
Noname manuscript No.
(will be inserted by the editor)

Designing Cost-Sharing Methods for Bayesian
Games

George Christodoulou · Stefano
Leonardi · Alkmini Sgouritsa

Received: date / Accepted: date

Abstract We study the design of cost-sharing protocols for two fundamental
resource allocation problems, the Set Cover and the Steiner Tree Problem, un-
der environments of incomplete information (Bayesian model). Our objective
is to design protocols where the worst-case Bayesian Nash equilibria have low
cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although bud-
get balance is a very natural requirement, it puts considerable restrictions on
the design space, resulting in high PoA. We propose an alternative, relaxed
requirement called budget balance in the equilibrium (BBiE). We show an in-
teresting connection between algorithms for Oblivious Stochastic optimization
problems and cost-sharing design with low PoA. We exploit this connection for
both problems and we enforce approximate solutions of the stochastic prob-
lem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More
interestingly, we show how to obtain the same bounds on the PoA, by us-
ing anonymous posted prices which are desirable because they are easy to
implement and, as we show, induce dominant strategies for the players.

Keywords Price of Anarchy, Bayesian Games, Network Design, Cost-Sharing
Games

An extended abstract of the current paper appears in [27].

G. Christodoulou
Computer Science Department, University of Liverpool, Liverpool, UK
E-mail: gchristo@liv.ac.uk

S. Leonardi
Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza
University of Rome, Rome, Italy
E-mail: leonardi@diag.uniroma1.it

A. Sgouritsa
Computer Science Department, University of Liverpool, Liverpool, UK
E-mail: salkmini@liv.ac.uk



2 George Christodoulou et al.

Acknowledgements Part of this work was done while all authors were visiting the Eco-
nomics and Computation program of the Simons Institute for the Theory of Computing. The
work of G. Christodoulou was supported by EPSRC grants EP/M008118/1, EP/K01000X/1
and Royal Society Leverhulme Trust Senior Research Fellowship LT140046. The work of S.
Leonardi was partially supported by Google Focused award “Algorithms for Large-scale
Data analysis” and EU FET project no. 317532 ”Multiplex”.

1 Introduction

A cost-sharing game is an abstract setting that describes interactions of self-
ish players in environments where the cost of the produced solution needs to
be shared among the participants. A cost-sharing protocol prescribes how the
incurred cost is split among the users. This defines a game that is played by
the participants, who try to select outcomes that incur low personal costs.
Chen, Roughgarden and Valiant [23] initiated the design aspect, seeking for
protocols that induce approximately efficient equilibria, with low Price of An-
archy (PoA) [55]. Similarly, we study the design of cost-sharing protocols, for
two well-studied and very general resource allocation problems with numerous
applications, the Set Cover and the Steiner tree (multicast) problem.

Set Cover Game. In the (weighted) set cover problem, there is a universe of
n elements, U = {1, . . . , n}, and a family of subsets of U , F = {F1, . . . , Fm},
with weights/costs cF1

, . . . , cFm
. A subset of elements, X ⊆ U , needs to be

covered by the F ′is so that the total cost is minimized. We are interested in a
game theoretic version, where there are |X| players and |U | possible types; each
player’s type associates her with a specific element of U and X corresponds to
the set of players’ types. Multiple players may have the same type. A player’s
action is to chose a subset from F that covers her element, and pay some cost-
share for using it. A cost-sharing method prescribes how the subsets’ costs are
split among players.

Multicast Game. In a multicast game, there is a rooted (connected) undirected
graph G = (V,E, t), where each edge e carries a nonnegative weight ce and
t is a designated root. There are k players and |V | = n possible types; each
player’s type associates him with a specific vertex of V which needs to establish
connectivity with t. The players’ strategies are all the paths that connect their
terminal with t. A cost-sharing method defines the cost-shares of the players.

Cost-Sharing under Uncertainty. There are two different possible sources of
uncertainty that may need to be considered in the above scenarios. Firstly,
the designer needs to specify the cost-sharing protocol, having only partial
information about the players’ types. Moreover, the players themselves, when
they select their actions, may have incomplete knowledge about the types
of the other players. We approach the former by using a stochastic model
similar to [29], and the latter, as a Bayesian game, introduced by [48], which
is an elegant way of modelling selfishness in partial-information settings. In
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a Bayesian game, players do not know the private types of the other players,
but only have beliefs, expressed by probability distributions over the possible
realizations of the types.

The order of events is as follows; first, the designer specifies the cost-sharing
methods, using the product probability distribution over the players’ types,
then the players interact in the induced Bayesian game, and end up in a
Bayesian Nash Equilibrium. We are interested in the design of protocols, where
all equilibria have low cost i.e., the (Bayesian) PoA of the induced game is low.

Budget Balance in the Equilibrium (BBiE). One of the axioms that [23] re-
quired in their design space, that every cost-sharing protocol should satisfy,
is budget balance i.e., that the players’ cost-shares cover exactly the cost of
any solution. Although budget balance is a very natural requirement, it puts
considerable restrictions on the design space. However, since we expect that
the players will end up in a Nash equilibrium, it is not clear why one should
be interested to impose budget balance in non-equilibrium states; the play-
ers are going to deviate from such states anyway. We propose an alternative,
relaxed requirement that we call budget balance in the equilibrium (BBiE).
A BBiE cost-sharing protocol satisfies budget balance in all equilibria; for
any non-equilibrium profile we do not impose this requirement. This natural
relaxation enlarges the design space but maintains the desired property of
balancing the cost in the equilibrium. More importantly, this amplification of
the design space, allows us to design protocols that dramatically outperform
the best possible PoA bounds obtained by budget-balanced protocols. Indeed,
by restricting to budget-balanced protocols, a lower bound of Ω(n) exists, for
the complete information set cover game [23]; we extend this lower bound for
the Bayesian setting. We further show a lower bound of Ω(

√
n), for the mul-

ticast Bayesian game. We demonstrate that, by designing BBiE protocols, we
can enforce better solutions, that dramatically improve the PoA. For the set
cover game, we improve the PoA to O(n/ log n) (or O(log n) if m = poly(n)).
Regarding the multicast game, we improve the PoA to O(1).

Posted Prices. It is a very common practice, especially in large markets and
double auctions, for sellers to use posted prices. More closely to cost-sharing
games is the model proposed by Kelly [51] regarding bandwidth allocation.
Kelly’s mechanism processes players’ willingness to pay and posts a price for
the whole bandwidth. Then each player pays a price proportional to the band-
width she uses. This can be seen as pricing an infinitesimal quantity of band-
width and the players, acting as price-takers, choose some number of quantities
to buy. It turns out that it is in the best interest of the players to buy the
whole bandwidth.

The use of posted prices, to serve as cost-sharing mechanism, is highly de-
sirable, but not always possible to achieve; a price is posted for each resource
and then the players behave as price takers, picking up the cheapest possible
resources that satisfy their requirements. Such a mechanism is desirable be-
cause it is extremely easy to implement and also induces dominant strategies.



4 George Christodoulou et al.

We stress that our main results can be implemented by anonymous posted
prices.

1.1 Results and Discussion

We study the design of cost-sharing protocols for two fundamental resource
allocation problems, the Set Cover and the Steiner tree problem. We are in-
terested in environments of incomplete information where both the designer
and the players have partial information, described by prior probability dis-
tributions over types. Our objective is to design cost-sharing protocols that
are BBiE and the worst-case equilibria have low cost, i.e. the Bayesian PoA
is minimized.

We show an interesting connection between algorithms for Oblivious Stocha-
stic optimization problems and cost-sharing design with low PoA. We exploit
this for both problems and we are able to enforce approximate solutions of
the stochastic problem, as Bayesian Nash equilibria, with the same guarantees
on the PoA. Although this connection is quite simple, it results in significant
improvement on the PoA comparing to budget-balanced protocols. More pre-
cisely, we map each player to a single specific strategy and charge very high
costs for any alternative strategy. In this way, their mapped strategy becomes a
(strongly) dominant strategy. For the set cover game, we enforce the oblivious
solution given by [45]. They apriori map each player i to some subset Fi ∈ F ;
then, if i is sampled, Fi should be in the induced solution. For the multicast
game, the algorithm of [42], for the online Steiner tree problem, provides an
oblivious solution.

Budget-Balanced Protocols (Sect. 3). First, we provide lower bounds for the
PoA of budget-balanced protocols. It is not hard to see that there exists a
set cover game that reduces to the lower bound of Chen, Roughgarden and
Valiant [23] for the multicast directed network games, resulting in PoA= Ω(n)
in the complete information case; (see Appendix A for the reduction). For
the stochastic or Bayesian setting, where players are i.i.d., we show that the
same lower bound holds. Regarding the multicast game, the PoA is O(1) for
the complete information case [23] and the stochastic case [29], [42]. However,
we show that for the Bayesian setting there is a lower bound of Ω(

√
n) (see

Table 1 for a summary).

BBiE Protocols (Sect. 4). For the Bayesian (and stochastic) set cover game
there exists an ex-post1 BBiE protocol (determined in polynomial time) with

PoA of O(log n), if m = poly(n), and O
(

logm
log logm−log logn

)
, if m � n. An

ex-post BBiE protocol also exists for the Bayesian multicast game resulting in
constant PoA (see Table 2 for a summary).

1 In ex-post budget balance we require budget balance in every realization of the game.
If the expected excess and deficit are zero, the budget balance is called ex-ante.
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Posted Prices (Sect. 5). For the Bayesian (and stochastic) settings, ex-post
BBiE cannot be obtained by anonymous prices. We first discuss limitations
of other concepts, such as BBiE with “high” probability or bounded possible
excess and deficit. Then, we examine prices that result in ex-ante BBiE. We
present anonymous prices with the same upper bounds as the BBiE protocols,
for the unweighted set cover and for the multicast games, respectively. We
stress that oblivious solutions may not be sufficient to guarantee low PoA for
anonymous posted prices, in contrast to the BBiE protocols. This is because
it is not clear anymore how to enforce players to choose desirable strategies,
since anonymous prices are available to anyone. The reason that they exist
here is due to the specific properties of the oblivious solution.

Regarding the weighted set cover game, we are only able to provide semi-
anonymous prices with the same bounds; by semi-anonymous we mean that
the prices for each player do not depend on her identity, but only on her type.
We leave the case of anonymous prices as an open question. We remark that
in all cases, posted prices induce dominant strategies for the players. Finally,
for the poly-time determinable prices, we give tight lower bounds.

Budget-balanced protocols
Set cover Multicast

Complete information Θ(n) [23] O(1) [23]
Bayesian Ω(n) Ω(

√
n)

Table 1 PoA of budget-balanced protocols

BBiE protocols/posted prices
Set cover Multicast

Complete information 1 1
Bayesian O(n/ logn) O(1)

Table 2 PoA of BBiE protocols

Prior-Independent Mechanisms (Sect. 6). Clearly, the above BBiE protocols
and posted prices depend on the prior distribution. Prior-independent mech-
anisms are also of high interest and in Sect. 6 we discuss their limitations.

Complete Information Setting (Sect. 7). We further study the complete in-
formation setting (see Tables 1 and 2). By using either BBiE protocols or
anonymous posted prices, we enforce the strategy profile of the optimum so-
lution. Note that, while trying to bound the PoA, computational issues are
not of primary concern. However, if we stick to protocols that can be deter-
mined in polynomial time, we can upper bound the PoA of set cover and
multicast games by O(log k) and 1.39, respectively, where k is the number of
players. Moreover, we argue that there are no anonymous prices, computed in
polynomial time, for the set cover game, with PoA= o(log k).
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1.2 Related Work

There is a vast amount of research in cost-sharing games and so, we only
mention some of the most related. Moulin and Shenker [57] studied cost-
sharing games under mechanism design context; they characterized the budget-
balanced and group strategyproof mechanisms and identify the one with mini-
mum welfare loss. In similar context, other papers considered (group)strategy
proof and efficient mechanisms and relaxed the budget-balanced constraint;
Devanur, Mihail and Vazirani [34] and Immorlica, Mahdian and Mirrokni [50]
studied the set cover game under this context showing positive and negative
bounds on the fraction of the cost that is covered.

Regarding network design games, there is a long line of works mainly focus-
ing on fair cost allocation (Shapley cost-sharing mechanism), originated by [5].
Anshelevich et al. [5] showed a tight Θ(log k) bound on the PoS for directed
networks, while for undirected networks several variants have been studied [11,
12,22,24,35] but the exact value of PoS still remains an open problem. For
multicast games, Li [56] proved an upper bound of O(log k/ log log k), while
for broadcast games, Fiat et al. [39] proved an O(log log k) upper bound which
was improved to constant due to Bilò, Flammini and Moscardelli [13]. The
PoA of some special equilibria has been also studied in [17,21].

Chen, Roughgarden and Valiant [23] were the first to study the design
aspects for this game, identifying the best protocol with respect to the PoA and
PoS in various cases, followed by [62] for parallel links, [40,43,54] for weighted
congestion games, [29,59,47] for network games, [41] for routing games and
[52] for resource allocation. The Bayesian Price of anarchy was first studied
in auctions by [26]; see also [58] for routing games, and [61] for the PoS of
Shapley protocol in cost-sharing games.

Close in spirit to our work is the notion of Coordination Mechanisms [25]
which provide a way to improve the PoA in cases of incomplete information.
Similar to our context, the designer has to decide in advance game-specific
policies, without knowing the exact input. Such mechanisms have been used
for scheduling problems under the objective of minimising the makespan [2,7,
16,49,53] or minimising the sum of players’ costs [1,9,33], as well as for simple
routing games [28,10].

Posted prices have been used for pricing in large markets. Kelso and Craw-
ford [4] and Gul and Stacchetti [46] proved the existence of prices, for gross
substitute valuations, that clear the market efficiently. Pricing bundles for
combinatorial Walrasian equilibria was introduced by Feldman, Gravin and
Lucier [37], who showed that half of the social welfare can be achieved. In
a follow-up work [38], they considered Bayesian combinatorial auctions and
they could guarantee half of the optimum welfare, by using anonymous posted
prices. Dynamic pricing schemes has been used by Cohen, Eden, Fiat and
Jez [31] in several online settings to induce the same performance as the best
online algorithm, and by Cohen-Addad, Eden, Feldman and Fiat [32] in match-
ing markets in order to achieve the optimal social welfare, for any tie breaking
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rule. For maximizing the revenue with posted price mechanisms see [6,8,14,
18–20,3].

We further discuss some related work to the underlying problems that we
consider here, the set cover and the minimum Steiner tree problems. Both
problems are very well studied and known to be in NP-complete. The best
known approximations are O(log(k)) [30] (by using a simple greedy algorithm)
and 1.39 [15]; in fact, for the set cover problem, Feige [36] showed that no
improvement by a constant factor is likely. Research has been done regard-
ing the stochastic model, Grandoni et al. [45] showed a roughly O(log nm)
tight bound for the set cover problem and Garg et al. [42] gave bounds on
the approximation of the stochastic online Steiner tree problem. A slightly
different distribution is the independent activations. Shmoys and Talwar [60]
demonstrated randomized and deterministic algorithms with constant approx-
imations for the universal TSP problem, and Christodoulou and Sgouritsa [29]
studied the multicast game presenting an ordered protocol with constant PoA.

2 Model

Cost-Sharing Protocol. In the cost-sharing games, we consider that there are
k players who are interested in a set of resources, R = {r1, . . . , rm}. Each
resource r carries a cost cr. Whenever a subset of players uses a resource r,
they are charged some cost-share, defined by a cost-sharing (resource-specific)
method ξ. A cost-sharing protocol Ξ decides a cost-sharing method for each
resource. In accordance with previous works, [23,29,62], the following are some
natural properties that Ξ needs to satisfy:

– Stability: The induced game has always a pure (Bayes) Nash equilibrium.
– Separability: The cost shares of each resource r are completely determined

by the set of players that choose it.
– BBiE: In any pure (Bayes) Nash equilibrium profile, the cost shares of the

players choosing r should cover exactly the cost of r.

For the rest of the paper, by k we denote the number of players and by n
the number of different types of the players, i.e. in the set cover game, |U | = n,
and in the multicast game, |V | = n.

Information Models. We study several information models, from the point of
view of the designer and of other players, regarding the knowledge of players’
type. A player’s type is some resource: in the set cover game, it is some element
from U that needs to be covered, and in the multicast game, it is some vertex of
G, on which the player’s terminal lies, and requires connectivity with the root
t. The parameters of the game is known to both the protocol designer and the
participants. To be more specific, the tuple (U,F , c) in the set cover game and
the underlying (weighted) graph in the multicast game are commonly known.

The information models that we consider are the following:
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– Complete Information: The types of the players are common knowledge,
i.e. they are known to all players and to the designer.

– Stochastic/A priori: The players’ types are drawn from some product dis-
tribution D defined over the type set (U for set cover and V for multi-
cast). The actual types are unknown to the designer, who is only aware of
D. However, the players decide their strategies by knowing other players’
types.

– Bayesian: The players’ types are drawn from some product distribution D
defined over the type sets. Both the designer and the players know only
D. The players now decide their strategies by knowing only D and not
the actual types. A natural assumption is that every player knows her own
type.

We assume that the players’ types are distributed i.i.d. (D = πk) and the
type of each player is drawn independently from some probability distribution
π : R → [0, 1], with

∑
r∈R π(r) = 1; R is either U in the set cover game or V

in the multicast game. For simplicity we write πr instead of π(r).

Price of Anarchy (PoA). Let opt(t) be the optimum solution given the play-
ers’ types t, and NE(t) and BNE be the set of pure Nash equilibria and
pure Bayesian Nash equilibria, respectively. We denote the cost of any so-
lution/strategy profile s as c(s). Then, the Price of Anarchy (PoA) for the
complete information, stochastic and Bayesian settings is defined, respectively,
as:

PoA = max
t

s∈NE(t)

c(s)

c(opt(t))
; PoA = max

D

Et∼D[maxs∈NE(t) c(s)]

Et∼D[c(opt(t))]
;

PoA = max
D,s∈BNE

Et∼D[c(s(t))]

Et∼D[c(opt(t))]
.

3 Lower Bounds for Budget-Balanced Protocols

In this section, we show the lower bounds of budget-balanced protocols, for
the Bayesian setting.

Theorem 1 The Bayesian or stochastic PoA of any budget-balanced protocol,
for the unweighted set cover game, is Ω(n).

Proof Consider n players and n elements/types U = (1, . . . , n) and the family
of sets F = {F1 = {1}, F2 = {2}, . . . Fn = {n}, Fall = U} with unit costs.
Suppose that π is the uniform distribution over U . Then the probability that
element i is drawn as the type of at least one player is

qi = 1−
(

1− 1

n

)n
≥ 1− 1

e
.
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By using any budget-balanced protocol, it is a (Bayes) Nash equilibrium if
each player of type i chose set Fi. Her cost-share does not exceed 1, while by
deviating to Fall her cost-share becomes 1. The expected cost of that equilib-
rium is nqi = Ω(n), whereas the optimum solution (all players choose the set
Fall) has cost 1. ut

Theorem 2 The Bayesian PoA of any budget-balanced protocol, for the mul-
ticast game, is Ω(

√
n).

Proof Consider the graph of Fig. 1. We set p = 1 −
(

1− 1√
n

) 1
n

, such that

the probability that vertex vi is drawn as the type of at least one player is
qi = 1 − (1− p)n = 1√

n
. We claim that, for any budget-balanced protocol, it

is a Bayes-Nash equilibrium if any player with type vi uses the direct edges
(vi, t).

t pt = 1− np

v1p v2p vn p

v pv = 0

1

1√
n

1

1√
n

1

1√
n

Fig. 1 Lower bound on the PoA of any budget-balanced protocol

Indeed, if player i uses any other path (vi, v, vj , t) her cost-share will be at
least 2√

n
+ (1− qj) = 1 + 1√

n
, which is greater than her current cost-share of

at most 1. The expected social cost and optimum are respectively

E[SC] =
∑
i

qi =
√
n ; E[Opt] ≤

∑
i

qi ·
1√
n

+ 1 = n
1

n
+ 1 = 2 .

So, the Bayes PoA is at least 1
2

√
n. ut

4 BBiE Protocols

In this section we drop the requirement of budget balance and instead we con-
sider a more general class of cost-sharing protocols C, where the requirement
is to preserve the budget balance in the equilibrium. For the rest of the pa-
per, by h we denote a very high value with respect to the parameters of the
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game. h should be larger than the total cost-share of any player by using any
budget-balanced protocol. It is sufficient that h > maxj cFj for the set cover
game and h >

∑
e∈E ce for the multicast game. To show our results we will use

known oblivious algorithms of the corresponding optimization problems and
we will enforce their solution by applying appropriate cost-sharing protocols
(or posted prices in Sect. 5); e.g. choices, not consistent with this solution, are
highly expensive.

In an optimization problem, an oblivious algorithm assigns an action for
each input component, based on the prior distribution, and independently of
the realization of all other input components. Take as an example the multi-
cast game, where the actions of an input (source) corresponds to the paths
connecting the source to the root. An oblivious solution, maps each vertex
to some path that connects it to the root, and is used in any realization of
the input that contains this source. We associate the types of the players to
the input components of the problem, and then we would like to enforce the
players to follow the action decided by the oblivious algorithm for their type.

Theorem 3 Let G be any cost-sharing game and Π the underlying optimiza-
tion resource allocation problem. Given any oblivious algorithm of Π with ap-
proximation ratio ρ, there exists a cost-sharing protocol Ξ ∈ C for G with
PoA= O(ρ).

Proof Suppose that Ri is the set of the resources allocated by the oblivious
algorithm to the input component that serves as the type of some player i. Even
though it is not quite correct, we will say that Ri are the resources allocated
to player i. Let Sr be the set of players to whom resource r is allocated.

Then Ξ assigns the following cost-share to any player i for choosing any
resource r, when the set of players choosing r is S,

ξr(i, S) =

 cr/|S| if i ∈ Sr
h if i /∈ Sr
0 otherwise

Note that Ξ assigns equal shares restricted to Sr and a high value h for
other players. In fact, instead of equal shares we could use any budget-balanced
protocol restricted to Sr, for instance any generalized weighted Shapley pro-
tocol (for definition see [44]).

Note that any player i using a resource r /∈ Ri should pay h. By the
definition of h, this is strictly more than

∑
r′∈Ri

cr′ , which is the maximum
she may pay if she deviates to Ri. Therefore, the only Nash equilibria are for
each player i to choose some subset of Ri. This results to a PoA which is at
most the same with the approximation ratio of the optimization problem, so
PoA=O(ρ). Moreover, by the construction of Ξ, BBiE holds. ut

The following corollaries hold for both the Bayesian and the stochastic
setting.
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Set Cover Game. Grandoni et al. [45] studied the stochastic problem, and
they showed two mapping algorithms for the oblivious set cover problem (one
for the unweighted problem which is length-oblivious and one for the weighted
problem which is length-aware), which are almost O(logmn)-competitive.

For completeness, we give the two algorithms of [45] in Algorithms 1 and
2. These algorithm are applied in the case of uniform distribution and then a
reduction applies to generalize the results.

ALGORITHM 1: Algorithm 1 of [45]: Mapping for unweighted set
cover.
Input: (U,F).
while U 6= ∅ do

let F ← set in F maximizing |F ∩ U |;
for each u ∈ F ∩ U , map u to F ;
U ← U \ F .

end

ALGORITHM 2: Algorithm 2 of [45]: Mapping for weighted set cover.

Input: (U,F , c),E[c(opt)].
while U 6= ∅ do

let F ← set in F minimizing cF
|F∩U| ;

if cF
|F∩U| >

64E[c(opt)]
|U| ;

then
let F ← set in F minimizing cF ;

end
for each u ∈ S ∩ U , map u to F ;
U ← U \ F and F ← all sets covering at least one element remaining in U .

end

Theorem 3 implies the following corollary by using the results of [45].

Corollary 1 In the unweighted and weighted set cover game, there exist length-
oblivious protocol Ξ1 ∈ C and length-aware protocol Ξ2 ∈ C, respectively, both
computed in polynomial time, and with PoA of O(log n), if m = poly(n), and

O
(

logm
log logm−log logn

)
, if m� n.

Multicast Game. Garg et al. [42] showed a constant approximation on the
online Steiner tree problem. The idea is the following: sample a set S from
the distribution πk over the vertices and construct a minimum Steiner tree (or
a constant approximation). Then connect each other vertex with its nearest
vertex from S via shortest path. That way we end up with a spanning tree T
(standard derandomization techniques can apply [29], [60], [63]). T defines a
single path from each vertex to the root and this is an oblivious strategy for
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each players’ type. By using Theorem 3 and any constant approximation of
the minimum Steiner tree (the best known is by [15]), the following corollary
holds.

Corollary 2 In the multicast game, there exists Ξ ∈ C with PoA = O(1).

5 Posted Prices

In this section, we show how to set anonymous or semi-anonymous prices
for the resources. Ex-post BBiE cannot be obtained by using anonymous
posted prices, as the following example illustrates. Instead, we require ex-
ante BBiE. Furthermore, the same example serves to demonstrate that other
natural variations of budget balance cannot be very promising: a) BBiE with
“high” probability, b) bounded possible excess and deficit. Example 1 indi-
cates that any anonymous posted prices may result in BBiE with probability
at most O(1/

√
k) and that no posted prices can guarantee good bounds on

possible excess and deficit, i.e. for any posted prices, there are cases where the
total shares for some resource are either at least

√
k or at most 1/

√
k of the

resource’s cost.

Example 1 Consider k i.i.d. players whose type is the uniform distribution
over two elements e1, e2 in set cover or two vertices v1, v2 in multicast. In the
set cover game, there are only two subset of unit cost, F = {{e1}, {e2}}. In
the multicast game there are only two edges, (v1, t) and (v2, t), of unit cost.
The question that arises in both cases is how to set a price on a resource r
of unit cost, when each player may use it with probability 1/2. Let q be the
price for resource r. If 1/q is not an integer in {1, . . . , k}, then budget balance
appears with zero probability. So, suppose that 1/q = k′ ∈ {1, . . . , k}, then
budget balance appears only when k′ players use resource r and this happens

with probability, Pr[# players = k′] =
(
k
k

)′ ( 1
2

)k′ (
1− 1

2

)k−k′ ≤ ( k
bk/2c

)
1/2k <

1/
√
k. Furthermore, for any price q for resource r, if q ≥ 1/

√
k then, in the

case that all players use r, the total shares sum up to at least k · 1/
√
k =
√
k.

On the other hand, if q < 1/
√
k then, in the case that only one player uses r,

her share is at most 1/
√
k. This means that we cannot guarantee good bounds

on any possible excess and deficit.

For the rest of the section we define kA to be the expected number of
players having type in A and k1A to be the expected number of players having
type in A, given there exists at least one such player:

kA = Et[|i : ti ∈ A|] = k
∑
i∈A

πi ;

k1A = Et[|i : ti ∈ A| given |i : ti ∈ A| ≥ 1] =
k
∑
i∈A πi

1−
(
1−

∑
i∈A πi

)k . (1)
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Set Cover Game. To determine anonymous prices for the unweighted set cover
game, we first state Lemma 1 to be used in stability arguments.

Lemma 1 For any a > b > 0 and integer k ≥ 2, a
1−(1−a)k >

b
1−(1−b)k .

Proof We prove the lemma by mathematical induction on k. For k = 2,

a

1− (1− a)2
=

a

2a− a2
=

1

2− a
>

1

2− b
=

b

1− (1− b)2
.

Suppose that the statement holds for k − 1, i.e. a
1−(1−a)k−1 >

b
1−(1−b)k−1 .

We show the equivalent inequality 1−(1−a)k
a < 1−(1−b)k

b ,

1− (1− a)k

a
=

1− (1− a)k−1(1− a)

a
=

1− (1− a)k−1 + a(1− a)k−1

a

=
1− (1− a)k−1

a
+ (1− a)k−1 <

1− (1− b)k−1

b
+ (1− b)k−1 =

1− (1− b)k

b
.

ut

Theorem 4 In the unweighted set cover game, there exist length-oblivious
and anonymous prices (computed in polynomial time) with PoA O(log n), if

m = poly(n), and O
(

logm
log logm−log logn

)
, if m� n.

Proof In order to set the prices, we run the greedy algorithm of [30] and at each
step we set the price for the selected set. Algorithm 3 describes this procedure.

ALGORITHM 3: Bayesian posted prices.

Input: (U,F).
while U 6= ∅ do

let F ← set in F maximizing
∑

i∈F∩U πi;

set the price for F to 1
k1
F∩U

; Let U ← U \ F .

end
Set the price of all other sets to h.

We first argue that there exists a unique Bayes-Nash equilibrium, where
each player i chooses the set picked earlier by Algorithm 3 and covers her.
For that it is sufficient to show that for any two sets A and B, such that∑
i∈A πi >

∑
i∈B πi, k

1
A > k1B ; so, if some player is covered by both A and

B, the price set for A should be less than the price set for B and the player
prefers A that is picked by Algorithm 3 before B.

By using (1), we need to show that
k
∑

i∈A πi

1−(1−
∑

i∈A πi)
k >

k
∑

i∈B πi

1−(1−
∑

i∈B πi)
k ,

which is true for k ≥ 2, due to Lemma 1 by setting a =
∑
i∈A πi and b =∑

i∈B πi. Note that for k = 1, there exists only one player in the game and
this is a trivial case to solve.
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Next notice that, given that a set F is chosen by some player, the expected
number of players paying for it is k1F , resulting in ex-ante BBiE. As for the
PoA, Grandoni et al. [45] analyzed the performance of Algorithm 3, for the
stochastic problem. They didn’t consider any prices, instead they mapped each
player to the first set considered by the algorithm and they used the mapping
in order to form a set cover. Their cover though coincides with the equilibrium
solution and therefore their results immediately provide bounds on the PoA.

Theorem 5 In the weighted set cover game, there exist length-aware and
semi-anonymous prices (computed in polynomial time) with PoA O(log n), if

m = poly(n), and O
(

lognm
log logm−log logn

)
, if m� n.

Proof By using the mapping of Algorithm 2 (Algorithm 2 of [45]), let S(F )
be the set of elements mapped to set F . For each set F ∈ F , set the price
to be cF

k1
S(F )

, for any player whose type is in S(F ), and let the price be h

for any other player. Such way, in the Bayes-Nash equilibrium, each player
chooses the set, to which she is mapped by Algorithm 2. Grandoni et al. [45]
showed that the expected cost of that mapping is O(log n), if m = poly(n), and

O
(

logm
log logm−log logn

)
, if m� n, away from the expected cost of the optimum

solution. Those also serve as upper bounds on the PoA of the induced game.
Finally note that those prices satisfy ex-ante BBiE, for the same reasons as
the unweighted case. ut

We complement our results by providing tight lower bounds for poly-time
determinable prices.

Proposition 1 For m = poly(n), there may not exist anonymous posted
prices for the unweighted set cover, or semi-anonymous posted prices for the
weighted set cover, computed in poly-time, with PoA= o(log n), unless NP ⊆
DTIME(nO(log logn)).

Proof For any set cover problem Π = (U,F , c), we consider the game G with
|U | players where each one is associated with a different element. Consider
the stochastic or Bayesian game, where k � n, and k is sufficiently large such
that the probability that each element is the type of some player converges
to 1. Then, we apply the prices on the stochastic G. It is easy to see that we
can compute a Nash equilibrium in polynomial time, O(nm); players choose,
among the sets that covers them, some with minimum price. All the chosen sets
define a set cover for U . If there exist posted prices computed in polynomial
time with PoA= o(log nm) = o(log n), this would imply a polynomial time al-
gorithm for the set-cover problem with approximation ratio o(log n). However,
by [36], no polynomial time algorithm for the set cover problem can approx-
imate the optimal solution by o(log k), unless NP ⊆ DTIME(nO(log logn)),
which results in a contradiction. ut

Proposition 2 For m � n, there may not exist anonymous prices for un-
weighted set cover, or semi-anonymous prices for weighted set cover, with

PoA= o
(

logm
log logm−log logn

)
.
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Proof On the contrary, suppose that such prices exist. Then, they would de-
termine a mapping from the elements to the sets, meaning each element is
covered by a specific set. The expected cost of the sets that cover the sampled

elements would be o
(

logm
log logm−log logn

)
away from the expected cost of the

optimum solution. This contradicts the lower bound given by [45] (Theorem
4.2). ut

Multicast Game. We construct a spanning tree T in the same way as in Sect. 4
and we use it to set the posted prices (computed in polynomial time).

Theorem 6 In the multicast game, there exist anonymous posted prices with
PoA= O(1).

Proof For each edge e ∈ E(T ), let V (e) be the set of vertices that are dis-
connected from the root t in T \ {e}. We set the price for each e ∈ E(T ) as
ce/k

1
V (e). For each e /∈ E(T ), the price is set to h. In the equilibrium each

player chooses the path that connects her terminal with t via T . The constant
PoA follows by [42] and the approximation of [15]. The expected total prices
for e ∈ E(T ) is k1V (e)ce/k

1
V (e) = ce, if e is used, and 0 otherwise, resulting in

ex-ante BBiE.

6 Prior-Independent Mechanisms

The design of prior-independent mechanisms is a more difficult task, as the
objective now is to identify a single mechanism that always has good perfor-
mance, under any distributional assumption. In this section, we show limi-
tations of prior-independent mechanisms even for the restricted class of i.i.d.
prior distributions.

BBiE Protocols. Satisfying BBiE with prior-independent protocols highly re-
stricts the class of cost-sharing protocols and seems hard for natural classes of
distribution, e.g. i.i.d., to find ex-post BBiE protocols with low PoA. Regard-
ing the weighted set cover game with i.i.d. distributions, we can construct a
lower bound of Ω(

√
n) for all prior-independent mechanisms, which are ex-post

BBiE.

Theorem 7 In the weighted set cover game, any prior-independent, ex-post
BBiE protocol Ξ ∈ C has PoA= Ω(

√
n).

Proof Consider n players, n + 1 elements/types U = {0, 1, . . . , n} and the
family of sets F = {F0, F1, . . . Fn, Fall}, with Fj = {j}, cFj

= 1 for all j, and
Fall = {1, . . . , n}, cFall

=
√
n. Note that 0 is covered only by F0, serving as a

dummy set.
Given a BBiE, prior-independent protocol Ξ, suppose that there exists

some Fj , j 6= 0, where Ξ is not budget-balanced, i.e. there exists a set of players
S, such that if only S chooses Fj , the sum of their cost-shares are different
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from 1. Consider the prior distribution D1 = πn with π(0) = π(j) = 1/2 and
π(j′) = 0 for any j′ /∈ {0, j}. With positive probability, 1/2n, all player of S
have type j and all other players have type 0. If all players of S choose Fj in
any pure Bayes-Nash equilibrium, ex-post BBiE is violated. So, there exists
at least one player from S such that, whenever her type is j, she chooses Fall
(and this happens with probability 1/2) which results in PoA= Ω(

√
n).

Suppose now that Ξ is budget-balanced for any Fj , where j 6= 0. Let I
be the set of players such that whenever i ∈ I is the only player choosing
Fall, Ξ doesn’t charge

√
n to i. Consider the prior distribution D2 = πn with

π(0) = 1/2 and π(j) = 1/2n for all other j. With positive probability, 1/(2nn),
player i’s type is some j 6= 0 and all other players’ type is 0. If for any type
j 6= 0 player i chooses Fall in any Bayes-Nash equilibrium, ex-post BBiE is
violated. Therefore, for any player i ∈ I, whenever her type is j, she chooses
Fj .

We claim that the strategy profile, where any player i with type ti chooses
Fti is a Bayes-Nash equilibrium. For any player i ∈ I there is no other valid
strategy. For each player i /∈ I, whenever ti 6= 0, player i always pays at most
1 (due to budget balance in Fti), whereas if she deviates to Fall she pays

√
n.

Each element j 6= 0 is a type of at least one player with probability 1 −(
1− 1

2n

)n ≥ 1 − 2
e , giving an expected cost of Ω(n) in the equilibrium. The

expected optimum is at most 1 +
√
n by using only F0 and Fall and so PoA=

Ω(
√
n).

Posted Prices. Setting prior-independent posted prices cannot guarantee any
BBiE, even ex-ante. Consider the set cover game (similar example exists for
the multicast game) with n players, n elements and two subsets of unit costs,
one containing element 1 and the other containing the rest. Suppose now that
we post a price q for the first subset. If q ≤ 1/

√
n, for the uniform prior

distribution, the expected number of players with type 1, given that there

exists at least one, is n·1/n
1−(1−1/n)n ≤

e
e−1 . The expected cost shares for the first

set are O(1/
√
n), meaning that its cost is undercovered by a factor of Ω(

√
n).

If q > 1/
√
n, consider the prior D = πn, where π(1) = 1 and π(j) = 0 for all

j 6= 1. All players choose the first set and their total shares are n · 1/
√
n =
√
n

which exceeds the set’s cost by a factor of
√
n. So, there is no way to avoid an

over/under-charge of a resource by a factor better than Θ(
√
n).

7 Complete Information

In the complete information setting, the input now is known and therefore for
any feasible solution we can consider oblivious strategies. If F ′ ⊆ F is any
feasible solution with cost c(F ′) and F∗ ⊆ F is the optimum solution with
cost c(F∗), then by Theorem 3 we can enforce the solution F ′ and get a PoA of
c(F ′)/c(F∗). In the following we consider F ′ as either the optimum solution or
an approximation. Note that, while trying to bound the PoA, computational
issues are not of primary concern.
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Set Cover Game. By considering F ′, as either the optimum solution or its
O(log k)-approximation of the greedy algorithm, where k is the number of
players to be covered, and by using Theorem 3 we get the following corollary.

Corollary 3 For the (weighted) set cover game there exists a protocol Ξ ∈ C,
that can be defined in exponential time, with PoA = 1 and a protocol Ξ ∈ C,
that can be defined in polynomial time, with PoA = O(log k).

Next we show that there exist posted prices that can be computed in
polynomial time with PoA = O(log k). We show that, under the restriction
of setting the prices in polynomial time, this bound is tight. Then we drop
the constrain of defining the prices in polynomial time, and we define posted
prices with PoA = 1.

Theorem 8 There exist posted prices satisfying BBiE, that can be set in poly-
nomial time, for the (weighted) set cover game, with PoA = O(log k).

Proof Let ke be the number of players with type e ∈ U and X ⊆ U be the
set of elements that needs to be covered, i.e. ke = 0 if and only if e /∈ X.
Clearly

∑
e∈X ke equals k, the total number of players. To set the prices we

run Algorithm 4.

ALGORITHM 4: Complete information posted prices.

Input: (X,F , c).
while X 6= ∅ do

let F ← set in F minimizing
c(F )∑

e∈F∩X ke
;

set the price for F to
c(F )∑

e∈F∩X ke
;

X ← X \ F .
end
Set the price of all other sets to h.

There exists a unique Nash equilibrium, where each player i chooses the
set picked earlier by Algorithm 4 and covers her, let it be F i. This is because
any other set F that covers i and picked after F i should have at least the

same value c(F )∑
e∈F∩X ke

with c(F i)∑
e∈Fi∩X ke

at the time that F i was picked. After

processing F i, F ∩X is diminished by at least 1, and so the price of F should
be strictly higher that the price of F i.

In order to show the bound on the PoA, we consider a reduction from
the set cover game G = (U,X,F , c, t), where t are players’ types, to a set
cover problem Π = (U ′,F ′, c′), such that the PoA equals the approximation
ratio of Π. U ′ is derived by X, after replacing each of its elements, e, by ke
copies e1, . . . , eke . For each set F ∈ F , we construct a set F ′ ∈ F ′ of the same
cost (cF = c′F ′), first by erasing all elements belonging to U \ X, and then
by replacing each of its remaining elements, e, by ke copies e1, . . . , eke . We
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assume that each player i ∈ {1, . . . , ke} of type e is associated with element ei
of the constructed set cover problem.

It is easy to see that the greedy algorithm on Π chooses the sets in the
same order with Algorithm 4. Therefore, the approximation ratio for Π equals
the PoA of G. Notice that |U ′| = k and since the approximation ratio of the
greedy is O(log k), the bound on the PoA follows. Note further that the sum
of the prices for each such set used in the Nash equilibrium equals the cost of
the set, that results in BBiE as desired. ut

Proposition 3 There may not exist posted prices, that are computed in poly-
nomial time, for the set cover game, with PoA = o(log k), unless NP ⊆
DTIME(nO(log logn)).

Proof On the contrary, suppose there exist posted prices computed in polyno-
mial time with PoA= o(log k). This would impply a polynomial time algorithm
for the set cover problem with approximation ratio of o(log k), but this is a
contradiction due to [36]. ut

Theorem 9 There exist posted prices satisfying BBiE, computed in exponen-
tial time, for the (weighted) set-cover game, with PoA = 1.

Proof As in the proof of Theorem 8, let ke be the number of players with type
e ∈ U and X ⊆ U be the set of elements/players that need to be covered.
Moreover, let F∗ ⊆ F be the optimum solution, found in exponential time. To
set the prices we run Algorithm 4 but for input (X,F∗). We set the prices for
the rest of the sets F \ F∗ equal to h.

By using similar arguments as in the proof of Theorem 8, in the (unique)
Nash equilibrium, each player chooses the set picked earlier by Algorithm 4
and covers her. The prices for each set used in the Nash equilibrium equal
the cost of the set resulting in BBiE. The difference here is that the Nash
equilibrium uses only the sets of F∗, resulting in PoA = 1. ut

Multicast Game. Similarly with the set cover game, we can easily get the
following corollary by using Theorem 3, for the multicast game. For the second
part, we use the 1.39-approximation algorithm of [15].

Corollary 4 For the multicast game there exists a cost-sharing protocol Ξ ∈
C, that can be defined in exponential time, with PoA = 1 and a cost-sharing
protocol Ξ ∈ C, that can be defined in polynomial time, with PoA ≤ 1.39.

We next use posted prices and show that the PoA is constant for the case
of multicast game. By using the 1.39-approximation algorithm of [15], the PoA
is constant even if we require the prices to be computed in polynomial time.

Theorem 10 For the multicast game, there exist posted prices, computed in
polynomial time, with PoA ≤ 1.39 and posted prices, computed in exponential
time, with PoA = 1.
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Proof Let S ⊆ V be the set of players’ terminal and T be the solution that
approximates the minimum Steiner tree on the requested vertices S ∪ {t}
derived by the 1.39-approximation algorithm of [15]. If we drop the requirement
of computing the prices in polynomial time, T is the minimum Steiner tree.
For each edge e ∈ E(T ), let ke be the number of players that are disconnected
from t in T \ {e}. We set the price for e ∈ E(T ) as ce/ke. For each e /∈ E(T ),
we set the price to be h. In the Nash equilibrium each player will choose the
unique path that connects her source with t in T , since any other path has
high cost of at least h. Obviously, the players cover exactly the cost of each
used edge and the cost of the Nash equilibrium equals the cost of T . ut
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APPENDIX

A Set Cover Reduction

The following multicast (directed) network cost-sharing game models the set cover game.
Consider a directed bipartite graph with U and F as the two sets of vertices. For each pair
of vertices i ∈ U and Fj ∈ F , we add a directed edge (i, Fj) if and only if i ∈ Fj ; the cost
of such an edge is set to 0. Each vertex i of U is associated with the terminal ti of some
player. We further add an extra vertex t as the common destination and we add a directed
edge (Fj , t) for every Fj ∈ F , with cost cFj

.

All strategies are two length paths and for each player/element i ∈ U the space of
their strategies are all the paths where their middle vertex is a set that i belongs to. The
cost-sharing protocol for each (Fj , t) edge determines exactly the cost-shares for the players
that choose Fj . From the lower bound of Chen et al. [23] (Proposition 4.12), the following
corollary can be trivially derived.

Corollary 5 The PoA of the (unweighted) set cover cost-sharing game for the complete
information setting is Ω(n)


