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Thesis summary

In clinical research, interest sometimes lies in analysing variables which are not mea-

sured directly. Instead, information about these ‘latent variables’ can be inferred from

surrogates or other imperfect indicators, using latent variable models. Common exam-

ples of ‘hypothetical’ latent variables in clinical research include quality of life (QoL),

anxiety and depression. Another type of latent variable is a variable used as a device

for dimension reduction, for example, a principal component. The aim of this thesis

is to explore and develop latent variable methods for the statistical analysis of clinical

data, with an emphasis on including latent variables in time-to-event models.

In Chapter 1, latent variables and their utility in clinical research are discussed.

Overviews of two multivariate latent variable methods fundamental to this thesis, latent

class analysis (LCA) and multidimensional scaling (MDS), are given, and time-to-event

analysis is introduced.

In Chapter 2, several statistical models for estimating the effect of a latent class on

a time-to-event outcome are described, including a joint or ‘one-step’ model in which

latent classes and time-to-event data are modelled simultaneously. A simulation study

is then used to evaluate the empirical properties of latent class effect estimates from

several different models on a time-to-event distal outcome. Research in this area has

previously been restricted to continuous and dichotomous outcome variables. Addi-

tionally, a solution to the problem of class label switching in latent class simulation

studies is proposed. This work was published in the Journal of Structural Equation

Modeling (Lythgoe et al., 2019).

In Chapter 3, a general joint latent class and time-to-event model is presented. It

is shown how the model can be fitted and standard errors obtained. An author-written

R function is presented. Various versions of the joint model are applied to a prostate

cancer clinical trial data set in which the effect of treatment is found to differ across

the identified latent subgroups.

In Chapter 4, MDS and the concept of dissimilarity are introduced. It is shown

how MDS can be used with clinical data in which variables are usually of mixed type

(nominal, ordinal, continuous) using Gower’s general coefficient (Gower, 1971). Gower’s

method for adding test points to an MDS configuration is also detailed.
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In Chapter 5, the use of accelerated failure time (AFT) models is proposed to fit

MDS biplot axes for time-to-event variables. In particular, the Weibull AFT model

is considered since it can be formulated in both AFT and proportional hazards form,

the latter representation being far more common in clinical research. A time-to-event

biplot is constructed for a hepatocellular carcinoma (HCC) data set in which in the re-

lationships between observations, variables and a time-to-event outcome are illustrated

simultaneously.

In Chapter 6, it is shown how MDS can be used for covariate dimension reduction in

regression modelling using distance-based regression (DBR). Two supervised versions

of DBR are proposed in order to reduce covariate dimensionality further than standard

DBR, and are compared against conventional DBR using simulated and real clinical

data.

In Chapter 7, two simple extensions to MDS are presented in which an MDS con-

figuration is supervised by an outcome variable. It is shown how these methods can be

used for visualisation and prediction, and both methods are shown to be competitive

with existing classification methods in a simulation study. These proposed MDS-based

methods are compared with an established clinical diagnostic tool for HCC.

The thesis concludes with a discussion of the developed methods and suggestions

for further work.
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Chapter 1

Introduction

In clinical research, interest sometimes lies in analysing variables which are not mea-

sured directly. Instead, information about these ‘latent variables’ can be inferred from

surrogates or other imperfect indicators, referred to as ‘manifest variables’, using latent

variable models.

One type of latent variable is a hypothetical construct, for which a classic example

is intelligence. A common example in clinical research is quality of life (QoL), where a

subject completes a series of questions which each represent some measure of QoL, since

QoL cannot be measured directly. A conceptual model for the relationship between this

type of latent variable and the manifest variables is shown in Figure 1.1(a), where it is

assumed that the observed variables are determined by the latent variable.

Latent 
variable 

Observed variable  1

Observed variable  2

Observed variable  3

Latent 
variable 

Observed variable  1

Observed variable  2

Observed variable  3

(a) (b)

Figure 1.1: Two types of latent variable: (a) observed/manifest variables are dependent
on an underlying variable such as QoL, (b) a latent variable determined by the observed
data, e.g. a principal component.

Another type of latent variable is a variable used as a device for dimension reduction,

for example, a principal component (Bollen, 2002). As shown in Figure 1.1(b), in this

case, the latent variable is determined by the observed variables. One use of such latent
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variables is to reduce the dimensionality of covariates in regression modelling, where

large numbers of covariates relative to the number of observations or events can be

problematic. Another possible use is in summarising many observed variables, possibly

in the form of a low-dimensional visualisation to aid interpretation of the data.

Broadly, a latent variable can be defined as a random variable whose realisations

are hidden (Skrondal and Rabe-Hesketh, 2004). This definition is wide-ranging, only

requiring that a variable is unmeasured, not unmeasurable, and includes variables that

are not usually referred to, or regarded, as latent variables, such as those used to

model unexplained heterogeneity (i.e. random and frailty effects). Many alternative

definitions exist (see e.g. Bollen, 2002, for a detailed discussion).

In this thesis, the analysis of two types of latent variable are considered: 1) ‘latent

classes’, unobserved subgroups of subjects underlying observed clinical data, and 2)

‘latent dimensions’, continuous latent variables which capture key features of the ob-

served data. Respectively, this thesis is based around the development and application

of two latent variable methods: latent class analysis (LCA) and multidimensional scal-

ing (MDS). In particular, there is an emphasis on using these latent variable methods in

the context of time-to-event modelling. Time-to-event variables are common outcome

measures in clinical research, for example, overall and progression free survival times in

oncology, time to first severe exacerbation (attack) in asthma and chronic obstructive

pulmonary disease (COPD), and time to first seizure recurrence in epilepsy.

1.1 Areas of research

In this thesis, latent variable methods are explored and developed for the statistical

analysis of clinical data, with an emphasis on including latent variables in time-to-event

models. For the analysis of latent classes, latent class models with a time-to-event

outcome (manifest variable) are considered, and the two areas of research are:

1. Estimating the effect of latent classes on a time-to-event outcome variable.

2. Development and application of R code for various latent class models with a

time-to-event outcome variable.

For the analysis of latent dimensions, several MDS-based methods are developed

for the purpose of visualisation, modelling and prediction using clinical data. The three

areas of research are:

1. Visualisation of the relationship between observations, predictor variables and a

time-to-event outcome.

2. Dimensionality reduction of covariate data in regression modelling.

3. Classification, prediction and visualisation of clinical data using MDS.
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1.2 Thesis layout

The content of this thesis is in two main parts: latent class-related (Chapters 2 and

3) and MDS-related (Chapters 4 to 7) statistical models. Statistical notation is kept

as consistent as possible within parts, but inevitably some changes of notation are

required. For clarity, notation is generally redefined within chapters. Similarly, whilst

some of the statistical literature covered is applicable to multiple chapters, generally

the areas covered are sufficiently diverse to warrant their own discussion of the relevant

literature. In this chapter, LCA, MDS and time-to-event data are introduced. Only

brief overviews of LCA and MDS are given, however, with more technical information

provided in later chapters. The area of time-to-event analysis is common to both latent

class and MDS-based chapters and is therefore considered in more detail here. The

thesis concludes with a discussion of the developed methods and ideas and suggestions

for further work.

1.3 Latent class analysis

LCA was introduced by Lazarsfeld (1959) and is a statistical method for finding latent

subgroups that drive observed data. In LCA, both the latent and observed variables are

categorical. Related methods are factor analysis, latent trait analysis and latent profile

analysis, which are applicable to different combinations of data types (Table 1.1). Any

model which includes a latent categorical variable can be regarded as a latent class

model and, as will be shown in Chapter 3, these models are not limited to manifest

variables of one type.

Manifest
Continuous Categorical

Latent
Continuous Factor Analysis Latent Trait Analysis
Categorical Latent Profile Analysis Latent Class Analysis

Table 1.1: Classical latent variable methods for the four categorical/continuous combi-
nations.

A simple simulated example is now used to illustrate LCA. Figure 1.2 depicts a

model for the relationship between a latent variable and three manifest variables, which

are QoL questions. The questions are taken from a QoL questionnaire, EORTC QLQ-

C30 (Aaronson et al., 1993), and are related to the underlying ‘physical function’ do-

main. In this case, the purpose of LCA is to find underlying subgroups of patient which

differ in their physical function, using the observed responses to the three questions.

The questions are “Do you have trouble taking a long walk?” (Walk), “Do you need

to stay in bed or a chair during the day?” (Chair) and “Do you need help with eating,

dressing, washing yourself or using the toilet?” (Help). For simplicity, the responses are
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limited to “Yes” (1) or “No” (0). There are eight possible response patterns, as shown

in Table 1.2 and at least some respondents’ answers correspond to each pattern. LCA

was applied, assuming two latent classes. Table 1.3 gives the point estimates of various

probabilities (parameters) returned by the LCA model. Firstly, Class 1 appears to be

a more prevalent class than Class 2 (73% vs. 27%). The remaining estimates are for

the probability of responding “Yes” to each question, depending on the class. Patients

belonging to Class 1 are characterised as having a lower probability of trouble taking a

long walk and staying in a bed or chair during the day than Class 2, however they are

more likely to require help with other activities.

Two important features of LCA in general are: 1) manifest variables are assumed

to be independent given latent class, and 2) the underlying class for a respondent is

not ‘found’; it can only be inferred with some probability. This second property differs

from, for example, some cluster analysis techniques where observations are assigned

absolutely to a group.

Latent 
Class 

Do you have any trouble taking a long walk?

Do you need to stay in bed or a chair during the day?

Do you need help with eating, dressing, washing 
yourself or using the toilet?

Figure 1.2: An assumed latent class model for the answer to three QoL questions in
the simulated example.

Walk Chair Help Observed

0 0 0 29
0 0 1 64
0 1 0 10
0 1 1 12
1 0 0 16
1 0 1 26
1 1 0 30
1 1 1 13

Table 1.2: Frequency of observed response patterns for the response to three QoL
questions from the simulated example.

4



Class 1 Class 2

Prevalence 0.73 0.27

Walk 0.28 0.84
Chair 0.14 0.84
Help 0.69 0.24

Table 1.3: Estimated probabilities for a two-class LCA model fitted to the simulated
QoL example data set. Estimated prevalences are unconditional and sum to one. The
remaining probabilities are the probability of answering “Yes” given membership to a
latent class.

1.4 Multidimensional scaling

MDS originated in the 1930s (see e.g. Cox and Cox, 2000), and encompasses a broad

range of methods for finding a configuration of points in low-dimensional space, where

the distance between points represents their ‘proximity’. Proximity data can either be

in the form of dissimilarities or similarities between objects, variables, subjects, etc.

Dissimilarities/similarities are found between every pair of objects and are then used

in MDS analysis. For example, the ‘dissimilarity’ between several countries could be

measured using the Euclidean (straight-line) distance. MDS can then be used to find

a low (usually 2 or 3) dimensional configuration where the distance between points,

representing the countries, approximates the dissimilarities between the countries. In

clinical research, the observations would be subjects rather than countries and an-

other proximity measure, Gower’s general coefficient (Gower, 1971), might be more

appropriate as it can accommodate different manifest variable types (nominal, ordinal,

continuous).

An example of MDS is presented in Figure 1.3. A random sample of ten subjects

with hepatocellular carcinoma (HCC, circles) and ten subjects with chronic liver disease

(CLD, triangles) have been analysed using classical MDS with two dimensions. The

full data set is described in more detail in Section 1.6. Gower’s coefficient was used to

measure the dissimilarity between subjects on five variables: three cancer biomarkers

and two measures of liver function. It is clear from the plot that the CLD subjects

form a small cluster, suggesting they have similar values for the five variables (except

one subject in the bottom left corner who has an atypically high measure for one of the

biomarkers). The HCC subjects are generally very spread out, suggesting a wide spread

of values within this subgroup and, barring one subject, the HCC subjects appear to

be quite dissimilar to the CLD subjects. The example demonstrates that MDS can be

a valuable tool for obtaining a low-dimensional approximation of a multidimensional

clinical data set.

An important feature of MDS is that the orientation of the configuration is es-

sentially arbitrary since the relative distance between points is unaffected by rotation,
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reflection or translation of the points (Cox and Cox, 2000). The latent dimensions may

or may not have a clear substantive meaning, or some rotation may be required in order

for the dimensions to be interpretable.
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Figure 1.3: A random sample of ten HCC subjects and ten CLD subjects were analysed
using classical scaling with two dimensions.

1.5 Time-to-event analysis

Throughout this thesis there is an emphasis on analysing latent variables in time-

to-event models. An overview of time-to-event data is now given, but informative

introductions can be found in Hougaard (1999), Kalbfleisch and Prentice (2011) and

Collett (2015). Time-to-event analysis is often referred to as ‘survival analysis’ as

it naturally arises in the analysis of survival times. However, time-to-event analysis is

used widely in clinical research across many therapeutic areas, for example, time-to-first

severe exacerbation (attack) in asthma and COPD, and time-to-first seizure recurrence

in epilepsy. In engineering applications the term ‘failure time’ is often used. The event

of interest does not need to have negative connotations, for example, the event time of

interest could be time to remission of some disease.

Event times are usually highly skewed. In clinical trials, the distribution of event

times is typically right-skewed, whereas human lifetimes tend to be exhibit left skew-

ness (Hougaard, 1999). Perhaps the most important feature of time-to-event data is

that typically the event time is not known for all subjects, and this is referred to as

‘censoring’. Suppose in a clinical trial that a subject is randomised and is known to

have not experienced the event of interest by 60 days but is then lost to follow-up.
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This subject’s event time is said to be right-censored as it is known that the event time

was not experienced up to day 60, but it is not known if the event occurred the next

day, the next year, or perhaps it never occurred. If a subject completes a trial without

experiencing the event of interest, this is another type of right-censoring referred to as

administrative censoring. Other types of censoring are left-censoring (the event time

is known to have occurred prior to some time, but the actual time is unknown) and

interval censoring (the event time is known to have occurred in some interval, but it

is not known exactly when). Many statistical models make the assumption that the

probability of experiencing the event and probability of censoring are independent (see

e.g. Kalbfleisch and Prentice, 2011, Chapter 6). Ignoring censored event times can lead

to biased and possibly misleading analyses and moreover, doing so is wasteful since at

least some information on a subject’s event time is known and can usefully contribute

to an analysis using time-to-event methods.

Time to event analysis is now presented in more detail. Let T represent a random

variable which is a non-negative event time, with observed value t. The random variable

T has a probability distribution with underlying density function f(t). The cumulative

distribution function is then

F (t) = P (T < t) =

∫ t

0
f(v) dv,

i.e. the probability of experiencing the event before time t. Sometimes it is required to

know the probability of experiencing the event at or beyond time t, and this is given

by the survivor function

S(t) = P (T ≥ t) = 1− F (t).

Usually the survivor function is not modelled directly, and instead the hazard function

is used. The hazard function is the instantaneous failure rate, obtained from the prob-

ability of failing at time t given that the subject has not experienced the event up to

time t. Formally, the hazard function is given by

h(t) = lim
∆t→0

[
P (t ≤ T < t+ ∆t|T ≥ t)

∆t

]
,

where ∆t denotes a change in t. The approximate probability of experiencing the

event in the interval (t, t + ∆t), given that it has not occurred by time t, is h(t)∆t.

Defining the cumulative hazard function as H(t) =
∫ t

0 h(v) dv, useful relations between

the aforementioned functions are:

h(t) =
f(t)

S(t)
= − d

dt
{log [S(t)]} ,
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and

S(t) = −exp [H(t)] .

The functions mentioned so far have not depended on subject-level covariates. For

example, the survivor function for a subject with late stage cancer would be expected to

differ from a subject with early stage cancer. The two most common type of statistical

models for modelling the effect of covariates on event times are ‘proportional hazards’

(PH) and ‘accelerated failure time’ (AFT) models. A PH model for an individual is

given by

h(t|x) = h0(t)exp(βᵀx),

where h0(t) is the ‘baseline’ hazard function, x is a vector of covariates for an individual,

e.g. randomised treatment, cancer stage and age, and β is a vector of corresponding

parameters for the effects of the covariates. The quantity exp(βp) is the ‘hazard ratio’

for the pth variable, with values greater than one corresponding to a reduced expected

event time. It is assumed that the hazard function increases or decreases proportionally

across different values of xp.

The baseline hazard function can be regarded as the reference, i.e. the hazard

function for a subject with all covariates coded to equal zero. Parametric models assume

that the baseline hazard function follows from an assumed probability distribution for T

(e.g. Weibull), whilst semi-parametric models, including the most widely applied time-

to-event model, the Cox model (Cox, 1972), make few or no distributional assumptions

about the form of the baseline hazard function.

In contrast to PH models, AFT models instead model the effect of covariates directly

on the time-scale so that the effect of a covariate can be interpreted as the speeding

up (or slowing down) of the event time, for example, the progression of a disease. Let

S0(t) represent the survival function for a subject with all covariates coded to zero,

then a general survivor function according to an AFT model is given by

S0

[
t

exp(αᵀx)

]
, (1.1)

where α is a vector of covariate effects. The quantity exp(−αp) is the ‘acceleration

factor’ for the pth variable, where values less than one correspond to a shortening of

the event time. AFT models can also be expressed in a linear form and, as with PH

models, there are parametric and semi-parametric versions. Both of these features of

AFT models are discussed in detail in Chapter 5. One advantage of AFT models over

PH models is that they are more robust to the influence of covariates which are not

included in the model (see e.g. Hougaard, 1999).
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1.6 Data sets

Three clinical data sets are used for statistical analyses in this thesis. Whilst all three

are oncology-based, the methods described are not limited to oncology and are in fact

equally relevant to other therapeutic areas.

1.6.1 Hepatocellular carcinoma

HCC is the most common type of primary liver cancer and can be a complication of

liver cirrhosis (Tan and Huang, 2018). Depending on tumour-related, liver function

and patient-related factors, the prognosis for a patient diagnosed with HCC may be

extremely poor (Cancer Research UK, 2018). The HCC data set was collected for a

case-control diagnostic study (Johnson et al., 2014) at the Queen Elizabeth Hospital

(Birmingham, UK), and contains four key subgroups:

I HCC patients prospectively recruited between 2007 and 2012 (N = 315). As part

of the original study, this subgroup was split into two cohorts for statistical model

training (N = 218, recruited 2007-11) and internal validation (N = 97, recruited

2011-12).

II Prospectively recruited control patients with CLD recruited from patients at-

tending outpatient clinics (N = 339), split into training (N = 247) and internal

validation (N=92) cohorts.

III Prospectively recruited liver-healthy control subjects (N=92).

IV HCC patients for which data were collected retrospectively from the hospital data

base (N = 409). An important feature of this last group, in particular, is that

there is a considerable amount of missing data as not all of the variables available

for other subgroups were recorded in the hospital database.

To suit different analysis purposes, various combinations of these subsets are used in

analyses presented in this thesis. The original study was largely based around the

collection and analysis of three serum biomarkers: Alpha-fetoprotein (AFP), lens culi-

naris agglutinin (L3) and des-gamma-carboxy prothombin (DCP), for which elevated

levels are suggestive of HCC. Additionally, the data set contains a number of other

demographic and disease-related characteristics. These variables are discussed in more

detail as part of the analyses.

1.6.2 Pancreatic cancer

Pancreatic cancer is one of the most deadly cancers and one of the most common

causes of cancer mortality in the UK (Cancer Research UK, 2017). The ESPAC3v2
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trial was an open-label randomised controlled trial (RCT) in patients with pancreatic

ductal adenocarcinoma who had undergone cancer resection (Neoptolemos et al., 2010).

Patients were randomised to either fluorouracil plus folinic acid or gemcitabine (the

standard of care). This data set is not analysed in detail but is used to simulate

realistic survival times in Chapter 2.

1.6.3 Prostate cancer

The Byar prostate cancer data set is a publicly available data set which can be down-

loaded from http://lib.stat.cmu.edu/datasets/Andrews, Table 46.1. The data set is

from an RCT comparing different doses of diethylstilbestrol in patients with Stage III

and Stage IV prostate cancer (Bailar III et al., 1970; Byar and Corle, 1977). This data

set was analysed using latent class models by Hunt and Jorgensen (1999), where latent

classes were found which differed from the clinically assigned tumour stages. To as-

sess the survival prospects for these latent classes however, Hunt and Jorgensen (1999)

used simple cross-tabulations against a landmark survival time of 48 months, rather

than modelling survival times directly. The data set is used in this thesis to analyse

the effect of latent classes on survival for prostate cancer patients using patient-level

survival data.

1.7 Summary

In this chapter, latent variables were discussed and specifically the ideas of underlying

latent classes and latent dimensions, which are relevant to the statistical methods of

LCA and MDS, were discussed. An overview of time to event analysis was also provided.

Finally, the three clinical data sets used in this thesis were described.
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Chapter 2

Latent class modelling with a

time-to-event distal outcome: A

comparison of one, two and

three-step approaches

2.1 Introduction

Latent class methods encompass a broad range of models which can be used to identify

and characterise unobserved subgroups which differ in their observed or ‘manifest’ data.

These models have been widely applied in many scientific disciplines including medicine

(e.g. Downing et al., 2010; Rahbar et al., 2015), social and behavioural science (e.g.

Chung et al., 2006; Stapinski et al., 2016) and education (e.g. Denson and Ing, 2014;

Auer et al., 2016). For example, Stapinski et al. (2016) used latent class analysis

(LCA) of a large cohort study to identify four groups of adolescents who differed in

their motives for alcohol use.

So far, only simple LCA models have been introduced, however, a common objective

of latent class methods is to assess the relationship between the identified latent classes

and a distal outcome variable. In some disciplines, time-to-event variables are common

outcome measures, for example, overall and progression-free survival times in oncology.

Time-to-event variables differ from other variable types since they are typically highly

skewed and subject to censoring (see Chapter 1). Applications of various latent class

models with a time-to-event distal outcome can be found in Snuderl et al. (2008),

Muthén et al. (2009), Zhang and Wang (2010), Desantis et al. (2012) and Leigh et al.
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(2015).

When model assumptions are met, a preferred statistical approach is to jointly

model the latent classes and distal outcome in one step (Bakk et al., 2013). Larsen

(2004) introduced a one-step latent class model with a time-to-event distal outcome

variable and a framework for continuous time latent class models was set out by As-

parouhov et al. (2006). A general criticism of one-step approaches, however, is that the

distal outcome variable can influence the composition of the latent classes (Vermunt,

2010; Asparouhov and Muthén, 2014). Moreover, one-step approaches may be imprac-

tical if there are many distal outcome variables, or if the outcome data are collected at

a different stage of a trial and/or by different researchers (Vermunt, 2010).

A simple and frequently applied alternative approach to incorporating a distal out-

come variable into a latent class model is the ‘Classify-Analyze’ (Clogg, 2013) or ‘stan-

dard three-step approach’: Step 1) a latent class model is fitted, Step 2) subjects are

assigned to a latent class, and Step 3) the distal outcome is regressed on the assigned

class. Whilst intuitive, the standard three-step approach has two important drawbacks.

Firstly, estimates of the relationship between latent class and the distal outcome vari-

able can be attenuated due to misclassification in Step 2 (Bolck et al., 2004). Secondly,

standard errors in Step 3 can be underestimated since class is treated as known in

the regression model, potentially misleading statistical inference (Clark and Muthén,

2009). Bray et al. (2015) identified that non-inclusion of the distal outcome variable

in the classification model (Step 1) as a further cause of bias in Step 3 and proposed

an ‘inclusive’ approach to correct for this bias, where the distal outcome variable is

included as a latent class predictor variable in Step 1, along with other covariates.

Bakk and Kuha (2018) proposed a two-step alternative to address the aforemen-

tioned issues with one and standard three-step approaches. In this approach, a latent

class model is fitted in Step 1, as in the three-step approach. Then, in Step 2, the full

joint latent class and distal outcome model is fitted, as in the one-step approach, but

the parameters for the latent class part of the model are held fixed at their estimates

from Step 1. A correction is then applied to account for additional uncertainty in the

second step.

Research into estimating the effect of latent class on distal outcomes has so far

been restricted to categorical or continuous outcome variables (Clark and Muthén,

2009; Bakk et al., 2013; Lanza et al., 2013; Asparouhov and Muthén, 2014; Bray et al.,

2015; Bakk and Vermunt, 2016; Collier and Leite, 2017; Bakk and Kuha, 2018).

In this chapter, Monte Carlo simulation is used to compare one, two and three-

step approaches to latent class modelling with a time-to-event distal outcome. For the

one and two-step approaches, joint latent class models with piecewise constant baseline

hazard functions are used (Asparouhov et al., 2006; Muthén et al., 2009). For the three-

step models, four approaches to class assignment are compared and the impact of the
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inclusive approach for bias-correction (Bray et al., 2015) with a time-to-event distal

outcome variable is assessed. This work was published in the Journal of Structural

Equation Modeling: A Multidisciplinary Journal (Lythgoe et al., 2019).

2.2 Latent class modelling with a time-to-event distal out-

come

C

Y

C

X

Y

C

TY

Z
C

T, Z

Y

(a) (b) (c) (d)

Figure 2.1: Schematics for the latent class models discussed in this chapter: (a) latent
class model, (b) latent class regression model, (c) inclusive latent class regression model
and (d) one-step latent class model with a distal outcome. Circles and squares are used
to identify unobserved (i.e. latent class) and observed variables, respectively. C latent
class variable, Y manifest variables, X latent class predictors, T distal outcome(s) and
Z covariates possibly related to T.

2.2.1 The one-step approach

In this section, latent class models are introduced and a full one-step latent class model

with a time-to-event distal outcome, as introduced by Larsen (2004), is developed.

The latent class model

LCA was introduced by Lazarsfeld (Lazarsfeld, 1959) and is used to identify and charac-

terise unobserved and mutually exclusive subgroups using multiple imperfect indicators

known as manifest variables. The basic latent class model is depicted in Figure 2.1(a).

The latent class variable, C, is assumed to consist of J categories with prevalences

P (C = j) = ηj ,
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for j = 1, . . . , J and
∑J

j=1 ηj = 1. Let Y = (Y1 . . . , YM )ᵀ denote a vector of manifest

variables with observed values y = (y1, . . . , yM )ᵀ for a given subject. Typically each Ym

(m = 1, . . . ,M) is categorical with g = 1, . . . , Gm categories, so that the probability of

observing category g on the mth manifest variable for subjects in the jth class is given

by

P (Ym = g|C = j) = πmgj =

Gm∏
g=1

π
I{ym=g}
mgj ,

where
∑Gm

g=1 πmgj = 1, and I {ym = g} is an indicator function which equals 1 if ym

takes the value g and 0 otherwise, for a given subject. Other distributions for the

manifest variables are discussed in Chapter 3. The distribution of the responses for an

individual is given by

fY(y) =
J∑
j=1

P (C = j)fY|C(y|j)

=

J∑
j=1

ηj

M∏
m=1

fYm|C(ym|j),

(2.1)

where the manifest variables are assumed to be independent conditional on class and

f(.) is used to denote a probability density or mass function as required. Some options

for introducing dependencies between manifest variables can be found in Hunt and

Jorgensen (1999) and Desantis et al. (2012), and are discussed in Chapter 3. The

posterior probability that a subject belongs to class j given Y = y is obtained using

Bayes theorem, so that

P (C = j|Y = y) =
ηjfY|C(y|j)∑J
k=1 ηkfY|C(y|k)

. (2.2)

Latent class regression

A natural extension to the latent class model (equation 2.1) is the concomitant-variable

or ‘latent class regression’ (LCR) model (Dayton and Macready, 1988; Formann, 1992;

van der Heijden et al., 1996; Bandeen-Roche et al., 1997; Chung et al., 2006), as depicted

in Figure 2.1(b). In the LCR model the class prevalences, ηj , are allowed to vary as a

function of a vector of ‘latent class predictors’ X, with observed values x. Following on

from equation 2.1 the distribution function for a given subject is

fY|X(y|x) =
J∑
j=1

ηj(x)
M∏
m=1

fYm|C(ym|j),

where the latent class predictors and manifest variables are assumed to be conditionally

independent given latent class. Huang and Bandeen-Roche (2004) showed how depen-
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dencies between latent class predictors and categorical manifest variables can be added

to the model. A generalised linear model with a logit link function is used to model

the relationship between the latent class predictors and class prevalences, so that the

inverse of the logit link function is

P (C = j|X = x) = ηj(x) =
exp(xᵀκj)∑J
k=1 exp(xᵀκk)

, (2.3)

for j = 1, . . . , J and where κj is a vector of log odds ratios for the jth class, κJ = 0

for identifiability and the first element of x is set to 1 in order to include an intercept.

An intercept only LCR model is equivalent to the latent class model. Other suitable

link functions can be used. To obtain posterior probabilities equation 2.2 is updated

to P (C = j|Y = y,X = x).

A time-to-event distal outcome model

Time-to-event variables are typically highly skewed and subject to censoring, since

the event of interest is not always observed (see Chapter 1). Note that it is assumed

throughout that the risk of censoring and experiencing the event are independent.

Larsen (2004) extended the latent class model to include a time-to-event submodel

in order to model latent class and a time-to-event distal outcome in one step, as depicted

in Figure 2.1(d). An extensive framework for these continuous time one-step or ‘joint’

models is presented in Asparouhov et al. (2006) and software functionality is available

in M-Plus (Muthén and Muthén, 2011). Let T denote a time-to-event variable with

observed value t. One option for the time-to-event submodel is a proportional hazards

model extended to include a latent class effect

α(t|Z = z, C = j) = α0(t) exp(zᵀβ + γj), (2.4)

for j = 1, . . . , J where α(t|·) represents the hazard for a given subject at time t, α0(t)

is the baseline hazard at time t, β is a vector of log hazard ratios for the corresponding

covariates z and γj represents the log hazard ratio for the effect of latent class j on the

baseline hazard, with γJ = 0 for identifiability. In this model, both the covariate and

class effects are assumed to act proportionally on the baseline hazard and independently

of time. Options for assessing the suitability of the proportionality assumption are

discussed in Section 2.5.

A useful approach to modelling the baseline hazard function is the piecewise expo-

nential model (Friedman, 1982), where the baseline hazard function is assumed to be

piecewise constant. For a piecewise exponential time-to-event submodel, let time be

partitioned into s = 1, . . . , S intervals and let α0 = (α01, . . . , α0S)ᵀ denote a vector of
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baseline hazard parameters. To complete the required notation, let ∆ represent the

censoring indicator with observed value δ, where δ equals 1 if the event is observed and

0 otherwise. The required density function of the event time for a given subject is

fT,∆|Z,C(t, δ|z, j) =
S∏
s=1

[α0s exp(zᵀβ + γj)]
δψs ×

exp

{
− ψs

[
α0s(t− as−1) +

s−1∑
h=1

α0h(ah − ah−1)

]
exp(zᵀβ + γj)

}
,

for j = 1, . . . , J and where ψs denotes an indicator variable which equals 1 if the event

occurs in the sth interval and 0 otherwise, as denotes the upper boundary for the sth

interval on the time grid and a0 equals 0. The joint density for the manifest variables

and time-to-event distal outcome for a given subject is then

fY,T,∆|Z(y, t, δ|z) =

J∑
j=1

ηj

M∏
m=1

fYm|C(ym|j)fT,∆|Z,C(t, δ|z, j), (2.5)

where the distributions of the manifest variables and time-to-event distal outcome are

assumed to be conditionally independent given class. Latent class predictors can also

be included, as in equation 2.3, as will be shown in Chapter 3, but will not be considered

in this chapter. The log-likelihood of the observed data is given by

`(θ) =
N∑
i=1

log
[
fYi,Ti,∆i|Zi

(yi, ti, δi|zi)
]
, (2.6)

where N is the total number of subjects indexed by i and θ = (ηᵀ,πᵀ,αᵀ,βᵀ,γᵀ)ᵀ

denotes the full vector of parameters to be estimated. Note that for estimation purposes,

Lagrange multipliers are required to implement the constraint
∑Gm

g=1 πmgj = 1 (see e.g.

Bartholomew et al., 2011, Chapter 6), but further Lagrange multipliers are not required

for the constraint
∑J

j ηj = 1 if equation 2.3 is used. Further details on model estimation

are given in Chapter 3.

2.2.2 The two-step approach

For the two-step approach of Bakk and Kuha (2018), the required parameters from

the one-step model are partitioned into those to be estimated in Steps 1 and 2 so that

θ = (θᵀ1,θ
ᵀ
2)ᵀ. In the first step a latent class model is fitted (equation 2.1) so that

θ1 = (ηᵀ,πᵀ)ᵀ and therefore θ2 = (αᵀ,βᵀ,γᵀ)ᵀ. Let θ̃1 denote the estimates from

Step 1 and then in Step 2 maximise the log-likelihood for the observed data conditional

on the Step 1 estimates, i.e. `(θ2|θ1 = θ̃1). The required log-likelihood is given in
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equation 2.6.

Clearly the uncertainty of the estimates obtained in Step 2, θ̃2, will be underesti-

mated since the Step 1 parameters have been held fixed during estimation. Xue and

Bandeen-Roche (2004) and Bakk and Kuha (2018) demonstrate how to obtain corrected

standard errors in the two-step approach, as is discussed in detail in Section 3.7.2.

2.2.3 Standard and inclusive three-step approaches

Three-step approaches proceed as follows: Step 1) a latent class model is fitted, Step

2) an assignment rule is used to classify subjects according to their class conditional

posterior probabilities, Step 3) the assigned classes are used as a covariate in a regression

model to estimate the relationship between the latent classes and the external variable.

These steps are now considered in more detail in the context of modelling with a time-

to-event distal outcome.

Step 1: Fit the latent class model

For Step 1 in a standard three-step approach a latent class model is simply fitted, as

in equation 2.1 and depicted in Figure 2.1(a). In an inclusive three-step approach an

LCR model is fitted with the distal outcome variable as a latent class predictor vari-

able, along with other covariates related to the outcome, as depicted in Figure 2.1(c).

How then might we incorporate an event time subject to censoring as a latent class

predictor? For the purposes of multiple imputation of baseline covariate data in propor-

tional hazards models, White and Royston (2009) recommended using the estimated

cumulative hazard function (notably in preference to the observed survival time or its

natural logarithm), the event indicator and other covariates related to the event time

in the model. Expressing equation 2.3 in logit form and replacing x with the required

elements the inclusive model is given by

logitP (C = j|H(t),∆ = δ,Z = z) = κj0 + κj1H(t) + κj2δ + κj3z,

for j = 1, . . . , J and where H(t) is the (non-parametric) Nelson-Aalen estimate of

the unconditional cumulative hazard, which is estimated separately. For illustration

purposes only a single covariate, z, has been included but additional covariates can be

incorporated easily.

Step 2: Class assignment

In Step 2, subjects are assigned to a latent class according to an assignment rule. The

simplest and most commonly used assignment rule is modal assignment (MA) in which
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each subject is assigned to the latent class for which they have the highest posterior

probability. MA ensures that all subjects with the same response pattern are allocated

to the same class.

Another commonly used method is random assignment, also known as the ‘pseudo

class’ method (PC). For PC, class is imputed once for each subject by randomly draw-

ing from a multinomial distribution with probabilities equal to the subject’s posterior

probabilities from the latent class model (Bolck et al., 2004; Bandeen-Roche et al.,

1997). Consequently not all subjects with the same response pattern are guaranteed

to be assigned to the same class. Wang et al. (2005) introduced multiple pseudo class

draws (mPC) to improve estimation efficiency over a single random draw. With mPC,

class is imputed multiple times for each subject, with the authors recommending at

least 20 random draws. Note that mPC is distinct from multiple imputation since the

estimated posterior probabilities are effectively treated as known (Wang et al., 2005).

Finally, partial assignment (PA) and proportional assignment (PrA) are highlighted.

In these methods, each subject is assigned partially rather than absolutely to a latent

class. In PA, no assignment is made and posterior probabilities are used in further

analyses. In PrA each subject is assigned to all classes simultaneously with case-

weights equal to their corresponding class-specific probabilities, and as a result each

subject will enter any further analyses J times.

Step 3: Estimate the effect of latent class on the distal outcome

In Step 3, the distal outcome variable is regressed on the assigned class from Step 2,

possibly in addition to other relevant covariates. For a time-to-event distal outcome

the Cox proportional hazards model (Cox, 1972) is a natural choice and is utilised in

the subsequent simulation study.

For MA and PC, J−1 dummy variables are used to represent the assigned/imputed

class in the regression model. For mPC this process is repeated for each class imputation

and parameter estimates are combined across regression models using Rubin’s rules

(Rubin, 2004). For PA, J − 1 posterior probabilities are included as covariates in the

regression model. For PrA each subject is included in the regression model J times

with case-weights equal to the posterior probabilities from the latent class model. One

consequence of PrA in a time-to-event setting is that tied event times are introduced.

2.2.4 Entropy

The extent to which latent classes can be distinguished by the data and the latent class

model can be assessed using the principle of entropy (Muthén and Muthén, 2004; Bakk

et al., 2013). The Ramaswamy entropy statistic (Ramaswamy et al., 1993; Muthén and
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Muthén, 2004; Dziak et al., 2014) is defined as

E = 1−
∑N

i=1

∑J
j=1−p̂ij log(p̂ij)

N log(J)
,

for a sample of i = 1, . . . , N subjects and where p̂ij is the estimated posterior probability

of the ith subject belonging to class j from a latent class model. E can take values

between 0 and 1, where 0 indicates that the model contains no information on class

assignment and 1 indicates that all subjects are estimated to belong to a class with

100% probability. Lower entropy implies that classes are less well distinguished and

corresponds to greater classification error being introduced in Step 2 for three-step

methods. Note that this is contrary to classical entropy measures for which low values

correspond to better classification (see e.g. Dziak et al., 2014).

2.2.5 A label switching solution

Latent class models are only identifiable up to a permutation of class labels (McLachlan

and Peel, 2004). Whilst this is not an issue in standalone applications, it is a problem

for simulation studies since it is not always straightforward to establish, for a particular

simulated data set, the class label that corresponds to the true class. A useful discussion

of this issue in latent class models is given in Tueller et al. (2011), and the same labelling

problem can arise in Bayesian estimation of mixture distributions using Monte Carlo

Markov Chain simulations (Celeux et al., 2000; Grün and Leisch, 2009; Sperrin et al.,

2010).

A number of solutions have been proposed (e.g. Tueller et al., 2011; Yao, 2015;

Celeux et al., 2000). For the simulation study described in the next section, a cluster-

ing and relabelling strategy based on Euclidean distances was used, where the distances

between the true parameter values and their estimates were calculated for each sim-

ulated data set. A similar idea is presented in Celeux et al. (2000) and the proposed

solution is now presented and justified.

Assume that data are simulated according to a particular latent class model with

P ‘true’ parameter values θ = (θ1, . . . , θP )ᵀ. There are J ! possible permutations of

the class labels, l = 1, . . . , J !, and the last permutation is assumed to represent the

correct labelling. In a simulation study, d = 1, . . . , D data sets are simulated according

to the true model. For each data set a latent class model of the same form as the

true model is fitted. Let θ̂d = (θ̂d1, . . . , θ̂dP )ᵀ represent a vector of parameter estimates

from the latent class model fitted to the dth data set. It is assumed that θ̂d contains

unbiased estimates of the true values but possibly labelled incorrectly. If θ̂d are labelled

‘correctly’, then
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1

se(θ̂dp)

(
θ̂dp − θp

)
∼ N(0, 1)

and [
1

se(θ̂dp)

(
θ̂dp − θp

)]2

∼ χ2
(1),

for d = 1, . . . , D and p = 1, . . . , P . It is then assumed that the parameter estimates

are independent, which in practice will be determined by the form of the model fitted

(this issue is discussed in further detail below). Summing over P ,

P∑
p=1

[
1

se(θ̂dp)

(
θ̂dp − θp

)]2

∼ χ2
(P ),

with mean P , for d = 1, . . . , D. The standardised Euclidean distance, τd, between the

estimates from a model fitted to the dth data set and the vector of true parameter

values is

τd =

{
P∑
p=1

[
1

se(θ̂dp)
(θ̂dp − θp)

]2}1/2

∼ χ(P ),

i.e. a central χ distribution. If θ̂d are labelled ‘incorrectly’, then

1

se(θ̂dp)

(
θ̂dp − θp

)
∼ N (µp, 1) ,

P∑
p=1

[
1

se(θ̂dp)

(
θ̂dp − θp

)]2

∼ χ2
(P )(λ),

i.e. a non-central χ2 distribution with non-centrality parameter λ =
∑P

p=1 µ
2
p and mean

P + λ. It therefore follows that

τd ∼ χ(P ) (λ) .

Letting τ = (τ1, . . . , τD)ᵀ, and assuming that the random starting values for the pa-

rameter estimates do not favour one label permutation over another,

τ ∼ 1

J !

J !∑
l=1

fl(τ ),

i.e. a J ! component mixture distribution with one central χ distribution, fJ ! ∼ χ(P ),

and J !−1 non-central χ distributions, fl ∼ χ(P ) (λl), for l = 1, . . . , (J !−1). A histogram

of τ should therefore yield a mixture distribution of J ! (hopefully distinct) probability

distributions for which the component with the lowest mean is labelled correctly. Larger
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differences in the true parameter values for the latent classes and greater numbers of

class distinct parameters to estimate will result in clearer separation of the mixture

components, making clustering and relabelling easier. An example of such a histogram

for 2000 simulations from a latent class model with J = 2 and P = 21 parameters

is depicted in Figure 2.2. Assuming sufficient separation between components, either

by introducing some threshold or by clustering τ (e.g. K-means clustering), estimates

that have been labelled incorrectly can be easily identified and relabelled accordingly.
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Figure 2.2: Example of Euclidean distances for 2000 simulations from a latent class
model with 2 classes, before relabelling. The distribution on the left contains the
models for which the class is correctly labelled.

A label switching procedure is therefore as follows

1. Fit latent class models to each of d = 1, . . . , D data sets.

2. For each of the d = 1, . . . , D data sets calculate the standardised Euclidean dis-

tances, τd, between each set of parameter estimates, θ̂d, and the true parameter

values, θ.

3. Inspect a histogram of τ for distinct component densities.

4. Use e.g. K-means clustering to assign each τd (and hence θ̂d) to a cluster (/com-

ponent density). The cluster with the lowest mean corresponds to the cluster of

correctly labelled parameter estimates.

5. Relabel those θ̂d which do not belong to the correctly labelled component density.

As a check, the first three steps can be repeated using the relabelled estimates and

the new histogram should reveal a unimodal (and central) χ distribution. If J > 2
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it may be necessary to repeat this process using a permutation of the true parameter

values in the place of the true values in order to distinguish between two or more

incorrectly labelled clusters.

The histogram of τ also serves as a useful diagnostic tool, since any outlying val-

ues, perhaps exceeding a selected critical threshold, can be identified and investigated

further. These may represent local maximum and/or boundary solutions.

In practice, whilst theoretical justification for the distribution of the standardised

Euclidean distances in the case of independent parameters has been provided, if de-

pendencies are included in the model, then the procedure can still be used. In this

case, these parameters can be included or excluded, as long as the histogram of the

standardised Euclidean distances reveals distinct clusters. If the entropy is low, unfor-

tunately the component distributions may overlap in which case it may not be possible

to relabel the estimates with 100% accuracy using this method.

2.3 Monte Carlo Simulation Study

2.3.1 Aims

The purpose of this Monte Carlo simulation study was to investigate the empirical

properties of latent class effect estimates on a time-to-event distal outcome using a

number of different models and simulated scenarios. In particular, it was aimed to

compare one, two, standard three and inclusive three-step approaches. For both the

standard and inclusive three-step approaches, subjects were assigned to classes using

four different approaches: MA, mPC, PA and PrA.

2.3.2 Software

Data were simulated using R (R Core Team, 2017, Version 3.5.2). Step 1 latent class

models for the three-step approaches were fitted using R package poLCA (Linzer and

Lewis, 2011) and Step 3 Cox regression models were fitted using the coxph() function

in the survival package (Therneau, 2015), with the default of Efron’s method for tied

survival times. Reported standard errors and Wald 95% confidence intervals are those

returned from these packages. Robust standard errors were used for three-step mod-

els with PrA to account for observations entering the analysis model twice. One and

two-step models were fitted using an author-written R function, LCSM(), which uses an

adapted version of the estimation routine detailed in Larsen (2004) to include a piece-

wise exponential time-to-event submodel. Both LCSM() and poLCA use the expectation-

maximisation (EM) algorithm (Dempster et al., 1977) with Newton-Raphson steps to

obtain maximum likelihood estimates (Larsen, 2004; Linzer and Lewis, 2011). The
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LCSM() function and model fitting process are described in detail in Chapter 3. Stan-

dard errors for one and two-step models were obtained using Louis’s method (Louis,

1982, see Chapter 3). Standard errors in the two-step models were corrected to ac-

count for Step 1 parameter fixing as described previously (Xue and Bandeen-Roche,

2004; Bakk and Kuha, 2018). Simulations were conducted using the Advanced Re-

search Computing Condor high throughput environment at the University of Liverpool

(Smith, 2017).

2.3.3 Data simulation

Two-class models with equal prevalences and ten independent Bernoulli distributed

manifest variables were simulated. The factors manipulated were (a) sample size, N ∈
{500, 1000}, (b) approximate entropy statistic values, E of 0.35, 0.50, 0.70 and (c) the

hazard ratio for the latent class effect, exp(γ1) ∈ {1, 1.5, 2, 3} (note that exp(γ2) = 1,

i.e. no effect, for identifiability), giving 24 simulation scenarios in total.

The entropy statistic values are similar to those used previously (Clark and Muthén,

2009) and correspond to low, medium and high class separation respectively. The

manifest variables were simulated from independent Bernoulli distributions according

to a crossed-profile plot, as depicted in Figure 2.3 and used previously by Clark and

Muthén (2009). The entropy settings were obtained by varying the class conditional

response probabilities, π(1) ∈ {0.60, 0.65, 0.70} and π(2) = 1− π(1).

Simulated event times were based on observed data from the ESPAC3v2 trial (Neop-

tolemos et al., 2010). The ESPAC3v2 trial was an open-label randomised controlled

trial in patients with pancreatic ductal adenocarcinoma who had undergone cancer re-

section. Patients were randomised to either fluorouracil plus folinic acid or gemcitabine

(the standard of care). Survival times were generated using the Kaplan-Meier estimate

of the overall survival curve from the gemcitabine arm as described in Appendix A.

The hazard ratio values for the latent class effect, exp(γ1), were chosen to represent

no effect and approximate small, medium and large effect sizes respectively (Azuero,

2016). In addition to the latent class effect, an independent Bernoulli distributed time-

to-event covariate, z, with a probability of 0.5 was simulated for each subject. This

covariate was included to mimic randomised treatment in a clinical trial setting and

the effect on survival was fixed across simulations as exp(β) = 0.75. Administrative

censoring was applied at 60 months and uniform censoring was added by generating

censoring times from an exponential distribution such that overall approximately 50%

of survival times were right-censored in each scenario.

23



● ● ● ● ●

● ● ● ● ●

Manifest variable

C
la

ss
 c

on
di

tio
na

l r
es

po
ns

e 
pr

ob
ab

ili
ty

1 2 3 4 5 6 7 8 9 10

0

π (2)

π (1)

1

● ● ● ● ●

● ● ● ● ●

Figure 2.3: Class-conditional response probabilities used in the simulation study. Ten
independent Bernoulli distributed manifest variables were simulated according to a
crossed profile plot for the two latent classes, where π(1) ∈ {0.60, 0.65, 0.70} and π(2) =
1− π(1).

2.3.4 Model fitting

The ten fitted model types (1 × one-step, 1 × two-step, 4 × standard three-step and 4

× inclusive three-step) are detailed in Table 2.1. For each model type and simulation

scenario, 50 sets of random starting values were used and the best fitting model was

selected in order to avoid obtaining local maximum solutions. A tolerance of 10−9

was used for convergence and a maximum of 1000 iterations were permitted. For each

scenario there were 2000 replications. Class labelling was evaluated using the method

described in Section 2.2.5. Parameter estimates were to be evaluated in terms of bias,

percentage bias, 95% confidence interval coverage and 95% confidence interval length

(Burton et al., 2006, Table I).

2.4 Results

Simulation results for the estimated hazard ratios and corresponding performance mea-

sures are presented by true latent class effect and can be found in Tables 2.2 to 2.5. For

simplicity, results aggregated over the small, medium and large effect sizes are presented

in Table 2.1 (where the high and medium entropy scenarios have also been aggregated).
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As an illustrative example, histograms of parameter estimates from Scenario 23 (low

entropy, large effect, N = 500) are presented in Figure 2.4.

2.4.1 One and two-step approaches

Latent class effect estimates for the one-step model exhibited no or low bias and ap-

proximately nominal coverage in most scenarios, although in the low entropy and low

sample size scenarios confidence interval coverage was slightly below the nominal level

at 93% on aggregate (Table 2.1).

In the medium and high entropy scenarios two-step estimates were unbiased with

nominal coverage. In the low entropy scenarios the two-step models exhibited some

parameter attenuation, although this was less pronounced for the larger sample size

(18% and 8% for small and large sample sizes respectively, on aggregate, Table 2.1).

Confidence interval coverage was typically similar to the one-step approach.

2.4.2 Standard three-step approaches

Estimates from the standard three-step models were approximately unbiased in the no

effect scenarios (Table 2.2). In these scenarios MA and PA exhibited nominal coverage,

but coverage was generally too high for mPC and PrA at approximately 97-99%. For

the small, medium and large effect scenarios (Tables 2.3 to 2.5), MA, mPC and PrA

estimates exhibited considerable bias towards the null and poor coverage. Even in the

high entropy and larger sample size scenarios these methods exhibited attenuation in

the latent class effect of >19% and this became considerably worse in the low entropy

scenarios.

PA estimates were approximately unbiased with nominal coverage in all of the high

and medium entropy scenarios, irrespective of effect size. With N = 500 in the low

entropy scenarios for the small, medium and large effect sizes (Tables 2.3 to 2.5) PA

exhibited considerable attenuation (20% on aggregate, Table 2.1) and poor coverage,

but the bias was far less than the other standard three-step procedures which exhibited

>57% bias on aggregate. With N = 1000 in the low entropy scenarios, attenuation

was improved (10% on aggregate) but coverage was below the nominal level (90% on

aggregate).

2.4.3 Inclusive three-step approaches

Latent class effect estimates from the inclusive three-step approaches were further from

the null than their counterpart standard three-step approaches, suggesting some rever-

sal of attenuation as intended. This effect is illustrated in Figure 2.4. Incl-PrA and

Incl-mPC produced no or low bias in all scenarios, and Incl-MA exhibited improved
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Figure 2.4: Histograms of simulation results taken from low entropy Scenario 23 (N =
500, π(1) = 0.4, π(2) = 0.6). The dashed vertical lines represent the true latent class
effect, in this case log(3) ≈ 1.10, and deviations of the empirical distributions from the
true value indicate bias. For corresponding confidence interval coverage and length see
Table 2.5. ‘Class is known’ refers to results from a Cox regression model including the
known underlying class and is included for demonstration purposes only. MA modal
assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional
assignment, Incl inclusive.
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Absolute % Bias % CI Coverage
N=500 N=1000 N=500 N=1000

Model No. Name Steps LC predictors Ass. method Base haz. High/Med. Low High/Med. Low High/Med. Low High/Med. Low

1 1step 1 None - Piecewise constant 2 6 1 3 95 93 95 94

2 2step 2 None - Piecewise constant 1 18 1 8 95 93 95 94

3 MA 3 None MA Unspecified 28 57 28 55 62 30 44 13
4 mPC 3 None mPC Unspecified 38 69 38 70 50 22 30 2
5 PA 3 None PA Unspecified 3 20 2 10 95 87 94 90
6 PrA 3 None PrA Unspecified 38 69 38 70 40 10 23 0

7 Incl-MA 3 H0(t),δ,z MA Unspecified 13 43 14 45 77 41 73 32
8 Incl-mPC 3 H0(t),δ,z mPC Unspecified 1 8 0 3 89 67 88 68
9 Incl-PA 3 H0(t),δ,z PA Unspecified 56 196 56 186 43 16 28 6
10 Incl-PrA 3 H0(t),δ,z PrA Unspecified 1 7 0 2 82 52 82 54

Table 2.1: Details of models used in the simulation study and aggregated results for the estimated latent class effect. MA modal assignment,
mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment, Incl inclusive. Absolute % bias and 95% confidence
interval (CI) coverage are aggregate results over the small, medium and large effect sizes. High and medium entropy results have been
aggregated. One-step models (1) exhibit little or no bias and approximately nominal coverage, two-step models (2) exhibit no bias and
nominal coverage in High/Med entropy scenarios but are biased in Low entropy scenarios, standard three-step models (3-6) generally exhibit
bias and poor coverage (excepting PA in High/Med entropy scenarios), inclusive three-step models (7-10) offer improved bias over standard
three-step models (excepting Incl-PA) but coverage is generally poor.
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bias compared with the counterpart standard three-step approaches. Incl-PA estimates,

however, considerably exceeded the true values for small, medium and large effects for

all entropy levels (Tables 2.3 to 2.5).

Coverage was below the nominal value for estimates from all of the inclusive three-

step approaches in all scenarios. In the no effect scenarios, the low coverage of the

inclusive estimates generally resulted in more than double the nominal Type I error

rates, and this became far worse as the entropy decreased (Table 2.2).
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Scenario HR log(HR) Entropy π(1) π(2) N Measure 1step 2step MA mPC PA PrA
Incl-
MA

Incl-
mPC

Incl-
PA

Incl-
PrA

1 1 0 High 0.30 0.70 500 Estimate -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
Bias -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.15 0.15 0.13 0.13 0.15 0.12 0.13 0.13 0.15 0.12

CI Coverage (%) 95.0 95.2 95.0 98.5 95.0 96.8 85.2 91.0 84.4 87.8
CI Length 0.59 0.59 0.51 0.52 0.59 0.47 0.51 0.52 0.59 0.47

2 1 0 High 0.30 0.70 1000 Estimate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.11 0.11 0.09 0.09 0.11 0.08 0.09 0.09 0.11 0.08

CI Coverage (%) 94.9 94.9 94.7 98.0 95.2 96.5 81.5 91.2 85.2 87.7
CI Length 0.42 0.42 0.36 0.37 0.42 0.33 0.36 0.37 0.42 0.33

3 1 0 Medium 0.35 0.65 500 Estimate -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
Bias -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.18 0.18 0.13 0.14 0.17 0.11 0.13 0.14 0.17 0.11

CI Coverage (%) 94.0 94.4 94.1 99.2 94.3 97.4 75.0 85.5 69.2 77.4
CI Length 0.70 0.70 0.51 0.54 0.68 0.45 0.51 0.54 0.68 0.45

4 1 0 Medium 0.35 0.65 1000 Estimate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.12 0.13 0.09 0.10 0.12 0.08 0.09 0.10 0.12 0.08

CI Coverage (%) 95.0 95.4 95.0 99.3 95.2 97.8 75.3 85.9 71.4 79.0
CI Length 0.49 0.49 0.36 0.37 0.48 0.31 0.36 0.37 0.48 0.31

5 1 0 Low 0.40 0.60 500 Estimate -0.01 -0.01 -0.00 -0.00 -0.01 -0.00 -0.01 0.00 -0.22 0.00
Bias -0.01 -0.01 -0.00 -0.00 -0.01 -0.00 -0.01 0.00 -0.22 0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.25 0.25 0.14 0.15 0.22 0.11 0.14 0.15 0.22 0.11

CI Coverage (%) 91.8 96.6 94.9 99.9 93.9 98.4 52.6 68.7 45.9 55.2
CI Length 0.95 0.96 0.54 0.58 0.87 0.43 0.56 0.59 0.88 0.44

6 1 0 Low 0.40 0.60 1000 Estimate -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00
Bias -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.17 0.17 0.09 0.10 0.16 0.08 0.10 0.10 0.16 0.08

CI Coverage (%) 93.1 96.0 94.9 99.9 94.4 99.2 53.1 71.5 44.9 58.7
CI Length 0.69 0.69 0.37 0.39 0.63 0.29 0.37 0.39 0.63 0.30

Table 2.2: Simulation results for the effect of latent class in scenarios with a hazard ratio of 1. Estimates are presented on the log scale. NC
not calculable, MA modal assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment, Incl inclusive.
All models are unbiased. One-step, two-step, MA and PA models exhibit approximately nominal coverage. mPC and PrA coverage is too
high and for all inclusive methods coverage is too low, implying increased Type I error rates.
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Scenario HR log(HR) Entropy π(1) π(2) N Measure 1step 2step MA mPC PA PrA
Incl-
MA

Incl-
mPC

Incl-
PA

Incl-
PrA

7 1.5 0.41 High 0.30 0.70 500 Estimate 0.41 0.41 0.33 0.30 0.40 0.30 0.45 0.41 0.55 0.41
Bias 0.00 -0.00 -0.08 -0.11 -0.00 -0.11 0.04 0.01 0.15 0.00

Bias (%) 0.98 -0.09 -19.33 -26.61 -0.53 -26.71 10.73 1.29 36.31 1.07
SE 0.15 0.15 0.13 0.13 0.15 0.12 0.13 0.13 0.15 0.12

CI Coverage (%) 94.8 95.2 90.1 91.2 95.1 86.7 85.4 91.6 73.6 87.5
CI Length 0.59 0.59 0.50 0.52 0.58 0.46 0.50 0.52 0.58 0.47

8 1.5 0.41 High 0.30 0.70 1000 Estimate 0.41 0.41 0.33 0.30 0.40 0.30 0.47 0.41 0.55 0.41
Bias 0.00 -0.00 -0.08 -0.11 -0.00 -0.11 0.07 0.00 0.15 0.00

Bias (%) 0.44 -0.08 -19.13 -26.70 -0.18 -26.75 17.05 0.53 36.19 0.54
SE 0.11 0.11 0.09 0.09 0.10 0.08 0.09 0.09 0.11 0.08

CI Coverage (%) 94.7 94.9 86.7 82.3 94.5 76.0 80.2 91.5 66.8 88.5
CI Length 0.41 0.41 0.35 0.36 0.41 0.33 0.36 0.36 0.41 0.33

9 1.5 0.41 Medium 0.35 0.65 500 Estimate 0.41 0.40 0.27 0.22 0.40 0.22 0.48 0.42 0.74 0.41
Bias 0.01 -0.01 -0.14 -0.19 -0.01 -0.19 0.07 0.01 0.33 0.01

Bias (%) 1.98 -1.62 -33.69 -45.84 -2.48 -46.11 18.25 2.49 82.42 2.17
SE 0.18 0.18 0.13 0.14 0.17 0.11 0.13 0.14 0.17 0.11

CI Coverage (%) 94.5 95.0 80.7 78.5 94.7 62.4 72.3 84.5 49.0 75.9
CI Length 0.69 0.69 0.50 0.53 0.67 0.44 0.51 0.54 0.68 0.44

10 1.5 0.41 Medium 0.35 0.65 1000 Estimate 0.41 0.40 0.27 0.22 0.40 0.22 0.49 0.41 0.74 0.41
Bias 0.00 -0.01 -0.14 -0.19 -0.01 -0.19 0.08 0.00 0.34 0.00

Bias (%) 0.53 -1.33 -33.80 -46.49 -1.50 -46.48 19.97 1.07 83.07 0.71
SE 0.12 0.12 0.09 0.09 0.12 0.08 0.09 0.09 0.12 0.08

CI Coverage (%) 94.6 95.2 66.8 46.8 94.8 30.6 70.5 85.7 34.0 77.3
CI Length 0.49 0.49 0.35 0.37 0.48 0.31 0.36 0.37 0.48 0.31

11 1.5 0.41 Low 0.40 0.60 500 Estimate 0.43 0.33 0.17 0.13 0.33 0.13 0.54 0.41 0.97 0.40
Bias 0.02 -0.08 -0.23 -0.28 -0.08 -0.28 0.14 0.00 0.56 -0.00

Bias (%) 4.94 -18.91 -56.94 -68.80 -19.29 -68.98 33.63 0.69 138.42 -1.18
SE 0.24 0.24 0.14 0.15 0.22 0.11 0.14 0.15 0.22 0.11

CI Coverage (%) 92.8 94.8 63.9 57.2 91.8 26.1 47.3 67.0 30.1 51.1
CI Length 0.96 0.96 0.54 0.57 0.86 0.42 0.55 0.58 0.86 0.43

12 1.5 0.41 Low 0.40 0.60 1000 Estimate 0.42 0.37 0.18 0.12 0.37 0.12 0.60 0.42 1.23 0.42
Bias 0.01 -0.03 -0.22 -0.28 -0.03 -0.28 0.20 0.02 0.83 0.02

Bias (%) 3.04 -8.23 -54.49 -69.28 -8.34 -69.39 48.93 4.37 203.54 3.97
SE 0.17 0.17 0.09 0.10 0.16 0.07 0.09 0.10 0.16 0.07

CI Coverage (%) 94.2 95.6 35.6 7.4 94.0 1.1 43.2 69.8 16.0 57.0
CI Length 0.62 0.62 0.36 0.38 0.62 0.29 0.37 0.38 0.62 0.29

Table 2.3: Simulation results for the effect of latent class in scenarios with a hazard ratio of 1.5. Estimates are presented on the log scale.
MA modal assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment, Incl inclusive. One-step
models exhibit no or low bias and approximately nominal coverage. Two-step and PA are unbiased with nominal coverage in medium and
high entropy scenarios but both exhibit bias when the entropy is low. Incl-mPC and Incl-PrA exhibit no or low bias but poor coverage.
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Scenario HR log(HR) Entropy π(1) π(2) N Measure 1step 2step MA mPC PA PrA
Incl-
MA

Incl-
mPC

Incl-
PA

Incl-
PrA

13 2 0.69 High 0.30 0.70 500 Estimate 0.70 0.70 0.56 0.50 0.68 0.50 0.75 0.70 0.94 0.70
Bias 0.01 0.00 -0.14 -0.19 -0.01 -0.19 0.06 0.01 0.24 0.01

Bias (%) 1.34 0.39 -19.87 -27.42 -1.20 -27.54 8.08 0.95 34.96 0.75
SE 0.15 0.15 0.13 0.13 0.15 0.12 0.13 0.13 0.15 0.12

CI Coverage (%) 95.2 95.5 80.5 72.9 95.5 63.8 85.9 92.2 60.0 87.9
CI Length 0.59 0.59 0.50 0.51 0.58 0.46 0.50 0.52 0.58 0.46

14 2 0.69 High 0.30 0.70 1000 Estimate 0.69 0.69 0.55 0.50 0.68 0.50 0.76 0.69 0.93 0.69
Bias -0.00 -0.00 -0.14 -0.19 -0.01 -0.20 0.06 -0.00 0.24 -0.00

Bias (%) -0.07 -0.57 -20.65 -28.06 -1.63 -28.21 9.11 -0.40 34.13 -0.45
SE 0.11 0.11 0.09 0.09 0.10 0.08 0.09 0.09 0.11 0.08

CI Coverage (%) 94.8 94.8 63.4 42.8 94.9 32.2 84.0 90.8 41.9 86.4
CI Length 0.42 0.42 0.35 0.36 0.41 0.32 0.36 0.36 0.41 0.33

15 2 0.69 Medium 0.35 0.65 500 Estimate 0.71 0.68 0.45 0.37 0.66 0.37 0.81 0.70 1.24 0.70
Bias 0.01 -0.01 -0.24 -0.33 -0.03 -0.33 0.12 0.01 0.54 0.01

Bias (%) 1.99 -1.57 -34.97 -47.00 -4.07 -47.28 17.31 1.59 78.23 1.21
SE 0.18 0.18 0.13 0.13 0.17 0.11 0.13 0.14 0.17 0.11

CI Coverage (%) 95.2 95.1 52.4 25.1 95.0 10.8 69.2 85.2 25.9 76.7
CI Length 0.70 0.70 0.50 0.53 0.67 0.43 0.51 0.53 0.67 0.43

16 2 0.69 Medium 0.35 0.65 1000 Estimate 0.69 0.68 0.45 0.36 0.67 0.36 0.81 0.69 1.24 0.69
Bias 0.00 -0.01 -0.24 -0.33 -0.02 -0.33 0.11 -0.00 0.54 -0.00

Bias (%) 0.24 -1.53 -35.17 -47.68 -3.26 -47.76 16.48 -0.07 78.47 -0.27
SE 0.13 0.13 0.09 0.09 0.12 0.08 0.09 0.09 0.12 0.08

CI Coverage (%) 94.7 94.9 23.1 1.5 94.7 0.2 64.3 84.2 9.3 76.1
CI Length 0.49 0.49 0.35 0.36 0.47 0.30 0.36 0.37 0.48 0.30

17 2 0.69 Low 0.40 0.60 500 Estimate 0.73 0.57 0.30 0.22 0.57 0.22 1.03 0.77 2.13 0.76
Bias 0.04 -0.12 -0.39 -0.47 -0.13 -0.47 0.34 0.08 1.44 0.06

Bias (%) 5.83 -17.37 -56.69 -67.66 -18.12 -67.85 48.95 11.23 207.82 9.08
SE 0.25 0.25 0.14 0.14 0.22 0.11 0.14 0.15 0.22 0.11

CI Coverage (%) 93.3 94.1 23.4 8.8 90.4 2.4 41.4 66.7 14.1 51.8
CI Length 0.91 0.91 0.53 0.56 0.85 0.42 0.55 0.57 0.85 0.41

18 2 0.69 Low 0.40 0.60 1000 Estimate 0.71 0.64 0.31 0.21 0.63 0.21 1.00 0.71 1.99 0.71
Bias 0.02 -0.06 -0.38 -0.48 -0.06 -0.48 0.31 0.02 1.30 0.02

Bias (%) 2.34 -8.10 -55.07 -69.58 -9.29 -69.78 44.27 2.73 187.78 2.27
SE 0.17 0.17 0.09 0.10 0.16 0.07 0.09 0.10 0.16 0.07

CI Coverage (%) 94.4 94.7 2.3 0.1 92.4 0.1 32.8 68.4 2.0 54.1
CI Length 0.77 0.78 0.36 0.38 0.61 0.28 0.37 0.38 0.61 0.28

Table 2.4: Simulation results for the effect of latent class in scenarios with a hazard ratio of 2. Estimates are presented on the log scale.
MA modal assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment, Incl inclusive. One-step
models exhibit no or low bias and approximately nominal coverage. Two-step and PA are unbiased with nominal coverage in medium and
high entropy scenarios but both exhibit bias when the entropy is low. Incl-mPC and Incl-PrA exhibit no or low bias but poor coverage.
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Scenario HR log(HR) Entropy π(1) π(2) N Measure 1step 2step MA mPC PA PrA
Incl-
MA

Incl-
mPC

Incl-
PA

Incl-
PrA

19 3 1.1 High 0.30 0.70 500 Estimate 1.12 1.11 0.86 0.77 1.07 0.77 1.17 1.11 1.46 1.10
Bias 0.02 0.01 -0.24 -0.33 -0.03 -0.33 0.07 0.01 0.36 0.00

Bias (%) 1.97 0.68 -21.75 -29.59 -2.65 -29.75 6.39 0.62 33.15 0.31
SE 0.16 0.16 0.13 0.14 0.15 0.12 0.14 0.14 0.16 0.12

CI Coverage (%) 95.0 95.5 53.6 30.0 94.9 19.0 86.2 92.0 39.9 87.1
CI Length 0.63 0.63 0.51 0.53 0.60 0.46 0.53 0.55 0.61 0.48

20 3 1.1 High 0.30 0.70 1000 Estimate 1.11 1.11 0.86 0.77 1.07 0.77 1.17 1.10 1.46 1.10
Bias 0.01 0.01 -0.24 -0.33 -0.03 -0.33 0.07 -0.00 0.36 -0.00

Bias (%) 1.28 0.68 -21.96 -29.71 -2.47 -29.87 6.37 -0.05 32.98 -0.16
SE 0.11 0.11 0.09 0.09 0.11 0.08 0.10 0.10 0.11 0.09

CI Coverage (%) 94.8 95.1 26.3 3.6 94.5 1.6 84.4 91.1 15.7 87.3
CI Length 0.44 0.44 0.36 0.37 0.42 0.32 0.37 0.38 0.43 0.34

21 3 1.1 Medium 0.35 0.65 500 Estimate 1.13 1.09 0.69 0.56 1.03 0.56 1.28 1.11 1.89 1.10
Bias 0.03 -0.01 -0.41 -0.54 -0.07 -0.54 0.18 0.01 0.80 0.01

Bias (%) 3.05 -1.17 -37.30 -49.18 -6.36 -49.43 16.14 1.03 72.39 0.48
SE 0.19 0.19 0.13 0.14 0.17 0.11 0.14 0.14 0.18 0.11

CI Coverage (%) 94.4 95.4 12.0 0.4 92.8 0.0 64.3 85.8 8.1 75.8
CI Length 0.76 0.76 0.51 0.54 0.69 0.43 0.54 0.56 0.70 0.44

22 3 1.1 Medium 0.35 0.65 1000 Estimate 1.12 1.10 0.69 0.55 1.04 0.55 1.27 1.10 1.90 1.10
Bias 0.02 -0.00 -0.41 -0.54 -0.06 -0.55 0.17 -0.00 0.80 -0.00

Bias (%) 1.91 -0.15 -37.04 -49.51 -5.09 -49.64 15.32 -0.08 73.20 -0.32
SE 0.14 0.14 0.09 0.09 0.12 0.08 0.10 0.10 0.13 0.08

CI Coverage (%) 94.5 95.6 0.5 0.0 93.0 0.0 55.9 85.4 0.6 75.9
CI Length 0.53 0.54 0.36 0.37 0.49 0.30 0.38 0.39 0.50 0.31

23 3 1.1 Low 0.40 0.60 500 Estimate 1.16 0.89 0.46 0.33 0.86 0.33 1.62 1.24 3.75 1.21
Bias 0.06 -0.21 -0.64 -0.76 -0.24 -0.77 0.52 0.14 2.65 0.11

Bias (%) 5.90 -18.68 -58.55 -69.63 -21.80 -69.90 47.51 12.45 241.27 9.86
SE 0.28 0.27 0.14 0.15 0.22 0.11 0.15 0.15 0.23 0.11

CI Coverage (%) 94.2 88.9 3.3 0.9 79.5 0.2 35.3 66.9 4.0 51.6
CI Length 1.31 1.32 0.54 0.57 0.87 0.42 0.58 0.59 0.89 0.41

24 3 1.1 Low 0.40 0.60 1000 Estimate 1.15 1.01 0.47 0.32 0.96 0.32 1.55 1.11 2.93 1.11
Bias 0.05 -0.08 -0.63 -0.78 -0.14 -0.78 0.45 0.02 1.83 0.01

Bias (%) 4.87 -7.72 -56.91 -70.97 -12.47 -71.11 40.78 1.46 166.26 1.02
SE 0.20 0.19 0.09 0.10 0.16 0.07 0.10 0.10 0.16 0.07

CI Coverage (%) 94.4 92.8 0.0 0.0 84.0 0.0 21.3 66.7 0.0 51.0
CI Length 0.70 0.66 0.36 0.38 0.62 0.28 0.40 0.40 0.63 0.28

Table 2.5: Simulation results for the effect of latent class in scenarios with a hazard ratio of 3. Estimates are presented on the log scale.
MA modal assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment, Incl inclusive. One-step
models exhibit no or low bias and approximately nominal coverage. Two-step and PA are unbiased with nominal coverage in medium and
high entropy scenarios but both exhibit bias when the entropy is low. Incl-mPC and Incl-PrA exhibit no or low bias but poor coverage.
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2.5 Discussion

In this chapter, one, two and three-step approaches to latent class modelling with a

time-to-event distal outcome were presented and the empirical properties of latent class

effect estimates were compared using Monte Carlo simulation. To our knowledge, this is

the first study to investigate various approaches to latent class modelling when the distal

outcome is a time-to-event variable. Moreover, this is the first study to demonstrate and

implement two-step (Bakk and Kuha, 2018) and inclusive bias-correction approaches

(Bray et al., 2015) with a time-to-event distal outcome. This study contributes to the

emerging body of literature on latent class modelling with a distal outcome variable.

Latent class effect estimates for the one-step model exhibited no or low bias and ap-

proximately nominal coverage in most scenarios, although confidence interval coverage

was slightly below the nominal value in the low entropy and low sample size scenarios.

The lack of bias is consistent with studies with a continuous distal outcome (Clark and

Muthén, 2009; Asparouhov and Muthén, 2014; Bakk and Kuha, 2018). Interestingly,

standard errors (which determine confidence interval coverage when an estimate is un-

biased) in one-step models with a continuous distal outcome have been shown to be

both overestimated and underestimated previously when both the entropy and sample

size are low (Bakk et al., 2013; Bakk and Kuha, 2018).

The two-step approach resulted in low bias and approximately nominal coverage in

the medium and high entropy scenarios. However this approach did exhibit some bias

towards the null in the low entropy scenarios, which is consistent with previous research

using this approach with continuous distal outcome variables (Bakk and Kuha, 2018).

Confidence interval coverage was typically similar to the one-step approach.

Generally, standard three-step approaches resulted in attenuated estimates of the

latent class effect with underestimated standard errors, resulting in poor confidence

interval coverage. This result is consistent with the research literature in this area

(Clark and Muthén, 2009; Bakk et al., 2013; Asparouhov and Muthén, 2014). A sur-

prising result however was that a standard three-step approach using partial assignment

produced unbiased estimates and nominal coverage in medium and high entropy sce-

narios. In the low entropy scenarios, partial assignment exhibited similar levels of bias

to the two-step approach, however confidence interval coverage was typically poorer

with partial assignment.

The inclusive approach to bias-correction proposed by Bray et al. (2015) was

adapted here to include a time-to-event variable as a latent class predictor. As in-

tended, the inclusive approach produced estimates further from the null than their

non-inclusive counterpart models and in general improved bias. Proportional and mul-

tiple pseudo-class assignment approaches benefited considerably from the inclusive ap-

proach with no or low bias in all scenarios. Results for partial assignment (which

performed well as a standard approach), however, were worse when combined with the
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inclusive approach. Despite the improvements in bias, confidence interval coverage of

inclusive approaches was too low, notably producing increased Type I errors compared

with standard three-step approaches when simulating under the null hypothesis. An

alternative approach to obtaining standard errors with inclusive approaches, such as

bootstrapping, may help resolve these issues, as has been suggested previously for a

closely related approach (Bakk and Vermunt, 2016).

Despite the superior performance of one-step approaches demonstrated in this study,

one-step approaches have a few disadvantages as explicated by Vermunt (2010). The

main criticism is that the distal outcome variable can influence latent class composition,

possibly affecting the characteristics or even the number of latent classes (Vermunt,

2010; Bakk et al., 2016). Asparouhov and Muthén (2014) give an example of a one-step

approach ‘failing’ where class composition is determined solely by the distal outcome

variable, which in that case was simulated from a two component normal mixture

distribution. The extent to which a time-to-event submodel could influence latent class

composition is not clear and this is a relevant topic for further research. Inclusive

three-step methods may also be subject to the same limitation. When fitting one-step

latent class models we support the recommendations of Larsen (2004) and Asparouhov

and Muthén (2014) in fitting latent class models without the distal outcome variable

in model building and/or sensitivity analyses.

In this study, the performance of the two-step (Bakk and Kuha, 2018) and inclu-

sive bias-correction approaches (Bray et al., 2015) were assessed. A number of other

correction methods have been proposed (Bolck et al., 2004; Vermunt, 2010; Petersen

et al., 2012; Bakk et al., 2013; Lanza et al., 2013), although not all are suitable for mod-

elling with a time-to-event distal outcome. Investigation of the bias-corrected three-step

methods described in Vermunt (2010) and Bakk et al. (2013) with a time-to-event distal

outcome would be a valuable addition to the research described here. However, these

methods are based upon introducing and subsequently correcting classification error

and a key advantage of the two-step approach studied here is that this step is avoided

(Bakk and Kuha, 2018). Moreover, estimates from the two-step approach were previ-

ously found to have better statistical properties than corrected three-step approaches

with a continuous distal outcome (Bakk and Kuha, 2018). An interesting additional

feature of the two-step approach is that different observations can be used for the la-

tent classification and distal outcome models (Xue and Bandeen-Roche, 2004; Bakk

and Kuha, 2018).

In this study, the various models used different hazard functions for the time-to-

event outcome variable and, as identified by a reviewer from the Journal of Structural

Equation Modeling, this feature warrants special attention. To model the distal out-

come in both the standard and inclusive three-step approaches a Cox model was used

where the baseline hazard function is not estimated. This is the most common model
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used in practice and does not disadvantage the standard or inclusive three-step models

in any way, as demonstrated in a supportive analysis in Appendix A. For the inclusive

three-step approaches the hazard function used for the distal outcome model should

not to be confused with that in latent class prediction in Step 1, see Figure 2.1(c).

In this approach, a non-parametric estimate of the unconditional cumulative hazard is

used as a latent class predictor, as recommended for multiple imputation, and notably

in preference to the observed event time or its logarithm (White and Royston, 2009).

For the one and two-step models, piecewise exponential baseline hazard models

were used, see Figure A.1. Setting the partitions of the time-grid for a piecewise

exponential model to the observed event times is equivalent to using a non-parametric

baseline hazard, as in Larsen (2004). A non-parametric baseline hazard model is, in

turn, equivalent to a Cox model (Breslow, 1974). Whilst the piecewise exponential

model can offer improved parameter efficiency (it can also result in bias if the time

grid is poorly specified), see Han et al. (2014), the main purpose here was to simplify

the calculation of standard errors by reducing the number of parameters required to

estimate the baseline hazard function. For the one and two-step models we used Louis’s

method (Louis, 1982) to obtain standard errors, which requires the inversion of the

negative Hessian matrix and is not feasible when the number of parameters is large

(Larsen, 2004). Bootstrapping has been recommended (Hsieh et al., 2006) but fitting

one and two-step models to bootstrap resamples from each simulated data set was

found to be overly computationally burdensome.

In this study, time-to-event data were simulated and analysed using a proportional

hazards model. In practice the suitability of the proportional hazards assumption

should be investigated. Standard residual analyses for time-to-event data (see e.g Col-

lett, 2015) can be used with one-step latent class models by calculating class-specific

fitted values and averaging over classes (Proust-Lima et al., 2014). Other possible op-

tions are to include a time-dependent latent class effect in the one-step model (Muthén

et al., 2009), to estimate separate hazard functions for latent classes (Asparouhov et al.,

2006), or by investigating the tenability of the proportional hazards assumption using

a pseudo class draw approach to the log-log cumulative hazard plot (Larsen, 2004).

In conclusion, the empirical properties of various latent class effect estimates on a

time-to-event distal outcome were compared. One-step models performed very well in

general, whilst two-step approaches performed well when classes were well separated. A

surprising result was that a standard three-step approach using partial assignment also

performed well when classes were well-separated. Although inclusive bias-correction

approaches were generally shown to decrease attenuation of the latent class effect esti-

mate, partial assignment was overall the best performing three-step approach. However,

when the entropy was low this approach was found to be inferior to one-step approaches

and confidence interval coverage was generally worse than the two-step approach.
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For the applied researcher, a one-step approach is recommended where possible,

although excluding the distal outcome variable in model building and/or accompanying

sensitivity analyses is recommended. The suitability of assuming proportional hazards

should also be assessed.
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Chapter 3

A general joint latent class and

time-to-event model

3.1 Introduction

In the previous chapter, a joint model for the simultaneous analysis of latent classes

and a time-to-event outcome variable was detailed. When all parameters are estimated

simultaneously, the model is referred to as a one-step model, and two and three-step

alternatives were also described. A joint model with Bernoulli manifest variables was

introduced by Larsen (2004), and an extensive framework for latent class models with

a time-to-event outcome was set out by Asparouhov et al. (2006). It is possible to fit

joint latent class and time-to-event models using Mplus software (Muthén and Muthén,

2011), and an application using Mplus software can be found in Muthén et al. (2009).

Bakk and Kuha (2018) describe how it is possible to effectively trick Mplus in order

to fit a two-step model (although appropriate standard errors need to be calculated

manually).

Whilst the described models can be fitted using commercial software, to the best

of our knowledge no suitable packages or functions for the freely available open source

software R (R Core Team, 2017) are available. The poLCA package (Linzer and Lewis,

2011) can be used to fit LCR models (see Section 2.2.1) with multinomial manifest

variables. Other, more basic, latent class R packages and functions are described by

Linzer and Lewis (2011). The lcmm() function in the extensive lcmm package (Proust-

Lima et al., 2017) can be used to fit latent class linear mixed models with a mixture

of continuous and categorical longitudinal outcomes. Also in the lcmm package, the

Jointlcmm() function can be used to fit a joint latent class and time-to-event outcome,

with a single continuous longitudinal outcome. As in Jointlcmm(), the term ‘joint’ is
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usually used to describe models for the simultaneous analysis of a time-to-event outcome

and one or more variables measured longitudinally (see Papageorgiou et al., 2019, for

an up-to-date review). Typically, in these longitudinal models, a continuous latent

variable is used as a device for joining a linear mixed model and a time-to-event model.

Note that continuous latent variables and manifest variables measured longitudinally

are not considered in this thesis.

The purpose of this chapter is to: 1) detail a more general joint latent class and time-

to-event model than described in the previous chapter, 2) demonstrate how the general

model can be fitted using the EM algorithm and how standard errors are obtained, and

3) describe and apply the author-written LCSM() function for fitting one and two-step

joint latent class and time-to-event models in R.

The chapter is structured as follows: In Section 3.2, it is shown how continuous

manifest variables can be incorporated into the joint model. In Section 3.3, the time-to-

event submodel described in the previous chapter is extended to include class-specific

covariate effects (i.e. class-by-covariate interactions) and it is shown how a Weibull

submodel can be incorporated. In Section 3.4, the general (conditionally independent)

joint model is introduced and it is then shown how various dependencies can be added

in Section 3.5. In Section 3.6, a model fitting procedure using the EM algorithm is

described, and in Section 3.7 it is shown how standard errors can be obtained. In

Section 3.8, the author-written LCSM() R function is outlined and in Section 3.9 an

analysis of the prostate cancer data set is presented. Discussion is given in Section 3.10.

3.2 Mixed manifest variables

In the previous chapter, only categorical (multinomial) manifest variables were con-

sidered. Normal, Poisson, binomial, gamma and ordinal categorical are some other

possibilities for the conditional distribution of the manifest variables (see Moustaki,

1996; Bartholomew et al., 2011). Only normal and multinomial conditional distribu-

tions for the manifest variables are discussed in this thesis.

As defined previously, for a given subject, Y = (Y1, . . . , YM )ᵀ denotes a vector

of categorical manifest variables, with observed values y = (y1, . . . , yM )ᵀ. Now, let

W = (W1, . . . ,WL)ᵀ denote a vector of continuous manifest variables, for a given

subject, with observed values w = (w1, . . . , wL)ᵀ. The full vector of categorical and

continuous manifest variables is then (Yᵀ,Wᵀ)ᵀ, and (yᵀ,wᵀ)ᵀ is the (M + L) × 1

vector of observed manifest values, for an individual. It is assumed that the conditional

distribution for each of the continuous manifest variables is normal,

fWl|C(wl|j) ∼ N(µlj , σ
2
l ), (3.1)
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l = 1, . . . , L and j = 1, . . . , J so that although each conditional mean, µlj , is class-

specific, the variance, σl, is assumed to be common across classes for each continuous

variable.

3.3 Extending the time-to-event submodel

In the previous chapter, a proportional hazards submodel was presented with a simple

latent class effect, and the baseline hazard was assumed to follow a piecewise exponential

distribution. One possibility to avoid the assumption of proportional hazards for the

latent class effect is to stratify by latent class, so that the hazard function is

α(t|Z = z, C = j) = α0j(t) exp(zᵀβ).

However, covariate effects are still assumed to be proportional across strata, and when

stratifying by class there is no estimated parameter to test whether the time-to-event

prospects differ for the latent classes.

Another possibility to extend the time-to-event submodel is to introduce class-by-

covariate interactions. One way of expressing this type of submodel for an individual

is

α(t|Z = z, C = j) = α0(t) exp(zᵀβj + γj),

where βj is a vector of class-specific log hazard ratios, and γJ = 0 for identifiability.

It should not usually be necessary to fit class-specific effects for all covariates in z.

βpj denotes the log hazard ratio for the effect of covariate p in class j on the baseline

hazard, so that βpj − βpk is the corresponding class-by-covariate interaction effect.

In the previous chapter, a piecewise exponential distribution was assumed for the

baseline hazard function. A fully parametric alternative is the Weibull model, with

hazard function

α(t|Z = z, C = j) = λφtφ−1 exp(zᵀβj + γj), (3.2)

where λ (λ > 0) and φ (φ > 0) are scale and shape parameters, respectively. Assuming a

Weibull distribution for the event times results in a smooth monotonic hazard function

(increasing if φ > 1, decreasing if φ < 0 and constant if φ = 1). Whilst the Weibull

model is less flexible than the piecewise exponential model, it is has three advantages:

1) the resulting hazard function is smooth, 2) only two parameters are required to

estimate the baseline hazard function, and 3) since the Weibull model can be expressed

in both PH and AFT form, the acceleration factor for the pth predictor for class j can

be calculated as αpj = exp(−βpj/φ). For a Weibull submodel, the required density
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function for an individual is given by

fT,∆|Z,C(t, δ|z, j) =
[
λφtφ−1 exp(zᵀβj + γj)

]δ
exp

[
−λtφ exp(zᵀβj + γj)

]
.

3.4 The general joint model

The joint model described in Section 2.2.1 is now extended to incorporate latent class

predictors, mixed manifest variables and the extended time-to-event submodel de-

scribed above. The model is depicted in Figure 3.1. Y, W and T are assumed to

C

Y

T, ∆

Z

X

W

Latent class
predictors

Latent
classes

Categorical
manifest variables

Continuous
manifest variables

Event
time

Time-to-event
covariates

Figure 3.1: Schematic for the conditional independence joint latent class and time-to-
event model.

be conditionally independent given C. Additionally, all of the manifest variables in Y

are assumed to be conditionally independent, and all of the manifest variables in W are

assumed to be conditionally independent, given latent class. As a result this model is

referred to as the conditional independence joint model. The full joint density function

for an individual is

fY,W,T,∆|X,Z(y,w, t, δ|x, z) =

J∑
j=1

P (C = j|X = x)

M∏
m=1

P (Ym = ym|C = j) ×

L∏
l=1

fWl|C(wl|j)fT,∆|Z,C(t, δ|z, j).

(3.3)
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3.5 Conditional dependency

In this section, it is shown how the conditional independence assumption can be relaxed

for different parts of the model. A schematic including some possible dependencies is

shown in Figure 3.2. The dependencies are: (i) between continuous manifest variables,

(ii) between categorical manifest variables, (iii) between a continuous and categorical

manifest variable, (iv) between latent class predictors and continuous manifest vari-

ables, (v) between latent class predictors and categorical manifest variables. It is not

necessary to add a dependency between the latent class predictors and the time-to-event

outcome, as variables in X and Z can be common.

C

Y1

T, ∆

Z

X
YM

W1

WL

(ii)

(i)
(iv)

(v)

(iii)

Figure 3.2: Schematic showing some conditional dependencies in the joint latent class
and time-to-event model.

3.5.1 (i) Dependency between continuous manifest variables

Hunt and Jorgensen (1999) and McLachlan and Peel (2004) describe how dependencies

between continuous manifest variables can be included in latent class models, by intro-

ducing covariance parameters. Equation 3.1 implies a conditional multivariate normal

distribution (MVN) for the continuous manifest variables,

fW|C(w|j) ∼ MVN(µj ,Σ),
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where µj is a vector of class-specific means of length L and Σ is an L × L diagonal

variance-covariance matrix which is common to latent classes. Dependencies can be

introduced by replacing the relevant off-diagonal elements (the zeros) of Σ with co-

variance parameters, σll′ . When it is assumed that the variance-covariance matrix is

common across latent classes, this is known as the homoscedastic case. It is also pos-

sible to introduce class-specific variance-covariance matrices: the heteroscedastic case

(see McLachlan and Peel, 2004, page 81).

3.5.2 (ii) Dependency between categorical manifest variables

One way of incorporating dependencies between two categorical manifest variables is

to combine them into a single composite variable (see e.g. Hunt and Jorgensen, 1999).

Although convenient and simple, Hagenaars (1988) points out that with this approach,

additional interaction effects are introduced which may not be desirable, and instead

proposes an approach to modelling the relationship between categorical variables by

adding latent classes and introducing parameter constraints. Other approaches can be

found in Desantis et al. (2012) and Asparouhov and Muthén (2015). For simplicity, the

approach of Hunt and Jorgensen (1999) is considered here.

3.5.3 (iii) Dependency between continuous and categorical manifest

variables

Hunt and Jorgensen (1999) and McLachlan and Peel (2004) describe a ‘location’ model

with which dependencies are introduced between categorical and continuous variables.

In this model, the distribution of the continuous variables can depend on each category

within each categorical manifest variable. This type of dependency is considered to be

overkill for most statistical models and is not considered further.

3.5.4 (iv) and (v) Dependency between latent class predictors and

manifest variables

In the conditional independence model (Figure 3.1, equation 3.3) it was assumed that

each of the manifest variables were independent of the latent class predictor variables,

after conditioning on latent class, e.g.

P (Ym = g|X = x, C = j) = P (Ym = g|C = j).

Violations of this assumption are known as ‘differential item functioning’ (DIF) (see

e.g Bandeen-Roche et al., 1997; Larsen, 2004). To invoke DIF, class-specific manifest
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category probabilities can be allowed to depend on x, so that for a given subject,

P (Ym = g|X = x) = πmgj(x) =
exp(ιmgj + xᵀρmg)∑Gm
g=1 exp(ιmgj + xᵀρmg)

,

where ρmGm
= 0 and each ιmGmJ = 0 for identifiability. Note that previously the first

element in x was set to 1 but this is not required here. A similar approach could be

applied for continuous variables by allowing each µlj to vary as a function of x.

3.6 Fitting the joint model using the EM algorithm

Larsen (2004) demonstrated how to fit a joint latent class and time-to-event model with

Bernoulli manifest variables and a non-parametric baseline hazard function using the

EM algorithm (Dempster et al., 1977). In this section, an adapted version of the esti-

mation routine detailed in Larsen (2004) is presented, which includes some additional

features: polytomous categorical manifest variables, continuous (conditionally normal)

manifest variables, dependencies between continuous manifest variables, class-specific

time-to-event covariate effects and piecewise exponential or Weibull baseline hazard

functions. This section involves a considerable amount of detail and borrows heavily

from Larsen (2004). For brevity, some of the supportive equations have been placed in

Appendix B.

The EM algorithm (Dempster et al., 1977) can be used for maximising the log-

likelihood in missing data problems. In latent class models, the class indicator is not

observed and therefore fitting a latent class model can be formulated as a missing data

problem and the EM algorithm can be used (see McLachlan and Peel, 2004, for an

informative introduction). Informally, the idea is to specify the log-likelihood as if class

were observed (the complete data log-likelihood), then find the expected complete data

log-likelihood, which effectively amounts to replacing the latent class indicator with its

conditional expectation (the E-step), and then finding the parameter estimates which

maximise the log-likelihood (the M-step). The E and M-steps are re-calculated at each

iteration until convergence. For some parameters, closed-form maximum likelihood

solutions are available in the M-step, whereas for others, maximisation is undertaken

iteratively within the M-step.

In order to incorporate summations over subjects, notation is now changed so that,

for example, y represents the observed N ×M matrix of responses for the categorical

manifest variables, for i = 1, . . . , N subjects on the m = 1, . . . ,M categorical manifest

variables, and yi is the vector of responses for the ith individual. For brevity, random

variables have also been omitted from the subscripts for density and probability mass

functions.
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The full outcome vector of observed data for the ith subject is (xᵀ
i ,y

ᵀ
i ,w

ᵀ
i , z

ᵀ
i , ti, δi)

ᵀ

and the vector of complete data is (xᵀ
i ,y

ᵀ
i ,w

ᵀ
i , z

ᵀ
i , ti, δi, j)

ᵀ. Let θ = (κᵀ,πᵀ,µᵀ,σᵀ,αᵀ ,

βᵀ,γᵀ)ᵀ. As a reminder, κ represents the vector of the effects of the latent class

predictors (see Section 2.2.1) which is now included in the full joint model. The complete

data log-likelihood is then given by

`comp(θ) =
N∑
i=1

log [f(yi,wi, ti, δi, ji|xi, zi)] ,

=
N∑
i=1

log [P (ji|xi)P (yi|ji)f(wi|ji)f(ti, δi|zi, ji)] ,

=

N∑
i=1

J∑
j=1

vij log [P (ji|xi)P (yi|ji)f(wi|ji)f(ti, δi|zi, ji)] ,

where vij is an indicator variable equal to 1 if the ith subject belongs to the jth class

and 0 otherwise.

3.6.1 The E-step

The E-Step at the rth iteration is given by

Q(θ;θ(r)) = Eθ(r) [`comp(θ)|x,y,w, t, δ]. (3.4)

For the initial E-step, θ(0) represents the starting values for the unknown parameters.

The E-step is straightforward as it effectively involves replacing each vij in equation 3.4

with ν
(r)
ij , the expected class value or class-specific posterior probability at the rth

iteration, given by

ν
(r)
ij =

P (ji|xi)P (yi|ji)f(wi|ji)f(ti, δi|ji, zi)∑J
k=1 P (ki|xi)P (yi|ki)f(wi|ki)f(ti, δi|ki, zi)

,

for i = 1, . . . , N ; j = 1, . . . , J .

3.6.2 The M-step

The M-step is more complicated. In the M-Step it is required to find θ(r+1) which

maximises equation 3.4. By taking partial derivatives of equation 3.4, some maximum

likelihood estimators can be obtained:

π
(r+1)
mgj =

∑N
i=1 ν

(r)
ij I{yim = g}∑N
i=1 ν

(r)
ij

,
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µ
(r+1)
lj =

∑N
i=1 ν

(r)
ij wli∑N

i=1 ν
(r)
ij

,

σ
(r+1)
ll′ =

∑N
i=1

∑J
j=1 ν

(r)
ij (wli − µlj)(wl′i − µl′j)∑N
i=1

∑J
j=1 ν

(r)
ij

.

where I{·} denotes an indicator function. However, κ̂ does not have a closed-form

solution. Bandeen-Roche et al. (1997) and Larsen (2004) suggest updating κ̂ using a

single step of a Newton-Raphson algorithm,

κ(r+1) = κ(r) + I−1
κ(r)Fκ(r) ,

where Fκ(r) is the P × 1 vector of first-order partial derivatives (see Appendix B) and

Iκ(r) is the P × P matrix of negative second order derivatives evaluated at κ(r).

In the time-to-event submodel, the various parameter vectors are dependent on each

other. Larsen (2004), describes how one-step of a Newton-Raphson approach can be

used when the baseline hazard is non-parametric. The same approach is adopted here

for piecewise exponential and Weibull baseline hazard models. Firstly, β and γ are

updated using

(β(r+1)ᵀ,γ(r+1)ᵀ)ᵀ = (β(r)ᵀ,γ(r)ᵀ)ᵀ + I−1

β(r),γ(r)

(
F ᵀ
β(r) , F

ᵀ
γ(r)

)ᵀ
, (3.5)

where F denotes the vector of first-order partial derivatives (see Appendix B) and I

denotes the corresponding matrix of second-order partial derivatives, which depend on

the assumed baseline hazard function.

For a piecewise exponential model, the baseline hazard parameters for the S time

intervals, α0 = (α01 . . . α0S)ᵀ, are updated using

α
(r+1)
0s =

N∑
i=1

ψisδi∑
i′∈Rs

(ti′ − as−1)
∑J

j=1 ν
(r)
ij exp(zᵀiβj + γj)

,

where ψis is an indicator variable which equals 1 if the event occurs in the sth interval

for the ith subject, and 0 otherwise. Rs denotes the risk set for the sth time interval

and, as defined previously, as denotes the upper boundary for the sth interval on the

time grid and a0 equals 0.

For a Weibull model, the shape parameter, φ, is included in the Newton-Raphson
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update so that equation 3.5 changes to

(β(r+1)ᵀ,γ(r+1)ᵀ,φ(r+1)ᵀ)ᵀ = (β(r)ᵀ,γ(r)ᵀ,φ(r)ᵀ)ᵀ +

I−1

β(r),γ(r),φ(r)

(
F ᵀ
β(r) , F

ᵀ
γ(r) , F

ᵀ
φ(r)

)ᵀ
.

The scale parameter, λ, is then updated using

λ(r+1) =

∑N
i=1 δi∑N

i=1 t
φ
i

∑J
j=1 ν

(r)
ij exp(zᵀiβj + γj)

.

3.7 Standard errors

A difficulty with the EM algorithm is that it does not automatically yield standard

errors for the parameter estimates (see e.g. McLachlan and Krishnan, 2007). Larsen

(2004) suggested a profile likelihood approach where the baseline hazard parameters

are profiled out as nuisance parameters. However, Hsieh et al. (2006) highlighted

some theoretical difficulties with this approach and instead advocated non-parametric

bootstrapping. Louis’s method (Louis, 1982) provides a way of obtaining the observed

Fisher information when the EM algorithm is applied, which is suitable if the number

of baseline hazard parameters is relatively small.

3.7.1 Louis’s method

Temporarily departing from the notation used previously in this chapter for simplicity,

let x represent the complete data (i.e. if classes were known) and y represent the

observed data. Using Louis’s method, the observed data information matrix, I(θ; y),

can be expressed as

I(θ; y) = Icomp(θ; y)− Cov [Fcomp(x;θ)|y] , (3.6)

where Icomp(θ; y) is the expected negative second derivative of the complete data log-

likelihood (equation 3.4) and Fcomp(x;θ) is the vector of first derivatives (score statis-

tics) of the complete data log likelihood. For the joint model described, using Louis’s

method is extremely tedious as all first and second-order partial derivatives of the ex-

pected complete data log-likelihood, as well as the covariances of all of the first-order

partial derivatives, are required. Louis’s method was used to find the observed data

information matrix for the one and two-step models used in the simulation study in

the previous chapter and the requisite calculations are provided in Appendix B.

Evaluating equation 3.6 at the maximum likelihood estimates and taking the inverse,
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i.e. I−1(θ̂; y), gives the required variance-covariance matrix, Var(θ̂). Standard errors

can then be obtained by taking the square-root of the diagonal of Var(θ̂), and Wald-type

confidence intervals can be constructed (see e.g. Pawitan, 2001).

3.7.2 The two-step approach

The two-step approach proposed by Bakk and Kuha (2018) was discussed in Sec-

tion 2.2.2, and in this approach the parameter vector is partitioned into two, where

θ = (θᵀ1,θ
ᵀ
2)ᵀ, and both parts are estimated separately. For the piecewise exponential

model presented in this chapter, θ1 = (κᵀ,πᵀ,µᵀ,σᵀ)ᵀ and θ2 = (αᵀ,βᵀ,γᵀ)ᵀ. Clearly,

uncertainty in the estimates will be too low if the standard errors from the two separate

steps are used. Xue and Bandeen-Roche (2004) and Bakk and Kuha (2018) show how

the observed data information matrix can be obtained for two-step estimates. Let

I(θ; y) =

I11 I12

Iᵀ12 I22

 ,
where the partition corresponds to θ1 and θ2. The variance-covariance matrix of the

step two estimates, θ̃2, is given by

V = I−1
22 + I−1

22 I
ᵀ
12Σ11I12I

−1
22 ,

where Σ11 is the variance-covariance matrix of the step one estimates, θ̃1. Standard

errors can then be obtained as described above.

3.8 The LCSM() R function

The author-written LCSM() R is now described. The R code can be downloaded from

https://github.com/dlythg/LCSM.

3.8.1 Description

Estimates joint latent-class and time-to-event models.
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3.8.2 Usage

LCSM(x = NULL, y = NULL, y.var.vec = NULL, w = NULL, z = NULL, z2 = NULL,

t = NULL, delta = NULL, nclass = 2, start.list = NULL, hist = FALSE,

tol = 1e-5, nreps = 1, maxiter = 1000, printiter = TRUE, haz.method =

"nonpara", part = NULL, ind.mat = NULL, t.mat = NULL, cov.type =

"unstructured", custom.zeros = NULL, two.step = FALSE)

3.8.3 Arguments

x A design matrix with N rows containing the latent class predic-

tors. If not specified then only the class prevalences are estimated

(logit scale).

y Optional matrix of categorical variables with N rows. Only 0s

and 1s are allowed. For Bernoulli manifest variables (i.e two cat-

egories), x should have 2×M columns. For multinomial manifest

variables, the number of columns should be equal to the total

number of possible categories and y.var.vec should be specified.

At least one of y and w must be provided.

y.var.vec A numeric vector with length equal to the total number of

columns in y, e.g. y.var.vec = c(1,1,2,2,2) identifies that

the first categorical manifest variable has two categories and the

second has three.

w Optional matrix with N rows containing the values for the con-

tinuous manifest variables. At least one of y and w must be

provided.

z A design matrix with N rows containing the values for the time-

to-event covariates.

z2 A design matrix containing the columns of z which will be inter-

acted with latent class.

t An N -length vector of event times. If not specified then there is

no time-to-event submodel.
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delta An N -length vector of censoring indicators (1 = event, 0 = right-

censored).

nclass Number of latent classes with default value of 2. If t is specified

then current functionality only permits a maximum of two classes.

start.list An optional list containing parameter starting values. If not spec-

ified then random starting values are generated.

hist Logical for whether the results of each iteration should be stored.

Default value is FALSE.

tol A tolerance value for determining when the model has converged

according to the observed data log-likelihood. Default value is

1e-5.

nreps Number of times the model is re-fitted with different sets of start-

ing values. Default value is 1.

maxiter Maximum number of iterations for the estimation process. De-

fault value is 1000.

printiter Logical for whether the iteration number should be printed. De-

fault value is TRUE.

haz.method A character string specifying the type of baseline hazard func-

tion. Default value is "nonpara" which estimates a parameter for

each observed survival time as in Larsen (2004). Other options

are "PEM" and "Weibull" for piecewise exponential and Weibull

models, respectively. If "PEM" is specified then part, ind.mat

and t.mat are required.

part A numeric vector of time partitions for a piecewise exponential

model.

ind.mat A matrix with N rows and (length(part) - 1) columns speci-

fying each subject’s survival status in each time period.

t.mat A matrix with N rows and (length(part) - 1) columns speci-

fying the amount of time contributed by each subject within each

time period.
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cov.type A character string specifying the type of covariance matrix for the

continuous manifest variables. Default value is "localind" for

conditionally independent continuous manifest variables. Other

options are "unstructured" and "custom". If "custom" then

argument custom.zeros must be specified. All covariance matrix

types are assumed to be homogenous across latent classes.

custom.zeros Optional numeric vector with length equal to the number of ele-

ments in the lower triangle of the covariance matrix for the con-

tinuous manifest variables (excluding the diagonal). If "custom"

is used then the custom.zeros argument is used to identify which

covariance parameters should be held at zero.

two.step Logical for whether parameter estimates should be obtained using

the two-step approach of Bakk and Kuha (2018). Default value

is FALSE, i.e. parameters are estimated in one step.

3.8.4 Value

LCSM() currently returns many different values including all of the input arguments

and many of the intermediate calculations. The most important values returned are:

params A matrix of parameter estimates.

post A N × J matrix of posterior probabilities.

loglik The final observed data log-likelihood.

AIC The final AIC.

BIC The final BIC.

iterations The number of iterations required for the final model.

If hist == TRUE, then the return values include results obtained from every iteration

of the final chosen model.

3.9 Analysis of the prostate cancer data set

A number of joint models are now fitted to the prostate cancer data set described in

Section 1.6.3, as an illustrative example. The data set is from an RCT in which three
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different doses of estrogen (diethylstilbestrol) were compared with placebo in patients

with advanced (Stage III and IV) prostate cancer (Bailar III et al., 1970; Byar and

Corle, 1977).

The purpose of the analysis is to identify underlying subgroups in the data, based

on pre-trial covariates, and to establish their effect on survival time. This data set was

analysed previously (Jorgensen and Hunt, 1996; Hunt and Jorgensen, 1999) using latent

class models with conditional multinomial and normal manifest variables and there was

found to be evidence of two underlying subgroups. However, neither survival status nor

survival time were incorporated into the statistical modelling. Instead, subjects were

modally assigned to classes, and simple tabulations against outcome and survival time

(≤ 48 months, > 48 months) were undertaken.

3.9.1 Data handling

The data set contains 506 observations, although only complete cases were considered

in this analysis, leaving 474 patients. Survival times were recorded in months, and

although the data set includes multiple causes of death, these were consolidated into

a single all-cause mortality variable. Around 30% of survival times are right-censored.

The pre-trial covariates considered for the analysis are displayed in Table 3.3.

As in the previous analyses of this data set mentioned above, the placebo and

0.2 mg estrogen were combined (Untreated) and the 1.0 and 5.0 mg estrogen treat-

ments (Treated) were combined on account of their survival curves being so similar.

The variables acid phosphatase (AP) and tumour size (SZ ) were log and square-root

transformed respectively to make their distributions more symmetrical, as in Hunt

and Jorgensen (1999). Physical performance rating (PF ) was consolidated from four

categories into two (‘Normal’, ‘Not normal’) to avoid sparse cell counts.

The tumour stage variable is worthy of special attention. Stage III patients were de-

fined as those patients with local extension outside the prostate on rectal examination,

AP ≤ 1 (King-Armstrong units - KAU); Stage IV patients were those with either AP

> 1 and/or distant metastases. The composite variable SG (Index of tumour stage and

histologic grade) is a score from 5 to 15 with three components: 1) tumour stage, 2)

primary histology pattern and 3) secondary histology pattern (Gleason and Mellinger,

1974). Tumour stages III and IV contribute scores of 3 and 5 respectively, and both

histology patterns are scored from 1 to 5 based on increasing histological malignancy.

In this analysis, it was deliberately intended to avoid using clinically defined tumour

stage as part of one of the manifest variables, so that the latent classes identified in

this analysis could be compared with the clinically defined tumour stage. As a re-

sult, the stage component was subtracted from SG to create a new score variable, HP,

representing the composite primary and secondary histology pattern scores only.
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Variable Abbreviation Levels

Treatment Trt Treated, Untreated
Age (years) Age -
Weight (kg) Wt -
Physical performance rating (“Confined to bed”) PF Normal, Not normal
Cardiovascular disease history HX No, Yes
Systolic blood pressure (kPa) SBP -
Diastolic blood pressure (kPa) DBP -
Serum haemoglobin (g/100 ml) HG -
Size of primary tumour (mm) SZ -
Index of tumour stage and histologic grade SG -
Serum prostatic acid phosphatase (KAU) AP -
Bone metastases BM No, Yes
Histology pattern score HP -

Table 3.3: Pre-trial variables in the prostate cancer data set. kPa: Kilopascals, KAU:
King-Armstrong Units.

3.9.2 Model selection

The top section in Table 3.4 gives the results of a preliminary analysis of the number

of latent classes required for a simple conditional independence latent class model with

all pre-trial variables included as manifest variables and ignoring the time-to-event

outcome. The AIC and BIC statistics suggest that a two-class model is sufficient.

Type Classes AIC BIC

Starting structure 2 9721.58 9829.77
3 9774.76 9928.72
4 9926.80 10126.54

Final structure 2 9621.16 9729.35
3 9641.66 9791.47
4 9724.75 9916.16

Table 3.4: Model fit statistics for latent class models with varying numbers of latent
classes according to two different model structures.

Given the possible complexity of the full joint model, a pragmatic approach to

model selection was undertaken, first building the latent class submodel, then the

latent class regression submodel and finally the time-to-event submodel. In each stage

of model building, variables and dependencies were sequentially introduced or removed,

as required, retaining features which improved Akaike’s Information Criterion (AIC).

Model selection was undertaken with a non-parametric baseline hazard for the survival

submodel, as in Larsen (2004), to minimise assumptions. The model selection process

was as follows:

1. Begin with a local independence model with all variables as manifest variables.
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2. Introduce dependencies between categorical manifest variables by combining fac-

tors and between continuous variables by adding covariance parameters.

3. Remove any manifest variables which do not discriminate between classes.

4. Re-introduce those variables removed in the previous step as latent class predic-

tors.

5. Introduce dependencies between latent class predictors and manifest variables as

required.

6. Introduce non-manifest variables and interactions into the survival submodel.

7. Use the estimated non-parametric baseline hazard function from the best model

to select candidate time grids for a piecewise exponential baseline hazard model,

and fit the final piecewise exponential model.

All confidence intervals (CIs) were constructed at the 95% level from standard errors

(SEs) obtained from a non-parametric bootstrap (Carpenter and Bithell, 2000) with

500 bootstrap resamples.

3.9.3 Results

The starting model (Model 1) and final model (Model 14) are depicted in Figures 3.4

and 3.5, respectively. All models fitted as part of the model selection process are

detailed in Table 3.5. For a detailed explanation of each of the model selection steps

see Appendix B.

In Model 2, where all continuous manifest variables were assumed to be conditionally

independent (Figure 3.3), the fit of the curves to Age looked to be unsatisfactory and

the inclusion of HP as a continuous variable appeared to be questionable. Age was not

included as a manifest variable in the final model.

An estimated non-parametric baseline hazard was used to guide the choice of time

grid for a piecewise exponential baseline hazard, and one time interval (i.e. an expo-

nential model) was found to be sufficient (see Figure 3.6 and Table 3.5).

As sensitivity analyses, models excluding the time-to-event submodel were fitted

using the final model dependence structure with varying numbers of classes (see Ta-

ble 3.4, bottom section), and still a two-class solution was found to be suitable. The

parameter estimates were almost completely unaffected by the removal of the time-to-

event submodel, suggesting that class composition was not influenced by the survival

submodel (see Table B.1).

As an additional sensitivity analysis, an exponential model using modal assignment

(see Section 2.2.3) from the final joint model was also fitted, and the parameter es-

timates were the same to two decimal places as the time-to-event submodel from the
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Figure 3.3: Histograms of continuous variables overlaid with fitted curves for latent
classes from Model 2 (continuous variables assumed to be conditionally independent).
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Figure 3.4: Model 1 - Starting model assuming conditional independence between man-
ifest variables and with no latent class predictor variables.
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Figure 3.5: Model 14 - Final selected model with Treatment, Age and a Treatment-
by-class interaction included in the time-to-event submodel. Conditional dependencies
are identified with two-way arrows, and the treatment-by-class interaction is indicated
by a dashed arrow.
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Model no. Base haz. Cat. manifest vars, Y1 Cont. manifest vars, Y2 LC predictors, x Dependencies Survival predictors # time periods # params ∆ AICRef ∆ BICRef

Steps 1 and 2: Start with a Local Independence model and add dependencies between manifest variables
1 [Ref.] Non-para. BM,HX,PF logAP,HP,HG,sqrtSZ,Age,Wt,SBP,DBP - - Trt 337 509 0 0

2 - + HX\PF 509 -61.97 -61.97
3 - + SBP\DBP 510 -299.37 -295.21
4 - + HP\sqrtSZ 511 -326.31 -317.99
5 - + HG\Wt 512 -347.97 -335.49
6 - + logAP\HP 513 -355.75 -339.1
7 - + Age\SBP 514 -365.57 -344.76

Steps 3, 4 and 5: Remove non-discriminatory manifest variables (Age, SBP and DBP) and add latent class predictors (and dependencies) as required
8 [Ref.] Non-para. BM,HX,PF logAP,HP,HG,sqrtSZ,Wt - HX\PF,logAP\HP,HP\sqrtSZ Trt 337 502 0 0

9 Age 503 2.05 6.22
10 SBP 503 2.14 6.31
11 DBP 503 -0.06 4.1

Step 6: Add non-manifest variables and interactions to the survival model
8 [Ref.] Non-para. BM,HX,PF logAP,HP,HG,sqrtSZ,Wt - HX\PF,logAP\HP,HP\sqrtSZ Trt 337 502 0 0

12 - + Age 503 -11.47 -7.3
13 - + LC*Trt 504 -15.98 -7.65

Step 7: Compare time grids for PE models
14 [Ref.] PE BM,HX,PF logAP,HP,HG,sqrtSZ,Wt - HX\PF,logAP\HP,HP\sqrtSZ Trt,Age,LC*Trt 1 31 0 0

15 - 2 31 -1.79 2.38
16 - 3 31 1.82 10.15

Table 3.5: Model selection process. Final selected model is Model 14. LC: latent class. ‘\’ indicates a dependency between variables after
conditioning on latent class.
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final joint model. The entropy value is very high at 0.93 and therefore this result is

not surprising. It was shown in Chapter 2 that latent class effects on a time-to-event

outcome tend to differ most when the entropy is low.
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Figure 3.6: Estimated cumulative baseline hazard from a non-parametric baseline haz-
ard model (Model 6). The fitted regression (grey) line supports the use of an exponential
hazard model.

3.9.4 Interpretation of the latent classes

The estimates, SEs and CIs for the parameters from the final model are given in Ta-

ble 3.6. Firstly note that κ̂2, following inverse logit transformation, corresponds to a

prevalence of 20% (95% CI: 16%, 25%) for Class 2, and hence 80% for Class 1. The

posterior probabilities for Class 2 are presented in Figure 3.7 and demonstrate clear

class separation with most patients having very high or very low posterior probabilities

of belonging to Class 2. This is reflected in the very high entropy value of 0.93 (see

Section 2.2.4).

Next, the estimated survival curves are considered, Figure 3.8(b). Since continuous

variable Age was included in the time-to-event submodel, these curves are predictions

based on the mean age of 74 years. Clearly the prognosis for Class 2 patients is consid-

erably poorer than those in Class 1. Whilst treated patients fair better than untreated

patients, the treatment effect differs drastically between the two classes. The corre-

sponding hazard ratios (HRs), treated versus untreated, are 0.93 and 0.50 for classes
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Parameter Variable Estimate SE Lower Upper Z-value p-value Type

κ̂2 - -1.40 0.15 -1.69 -1.11 9.57 <0.0001 logit probability

π̂11 BM 0.05 0.01 0.02 0.08 3.73 0.0002 probability
π̂21 CVD\PF 0.02 0.01 0.00 0.03 2.46 0.014
π̂31 0.41 0.03 0.36 0.46 15.9 <0.0001
π̂41 0.05 0.01 0.03 0.08 4.64 <0.0001
π̂12 BM 0.62 0.06 0.49 0.74 9.61 <0.0001
π̂22 CVD\PF 0.14 0.04 0.06 0.21 3.61 0.0003
π̂32 0.26 0.05 0.16 0.35 5.18 <0.0001
π̂42 0.08 0.03 0.01 0.14 2.43 0.0150

β̂1 Trt -0.07 0.13 -0.33 0.19 0.53 0.5932 log hazard ratio

β̂2 Age 0.23 0.06 0.1 0.35 3.64 0.0003
γ̂2 Class 1.09 0.18 0.74 1.44 6.11 <0.0001

β̂3 Trt*Class -0.62 0.27 -1.14 -0.1 2.33 0.0199
α̂ - 0.02 0.00 0.01 0.02 11.98 <0.0001 hazard rate

µ̂11 logAP -0.32 0.05 -0.42 -0.21 5.93 <0.00010 mean
µ̂21 HP 6.26 0.08 6.11 6.42 79.17 <0.0001
µ̂31 HG 13.71 0.1 13.52 13.9 140.18 <0.0001
µ̂41 sqrtSZ 3.13 0.08 2.97 3.3 37.72 <0.0001
µ̂51 Wt 100.26 9.57 81.51 119.02 10.48 <0.0001
µ̂12 logAP 3.01 0.22 2.58 3.44 13.61 <0.0001
µ̂22 HP 7.22 0.17 6.88 7.56 41.93 <0.0001
µ̂32 HG 12.24 0.26 11.74 12.74 47.69 <0.0001
µ̂42 sqrtSZ 4.69 0.16 4.38 4.99 30.06 <0.0001
µ̂52 Wt 94.07 17.85 59.1 129.05 5.27 <0.0001
σ̂2

1 logAP 0.91 0.13 0.65 1.17 6.78 <0.0001 variance
σ̂2

2 HP 2.06 0.18 1.7 2.41 11.31 <0.0001
σ̂2

3 HG 3.41 0.24 2.94 3.89 14 <0.0001
σ̂2

4 sqrtSZ 2.08 0.15 1.78 2.38 13.49 <0.0001
σ̂2

5 Wt 171.64 0.07 171.49 171.78 2296.76 <0.0001
σ̂12 logAP\HP 0.16 0.09 -0.02 0.34 1.69 0.0908 covariance
σ̂24 HP\sqrtSZ 0.50 0.12 0.26 0.74 4.08 <0.0001

Table 3.6: Final model - Model 14 parameter estimates and confidence intervals.

1 and 2 respectively, implying 7% and 50% reductions in hazard with treatment. The

treatment-by-class interaction effect, β̂3, was highly statistically significant (Table 3.6,

p = 0.0199).

Table 3.7 gives the class-conditional probabilities of bone metastases and the com-

posite variable of history of CVD and physical function for the two latent classes.

Clearly patients in Class 1 represent a healthier subpopulation with low probabilities

of bone metastases, more normal physical function and a lower probability of having a

history of CVD. In Class 2, around 62% of patients have bone metastases and there is

a higher prevalence of abnormal physical function.

Table 3.9 also demonstrates that Class 2 represents a less healthy subpopula-

tion, with higher logAP (an indicator of metastasis), worse histology, lower serum

haemoglobin levels and larger primary tumours (approximately 10 mm versus 22 mm).

Interestingly Class 2 also appear to have lower mean weight by around 6 kg.

In Table 3.8 the lower diagonal of the estimated covariance matrix (transformed
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Figure 3.7: Posterior probabilities from the final joint model with exponential baseline
hazard (Model 14).

Bone metastases History of CVD/Physical function
No Yes No/Normal No,Not normal Yes/Normal Yes,Not normal

Class 1 0.95 0.05 0.52 0.02 0.41 0.05
Class 2 0.38 0.62 0.53 0.14 0.26 0.08

Table 3.7: Estimated class conditional probabilities for bone metastases (No or Yes)
and the combined variable of history of cardiovascular disease (No or Yes) and physical
function (Normal or Not normal)

into a correlation matrix) is shown, with estimated class conditional correlations of

0.24 between sqrtSZ and HP, and 0.11 between HP and logAP.

3.9.5 Latent class versus tumour stage

It is interesting to compare clinically defined tumour stages with the data (and model)

defined latent classes. This data set comprises patients in stages III (42%) and IV

(58%) whilst Model 14 indicates an 80-20% split between classes. Figure 3.9 clearly

demonstrates that whilst Stage III patients belong to Class 1, most Stage IV patients

are also in Class 1. Class 2 therefore represents a subset of Stage IV patients. For a

comparison, a Cox model was fitted with Trt, Age, Stage and a Trt*Stage interaction.

The estimated HRs, treated versus untreated, were 0.94 and 0.76 corresponding to a 6%

and 24% reduction in the hazard for treated patients in stages III and IV respectively.
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logAP HP HG sqrtSZ Wt

logAP 1.00
HP 0.11 1.00
HG 0.00 0.00 1.00
sqrtSZ 0.00 0.24 0.00 1.00
Wt 0.00 0.00 0.00 0.00 1.00

Table 3.8: Lower diagonal of estimated correlations obtained from the variance-
covariance matrix for the continuous manifest variables from Model 14.

logAP HP HG sqrtSZ Wt

Class 1 -0.32 6.26 13.71 3.13 100.24
Class2 3.01 7.22 12.24 4.69 94.10

Table 3.9: Estimated class conditional means for the continuous variables
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Figure 3.8: From left to right: a) Kaplan-Meier curves for tumour stage and treatment, b) Fitted survival curves from a joint model with a
non-parametric baseline hazard (Model 6), c) Fitted survival curves from a joint model with an exponential baseline hazard (Model 14).
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Not only are these smaller than those observed for the latent classes, but also the

Trt*Stage interaction was not statistically significant in this model (p = 0.3172) and

inclusion of the interaction term did not improve the AIC. As a result, the conclusion is

that there no evidence of a differential treatment effect across tumour stages, however

there seemingly is for the latent classes.
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Figure 3.9: Posterior probabilities for Class 2 by tumour stage. The estimated preva-
lence for Class 2 is 20%. 42% of patients are in Stage III and 58% in Stage IV.

3.9.6 Model fit

Table 3.10 shows that the expected frequencies for the categorical manifest variables

are very close to the observed frequencies, and the corresponding Pearson residuals are

small, indicating that the model is a good fit to these variables.

Residuals for the continuous manifest variables were obtained from individual

and class-specific fitted values averaged over classes (Proust-Lima et al. 2012), i.e.

ŷil =
∑J

j=1 ν̂ij ŷijl. The Q-Q plots depicted in Figure 3.10 indicated that the model is

generally a good fit to these data.

Survival residuals were also obtained using class-average individual fitted values.

Figure 3.11(a) depicts the Cox-Snell residuals for the final model, which closely follow

the straight line through the origin, indicating that the residuals are exponentially

distributed as required and that the model fit is satisfactory (see e.g. Collett, 2015).

The deviance residuals, Figure 3.11(b), exhibit a downward trend against the linear

predictor indicating that the model may be overestimating the hazard of death at high
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values of the linear predictor and underestimating the hazard at low values of the linear

predictor. Note that this same residual pattern was observed in a separate analysis using

all variables and two-way interactions in a Cox model (not shown). Missing covariates,

time-dependent effects or non-linear associations may be responsible, but these were

not investigated further.

3.10 Discussion

In this chapter, a general joint latent class and time-to-event model was introduced and

the LCSM() R function to fit the model was described. Although it is possible to fit the

general model using commercial software, the LCSM() function makes it possible to fit

these models using open source software R (R Core Team, 2017). An adapted version

of the estimation routine detailed in Larsen (2004) was presented, including some ad-

ditional features: polytomous categorical manifest variables, continuous (conditionally

normal) manifest variables, dependencies between continuous manifest variables, class-

specific time-to-event covariate effects and piecewise exponential or Weibull baseline

hazard functions. Various joint models were fitted to a data set from an RCT, in which

two latent classes were identified that exhibited a heterogeneous treatment effect. In-

terestingly, the identified classes differed from clinically-defined tumour stages, and the

use of tumour stage in a time-to-event model would not have led us to believe that

there was a heterogenerous treatment effect.

A limitation of the presented model was that conditional variances for continu-

ous manifest variables were constrained to be equal across classes, which can impact

the latent classes identified. This constraint was imposed for simplicity. In the clini-

cal example, residual diagnostics for the continuous manifest variables suggested this

homogeneity assumption was reasonable in this case. Additionally, currently time-to-

event covariate and class effects are limited to be linear and independent of time in the

current version of the LCSM() function.

In the clinical example, it was very clear post-hoc that an exponential time-to-event

submodel was suitable and that any a priori time grid would be acceptable. However,

this is likely to be the exception rather than the rule. A disadvantage of assuming a

piecewise exponential baseline hazard is that estimates can be sensitive to the time grid

selected, and as a result it has been argued that the time grid should be specified in

advance. A discussion of this issue is provided by Han et al. (2014).

In the clinical example, a pragmatic approach was taken to model building based on

forward selection. As a result it is possible that alternative versions of the model may

provide a superior fit. A single categorical latent variable was assumed. More complex

models with additional categorical and/or continuous latent variables, as accommo-

dated in the framework of Asparouhov et al. (2006), could provide improvements on
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Figure 3.10: Raw residuals for the continuous variables in the final model (Model 14)
with overlaid normal density curves (left) and Q-Q plots (right).
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Figure 3.11: Cox-Snell and Deviance residuals for the survival submodel of the final
model (Model 14).
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Bone metastases History of CVD/Physical function
No Yes No,Normal No,Not normal Yes,Normal Yes,Not normal Freq. Expected Resid.

1 0 1 0 0 0 210 208.25 0.12
0 1 1 0 0 0 39 40.75 -0.27
1 0 0 1 0 0 8 10.73 -0.83
0 1 0 1 0 0 11 8.27 0.95
1 0 0 0 1 0 160 155.46 0.36
0 1 0 0 1 0 18 22.54 -0.96
1 0 0 0 0 1 19 22.56 -0.75
0 1 0 0 0 1 9 5.44 1.53

Table 3.10: Observed and expected frequencies for the categorical manifest variables from the final model (Model 14).
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the final model selected here. However, the model diagnostics suggested that in general

the model was a very good fit to the data.

Joint latent class and time-to-event models are a useful exploratory tool which can

be used to identify underlying subgroups of observations and estimate their effect on a

time-to-event outcome variable. The author-written R function LCSM() can be used to

fit a variety of such models.
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Chapter 4

Multidimensional scaling

4.1 Introduction

In the previous chapters, latent class methods were used to assess the relationship

between underlying subgroups and a time-to-event outcome variable. The focus of the

research is now shifted to a different type of latent variable, the latent dimension, which

is associated with MDS. The distinction between latent classes and latent dimensions

was given in Chapter 1.

MDS encompasses a broad range of methods for finding a configuration of points in

low-dimensional space using ‘proximity’ data. Informative texts on MDS are Mardia

et al. (1979); Cox and Cox (2000); Borg and Groenen (2003); Buja et al. (2008) and

Borg et al. (2012). Each point in an MDS configuration represents an observation

and the distance between two points, for a good solution, is representative of their

proximity, so that ‘dissimilar’ observations appear far apart and similar observations

close together. A plot of an MDS configuration can be an effective visualisation tool

for multidimensional data which can lead to unique insights into the data. The use of

MDS as a visualisation tool is developed in Chapters 5 and 7. MDS can also be used

as a dimension reduction tool, analogous to principal components analysis. MDS is

utilised as a dimension reduction tool in Chapter 6. As a result of its utility, MDS has

been applied in many scientific disciplines including medicine (e.g. Fuller et al., 2002),

genomics (e.g. Freije et al., 2004), marketing (e.g. Carroll and Green, 1997; Cha et al.,

2009), psychometrics (e.g. Takane, 2006) and mining (e.g. Jamróz, 2014).

The proximity between two observations can be obtained using one of many possible

measures (see e.g. Cox and Cox, 2000). A proximity measure can measure either

similarity or dissimilarity, and similarities can be transformed into dissimilarities and

vice-versa. Dissimilarities are more intuitive and will be considered in this thesis.

Section 4.4 gives an overview of some key dissimilarity measures.
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In MDS, a configuration of points is sought such that the inter-point distances are

representative of the dissimilarities between observations. There are two main types

of MDS: metric and non-metric. In metric MDS, the actual dissimilarities are used

whereas in non-metric scaling, the dissimilarities are replaced by their ranks. Non-

metric scaling is effectively an ordinal version of MDS. In this thesis, metric scaling is

used almost exclusively and some details are now reviewed.

4.2 Classical scaling

One type of metric scaling is classical scaling, also known as Principal Coordinates

Analysis (Gower, 1966). Classical scaling, is a non-iterative method for finding an MDS

configuration based on matrix decomposition. Usually explained in terms of a map, if

the distances between, say, countries are known, then classical scaling can be used to

recover the coordinates of the countries. There is no unique solution, however, since

the distances between countries are unaffected by translation, rotation and reflection

of the coordinates.

Generally, classical scaling seeks to recover the coordinates, X, of N points in P

dimensional space from the distances between points. The full mathematical details of

classical scaling can be found in Mardia et al. (1979), Cox and Cox (2000) and Borg

and Groenen (2003), and only the main results are presented here. A is a matrix of

squared Euclidean distances, which is doubly centred to produce B. B is symmetric,

positive semi-definite with rank P and hence has P positive eigenvalues and N − P
zero eigenvalues. B can be expressed as

B = XXᵀ, (4.1)

and also in terms of its spectral decomposition

B = VΛVᵀ,

where Λ = diag(λ1, λ2, . . . , λN ), the diagonal matrix of eigenvalues of B, and V =

[v1, . . . ,vN ], the corresponding matrix of normalised eigenvectors. Conventionally, the

eigenvalues are sorted in descending order with their corresponding eigenvectors. Ex-

cluding any non-zero eigenvalues,

B = V+Λ+Vᵀ
+, (4.2)

where Λ+ = diag(λ1, . . . , λP ) and V+ = [v1, . . . ,vP ] . Equation 4.2 can then be rewrit-
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ten as

B =
[
V+Λ

1/2
+

] [
V+Λ

1/2
+

]ᵀ
, (4.3)

where Λ
1/2
+ = diag(λ

1/2
1 , . . . , λ

1/2
P ). Comparing equations 4.1 and 4.3 it can be seen

that

X = V+Λ
1/2
+ ,

so that X has been recovered. In practice, the goal of classical scaling is not to com-

pletely recover X. Instead, A is based on dissimilarities, not distances, and the aim is

to select the S largest eigenvalues in order to find an S-dimensional configuration for

which the distances between points approximate these dissimilarities. We refer to this

solution as Z. If S is small, say 2 or 3, then Z can be plotted and interpreted, making

MDS an effective visualisation tool.

The classical scaling solution can be shown to minimise the ‘Strain’ (see Buja et al.,

2008),

Strain =

(∑N
i,j(Bij − 〈zi, zj〉)2∑N

i,j B2
ij

)1/2

, (4.4)

where zi is the vector of coordinates for the ith observation, and 〈·〉 denotes the inner

product. A measure of the proportion of variation explained by the chosen solution is

given by ∑S
i=1 λi∑N−1
i=1 λi

, (4.5)

where the summation is only up to N−1 because there is always one eigenvalue equal to

zero. If the dissimilarities are not calculated using the Euclidean distance, then B may

not be positive semi-definite and some eigenvalues will be negative. In this case, |λi|
can replace λi in the denominator of equation 4.5 or the summation in the denominator

can be changed to include only the positive eigenvalues (Cox and Cox, 2000).

If the data matrix X is centred and the Euclidean distance is used to calculate

dissimilarities, then the classical scaling and principal component solutions are identical

(see e.g. Cox and Cox, 2000, page 43).

4.2.1 Gower’s add-a-point method

Gower (1968) showed how the MDS coordinates of a test observation can be determined

in classical scaling. The MDS coordinates for the test (N+1th) observation are found

using

ẑN+1 =
1

2
(ZᵀZ)−1Zᵀ(b− δ2

N+1),

where b = (b11, . . . , bNN )ᵀ, the diagonal elements of B, which represent the squared

distance between each point and the centroid of Z, and δ2
N+1 = (δ2

N+1,1, . . . , δ
2
N+1,N )ᵀ,
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the N×1 vector of squared dissimilarities between the test observation and the original

training observations. This method is used in Chapters 6 and 7 for the purposes of

prediction.

4.3 Other types of metric scaling

Other metric MDS methods such as least-squares scaling and Sammon mapping (Sam-

mon, 1969), use iterative techniques to minimise a loss function. ‘Stress’ is a loss func-

tion based on the squared errors between the dissimilarity and the distance between

points in the MDS configuration, i.e.

Stress =

N∑
i,j

(δij − dij)2.

If the matrix of dissimilarities is symmetric, then it is sufficient to half the sum (or

sum over only the lower diagonal). For an MDS configuration in Euclidean space,

dij = ‖zi−zj‖2, where ‖·‖2 is the Euclidean norm. Many variations of Stress exist (see

e.g. Borg and Groenen, 2003, Chapter 11). For example, Sammon (1969) introduced a

weighted version of Stress in which smaller dissimilarities contribute a greater weight

StressSammon =

N∑
i,j

δ−1
ij (δij − dij)2.

Generally, the value of the Stress depends on the scale of the dissimilarities, so that a

change in the units of measurement will give a different absolute value. For this reason,

a standardised version is sometimes used, and is given by

StressStd =

∑
i,j(δij − dij)2∑

i,j d
2
ij

.

Modern software packages for MDS, such as the R package SMACOF (de Leeuw and

Mair, 2009), use ‘iterative majorization’ to minimise Stress. Stress is a complicated loss

function which may not be differentiable everywhere and may contain multiple local

minima. Iterative majorization utilises a simpler surrogate function at each iteration

which approximates the Stress function and is easier to optimise. To avoid accepting

a locally minimum solution, multiple re-runs with different sets of starting values are

required. For comprehensive discussions of iterative majorization for MDS see Borg

and Groenen (2003, Chapter 8) and de Leeuw and Mair (2009).
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4.4 Dissimilarity

For i = 1, . . . , N observations, P features or variables are measured, and the dissimilar-

ity between the ith and jth observations is given by δij . Two important properties of

dissimilarities are: 1) the dissimilarity between any two observations should be greater

than or equal to zero, and 2) the dissimilarity between any observation and itself is

zero. Different dissimilarity measures exist for different data types and an overview

of different measures is given in Cox and Cox (2000). The best known dissimilarity

measure is the Euclidean distance, which is applicable to quantitative data, and is given

by

δij =

 P∑
p=1

(xip − xjp)2

1/2

,

where xip is the observed value of the pth variable for the ith observation. To alter the

relative influence of a variable, the weighted Euclidean distance can be used, so that

δij =

 P∑
p=1

ωp(xip − xjp)2

1/2

, (4.6)

where ωp is a variable-specific weight.

In clinical research, variables are usually of mixed type. For example, in the ES-

PAC3v2 trial (Neoptolemos et al., 2010), baseline data included Age and laboratory

biomarker values (quantitative/continuous), Sex (nominal) as well as Tumour grade and

WHO Performance Score (ordinal). Gower (Gower, 1971) introduced a general coeffi-

cient for calculating the dissimilarity between observations based on multiple variables

of mixed type. Using Gower’s coefficient, dissimilarities are obtained by

δij = 1− sij = 1−

∑P

p=1
wijpsijp∑P

p=1
wijp

,

where wijp is a weight for the dissimilarity between subjects i and j on variable p, and

s denotes a similarity. For nominal variables the similarity, sijp, is equal to 1 when the

two subjects have the same value for the pth variable and zero otherwise (Table 4.1).

i j sijp wijp
+ + 1 1
+ - 0 1
- + 0 1
- - 1 1

Table 4.1: Similarities and weights for nominal variables in Gower’s coefficient.

72



For ‘asymmetric’ binary variables, two subjects are similar if they both possess some

attribute (xip = xjp = +). For continuous variables,

sijp = 1− |xip − xjp|/Rp,

where Rp is the range for the pth variable. As with the weighted Euclidean distance in

equation 4.6, variable-specific weights, ωp, can be incorporated into Gower’s coefficient,

either via wijp, or more explicitly by including ωp, so that

δij = 1− sij = 1−

∑P

p=1
ωpwijpsijp∑P

p=1
ωpwijp

.

When either or both subjects have missing data for a particular variable, then the

weight, wijp, can be set to zero. This is a key feature of Gower’s coefficient and the

implicit assumption is that data are missing completely at random (MCAR, Peugh and

Enders, 2004). This feature and some of its implications are discussed in more detail

in Section 6.8.

4.5 Summary

In this chapter, MDS and the concept of dissimilarity were introduced. MDS is an

effective multivariate tool which can be used for visualisation and dimension reduction.

Several alternative MDS methods were described and it was shown how dissimilarities

can be calculated when variables are of mixed type (nominal, ordinal, continuous),

which is usually the case in clinical data sets. Gower’s method for adding test points

to an MDS configuration was also detailed and will be used in later chapters to show

how MDS can be used for prediction.
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Chapter 5

Time-to-event biplot axes

5.1 Introduction

In clinical research, multidimensional data sets are common as usually multiple mea-

surements are taken for each subject. The objective of clinical research is to understand

and interpret these data with the aim of improving treatments and patient care. The

biplot is a multivariate generalisation of the scatter plot that can be used to visualise

the key features of multidimensional data sets in a low-dimensional space. Like the scat-

ter plot, the points on a biplot represent observations and the distance between two

points is indicative of how ‘dissimilar’ they are, in some sense. However, rather than

two perpendicular axes, in a biplot, multiple axes can be displayed, which represent

the variables. The simultaneous representation of observations and variables is where

the ‘bi’-plot gets its name. As an exploratory tool, the biplot can reveal multivariate

clustering and outliers as well as the correlation structure of the variables. MDS is one

method for obtaining a biplot.

Methods for fitting biplot axes for continuous and categorical variables are well-

established (see e.g. Gower and Hand, 1995; Greenacre, 2010). However, to the best

of our knowledge, biplot axes for time-to-event data have not been considered previ-

ously. Time-to-event variables are common in clinical research, for example overall or

progression-free survival in oncology. Time-to-event data differs from other data types

since it is typically highly-skewed and subject to censoring. In this chapter, the use

of AFT models is proposed to fit biplot axes for time-to-event variables. In particular

the Weibull AFT model is considered since it can be formulated in both AFT and PH

form, the latter representation being far more common in clinical research. Moreover,

the possibility of relating an axis for a predictor variable to the time-to-event axis, in

order to recover the effect of a clinical variable on the event time, is demonstrated and

its utility is evaluated.
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Biplots were introduced by Gabriel (1971) and two key texts on the subject are

Gower and Hand (1995) and Greenacre (2010). In order to display multivariate data

graphically in few dimensions, clearly some dimension reduction is necessary. Classi-

cally, the singular value decomposition of a matrix is used to obtain the coordinates of

the points on a biplot, but other multivariate methods such as principal components

analysis, multiple correspondence analysis, canonical variate analysis and MDS can be

used (see e.g. Cox and Cox, 2000, Chapter 7). Whilst the results in this chapter are

generalizable to a number of these methods, the focus here is on MDS biplots in which

the data are displayed in Euclidean space. One reason for focusing on MDS is that

both continuous and categorical variables can be easily incorporated, using Gower’s

coefficient (Gower, 1971, Section 4.4), and generally in clinical research there is a mix

of data types.

The chapter is structured as follows: in Section 5.2, some notation is introduced and

in Section 5.3 a simulated data set is described; this data set is used to illustrate various

concepts throughout the chapter. In Section 5.4, a general result for projecting a point

onto a line or plane is explained. This result is relevant to reading a measurement

from a biplot axis. In Section 5.5, it is demonstrated how regression can be used to

fit biplot axes in general and specifically it is shown how AFT models can be used to

estimate the slope and mark out the scale of a time-to-event biplot axis. In Section 5.6

it is shown how, in principle, the relationship between a variable and the event time

can be recovered directly from the biplot by associating biplot axes. In Section 5.7,

consideration is given to the precision/uncertainty with which an axis slope is estimated.

A coefficient of determination for AFT models and Harrell’s concordance index are

introduced in Section 5.8. In Section 5.9, the proposed methods are applied to a

simulated data set and in Section 5.10 an analysis of the HCC data set is presented.

Discussion is given in Section 5.11.

5.2 Notation

To define some general notation used throughout this chapter, observations are indexed

as i = 1, . . . , N ; X is an N×P matrix of predictor variables, with observed values x, and

Z is an N × S matrix of MDS coordinates, with observed values z, and with columns

indexed by s = 1, . . . , S. Y represents an N -length vector of dependent variables,

with observed values y. When the outcome of interest is a non-negative event time,

Y = log(T), where T is an N -length vector of event times with observed values t. Let

β represent a vector of coefficients for the regression of Y on X of length P , and let

α represent an S-length vector of coefficients for the regression of Y on Z (note that

intercepts are kept separate from these coefficient vectors).

Let θ1 denote the slope of a biplot vector or axis on a two-dimensional plot with
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intercept θ0. Bold upper case letters A and B are used to denote biplot vectors and

axes, e.g. A = (α1, α2)ᵀ is a biplot vector which can be drawn in two-dimensions as an

arrow from the origin to point (α1, α2). The term ‘axis’ is used to refer to the line that

extends the vector in each direction. Bold lower case letters a, b, o and p are used

to define specific coordinates, e.g. a = (α1, α2)ᵀ would refer to the point at the tip of

vector A, when defined as above.

5.3 A simulated data set

A simple simulated data set is used throughout this chapter to illustrate various con-

cepts. Values for P = 5 variables, X1, . . . , X5, and N = 400 observations were simu-

lated from a multivariate normal distribution for which all variables had a mean of 0

and standard deviation of 1; correlation coefficients were rX1,X2 = rX1,X3 = rX2,X3 =

rX4,X5 = 0.4, and otherwise 0, forming a block diagonal correlation matrix. Event times

were simulated from an exponential distribution, Ti ∼ Exp [exp(βᵀxi)], for i = 1, . . . , N

and with β1 = β2 = β3 = 0.75 and β4 = β5 = 0, i.e.

log(ti) = 0.75x1i + 0.75x2i + 0.75x3i + εi,

where ε1, . . . , εN are i.i.d. according to a Gumbel distribution. This is an AFT model

and these models are discussed in more detail in Section 5.5.2. Additionally, event

times were censored by generating censoring times using an exponential distribution

with a scale parameter of 1, resulting in 51% of observations being censored.

5.4 Projecting a point onto a line

There are several ways to project a point onto a line. In the context of biplots, an

observation can be projected onto an axis in order to read-off a measurement. Figure 5.1

depicts the relationship between a line, A, and a point, b, on a two-dimensional plot.

The equation of the line A is given by:

Z2 = θ0 + θ1Z1, (5.1)

where Z1 and Z2 are the first and second axes or dimensions of the plot and θ0 and θ1

denote the intercept and the slope of A, respectively. The equation of a line perpen-

dicular to A is

Z2 = θ∗0 −
1

θ1
Z1. (5.2)
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Z1

Z
2

(z1i,z2i)

b

Z2 = θ0 + θ1Z1

A

Z2 = θ0
*  − θ1

−1Z1

p

Figure 5.1: Example of the relationship between a line A and point b = (z1i, z2i) which
must lie on a line perpendicular to A (dotted line). Point p is the projection of b onto
A.

In order to project point b = (z1i, z2i), onto the line A, the perpendicular line which

intersects point b is required. Substituting the coordinates of b into equation 5.2 gives

z2i = θ∗0 −
1

θ1
z1i,

and rearranging to find θ∗0:

θ∗0 = z2i +
1

θ1
z1i.

Substituting θ∗0 into equation 5.2 gives

Z2 = (z2i +
1

θ1
z1i)−

1

θ1
Z1.

Now the point at which the two lines intersect, p, can be found by equating

Z2i = (z2i +
1

θ1
z1i)−

1

θ1
Z1i,

and

Z2i = θ0 + θ1Z1i. (5.3)
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It is straightforward to then show that the coordinates of p are

Z1i =
θ1z2i + z1i − θ0θ1

θ2
1 + 1

,

and hence

Z2i = θ0 + θ1

(
θ1z2i + z1i − θ0θ1

θ2
1 + 1

)
.

A
e

p

b

z1
z2

z3

Figure 5.2: Example of a projection of a point, b, onto a three-dimensional plane, A.
Point p is the projection of b onto A, orthogonal to A, and can be found by solving
the linear equation which minimises the sum of squared ‘errors’, e.

It is similarly straightforward to project a point onto on axis/vector in a higher-

dimensional space, or even a plane, as depicted for three dimensions in Figure 5.2. A

useful resource in this regard can be found online in “Projections onto subspaces”MIT

(2011), on which the following is based. Define a plane A in Rn and point b is to be

projected onto A. A is a matrix of basis vectors, [a1, . . . ,an−1], and b is a vector. The

point p is the point closest to b on the plane A and is found at the intersection formed

by a line e through b, which is orthogonal to A. Since p lies on A, it is required to

solve p = Aγ̂. Now,

e = b− p

= b−Aγ̂.
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Since A and e are orthogonal,

Aᵀe = 0,

Aᵀ(b−Aγ̂) = 0,

Aᵀb = AᵀAγ̂,

(AᵀA)−1Aᵀb = γ̂,

i.e. the least squares estimate, and so

p = A(AᵀA)−1Aᵀb.

If A is a vector then only a single estimate is returned.

5.5 Fitting the time-to-event axis

5.5.1 Without censoring

The standard approach to fitting a biplot axis for a quantitative variable is to use linear

regression. For the ith subject,

yi = µ+αᵀzi + εi, (5.4)

i = 1, . . . , N and where α is an S-length vector of regression coefficients, zi is an S-

length vector of MDS coordinates for the ith subject, εi is an error term and ε1, . . . , εN

are i.i.d. according to a normal distribution, εi ∼ N(0, σ2). In the case of modelling

a non-negative event time, log-transformation may be necessary, so that yi = log(ti).

Equation 5.4 can be solved by minimising the sum of squared errors using least squares.

The well-known coefficient of determination, R2, is a measure of how much variation

in the response variable is explained by the MDS configuration.

In the case of a two-dimensional biplot, an estimated biplot vector/axis intersects

the points (0, 0) and (α̂1, α̂2) and therefore z1i and z2i are related through

z2i =
α̂2

α̂1
z1i. (5.5)

Linking with Section 5.4, the intercept for the biplot axis is typically θ̂0 = 0 and the

slope is θ̂1 = α̂2/α̂1. The intercepts θ0 and µ should not be confused. For a biplot axis

which intersects the origin, it is not necessary to fit the regression model in equation 5.4
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without the intercept, µ. Note that the biplot axis can actually be plotted as any line

parallel to the fitted axis (it does not necessarily have to intersect the origin). The

regression-based approach can be used for any continuous variable and, as an example,

biplot axes for the simulated predictor variables are depicted in Figure 5.3(a).

The same idea can be extended to categorical variables using generalised linear

models (Greenacre, 2010, Chapter 3). For example, a binary (absence/presence) cate-

gorical variable can be assumed to follow a binomial distribution, with the conditional

probability of some characteristic being present for the ith subject, π(zi). The logit or

‘log-odds’ can be modelled using logistic regression,

logit [π(zi)] = log

[
π(zi)

1− π(zi)

]
= µ+αᵀzi,

for i = 1, . . . , N . Other generalised linear models can be used depending on the nature

of the outcome variable (see e.g. Agresti, 2002). Biplot axes for categorical variables

are discussed further in Section 5.11.

5.5.2 With censoring

Now we consider the case where the outcome variable is a censored event time. Let C

be a censoring indicator with observed value c, where ci equals 1 if the event is observed

for the ith subject and 0 otherwise. If the event times for some subjects are censored

then the linear regression model (equation 5.4) is no longer suitable. Instead, an AFT

model is proposed. The AFT model can be expressed in log-linear form as

yi = µ+αᵀzi + φεi, (5.6)

where φ is a scale parameter, the random variable εi models the deviation of the values of

yi = log(ti) from the linear predictor and ε1, . . . , εN are i.i.d.. For an assumed Weibull,

log-normal or log-logistic distribution for the event time, εi is assumed to follow a

Gumbel, normal or logistic distribution, respectively (see e.g. Collett, 2015). When εi

follows a Gumbel distribution and φ = 1, the survival function is exponential, as was

introduced in Section 5.3. Leaving the distribution of εi as unspecified is analogous

to not estimating the baseline hazard in Cox proportional hazards regression (Wei,

1992). The Weibull AFT model is particularly useful as it can be expressed both in

proportional hazards and acceleration factor form, and is the only time-to-event model

that does so. As an example, a biplot axis for the simulated event times, obtained

using a a Weibull AFT model, is depicted in Figure 5.3(b). Other features of this plot

are discussed in later sections. Observing the likelihood for a parametric AFT model,
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it can be seen that censoring is accounted for,

L =
N∏
i=1

[
f(ti)

]ci[S(ti)
](1−ci),

where f(.) and S(.) represent density and survival functions respectively.

5.5.3 Scale of the time-to-event axis

The biplot vector for a time-to-event variable is simply A = (α̂1, . . . , α̂S)ᵀ. We refer

to the line that extends the vector in each direction as the axis. In this section, it

is shown how markers can be added to the time-to-event axis, which correspond to

expected event times, in order to mark out the scale of the axis. This is sometimes

referred to as ‘calibration’ and an example is given in Figure 5.3(b).

Assuming a Weibull distribution for the event times, the AFT model in equation 5.6

implies that Ti ∼Weibull [µexp(αᵀzi), 1/φ]. The expected event time for the ith subject

can be shown to be

E(Ti) = exp(µ+αᵀzi)Γ(φ+ 1), (5.7)

where Γ(.) is the Gamma function (see Liu and Lim, 2018, pages 3 and 4). In the

special case where φ = 1 (an exponential time-to-event model), Γ(2) is just 1. From

equation 5.7 it can easily be seen that the origin and tip of the vector for the event

time correspond to the expected event time when zi = 0 and zi = 1, respectively.

Equation 5.7 can now be rearranged to find coordinates along the time-to-event axis

which represent the chosen scale, e.g. 1, 2 and 5 years. Assuming a two-dimensional

MDS configuration for ease of explication, the expected event time for the ith subject

is

E(Ti) = exp(µ+ α1z1i + α2z2i)Γ(φ+ 1).

Substituting for z2i using equation 5.5,

E(Ti) = exp

[
µ+ α1z1i + α2(

α2

α1
z1i)

]
Γ(φ+ 1),

log [E(Ti)] = µ+ α1z1i +
α2

2

α1
z1i + log [Γ(φ+ 1)] ,

α1log [E(Ti)] = α1µ+ α2
1z1i + α2

2z1i + α1log [Γ(φ+ 1)] .
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Figure 5.3: Example MDS biplot results obtained using the simulated data set. (a) Biplot and biplot axes for five predictor variables obtained
using linear regression, with R2 values of 0.57, 0.56, 0.67, 0.79 and 0.65 for x1, . . . ,x5, respectively. Observed and censored event times
are depicted as crosses and circles, respectively. (b) Time-to-event biplot axis obtained using a Weibull AFT model (R2 = 0.64) with the
scale of the axis marked out (arbitrary units). 95% confidence limits for the slope are also shown and were obtained using a non-parametric
bootstrap with 1000 resamples. (c) Estimates of the parameters β̂1, . . . , β̂5 obtained by associating the scales in the biplot for S = 2, . . . , 5
dimensional MDS solutions. Dashed lines indicate true parameter values (β1 = β2 = β3 = 0.75 and β4 = β5 = 0). Coloured crosses indicate
the estimates obtained from regressing y directly on x using a Weibull AFT model.

82



Rearranging,

α1log [E(Ti)]− α1µ− α1log [Γ(φ+ 1)] = α2
1z1i + α2

2z1i,

α1

{
log [E(Ti)]− µ− log [Γ(φ+ 1)]

}
= z1i

(
α2

1 + α2
2

)
,

and therefore

z1i =
α1

α2
1 + α2

2

{
log [E(Ti)]− µ− log [Γ(φ+ 1)]

}
. (5.8)

z2i is again obtained using equation 5.5. If S > 2, the MDS solution can be represented

as SC2 two-dimensional plots and equation 5.8 can be easily adapted to find the scale

on each plot. For example, for S = 3, a Dimension 1 coordinate on the scale for the

first two-dimensional plot (Z1 versus Z2) would be given by

z1i =
α1

α2
1 + α2

2

{
log [E(Ti)]− µ− α3z3i − log [Γ(φ+ 1)]

}
,

for a given value, z3i, possibly the observed mean (which will be zero for a centered

MDS configuration).

5.6 Associating biplot axes

In the previous section, it was demonstrated how a measurement scale could be added

to a time-to-event biplot axis. The same approach can be followed for other variables,

replacing equation 5.7 with the appropriate expectation. In principle then, using results

for projecting a point onto a line in Section 5.4, the approximate relationship between

a variable and the event time, implied by the biplot, can be recovered. The implication

for a biplot with a time-to-event axis is that approximate acceleration factors, and

hazard ratios if a Weibull distribution is assumed for the event time, may be recovered

directly from the biplot.

A two-dimensional configuration is now used to illustrate, as depicted in Figure 5.4.

Let B = (κ̂1, κ̂2)ᵀ represent a biplot vector for a centered continuous predictor variable

X, with observed values x, from the linear regression model x̂i = κ̂1z1i + κ̂2z2i, for

i = 1, . . . , N . Similarly, let A = (α̂1, α̂2)ᵀ represent the biplot vector for the event

time, modelled using equation 5.6. Let b represent the point or marker on the axis for

vector B where x̂i = 1. The coordinates of b can be found from

b =
B

‖B‖
,
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where ‖.‖ denotes the Euclidean norm and hence vector length. Point b can then be

projected onto the axis for A, as described in Section 5.4, and the projected point is

denoted as p. Now, for a Weibull AFT model,

E(Yi) = µ+αᵀzi − φξi, (5.9)

where −ξ is the Euler-Mascheroni constant (≈ 0.57721) (see Liu and Lim, 2018, page

4). Evaluating equation 5.9 at points p and at the origin, o, the coefficient which

represents the effect of a one-point increase, β, in X on Y can be obtained using

β = E[Yi|zi = p]− E[Yi|zi = o]

= αᵀp.

The corresponding AF is exp(−β), and HR is exp(−β/φ), since log(HR) =

log(AF)/scale. As an example, parameter estimates β̂1, . . . , β̂5 for the simulated data

set, obtained by associating biplot axes, are shown in Figure 5.3(c) for various numbers

of dimensions. The outlined approach for associating biplot axis scales is discussed

further in Section 5.11.

Z1

Z
2 A

B

b

p

−0.5

0

0.5

1.5

2

1

β

Figure 5.4: Example projection of a point on one axis to another. Axis B represents
a predictor variable X and point b is located at 1 on axis B. p is the projection of b
onto axis A, perpendicular to A, which represents an outcome variable, Y.
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5.7 Precision of the axis slope

Although not usually presented, the precision or uncertainty with which a biplot axis

slope is estimated and can be indicated by adding confidence limits to the biplot. The

parameter estimates from the AFT model are assumed to follow a normal distribution

and therefore the axis slope, in two dimensions, is a ratio of normal parameters, θ̂1 =

α̂2/α̂1. Confidence intervals for ratios are problematic however, since the denominator,

α̂1, can take the value of zero (i.e. infinite slope), and both the mean and variance of

a ratio of normal random variables are undefined (for a comprehensive discussion see

Franz, 2007). Fieller (1940) derived exact confidence limits for a ratio of two normal

random variables (see also Franz, 2007; Von Luxburg and Franz, 2009). However,

when the denominator is near zero, Fieller’s method can lead to a partially or even

completely unbounded confidence interval. With MDS biplots, the orientation of the

biplot is essentially arbitrary since the MDS solution is invariant to rotation. As a

result, it is possible to rotate an MDS solution so that the slope is infinite, arbitrarily

producing an unbounded confidence interval.

In practice, we have found that a better solution is to obtain confidence limits based

on the angle of the biplot axis. Working in two dimensions, by simple trigonometry,

the angle with Dimension 1 is equal to tan−1(α̂2/α̂1), and infinite slopes are not prob-

lematic. Nieto et al. (2014) developed an R package which uses bootstrapping to obtain

a confidence interval for the angle of a biplot axis. To illustrate, we have therefore used

a simple non-parametric bootstrap (see e.g. Carpenter and Bithell, 2000) with 1000

resamples to obtain a confidence interval for the angle, and hence slope, of the biplot

axis in Figure 5.3(b). In some exploratory work we have found that the width of the

confidence interval is unaffected by the orientation of the MDS solution (not shown).

5.8 Measures of predictive ability

5.8.1 Coefficient of determination

A number of attempts have been made to derive a measure of explained variation

equivalent to R2 in linear models for time-to-event models (overviews can be found in

Korn and Simon, 1990; Schemper and Stare, 1996). Chan et al. (2018) demonstrated

that R2 is straightforward to obtain for parametric AFT models. Since R2 represents

the proportion of variation in the response variable explained by the model,

R2 = 1− Var(φ̂ε)

Var [log(T)]
= 1− φ̂2Var(ε)

V̂ar(Zα) + φ̂2Var(ε)
, (5.10)
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where V̂ar(Zα) is the sample variance. For parametric AFT models, Var(ε) is deter-

mined by the assumed survival distribution: π2/6 for Weibull and exponential models,

π2/3 for logistic and log-logistic models, and 1 for normal and log-normal models. Chan

et al. (2018) discuss how this approach can be extended to semi-parametric AFT mod-

els. As an example, the R2 value for the time-to-event axis in Figure 5.3(b), where a

Weibull distribution is assumed for the event time, is 0.64.

5.8.2 Concordance

Harrell et al. (1982) defined the concordance or ‘c-index’, a generalisation of the area

under the receiver-operator-characteristic curve applicable to right-censored time-to-

event data (see also Newson, 2010; Harrell, 2015). To calculate the concordance, all

possible combinations of subject pairs are found, and a pair is determined as concordant

if the larger predicted event time corresponds to the larger observed event time or

discordant if the larger predicted event time corresponds to the shorter observed time.

If both event times are censored, or if only the shorter event time is censored, then

the pair is neither concordant nor discordant. The concordance is the probability of

concordance between predicted and observed event times, where a concordance of 1

indicates perfect discrimination and a concordance of 0.5 indicates random predictions

(analogous to tossing a coin). Usually in time-to-event analysis, the linear predictor

rather than the event time is predicted and a higher value for the linear predictor

corresponds to a lower expected survival time. A concordant pair is then one for which

the higher linear predictor corresponds to the lower observed event time. Therneau

and Atkinson (2019) provide useful details on handling ties in Harrell’s c-index.

5.9 Analysis of the simulated data set

The example based on simulated data displayed in Figure 5.3 is now considered in more

detail. Figure 5.3 depicts the MDS configuration with (a) predictor variable axes and

(b) a time-to-event axis. Supporting results are presented in Table 5.1. When inter-

preting biplots: 1) the distance between observations approximates their dissimilarity,

2) the projection of an observation onto a variable axis approximates its expected value

for that variable, and 3) the cosine of the angle between two axes approximates their

correlation.

Classical scaling was used to find a two-dimensional MDS configuration, with 65%

of the total variation in x explained. A Weibull AFT model was fitted to the simulated

data and, unsurprisingly, event times were found to be approximately exponential, as

simulated (φ̂ = 1.04 ≈ 1). The solid line in Figure 5.3(b) depicts the time-to-event

biplot axis with slope θ̂1 = −0.05. Roughly speaking, the axis is almost horizontal and
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suggests that observations to the left of the plot are expected to have shorter survival

times than than those to the right of the plot. The point estimate for the acceleration

factor for Dimension 1 is exp(−α̂1) = 0.27, implying that the expected event time is

accelerated by around 73% for every one-point decrease in Dimension 1, or conversely

that there is an approximately 3.7-fold increase in the expected event time for every

one-point increase in Dimension 1. The estimate for Dimension 2 was not statistically

significantly different from zero (p = 0.25). The black dashed lines indicate a 95%

confidence interval for the axis slope obtained using a non-parametric bootstrap of the

angle. The interval is quite narrow suggesting that the slope is a reliable indicator of

the direction of the axis. The R2 value for the time-to-event axis is 0.64, so that 64%

of the variation in y = log(t) is explained by the MDS configuration, z.

Comparing Figures 5.3(a) and (b) it can be seen that the axes for X1, X2 and X3

are positively correlated with the time-to-event axis, implying that higher values are

associated with longer event times, as simulated. The remaining axes are approximately

perpendicular to the time-to-event axis, suggesting that they are not correlated with

the expected event time, again, as simulated.

In Figure 5.3(c) the parameter estimates for the effects of X1, . . . , X5 on Y were

estimated by associating biplot scales, as described in Section 5.6, for MDS solutions

with S = 2, . . . , 5 dimensions. The parameters are overestimated for X1, . . . , X3 when

the number of dimensions is low but approach the estimates obtained by regressing y

on x directly (coloured crosses), as the number of dimensions increases.

θ̂1 95% CI R2

X1 -0.14 (-0.23, -0.05) 0.57
X2 -0.09 (-0.19, -0.01) 0.56
X3 0.00 (-0.07, 0.07) 0.67
X4 -362.28 (-773.59, 804.95) 0.79
X5 5.62 (4.08, 8.88) 0.65
Y -0.05 (-0.17, 0.05) 0.64

Table 5.1: Supplementary results for the simulated data set. Biplot axis slopes (θ̂1),
95% confidence intervals and R2 values for five predictor variables X1, . . . , X5 (linear
regression models) and the log of the censored survival time regressed on the MDS
configuration (Weibull AFT model).

5.10 Analysis of the hepatocellular carcinoma data set

HCC is a common complication of chronic liver disease and, dependent upon tumour-

related, liver function and patient-related factors, the prognosis for a patient diagnosed

with HCC may be extremely poor. The data from 709 HCC cases from the HCC

data set are now analysed (Groups I and IV with patients with invalid survival times
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excluded, see Section 1.6.1). Note that this data set is characterised by considerable

amounts of missing data.

The purpose of this analysis is to use MDS to obtain a low-dimensional represen-

tation of the data based on ten clinical variables and to add a time-to-event axis to

illustrate the expected survival prospects of the HCC cases from diagnosis using the

methods outlined in previous sections. Moreover, the suitability of the biplot as a repre-

sentation of the individual variables, and the association between each clinical variable

and survival time, are assessed.

5.10.1 Clinical variables

The ten clinical variables included in this analysis are shown in Table 5.2. The variables

identified are known to be important measures of HCC, liver function or are patient-

related characteristics. Alpha-fetoprotein (AFP), lens culinaris agglutinin (L3) and

des-gamma-carboxy prothombin (DCP) are HCC biomarkers and elevated levels are

suggestive of HCC. Tumour size is the maximum size of the largest lesion. Albumin

and Bilirubin are measures of liver function, with low levels of Albumin and elevated

levels of Bilirubin corresponding to poorer liver function.

The Child-Pugh score is a composite measure for assessing the prognosis of cirrhotic

patients based on ascites (fluid build-up), encephalopathy (a measure of brain disease),

serum levels of Albumin, total Bilirubin and prolongation of clotting time. Patients

are classified as A, B or C with respective expected one-year survival probabilities of

100%, 80% and 45%. Cancer Stage is a general grouping based on one of three staging

systems, as described in Johnson et al. (2014), with patients categorised as being either

Early or Late stage.

From Table 5.2 it can be seen that the extent of missing data across the different

variables varies considerably, and is particularly high for L3 and DCP for which less

than half of subjects have data. The row labelled as ‘Complete’ corresponds to the the

number of observations with complete data with respect to all ten clinical variables.

5.10.2 Data handling

Values for the continuous variables were log-transformed, centered and scaled and

were not categorised in statistical analyses (except for the Kaplan-Meier curves in Fig-

ure 5.5). An asterisk (*) is used to indicate when a transformed version of a variable

is being referred to specifically.

88



Variable n n with event (%) Missing (%)

Sex 709 465 (65.6) 0 (0.0)
Age* 709 465 (65.6) 0 (0.0)
Albumin* 708 464 (65.5) 1 (0.1)
Bilirubin* 707 463 (65.5) 2 (0.3)
Child-Pugh Class 700 457 (65.3) 9 (1.3)
AFP* 688 452 (65.7) 21 (3.0)
Tumour stage 686 442 (64.4) 23 (3.2)
Tumour size* 635 410 (64.6) 74 (10.4)
DCP* 317 225 (71.0) 392 (55.3)
L3* 316 224 (70.9) 393 (55.4)

Complete 268 188 (70.1) 441 (62.2)

Table 5.2: Frequencies of patients with complete and missing data for each of ten
clinical variables. More than half of patients have missing data for DCP* and L3*
and approximately two thirds of patients have missing data for one or more of the ten
clinical variables. Note that the denominators used for calculation of percentages in
column 3 are in column 2, whilst the denominator used for column 4 is N = 709.
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Cox PH Weibull PH Weibull AFT Semi-parametric AFT
HR (CI) HR (CI) AF (CI) AF (CI)

Intercepta - - -7.03 (-7.35, -6.72) -6.76 (6.42, 7.11)
Sex (Male vs Female) 1.07 (0.71, 1.60) 1.09 (0.73, 1.63) 1.06 (0.81, 1.39) 1.14 (0.66, 1.17)

Age* 1.15 (0.95, 1.40) 1.17 (0.96, 1.41) 1.11 (0.98, 1.26) 1.06 (0.82, 1.08)
AFP* 1.36 (1.13, 1.62) 1.38 (1.16, 1.64) 1.24 (1.10, 1.39) 1.22 (0.74, 0.90)

L3* 1.32 (1.10, 1.59) 1.33 (1.11, 1.60) 1.21 (1.07, 1.37) 1.18 (0.75, 0.95)
DCP* 1.16 (0.93, 1.44) 1.14 (0.92, 1.42) 1.09 (0.94, 1.26) 1.15 (0.76, 1.00)

Bilirubin* 1.23 (1.00, 1.51) 1.22 (1.00, 1.49) 1.14 (1.00, 1.31) 1.07 (0.80, 1.08)
Albumin* 0.75 (0.61, 0.93) 0.74 (0.60, 0.90) 0.82 (0.71, 0.94) 0.76 (1.14, 1.53)

Child-Pugh (B vs A) 1.40 (0.90, 2.20) 1.43 (0.91, 2.24) 1.27 (0.94, 1.71) 1.27 (0.57, 1.10)
Child-Pugh (C vs A) 1.00 (0.25, 3.97) 0.94 (0.25, 3.59) 0.96 (0.39, 2.35) 1.59 (0.26, 1.55)

Cancer Stage (Late vs Early) 1.81 (1.22, 2.68) 1.84 (1.24, 2.73) 1.50 (1.16, 1.96) 1.57 (0.48, 0.84)
Tumour Size* 1.23 (1.04, 1.46) 1.24 (1.05, 1.47) 1.16 (1.03, 1.30) 1.10 (0.79, 1.04)

Table 5.3: Estimated HRs and AFs for three statistical models with all ten clinical variables included as main effects: 1) Cox model, 2)
Weibull AFT model in proportional hazards and AFT form and 3) Semi-parametric AFT model. Estimated HRs for the Weibull model
are similar to the Cox model and AFs are generally similar to the semi-parametric AFT model. *Variable is log-transformed, centered and
scaled, aThe intercept for the AFT models is presented on the log-scale.
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5.10.3 Exploratory data analysis

Kaplan-Meier curves for the ten clinical variables are presented in Figure 5.5. For

display purposes, values for the continuous variables have been categorised. Note that

different numbers of patients are depicted in each subplot due to missing data. Visibly,

all variables appear to be related to prognosis, except possibly Sex.

Table 5.3 shows the estimates obtained when including patients with complete data

for all ten clinical variables in three survival models: a Cox model, a Weibull model

in both PH and AFT formulations, and a semi-parametric AFT model. Values greater

than one represent worse survival prospects for both HR and AFT estimates. For the

transformed continuous variables, estimates represent the relative reduction in expected

survival time (/increase in the hazard) for a one standard deviation increase in the

transformed variable. Although the estimates are generally very similar between the

statistical models, the Weibull PH/AFT model is used for inference. Increased Age*,

AFP*, L3*, Bilirubin* and Tumour size* are statistically significantly associated with

poorer survival prospects, along with decreased Albumin*. Patients with Late Cancer

Stage are also statistically significantly associated with worse prognosis than those

with Early Cancer Stage. Although generally the point estimates for the Child-Pugh

Class C versus A are not larger than the point estimate for B versus A, as might be

expected, the confidence interval is quite wide as a result of there being only 9 patients

of 31 in Child-Pugh Class C with an event. Interestingly, this is not the case for the

semi-parametric AFT model which is more in line with expectations.

5.10.4 Statistical methods

Gower’s coefficient was used to obtain a symmetric matrix of dissimilarities based on the

ten clinical variables. Categorical variables (Sex, Cancer Stage and Child-Pugh Class)

were down-weighted to half the weight of other variables as categorical variables tend to

dominate the MDS configuration with Gower’s coefficient. This weighting was found,

in a preliminary analysis, to be a reasonable compromise between maintaining distinct

clusters as well as some spread of points within the clusters so as not to completely

obscure the continuous variables. Child-Pugh Class was treated as a nominal, rather

than an ordinal or continuous variable when calculating dissimilarities, and two-level

categorical variables were treated as symmetric (see Section 4.4). Metric MDS was

used to obtain ten MDS fits, corresponding to 1, 2, . . . , 10 dimensional MDS solutions.

A Cox model, a Weibull model in PH and AFT form, as well as a semi-parametric

AFT model were fitted including all clinical variables simultaneously as main effects

to assess the covariate adjusted relationship between each variable and survival. The

same model types were used to model the relationship between overall survival and

the MDS dimensions; of these models the Weibull AFT model was used to obtain
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Figure 5.5: Kaplan-Meier plots for the ten clinical variables. Continuous variables have been categorised for the purpose of these plots. The
number of observations available for each plot due to missingness is indicated in parentheses. Each plot is suggestive of a prognostic effect,
perhaps with the exception of Sex.

92



a time-to-event biplot axis. Confidence limits for the slope of the time-to-event axis

were obtained using a non-parametric bootstrap with 1000 resamples (see Section 5.7).

All confidence intervals are 95% confidence intervals and p-values less than 0.05 were

considered to be statistically significant.

To obtain biplot vectors/axes for the continuous clinical variables, linear regression

was used. For Sex and Cancer Stage, Firth logistic regression (Firth, 1993) was used

to account for possible complete separation of the categories. For Child-Pugh class,

standard multinomial logistic regression was used. For further discussion on biplot

axes for categorical variables, see Section 5.11.

5.10.5 Software

All statistical analyses were conducted using R software (version 3.5.2, R Core Team,

2017). The SMACOF package (de Leeuw and Mair, 2009), which uses iterative majoriza-

tion to minimise the stress of the configuration, was used for metric MDS. Dissimi-

larities were obtained using the daisy() function in the cluster package (Maechler

et al., 2019). Cox and parametric time-to-event models were fitted using the survival

package (Therneau, 2015), and semi-parametric AFT models were fitted using the gen-

eralised estimating equation approach in aftgee (Chiou et al., 2014). Firth logistic

regression models were fitted using the logistf package (Heinze, 2018).

5.10.6 Model fit

Figure 5.6(a) depicts a scree plot of the Stress for MDS solutions with 1 to 10 dimen-

sions. The scree plot suggests that a three or four dimensional solution may suitably

represent this data set. However, for illustration purposes the analyses here are re-

stricted to the two-dimensional MDS solution and the suitability of this representation

is considered in detail.

Figure 5.6(b) shows the explained variation in overall survival and the concordance

of each MDS solution with the survival time. A two-dimensional MDS solution pro-

vides a reasonable concordance of 0.73, but the percentage of explained variation is

low at 38%. However, neither the concordance nor R2 improve much as the number of

dimensions increases. Note that a Weibull model fitted with all ten clinical variables

gave a concordance of 0.75 and an R2 of 0.40. Although models fitted to the MDS con-

figuration and to the predictor variables cannot be compared directly, as due to missing

data they are based on different patient subsets, these statistics demonstrate that the

combined predictive power of the variables used in this analysis is not particularly high.

Figures 5.6(c) and (d) show the marginal Kaplan-Meier estimates of the survival

and cumulative hazard function respectively. The median survival time from diagnosis

for these HCC patients is approximately 1.3 years. The grey fitted curves correspond

93



to estimates from an unconditional Weibull model. Whilst a Weibull representation

of these marginal plots is clearly not perfect, the fitted survival curve is generally

consistent with the confidence limits of the Kaplan-Meier estimate. The consistency of

the parameter estimates from the Weibull model with both the Cox model and the semi-

parametric AFT model (Tables 5.3 and 5.5) provides reassurance that the assumption of

a Weibull distributed survival time does not substantially affect the results. Cox-Snell

and deviance residuals for the Weibull AFT model indicate that a Weibull distribution

is, in general, a reasonably good fit to the data, but that risk may be overestimated

for patients with high values of the linear predictor, see Figure 5.7(a) and (c). Results

were very similar however even if a Cox model was used and/or if the the values for

the clinical variables (x) were used instead of the MDS coordinates (z) (Figure 5.7).

The estimated scale parameter from the full Weibull AFT model was φ̂ = 0.67 (CI

0.60, 0.75), with the confidence interval excluding 1 implying that a scale parameter

is required and that therefore a Weibull AFT model is preferable to an exponential

model.

Figure 5.9 illustrates how well the clinical variables are represented by the ten

MDS solutions. For all variables the concordance and Nagelkerke’s pseudo-R2 are

presented. Additionally, the R2 is presented for continuous variables. Child-Pugh Class

and Cancer Stage are very well represented with only two dimensions, whereas three

or four dimensions appear necessary to adequately represent Sex. The concordance for

all of the continuous variables is reasonable in two dimensions (>0.6) although clearly

four dimensions or more would improve their representation considerably.

The estimated acceleration factors from a Weibull AFT model using the values

for ten clinical variables directly (i.e. using x) and those recovered from the two-

dimensional biplot (i.e. using z) are shown in Table 5.4. Whilst the signs of the effects

from the biplot are correct (log-scale and barring Child-Pugh C vs A), the magnitudes

of the acceleration factors are overestimated considerably.

5.10.7 Results

Figure 5.8 depicts the two-dimensional MDS configuration with biplot vectors for the

clinical variables and overall survival, (a) and with an overlaid time-to-event biplot

axis, (b). The relationship between the clinical variables and time-to-event axis are

displayed further in Figure 5.11. In Figure 5.8(b), the time-to-event axis is near to the

horizontal, implying that Dimension 1 is strongly related to survival times; the time-

to-event biplot axis scale implies that patients to the far right of the plot are expected

to survive less than 3 months, whilst those to the far left of the plot are expected to

survive beyond 10 years.

In Figure 5.8(a), the relationships between the clinical variables and survival time

are shown and are generally in agreement with the estimates in Table 5.3. High values of
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the HCC characteristics (HCC biomarkers and Tumour Size) clearly imply an expected

decreased survival time. The vectors for Albumin*, Bilirubin* and Child-Pugh Class all

lie very close to the same axis which clearly represents liver function: roughly speaking,

patients at the bottom of the plot would be expected to have better liver function than

those at the top of the plot. Notably, and sensibly, better liver function is correlated

with improved survival prospects.

The vector for Age* is approximately perpendicular to the time-to-event axis, im-

plying that Age* is not related to survival time. However, the Kaplan-Meier curve for

Age, Figure 5.5(b), and model estimates, Table 5.3, imply that increased Age is associ-

ated with poorer prognosis. This discrepancy could be explained by the fact that Age*

is not well-represented in this two-dimensional configuration, as shown in Figure 5.9(b).

The categorical clinical variables are displayed in Figure 5.10. Examining the three

subplots, it can be seen that there are four distinct clusters that represent combinations

of Cancer Stage (Early versus Late) and Child-Pugh Class (A versus B/C, since B and

C are not found in distinct clusters in these plots). Patients with missing data for

Cancer Stage and/or Child-Pugh Class (grey points) are generally situated between

these clusters.

From Figure 5.10(a), it can be seen that Late Cancer Stage is clearly associated

with poorer prognosis with near complete separation between these two categories. For

Figure 5.10(b), the two biplot vectors (B versus A, C versus A) which represent Child-

Pugh Class were found to be almost identical and only one is presented. The vector

arrowhead for Child-Pugh class is well outside the plot region; the implication is that

a one-point increase in Dimension 1 and Dimension 2 produces an extreme increase in

the log-odds of increasing the Child-Pugh Class from A.

In Figure 5.10(c), it can be seen that Sex is poorly represented by the plot, with no

clusters corresponding to males and females. Drawing a linear axis through the plot

would not discriminate between sexes and this is reflected in the short biplot vector.

5.11 Discussion

In this chapter, it was demonstrated how AFT models can be used to fit time-to-event

biplot axes with a measurement scale. To our knowledge, biplot axes for time-to-event

data have not been considered previously. It was also shown how, in principle, a biplot

axis for a predictor variable can be related to a time-to-event biplot axis in order to

recover acceleration factors or hazard ratios directly from a biplot. The utility of MDS

biplots with a time-to-event axis was demonstrated using both simulated data and a

HCC data set. For the HCC analysis, a two-dimensional MDS solution was found to

be an informative representation of the relationship between observations, ten clinical

variables of mixed type and overall survival from diagnosis.
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Figure 5.6: (a) Scree plot indicating the Stress of the MDS configuration as a rep-
resentation of ten clinical variables for 1, 2, . . . , 10 dimensional metric MDS solutions.
(b) R2 and concordance for overall survival as a function of the MDS coordinates
from Weibull AFT models. (c) Kaplan-Meier estimate and confidence interval for the
marginal survival curve for the HCC patients, overlaid with a fitted survival curve from
an unconditional Weibull AFT model. (d) Nelson-Aalen estimated marginal cumulative
hazard function and overlaid fitted cumulative hazard function from an unconditional
Weibull AFT model.
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(f) Cox deviance based on x
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Figure 5.7: Cox-Snell and deviance residuals plots for Weibull AFT and Cox models
fitted to the HCC data set. In the left column, MDS coordinates (z) have been used as
predictor variables. In the right column, values for the ten clinical variables (x) have
been used. Note that 709 observations (465 events) are in the MDS-based analyses
compared with only 268 (188 events) in the analyses using the ten clinical variables
directly, due to missingness.
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Figure 5.8: The two-dimensional metric MDS solution for the ten clinical variables.
Censored and uncensored observations are presented as circles and crosses, respectively.
(a) Biplot vectors for overall survival (denoted as Y ) and the ten clinical variables.
The Bilirubin/Albumin/Child-Pugh-Class ‘axis’ represents liver function, roughly cor-
responding to poor liver function at the top of the plot. HCC biomarker vectors point
in the opposite direction to the overall survival axis, indicating that large values in-
dicate worse prognosis. (b) Overlaid time-to-event biplot axis and confidence interval
obtained using a non-parametric bootstrap with 1000 resamples.
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Weibull AFT
AF (using x) AF (using z)

Sex (Male vs Female) 1.059 3.268
Age* 1.108 1.337
AFP* 1.238 4.793
L3* 1.211 5.193
DCP* 1.092 4.282
Bilirubin* 1.143 1.959
Albumin* 0.815 0.439
Child-Pugh (B vs A) 1.269 2.175
Child-Pugh (C vs A) 0.963 2.118
Cancer Stage (Late vs Early) 1.505 4.500
Tumour Size* 1.156 2.870

Table 5.4: AFs obtained from a Weibull AFT model using the observed values for the
ten clinical variables (i.e. using x) compared with those recovered from associating
biplot scales in the two-dimensional biplot in Figure 5.8 (i.e. using z). Whilst the
signs of the estimates from the biplot are correct on the log-scale, barring Child-Pugh
(C vs A), the magnitude of the AFs are overestimated considerably. *Variable is log-
transformed, centered and scaled.
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Cox PH Weibull PH Weibull AFT Semi-parametric AFT
Est. (CI) Est. (CI) Est. (CI) Est. (CI)

Intercept - - 6.75 (6.83, 6.67) 6.29 (6.20, 6.38)
Dimension 1 1.91 (1.69, 2.12) 1.98 (1.79, 2.17) -1.65 (-1.81, -1.49) -1.48 (-1.64, -1.33)
Dimension 2 0.31 (0.12, 0.51) 0.28 (0.09, 0.48) -0.24 (-0.40, -0.07) -0.27 (-0.46, -0.08)

Table 5.5: Estimates (log-scale) for the association between overall survival and the dimensions from the two-dimensional MDS configuration.
The parameter estimates are larger for Dimension 1 than Dimension 2, implying that the overall survival time is more closely associated to
Dimension 1. Parameter estimates are similar within the PH and AFT model types.
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(h) Child−Pugh Class
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Figure 5.9: Fit statistics for the ten clinical variables as a function of the MDS configurations. More dimensions corresponds to a better
representation of the variables. Linear regression was used for continuous variables, Firth logistic regression was used for two-category
nominal variables (Sex and Cancer Stage) and multinomial logistic regression was used for Child-Pugh Class.
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Figure 5.10: Two-dimensional MDS configuration with points coloured according to the categories of the categorical variables, with overlaid
time-to-event axis and biplot vector for the clinical variable of interest. (a) Cancer Stage categories form almost completely distinct clusters
along the direction of the biplot vector. (b) Child-Pugh Class A cluster is distinct from the B and C cluster in the direction of the biplot
vector, but there is considerable overlap between Child-Pugh Class B and C. (c) Sex is not well-represented by the plot and a linear axis
does not discriminate between sexes, which is reflected in the lack of clusters corresponding to males and females and the short biplot vector.
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(c) AFP*

Dimension 1

D
im

en
si

on
 2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

High

Low

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(d) L3*

Dimension 1

D
im

en
si

on
 2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

High

Low

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(e) DCP*

Dimension 1

D
im

en
si

on
 2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

High

Low

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(f) Bilirubin*

Dimension 1

D
im

en
si

on
 2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

High

Low

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(g) Albumin*

Dimension 1

D
im

en
si

on
 2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

High

Low

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(h) Child−Pugh Class

Dimension 1

D
im

en
si

on
 2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

B/C

A

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(i) Cancer Stage

Dimension 1

D
im

en
si

on
 2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Late

Early

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(j) Tumour Size*

Dimension 1

D
im

en
si

on
 2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

High

Low

Figure 5.11: Biplots for the two-dimensional MDS solution for the ten clinical variables to illustrate the relationship with the time-to-event
axis, its confidence interval, and each of the ten clinical variables. Most variables are correlated with survival, as expected, except Age which
is not well-represented by the MDS solution. The biplot axis for Sex is plotted but should be interpreted with caution as Sex was found not
to be well-represented by the MDS configuration.
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The approach to fitting time-to-event biplot axes proposed in this chapter was based

on the use of AFT models, and in particular the Weibull AFT model. If the assumptions

of parametric AFT models are overly restrictive then a semi-parametric AFT model

can be used. However, when fitting semi-parametric AFT models, it should be noted

that the commonly used rank test statistic-based estimation routines do not estimate

the intercept (see Wei, 1992; Chiou et al., 2014), which is necessary for marking out the

scale of the time-to-event axis. An alternative is the generalised estimating equation

approach described by (Chiou et al., 2014).

In this chapter, only linear biplot axes were fitted. Non-linear biplots, in which

straight-line axes are replaced by ‘trajectories’, for displays in both Euclidean and non-

Euclidean space, are discussed in Cox and Cox (2000, Chapter 7), and the references

therein.

Categorical variable axes in the analysis of the HCC data were fitted using a gen-

eralised linear model approach, as described in Section 5.5.1 and in Greenacre (2010,

Chapter 3). In the case of a nominal categorical variable, such as Sex, a logistic regres-

sion model is convenient. However, complete separation between categories can cause

convergence problems and, as we have found, this scenario is likely when using Gower’s

general coefficient since categorical variables tend to dominate the MDS configuration.

Categorical variables can be down-weighted to ameliorate this issue, and/or a penalised

approach, such as Firth logistic regression can be used (Firth, 1993). As an alternative

to the generalised linear model approach to fitting biplot axes, pseudo-samples can be

used to identify centroids representing the different levels of a categorical variable (see

Cox and Cox, 2000, Chapter 7).

Another difficulty with categorical variables is that there is no accepted equivalent

to the coefficient of determination. Nagelkerke’s R2 was used here as a guide, but it

does not have the same interpretation as the R2 for linear models. Nagelkerke’s R2 is

a measure of improvement from the null model rather than of explained variation. An

informative introduction to this topic can be found in Royston (2006).

An interesting feature of the presented work is that it was shown how acceleration

factors (and hazard ratios if a Weibull distribution is assumed) can be recovered directly

from a biplot with a time-to-event axis, by associating biplot axis scales. The usefulness

of this feature appears to be limited however. In the HCC example, whilst the signs

of the estimates (log-scale) derived from the biplot generally matched those estimated

directly from the clinical data, their magnitude was exaggerated considerably. There are

several reasons for this. Firstly, two approximate scales are being associated, potentially

introducing considerable error. Secondly, the cosine of the angle between axes is only

an approximation of the correlation between the predictor variable and time-to-event

axis and the angle between axes greatly impacts the projection from one to the other.

Finally, as we have found in exploratory analyses (see Appendix C), whilst the approach
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can work reasonably well when dissimilarities are obtained using Euclidean distances,

estimates can be greatly overestimated when Gower’s coefficient is used.

One important feature of MDS is that missing data can be incorporated easily,

without the need for imputation or case-wise deletion of observations, by skipping

variables with missing data in dissimilarity calculations (see e.g. Buja et al., 2008, see

Section 6.8 for further discussion). This was clearly illustrated in the HCC example,

where 709 observations (465 events) were available for MDS analysis compared with

only 268 (188 events) with complete data. Whilst advantageous, one drawback for

interpretation is that different patient subsets are analysed in supportive analyses, such

as in fitting the biplot vectors or in multivariable regression using the original clinical

variables. This aspect and missing data assumptions when using ‘variable skipping’ in

MDS are discussed in more detail in Section 6.8.

When using Gower’s coefficient, categorical variables tend to dominate the MDS

solution. In the clinical example, categorical variables were given half the weight of

continuous variables in order to ameliorate this issue. However, it may be possible to

find a set of optimal variable weights in order to, for example, maximise the average

concordance across variables for a fixed number of MDS dimensions.

A drawback of MDS biplots in general is that their usefulness is limited when more

than two or three dimensions are necessary for a representative display of the data. In

the analysis of the HCC data set it was shown how the biplot can be carefully checked

to ensure that the visualisation is not misleading. If a two or three dimensional solution

is not feasible, it may be necessary to remove variables.

In conclusion, biplots are a useful generalisation of the scatter plot that can be used

to display the key features of a multi-dimensional data set. By adding a time-to-event

axis to a biplot, expected event times can be read from the display and the relationships

between observations, variables and a time-to-event outcome can be illustrated.
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Chapter 6

Supervised distance-based

regression

6.1 Introduction

In clinical research, multivariable regression models are used extensively to model and

predict clinical outcomes, such as overall survival time, as a function of numerous

predictor variables, or ‘covariates’. Two key challenges for the statistical analyst when

fitting such models are: 1) large numbers of candidate variables relative to the number

of subjects/events, 2) missing covariate data. In the previous chapter, the use of MDS

for visualisation of multivariate clinical data was considered. In this chapter, MDS is

used as a dimension reduction tool for multivariable regression.

If the number of subjects/events is low relative to the number of covariates, param-

eter estimates can be biased, parameter variances can be over or under-estimated and

confidence interval coverage can be poor (see e.g. Peduzzi et al., 1996). In fact, if the

number of possible covariates is sufficiently large, a model can become non-estimable.

Possible solutions are to reduce the number of covariates, using e.g. stepwise model

selection, or reduce the dimensionality of the covariates in some way, using e.g. prin-

cipal components regression (PCR). When the ratio of subjects/events to parameters

is low, stepwise selection is known to result in selection bias, where coefficients for the

selected variables are overestimated (see e.g. Steyerberg et al., 1999). Moreover, in

clinical research, covariate data is typically of mixed type (categorical, continuous etc.)

and for some dimensionality reduction methods, such as PCR, including mixed type

data is not straightforward.

When there are missing data, standard statistical software will perform casewise

deletion if just one covariate is missing for a subject. Not only is casewise deletion
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statistically inefficient, but it is wasteful since data can be costly to collect, particularly

in a clinical trial. Whilst the gold standard approach is to use multiple imputation

(Rubin, 2004), it requires considered set-up and usually several strong assumptions are

made, such as multivariate normality.

Distance-based regression (DBR, Cuadras, 1989) is a simple approach to multi-

variable regression which offers possible solutions to the aforementioned issues. Put

simply, DBR is regression on latent dimensions derived from predictor variables using

a dissimilarity measure. The latent dimensions are obtained by classical or metric mul-

tidimensional scaling (MDS) and the resulting MDS coordinates are then included as

covariates in a regression model. Key advantages of DBR are that both missing data

and mixed data types can be easily incorporated using Gower’s coefficient (Gower,

1971, Section 4.4).

DBR was introduced by Cuadras (1989) and has been subject to a number of devel-

opments (see Cuadras and Arenas, 1990; Cuadras et al., 1996; Boj et al., 2007a; Esteve

et al., 2009; Boj et al., 2010, 2012; Melo and Melo, 2013; Melo et al., 2015). Typically,

DBR has been used in the context of linear regression, for which the theoretical under-

pinnings are well established (see Cuadras, 1989; Cuadras and Arenas, 1990), but also

in generalised linear models (Boj et al., 2012), mixed models (Melo and Melo, 2013)

and beta regression (Melo et al., 2015). A clinical application of conventional DBR in

time-to-event analysis can be found in Fuller et al. (2002), in which survival times for

patients with brain gliomas were modelled using a Cox model with three MDS dimen-

sions based on gene expression profiles. Interestingly, DBR also appears to have arisen

independently in the genomic literature (see e.g. Schaid, 2010).

Typically, the number of latent dimensions included in a DBR model are obtained

using cross-validation, and can be numerous. Like PCR, and other ‘unsupervised’

methods, the main drawback is that the latent dimensions are not necessarily related

to the outcome variable. It is plausible then that several latent dimensions may be

dominated by variables which do not contribute to the predictive power of the model.

When using Gower’s coefficient, categorical variables tend to dominate the first few

MDS dimensions (Moustaki, 1996), so that a prognostic continuous variable may not

be well-represented unless many dimensions are included.

In this chapter, conventional DBR is introduced and an additional supervision step

is proposed in order for predictive variables to be better represented in fewer latent di-

mensions, at the expense of including an additional tuning parameter. Two approaches

are proposed. In the first, predictive variables are given a higher weighting in the

dissimilarity measure. In the second, candidate variables are screened and only the

most predictive variables are included in dissimilarity calculations. The second ap-

proach is analogous to that used with PCR previously (Bair and Tibshirani, 2004; Bair

et al., 2006). A simple simulated example is used to demonstrate how supervised DBR
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can outperform conventional DBR. The supervised approaches and conventional DBR

are then compared in a time-to-event analysis using a subgroup from a hepatocellular

carcinoma (HCC) data set.

The chapter is organised as follows: in Section 6.2, a linear predictor that is used

throughout the chapter is introduced, alongside some corresponding notation. In Sec-

tion 6.3, the DBR procedure is outlined. In Section 6.4, two different approaches

to supervising DBR are proposed, with the intention of obtaining well-fitting DBR

models with fewer latent dimensions than conventional DBR. In Section 6.5, K-fold

cross-validation is introduced and in Section 6.6 the proposed methods are applied to

a simulated data set in which the utility of the supervision step is demonstrated. In

Section 6.7, various DBR models are applied to a subgroup from a HCC data set.

Discussion is given in Section 6.8.

6.2 Covariate dimension reduced linear predictor

Indexing observations as i = 1, . . . , N , let X = (X1,X2) represent an N × P matrix

of predictor variables. X1 contains so-called ‘protected covariates’ (N × P1) and X2

contains the ‘unprotected covariates’ (N × P2), which will be subjected to dimension

reduction. If P1 = 0 then all variables will be subjected to dimension reduction (the

usual case in DBR). Let Z denote an N × S matrix which is a representation of X2,

obtained using some dimension reduction method, such as MDS. The columns of Z are

indexed by s = 1, . . . , S and S ≤ P2. The observed matrices are denoted as x, x1, x2

and z. A linear predictor for the ith subject is then given by

η(x1i, zi) = βᵀx1i + γᵀzi, (6.1)

where β (P1×1) and γ (S×1) are vectors of coefficients for x1 and z, respectively. This

linear predictor could be used in any linear model e.g. linear regression, generalised

linear model or Cox regression model, depending on the nature of the outcome variable.

Bøvelstad et al. (2009) fitted Cox regression models with linear predictors of this form

which they referred to as ‘clinico-genomic’ models, with clinical (low-dimensionality)

and genomic (high-dimensionality) covariate vectors included in x1 and x2, respectively.

6.3 Distance-based regression

In DBR, a model of the form of equation 6.1 can be fitted using classical or metric

MDS to obtain z. The following steps are undertaken:

• Step 1. Using a preferred dissimilarity measure, e.g. Gower’s coefficient, calculate
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the N ×N dissimilarity matrix, δ, using x2.

• Step 2. Specify the number of MDS dimensions required, S, and use classical or

metric MDS to obtain an N × S MDS configuration, z. The final choice of S is

usually determined by cross-validation (Section 6.5).

• Step 3. Fit a regression model with linear predictor of the form of equation 6.1

to obtain estimates β̂ and γ̂.

For prediction it is necessary to be able to add further observations to the analysis.

For the N+1th observation, a predicted value for the outcome variable, ŷN+1, can be

obtained by continuing the algorithm:

• Step 4. Estimate the position/coordinates of the N+1th observation on the MDS

configuration, ẑN+1 (see Section 4.2.1).

• Step 5. Calculate the predicted value, ŷN+1, by substituting the parameter and

coordinate estimates into equation 6.1, i.e. using

η(x1,N+1, ẑN+1) = β̂
ᵀ
x1,N+1 + γ̂ᵀẑN+1.

Steps 4 and 5 can then be repeated for all test observations. Cuadras (1989) and

Cuadras and Arenas (1990) provide thorough detail on the theoretical properties of

DBR, but three pertinent points are: 1) the DBR model fit is invariant to the orientation

of the MDS configuration i.e. translation, scaling, rotation and reflection of the MDS

configuration will not affect the overall DBR model fit, 2) the number of parameters to

be estimated (largely determined by the number of latent dimensions) cannot exceed

the number of observations/events, as is usual in (non-penalised) regression, and 3) if

Euclidean distances and classical scaling are used then a DBR model can be equivalent

to PCR.

6.4 Supervision step

The main shortfall of conventional DBR is that there is no guarantee that those vari-

ables in x2 which are related to the outcome variable will be well-represented, or at

least not without possibly including many latent dimensions. Two possible approaches

to overcome this issue are now described.

6.4.1 Variable weighting

In the first proposed supervised approach, variables more strongly related to the re-

sponse are given a higher weighting in dissimilarity calculations. We refer to this
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method as variable weighted DBR (WDBR). For example, the weighted Euclidean

distance is given by

δij =

 P2∑
p=1

ωp(xip − xjp)2

1/2

,

for i = 1, . . . , N , j = 1, . . . , N and where ωp is the weight for the pth variable. The same

principle can be applied to other dissimilarity measures, such as Gower’s coefficient,

as discussed in Section 4.4. There are many possible weighting schemes that could be

used for WDBR. We propose to obtain the weight using

ωp =
aλp∑P2
q=1 a

λ
q

× P2, (6.2)

for p = 1 . . . , P2, where λ is a tuning parameter, λ ≥ 0, and each ap ≥ 0. The

denominator guarantees that
∑P2

p=1 ωp = P2. One way to obtain each ap would be to

fit p = 1, . . . , P2 models with linear predictor

η(x1i,x2ip) = β̂
ᵀ
x1i + α̂px2ip, (6.3)

where x2ip denotes the pth variable from the vector x2, for the ith subject, and let

ap =

∣∣∣∣ α̂p
se(α̂p)

∣∣∣∣ ,
where |.| denotes the modulus and se(.) is the standard error. A value of λ = 0 corre-

sponds to no weighting, i.e. conventional DBR, λ = 1 weights the variables according

to their standardised coefficients, λ > 1 accentuates the weights according to their

standardised coefficients (small standardised coefficients would correspond to weights

shrinking towards zero), and λ < 1 would give weights nearer to 1 than the standard-

ised coefficient. As with the number of latent dimensions, S, a suitable value for λ can

be obtained using cross-validation (Section 6.5).

6.4.2 Variable screening

Supervised PCR was introduced by Bair and Tibshirani (2004) and is where variables

are screened so that only those most strongly related to the response are included in a

PCR model. This approach is also compatible with DBR and we refer to it as variable

screened DBR (ScDBR). In this approach, models with a linear predictor of the form

of equation 6.3 are fitted, and only those variables for which the absolute standardised
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estimates exceed a tuning parameter, θ (θ ≥ 0), are retained, i.e. for which

∣∣∣∣ α̂p
se(α̂p)

∣∣∣∣ ≥ θ. (6.4)

A value of θ = 0 corresponds to conventional DBR and larger values for θ correspond

to a higher benchmark and fewer variables being included. As with S and λ, θ is a

tuning parameter that can be estimated by cross-validation (Section 6.5).

6.5 K-fold cross-validation

Conventional DBR includes a tuning parameter, S, the number of latent dimensions

required. The proposed supervised approaches include a second tuning parameter,

λ or θ, which, as will be demonstrated, can be used to reduce the total number of

dimensions, and hence parameters, required in a DBR model. One way of choosing

suitable values for tuning parameters is K-fold cross-validation (Hastie et al., 2003). In

K-fold cross-validation, the data set is randomly partitioned into K subsets of equal

size, k = 1, . . . ,K. The kth subset is held back (the ‘validation’ subset) and the model

is fitted to the remaining K − 1 subsets and then applied to the validation subset

(Figure 6.1). This process is repeated for each of the k = 1, . . . ,K folds and the

prediction error averaged. Commonly, values of 5 or 10 are chosen for K (see Hastie

et al., 2003, page 242 for further discussion).

In order to find the optimal values for the tuning parameter(s), the cross-validation

process is repeated for each row of a prespecified grid of tuning parameter values. The

tuning parameter values with the lowest average prediction error across the validation

subsets are selected. There is an important pitfall to be avoided here with supervised

DBR. The estimates, α̂p (p = 1, . . . , P2), need to be estimated separately for each fold,

i.e. observations in a validation subset cannot be used when training the model (see

Hastie et al., 2003, page 245).

TrainingTrainingTraining Training Validation

1 2 3 4 5 

Figure 6.1: Depiction of five-fold cross-validation. A regression model is trained on all
folds except the validation fold. The model is then tested on the validation fold and the
prediction error calculated. This process is repeated, setting each fold as the validation
fold in turn, and prediction errors are averaged over validation folds.
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6.6 A simulated example

A simulated example is now used to illustrate the behaviour and performance of the

proposed supervised approaches compared with conventional DBR. P = 200 variables,

for N = 100 observations, were simulated from a multivariate normal distribution for

which all variables had a true mean of 0 and a standard deviation of 1. A representation

of the true correlation matrix for the simulated data is depicted in Figure 6.2; the

two blocks correspond to variables 1, . . . , 10 and 11, . . . , 20, respectively, which are

correlated within blocks. A continuous outcome variable was simulated as y = xᵀβ+ε,

where ε is a standard normal variable with a mean of 0 and a standard deviation of 5,

and β is a vector of true coefficients of length P : β1, . . . , β20 = 3 and β21, . . . , β200 = 0.

An independent test data set was also simulated in the same way. No variables were

‘protected’ and so P2 = P = 200, and P1 = 0.

0.4

0.4

0.2

0.2
0

0

Figure 6.2: A representation of the correlation matrix used to generate multivariate
normal data in the simulated example. The two blocks represent variables 1, . . . , 10
and 11, . . . , 20, respectively. These blocks of variables are correlated within block, with
respective correlation coefficients of 0.4 and 0.2. Otherwise, variables were simulated
as uncorrelated.

6.6.1 Statistical methods

DBR, WDBR models and ScDBR models were fitted by least squares. Five-fold cross-

validation was used to estimate the optimal tuning parameters; the same folds were used

for all models. For all models, the number of dimensions permitted was S = 1, . . . , 80.

Tuning grid values for λ were 0 to 15 in steps of 0.25, and for θ were 0 to 7.5 in steps of

1.25. Note that WDBR with λ = 0 and ScDBR with θ = 0 correspond to conventional

DBR. Classical scaling was used to find z and dissimilarities were calculated using the

Euclidean (or weighted Euclidean) distance. In addition to the cross-validation process

described in Section 6.5, final trained models were also applied to the independent test
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data set. Gower’s add-a-point method (Section 4.2.1) was used to add test observations.

R2, root mean square error (RMSE) and mean absolute error (MAE) were calculated

for the training, validation and test data sets.

6.6.2 Results

The optimal results, i.e. tuning parameters and values that correspond to the lowest

mean RMSE across the validation folds, are presented in Table 6.1. DBR selected

the most latent dimensions, 63, and was the worst fit to the validation data, by a

considerable margin. WDBR provided the best fit, although did so with only slightly

fewer latent dimensions than DBR, 56. ScDBR provided a considerably better fit than

DBR, and did so using only 14 latent dimensions. For a more complete picture, however,

it is necessary to consider the curves in Figures 6.3 and Figures 6.4.

Model Ŝ RMSE R2 MAE

DBR 63 8.11 0.77 6.23

WDBR (λ̂ = 1.25) 56 6.20 0.86 4.98

ScDBR (θ̂ = 2.375) 14 6.39 0.82 5.19

Table 6.1: Comparison of DBR, WDBR and ScDBR with optimal tuning parameter
values selected using five-fold cross-validation. RMSE, R2 and MAE are average values
over the validation folds which, by definition, were excluded from model training.

In Figure 6.3, WDBR results are presented for the full sequence of latent dimensions

with λ held fixed at: 0 (conventional DBR, black line), the optimal value (λ̂ = 1.25,

blue line) and at λ = 10 (grey line). Note that, strictly speaking, the ‘optimal’ λ̂ is

only optimal at Ŝ = 56 (Table 6.1). The dashed black lines are the values for the true

data-generating model and are a benchmark to identify over and under-fitting. Firstly,

notice that as the number of dimensions increases, the fit to the training data improves

for all models, as expected, Figure 6.3(a) and (d). All curves exceed the true line at

some point, implying that overfitting might be expected if too many latent dimensions

are used with WDBR. WDBR with optimal λ̂ improves upon DBR for any number of

latent dimensions. The grey line, WDBR with λ = 10, demonstrates that a fit nearly

as good as optimal WDBR can actually be obtained in very few (approximately 10-15)

dimensions, see Figure 6.3(b), (c), (d) and (e). Whilst the fit appears to deteriorate

when λ is high and there are too many latent dimensions, in practice a cross-validated

S would be low with such a high λ.

In Figure 6.4, ScDBR results are presented for the full sequence of latent dimensions

with θ held fixed at: 0 (conventional DBR, black line), the optimal value (θ̂ = 2.375,

blue line) and at θ = 3 (grey line). Again, strictly speaking, the ‘optimal’ θ̂ is only

optimal at Ŝ = 14 (Table 6.1). Clearly, ScDBR outperforms DBR for any number of

latent dimensions and attains its best fit with very few latent dimensions. There is no
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improvement in fit beyond approximately 15 dimensions. Overfitting to the training

data also appears to be less pronounced than WDBR, Figures 6.3 and 6.4, panels (a)

and (d).

A ridge regression model (Hoerl and Kennard, 1970), a linear model in which pa-

rameter estimates are penalised and shrunk towards zero was also fitted to these data

(Figures 6.3 and 6.4, red dashed line). The fit was similar between ridge regression and

optimal WDBR and ScDBR for the validation data, Figures 6.3 and 6.4, panels (b) and

(e). Ridge regression performed better than WDBR and ScDBR on the independent

test data set, Figures 6.3 and 6.4, panels (c) and (f). Ridge regression was chosen as it

was the best performing method in two simulation studies previously (Bøvelstad et al.,

2007, 2009).
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Figure 6.3: Results for WDBR models with increasing numbers of latent dimensions and various values for the tuning parameter, λ, fitted to
training, validation and test data sets. λ = 0 corresponds to conventional DBR (black solid line). λ̂ is the optimal value selected by five-fold
cross-validation (blue solid line). The true data-generating model (black dashed line) and a ridge regression model (red dashed line) are also
depicted. WDBR outperforms standard DBR whilst using fewer latent dimensions.
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Figure 6.4: Results for ScDBR models with increasing numbers of latent dimensions and various values for the tuning parameter, θ, fitted to
training, validation and test data sets. θ = 0 corresponds to conventional DBR (black solid line). θ̂ is the optimal value selected by five-fold
cross-validation (blue solid line). The true data-generating model (black dashed line) and a ridge regression model (red dashed line) are also
depicted. ScDBR outperforms standard DBR whilst using fewer latent dimensions.
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6.7 Subgroup analysis of the hepatocellular carcinoma

data set

A subgroup of patients from the HCC data set are now analysed. The subgroup selected

are 149 palliative HCC patients with primary aetiology recorded as ‘alcoholic’ (taken

from groups I and IV, see Section 1.6.1). This subgroup was then further split into 120

patients in the training/validation data set and 29 patients in the test data set. The

patients in the test data set are part of a cohort which were recruited specifically for

internal validation of a diagnostic model in the original study (Johnson et al., 2014).

There are 96 (80%) and 16 (55%) recorded deaths (‘events’) in the training/validation

and test data sets respectively

This subgroup, like the full HCC set, contains considerable amounts of missing

values (see Section 6.7.2). The purpose of the analysis is to fit and compare distance-

based overall survival (Cox) regression models to all patients in the training/validation

data set, and evaluate their usefulness in prognosis using the test data set.

6.7.1 Clinical variables

Fox et al. (2014) used a version of the HCC data set to model the survival prognosis

of HCC patients using three biomarkers: AFP, L3 and DCP, as well as Bilirubin and

Albumin. These variables were discussed previously in Sections 1.6.1 and 5.10.1. Other

continuous variables in this data set are: Age, Aspartate aminotransferase (AST),

Alanine aminotransferase (ALT), International normalised ratio (INR) and Creatinine.

AST and ALT are enzymes found in the liver which leak into the bloodstream when

liver cells are damaged, INR is a test of how quickly blood clots (higher INR corresponds

to slower clotting), and creatinine is a biological waste product with low values being

indicative of poor liver function.

A further 30 categorical variables are also available for analysis and are listed,

along with their categories/levels, in Table 6.3. Of note are: World Health Organisa-

tion (WHO) Performance Status (ranging from normal physical function to completely

disabled), Ascites (the accumulation of protein-containing fluid within the abdomen),

T-stage (size of the primary tumour), N-stage (lymph node involvement) and M-stage

(metastases).

6.7.2 Data handling

Only 37 of 120 patients (31%) in the training/validation data set have complete data,

with varying amounts of missing data across variables (Tables 6.2 and 6.4). If a

complete-case analysis was undertaken, only 28 events would be available.
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Of the variables used by Fox et al. (2014), complete data are only available for

Bilirubin* and Albumin* for the training/validation data set (see Table 6.2). These

variables were therefore chosen to form the set of ‘protected covariates’ and are included

in x1, so that P1 = 2. The remaining P2 = 38 variables (8 continuous, 30 categorical)

were to be subjected to dimension reduction and included in x2. Continuous variables

were centered and scaled; an asterisk denotes that the transformed version is being

referred to.

Observed frequencies for the categorical variables are presented in Table 6.4. Note

that some categories are quite sparse. The use of sparse categorical variables in DBR

and supervised DBR is considered further in Section 6.8.

Not missing Missing

DCP* 67 53
AFP* 119 1

L3* 67 53
Bilirubin* 120 0
Albumin* 120 0

Age* 120 0
AST* 120 0
ALP* 120 0
INR* 116 4

Creatinine* 120 0

Table 6.2: Frequencies of missing values for 10 continuous variables in the HCC train-
ing/validation data set. An asterisk indicates that the variable has been centered and
scaled.
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Level 1 Level 2 Level 3 Level 4 Level 5

Sex Female Male
Ethnicity Caucasian Asian Indian Subcontinent Asian Oriental Afro-Caribbean Other

WHO Performance Status 0 1 2 3 4
Chronic Liver Disease No Yes

Diabetes No Yes
Chronic Hepatitis No Yes

HBV No Yes
HCV No Yes

Autoimmune No Yes
Haemochromatosis No Yes

NAFLD/NASH No Yes
Cirrhosis No Yes

Pain No Yes
Weight Loss No Yes

Malaise No Yes
Nausea/Vomiting No Yes

Diarrhoea No Yes
Decompensated Liver Disease No Yes

Haemoperitoneum No Yes
Symptomatic No Yes

Hepatomegaly No Yes
Stigma of Liver Disease No Yes

Ascites No Yes
Encephalopathy No Yes

Child-Pugh Score A B C
Tumour Type Solitary Multifocal Metastatic

Vascular Invasion None Vascular Invasion Minor Vascular Invasion Hepatic vein Other
T-Stage 0/1 2 3 4
N-Stage No Yes
M-Stage No Yes

Table 6.3: Levels for the 30 categorical variables in the HCC data set.
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Level 1 Level 2 Level 3 Level 4 Level 5 Not missing Missing

Sex 11 109 120 0
Ethnicity 112 5 0 0 3 120 0

WHO Performance Status 26 50 38 3 1 118 2
Chronic Liver Disease 4 112 116 4

Diabetes 74 45 119 1
Chronic Hepatitis 72 27 99 21

HBV 93 5 98 22
HCV 70 28 98 22

Autoimmune 119 1 120 0
Haemochromatosis 114 6 120 0

NAFLD/NASH 110 10 120 0
Cirrhosis 10 97 107 13

Pain 95 18 113 7
Weight Loss 102 9 111 9

Malaise 96 14 110 10
Nausea/Vomiting 108 4 112 8

Diarrhoea 110 3 113 7
Decompensated Liver Disease 89 19 108 12

Haemoperitoneum 112 1 113 7
Symptomatic 47 65 112 8

Hepatomegaly 62 43 105 15
Stigma of Liver Disease 86 17 103 17

Ascites 79 41 120 0
Encephalopathy 103 13 116 4

Child-Pugh Score 78 34 7 119 1
Tumour Type 52 64 0 116 4

Vascular Invasion 80 28 1 3 2 114 6
T-Stage 2 35 26 54 117 3
N-Stage 112 5 117 3
M-Stage 106 10 116 4

Table 6.4: Frequencies of observed categories and missing data for 30 categorical variables in the HCC training/validation data set. The
levels for each variable are detailed in Table 6.3.

120



6.7.3 Statistical methods and software

Cox regression models were used for all survival models, with Efron’s methods for

ties, and classical scaling for MDS analyses. Gower’s coefficient was used to calculate

dissimilarities, as described in Section 4.4, with two-level categorical variables treated as

symmetric. Gower’s ‘add-a-point’ method (Gower, 1968) was used to add test points to

an MDS configuration, as described in Section 4.2.1. DBR, WDBR and ScDBR survival

models were fitted, using the procedure described in Section 6.3. Repeated five-fold

cross-validation (10 repeats) was used to estimate optimal tuning parameters. The

statistic used for cross-validation was the concordance index (see Section 5.8.2). Up to

25 latent dimensions were permitted for each method, and grids of possible values were

constructed for both λ and θ from 0 to 2 in steps of 0.25. Some preliminary analyses

showed that higher values would not be useful for this data set.

In order to estimate weights for WDBR and select variables for ScDBR, the following

Cox models were first fitted for each candidate variable in x2:

h(t|Albumin*,Bilirubin*,Candidatep) =

h0(t) exp(β̂1Albumin* + β̂2Bilirubin* + α̂pCandidatep), (6.5)

and the standardised coefficient, z-value = α̂p/se(α̂p), recorded. In the case of multiple

degree of freedom variables (e.g. WHO Performance Status), the largest absolute z-

value was recorded. Note that, due to missing data, modelling in this way means that

patients are removed casewise so that different subsets of patients are modelled for each

candidate variable. This aspect is discussed in more detail in Section 6.8.

All statistical analyses were conducted using R software (R Core Team, 2017, Version

3.5.2). Dissimilarities were calculated using the daisy() function from the cluster

package (Maechler et al., 2019). Cox models were fitted using the coxph() function

from the survival package (Therneau, 2015). Classical scaling was implemented using

the cmdscale() function. User-written R code was used for all DBR models and cross-

validation.

6.7.4 Results

Median survival times for the training and test data were 419 and 338 days from

diagnosis, respectively, Figure 6.5(a). The eigenvalues for the classical scaling solution

using the (unweighted) dissimilarity matrix are depicted in Figure 6.5(b). There are 40

positive eigenvalues, but many are very small, suggesting that even without weighting

or screening, dimension reduction is viable.

The z-values for the P2 candidate variables are depicted in Figure 6.6. The largest
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Figure 6.5: (a) Kaplan-Meier curves for the training/validation and test data sets. (b)
Eigenvalues for a dissimilarity matrix obtained using Gower’s coefficient and using all
38 variables (8 continuous, 30 categorical). There are 40 positive eigenvalues but many
are very small.
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absolute z-value is for AFP*, implying that this variable would receive the highest

weight in WDBR.

Due to the amount of missing data and specifically the lack of complete cases with

events, a Cox model including all variables did not converge and stepwise selection

was not sensible due to different numbers of observations with complete data for each

candidate variable. A Cox model fitted to the combined training/validation data set

and including just Albumin* and Bilirubin* had a concordance of 0.70 which fell to

0.48 in the test data. The p-values for Albumin* and Bilirubin* were p = 0.005 and

p = 0.051, respectively.

Results for DBR, WDBR and ScDBR are depicted in Figure 6.7. Note that results

for the training and validation data sets are based on repeated cross-validation i.e. they

are mean values from 10 repeats with 5 validation folds. Also note that optimal λ̂ and

θ̂ were used for each number of dimensions, Figure 6.7(d) and (e). In Figure 6.7(a), the

concordance for the training data improves as the number of dimensions increases, for

all models, as expected. WDBR and ScDBR with optimal λ̂ and θ̂, respectively, have

higher concordance than DBR when the number of dimensions is low (less than 5), but

otherwise the models perform similarly. The same pattern is seen for the validation

data, Figure 6.7(b).

The optimal number of latent dimensions for conventional DBR is Ŝ = 8, as depicted

by the dashed line in Figure 6.7(b). This is in fact the best model overall since the

concordance for the validation data is highest at 0.77. For WDBR and ScDBR, Ŝ = 8

and λ̂ = θ̂ = 0 i.e. conventional DBR. Therefore, whilst WDBR and ScDBR offer

improved concordance when the number of dimensions is very low, conventional DBR

is the best performing model for this data set. The DBR model is a considerable

improvement over a model including the only the protected variables, Albumin* and

Bilirubin*.

In the test data set, Figure 6.7(c), the overall concordance is actually higher than in

the training and validation data sets. This is unusual but possible, and could be due to

the make-up of the test data set compared with the training/validation data set. The

interpretation is much the same as for the training and validation data sets: WDBR

and ScDBR outperform DBR when the number of dimensions is very low, but otherwise

results are similar or identical. A supportive comparison of the three methods in each

of the data sets is shown in Figure 6.8.
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Figure 6.6: z-values for each clinical variable obtained using the models with linear
predictors of the form of equation 6.5. AFP* has the largest absolute z-value, implying
that it would be weighted highest in WDBR. The overlaid vertical lines represent the
quantiles from a standard normal distribution that correspond to probabilities of 2.5%
and 97.5%.
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Figure 6.7: Comparison of the concordance for DBR, WDBR and ScDBR models across training, validation and test data sets. Values for
the training and test data sets are averages from repeated five-fold cross-validation. (a) WDBR and ScDBR provide the same or better
concordance than DBR to the training data, with fewer latent dimensions. (b) For < 8 dimensions, WDBR and ScDBR provide better
concordance with the validation data than DBR. However, the best model (dashed black line) is DBR with Ŝ = 8 , at which λ̂ = θ̂ = 0, i.e,
conventional DBR. (c) The concordance for the test data set is higher than for the training and validation data sets, but the comparison
between models is similar. (d, e) Optimal λ̂ and θ̂ at each number of dimensions. Note that many values are zero, corresponding to
conventional DBR.
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Figure 6.8: Pairwise comparison of the concordance for DBR with WDBR and ScDBR, respectively, across the training, validation and tests
data sets. Points in the lower triangle correspond to a better concordance for WDBR/ScDBR at the same number of dimensions as DBR.
Values for the training and test data sets are averages from repeated five-fold cross-validation.
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6.8 Discussion

In this chapter, DBR was outlined and two approaches to supervised DBR, variable

weighted and variable screened DBR, were proposed and explored. The purpose of

adding a supervision step to DBR was to obtain well-fitting models with fewer latent

dimensions than conventional DBR, at the expense of introducing an additional tuning

parameter. Using a simulated data set it was shown that both supervised approaches

can improve considerably upon conventional DBR. The utility of supervised and con-

ventional DBR approaches were demonstrated in a subgroup analysis of the HCC data

set.

In the simulated example, the proposed supervised DBR approaches considerably

improved upon conventional DBR. Whilst variable weighting produced the best fit to

validation and test data, variable screening produced only a slightly worse fit than

variable weighting, and did so using far fewer latent dimensions. The RMSE was used

to assess model fit but a penalised fit statistic, e.g. Adjusted R2 or AIC, could be used

to limit the number of latent dimensions. Moreover, as has been discussed previously

(Bøvelstad et al., 2007, 2009), optimal tuning parameter and hence predicted values

can be sensitive to the random partitions in K-fold cross-validation. Repeated five-fold

cross-validation was used in the HCC subgroup analysis to ameliorate this issue, but

repeated cross-validation was not computationally feasible for the simulated example

due to the dimensions of the tuning grids. An extensive simulation study is required

to further assess the properties of variable weighted and variable screened DBR.

The two key benefits of DBR that were focused on in this chapter were: 1) inclusion

of observations with missing data without the need for imputation, avoiding casewise

deletion of observations, 2) variables of mixed type are easily incorporated, in contrast

to some competitor methods such as PCR. A third key benefit not discussed so far is

that DBR is straightforward to apply using standard regression methods and software,

so that more advanced regression features, e.g. stratification, offsets etc. can be readily

applied, using regression procedures familiar to most statistical analysts. Partitioning

variables into protected covariates and those for dimension reduction in DBR is also

extremely easy.

The approach to handling missing data in Gower’s coefficient is worthy of further

discussion. This approach has been referred to as ‘variable skipping’, ‘available-case

analysis’ or less generously as ‘pairwise deletion’. Whilst more efficient than complete-

case analysis (i.e. casewise deletion), pairwise deletion has been shown to produce

biased parameter estimates when data are not MCAR (Little, 1992; Peugh and Enders,

2004). Moreover, whilst pairwise deletion was used here for the final supervised DBR

model, in the supervision step proposed in this chapter, observations with missing

data are removed casewise, meaning that different subsets of observations are used for

different estimates. In general, if there are missing data then supplementary analyses
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to DBR that use casewise deletion are not directly comparable. However, if data are

MCAR, the supervision step will not introduce bias.

In the simulated example, in which there were no missing data, all DBR methods

were outperformed by a ridge regression model. Ridge regression was chosen because

it performed best in two previous simulation studies (Bøvelstad et al., 2007, 2009).

Whilst a simulation study would be needed to further evaluate the performance of

supervised DBR, we would not expect it to outperform ridge regression. One reason is

that ridge regression outperformed supervised PCR in the aforementioned simulation

studies, which is a special case of variable screened DBR. DBR still holds the advantages

over ridge regression of being able to incorporate missing data and being able to fit

regression models with advanced features using standard software. Moreover, plotting

the dimensions of a DBR model may be informative for model and data interpretation.

In this chapter, a supervision step was proposed in which a simple regression model

including the protected covariates and one candidate predictor variable at a time was

proposed (see equation 6.3). The principle is that the candidate variable should con-

tribute to the predictive power of the model, over and above the protected variables.

This is somewhat simplistic however, as there is no guarantee that, once other vari-

ables are included, the variable of interest will still usefully contribute to the model.

A more complex multivariable model could be used in the supervision step, e.g. us-

ing stepwise selection or model averaging, but the complexity of the model would be

limited by the ratio of observations/events to parameters. Boj et al. (2007a) intro-

duced a non-parametric bootstrap approach to establish whether a predictor variable

contributes to the predictive power of linear-regression-based DBR model. In contrast,

the approach taken here was to test whether the variable may be useful before finding

latent dimensions, not after. The same univariable/multivariable concerns arise for

both approaches.

The model used in the supervision step proposed in this chapter (equation 6.3) was

only described for single degree-of-freedom candidate variables. In the HCC subgroup

analysis, for multiple degree-of-freedom variables (such as Child-Pugh score with cate-

gories A, B and C) the largest standardised parameter estimate was used for weighting

and variable screening. In principle, the average standardised parameter estimate or

an alternative approach, possibly using the deviance, could be used.

‘Sparse’ categorical variables, i.e. those for which some categories have low or zero

frequencies, in principle, are not a problem for DBR. As an extreme example, if all

patients were female and Sex was included as a variable amongst those for dimension

reduction, then the dissimilarity for all patients on this variable will just take the

value of zero. For supervised DBR, such variables still present an issue since regression

models with linear predictors of the form of equation 6.3 are used in the supervision

step and resulting estimates can be large or even infinite. Further, with K-fold cross-
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validation, such estimates can occur for some folds and not others. In the HCC subgroup

example, if this occurred then weights were fixed at zero in variable weighting and the

corresponding variable was not included in the variable screened model.

The weighting scheme proposed for variable weighted DBR essentially increases

the weight for standardised estimates greater than one and decreases the weight for

standardised estimates less than one, so that ‘one’ is a pivot point. Changing the

pivot point is trivial as it can be achieved by simply adding a constant to each a in

equation 6.2. Other weighting schemes may be more successful, and this is a useful

topic for future work.

In conclusion, DBR is a useful approach to regression modelling when there is a re-

quirement to reduce the dimensionality of the data set and/or include observations with

missing data, without the need for multiple imputation. In this chapter, two supervised

DBR approaches, variable weighted and variable screened DBR were proposed. It was

shown, using simulated and actual data, that an improved model fit can be obtained

with these approaches, using fewer latent dimensions than conventional DBR. The cost

of supervision is an additional tuning parameter. A simulation study is required to

further assess the properties of variable weighted and variable screened DBR.
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Chapter 7

Outcome-constrained and

outcome-transformed

multidimensional scaling

7.1 Introduction

In Chapters 5 and 6, MDS-based methods were used for visualisation and dimension

reduction, respectively. In this Chapter, two methods are developed for prediction

(using MDS directly as opposed to including MDS dimensions in a regression model)

and for visualisation of predictor and outcome data simultaneously.

In MDS, dissimilarities are typically based on measurements of independent or

‘predictor’ variables. Including dependent or ‘outcome’ data in an MDS configuration

can be useful to obtain effective visualisations of predictor and outcome data simul-

taneously, and can lead to MDS-based prediction methods. In this chapter, two new

approaches for incorporating outcome data into an MDS configuration are proposed for

the purposes of prediction and visualisation. Several such methods have been proposed

previously, and will be briefly described before the statistical details are presented.

Cox and Ferry (1993, CF) incorporated a two-level outcome variable into a non-

metric MDS solution with the purpose of classifying new observations. In CF, dis-

similarities between observations with different outcome values are accentuated before

applying non-metric MDS. A test observation can then be mapped on to the configu-

ration and classified using a discriminant rule. CF was shown to outperform Fisher’s

discriminant rule as a classification tool, particularly when there were a number of

outlying observations.
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Witten and Tibshirani (2011) introduced a ‘supervised’ version of least-squares

MDS (SMDS) in which a configuration of points is sought which simultaneously rep-

resents the dissimilarities from predictor variable data and separates observations with

different outcome measurements. A unique feature of SMDS is that all of the MDS

dimensions are supervised by the outcome variable. The authors describe how SMDS

can be used for classification when the outcome variable is nominal with two or three

categories. SMDS was shown to be competitive with a number of well-known classifi-

cation methods in a simulation study, to be useful for bipartite ranking, and to provide

effective data visualisations (Witten and Tibshirani, 2011; Witten, 2013).

In weakly constrained MDS (Borg et al., 2012, WCMDS), external constraints are

imposed on an MDS solution that are not strictly enforced (see also Borg and Lingoes,

1980). A classic example of WCMDS is where points representing colours on a colour

wheel are constrained to lie near to the circumference of a circle. To our knowledge,

WCMDS has not been used for prediction previously.

In this chapter, two simple and flexible extensions of MDS for inclusion of an

outcome variable into an MDS configuration are proposed. In the first, Outcome-

constrained MDS (OCMDS), a simple adaptation of WCMDS is proposed, whereby a

vector of outcome measurements is appended to the predictor variable matrix and then

given extra weight when calculating dissimilarities, before carrying out MDS. In the

second, Outcome-transformed MDS (OTMDS), the points on an MDS configuration are

transformed using simple linear transformations so that they better represent an out-

come variable. Transformations are applied to all dimensions simultaneously, so that,

like SMDS, all dimensions are supervised. With both of these proposed approaches,

either a categorical or continuous outcome can be used, without modification. As will

be shown, both OTMDS and OCMDS can be regarded as prediction tools that can also

provide effective visualisations of predictor and outcome data simultaneously.

The rest of the chapter is organised as follows: in Section 7.2 the details of existing

MDS-based methods and the newly proposed methods are given. In Section 7.3, a

simulation study is presented in which the performance of OCMDS and OTMDS as

classification tools is assessed. In Section 7.4, the utility of the newly proposed meth-

ods for prediction and visualisation is demonstrated using a hepatocellular carcinoma

(HCC) data set. Discussion is given in Section 7.5.

7.2 Methods

To introduce some general notation: X is an N × P matrix of predictor variables

for i = 1, . . . , N subjects, with observed values x. Let Z denote an N × S matrix

of MDS coordinates with observed values z and let Y represent an N × 1 vector of

outcome variables with observed values y. Let δ represent the N × N dissimilarity
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matrix obtained using a chosen dissimilarity measure with elements δij denoting the

dissimilarity between subjects i and j. Distances between observations on the MDS

configuration are denoted as dij and are equal to ‖zi−zj‖2, where ‖·‖2 is the Euclidean

norm.

A simple simulated data set is used to illustrate the effect of applying the various

MDS methods discussed in this chapter. Firstly, 100 observations were generated for

10 standard normal variables. Half of the observations were then assigned to outcome

group 1 and the the other half to outcome group 2. For group 1, a constant value of

0.05 was subtracted from all values and for group 2, 0.05 was added. Figure 7.1(a)

shows a two-dimensional classical scaling solution for these data, where it can be seen

that there is considerable overlap between groups.

7.2.1 Cox and Ferry’s approach

CF was developed as an MDS-based method for classifying observations and an example

CF configuration is shown in Figure 7.1(b). In this approach, a modified dissimilarity

matrix is subjected to non-metric MDS to obtain a representation of both predictor

and outcome data simultaneously, before using discriminant analysis to classify obser-

vations. Suppose that there are two groups labelled as 1 and 2 and let δrsij represent the

dissimilarity between the ith and jth subject in groups r and s, respectively. In CF,

before undertaking non-metric MDS, dissimilarities are accentuated to induce greater

between-group separation, so that

δ∗rsij = γδrsij ,

when r 6= s and otherwise δ∗rsij = δrsij , and where γ ≥ 1. Clearly, larger values of the

tuning parameter, γ, will result in greater separation between groups, but note that

values too large will result in degeneracy (see Cox and Ferry, 1993). In the example

in Figure 7.1(b), γ = 3 was used, which induces complete separation between groups,

whereas with standard metric MDS the groups overlap considerably, Figure 7.1(a).

Note that separation for CF primarily occurs in a single dimension. Once the MDS

configuration is obtained, a discriminant rule is found. A mapping is then estimated

using multivariate linear regression, i.e. by regressing the predictor measurements, x,

on the the resulting MDS configuration, z. The mapping can be used to add a test

observation to the plot, and the test observation is then classified according to the

derived discriminant rule. Cross-validation (see Section 6.5) can be used to select a

suitable value for γ.
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(b) CF, γ = 3
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(c) WCMDS/OCMDS, κ = 3

Dimension 1

D
im

en
si

on
 2

1
1

1

1

1

1

1

1

1
1

1

1

1

1 1

1

1

1 1

1

1

1

11

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

1
1

1

1 1

1

1

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

−4 −2 0 2 4

−
4

−
2

0
2

4

(d) SMDS, α = 0.7

Dimension 1

D
im

en
si

on
 2

1
1

1

1 11

1
1

1
1

1

1

1

1

11 1

1
1

1

1

1

1

1

11

1

11

1

11

1

1
1 1

1

11 1
1

1

11
1

1

1

1
1

1

2

2
2

2 2

2
2

2

2

2

2

2
2

2

2

2

2

2

2
2

2

2

2
2

2

2

2
2

2

22

2 2

2

2

2
2

2 2
2 2

2

2

2

2

2
2

2

2 2

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

(e) OTMDS, α = 0.7
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Figure 7.1: Comparison of different methods for incorporating a two-level outcome
variable into an MDS configuration. Simulated data consist of 100 observations, 10
(uncorrelated) independent normal random variables with means of -0.05 (group 1)
and 0.05 (group 2). Dissimilarities obtained using Euclidean distances: (a) Standard
MDS solution, (b) Cox and Ferry’s method with tuning parameter γ = 3, (c) WCMDS
(or equivalently OCMDS) with κ = 3, (d) SMDS with tuning parameter α = 0.7, (e)
OTMDS with α = 0.7
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7.2.2 Weakly constrained MDS

In WCMDS (Borg and Groenen, 2003, Chapter 10), an MDS configuration is con-

strained in some way, but the constraint is not strictly enforced. This is achieved using

two dissimilarity matrices which are specified to impose the required constraint. An

MDS configuration is then sought which minimises a weighted loss function, as will be

shown.

WCMDS is a very general technique in which many different types of constraint can

be imposed. However, for our purposes, an MDS configuration is sought for which the

distance between points on the MDS configuration is somewhat representative of the

dissimilarity between subjects with respect to both predictor and outcome measure-

ments, simultaneously. An example of WCMDS is given in Figure 7.1(c). Let δij(x)

and δij(y) denote the dissimilarities between subjects i and j for the predictor mea-

surements, x, and outcome values, y, respectively. A suitable MDS configuration can

then be found which minimises a penalised version of the usual Stress:

StressWCMDS =
N∑
i,j

[δij(x)− dij ]2 + κ
N∑
i,j

[δij(y)− dij ]2 ,

where κ ≥ 0. The second term is the penalty term for the fit to the outcome values,

with larger values of κ resulting in a greater penalty. As with CF, very large values for

the tuning parameter will result in degeneracy. In practice, if the same dissimilarity

measure is used for the two dissimilarity matrices, then the vector y can simply be

appended to x, and κ can be set as the weight for y when calculating the dissimilarities.

For example, if the outcome and predictor variables are all continuous and the weighted

Euclidean distance is used with WCMDS,

δij =

κ(yi − yj)2 +
P∑
p=1

ωp(xip − xjp)2

1/2

,

where ωp is the weight for predictor variable p. MDS is then carried out, as usual i.e.

there is no requirement for any specialised estimation routine. Moreover, WCMDS can

easily include a categorical or continuous outcome variable without modification.

7.2.3 Outcome-constrained MDS

To our knowledge, WCMDS has not been used for prediction previously. Consider

a test observation with vector of predictor measurements xN+1, for which the value

for the outcome variable, yN+1, is unknown. We propose OCMDS as a simple ex-

tension of WCMDS to predict yN+1. In OCMDS, the WCMDS procedure is carried
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out as described above, and a value for the outcome variable is specified, ỹN+1. The

test observation is then mapped to the MDS configuration using Gower’s add-a-point

method (Gower, 1968, see Section 4.2.1), with coordinates z̃N+1, and the value of the

Stress-based loss function is calculated as

StressOCMDS =

N+1∑
i,j

[
δij(x

′)− d′ij
]2

+ κ

N+1∑
i,j

[
δij(y

′)− d′ij
]2
, (7.1)

where x′ and y′ are the observed predictor matrix and outcome vector, respectively,

which include the values for the test observation, xN+1 and ỹN+1. Moreover, d′ij is

calculated using z′, which is the matrix of MDS coordinates including z̃N+1. This

process is repeated for different values of ỹN+1 and the estimated value, ŷN+1, is the

value of ỹN+1 which results in the minimum StressOCMDS. The only relevant terms in

StressOCMDS are actually those involving the test (N+1th) observation and therefore the

full summation over all i and j is not required. This approach to classifying observations

is similar to that used in SMDS, as will be shown. With OCMDS, κ is now a tuning

parameter and a suitable value can be found by cross-validation. Since WCMDS can

include a categorical or continuous outcome variable, by extension, so can OCMDS,

without any modification to the procedure.

7.2.4 Supervised MDS

For the methods discussed so far, separation between observations with different val-

ues for the outcome variable is induced, but it is not guaranteed that separation will

occur in all dimensions. In fact, for the the aforementioned methods, the fit to the

outcome variable tends to dominate one (usually the first) dimension. In SMDS, all

MDS dimensions are supervised, as shown in Figure 7.1(d). SMDS seeks a configura-

tion of points zi, . . . , zN ∈ RS for which δij ≈ dij , and so that zjs > zis tends to occur

for all s = 1, . . . , S dimensions when yj > yi. Witten and Tibshirani (2011) define a

Stress-based loss function for SMDS as

StressSMDS =
1

2
(1− α)

N∑
i,j

(δij − dij)2 + α

N∑
i,j:yj>yi

(yj − yi)
S∑
s=1

[
δij√
S
− (zjs − zis)

]2

,

where α ∈ [0, 1]. Like WCMDS, SMDS includes a penalty term, but a key distinction

is that with SMDS the penalty is based on dimension-specific absolute differences i.e.

zjs − zis, and includes a summation over the S dimensions. Iterative majorisation is

used to minimise StressSMDS. In order to classify a test observation, a similar method

as was described for OCMDS is used: z1, . . . , zN are held fixed, a value for ỹN+1

is specified, and iterative majorisation is used to find the coordinates, z̃N+1, which
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minimise StressSMDS, including the test (N+1th) observation in the summations in

StressSMDS. As with OCMDS, the process is repeated for different values of ỹN+1, and

ŷN+1 is the value of ỹN+1 which minimises StressSMDS.

With SMDS, all dimensions are supervised and an iterative majorisation routine is

used to minimise a supervised loss function. The estimation routine presented in Wit-

ten and Tibshirani (2011) is specifically for a two-level outcome variable and requires

modification for other situations. As can be seen in Figure 7.1(d), for a two-dimensional

SMDS configuration, observations with different class labels are forced towards oppos-

ing corners of the plot. Another way of forcing observations to the corners of the plot is

by using simple linear transformations, and this leads us on to the OTMDS proposal.

7.2.5 Outcome-transformed MDS

OTMDS is now introduced and is where an MDS configuration is found and then

subsequently transformed so that the dimensions better correspond to the outcome

variable, as shown in Figure 7.1(e). As can be seen, a similar effect to SMDS can be

achieved. A direct comparison of OTMDS and SMDS for different tuning parameter

values is given in Figure 7.2. The steps involved in the proposed OTMDS approach are

now described:

• Step 1. Using a preferred dissimilarity metric, calculate the N ×N dissimilarity

matrix, δ, using x.

• Step 2. Use MDS to obtain an N × S MDS configuration, z = (z1, . . . , zS)ᵀ.

• Step 3. Define a chosen orientation for the MDS solution by specifying S − 1

angles, θ = (θ1, . . . , θS−1)ᵀ, for an S-dimensional rotation matrix, R, and rotate

the MDS solution accordingly using

ż = zR.

For a two-dimensional solution,

R =

cos θ sin θ

-sin θ cos θ

 ,
rotates the configuration clockwise by θ radians or (θ × 180)/π degrees. Choices

for θ are discussed in Section 7.2.5.
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• Step 4. Centre and scale y to match the variance of żs using

y∗s =

√
Var(żs)

Var(y)
[y− E(y)] , (7.2)

for s = 1, . . . , S, and where E(·) and Var(·) denote the expectation and variance

operators.

• Step 5. Calculate the linear transformation that maps żs to y∗s, i.e. find as such

that y∗s = żs + as for s = 1, . . . , S:

as = y∗s − żs.

• Step 6. Specify a value for the tuning parameter, α ∈ [0, 1], which controls the

extent to which each dimension is transformed according to the outcome variable,

and calculate the transformed coordinates, for s = 1, . . . , S, using

z∗s = żs + αas. (7.3)

The resulting configuration can then be plotted, as shown in Figure 7.1(e). The tuning

parameter, α, is effectively the proportion of complete transformation to use, with

α = 1 corresponding to an exact reproduction of each y∗s and α = 0 corresponding

to no change in the configuration (other than the rotation). The effect of applying

different values for α is shown in Figure 7.2. As shown, α = 0 corresponds to no

change, intermediate values of α cause separation between groups in all dimensions,

and α = 1 corresponds to each group member taking the exact same coordinates. It is

useful to compare the results of α = 1 between OTMDS and SMDS; for SMDS there

is still some separation between points within groups.

In order to add a test observation, the OTMDS algorithm continues:

• Step 7. Specify a value for ỹN+1 and use Gower’s add-a-point formula to obtain

z̃N+1.

• Step 8. Calculate ˜̇zN+1 = z̃ᵀN+1R.

• Step 9. Repeat the transformations in Steps 5 and 6 for the test observation only.

In a similar way to OCMDS and SMDS, steps 7 to 9 are repeated for different specified

ỹN+1 values. The outcome value which results in the lowest value of the chosen loss

function is the predicted value, ŷN+1. StressSMDS is one possibility for the loss function.

As Witten and Tibshirani (2011) found for SMDS, empirically better prediction

results can be obtained by using the training observations to define a cut-point for
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choosing between different values of ỹN+1 (see Witten and Tibshirani, 2011, Section

3.1).

Rotation

The relative distances between objects are preserved for any rotation, reflection, trans-

lation or scaling of an MDS configuration (see e.g. Cox and Cox, 2000). The major

limitation of linearly transforming the MDS coordinates in OTMDS is that the solu-

tion is dependent on the orientation of the configuration. One possibility is to find

the optimal angle(s) by minimising the chosen loss function over θ for a fixed value

of α. For a two-dimensional solution, for which most applications of MDS are used,

θ can be found using a one-dimensional root finding algorithm, such as those in the R

functions optimize and uniroot. Alternatively, a one-dimensional grid search may be

feasible, particularly given that OTMDS is extremely computationally inexpensive and

an accuracy of one degree should be sufficient for most applications. For visualisation

purposes, it may be sufficient for the user to judiciously select the desired orientation.

7.3 Simulation study

A simulation study was conducted to assess the performance of OCMDS and OTMDS as

classification tools, compared with logistic regression, SMDS and CF. The simulation

conditions are the same as those described in Witten and Tibshirani (2011, Section

2.3), with the exception that a larger sample size scenario (N = 100) was added.

Briefly, observations were assigned to either group 1 or 2, which were of equal size, and

multivariate normal data were generated according to three data generating models

which are referred to as ‘Two-sided’, ‘Constant’ and ‘Linear’ (see Appendix D for

details). As well as the three data-generating models, the number of predictor variables,

P ∈ {5, 15}, and sample size, N ∈ {20, 50, 100}, were varied, giving 3 × 2 × 3 = 18

simulation scenarios. For each simulation scenario, 100 random samples of size N were

generated and these formed the training data sets. For each training data set, an

independent test data set containing 100 observations was generated. The models were

trained on a training data set and then tested on the corresponding independent test

data set. The proportion of classification errors in the test data set was calculated and

averaged within each simulation scenario.

To avoid the computational burden of cross-validating tuning parameters, values

were specified which were found to work well during some preliminary exploratory

analyses. For SMDS and CF, tuning parameter values were fixed at α = 1 and γ = 1.5,

respectively. Witten and Tibshirani (2011) showed that generally α = 1 worked best

for SMDS with these simulation conditions. For OCMDS, κ = 2 for all scenarios. For
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OTMDS, α = 1 was used for the Two-sided model and α = 0.1 for the Linear and

Constant data generating models.

Table 7.1 contains the average proportion of classification errors from the three

simulation conditions. For the Two-sided model, SMDS and OTMDS perform well,

whilst the remaining models struggle to classify observations at all. In this scenario,

the benefit of supervising multiple MDS dimensions is apparent. For the Linear sce-

narios, OCMDS, SMDS and CF exhibit the lowest error rates and outperform logistic

regression. For the Constant scenarios, all the models perform similarly well for P = 5,

but OCMDS was the best performing model when P = 15.

7.4 Analysis of the hepatocellular carcinoma data set

In this section, it is shown how OTMDS and OCMDS can be used for classification (di-

agnosis) using clinical data. A detailed example of the use of OTMDS for visualisation

of prognostic information using clinical data is also given. The HCC data set is used,

as described in Section 1.6.1.

7.4.1 Diagnosis

Johnson et al. (2014) developed a diagnostic model ‘GALAD’ for HCC. GALAD is a

predicted score obtained using multivariable logistic regression with three serological

biomarkers: AFP, L3 and DCP (see Section 1.6.1), as well as Sex and Age, for di-

agnosing HCC. GALAD was found to be an extremely effective diagnostic tool and

was recommended for use in clinical practice in conjunction with tumour biopsy and

radiography.

To compare the diagnostic performance of GALAD with OCMDS, OTMDS and

SMDS, a subset of patients from the HCC data set from those used in the original study

were used (i.e. Groups I and II, see Section 1.6.1). Moreover, analyses were limited

to those patients with complete data for all GALAD variables. Whilst the MDS-based

methods do not require data to be complete for an observation, only patients with

complete data were used for a fair comparison between these methods and GALAD.

The final data set was then split into training and testing subsets according to the

original study, giving: training set, N = 453 (207 HCC cases, 246 CLD controls) and

testing set, N=188 (96 HCC cases, 92 CLD controls).

The number of dimensions, S was fixed at 2 for all MDS-based methods. Age and

the biomarkers were log-transformed (base 10) for GALAD, as per the original study,

and additionally centred and scaled for the MDS-based methods. In some preliminary

exploratory work it was found that, for S = 2, it was best to effectively exclude Age by

setting the dissimilarity weight equal to zero. The weight for Sex was set to one tenth
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(b) SMDS, α = 0
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(c) OTMDS, α = 0.5
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(d) SMDS, α = 0.5
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(e) OTMDS, α = 1
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(f) SMDS, α = 1
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Figure 7.2: Comparison of the effects of tuning parameter α values on OTMDS and
SMDS. The clearest difference in the results of the two approaches can be seen in panels
(e) and (f) where α = 1.
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P N Data model Logistic SMDS CF OTMDS OCMDS

5 20 Two-sided 0.49 0.21 0.47 0.22 0.49
5 50 Two-sided 0.49 0.21 0.46 0.23 0.50
5 100 Two-sided 0.51 0.15 0.47 0.17 0.50
15 20 Two-sided 0.50 0.15 0.50 0.18 0.43
15 50 Two-sided 0.50 0.13 0.51 0.15 0.46
15 100 Two-sided 0.50 0.13 0.49 0.15 0.48

5 20 Linear 0.24 0.13 0.12 0.22 0.14
5 50 Linear 0.26 0.13 0.12 0.21 0.13
5 100 Linear 0.15 0.10 0.10 0.19 0.11
15 20 Linear 0.15 0.10 0.10 0.19 0.07
15 50 Linear 0.12 0.10 0.09 0.18 0.07
15 100 Linear 0.13 0.10 0.10 0.18 0.07

5 20 Constant 0.28 0.28 0.22 0.20 0.24
5 50 Constant 0.29 0.26 0.21 0.20 0.21
5 100 Constant 0.19 0.19 0.15 0.16 0.20
15 20 Constant 0.19 0.19 0.16 0.16 0.11
15 50 Constant 0.16 0.16 0.14 0.14 0.08
15 100 Constant 0.15 0.16 0.14 0.14 0.07

Table 7.1: Simulation results for 18 scenarios in which the numbers of observations (N),
predictor variables (P) and the type of data generating model were varied. Numbers
in the table correspond to the proportion of classification errors i.e. lower values are
better. Models used were logistic regression, SMDS (α = 1), CF (γ = 1.5) and OCMDS
(κ = 2), as well as OTMDS with α = 1 for the Two-sided model and α = 0.1 for the
Linear and Constant data generating models.

of the remaining variables since categorical variables tend to dominate an MDS con-

figuration. Whilst the GALAD logistic regression parameters and cut-point were fixed

according to the published model, for the MDS-based methods it was still necessary to

estimate the optimal tuning parameter. Five-fold cross-validation (see Section 6.5) was

used with five repeats giving: κ̂ = 1.5 (OCMDS), α̂ = 0.25 (OTMDS) and α̂ = 0.25

(SMDS).

The results are displayed in Table 7.2. OTMDS correctly classified 87.8% of obser-

vations (misclassifying 8 cases and 15 controls), OCMDS 84.0% (misclassifying 3 cases

and 27 controls), and SMDS 89.4% (misclassifiying 8 cases and 12 controls). GALAD

correctly classified 91.5% of observations (misclassifying 5 cases and 11 controls). A

visual comparison of the results can be found in Figures 7.3 and 7.4.

Clearly the aforementioned classification results may be dependent on the partic-

ular training/testing data partition (albeit the one used in the original study). As

an informal assessment of the sensitivity of the results to the choice of partition, the

analysis was repeated five times using five different partitions of the data set previously

used for training i.e. using 363 observations for training and 90 observations for testing,
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and repeating five times. The results are displayed in Table 7.3. On average, GALAD,

OCMDS, OTMDS and SMDS correctly classified 92.4%, 83.3%, 90.7% and 88.2% of

subjects, respectively.

7.4.2 Prognosis

In this section, it is demonstrated how OTMDS can be used as a visualisation tool with

a continuous external variable. Case and control-specific multivariable Cox regression

models (Cox, 1972) were first fitted to the full HCC data set (Groups I to IV, see

Section 1.6.1), adjusting for the variables used in the GALAD model, as identified in

the previous section. From these models, predicted conditional 3-year survival proba-

bilities were obtained. Note that the estimated 3-year survival probabilities for cases

and controls in this data set are approximately 17% and 86% for cases and controls,

respectively, emphasising the poor prognosis of patients with HCC. It is now shown

how OTMDS can use these predicted probabilities to supervise the MDS solution (note

though that a predicted probability is not an outcome variable, as such, but for visu-

alisation purposes this is not important).

Next, Gower’s coefficient (Gower, 1971) was used to calculate the dissimilarity be-

tween subjects. Sex was weighted as one tenth of the other variables, since categorical

variables tend to dominate MDS configurations when using Gower’s coefficient. Other

weights could be used. A two-dimensional classical scaling solution for these data

(equivalent to OTMDS with α = 0) is depicted in Figure 7.5(a), and is a good fit, with

73% of the total variation explained in two dimensions. The controls (black triangles)

form two distinct and relatively close-knit subgroups corresponding to males and fe-

males. The cases (gray circles) are far more disparate, but some of these observations

are positioned amongst the controls.

OTMDS was then used with α ∈ (0.3, 0.7, 0.95), as depicted in Figure 7.5(b) to (d).

The optimal angle (287◦) was obtained by minimising StressSMDS with α = 0.5. Any

α could be used, but it is best to use a single angle for all plots, for consistency. As

α increases, the observations are translated more closely to their conditional predicted

3-year survival probabilities; clearly the cases and controls diverge as the influence of

the predicted probabilities on the configuration increases.

In Figure 7.6, the same data as in Figure 7.5 are displayed, except now the plots have

been annotated to demonstrate how OTMDS might be used in more detail. Firstly,

the three arrows correspond to increasing values of the three biomarkers (arbitrary

magnitude).

Secondly, consider the two shaded regions in each panel of Figure 7.6 which contain

all of the cases (solid outline) and controls (dashed outline) with L3 values of 0%. In

Figure 7.6(a), the shaded regions are largely overlapping, however as α increases, they

soon diverge. The median predicted conditional 3-year survival probability for these
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(b) OTMDS, α̂ = 0.25
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(c) SMDS, α̂ = 0.25
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Figure 7.3: Internal validation 1: Comparison of methods for classifying HCC cases (circles) and controls (triangles). Training data (grey
symbols), correctly classified test data (green symbols) and incorrectly classified test data (red symbols). (a) OCMDS with κ̂ = 5, (b)
OTMDS with α̂ = 0.25, and (c) SMDS with α̂ = 0.25
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Incorrect Correct
Model Controls Cases Total Total % Sensitivity Specificity

GALAD 11 5 16 172 91.5 88.0 94.8
OCMDS 27 3 30 158 84.0 76.7 95.8
OTMDS 15 8 23 165 87.8 83.7 91.7
SMDS 12 8 20 168 89.4 87.0 91.7

Table 7.2: Classification results for the prospectively collected test subset of the HCC
data set using GALAD, OCMDS (κ̂ = 5), OTMDS (α̂ = 0.25) and SMDS (α̂ = 0.25).
Tuning parameters were obtained by five-fold cross-validation with five repeats using
an independent training data set.

Incorrect Correct
Model Sample Controls Cases Total Total % Sensitivity Specificity

1 3 4 7 83 92.2 93.9 90.2
2 3 4 7 83 92.2 93.9 90.2

GALAD 3 0 2 2 88 97.8 100.0 95.7
4 0 4 4 86 95.6 100.0 90.0
5 4 5 9 81 90.0 91.3 88.6

1 16 2 18 72 80.0 74.6 92.6
2 12 0 12 78 86.7 80.3 100.0

OCMDS 3 13 1 14 76 84.4 76.4 97.1
4 14 1 15 75 83.3 77.8 96.3
5 14 2 16 74 82.2 75.9 93.8

1 5 9 14 76 84.4 89.8 78.0
2 2 4 6 84 93.3 95.9 90.2

OTMDS 3 2 3 5 85 94.4 95.3 93.6
4 1 7 8 82 91.1 98.0 82.5
5 2 7 9 81 90.0 95.7 84.1

1 7 7 14 76 84.4 85.7 82.9
2 9 5 14 76 84.4 81.6 87.8

SMDS 3 2 2 4 86 95.6 95.3 95.7
4 2 8 10 80 88.9 96.0 80.0
5 7 4 11 79 87.8 84.8 90.9

Table 7.3: Classification results for five different samples of the HCC data set using
GALAD, OCMDS, OTMDS and SMDS, with tuning parameters obtained by five-fold
cross-validation with five repeats.

subjects is around 14% and 91% for cases and controls, respectively. Interestingly, the

range for the controls is also very wide at 38-100%, and this is clearly evident in the

spread of values in Figure 7.6(c) and (d).

Thirdly, two patients in Figure 7.6(a) who present with contrasting biomarker levels

are considered. The first subject (gray inverted triangle) has low L3 and high DCP

(<1st and 91st percentiles respectively) whilst the second subject (gray diamond) has

the opposite (99th and 40th percentiles respectively). However, as α increases, the two

observations converge towards their conditional predicted survival probability, which
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(a) GALAD
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(b) OCMDS, κ̂ = 5
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(c) OTMDS, α̂ = 0.25
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(d) SMDS, α̂ = 0.25
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Figure 7.4: Shaded classical scaling representations for a visual comparison of the results
displayed in Table 7.2. HCC cases (circles) and controls (triangles). Training data (grey
symbols), correctly classified test data (green symbols) and incorrectly classified test
data (red symbols). (a) OCMDS with κ̂ = 5, (b) OTMDS with α̂ = 0.25, and (c)
SMDS with α̂ = 0.25
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for both subjects is approximately 16%.

7.5 Discussion

In this chapter, OCMDS and OTMDS were introduced as new prediction and visuali-

sation tools for multivariate data. Both methods were shown to be simple and flexible

adaptations of MDS which, without modification, can be used with either a categorical

or continuous outcome variable. Using a clinical data set, both methods performed

well in classifying (diagnosing) cases and controls, compared with an established clin-

ical prediction tool based on logistic regression as well as with another MDS-based

method. A number of potential applications for OTMDS as an effective visualisation

tool were also demonstrated using clinical data. In a simulation study, both methods

were shown to perform competitively with other well-known classification methods.

All of the MDS-based methods discussed in this chapter rely on having sufficient

MDS dimensions to obtain a reasonable fit to the data. Two dimensions were used for

diagnosis in the clinical example, but in practice it may be necessary to increase the

number of dimensions until a suitable fit is found. Whilst the proposed approaches

compared well with the clinical prediction tool, GALAD, effectively only internal vali-

dation was conducted and it would be interesting to see how the results might differ on

an external validation data set. A detailed comparison of which subjects are correctly

classified by the MDS-based methods but incorrectly classified by GALAD could lead

to improvements in the GALAD model or to the use of a combination of statistical

approaches for HCC diagnosis.

In both OTMDS and SMDS, all dimensions are supervised simultaneously. Con-

trarily, in OCMDS and CF, supervision tends to occur in a single dimension (see Fig-

ure 7.1). The benefit of supervising multiple dimensions is apparent in the results from

data simulated from a ‘Two-sided’ model in the simulation study (Table 7.1) in which

CF and OCMDS exhibited approximately 50% misclassification rates compared with

≤ 23% with OTMDS and SMDS.

OTMDS is a heuristic approach. The MDS coordinates are translated simulta-

neously and by a fixed proportion of the optimal mapping. This has the favourable

property that the relative distance between two points with the same value for the out-

come variable is maintained. However, this approach limits the possible solutions, in

contrast with other MDS-based approaches which seek a globally optimum configura-

tion. Moreover, the performance of OTMDS can depend on the starting configuration

(which is effectively arbitrary in MDS). Despite these limitations, the simulation results

showed that OTMDS performed competitively with other classification methods when

a suitable rotational transformation was found. In exploratory work we have found

that a ‘good’, rather than optimal, orientation is usually sufficient. Moreover, for OT-
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Figure 7.5: TMDS plots of the HCC data set for α ∈ (0, 0.3, 0.7, 0.95). As α increases,
the observations are translated more closely to their conditional predicted 3-year sur-
vival probabilities; cases (circles) and controls (triangles) diverge as the influence of the
predicted probabilities on the configuration increases.
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Figure 7.6: Annotated TMDS plots of the HCC data set for α ∈ (0, 0.3, 0.7, 0.95).
Arrows represent the axes of the three serological biomarkers with arbitrary magnitude.
The shaded regions (‘convex hulls’) represent cases (solid border) and controls (dashed
border) that present with L3 values of zero. For further description, see the text in
Section 7.4.2.
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MDS, the Stress-based criterion introduced by Witten and Tibshirani (2011) was used

as a goodness-of-fit measure. If classical scaling is used then the Strain rather than the

Stress is minimised and a Strain-based loss function could be used instead.

OCMDS and OTMDS can be used with a continuous outcome variable without

modification and for OTMDS it was shown how effective visualisations of clinical data

can be obtained with a continuous variable. Whilst, in principle, OCMDS and OTMDS

can also be used for prediction with a continuous outcome variable, we have found that

generally they perform poorly. Some exploratory work is presented in Appendix D.

Performance was particularly poor when the relationship between predictors and out-

come was highly non-linear and non-monotonic. Polynomial, spline, or other non-linear

regression models should be preferred in these situations.

Conceptually, OTMDS and OCMDS work by distorting the (unsupervised) MDS

configuration and then using a supervised loss function to classify new observations.

Valid questions are: is it necessary to distort the MDS configuration in the first place?

And if so, do we need to use the same tuning parameter for the distortion of the MDS

configuration as is used in the loss function when classifying observations? In some

exploratory work, we have found that it is, a) not always essential to distort the MDS

configuration, but that usually improved results are obtained when doing so, b) it is

critical to supervise the loss function to effectively classify observations, c) generally,

better predictive results are obtained when the same tuning parameter is used for both

parts, but sometimes results equally as good can be obtained when the configuration

is distorted to a lesser extent. If the tuning parameter value is very high, then the

plot can be obscured, see e.g. Figure 7.3(a), so it is reassuring that good predictive

results can be obtained without having to obscure the plot so much. On the other

hand, finding optimal values amounts to optimising two tuning parameters, plus the

number of MDS dimensions if varied, giving three in total. It would be useful to see if

these findings apply to SMDS, particularly since the best tuning parameter value for

SMDS is usually 1, which makes the SMDS plot difficult to interpret.

A limitation of this work is the down-weighting of categorical variables in the clinical

examples. Sex was set to one tenth of the weight of the other variables as categorical

variables tend to dominate an MDS configuration using Gower’s coefficient. Other

weights could have been used. In principle, the weight could be optimised according to

some criterion, and this is an interesting subject for further work.

OCMDS and OTMDS are simple and flexible MDS-based prediction and visualisa-

tion tools. In this chapter, their utility was demonstrated using a clinical data set in

which they performed competitively with other classification methods and were shown

to be an effective visualisation tools for multivariate clinical data.
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Chapter 8

Discussion

8.1 Topics covered

The focus of this thesis was on developing and applying latent variable models in

clinical research. In particular, there was an emphasis on the use of latent variables in

time-to-event modelling. This thesis contains five pieces of original research based on

developments of either latent class methods (Chapters 2 and 3) or MDS (Chapters 5

to 7), for the statistical analysis of clinical data.

In Chapter 2, one, two and three-step approaches to latent class modelling with a

time-to-event distal outcome were introduced and the empirical properties of the cor-

responding latent class effect estimates were compared using Monte Carlo simulation.

To our knowledge, this was the first study to investigate various approaches to latent

class modelling when the distal outcome is a time-to-event variable, and contributes to

the emerging body of literature on latent class modelling with a distal outcome vari-

able. Additionally, a potential solution to the label switching problem in latent class

simulation studies was proposed.

In Chapter 3, a general joint latent class and time-to-event model was presented and

the user-written LCSM R function was described. Various joint models were applied to a

prostate cancer data set in which the identified latent classes were found to differ from

the clinically defined tumour stage, and there was evidence of a differential treatment

effect between latent classes on survival.

In Chapter 5, it was demonstrated how AFT models could be used to fit time-to-

event biplot axes with a measurement scale. With a time-to-event axis, a biplot can

be used to display the key features of a multidimensional data set and it’s association

with a time-to-event variable. To our knowledge, biplot axes for time-to-event data

have not been considered previously. The utility of MDS biplots with a time-to-event

axis was demonstrated using both simulated and clinical data sets.
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In Chapter 6, two approaches to supervised DBR were proposed and explored: vari-

able weighted and variable screened DBR. The purpose of adding a supervision step to

DBR was to obtain well-fitting models with fewer latent dimensions than conventional

DBR, at the expense of introducing an additional tuning parameter. Using simulated

data, it was shown that with both of the proposed supervised approaches it is possible

to improve considerably upon conventional DBR.

In Chapter 7, two novel approaches to incorporating an outcome variable into

an MDS configuration were proposed: outcome-constrained and outcome-transformed

MDS. It was shown how these methods could be used as prediction and visualisation

tools for multivariate clinical data. Both were shown to be simple and flexible adap-

tations of MDS. Using a clinical data set, these methods performed well in classifying

(diagnosing) cases and controls, compared with an established clinical prediction tool

based on logistic regression. In a simulation study, the proposed methods were shown

to perform competitively with other well-known classification methods.

8.2 Limitations and further work

In the simulation study in Chapter 2, one-step methods generally outperformed the

alternatives. However, the main criticism of one-step (and inclusive) methods is that

the distal outcome variable can influence latent class composition. A pragmatic solution

is to fit the model with and without the distal outcome variable, but a useful area of

further research would be to investigate the extent to which a time-to-event variable

could influence latent class composition, particularly if a non-parametric or piecewise

exponential baseline hazard function is assumed. It would also be interesting to see

how these methods perform under model misspecification e.g. if proportional hazards

are assumed but not met, what might be the impact on latent class composition?

Some inclusive three-step methods performed well in terms of bias, but not in terms of

confidence interval coverage. An alternative approach to obtaining confidence intervals,

such as bootstrapping, would be worthy of further investigation for inclusive methods.

For the author-written R function for joint latent class and time-to-event models

presented in Chapter 3, further work is required to extend the functionality and develop

a full R package.

The latent class models presented in Chapters 2 and 3 are examples of finite mix-

ture models. An inherent difficulty with mixture models is that the statistical analyst

can never be sure whether the latent classes identified correspond to genuine underlying

subgroups or whether they are a byproduct of the model finding that a mixture of para-

metric distributions improve the fit to the data. Collaboration with clinical colleagues

is important to verify that the subgroups are clinically plausible and, where possible,

the results should be supported by similar findings in other data sets. Sensitivity anal-
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yses in which manifest variables are added/removed may also be useful to assess the

influence of different variables on class composition.

For the time-to-event biplot axes in Chapter 5, it was shown how, in principle, a

biplot axis for a predictor variable could be related to a time-to-event biplot axis in order

to recover acceleration factors or hazard ratios directly from a biplot, by associating

biplot axis scales. The usefulness of this feature appears to be limited however, as

it seems that too much error is introduced for the approximation to be adequate. A

simulation study could be used to assess the accuracy of this approach further under

different conditions.

For the proposed supervised DBR approaches in Chapter 6, there are numerous

other statistical models based on distances/dissimilarities that share some of the ad-

vantages of DBR. Faraway (2014) discusses the use of dissimilarity matrices in regres-

sion in general, and even instances where an outcome matrix is a dissimilarity matrix.

‘Kernel’ methods cover a broad class of distance-based models commonly used in the

genomic literature, including Support Vector Machines and its relatives (Schaid, 2010).

More directly related to the work in Chapter 6 is the method of dissimilarity-based

Partial Least Squares (DB-PLS; Martin et al., 1995; Boj et al., 2007b), which is an

alternative to the supervised DBR approaches proposed here. In future work, it would

be useful to compare DB-PLS with variable-weighted and variable screened DBR, and

even evaluate other possible weighting schemes for variable-weighted DBR.

The MDS-based methods for visualisation and prediction discussed Chapter 7, rely

on having sufficient MDS dimensions to obtain a reasonable fit to the data. In practice

it may be necessary to increase the number of dimensions until a suitable fit is found,

although this would limit the usefulness of these methods as visualisation tools. Further

investigation of the use of the same or different tuning parameters in the transformation

of the plot, as well as in the Stress function is also an interesting area of further research

that also applies to the supervised MDS approach introduced by Witten and Tibshirani

(2011).

In Chapters 5 and 7, categorical variables were down-weighted, since categorical

variables tend to dominate an MDS configuration using Gower’s general coefficient. In

principle, it should be possible to find optimal weights according to some fit criterion

and this is an interesting topic for future research.
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Appendix A

Supplementary material to

accompany Chapter 2

A.1 Simulation of time-to-event data

Survival times were simulated in a similar way to that described by Bender et al.

(2005). Two classes, 1 and 2, and two treatment groups, A and B, were simulated

in each scenario. The reference survival curve used was based on the Kaplan-Meier

estimate of the gemcitabine arm in the ESPAC3v2 trial 1.6.2, Figure A.1.

Let S0 represent the reference survival curve for subjects belonging to true latent

class 2 and treatment group B (i.e. ci = 0 and zi = 0), so that survival probabilities

corresponding to proportional hazard effects can be obtained using

Si = S
exp(βzi+γjci)
0 ,

in this case for zi and ci ∈ {0, 1}. As described in Section 2.3.3, the hazard ratio

for the effect of Treatment A relative to Treatment B, exp(β), was fixed at 0.75 and

the hazard ratio for the effect of latent class 1 relative to latent class 2 was varied,

exp(γ1) ∈ {1, 1.5, 2, 3}. ‘True’ survival probabilities were obtained for each of the

four permutations of class and treatment over a sequence of 0 to 60 months in steps

of 0.1 months. High-dimensional spline fits were used to approximate these survival

curves, as shown for the reference survival curve in Figure A.1(a). The splines were

fitted separately to each of the four survival curves by regressing the time sequence on

polynomials of the survival probabilities. A survival probability was then simulated

for each subject from Uniform(0, 1) and a corresponding survival time obtained from

the relevant spline fit. Administrative censoring was applied at 60 months and uniform
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Figure A.1: Kaplan-Meier estimate of overall survival for the gemcitabine arm from
the ESPAC3v2 study and overlaid fitted models. (a) Fitted polynomial spline, Weibull
and log-logistic (parametric) models. (b) A piecewise exponential survival model with
five partitions approximates the Kaplan-Meier estimate well.
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censoring was added by generating censoring times from an exponential distribution

such that overall approximately 50% of survival times were right-censored.

A.2 Comparison of the use of different hazard functions

in three-step models

In this study, one and two-step models used a piecewise exponential baseline hazard

function whilst the three-step models used a Cox model in which the baseline hazard is

left unspecified. The choice of a piecewise exponential model for the one and two-step

models was primarily motivated by the fact that standard errors are easier to obtain

when there are few baseline hazard parameters (see Section 2.5). To illustrate that the

three-step methods are not disadvantaged by the choice of hazard function the table

below contains results from a small simulation study for Scenario 17 (Low entropy,

N = 500, HR=2). The results demonstrate that the results are practically unaffected

by the choice of baseline hazard function.

Model Estimate Bias CI Coverage (%)

MA using Cox model -0.30 0.39 23.4
MA using PE model -0.30 0.39 23.8

PA using Cox model -0.57 0.13 90.4
PA using PE model -0.57 0.13 90.7

Table A.1: Comparison of simulation results for modal assignment and partial assign-
ment when using unspecified (Cox) an piecewise exponential baseline hazard functions.
MA Modal assignment, PA Partial assignment. The results demonstrate that the sta-
tistical properties of the latent class effect estimates are practically unaffected by the
different hazard functions compared here.
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Appendix B

Supplementary material to

accompany Chapter 3

B.1 First-order derivatives used in Newton-Raphson

steps

In this section, first-order derivatives required for the Newton-Raphson steps in the

estimation routine are given. For a piecewise exponential baseline hazard submodel:

Fκpj =

N∑
i=1

xpiν
(r)
ij

[
1−

exp(xᵀ
iκj)∑J

k=1 exp(xᵀ
iκk)

]
,

Fβqj =
N∑
i=1

S∑
s=1

zqi

{
ψisδi − ψis

αs(ui − as−1) +
s−1∑
g=1

αg(ag − ag−1)

×
J∑
j=1

ν
(r)
ij exp(zᵀiβj + γj)

}
,

Fγj =

N∑
i=1

S∑
s=1

ν
(r)
ij ψis

{
δi −

αs(ui − as−1) +

s−1∑
g=1

αg(ag − ag−1)

 exp(zᵀiβj + γj).

For a Weibull submodel:

Fφ =
N∑
i=1

δi
φ

+ δi log(ti)− λ log(ti)t
φ
i

J∑
j=1

ν
(r)
ij exp(zᵀiβj + γj),
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Fβqj =

N∑
i=1

zqi

δi − λtφi J∑
j=1

ν
(r)
ij exp(zᵀiβj + γj)

 ,
Fγj =

N∑
i=1

ν
(r)
ij

[
δi − λtφi exp(zᵀiβj + γj)

]
.

B.2 Louis’s method

In this section, the requisite calculations for Louis’s method (Louis, 1982) to obtain

standard errors for the joint model described in Chapter 2 are given. For this purpose,

Louis’s method is extremely tedious as all first and second-order partial derivatives

of the expected complete data log-likelihood, as well as the covariances of all of the

first-order partial derivatives, are required.

For a given subject, the density function for the joint latent class and survival model

is

fY,T,∆|Z(y, t, δ|z) =
J∑
j=1

ηj

M∏
m=1

fYm|C(ym|j)fT,∆|Z,C(t, δ|z, j),

where
∑J

j=1 ηj = 1. Assuming only binary manifest variables (ym = 0, 1 for m =

1, . . . ,M),

P (Ym = 1|C = j) = πymmj(1− πmj)
(1−ym),

and assuming a piecewise exponential model for the survival time

fT,∆|Z,C(t, δ|z, j) =

S∏
s=1

[α0s exp(zᵀβ + γj)]
δψs ×

exp

{
− ψs

[
α0s(t− as−1) +

s−1∑
h=1

α0h(ah − ah−1)

]
exp(zᵀβ + γj)

}
.

The posterior probability of a given subject belonging to class j is obtained by

P (C = j|Y = y,Z = z, T = t,∆ = δ) = νj =
ηjfY|C(y|j)fT,∆|Z,C(t, δ|z, j)∑J
k=1 ηkfY|C(y|k)fT,∆|Z,C(t, δ|z, j)

,

and
∑J

j=1 νj = 1 for each subject. The observed data likelihood for N subjects is

L(θ) =

N∏
i=1

J∑
j=1

ηj

M∏
m=1

fYim|Ci
(yim|j)fTi,∆i|Zi,Ci

(ti, δi|zi, j).
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If class was known for each subject then the complete data likelihood would be

Lcomp(θ) =
N∏
i=1

J∏
j=1

[
ηj

M∏
m=1

fYim|Ci
(yim|j)fTi,∆i|Zi,Ci

(ti, δi|zi, j)
]vij

,

where vij is an indicator variable and each subject can only belong to one class. Assume

only two latent classes (J = 2) so that: vi2 = 1−vi1, η1 = 1−η2 but η2 is the parameter

to be estimated, and that γ1 = 0 for identifiability. The log-likelihood of the complete

data is given by

`comp(θ) =

N∑
i=1

J∑
j=1

vij log
[
ηj

M∏
m=1

fYim|Ci
(yim|j)fTi,∆i|Zi,Ci

(ti, δi|zi, j)
]
,

=
N∑
i=1

J∑
j=1

vij log(ηj) +

vij

[ M∑
m=1

yim log πmj + (1− yim) log(1− πmj)
]

+

vij

(
S∑
s=1

δiψis logα0s + δiψis(z
ᵀ
iβ + γj) −

ψis

[
α0s(ti − as−1) +

s−1∑
h=1

α0h(ah − ah−1)

]
exp(zᵀiβ + γj)

)
.

The Expected complete data log-likelihood, E[`comp(θ)], is just obtained by replacing

vij with νij , for i = 1, . . . , N and j = 1, . . . , J .
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B.2.1 First derivatives of the complete data log-likelihood

For convenience let the cumulative baseline hazard A0s =
[
α0s(ti − as−1) +

∑s−1
h=1 α0h(ah − ah−1)

]
. The partial first derivatives are then

given by:

∂`comp(θ)

∂η2
=

∂

∂η2

{
N∑
i=1

vi2 log η2 + (1− vi2) log(1− η2)

}
=

N∑
i=1

vi2
η2
− (1− vi2)

(1− η2)
,

∂`comp(θ)

∂πmj
=

∂

∂πmj

{
N∑
i=1

vij [yim log πmj + (1− yim) log(1− πmj)]

}
=

N∑
i=1

vij

[
yim
πmj
− (1− yim)

(1− πmj)

]
,

∂`comp(θ)

∂βq
=

∂

∂βq

{
N∑
i=1

J∑
j=1

vij

(
S∑
s=1

δiψis(z
ᵀ
iβ + γj)− ψisA0s exp(zᵀiβ + γj)

)}
,

=
N∑
i=1

J∑
j=1

vijziq

S∑
s=1

ψis

(
δi −A0s exp(zᵀiβ + γj)

)
,

∂`comp(θ)

∂γ2
=

∂

∂γ2

{
N∑
i=1

vi2

(
S∑
s=1

δiψis(z
ᵀ
iβ + γj)− ψisA0s exp(zᵀiβ + γ2)

)}
,

=
N∑
i=1

vi2

S∑
s=1

ψis

(
δi −A0s exp(zᵀiβ + γ2)

)
,

∂`comp(θ)

∂α0s
=

∂

∂α0s

{
N∑
i=1

J∑
j=1

vij

(
S∑

s′=1

δiψis′ logα0s′ + δiψis′(z
ᵀ
iβ + γj)− ψis′

[
α0s′(ti − as′−1) +

v−1∑
h=1

α0h(ah − ah−1)

]
exp(zᵀiβ + γj)

)}
,

=

N∑
i=1

J∑
j=1

vij

(
δiψis
α0s

− tis exp(zᵀiβ + γj)

)
,
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where tis is the amount of time that the ith subject contributes to the sth interval. The summations can be taken two steps further:

=
N∑
i=1

δiψis
α0s

− tis exp(zᵀiβ)

J∑
j=1

vij exp (γj),

=
N∑
i=1

[
δiψis
α0s

]
−
∑
i′∈Rs

[
ti′s exp(zᵀi′β)

J∑
j=1

vi′j exp (γj)

]
,

where the summation of all i′ ∈ Rs refers to all subjects at risk during the sth time period.

B.2.2 Covariance of the first derivatives of the complete data log-likelihood

Some useful covariance results:

Cov(X,Y ) = E[(X − E(X))× (Y − E(Y ))],

E(vij) = νij ,

E(v2
ij) = νij ,

E(vi1vi2) = 0.

The following covariances can then be obtained:

Cov

{
∂`comp(θ)

∂η2
,
∂`comp(θ)

∂η2

}
= Var

{
∂`comp(θ)

∂η2

}
=

N∑
i=1

νi1νi2

[
1

η2(1− η2)

]2

,
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Cov

{
∂`comp(θ)

∂η2
,
∂`comp(θ)

∂πmj

}
=

N∑
i=1

νi1νi2
1

η2(1− η2)

[
yim
πmj
− (1− yim)

(1− πmj)

]
if j = 2,

=

N∑
i=1

−νi1νi2
1

η2(1− η2)

[
yim
πmj
− (1− yim)

(1− πmj)

]
if j = 1,

Cov

{
∂`comp(θ)

∂η2
,
∂`comp(θ)

∂βq

}
=

N∑
i=1

νi1νi2
1

η2(1− η2)
ziq

S∑
s=1

ψis

(
δi −A0s exp(zᵀiβ)

)
[exp(γ2)− exp(γ1)],

=
N∑
i=1

νi1νi2
1

η2(1− η2)
ziq

S∑
s=1

ψis

(
δi −A0s exp(zᵀiβ)

)
[exp(γ2)− 1],

Cov

{
∂`comp(θ)

∂η2
,
∂`comp(θ)

∂γ2

}
=

N∑
i=1

νi1νi2
1

η2(1− η2)

S∑
s=1

ψis[δi −A0s exp(zᵀiβ + γ2)],

Cov

{
∂`comp(θ)

∂η2
,
∂`comp(θ)

∂α0s

}
=

N∑
i=1

νi1νi2
1

η2(1− η2)

[
− tis exp(zᵀiβ)[exp(γ2)− 1]

]
,

Cov

{
∂`comp(θ)

∂πmj
,
∂`comp(θ)

∂πlk

}
=

N∑
i=1

−νi1νi2

[
yim
πmj
− (1− yim)

(1− πmj)

][
yil
πlk
− (1− yil)

(1− πlk)

]
if j 6= k,

=

N∑
i=1

νi1νi2

[
yim
πmj
− (1− yim)

(1− πmj)

][
yil
πlk
− (1− yil)

(1− πlk)

]
if j = k,
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Cov

{
∂`comp(θ)

∂πmj
,
∂`comp(θ)

∂βq

}
=

N∑
i=1

νi1νi2

[
yim
πmj
− (1− yim)

(1− πmj)

][
ziq

S∑
s=1

ψis

(
δi −A0s exp(zᵀiβ)

)
[exp(γ2)− 1]

]
if j = 2,

=

N∑
i=1

νi1νi2

[
yim
πmj
− (1− yim)

(1− πmj)

][
ziq

S∑
s=1

ψis

(
δi −A0s exp(zᵀiβ)

)
[1− exp(γ2)]

]
if j = 1,

Cov

{
∂`comp(θ)

∂πmj
,
∂`comp(θ)

∂γ2

}
=

N∑
i=1

νi1νi2

[
yim
πmj
− (1− yim)

(1− πmj)

]
S∑
s=1

ψis[δi −A0s exp(zᵀiβ + γ2)]if j = 2,

=
N∑
i=1

−νi1νi2

[
yim
πmj
− (1− yim)

(1− πmj)

]
S∑
s=1

ψis[δi −A0s exp(zᵀiβ + γ2)]if j = 1,

Cov

{
∂`comp(θ)

∂πmj
,
∂`comp(θ)

∂α0s

}
=

N∑
i=1

νi1νi2

[
yim
πmj
− (1− yim)

(1− πmj)

][
− tis exp(zᵀiβ)[exp(γ2)− 1]

]
if j = 2,

=

N∑
i=1

νi1νi2

[
yim
πmj
− (1− yim)

(1− πmj)

][
− tis exp(zᵀiβ)[1− exp(γ2)]

]
if j = 1,

Cov

{
∂`comp(θ)

∂βq
,
∂`comp(θ)

∂βr

}
=

N∑
i=1

νi1νi2

[
ziq

S∑
s=1

ψis[δi −A0s exp(zᵀiβ)[1− exp(γ2)]

][
zir

S∑
s=1

ψis[δi −A0s exp(zᵀiβ)[1− exp(γ2)]

]
,

=

N∑
i=1

νi1νi2ziqzir

[
S∑
s=1

ψis[δi −A0s exp(zᵀiβ)[1− exp(γ2)]

]2

,

Cov

{
∂`comp(θ)

∂βq
,
∂`comp(θ)

∂γ2

}
=

N∑
i=1

νi1νi2

[
S∑
s=1

ψis[δi −A0s exp(zᵀiβ + γ2)]

][
ziq

S∑
s=1

ψis[δi −A0s exp(zᵀiβ)[exp(γ2)− 1]

]
,
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Cov

{
∂`comp(θ)

∂βq
,
∂`comp(θ)

∂α0s

}
=

N∑
i=1

νi1νi2

[
ziq

S∑
s′=1

ψis′ [δi −A0s′ exp(zᵀiβ)][1− exp(γ2)]

][
− tis exp(zᵀiβ)[1− exp(γ2)]

]
,

Cov

{
∂`comp(θ)

∂γ2
,
∂`comp(θ)

∂γ2

}
= Var

{
∂`comp(θ)

∂γ2

}
=

N∑
i=1

νi1νi2

[
S∑
s=1

ψis[δi −A0s exp(zᵀiβ + γ2)]

]2

,

Cov

{
∂`comp(θ)

∂γ2
,
∂`comp(θ)

∂α0s

}
=

N∑
i=1

νi1νi2

[
S∑

s′=1

ψis′ [δi −A0s′ exp(zᵀiβ + γ2)]

][
− tis exp(zᵀiβ)[exp(γ2)− 1]

]
,

Cov

{
∂`comp(θ)

∂α0s
,
∂`comp(θ)

∂α0s′

}
=

N∑
i=1

νi1νi2

[
− tis exp(zᵀiβ)[1− exp(γ2)]

][
− tis′ exp(zᵀiβ)[1− exp(γ2)]

]
,

=

N∑
i=1

νi1νi2tistis′

[
exp(zᵀiβ)[1− exp(γ2)]

]2

.

B.2.3 Second derivatives of the complete data log-likelihood

∂2`comp(θ)

∂η2
2

=
∂

∂η2

{
N∑
i=1

vi2
η2
− (1− vi2)

(1− η2)

}
=

N∑
i=1

−vi2
η2

2

− (1− vi2)

(1− η2)2
,

∂2`comp(θ)

∂π2
mj

=
∂

∂πmj

{
N∑
i=1

vij

[
yim
πmj
− (1− yim)

(1− πmj)

]}
=

N∑
i=1

vij

[
− yim
π2
mj

− (1− yim)

(1− πmj)2

]
.

All off-diagonal elements containing η2 and πmj are equal to zero.
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∂2`comp(θ)

∂βq∂βr
=

∂

∂βr

{
N∑
i=1

J∑
j=1

vijziq

S∑
s=1

ψis

(
δi −A0s exp(zᵀiβ + γj)

)}
,

=
N∑
i=1

J∑
j=1

vijziqzir

S∑
s=1

−ψisA0s exp(zᵀiβ + γj),

∂2`comp(θ)

∂βq∂γ2
=

∂

∂γ2

{
N∑
i=1

J∑
j=1

vijziq

S∑
s=1

ψis

(
δi −A0s exp(zᵀiβ + γj)

)}
,

=
N∑
i=1

vi2ziq

S∑
s=1

−ψisA0s exp(zᵀiβ + γ2),

∂2`comp(θ)

∂βq∂α0s
=

∂

∂α0s

{
N∑
i=1

J∑
j=1

vijziq

S∑
s′=1

ψis′

(
δi −

[
α0s′(ti − as′−1) +

s′−1∑
h=1

α0h(ah − ah−1)

]
exp(zᵀiβ + γj)

)}
,

=

N∑
i=1

J∑
j=1

−vijziqtis exp(zᵀiβ + γj),

∂2`comp(θ)

∂γ2
2

=
∂

∂γ2

{
N∑
i=1

vi2

S∑
s=1

ψis

(
δi −A0s exp(zᵀiβ + γ2)

}
,

=
N∑
i=1

vi2

S∑
s=1

−ψisA0s exp(zᵀiβ + γ2),
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∂2`comp(θ)

∂γ2∂α0s
=

∂

∂α0s

{
N∑
i=1

vi2

S∑
s′=1

ψis′

(
δi −

[
α0s′(ti − as′−1) +

s′−1∑
h=1

α0h(ah − ah−1)

]
exp(zᵀiβ + γ2)

}
,

=
N∑
i=1

−vi2tis exp(zᵀiβ + γ2),

∂2`comp(θ)

dα2
0s

=
∂

dα0s

{
N∑
i=1

J∑
j=1

vij

(
δiψis
α0s

− tis exp(zᵀiβ + γj)

)}
,

=
N∑
i=1

J∑
j=1

−vijδiψis
α2

0s

=
N∑
i=1

−δiψis
α2

0s

,

∂2`comp(θ)

∂α0s∂α0s′
= 0. (B.1)166



B.3 Analysis of the prostate cancer data set

B.3.1 Model selection

In this section, a detailed description of the model selection process shown in Table 3.5

is given.

In models 1 to 7, dependencies were added sequentially to the model. The combina-

tion of HX and PF into a single four-level categorical variable improved discrepancies

between observed and expected frequencies considerably (not shown) as well as the

AIC. After introducing a covariance parameter between SBP and DBP, the corre-

sponding estimated correlation was quite high at 0.63 (Model 3), strongly indicating

that SBP and DBP were not independent after conditioning on class. For the re-

maining continuous variables, introduction of further covariance parameters produced

marked improvements in AIC (models 4 to 7), but the resulting correlations were small

(<0.25).

After establishing dependencies between manifest variables the expected means and

frequencies were examined across classes to identify variables that did not discriminate

between classes. Figure 3.3 depicts the densities and overlaid continuous mixtures from

Model 2, in which all continuous manifest variables were assumed to be conditional

independent. Clearly, the means for the two classes are very close for Age, SBP and

DBP indicating that these variables do not discriminate between classes. This was

not changed by the incorporation of dependencies in later models, and from Model 8

onwards Age, SBP and DBP were removed as manifest variables since the corresponding

estimated mean differences between classes were very small at 0.03 years, 0.04 kPa (0.30

mmHg) and 0.25 kPa (1.88 mmHg) respectively.

Inclusion of Age, SBP and DBP in turn as latent class predictors (models 9, 10

and 11) did not improve the AIC, and as a result the LCR submodel was left as an

intercept only model, implying class prevalences were unaffected by covariates.

With treatment and a latent class effect already included in the time-to-event sub-

model, Age and a class-by-treatment effect were added and both were found to con-

siderably improve the AIC (models 12 and 13). The inclusion of other variables and

two-way interactions did not improve the AIC. Note that variables retained as manifest

variables were not considered as candidates for the time-to-event submodel.

The estimated non-parametric baseline hazard from Model 13 (Figure 3.6) was

used to guide the choice of time grid for a piecewise exponential baseline hazard. From

Figure 3.6 a constant hazard appeared reasonable, suggesting an exponential model

would be appropriate (Model 14). Adding partitions at 30 days (Model 15) and 15

days (Model 16), to capture the apparent deviation from the fitted straight line in

Figure 3.6, did not improve the AIC and as a result Model 14 was selected as the final

model.
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B.3.2 Sensitivity of results to inclusion/exclusion of time-to-event

submodel

Table B.1 gives the parameter estimates from the final selected model, compared with

the same model excluding a time-to-event submodel. Parameters estimates are almost

completely unaffected by the time-to-event submodel.

Parameter Model 14 LCR

κ̂2 -1.41 -1.40
π̂11 0.05 0.05
π̂21 0.02 0.02
π̂31 0.40 0.41
π̂41 0.06 0.05
π̂12 0.61 0.62
π̂22 0.14 0.14
π̂32 0.26 0.26
π̂42 0.07 0.08
µ̂11 -0.32 -0.32
µ̂21 6.27 6.26
µ̂31 13.7 13.71
µ̂41 3.14 3.13
µ̂51 0.09 0.09
µ̂12 3.04 3.01
µ̂22 7.19 7.22
µ̂32 12.25 12.24
µ̂42 4.69 4.69
µ̂52 -0.37 -0.37
σ̂2

1 0.89 0.91
σ̂2

2 2.07 2.06
σ̂2

3 3.42 3.41
σ̂2

4 2.08 2.08
σ̂2

5 0.96 0.96
σ̂12 0.17 0.16
σ̂24 0.51 0.50

Table B.1: The Model 14 non-time-to-event parameter estimates compared with a
latent class model with no time-to-event submodel. Parameter estimates are almost
completely unaffected by the inclusion/exclusion of a time-to-event submodel.
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Appendix C

Supplementary material to

accompany Chapter 5

C.1 Associating biplot axes: some exploratory results

A simulated data set, similar to that used in Section 5.3, is now used to demonstrate the

influence of various factors on how well parameter estimates can be recovered from a

biplot, by associating biplot axes, using the methods outlined in Section 5.6. The factors

examined are: MDS type (metric, classical), the dissimilarity metric (Euclidean, Gower)

and the weights used in the dissimilarity metric (held at 1 for continuous variables; 0,

0.5 or 1 for categorical variables). The number of fitted dimensions was varied from 2

to 6.

Values for P = 6 variables, X1, . . . , X6, and N = 400 observations were simulated

from a multivariate Normal distribution for which all variables had a mean of 0 and

standard deviation of 1; correlation coefficients were rX1,X2 = rX3,X4 = rX5,X6 = 0.4,

and otherwise 0. Observations for variables X5 and X6 were subsequently dichotomised

at the mean, to give four continuous variables and two categorical variables in total.

Event times were simulated from an exponential distribution, Ti ∼ Exp [exp(βᵀxi)],

for i = 1, . . . , N and with β1 = β2 = 0.75 and β3 = β4 = β5 = β6 = 0, i.e.

log(ti) = 0.75x1i + 0.75x2i + εi,

where ε1, . . . , εN are i.i.d. according to a Gumbel distribution. Event times were

additionally censored by generating censoring times using an exponential distribution

with a scale parameter of 1, resulting in 52% of observations being censored.

The results are shown in Figure C.1 and Figure C.2. w in the figure titles refers to
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the weight of the categorical variables. Figure C.1(a), (c) and (e) show the estimated

parameters recovered from the MDS biplots using the Euclidean distance, classical

scaling and varying the weight of the categorical variables. Whilst β1 and β2 are

overestimated in low dimensions, the results are sensible as they approach the correct

values as the number of dimensions increases. This is what was seen in the simulated

example in Section 5.9. When Gower’s coefficient is used however, Figure C.1(b),

(d) and (f), the estimates for β1 and β2 were poor, as was seen in Section 5.10. In

Figure C.2, where metric instead of classical MDS was used, estimates when using

Euclidean distances were overestimated, (a), (c) and (e), to a greater extent than with

classical scaling. Estimates for Gower’s coefficient, Figure C.2(b), (d) and (f) improved

compared with classical scaling, but were still poor.
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Figure C.1: Classical scaling results for associating biplot axis scales to estimate each
β̂. Euclidean distances (left) and Gower’s coefficient (right) were used to obtain dissim-
ilarities and weights for categorical variables (X5 and X6) were varied: 0 (top row), 0.5
(middle row) and 1 (bottom row). Results have been averaged over relevant variable
pairs for simplicity.
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Figure C.2: Metric scaling results for associating biplot axis scales to estimate each β̂.
Euclidean distances (left) and Gower’s coefficient (right) were used to obtain dissimi-
larities and weights for categorical variables (X5 and X6) were varied: 0 (top row), 0.5
(middle row) and 1 (bottom row). Results have been averaged over relevant variable
pairs for simplicity.
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Appendix D

Supplementary material to

accompany Chapter 7

D.1 Data generating models for the simulation study

The following data generating models from Witten and Tibshirani (2011) were used for

the simulation study in Section 7.3.

D.1.1 Two-sided model

For the two-sided data-generating model, observations in group 2 fall into two distinct

groups:

xi ∼


N(0, IP ) if yi = 1,

N(1, IP ) or N(−1, IP ) with equal probability if yi = 2,

where 0 and 1 P -length vectors with each element equal to 0 or 1, respectively, and IP

is the P × P identity matrix.

D.1.2 Linear model

For the linear data-generating model, data are generated with a linear trend as a

function of the observation index, i):

xi ∼ N
(

3i

N
, IP

)
,
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where 3i
N is a P -length vector with elements 3i

N . For observations 1, . . . , N/2, yi = 1

and otherwise yi = 2.

D.1.3 Constant model

For the constant mean data-generating model, there is a constant mean for each group:

xi ∼


N(−0.4, IP ) if yi = 1,

N(0.4, IP ) if yi = 2,

where 0.4 is a P -length vector which each element equal to 0.4.

D.2 A simulated non-linear continuous outcome variable

A simulated data set is now used to demonstrate that OTMDS can, in principle, be

used for prediction of a continuous outcome variable. For N = 130 observations, an

N × 5 matrix of uncorrelated predictor variables, x, were simulated from a standard

normal distribution and two scenarios were considered: 1) y1 = sine[1
2(x1 + x2)] and

2) y2 = sine[2(x1 + x2)], as depicted in Figure D.1(a) and (b). These scenarios were

chosen to demonstrate OTMDS when the outcome variable is non-linearly related to

the predictors, but also the scenarios respectively represent low and high levels of

monotonicity. The data set was then randomly partitioned into independent training

and test sets, with 100 and 30 observations respectively, and OTMDS applied with

α = 0.8, Figure D.1(c) and (d).

Scenario 1 is depicted in Figure D.2, and plots (a) and (b) show that the predicted

values from both the training and test data sets, ŷ1, are strongly linearly related to

the observed value, y1 (Pearson’s correlation coefficient, r ≥ 0.80). However, the stan-

dardised residual plots, Figure D.2 (c) and (d) show that TMDS underestimates and

overestimates the true values at the tails i.e. where the relationship is most non-linear

and non-monotonic. Scenario 2, where the non-linearity and non-monotonicity is more

pronounced demonstrates OTMDS performing poorly.
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(c) Scenario 1: TMDS plot (α = 0.8)
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(d) Scenario 2: TMDS plot (α = 0.8)
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Figure D.1: Top: Plots of the relationship between x and y for both the training and
test data in two simulated scenarios. Bottom: OTMDS plots for the two scenarios with
α = 0.8.
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ŷ1

y 1

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● Test data

r = 0.80

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●●
●

●

●
●

●

● ●●

●

●●
● ●

●
●

●

●

●●
● ●
●

●●

●

●

●

● ●
●●

●

●
●

●

−1.0 −0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

(c)

ŷ1
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ŷ1

S
ta

nd
ar

di
ze

d 
re

si
du

al

Figure D.2: Top: Plots of predicted versus actual outcome variable values in Scenario
1, where y1 = sine[1

2(x1 + x2)] show high linear correlation. Diagonal dashed lines
are lines of inequality. Bottom: Predicted values versus standardised residual plots
illustrate a non-random pattern, with large residuals tending to occur in the tails.
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Figure D.3: Top: Plots of predicted versus actual outcome variable values in Scenario 1,
where y1 = sine[2(x1 +x2)] show low linear correlation. Diagonal dashed lines are lines
of inequality. Bottom: Predicted values versus standardised residual plots illustrate a
non-random pattern, with large residuals tending to occur in the tails.
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