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ABSTRACT: Many industries are subjected to major hazards, which are of great concern to 

stakeholders groups. Accordingly, efforts to control these hazards and manage risks are increasingly 

made, supported by improved computational capabilities and the application of sophisticated safety 

and reliability models. Recent events, however, have revealed that apparently rare or seemingly 

unforeseen scenarios, involving complex interactions between human factors, technologies and 

organisations, are capable of triggering major catastrophes.  The purpose of this work is to enhance 

stakeholders’ trust in risk management by developing a framework to verify if tendencies and 

patterns observed in major accidents were appropriately contemplated by risk studies. This paper 

first discusses the main accident theories underpinning major catastrophes. Then, an accident 

dataset containing contributing factors from major events occurred in high-technology industrial 

domains serves as basis for the application of a clustering and data mining technique (self-organising 

maps – SOM), allowing the exploration of accident information gathered from in-depth 

investigations. Results enabled the disclosure of common patterns in major accidents, leading to the 

development of an attribute list to validate risk assessment studies to ensure that the influence of 

human factors, technological issues and organisational aspects was properly taken into account.   

 

 

1. Introduction 

 

1.1 Accident causation models and implications to validate risk assessments 

 

Accident causation models lie beneath all efforts related with safety engineering, as they serve as 

basis for accident investigation and analysis, to prevent future accidents in new designs and for the 

development of risk assessment techniques (Leveson, 2012). The rising interest in understanding the 

genesis of major accidents and the growing importance of technological issues to societies directed 

many schools of thought to approach the accident causation problem from different perspectives, 

leading, to a certain extent, to conflicting ideas on how (and if) hazards can be appropriately 

addressed and controlled.  

 

According to Perrow (1984), failures in complex, tightly coupled systems are inevitable, and thus the 

occurrence of accidents with catastrophic potential in some high-technology facilities (e.g. nuclear 



power and nuclear weapons) is unavoidable, constituting an expected or normal accident. His theory 

was developed after the Three Mile Island accident, a partial core meltdown occurred in a USA 

nuclear power plant in 1979 which was his base case. To cut a long story short, he simply suggests 

the discontinuation of technologies such as nuclear plants and weapons (which he deems hopeless) 

as he understands that the inevitable risks outweigh the perceived benefits. Operator errors are 

frequent elements of the scrutinised case studies, highlighting how complex interactions of a series 

of failures can lead to flawed mental models. Perrow alludes to a sole possible managerial style to 

safely run these facilities: a military-shaped organisation, authoritarian and rigidly disciplined. 

However, he claimed that this administration structure would be socially intolerable and 

unsustainable during peacetime, for industrial civil activities. 

 

The Normal Accidents Theory is preceded by Cohen’s Garbage-Can Model (Cohen et al., 1972, Davis 

et al., 1988), which presented an earlier recognition that organisations have high degrees of 

uncertainty, leading to ill-defined or competing preferences, ambiguous goals, unclear technology 

and fluid patterns of stakeholders’ involvement in the decision-making process. While the Garbage 

Can theory indicates that major accidents will happen because organisational behaviour is extremely 

complex and unpredictable, the Normal Accidents Theory limits the inevitability of disasters to 

systems where complexity and tight coupling are observed. Though both theories share an 

unenthusiastic view of the human capacity to predict and control hazards, yet some distinct (and 

useful) elements can be extracted from them: the former clearly points towards organisational 

matters as the root-cause of catastrophes, while the latter blames technological aspects, albeit 

assuming that it could be somehow mitigated by a particular type of military organisation. 

 

Taleb’s book The Black Swan – The Impact of the Highly Improbable (2007) minted a popular and 

wide-reaching concept (Aven, 2015, Aven 2013, Paté-Cornell, 2012) to explain the occurrence of 

major accidents. He refers to events with extreme impacts as Black Swans, considering them as 

highly improbable events (or outliers) which are not prospectively foreseeable. His celebrated 

analogy was based on the fact that people only knew white-feathered swans before the English 

arrival in Australia, where the sight of a black swan came as a surprise. He concludes that predictions 

based on historical data cannot anticipate outliers, claiming that the usual focus on standard 

operations disregards the extreme or uncertain. According to his views, the dynamics in high-

technology domains are far more complicated than can be anticipated, and conducting laborious 

pre-analysis and validation based on probabilistic modelling should be ruled out, as it has little effect 

in terms of major hazards control (or black swans prevention!). 

 

It is worth to notice that many widespread accident causation theories appear to consider the 

successful operation of a high-risk industrial facility as a matter of good fortune, since major 

accidents are perceived to have a chaotic nature. According to this approach, preferences are being 

randomly defined, technologies are not fully understood by managers and workers, complex 

interactions leading to major accidents are not predictable and stakeholders’ groups are fluctuating.  

 

Conversely, researchers on High Reliability Organisations (Roberts, 1990, Grabowski & Roberts, 

1997, La Porte & Consolini, 1998) address cases where organisations managing operations with high 

potential for disasters achieved excellent levels of reliability for long periods of time, appearing to 

function better than others. Based on the observation of success cases, they believe that it is 



possible to recognise scientific methods to sustain a nearly error-free operation, even in very 

hazardous environments. It is worth noticing that the examples used to ratify the High Reliability 

Organisations principles include nuclear power stations, putting it in sharp contrast with the Normal 

Accidents Theory. According to Perrow (1984), these are precisely the sort of facility susceptible to 

unavoidable failures, and thus society should consider abandoning it at once. 

 

Sagan (1993) conducted an in-depth analysis of the Normal Accidents and the High Reliability 

Organisations theories, presenting some of the competing viewpoints below.  

 

Table 1 – Competing Perspectives on Safety with Hazardous Technologies (Sagan, 1993) 

High Reliability Theory Normal Accidents Theory 

Accidents can be prevented through good 

organisational design and management. 

Accidents are inevitable in complex and tightly 

coupled systems. 

Safety is the priority organizational objective. Safety is one of a number competing objectives. 

Redundancy enhances safety: duplication and overlap 

can make “a reliable system out of unreliable parts”. 

Redundancy often causes accidents: it increases 

interactive complexity and opaqueness, and 

encourages risk-taking. 

Decentralized decision-making is needed to permit 

prompt and flexible field-level responses to surprises.  

Organisational contradiction: decentralisation is 

needed for complexity, but centralisation is needed 

for tight-coupled systems.   

A “culture of reliability” will enhance safety by 

encouraging uniform and appropriate responses by 

field-level operators. 

A military model of intense discipline, socialisation 

and isolation is incompatible with democratic values. 

Continuous operations, training and simulations can 

create and maintain high-reliability operations 

Organisations cannot train for unimagined, highly 

dangerous or politically unpalatable operations. 

Trial and error learning from accidents can be 

effective, and can be supplemented by anticipation 

and simulations. 

Denial of responsibility, faulty reporting and 

reconstruction of history cripples learning efforts. 

 

Despite the evident disparity between these schools of thoughts, especially regarding the possibility 

of preventing a major accident, Sagan perceived some common ground regarding the frequencies of 

these events. While the normal accidents theory states that major accidents are inevitable, but 

extremely rare, high-reliability organisations theory postulates a nearly error-free operation by an 

enhanced safety management. Implicitly, there is a mutual recognition of the low probabilities of 

catastrophic events. After assessing several study cases on safety events involving U.S. nuclear 

weapon systems, Sagan (1993) concluded that the collected evidences provided stronger support to 

the Normal Accidents Theory. His observations indicated that factors such as excessive discipline (he 

identified evidences of extreme loyalty, secrecy, cover-ups, distain for external expertise and other 

self-protecting mechanisms), conflicting interests and constraints on learning have limited nuclear 

facilities’ organisational safety and could have resulted in major catastrophes if circumstances were 

slightly different. 

 

Therefore, Sagan’s resulting analysis of the theories can be considered even more pessimistic than 

the Normal Accidents Theory. Despite the claim that accidents are inevitable, Perrow’s left the door 

open for a social incompatible but safety-efficient managerial style: a military-shaped organisation 

with rigid discipline. However, his allegations were challenged by Sagan’s nuclear weapons handling 

sample, which included an alarming number of close calls. 



 

Other researchers recognise the difficulties in preventing major accidents, but focus on the 

development of strategies to reduce their likelihood.  Following this principle, James Reason 

developed an acclaimed and widely-known accident causation approach, which evolved from 

Heinrich’s et al. (1980) Domino Theory. Reason (1990) firstly developed the idea of having a 

combination of active failures and latent conditions to explain how complex systems can fail, later 

expanding it to a multi-barrier concept known as the Swiss Cheese Accident Model (Reason, 1997), 

which is widely used by academics and practitioners to describe the dynamics of accident causation. 

Successive cheese slices represent layers of defences, barriers and safeguards, all containing holes 

symbolising breaches caused by active failures and latent conditions. In the rare occasions when 

holes are perfectly aligned and all protective layers are overcome, an organisational accident will 

occur, usually having devastating consequences. A vital distinction between individual accidents and 

organisational accidents was highlighted by the theory, especially the risk that organisations will be 

tempted to rely on LTI (lost-time injury) or Bird’s pyramid-type methodologies to demonstrate safety 

performance, overlooking latent conditions that degrade barriers and lead to major accidents. Many 

risk management approaches derive from the multi-barrier concept developed by Reason, relying 

that the underlying mechanisms causing organisational accidents can be correctly identified and 

properly managed. Human reliability approaches such as Human Factors Analysis and Classification 

System – HFACS (Shappell et al., 2007), Systematic Occurrence Analysis Methodology – SOAM (Licu 

et al., 2007) and the Sequentially Outlining and Follow-up Integrated Analysis – SOFIA (Blajev, 2002), 

and accident causation analysis methods such as Bow-Tie  (Zuijderduijn, 2000) and Cause-

Consequence Diagrams (Nielsen, 1971) are examples, to name but a few, of risk assessment 

techniques deeply aligned with Reason’s approach. 

 

Contemporary approaches on accidents causality models try to apply systems theory and system 

thinking (e.g. Leveson, 2011) to disclose deeper factors contributing to accidents, by adding higher 

hierarchical levels beyond immediate events and analysing the interactions among factors and 

broader circumstances. Examples are how public opinion and governments’ movements influence 

the safety culture of an industrial segment. If the interaction among some of the constituent 

elements violates a set of constraints that guarantees the system safety integrity, an accident may 

occur. The focus of this systemic approach to accident causation is on understanding why the 

enforcement of constraints was unsuccessful. 

 

A comparable perspective was previously conceived by Rasmussen’s (1997) thoughts on system 

performance control. Instead of continually constrain individual elements to fit a pre-defined 

operational standard or limit, he focused on two features of system control theory: firstly, the need 

for adaptation of the system operation boundaries, i.e. increasing the margin from normal operation 

to loss-of-control; and secondly, increasing the awareness level of operational limits by making these 

boundaries visible to stakeholders. Rasmussen also noted that the pace of technology change is 

much faster than the modification time for management structures, and an even longer change lag is 

observed in higher hierarchical levels such as governments, regulations and society. This asynchrony 

defies risk modelling and challenges the rationale of using detailed methods and tools for analysing 

individual components or sub-systems, as system parts/components satisfactory results might not 

reflect the safety status of the overall system.  

 



When the utmost objective is the validation of risk assessments for hazardous industrial process 

plants in a dynamic and fast-changing environment, the complexity of the interactions among 

system elements must be recognised, along with the unpredictability of organisational behaviour 

and the inherent difficulties to prospectively foresee extremely rare, low-probability events, as 

highlighted by accident causation theorists. Additionally, designed safety barriers are not static and 

tend to degenerate through time. Factors such as ageing, maintenance shortcomings, budget 

constraints, personnel fluctuation and pressure towards to cost-effectiveness, to name but a few, 

can contribute to defeat barriers and thus defence-in-depth concepts, which largely serve as basis 

for risk assessment studies. 

 

1.2 Identifying common patterns and developing a risk assessment validation framework 

based on major accidents 

 

The fact that accidents causation theories disagree whether major events are preventable or not 

turns risk assessment validation and trust in risk management into a challenging research topic. 

Although any model will imply the reduction of the complexity of operational reality, some 

attributes can be extracted from accident causation models in order to establish an acceptable 

framework to verify the applicability and accurateness of risk management strategies.  

 

It is disputed if the study of success cases, as argued by high-reliability organisations theorists, will 

give some insight into the unusual, rare interfaces observed in major accidents. In contrast, the 

identification of common patterns arising from interactions between human factors, technological 

aspects and organisations during catastrophic events seems to be a reasonable approach to 

subsidise a verification strategy for risk analysis, at least to certify that lessons learned from previous 

accidents were contemplated in current studies. This novel approach might help reducing the gap 

pointed out by  Skogdalen and Vinnem (2012) when analysing a number of quantitative risk analysis 

from the Norwegian Oil & Gas industry. They identified that human and organisational factors 

(HOFs) were not taken into account during the estimation of the probabilities of a blowout. In 

contrast, the Deepwater Horizon blowout was deeply associated with HOFs such as work practice, 

training, communication, procedures, quality control and management. Previous analysis of 238 

major accidents (Moura et al., 2016) also indicated that 95% of these events presented some sort of 

organisational contribution to the undesired outcome, and 57% were directly associated with human 

factors, highlighting the importance of considering these significant features to develop realistic 

safety studies.  

 

Barrier and defences-in-depth concepts will rely on the integrity and availability of the designed 

barriers to hold hazards or to minimise their consequences. Addressing common organisational and 

technological shortcomings contributing to the degradation of critical safety barriers can reveal 

tendencies which make them fail upon demand. The pattern identification process would also 

support the application of a safety check against recurrent damage mechanisms, reducing latent 

failures and providing useful data to endorse the expected positive effect of the barrier during a real 

event. 

 

The disclosure of common patterns leading to major accidents will make operational boundaries 

visible to stakeholders, improving confidence in the decisions made and justifying the application of 



additional safety measures. The fact that the output will be directly associated with real events will 

facilitate the learning process and highlight the significance of addressing the identified concerns. 

 

Therefore, this research will focus on the development of a risk assessment validation scheme, 

based on the interactions between human factors, technological aspects and organisations during 

major accidents. The collection of events constitutes the Multi-Attribute Technological Accidents 

Dataset (MATA-D) introduced by Moura et al. (2016), which captured major accidents occurred in 

high-technology industrial domains (e.g. aviation, oil & gas upstream, refineries and nuclear plants) 

and classified them under a common framework, the Contextual Control Model used as basis for 

Hollnagel’s (1998) Cognitive Reliability and Error Analysis Method. This previous work presented one 

of the most complete statistical analysis of major accidents from different industrial segments in the 

open literature. 

 

The application of an artificial neural network approach, specifically Kohonen’s (2001) Self-

organising Maps (SOM), will result in the conversion of complex accident data into 2-D risk maps. 

Events will be clustered by similarity, allowing the combined treatment of accidents with similar 

interactions but from distinct industrial segments. The development of the data visualisation 

provided by the SOM application will give rise to the development of a set of properties, attributes 

and recommendations for the verification of systems, safety barriers, human-machine interfaces and 

risk studies, enhancing risk perception and stakeholders’ trust. 

 

2. Analysis Method 

 

Previous works have applied past accidents data to produce insight into the genesis of adverse 

events, in order to support researchers and practitioners by offering valuable contributions to the 

development of risk management strategies and to disclose contributing causes to accidents. Most 

of the existing datasets arouse from accident/incident data reporting systems, voluntarily developed 

by companies/associations (e.g. DNV-GL World Offshore Accident Database, International 

Association of Gas Producers Process Safety Events Data) or enforced by states (e.g. UN 

International Civil Aviation Organization Accident Indent Data Reporting system – ADREP, UK HSE’s 

Reporting of Injuries, Diseases and Dangerous Occurrences Regulations - RIDDOR). These efforts to 

collect data are commonly limited to a single industrial segment (Baysari et al., 2008, Evans, 2011) or 

attempt to embrace from occupational accidents to process safety events (Bellamy, 2007, 2013). 

Generally, reporting systems also include a category called near-misses, which are hazardous 

occurrences that did not resulted in a loss/injury but had the potential to do so.  

 

The events’ scrutiny level during the data acquisition stage will involve some expected variations, as 

it will mostly depend on the consequences of the event and secondly on the societal interest in the 

subject. Consequently, near-misses will be directly reported by companies, with the regulating body 

using this compact data to develop performance indicators or to trigger further actions such as 

inspections. Regulators can investigate occupational accidents directly, or validate/rely on 

companies’ internal investigation procedures. Major accidents usually capture the media’s and 

societal attention, pushing governments and regulators to react accordingly. Due to the wide-range 

consequences observed, this type of event requires consistent investigation processes, usually 

undertaken by one or more regulators, independent investigation commissions or both. The 



European Safety, Reliability and Data Association (2015) has recently recognised that these events 

trigger comprehensive examinations concerning preventive and protective systems, along with a 

careful consideration of factors and surrounding conditions leading to accidents. An illustrative 

example would be the Transocean’s drilling rig Deepwater Horizon blowout and explosion occurred 

in the Gulf of Mexico in April 2010, which was investigated by the licensee (BP, 2010), regulators 

(USCG, 2010, BOMRE, 2011), an independent agency (US-CSB, 2016) and academic study groups 

(CCRM, 2011). Beyond doubt, catastrophic events lead to meticulous examinations and produce very 

detailed data about the conditions in which operations were inserted. Attributable to this 

extraordinary level of scrutiny, the data produced is indisputably more reliable and complete than 

any alternative source of information regarding accident causation.  

 

The current version of the MATA-D, containing 238 major accidents from different high-technology 

industries (e.g. aviation, hydrocarbons exploration and production, refining, chemical industry, 

nuclear) will be used as a data source for this research. The dataset framework comprises 53 factors 

distributed in three main categories: man, technology and organisation. The structured but 

comprehensive nature of the MATA-D framework allowed for the effective application of several 

data mining approaches in previous research (e.g. Doell et al., 2015, Moura et al., 2015a, 2015b), 

such as agglomerative clustering methods, association rule mining techniques and neural networks. 

Cross-industrial common patterns in major events as well as significant relationships among 

contributing factors were successfully disclosed. 

 

In this work, key interfaces between human factors, technological aspects and organisations will be 

identified through the application of a suitable artificial neural network technique named SOM 

(Kohonen, 2001). This data mining approach is especially effective when an unsupervised method 

(i.e. the number of clusters or final categories in the output space are unknown) and the 

classification and visualisation of high-dimensional data are needed (Kohonen, 2013; Ultsch, 1993). 

Data mining efforts will result in the reduction from 53 dimensions (or contributing factors per 

accident) to two-dimensional maps. The 2-D SOM maps will be generated with the support of a 

specialised software (Viscovery® SOMine expert version), to enhance the features’ visualisation and 

facilitate the interpretation of the SOM output.  

 

After the application of the SOM algorithm, the clusters where the highest incidence of interfaces 

was identified during major accidents will become apparent. Further examination of the intricate 

relationship among contributing factors within the clusters of interest will reveal common patterns 

and accident tendencies, highlighting principles that must be taken into account when developing 

risk assessment studies. Further details on the SOM algorithm rationale and settings, the translation 

of data into maps and the clusters’ validity for the specific application have been previously 

discussed in Moura et al. (XXXX).     

 

The conversion of relevant interfaces in a set of principles will subsidise the validation of risk analysis 

and risk management documents, by applying the lessons learned from major accidents. 

Accordingly, a straightforward requirement list to be crosschecked against risk studies will be 

developed, and further implications to enhance stakeholders’ trust will be then discussed. 

 



3. Results 

 

The application of the SOM algorithm to the MATA-D dataset resulted in four different accident 

clusters containing dissimilar influencing factors, as shown in Figure 1. The contributing factors label 

sizes are proportional to their effect within the grouping. For example, the Inadequate Task 

Allocation factor in Cluster 1 (magenta) occupies 95% of the total cluster area, while Wrong Place 

occupies 52.5%, and the Incomplete Information frequency is 36.2%. This is one example of the 

usage of the visualisation power of the clustering method to interpret accident data. Figure 1 

synthetizes information from a 238 x 53 Matrix (number of major accidents x possible contributing 

factor per event) in a single 2-D image.  

 

 

 

 

Figure 1 – MATA-D SOM Clustering output labelled by most relevant contributing factors 

 

First cluster (magenta) covered 35% of the SOM map area, containing the highest amount of 

datapoints, with 34% of the accidents. Cluster 2 (red) has 25% of the total area and 24% of the 

dataset. The third grouping (yellow) occupies 20% of the total area and has the lowest event’s 

frequency, with 16%. Cluster 4 (green) also holds 20% of the map area, but embraces 26% of the 

dataset events. Figure 2 depicts the rate of contributing factors per event, discriminated by clusters. 

  



 

Figure 2 – Number of Contributing Factors Histogram 

 

Figure 2 shows Cluster’s 1 events with 4 to 24 contributing factors per accident and mode of 9, as it 

appeared in 15 events. 86.2% of the accidents within this cluster have seven or more contributing 

factors, constituting a very rich grouping for further interpretation. Cluster 2 events were influenced 

by 1 to 10 features with 72.2% of the grouping having 6 or less contributing factors, while the totality 

of the events in Cluster 4 are constituted by 6 or less features. Both groupings show the same low 

mode of 2 factors, indicating a lower prospect for the identification of multiple interactions among 

contributing factors. For Cluster 3, the total number of contributing factors per accidents varied from 

5 to 22. 79.5% of the events contained seven or more contributing factors, being 8 factors the mode 

value. This grouping also tends to provide good opportunities for enhanced interpretations of the 

genesis of major accidents. 

 

Results show that the application of the SOM algorithm largely improved the visualisation of 

interfaces, by confining events with lower frequency of contributors in clusters 2 and 4, as well as 

elevating the features’ mode for clusters 1 and 3, highlighting special structures within the dataset.  

 

Table 2 details the results of the SOM clustering, indicating the effect of the data mining process to 

contributing factors, in relation to the overall dataset. The variation columns compare the overall 

dataset statistics with the individual factors’ influence in each cluster. Negative or very low 

variations are not indicated, as the preservation or reduction of the frequency of a contributing 

factor in a grouping (in relation to its overall incidence) means that the factor was not significant to 

the formation of the cluster. 27 features contributed to less than 10% of the individual clusters and 

will not be represented, due to their low significance to the groupings formation. Contributing 

factors with strong dominance (more than 50% of the individual cluster areas) are highlighted, as 

well as frequencies higher than 10% and with positive cluster effect.     

 

Table 2. Dataset overall statistics vs. clustering distribution for significant features 

Contributing 

Factor 
Overall C1 Effect C2 Effect C 3 Effect C 4 Effect 

Wrong Time 14.7% 13.8% - 10.5% - 41.0% +178.8% 3.2% - 

Wrong Type 11.8% 11.3% - 7.0% - 30.8% +161.8% 4.8% - 
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Contributing Factors Quantity

Cluster 1

Cluster 2

Cluster 3

Cluster 4



Wrong Place 31.5% 52.5% +66.6% 36.8% +16.8% 12.8% - 11.3% - 

Observation 

Missed 
15.5% 20.0% +28.6% 12.3% - 23.1% +48.6% 8.1% - 

Faulty diagnosis 13.0% 26.3% +101.9% 8.8% - 12.8% - 0.0% - 

Wrong 

reasoning 
11.3% 20.0% +76.3% 1.8% - 25.6% +125.7% 0.0% - 

Decision error 9.2% 5.0% - 17.5% +89.3% 17.9% +93.6% 1.6% - 

Inadequate plan 9.7% 10.0% - 7.0% - 25.6% +164.9% 1.6% - 

Priority error 7.1% 6.3% - 8.8% +23.2% 15.4% +115.6% 1.6% - 

Distraction 5.9% 11.3% +92.1% 3.5% - 7.7% +30.9% 0.0% - 

Cognitive bias 7.1% 15.0% +110.0% 1.8% - 10.3% +44.2% 0.0% - 

Equipment 

failure 
55.0% 33.8% - 22.8% - 94.9% +72.4% 87.1% +58.2% 

Inadequate 

procedure 
44.1% 78.7% +78.4% 42.1% - 38.5% - 4.8% - 

Incomplete 

information 
17.6% 36.2% +105.1% 7.0% - 20.5% +16.2% 1.6% - 

Communication 

failure 
10.5% 16.3% +55.2% 5.3% - 20.5% +95.2% 1.6% - 

Missing 

information 
20.6% 37.5% +82.1% 14.0% - 15.4% - 8.1% - 

Maintenance 

failure 
34.9% 56.3% +61.4% 14.0% - 33.3% - 27.4% - 

Inadequate 

quality control 
60.9% 81.3% +33.4% 24.6% - 79.5% +30.5% 56.5% - 

Management 

problem 
9.2% 12.5% +35.2% 5.3% - 23.1% +149.9% 0.0% - 

Design failure 66.0% 85.0% +28.9% 50.9% - 87.2% +32.2% 41.9% - 

Inadequate 

task allocation 
60.1% 95.0% +58.1% 68.4% +13.8% 48.7% - 14.5% - 

Social pressure 7.1% 17.5% +145.0% 3.5% - 0.0% - 1.6% - 

Insufficient 

skills 
36.1% 56.3% +55.8% 12.3% - 76.9% +112.8% 6.5% - 

Insufficient 

knowledge 
35.3% 60.0% +70.0% 17.5% - 56.4% +59.8% 6.5% - 

Adverse 

ambient 

conditions 

7.1% 2.5% - 14.0% +96.0% 10.3% +44.2% 4.8% - 

Irregular 

working hours 
3.8% 10.0% +164.4% 1.8% - 0.0% - 0.0% - 

 

Figure 3 summarises the most relevant contributing factors to the formation of the clusters, 

rearranged by categories according to the dataset framework.  

 



 

Figure 3 – Categories of the most significant contributing factors per cluster 

 

From a human factors perspective, Cluster 1 accidents were dominated by the Wrong Place 

phenotype, when an action from an expected sequence is skipped, carried out in the incorrect order 

or substituted by an unrelated movement. Action errors interfaced with intermediate levels of 

human cognition, as operators were required to observe a signal or event (observation missed) and 

diagnose a situation or system state (faulty diagnosis). Inference or deduction errors (wrong 

reasoning) were also observed. This was the grouping where person-related features were more 

significant, as shifts in attention (distraction) or constraining the information search to confirm a pre-

defined hypothesis, attributing events to specific factors or believing that actions have controlled the 

system state developments (cognitive bias) contributed to 11.3% and 15% of the cluster, 

respectively. Technology issues included procedure shortcomings (78.7% of the cluster) and 

situations where the information provided by the system interface was poor (incomplete 

information). Many organisational issues interacted within the cluster. Inadequate Task Allocation 

(95%), Design Failure (85%) and Inadequate Quality Control (81.3%) were the most significant ones, 

but training (Insufficient Skills and Insufficient knowledge) and communication issues 



(Communication Failure and Missing information) were considerable as well. Maintenance issues 

were visible in 56.3% of the cluster, and the effects of other organisational aspects such as social 

pressure (17.5%), management problem (12.5%) and irregular working hours (10%) were also 

majored by the application of the clustering technique. 

 

Cluster 2 has Inadequate Task Allocation as the most relevant factor, covering 68.4% of the 

grouping, followed by an erroneous action (Wrong Place) associated with an inability to decide, a 

partial/incomplete decision or making the wrong decision among alternatives (decision error). 

Accidents where Adverse Ambient Conditions were significant are mostly grouped within this 

cluster. 

 

As indicated by Figure 2 histogram, Cluster 3 shows several important interactions among 

contributing factors, being a rich grouping for further interpretation. Many action errors were 

captured during the investigation of these events, where movements were performed earlier or 

later then required (Wrong Time), or with insufficient force, wrong speed, direction or magnitude 

(Wrong Type). Erroneous actions were accompanied by all three levels of cognition (observation, 

interpretation and planning). The fact that complex cognitive functions such as Inadequate Plan 

(25.6%) and Priority Error (15.4%) contributed to the formation of the cluster, together with 

observation missed (23.1%), wrong reasoning (25.6%) and decision errors (17.9%), gives us an 

opportunity to understand how cognitive functions leading to erroneous actions interact with 

organisational and technological aspects. Equipment failures contributed to almost the totality of 

the grouping. As in Cluster 1, Design Failure, Inadequate Quality Control and training (Insufficient 

Skills and Insufficient Knowledge) records were very high, and other aspects such as incomplete 

information and communication failure were also significant for both groupings. Management 

problems were observable in 23.1% of Cluster 3.     

 

Cluster 4 is largely dominated by Equipment Failures (87.1%), the only noteworthy factor to 

influence the formation of grouping. 

 

Figures 4 to 22 represent the cluster results for individual features. Blue areas indicate the absence 

of the contributing factor, while red areas represent its manifestation. Two graphical methods will 

be used to present individual maps and highlight the main results for further discussion:  

(i) Disclosing multiple intersections (superposition of images) of the most frequent 

contributing factors, which represent strong interaction patterns between human 

factors, technology and organisations (e.g. Figures 4 to 10 and 18 to 22); and  

(ii) analysis of special features (e.g. communication issues in Figures 11 to 14, human-

related factors in Figures 15 to 17). 

 

In Cluster 1, three map regions (1A, 1B and 1C) represent the intersection between Inadequate Task 

Allocation, Design Failure, Inadequate Quality Control and Inadequate Procedure (Figures 4 to 7). 

Region 1A is deeply related to Insufficient Knowledge (Figure 8), while 1B is mostly associated with 

Insufficient Skills (Figure 9). Accidents represented in 1C tend to combine with Maintenance Failures 

(Figure 10).  



    
Figure 4 – Inadequate Task Allocation Map Figure 5 – Design Failure Map 

    
Figure 6 – Inadequate Quality Control Map Figure 7 – Inadequate Procedure Map 

 

     
Figure 8 – Insufficient Knowledge Map  Figure 9 – Insufficient Skills Map 

 



  
Figure 10 – Maintenance Failure Map 

 

Figures 11 and 12 present the SOM maps for communication issues. These issues largely overlapped 

Inadequate Task Allocation in Cluster 1, as can be seen in the shadowed region in Figure 13. 

Exceptions are the two small circled areas, where task allocation issues were substituted by the 

person-related feature named Cognitive Bias (Figure 14). 

  

     
Figure 11 – Missing Information Map  Figure 12 – Communication Failure Map 

 

 

       
Figure 13 – Inadequate Task Allocation Map Figure 14 – Cognitive Bias Map  

 

  

 



 

  

 

 

 

64.1% of Cluster’s 3 area contained two erroneous actions: Wrong Time (Figure 15) and Wrong Type 

(Figure 16). The faded region depicts the incidence of the three levels of specific cognitive factors 

within this grouping, showing the human-related contributing factors’ representation. Consequently, 

a combination of observation (Observation Missed), interpretation (Wrong reasoning and Decision 

Error) and mental planning (Inadequate Plan and Priority Error) was expected to take place, 

suggesting that a profounder judgement of the confronted situation was necessary to solve system 

deviations. It can be observed that a technological issue (Incomplete Information – Figure 17) 

interacted with erroneous actions related to timing in the regions where a specific cognitive 

functions are not identified, suggesting that supervisory control system and data display limitations 

led to some of the Wrong Time occurrences. These areas are circled in Figure 15. 

 

  
Figure 15 – Wrong Time Map   Figure 16 – Wrong Type Map 

 

 

    
Figure 17 – Incomplete Information Map 

 

Figures 18 to 22 show how the main technological (Equipment Failure) and organisational aspects 

(Quality Control, Design Failure and training) interacted among them and with human-related issues 

(shadowed region) to result in system control problems within Cluster 3. The shaded region is 79.5% 



of the grouping area, representing the incidence of human erroneous actions, specific cognitive 

functions and person-related functions.  

 

 
Figure 18 – Equipment Failure Map 

  
Figure 19 – Inadequate Quality Control Map Figure 20 – Design Failure Map   

  

   
Figure 21 – Insufficient Skills Map  Figure 22 – Insufficient Knowledge Map   

 

 

4. Discussion 

 

4.1 Main Clusters Interpretation 

 

The analysis of the maps indicate an intricate combination of factors contributing to the major 

accidents contained in the MATA-D database, including the significance of the human factors to the 

undesirable outcome. Previous studies (Graeber, 1999, McLaughlin et al., 2000,  Levenson, 2004) 



using different industrial segments as a data source also emphasised the importance of considering 

human issues when assessing risk, relating between 70% to 80% of accidents to some kind of 

operator error.  Therefore, it seems to be clear that a satisfactory risk assessment study must take 

into account the relationship between humans, technology and organisations to convey realistic 

scenarios. Otherwise, the safety analysis will not offer a trustworthy dimension of the major hazards 

that industrial facilities are exposed throughout their lifecycle.  

 

So why scarce attention, especially if compared with the analysis of technical systems (Hollywell, 

1996), has been paid to human factors in risk studies? When analysing occupational risk 

assessments, Cuny & Lejeune (2003) pointed out some problems to consider the human influence, 

particularly the preparation of data for processing and the estimation of probabilities to feed 

deterministic approaches. The complexity of organisational interfaces and the variability of human 

behaviour also make a sociotechnical system modelling a challenging task, maybe explaining the 

reason behind the disproportionate focus on purely technical aspects and discrete components in 

risk evaluation. 

 

The interpretation of the maps enables the possibility of considering the whole range of contributors 

without previous assumptions of their conjectural importance, focusing on their interactions and on 

the disclosure of tendencies, instead of concentrating on individual factors. The application of the 

SOM algorithm and the joint analysis of maps highlighted topographical areas containing similar 

interfaces, allowing a targeted examination of the genesis of the MATA-D accidents and the 

development of an attribute checklist with the most frequent observations. Some of these interfaces 

will be illustrated with the accident narratives as positioned in the map, all accessible through the 

MATA-D database. 

 

An analysis of Cluster 1 accidents from area 1A (Figure 8) indicates that these events are related to 

situations where components were designed and implemented on an individual fashion, rather than 

as a holistic system. Consequently, safety studies failed to adequately address risks related to the 

system interaction with the environment as well as possible interferences among individual 

components. The shortcomings in design, procedures, quality and task allocation joined the loss of 

situational awareness during operation, and insufficient theoretical knowledge led to the 

misperception of risks. A practical example of this tendency was the widely-known Varanus Island 

incident in June 2008 (Bills & Agostini, 2009), when a pipeline rupture and explosion caused a 

shortage in the gas supply for Western Australia, resulting in 3 billion Australian dollars in economic 

losses. In summary, the lack of an integrated approach to design and risk management led to 

problems in the cathodic protection system, most likely due to electrical interferences from adjacent 

pipes and other structures, causing alternating current corrosion. The assumption that safeguards 

are always active and the sense that their failures are unconceivable are also patterns observed 

within the grouping. 

 

Accidents within area 1B (Figure 9) presented situations where process changes undermined the 

original recommendations from risk assessment studies. Equipment or system replacements, 

product modifications and procedures updates lacking a proper hazard evaluation (or management 

of change) enabled the deterioration of the system. The necessary training to operate under the 

new conditions was also insufficient, causing a human performance failure. 



 

The shadowed region 1C (Figure 10) contained many events where seemingly minor maintenance 

issues, i.e. keeping vessels and pipes free of deposits, consumable parts (e.g. filters) replacements, 

lubrication and calibration, drains obstruction and dust/particles accumulation, were combined with 

quality problems, task allocation issues, design shortcomings and inadequate procedures to 

generate a major failure.  

 

Figures 11 and 12 highlighted the map regions where communication problems attained their 

highest incidence, mostly combined with task allocation issues (Figure 13). These events were prone 

to poor communication between workers, which was polluted by background noise (mainly alarms 

and usual process sounds) or by the low quality of the transmission. Deficiencies to report to 

supervisors some unusual situations observed in the process plant and to convey important 

information from hazard studies to the personnel were frequent within this grouping. In addition, 

data transfer from paper to computer-based systems, incorrect coding and poor communication 

between shifts were risk-increasing factors commonly observed.  

Through the results shown in Figures 13 and 14, it is possible to scrutinise a few regions where 

inadequate task allocation was not as relevant as in the rest of the cluster. Nonetheless, 

communication issues tended to interact with person-related issues such as a Cognitive Bias, 

particularly when critical information was not communicated, supporting an illusion that actions 

taken were sufficient to control the situation, or when actions were constrained by a strong (and 

wrong) assumption of the current system status. An example extracted from these regions would be 

the 2011 helicopter crash in Missouri (NTSB, 2013) during a patient transfer from one hospital to 

another, which resulted in 4 fatalities. The Pilot knew that he has misinterpreted the fuel level to 

some extent (he reported 26% or 45 minutes of fuel in the pre-flight check, but post-accident 

investigation indicated only 18%, or a 30-min autonomy), but his alternative refuelling plans were 

constrained by the hypothesis that he was able to reach a reach a station 34 minutes away from the 

departure point. Maintaining visual contact with the refuelling point (3-minute distance) when the 

gauge indication approached to zero, the pilot sustained his course (instead of landing immediately) 

until fuel exhaustion. A communication with qualified land staff (available at the Operational Control 

Centre) would have recognised his plans as inadequate. Other interesting tendencies where also 

identified in the cluster region, such as having the attention caught by phone calls or texting in 

portable devices. 

 

Cluster’s 3 erroneous actions and cognitive functions’ frequencies are generally higher than in any 

other grouping, especially the most complex ones, involving the need for mental planning. These 

human-related factors merged into design shortcomings, equipment failures and quality control 

issues. A tendency to underperform under non-standard operations (e.g. start-up or partial plant 

operation) was also observed, repeatedly combined with training issues (Figures 21 and 22). Cases 

where an equipment failure caused a shutdown, and operators focused on fixing the equipment and 

restarting it without further consideration are recurrent in this grouping. Some of the common 

failure modes observed are: (i) catastrophic failures due to the hot flow of products into cold pipes 

and vessels (brittle fractures); (ii) valves and seals which were damaged or gone partially 

closed/opened during the operation halt and were not inspected (a quality control problem) before 

the restart; and (iii) omissions to realign valves and restart control/signalling/alarm systems.  



 

The grouping also contained some regions where insufficient information from supervisory control 

and data acquisition systems shaped human erroneous actions (Figures 15, 16 and 17). The growing 

dependence on information systems is a pattern to be considered when assessing hazards, thus 

validation schemes must verify if the risk growth due to inadequate/unsatisfactory human-machine 

interfaces is carefully addressed. The lack of direct indications of problems; panels not providing 

accurate process overviews; information that is not displayed in relevant places (e.g. in the control 

room and/or locally); general/critical alarms not taking precedence in relation to local, less 

important, alarms; delays in the information presented, undermining operators’ efforts to diagnose 

system status; and incorrect information display are some of the human-machine interface problems 

extracted from Cluster 3. 

 

4.2 An Attribute List for Risk Assessment Validation 

 

A safety study generally comprises a planning process (describing the context, regulatory 

requirements, scope of the study, risk acceptance criteria etc), a hazard identification phase, a risk 

assessment (e.g. events frequencies, reliability, event modelling, consequences, level of risk 

estimation) and a final report (e.g. presentation of results, uncertainties appraisal, 

recommendations, study quality assurance), to generate input to the decision-making process.  

 

The analysis of the common patterns supported by the application of the SOM algorithm enables the 

translation of the most important observations into a checklist to validate risk studies. Accident 

tendencies disclosed by the analysis of the maps are now converted into a verification list 

comprising common hazards, major risks and shortcomings involving interfaces between humans, 

technology and organisations. A comprehensive semantics will be applied, in order to facilitate the 

direct application of the list or the integration with existing verification schemes.  

 

Table 3 – Checklist for risk studies validation 

No. Item Yes No n/a
* 

01 

Were the premises, hypothesis and justifications for the chosen design concept 

clearly stated? Was a safer known alternative/approach to achieve the same 

objective discussed? 

   

02 

Are the underlying basis and limitations of the method, the origin of the input data 

and further assumptions (e.g. duration of an event, flammable vapour clouds 

expected drifts, maximum spill size, release composition) that support 

probabilities, scenarios and results clearly stated? Are they consistent? 

   

03 

Are events’ frequencies used in probabilistic risk analysis reliable? Are they used 

exclusively when historical data is comparable (e.g. same operation type, facility 

or equipment)? Would alternative approaches (e.g. non-frequentist) be more 

suitable to estimate the events’ likelihood in the study case (e.g. no sufficient past 

experience or previous operation data)? 

   

04 

Although some regulations prescribe periodic reviews to risk studies, there is a 

tendency that assessments may fall in disuse due to people, process or 

environmental changes in between revision deadlines. Modifications usually lead 

to a management of change and some sort of risk analysis, but more complex, 

previous deeper safety studies are not revisited at this point. Are design 

verifications, as-builts, production checks, field data collection or other 

approaches required to confirm/maintain trust on the major/approved risk study 

throughout the facilities’ lifecycle, instead of using a rigid deadline for review? 

   



Have the facility’s critical factors / performance indicators that could indicate an 

up-to-date and trustworthy risk assessment been identified/listed? 

05 

Were possible critical changes affecting the original studies (e.g. in the operational 

philosophy, control logic and process modernisations) acknowledged? Are the 

conditions with the potential to invalidate the current safety study clearly stated? 

   

06 

The safety studies must contemplate a list of recommendations and safeguards, 

which can be rejected on a technical basis. Is the value of the implementation of 

risk reduction measures clearly stated? Are the justifications for favoured 

alternatives or rejections consistent with the best available knowledge? Do the 

underlying principles for rejections contemplate safety benefits over cost matters? 

   

07 
Is the data extracted from databases and standards (as well as calculations made) 

logical, traceable and consistent with the operational reality? 

   

08 
Were previous assessments in analogous installations used to give some insight 

into the hazard identification process? 

   

09 

Were the recommendations and risk control measures previously applied to 

analogous facilities? Is there any feedback about their suitability from previous 

designers and operators? 

   

10 

Safety studies have shown a tendency to fail to adequately address risks related to 

the system interaction with the environment as well as possible interferences 

among individual components and systems. Was a comprehensive and integrated 

approach to design and risk management achieved? Were components and 

systems designed and implemented in a holistic way rather than on an individual 

and secluded fashion? Are human factors analysis integrated with engineering 

studies? 

   

11 

Some high-technology facilities are likely to start their operations before the 

whole system and all safeguards are in place. Offshore platforms may have to 

adapt their process while a pipeline is not operating or a pump/compressor is not 

commissioned. Refineries may be designed (or obliged) to operate without some 

processing modules, due to technical or economic reasons. Does the risk 

assessment contemplate all modes of operation (e.g. commissioning, start-up, 

partial operation, maintenance breaks) for the facility examined? Are transitory 

states (e.g. warm-up and cooling down times) also considered? 

   

12 

Have the studies taken into consideration thermal properties, hydraulics and 

electrical/electronic parts of components, equipment and systems, not being 

overly focused on mechanical/structural aspects? 

   

13 

Equipment and structural failures tended to arise from problems during the 

material selection stage and due to poor understanding and monitoring of well-

known damage mechanisms. Has the material selected for construction, 

equipment fixation, pipelines and support structures identified and analysed by 

safety studies? Was a compatibility assessment (with loads, system and 

environment) conducted, including thermal, chemical and electrical properties?  

   

14 

Are the specificities of the assessed facility or process clearly identified, in a way 

that specific risks will be identified and addressed? Where expert advice is 

required to assess risk, are the correspondent technical reports included in the 

safety studies (e.g. to assess the possibility of catastrophic failures due to stress 

corrosion cracking in stainless steels, or corrosion mechanisms emerging from the 

saturation of wet hydrocarbons with dissolved carbon dioxide and sour 

environments)?  

   

15 

Are risks associated with the interaction of different materials addressed (e.g. with 

different temperature gradients leading to deformations and ruptures or with 

distinct electric potential resulting in galvanic corrosion)? 

   

16 

Are major hazards, complex areas and critical operations clearly identified? Are 

the level of detail, the methodology to assess these problematic cases and the 

safeguards proposed by studies compatible with the magnitude of the risks 

identified? 

   



17 

Are the steps taken to construct the risk scenarios developed in a logical way? 

Does the study sequence lead to a clear and rational understanding of the process 

and its possible outcomes? 

   

18 

Does the criterion for setting accident scenarios, specially the worst-case one(s), 

consider common-cause, domino or cascading effects and simultaneous/multiple 

scenarios? 

   

19 

Are the risks associated with third-party operations (material delivering, fuelling, 

electrical power, water supply) addressed by the safety studies? Are these risks 

considered in a holistic approach, occurring simultaneously and integrated with 

the facility’s risks? 

   

20 
Are risks associated with auxiliary systems (e.g. cooling and heating) 

contemplated? 

   

19 

Is technology evolution naturally considered by safety studies? Is the increasing 

usage of operational and non-operational portable devices (e.g. mobile phones, 

tablets, cameras, smartwatches and fitness wristbands) considered, for instance, 

as potential ignition sources in explosive/flammable atmospheres? Does human 

reliability analysis and task allocation processes consider the new technologies 

potential to impact the performance of workers (e.g. attention shifters)? 

   

20 

Have the studies evaluated the process plant safety when experiencing the effects 

of partial or total failures in critical elements (e.g. emergency shutdown valves fail 

in the safe position)? 

   

21 

Are process changes that modify the risk level clearly identified when, for 

instance, safety critical equipment or systems are removed, deactivated or 

bypassed/inhibited for maintenance? 

   

22 
Is the availability of safeguards and further risk control/mitigation measures 

addressed? 

   

23 

Were critical equipment and components with limited life spam properly 

identified? Were replacement operations affecting safeguards and/or increasing 

risk addressed? 

   

24 
Is quality control an active element of the risk assessment? Is it compatible with 

operational requirements for systems and equipment? 

   

25 

Are suitable quality indicators proposed to verify critical system elements status? 

Is there an auditable failure log, to confirm that the expected performance of 

components and systems is maintained through time? 

   

26 

Are chemical reactions and adverse events associated with housekeeping 

procedures (e.g. cleaning and painting substances, dust management), inertisation 

processes, equipment and pipelines deposits removal and necessary tests (e.g. 

hydrostatic tests) contemplated by the studies? 

   

27 

Were the design and process reviewed aiming at their optimisation to avoid 

pocket/stagnant zones for dusts, gases, fumes and fluids (e.g. reducing elevated 

spaces and corners prone to dust/particles built-up or minimising lower pipeline 

sections subjected to particles/heavier fluids decantation)? 

   

28 

Is the necessary information supporting non-routine tasks aiming at the risk 

reduction (e.g. pre-operational or restart inspections) sufficiently detailed, 

allowing the identification of process weak-points such as deposits accumulation, 

valves misalignment, damaged seals and rupture disks and equipment condition 

after, for instance, a process halt, or after maintenance works nearby and before 

resuming operations? 

   

29 

Are permanent cues and signals (e.g. pipeline and equipment marking to indicate 

content, maximum pressure and direction of flow) proposed as risk reduction 

measures for standard and non-standard operations?  If so, is the permanent 

marking wear through time a factor considered? 

   

30 

“The operator” is an entity sometimes subjected to extreme variations. When 

human intervention is considered by safety studies, are the expected skills (e.g. 

practical experience, acceptable performance variability level) and knowledge (e.g. 

the situational awareness level and the academic level – technician, engineer, 

   



expert) clearly indicated? 

31 

Underperforming when conducting non-standard operations (e.g. start-up, 

commissioning or partial plant operations) was also a noteworthy pattern. Were 

situations and conditions where an enhanced level of training (skills or knowledge) 

or even the support of specialised companies (e.g. to control an offshore blowout) 

are required to keep risks controlled or to reduce the consequences of undesirable 

events identified? 

   

32 

Is the essential risk information and knowledge arising from safety studies, which 

should reach the involved personnel, identified? Are there any special provisions 

to ensure that critical information will be conveyed by proper means (e.g. 

awareness campaigns, training, written procedures, simulation exercises) and will 

be accessible where needed? 

   

33 

Is operational reality such as process conditions (e.g. background noise, fumes, 

heat, wind from exhaustion systems or alarms) considered as a possible 

disturbance when some sort of communication is required to convey important 

information? 

   

34 

Are administrative/management aspects affecting the seamless continuity of 

operations (e.g. loss of information due to shifts, personnel replacement or 

reduction) addressed during the identification of safety critical tasks hazards? Is 

the prospect that obvious unusual situations (e.g. seemingly small leakages, 

unfamiliar odours and a flange missing some screws) may not be reported to 

supervisors promptly, affecting the effectiveness of risk reducing measures such as 

process plant walkthroughs, considered? 

   

35 
Do supervisory control and data acquisition systems produce a real-time operation 

overview, not being excessively focused on individual parameters? 

   

36 

Were the accessibility and visibility of instruments and equipment identified as 

critical in the risk studies and been ensured by an examination of the design 

drawings? Were 3-D models and/or mock-ups used to facilitate the visualisation of 

complex areas and reduce the possibility of interferences/visualisation issues? Are 

the external critical indicators/gauges fitness to the operational environment 

verified (e.g. visual impairment or working issues due to snow, rain or sun 

radiation)? 

   

37 

Was the possibility of obstruction of water intakes, air inlets, sensors and filters 

(e.g. by water impurities, air particles or formation of ice) assessed? Are mitigation 

measures in place? 

   

38 

Have operators examined if the information supplied by indicators, panels and 

displays are sufficient, as active members of the safety assessment team? Do they 

have similar training level (skills and knowledge) as required for the operation of 

the system? 

   

39 

Is there an assessment of the usefulness of the information provided by 

supervisory control and data acquisition systems? Are the functions and outputs 

clear, in particular to operators? Do they know when and how to use the 

information provided, or some of the signals are perceived as excessive/useless? 

   

40 

Was the need to diagnose the system status and conduct special operations from 

alternative places (e.g stop the operation from outside the control room) 

considered? 

   

41 

Are supervisory control and data acquisition systems failure modes assessed as 

critical hazards? Is the possibility that spurious or ambiguous error messages or 

information insufficiency/delays triggering human or automatic actions that can 

jeopardise the stability or integrity of the system carefully analysed? Were 

adequate mitigating measures put in place? 

   

42 

Is the damage to power and control cables, pipelines and hydraulic systems, their 

routing and its consequences to the supervisory control and data acquisition 

systems considered by the risk assessment? 

   

43 Are safety critical alarms clearly distinguishable from other operational alarms?    

44 Are process facilities and hazardous materials located within a safe distance from    



populations, accommodation modules, administrative offices and parking spaces? 

Is the storage volume of hazardous substances optimised to reduce risks? Is the 

transportation route for hazardous materials optimised in a way that the exposure 

of people to risks is reduced to the minimum practical? 

45 

Are control rooms and survival/scape structures protected from damage and 

located within a safe distance from the process plants? Does the risk study 

consider a scenario of control room loss? Is there any redundancy in place for 

emergency controls (e.g. fire control systems, shutdown systems)? 

   

46 

Are visual aids used as risk-reducing measures to increase the awareness level of 

operators? Are reactors, vessels and equipment arrangement and dimensions 

visually distinctive from each other (e.g. by position, size or colour) to minimise 

swap-overs or inadvertent manoeuvres? 

   

47 

Is the possibility of inadvertent connections of similar electrical, mechanic and 

hydraulic connectors an assessed risk? Are measures in place (e.g. using different 

connector dimensions or distinct thread types) to minimise hazardous 

interchangeability among connectors, elbows and other parts from different 

systems or functions? 

   

48 

Is the inadvertent operation of temporarily or permanently disabled components, 

equipment or systems considered as a risk-increasing factor? Are measures in 

place to enhance the visualisation of non-operational parts such as isolated 

valves? Are overpressure safeguards (e.g. safety valves and rupture disks) 

accessible and visible from the operational area of the equipment or system they 

are designed to protect? 

   

49 

Are ignition sources (e.g. exhaustion, electrical equipment) optimised in order to 

be located within a safe distance from significant inventories of flammable 

materials (including piping) or in a position in which ignition is minimised, in case 

of leakage? Was the position of flares and vents revised by safety studies? Are 

exhaust gases routed to and flares and vents located in areas where the risk of 

ignition is minimised? 

   

50 

Are different scenarios (e.g. in distinct plant locations, with variable volumes) for 

pipeline and vessels leakages considered by safety studies? Are there risk-

reduction strategies to limit the released inventory in case of leakage (e.g. the 

installation of automatic emergency shutdown valves between sections)?  

   

51 

Are safeguards prescribed by safety studies to minimise the possibility of creation 

of explosive atmospheres in enclosed compartments (e.g. deluge or inertisation 

(CO2 or N2) systems; exhaustion/vents)? Have the possibility of backflow in 

heating, refrigeration or ventilation systems been examined? Have the logic of 

automatic systems (e.g. automatic shutoff of air intakes after the detection of 

gases) and the reliability/availability of surrounding-dependent systems (e.g. 

positively pressurised rooms and escape routes) been assessed? 

   

52 

Are fire systems, emergency equipment, escape routes and rescue services 

designed to withstand extreme conditions expected during an accident (e.g. blast, 

fumes and intense heat)? Are accident probable effects (e.g. impacts from 

fragments of explosions or the duration/intensity of a fire) considered in the 

evaluation of the effectiveness/survivability of these systems? 

   

53 

Are alternative emergency power sources provided? Do the safety studies assess 

their functionality under distinct accident scenarios (e.g. main power cuts, flood, 

lightning storms and local fires)? Does the transition time from main to alternative 

power sources pose non-considered risks? 

   

54 

Is there a main safe escape route and further alternatives designed, including 

load-bearing structures such as anti-blast and firewalls calculated to resist until 

the facility has been fully evacuated? 

   

55 Does the escape route contain clearance warnings by means of visual and audible    



cues? Are local alarm switches located in adequate positions to alert the 

remaining workers about the best available escape route? Are emergency lighting 

and alarms connected to the emergency power system (or have their own battery 

power source)? 

56 

Have safety studies assessed the possibility of collisions (e.g. with cars, boats and 

airplanes) and external elements (e.g. projectiles from firearms) affecting 

equipment and the structure of the facility? Are measures in place (e.g. 

mechanical protection, administrative prohibitions, policing) to minimise these 

risks?  

   

57 

Are distances among pipelines, equipment and modules optimised in order to 

consider the contents volatility, temperature, pressure and other risk-increasing 

factors? Is the separation among adjacent elements sufficient to avoid 

electromagnetic interferences, energy transfer or domino/cascading effects in 

case of failure? Were additional measures (e.g. physical separations and blast and 

fire protection walls) evaluated? 

   

58 

When physical separation is not possible, does the safety study evaluated if the 

surrounding equipment endurance time is sufficient to withstand the 

consequence of possible failure modes (e.g. a release followed by a jet fire from a 

failed adjacent element, for the inventory depletion time)? 

   

59 

Does the safety study consider multiple safety barriers prone to common cause 

failures as a single barrier? Are alarms and sensors subjected to the same failure 

modes (e.g. same power supply or same cable routing) considered as non-

redundant systems? Were redundant safety barriers subjected to an 

independence evaluation by safety studies? 

   

60 

Are the risk scenarios demanding automatized responses (e.g. fire alarm 

demanding the activation of deluge systems or gas detection demanding the 

neutralisation ignition sources) identified and assessed? Does the supervisory 

control and data acquisition system have the capability of interpreting multiple 

alarms and command automatized actions or present consistent diagnostics to 

operators though the interface? Is the harmonisation of automated functions and 

personnel actions assessed? 

   

61 

Is the position and type of sensors representative of the category of information 

they intend to convey? Are failures in sensors and indicators auto-diagnosed and 

clearly indicated by the interface? 

   

62 

Is there a consistent assessment of safety alarms? Is the alarm precedence logic 

based on its safety significance? Are they prioritised according to how quickly 

personnel should respond in order to avoid undesirable consequences?  

   

63 

Is the number of simultaneous alarms considered as a risk-increasing factor 

capable of disturbing cognitive functions? Are less important signals and alarms 

reduced/supressed (to minimise mental overburden) when the supervisory 

control and data acquisition system diagnoses a critical situation demanding full 

attention from the personnel involved?  

   

64 

Are reduction measures for the initiation and escalation of fires and explosions 

proposed (e.g. reduction of ignition sources, material selection based on 

flammability level, ability to spread flames, generate smoke or propagate heat and 

the toxicity level)? Is the likelihood of ignition assessed in susceptible sections of 

the installation, by consistent means? 

   

 
Total 

   

non-applicable to the assessed study* 

A large number of positive answers represents a safety study that intrinsically contains solutions for 

the interface problems encountered in the MATA-D scenarios, which caused major disasters in high-

technology systems. Negative answers indicate weaknesses in the safety study, which should be 



addressed in order to improve trust. For items not relevant or not related to the assessed 

installation or system, a neutral answer (non-applicable) should be given. After confirming that the 

major interface problems raised by the list were addressed, the safety study can be seen as robust, 

from a “lessons learned” perspective. 

 

5. Conclusions 

 

Validation schemes must analyse proposed risk reduction measures, taking into consideration that 

systems are dynamic. Assumptions such “as good as new” systems/equipment, perfect procedures 

and faultless operators are accurate only on paper, and should be challenged by verifiers. The 

discussion chapter presented a 64-item attribute list which enables this debate and exposes possible 

shortcomings, address major hazards and stimulates improvement. The objectives are to give 

impetus to broader considerations about risk in real projects and raise the discussion about the 

implementation or dismissal of recommendations and solutions, enabling the dialogue among 

stakeholders and bringing transparency to the whole process. 

Also, the prime attribute of a project is its feasibility, which means cost. This attitude is absolutely 

normal and engrained in our social behaviour (Does anybody check safety records before booking a 

flight, or the price is the first – sometimes the only – attribute considered in the decision-making 

process?). Therefore, promoting the coexistence and balance between economic aspects (i.e. 

resources, budget) and safety performance is the ultimate goal pursued by risk managers. It is a 

permanent persuasion exercise for which the current research intend to contribute, by developing 

means to enlighten stakeholders to consider a wider picture of risk.  

The problem of trust in risk management and risk validation is not surprising at all. Risk assessment 

is a complex and multidisciplinary matter, and there is no such thing as a definite standard reference 

on how to perform a safety study. Distinct techniques and approaches are not mutually exclusive 

and should be simultaneously used, making the development of a single validation method or 

procedure hardly possible. However, the most import outcome of a risk study is to support the 

decision-making process. Hence, it must be able to communicate risks to stakeholders, addressing 

potential problems and solutions in a clear way, and using visual aids such as maps can help tackling 

this challenge.   

In this regard, the conversion of the MATA-D dataset into self-organised maps and their subsequent 

interpretation successfully converged into a comprehensive checklist containing items representing 

major accident tendencies, to be verified against risk studies and to help developing confidence that 

critical issues were taken into consideration. These concerns arose from shortcomings in many 

different industrial segments, also promoting an inter-industry exchange of valuable accident 

lessons. The questions can be easily traced back to regions in the maps, and practical examples of 

flawed interfaces between humans, technology and organisations can be extracted, in order to 

illustrate the possible adverse effects of not dealing with specific conditions. The 2-D SOM maps can 

be used to communicate and describe complex interfaces to a broader public in a simpler way, 

enhancing stakeholder’s confidence that genuine strategies to mitigate risks are in place and the 

study was adequately completed. 



Acknowledging that there is not a single method to validate risk studies, the application of the 

widest possible range of approaches to stimulate the comparison of alternatives and different 

experts’ opinion can give some insight into how to enhance trust in risk management. This work 

focused on ensuring that lessons from several past accidents are considered by new risk studies as 

good engineering practice and a sensible approach to reduce risk, by means of a straightforward risk 

study validation checklist.   

Furthermore, the verification framework can be easily applied by a range of independent reviewers 

from industry and academia, which could use the checklist output to involve experienced people and 

develop innovative risk approaches, bringing new ideas and insights to safety studies in a structured 

way. 
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