lightweight buildings, the Standards3,4 also suggest a semi-empirical approach, where 

each path ij is measured with the other paths shielded6. For impact sound transmission for example, 

the flanking impact sound level Lnij can be predicted from Lnij,lab by only correcting for geometrical 

differences:  

 𝐿𝑛,𝑖𝑗 = 𝐿𝑛,𝑖𝑗,𝑙𝑎𝑏 − 10𝑙𝑜𝑔 (
𝑆𝑖 𝑙𝑖𝑗,𝑙𝑎𝑏

𝑆𝑖,𝑙𝑎𝑏 𝑙𝑖𝑗
)              (4) 

The same approach can be applied to service equipment. The tapping machine is replaced by a unit 

power structure-borne sound source, giving Lne,0,ij,lab and Lne,0,ij, as in Eqn. (4).  

3 SOURCE INPUT QUANTITIES  

 

       Airborne sound sources are characterized by their sound power W. A washing machine, 

compressor, fan unit, etc. can be described as a single frequency dependent value, typically in 

octaves or one third octaves, which can be input to a source-path-receiver model. Duct systems are 

spatially extended sources, which can be represented by localized airborne sound sources, which 

may be located along ducts (break-out) or at duct terminations. Airborne sound transmission to an 

adjacent room is then obtained using the sub-structuring approach3, composed of flanking paths ij 

and using airborne sound power as source input data. The method assumes diffuse sound fields in 

rooms and only approximates the airborne sound power Winc,i incident to element i, discarding 

direct field and source directivity 

 

𝐿𝑊𝑖𝑛𝑐,𝑖 ≈ 𝐿𝑊 + 10lg (𝑆𝑖/𝐴𝑆)                                  (5) 

 

Si is the area of element i and AS the equivalent absorption area of the source room. Eqn. (5) simply 

means that the ratio between source power (or power absorbed in the room) and the room 

equivalent absorption area is the same as the ratio between the power incident to element i and the 

area of this element, both being equal to the diffuse sound intensity in the room. The sound pressure 

level transmitted to the adjacent room through path ij is then readily obtained from Winc,i and Rij, 

the ratio between power incident to element i in the source room and power radiated by element j 

in the receiving room. The total sound pressure level including all the paths ij is finally calculated 

for comparison with appropriate receiver (listener) criteria. There is a menu of standard 

recommended laboratory methods of obtaining the airborne sound power, including by source 

substitution, in reverberant conditions, in anechoic conditions and by intensity methods6. A 

significant simplification is possible because vibrating sources, which cause acoustic radiation, 

generally are not affected by fluid loading. Further, the mobility of the receiving system, or 

conventionally the impedance of the air, ρc, is assumed not to vary much with location, although 

in practice it depends on the closeness of the radiating surfaces to reflecting surfaces. 

 Concerning structure-borne sound sources (see Table 1), data for prediction are, or should be 

also expressed in terms of power, which now depends on the receiver properties. Pipe work and 

lift systems are spatially extended sources connected to different building elements, and can be 

replaced by localized structure-borne sound sources connected to these elements.   

             

 



 

 

Table 1 – Airborne and structure-borne sound transmission in buildings 

 

 Airborne Structure-borne 

Source input 

quantity 

Lw 

 

Lw,contact 

  

Path Room absorption 

Airborne sound insulation 

 

Isolating mounts 

Structure-borne sound insulation 

 

Design criteria 

Human response 

LAeq, NC, RC Standards LAeq, NC, RC Standards 

 

4 STRUCTURE-BORNE SOURCES 
 

 The issue of structure-borne source characterization was raised by Kihlman17 in a call for the 

development and standardization of measurement methods. In a response by ten Wolde and 

Gadefelt, several methods were proposed and considered18. The methods included measurement 

of the velocities or accelerations on the feet of resiliently mounted machinery (which eventually 

became a Standard27), measurement of an equivalent force by a substitution method, measurement 

of accelerations on a reception plate or of sound pressures in a reception enclosure. Gerretsen19 

considered the practicality of the proposed procedures, also Villot through case studies20. The 

primary consideration was on how such laboratory measurements relate to the performance of the 

machine when installed.  Petersson and Gibbs assessed the methods according to the following 

criteria: a procedure should produce data which allows a comparison of sources, comparison with 

set limits, data for prediction and data for low-noise design21. The main conclusion, from reviews 

of the proposed methods18 was that measurements should be on a power basis or transform to input 

power for when the source is installed. 

 Vibrating installations become structure-borne sources at supporting mounts, services runs 

and structural bracing. Multiple contacts generate multiple transmission paths but manufacturers 

and engineers desire a single value of source strength and it and the transmission should be 

expressed as powers22, 23. Three quantities are required for prediction of the transmitted power at 

an installation: source activity (either the free velocity or the blocked force of the operating 

machine), source mobility (or the inverse, impedance) and the receiver mobility (or impedance) of 

the supporting and connected structural element24. Fig. 5 gives the inverse analogous electric 

circuit of an active component connected to a passive receiver25, 26, to give the contact force and 

contact velocity, the product of which gives the time-averaged power transmission at that contact. 

YS and YR is the source and receiver mobility, respectively. Mobility is the ratio of response velocity 

to applied force and is the inverse of impedance. Rotational components can be considered in terms 

of moment mobility, the ratio of angular velocity to applied moment. 

 The free velocity Vf is the velocity measured at each contact of the freely suspended source, 

operating under otherwise normal conditions27. The alternative for source activity, the blocked 

force (the force obtained at a contact with an inert receiver) previously required force transducers 

to be inserted at each contact with a heavy plate. This can alter the contact conditions. Recent work 

by Moorhouse et al28 has circumvented this problem by measuring the blocked force as the ratio 

of contact velocity to the coupled mobility. This means that machines can be measured in situ. The 

method has the additional advantage in that it circumvents concerns that the internal mechanisms, 

which result in the free velocity at the connections, might be affected by disconnecting the device 

and resiliently supporting it. 



 

 

  

 

  Source  Receiver 

 

                             𝑌𝑆  

 

 𝑉𝑓     𝑌𝑅  𝑉𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑉𝑓  
𝑌𝑅

𝑌𝑆 +𝑌𝑅
   

 

 

          𝐹𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
𝑉𝑓

𝑌𝑆 +𝑌𝑅
 

 
 

 

Fig. 5 – Inverse analogous electric circuit of an active source connected to a passive receiver.  

  

The three source quantities are related 

  𝐹𝑏𝑙𝑜𝑐𝑘𝑒𝑑 =
𝑉𝑓

𝑌𝑆
 (6) 

 

This relationship holds for single contacts and by matrix expressions for multiple contacts and 

degrees of freedom. Therefore, methods which give any two of the source quantities, then yield 

the third. In the following discussion, free velocity is considered as source activity. Whilst 

empirical methods have been developed for estimating the free velocity of fans29, usually source 

activity is measured. The source mobility SY is complex and can be measured when the source is 

freely suspended. The supporting structure is represented by the receiver mobility RY . The 

transmitted power at the contact is the real part of the complex power, which is the product of 

contact force and contact velocity 

 

  𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
1

2
|𝑉𝑓|

2
 

𝑅𝑒(𝑌𝑅)

|𝑌𝑆+𝑌𝑅|2  (7) 

 
Fig. 6 shows example magnitudes of source and receiver point mobility in buildings. For the 

example shown, the fan attached to a timber-frame or ribbed structure, the receiver mobility is 

significantly higher than the source mobility (|YR |>>|YS |) at frequencies below 125 Hz and below 

this frequency Eqn. (7) becomes the simpler expression 

 

        𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ≈
1

2
|𝑉𝑓|

2
 
𝑅𝑒(𝑌𝑅)

|𝑌𝑅|2       (8) 



 

 

 
Fig. 6 - Magnitudes of point mobility at contact of: fan base (black line); whirlpool bath (solid 

grey); concrete floor (dashed black); timber frame/joist (dashed grey); chipboard (dotted grey). 

 

This is the classic velocity source assumption. All that is required of the source is the measured 

free velocity squared. Measurement of free velocity at each contact is relatively straightforward27, 

although there can be problems in ensuring that the machine operates normally. The squared 

quantity is real valued and therefore is measurable in frequency (e.g.1/3 octave) bands.  

  For the same fan and timber-frame/joist structure, above 800 Hz the receiver mobility is 

significantly lower than the source mobility (|YS |>> |YR |) and therefore, above 800 Hz, Eqn. (7) 

becomes: 

  

𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ≈
1

2
|𝑉𝑓|

2
 
𝑅𝑒(𝑌𝑅)

|𝑌𝑆|2 ≈
1

2
|𝐹𝑏|2𝑅𝑒(𝑌𝑅)         (9) 

 

This is the classic force source assumption and the source is characterised by the blocked force 

squared. This assumption commonly applies to sources in heavyweight buildings. The sound 

pressure due to a force source is predictable using the Standard impact sound building propagation 

model4. The structure-borne sound pressure level is given by the predicted impact sound pressure 

level corrected for the difference in blocked force level between the source of interest and the 

standard tapping machine30, 31. The round robin results by Larsson and Simmons32 are of practical 

interest, since the uncertainty of this simple method was not as large as anticipated. The application 

of the standardized tapping machine as a reference force source therefore could be of interest to 

practitioners dealing with structure-borne sound from service equipment mounted in heavy-weight 

structures. Fig.7 shows results for an impacted lightweight timber stair attached to a wall 

separating two rooms30. The predicted sound pressure level is shown from Eqn. (6) (blue line) and 

from Eqn. (9) (green line). The inaccuracies below 125 Hz are likely the result of the modal 

behaviour of the rooms, but where diffuse sound fields are assumed. Similar low-frequency 

inaccuracies occur in sound insulation predictions in general. The inaccuracies above 800 Hz 

indicate signal-noise problems in the measurements.    

 

 



 

 

 

Fig. 7 - Measured sound pressure level in adjacent room due to a tapping machine on a timber 

stair (red); also predicted level from measured blocked force (green) and from free velocity and 

source mobility (blue), after [30].  

The velocity source or force source assumptions seldom apply over the whole frequency range 

for sources in lightweight (e.g. timber frame/timber joist) buildings. Fig. 8 indicates the likely 

discrepancies if there is an incorrect assumption about the source-receiver mobility ratio33. 

 

        
 

Fig. 8 – Ratio of estimated and calculated power for a force source (solid line) and velocity source 

assumption (dashed line) for a fan unit mounted on a lightweight building element (left) and on a 

heavier construction (right), after [33]. 

 

Referring again to Fig. 6, in the frequency range 200 – 500 Hz, the fan mobility is of the same 

order as that of the timber joist (|YR |=|YS |). Maximum power occurs when the source and receiver 

mobilities are complex conjugate22, 23, but such matching conditions seldom occur or only in 

narrow frequency bands. The complex denominator in Eqn. (7) is assumed replaceable with the 

associated magnitudes and  
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𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ≈
1

2
|𝑉𝑓|

2
 

𝑅𝑒(𝑌𝑅)

|𝑌𝑆|2+ |𝑌𝑅|2     (10) 

 

This points to a significant simplification: all quantities in Eqn. 10 are real-valued and can be 

expressed as frequency-band averages favoured by engineers and consultants. 

 

4.1   Isolators 

 

What of the role of vibration isolators? Using the same convention for transmitted power 

through a rigid connection in Eqn. (7), the power transmitted through the isolator(s) becomes34 

 

𝑃𝑖𝑠𝑜𝑙𝑎𝑡𝑜𝑟 =
1

2
|𝑉𝑓|

2
 

𝑅𝑒(𝑌𝑅)

|𝑌𝑆+𝑌𝐼+𝑌𝑅|2                              (11)   

 

YI  is the isolator mobility. Using the same reasoning to obtain Eqn. (10), Eqn. (11) is replaced by 

 

     𝑃𝑖𝑠𝑜𝑙𝑎𝑡𝑜𝑟 ≈
1

2
|𝑉𝑓|

2
 

𝑅𝑒(𝑌𝑅)

|𝑌𝑆|2+|𝑌𝐼|2+|𝑌𝑅|2     (12) 

 

This simplification does not apply near resonance frequencies of the system, since phase becomes 

important. The ratio of Eqn. (12) to Eqn. (10) is the isolator insertion loss on a power basis 

 

      
𝑃𝑖𝑠𝑜𝑙𝑎𝑡𝑜𝑟

𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡
≈  

|𝑌𝑆|2+|𝑌𝑅|2

|𝑌𝑆|2+|𝑌𝐼|2+|𝑌𝑅|2
        (13) 

 

In Table 2 are some idealized installation conditions, assumed independent of frequency for clarity. 

 

Table 2 – Isolator insertion loss for various installation conditions 

 

Installation YS  

m/sN 

YI YR Isolator insertion loss dB 

On concrete floor 10-4 10-2 10-5 40 

On timber joist 10-4 10-2 10-4 37 

On bay between joists 10-4 10-2 10-3 20 

Compliant machine 

base on bay 

10-3 10-2 10-3 17 

Very compliant base 

on bay 

10-2 10-2 10-3 3 

 

For the source on a thick concrete floor, Eqn. (13) gives a theoretical (and optimistic) reduction in 

power of 40 dB due to the introduction of the isolator (using the 10log convention). For the same 

source and isolator on a bay between timber joists, the power reduction is 20 dB. For a very 

compliant machine base, the previous case gives a reduction of 3 dB. The disappointing 

performance is because the very compliant machine base is already behaving as an isolator and the 



 

 

added isolator has relatively little effect. Again, these estimates are not precise, since the complex 

values of mobility, and the resultant phase relationships, have been ignored. However, the simple 

expressions illustrate the dependence of isolator performance on all three mobilities and all must 

be known, in some form, for installations in lightweight building structures.  

 This paper now concentrates on rigidly attached machines and isolators are not considered 

further. Predicted sound pressures, due to rigidly attached machines, provide bench mark estimates 

of the remote sound pressure levels for comparison with room criteria. The isolator performance 

can then be specified on a power basis, with respect to achieving the room criteria.  

 

4.2   Multiple components and contacts  

 

     Service equipment and other devices are attached to supporting structures through multiple 

contacts. At each contact, up to six components of excitation and response are possible. Three of 

the six components of excitation can be neglected a priori: torsions about axes perpendicular to 

the receiver surfaces, and forces parallel to the receiver surfaces. Whilst moments about axes 

parallel to the receiver surfaces can assume importance at high frequencies and/or at locations 

close to junctions, they generally can be neglected in buildings35, 36. Fig. 9 shows the moment 

induced powers, normalised by the power from forces perpendicular to the receiver surface for a 

fan unit on a timber-joist floor37. The force-induced power is generally dominant and moments 

and rotational velocities can be neglected. This points to the simplifying assumption that vibrating 

sources in buildings can be assumed to generate forces perpendicular to the receiving surfaces 

only. This may not be true in more ‘carefully engineered’ structures (e.g. aircraft, submarines, 

vehicles, etc.). 

 
Fig. 9 - Power of the moment components, normalised with respect to the power of the perpendicular force 

components, for ten locations of a fan unit on a timber joist floor, after [37]. 

 

For multiple contact sources, the total transmitted power consists of point contributions and 

transfer contributions between contacts. Fig. 10 shows point and transfer mobilities of a whirlpool 

bath with eight mounts (left) and of a fan unit with four mounts (right). The magnitudes of transfer 

mobility generally are less than those of the point mobility. This points to the final simplifying 

assumption: equivalent single values of source and receiver mobility can be expressed as averages 

of the point mobility over the contacts. This simplification is expressed with some caution since 



 

 

the total power transmission is a complex combination point and transfer terms, where the phase 

relationships between the contact forces might be influencial38, 54 and more research is required.   
 

    
Fig. 10 - Transfer mobilities (dotted lines) between eight mounts of a whirlpool bath (left); between 

four fan mounts (right), after [38].  
 

To summarise, the vibrational activity of structure-borne sound sources in buildings can be 

measured as the sum of the squared free velocity over the contacts, or the sum of the squared 

blocked forces. The source mobility is expressed as the average point mobility magnitude over the 

contacts. For the transmitted power, the required real part and magnitude of the receiver mobility 

is also expressed as average values over the contacts or as spatial averages over the area of the 

building element. All quantities are frequency band averages.  

What of sources connected to more than one building element, such as in a corner location? 

Fig. 11 shows that equipment can energise a floor and two walls simultaneously, with vibration 

energy flow between elements. In these cases, the equipment is treated as three sources in the same 

way as described for a source on a single receiver. This requires three sum squared free velocities 

and three average point mobilities. The resultant three transmitted powers are input into the 

Standard propagation models3, 4 and the path contributions summed on an energy basis39. 

 

 
Fig. 11 – Simultaneous power transmissions into three building elements from a source in a 

corner.  

 

 

 

 



 

 

5 SINGLE STAGE AND TWO STAGE RECEPTION PLATE METHODS 

 

5.1 Principle of the method 
 

Laboratory measurements of structure-borne source quantities should be with reference to the 

likely receiver characteristics in buildings. Most building elements are plate-like. Heavyweight 

elements are homogeneous with monolithic junctions: e.g. concrete floors and floating floors, 

concrete and masonry walls. Lightweight elements are framed or ribbed plates: e.g. plasterboard 

and studding cavity walls, timber-joist floors. Cross laminate timber (CLT) constructions can be 

treated as heavyweight elements. Laboratory procedures have been developed, which incorporate 

plate-like reception rigs, to which the sources under test are attached9.   

 The principle of the reception plate method is based on statistical energy analysis (SEA)12. 

The total transmitted power of often complicated and extended sources is equal to the resultant 

total energy loss in a connected simple plate receiver. It is assumed that the total plate energy is 

contained in the bending field. Whilst SEA normally requires that the plate bending field has a 

high modal density31, it has been shown that the power equality holds for thick plates of low modal 

density38, 39.  The reception plate method (RPM) requires the operating source to be attached to a 

plate, which is isolated from the laboratory floor. The plate response velocity is sampled using 

accelerometers distributed about the plate. Fig. 12 shows a whirlpool bath with eight mounts, on a 

resiliently supported 100 mm concrete reception plate. The total power from the source through 

all contacts equals the plate energy loss, calculated from the plate parameters. 

 

                            
2vMPP platesource                          (14) 

 

<v2> is the mean-square reception plate velocity when the source is in operation,  is the total loss 

factor of the plate (of mass M), obtained by the decay method.  
 

 
 

Fig. 12 - Whirlpool bath on a resiliently supported 100 mm concrete plate, after [38, 39]. 

 

Alternatively, and when the reception plate is not isolated (e.g. heavyweight walls and floors in 

buildings), a power substitution method can be applied. An instrumented shaker or hammer 

provides the cross-spectrum of the applied force and acceleration at the contact to give the input 

power and distributed accelerometers give the mean square plate velocity. Replacing the shaker or 



 

 

hammer with the source under test and measuring the mean square plate velocity again gives the 

source power30, 40. 

 The link between RPM measurement and the power expression is seen by combining Eqn. 

(10) with Eqn. (14) 

 

  
1

2
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2 𝑅𝑒(𝑌𝑅)

|𝑌𝑆|2+ |𝑌𝑅|2  ≈ 𝜔𝜂M〈vplate
2 〉  (15) 

 

 Eqn. (7) to Eqn. (10) demonstrate that two source quantities are required for prediction of the 

power when the source is installed in buildings or other structures. This points to the use of the 

reception plate method to obtain the two quantities. If the reception plate mobility is much higher 

than source mobility, then from Eqn. (15) and Eqn. (8), a single source quantity is obtained, related 

to the sum square free velocity over the source contacts41, 42 

 

   

                                                 𝑉𝑅𝑃𝑀 
2 ≈  ∑ |𝑉𝑓𝑖|

2𝑁
𝑖                                                 (16) 

 

Likewise, if the reception plate mobility is much lower than the source mobility, then from Eqn. 

(15) and Eqn. (9), a single source quantity is obtained, related to the sum square blocked force 

over the same contacts 

 

         𝐹𝑅𝑃𝑀 
2 ≈  ∑ |𝐹𝑏𝑖|2𝑁
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When both V2
RPM and F2

RPM have been measured (i.e. by the two-stage method), an equivalent 

single source mobility is obtained, which approximates the average point mobility over the 

contacts. 

                                            𝑌𝑆𝑅𝑃𝑀 =  √
𝑉𝑅𝑃𝑀

2

𝐹𝑅𝑃𝑀
2 ≈  

1

𝑁
∑ |𝑌𝑆𝑖|𝑁

𝑖                                (18) 

    
 

The equivalent single source quantities are combined with measured or calculated receiver 

mobility, to predict the structure-borne power into any other plate-like supporting structure of 

mobility YR 

                                    𝑃𝑅𝑃𝑀 ≈
1

2
 

𝑉𝑅𝑃𝑀 
2 𝑅𝑒(𝑌𝑅)

𝑌𝑆𝑅𝑃𝑀
2 + |𝑌𝑅|2                                                (19) 

 
  

Table 3 shows the two-stage method, indicating alternative direct and RPM measurements. The 

method yields source data for calculation of the transmitted power for any source-receiver mobility 

ratio installation. There are alternative routes through the procedure indicated in Table 3. For a 

simple source such as a fan or motor on four mounts, it may be easier to measure the sum square 

free velocity directly. For a more complicated source on many mounts, it may be more convenient 

to conduct a RPM measurement on a thin reception plate.  

 

 



 

 

Table 3 – Reception plate method (RPM) and direct methods for prediction of installed power.  .  

 

Quantity Direct measurement RPM measurement   For predicted power 
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 How are the two source-reception plate mobility ratios achieved without prior knowledge of 

the source mobility? This problem is circumvented by designing reception plates with mobilities 

outside the range of likely source mobilities. Fig. 4 and later, Figs. 18-20, indicate that a high 

mobility reception plate of mobility 10-2 m/sN would be suitable and is achievable with 1-2 mm 

thickness aluminium or steel sheets, for example. A low mobility reception plate of mobility 10-5 

m/sN would be suitable and is achievable with 100 mm thickness concrete.    

 Fig. 13 shows some typical results, for a compact air pump attached to a ribbed plate, 

representative of an installation on an airplane43. Fig. 13 (lower) is of particular relevance to 

manufacturers of isolation systems, since it shows predicted in-situ performance and the ratio of 



 

 

predicted isolated to un-isolated performance is the insertion loss of their product on a power basis 

and in an installed situation. 
 

    
 

       
 

        

Fig. 13 - Measured transmitted power (solid line) and from RPM prediction (dashed), for a rigidly 

connected air pump on a ribbed plate (upper curve) and through isolators (lower), from [43].  

 

 An example of the application of this approach to buildings44 is given for a medium-size fan 

on a timber joist floor, in Fig. 14. The free velocity was measured directly and the blocked force 

from the RPM on a low mobility 20mm aluminum reception plate. The real part and magnitude of 

the receiver mobility were measured directly at floor locations over joists and in bays. 

 

                 
 

Fig. 14 - Fan, resiliently suspended in laboratory; timber joist chipboard floor under construction. 

 

Fig. 15 (left) is the combined direct/RPM estimate of the fan power through four mount points at 

one location on the joist floor compared with the power calculated by the mobility method, also 



 

 

(right) through four mount points at ten locations on the timber joist floor normalized with the 

calculated value at each location. On average, the RPM estimate is within 2 dB of the calculated 

value, with deviations of 4 dB above 800 Hz.  

 

 
 

Fig. 15 - Transmitted power for fan located with two contacts on a joist and two contacts in 

adjacent bay (left); normalised power at ten fan positions with average value (right), from [44]. 
 

 

5.2 Uncertainty of the RPM 
  

 Methods of data reduction, such as by the RPM described, have inherent uncertainties45. The 

probabilistic approach to the steps in the two-stage method46 show that if the errors in input values 

are 1 dB (i.e. in the terms Phigh mobility, R(1/Yhigh mobility), Plow mobility, R(Ylow mobility) and the receiver 

mobility in Table 3), then the error in the predicted transmitted power is 4.5 dB. For input errors 

of 3 dB, the error in predicted power is 7 dB. Using sample standard deviations of each step of the 

two-stage method43 shows that for a compact source, the uncertainty in the estimate of source 

mobility ranged from 8 dB at low frequency to 6 dB at high frequency. For an extended source, 

the uncertainty also ranged from 8 dB to 6 dB.   Scholl calculated uncertainties in the estimate of 

source mobility of about 10 dB for domestic objects set down or dropped and which could not be 

measured directly47. Wittstock considered walking persons, shower jets and piped water systems48. 

The uncertainty in structure-borne sound powers from shower jets was 10 dB at 50 Hz, reducing 

to 5 dB at 500 Hz and 3 dB at 4 kHz. Vogel et al applied the two-stage method to several common 

sources: compressor, fan, extractor hood and shaker, when attached to various light and heavy 

plate structures49. The level differences between measured and two stage estimates were +/- 5 dB 

on average.  

 More work is required on the uncertainty of the two-stage RPM (or combined direct/RPM) 

and on indirect methods in general. From the authors’ personal experiences, the uncertainty may 

be expected to be: +/- 10 dB below 80 Hz; +/- 5 dB between 80 Hz and 400 Hz; +/- 3 dB above 

400 Hz. More measurement case studies are required however and an on-going Round Robin test, 

based on testing the same reference source using standard EN 156579 in several laboratories in 

Europe, will give clearer indications of the precision.   

6. CALCULATED SOURCE AND RECEIVER MOBILITIES  

 It is not likely that the receiver quantities, required for predicting structure-borne power, will 

be measured prior to the installation of mechanical installations. The required receiver quantities 

are the average real part and average magnitude of point mobility, over the contact points with the 



 

 

source of interest, or the spatial averages over the building element area. Also for sources, 

calculation methods may provide convenient alternative estimates, which can be used to check and 

understand measurement results. Free velocity or blocked force must be measured, however.  
 

  6.1    Receiver mobility 
 

  6.1.1     Heavyweight building elements  
          

        Heavyweight walls and floors are mainly of concrete or masonry construction. Whilst 

displaying modal behaviour, particularly evident at low frequencies, peak values of the point 

mobility are difficult to predict, since the modal behaviour depends on source location and the edge 

conditions, neither of which will be known precisely prior to location of the mechanical or water 

installation. However, statistical estimates can suffice. Of relevance is the concept of the 

characteristic mobility31, which is the mobility of an infinite plate of the same material and thickness 

as the wall or floor of interest, given by 

 

             
mB

Ychar



'8

1                                                          (20) 

 

m’ is the mass per unit area and
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B  is the bending stiffness for modulus of elasticity E, 

Poisson’s ratio  and plate thickness h. The characteristic mobility is frequency invariant and is 

real-valued. Fig. 16 shows measured point mobility at seven locations on a dense concrete plate 

(left) and on an aerated concrete plate (right). Both were free plates on resilient pads. Also shown 

is the characteristic mobility (horizontal line) for both cases. As expected, the dense concrete has a 

lower mobility than the aerated concrete. 
 
 

      
 

Fig. 16 - Point mobility at 7 locations on concrete plate (left) and on aerated concrete plate (right), 

from [50]. 
 

Whilst the modal peaks and dips in point mobility are difficult to predict, limits (shown) are easier 

to estimate51  
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The limits depend on mass  and loss factor , which are relatively easy to estimate. The upper 

limit leads to an upper limit to the installed structure-borne power of a source, which is of 

importance. 

 

6.1.2    Lightweight building elements 
 

     Lightweight building elements, found in timber-frame constructions for example, are not 

homogeneous and the receiver mobility varies significantly with location, particularly between 

when over structural reinforcement (e.g. joists or timber frames) and when in a bay (e.g. when 

attached to sheathing). Fig. 17 shows the results of a survey of point mobility measurements at 

random locations on 15 timber-frame constructions, including over joists and frames and in bays 

between joists or frames52. Shown is the mean value of point mobility and standard deviation. The 

point mobility of lightweight building elements has a mean value of the order of 10-3 m/Ns. The 

highest values occur on single layers of plasterboard sheathings on metal stud walls. The lowest 

values occur at fixings between plates and joists/frames. 

 
 

Fig. 17 – Mean and standard deviation of mobility of 15 timber constructions, after [52]. 

 

The mobility at the fixing points on frames or ribs can be approximated by the complex 

characteristic beam mobility31 
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where cB is bending wave velocity and m is the mass per unit length. The two main components of 

an inhomogeneous lightweight building element, the frame/rib and the sheathing, can be 

incorporated into a mobility curve, related to the distance from the frame/rib. Fig. 18 shows the 



 

 

measured point mobility over a timber-joist floor. Beam behaviour is evident at low frequencies 

and at short distances from the fixing between the sheathing and support. With increased distance 

and increased frequency, the mobility tends to the characteristic plate mobility of the sheathing. The 

real part of the measured mobility is normalised with respect to that of an infinite plate and plotted 

as a function of distance from a fixing point, normalised with respect to the governing bending 

wavelength in the sheathing. Beam-like behaviour is evident at low frequency and plate-like 

behaviour at high frequency, with a monotonic increase in the transition region. Such simplified 

methods are likely to suffice for the needs of building acoustics.   

 

 
 

 
 

Fig. 18 - Real part of normalised point mobility, as function of normalised distance to fixings, 

[52]. 

 

6.2     Source mobility  
 

       Building services installations are more complicated, with a wider range of contact geometries, 

than for building elements. However, the mobility at the contact points is dictated by the material 

and geometry of the machine base around the contact. On this basis, machine bases may be 

categorised as either: compact, plate-like, flange/cantilever, frame53.  

 

6.2.1     Compact sources  

 

        Compact sources, such as domestic circulation pumps and small electric motors behave as rigid 

masses at low frequencies. The expression for rigid body mobility is 
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where x,y are the distance coordinates of the contact point of interest from the centre of gravity of 

the source and xxI and yyI are the moment of inertias about the x and y axis, respectively. In Fig. 19 

 Ychar 

 
Ybeam 



 

 

is shown the mobility at two points on a small air pump with short cantilever mounts. Rigid body 

behavior occurs up to 300 Hz. Between 300 Hz and 2500 Hz the cantilevered mounts flex and the 

mobility is stiffness controlled with magnitude 

 

                                     𝑌𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 =
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    L, w and h are the length, width and thickness of cantilever, respectively; E is the elastic modulus.  

Above 2500 Hz, the mobility is resonance controlled and described by the characteristic beam 

mobility in Eqn. (22). The measured mobilities are in narrow frequency bands, with peaks and dips 

clearly indicated, but the predicted trend lines provide a practical estimate for each of the three 

frequency regions of dynamic behavior. In the following, the measured source mobilities are 

presented as averages of the point mobilities, for comparison with predictions. 
 

 
 

Fig. 19 - Measured point mobility of a compact air pump and calculated values.  

 

6.2.2     Plate-like machine bases  
 

         Plate-like machine bases provide a platform for, e.g., fan units with separate electric motors. 

The plate-like behavior mirrors that for receiver building elements, already described. Fig. 20 shows 

the point mobility at four mounts of a fan plate base, with the characteristic mobility indicated. The 

measured narrow-band values show sharp peaks and dips, which reduce when presented as octave 

or third octave values and the characteristic mobility can be assumed representative. 
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Fig. 20 - Point mobility at four mounts on a fan plate base: average in third octaves (solid black 

line); characteristic mobility (dashed line) 

 

6.2.3     Flange-cantilever machine bases  
 

     Fig. 21 is of the mobility of a flange base, i.e. cantilevered along long edges.  Rigid body behavior 

occurs below 80 Hz. Between 80 Hz and 1 kHz, the mobility is stiffness controlled. Above this 

region, the mounts behave as a resonant plate. These calculations are less accurate than those of 

Petersson and Plunt54, since resonant peaks and dips are not indicated, but they provide estimates 

of source mobility appropriate for predicting structure-borne power transmission in buildings.  
 

 

 
Fig. 21 - Point mobility at four points on a fan flange base: average in third octaves (solid black 

line); estimate (dashed line) 

6.2.4     Frame bases  

 

     The mobility of frame bases varies significantly with mount point, since contact geometries 

(distances from free ends to frame junctions, overlapping framing, etc.) differ greatly. In Fig. 22 is 



 

 

shown the mobility at eight mount points of the base frame of a whirlpool bath. For the example 

shown, the measured values converge to the characteristic beam mobility of the rectangular section 

frame. The characteristic beam mobility corresponds to the average point mobility, but it is likely 

that more detailed modelling is required to construct mobility curves for frame bases.  
 

    
Fig. 22 - Point mobility at eight mount points on a frame base with average value (black line) 

and characteristic beam mobility (dashed line) 

 

7 DATA BASES FOR PREDICTION 

         This section considers how a data base might be assembled for consultants and engineers, 

requiring methods of predicting structure-borne sound in buildings as straightforward as for 

airborne sound. Table 4 shows source data as single-value quantities. It should be relatively 

straightforward for product manufacturers to measure the free velocities at each contact in 1/3 

octaves for the sum square value, or by RPM. The source mobilities are average point magnitudes, 

measured directly (solid lines) or by the two-stage method (red dashed). Alternatively, it may be 

more convenient to calculate the source mobilities using characteristic plate and beam equations 

(blue dashed).  

 

 

 

 

          

 

 

 

 

 

 

 

 



 

 

Table 4 - Structure-borne sound source data;  
 

Source Type Measured sum-square free 

velocity 

Average point mobility, measured (solid 

line), two-stage method (red dashed), 

calculated (blue dashed)  
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 Also required for the transmitted power, is the receiver mobility, which again is calculated 

using characteristic plate and beam equations, and a database of building types might be assembled 

in a similar way as for sources. Here, the building elements are classified as heavyweight: concrete 

floors and floating floors; masonry walls; or as lightweight: timber-joist floors; timber-frame walls; 

timber floating floors. Table 5 contains examples of the two basic building element types. 

 

Table 5: Measured and calculated receiver mobility 

 

Receiver type Receiver mobility 

Masonry wall 

  

Timber joist floor 

 
 

 

Both the magnitude and real part of the receiver mobility are required. However, where the 

characteristic mobility is sufficient to describe the wall or floor, then real part and magnitude are 

the same and are frequency invariant. Both source and receiver data could be presented in tabulated 

form, of course. 

8 CONCLUDING REMARKS 

       This paper has concentrated on advances in measurement and calculation methods for sources 

of structure-borne sound in buildings. The developments of Standard methods of calculating the 

sound insulation and impact sound pressure levels of buildings have been included to provide the 

context of the work on source characterization, i.e. what source quantities are required, and in what 

form, to provide input data for predicting sound pressure levels when mechanical devices are 

installed. 

       Two source quantities are required for estimating the structure-borne power for a wide range 

of installation conditions: activity (the free velocity or the blocked force of the operating source); 

source mobility (or the inverse, impedance). The free velocity or blocked force is measured as a 

sum-square over the contacts of interest. If the source is simultaneously connected to other building 

elements, then sum-square quantities are measured for these other connections. The free velocity 

Ychar 
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can be measured directly or by the reception plate method. The source activity is expressed in 

octaves or third octaves required by practitioners. 

        The source mobility is obtained as the average of the point mobilities at the contacts. Again, if 

the source is simultaneously connected to other building elements, then average mobilities are 

required for these other connections. The source mobility can be measured directly or by the 

reception plate method and expressed in octaves or third octaves. 

        Alternatively, the source mobility can be calculated using simple expressions, based on rigid-

body behavior, quasi-stationary stiffness, and characteristic values of infinite and semi-infinite 

plates and beams. Likewise, the receiver mobility of floors and walls can be calculated, based on 

the characteristic values. Both the real part and the magnitude are required, but where infinite 

plate/beam behaviour is evident, then the characteristic mobility only is required, which is real-

valued. 

        Using simple classifications of sources and receivers, a data base might be assembled of the 

quantities required for prediction of the structure-borne power into each building element of interest.    

        This paper has not been exhaustive in describing recent advances in this area and has been 

somewhat selective, with some emphasis on the authors’ contributions and that of colleagues in 

Europe. The approaches proposed, for measurement and calculation, require more research and 

more case studiest and the source and receiver classifications are the authors’ and could be 

expanded.  

 More work is required on the uncertainties in such simplifying proposals. However, the 

approaches outlined can be viewed as a framework for meeting practitioners’ needs for predicting 

and assessing structure-borne noise problems in buildings.  
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