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We explore the phase structure of a four dimensional SO(4) invariant lattice Higgs-Yukawa model
comprising four reduced staggered fermions interacting with a real scalar field. The fermions belong
to the fundamental representation of the symmetry group while the three scalar field components
transform in the self-dual representation of SO(4). The model is a generalization of a four fermion
system with the same symmetries that has received recent attention because of its unusual phase
structure comprising massless and massive symmetric phases separated by a very narrow phase
in which a small bilinear condensate breaking SO(4) symmetry is present. The generalization
described in this paper simply consists of the addition of a scalar kinetic term. We find a region of
the enlarged phase diagram which shows no sign of a fermion condensate or symmetry breaking but
in which there is nevertheless evidence of a diverging correlation length. Our results in this region
are consistent with the presence of a single continuous phase transition separating the massless and
massive symmetric phases observed in the earlier work.

I. INTRODUCTION

The motivation for this work comes from recent nu-
merical studies [1–8] of a particular lattice four fermion
theory constructed using reduced staggered fermions [9].
In three dimensions this theory appears to exist in two
phases - a free massless phase and a phase in which the
fermions acquire a mass [1–4]. What is unusual about
this is that no local order parameter has been identi-
fied which distinguishes between these two phases - the
massive phase does not correspond to a phase of bro-
ken symmetry as would be expected in a conventional
Nambu–Jona-Lasinio scenario. Furthermore, the transi-
tion between these two phases is continuous but is not
characterized by Heisenberg critical exponents.

When this theory is lifted to four dimensions, how-
ever, a very narrow symmetry broken phase reappears
characterized by a small bilinear condensate [5–8]. In
Ref. [10] two of us constructed a continuum realization
of this lattice theory and argued that topological defects
may play an important role in determining the phase
structure. This calculation suggests that the addition of
a kinetic term for the auxiliary scalar field σ+ used to
generate the four fermion interaction may allow access
to a single phase transition between massless (paramag-
netic weak-coupling, PMW) and massive (paramagnetic
strong-coupling, PMS) symmetric phases. In this paper
we provide evidence in favor of this from direct numeri-
cal investigation of the lattice Higgs-Yukawa model. This
development presents the possibility of new critical be-
havior in a four-dimensional lattice theory of strongly
interacting fermions, which would be very interesting
from both theoretical and phenomenological viewpoints,
and also connects to recent activity within the condensed
matter community [11, 12].
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The plan of the paper is as follows: in the next sec-
tion we describe the action and symmetries of the lattice
theory, followed by a discussion of analytical results in
certain limits in Sec. III. We present numerical results
for the phase structure of the theory in Sec. IV, and ex-
tend this investigation in Sec. V by adding symmetry-
breaking source terms to the action in order to search for
spontaneous symmetry breaking in the thermodynamic
limit. These investigations reveal significant sensitivity
to the hopping parameter κ in the scalar kinetic term,
with an antiferromagnetic (AFM) phase separating the
PMW and PMS phases for κ ≤ 0 but an apparently direct
and continuous transition between the PMW and PMS
phases for a range of positive κ1 < κ < κ2. Our current
work constrains 0 < κ1 < 0.05 and 0.085 < κ2 < 0.125.
We collect these results to present our overall picture for
the phase diagram of the theory in Sec. VI. We conclude
in Sec. VII by summarizing our findings and outlining
future work.

II. ACTION AND SYMMETRIES

The action we consider takes the form

S =
∑
x

ψa[η.∆ab +Gσ+
ab]ψ

b +
1

4

∑
x

(σ+
ab)

2

−κ
4

∑
x,µ

[
σ+
ab(x)σ+

ab(x+ µ) + σ+
ab(x)σ+

ab(x− µ)
] (1)

where repeated indices are to be contracted and ηµ(x) =

(−1)
∑µ−1
i=1 xi are the usual staggered fermion phases. The

discrete derivative is given by

∆ab
µ ψ

b =
1

2
δab[ψb(x+ µ)− ψb(x− µ)]. (2)

The self-dual scalar field σ+
ab is defined as

σ+
ab = P+

abcdσcd =
1

2

[
σab +

1

2
εabcdσcd

]
(3)
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with P+ projecting the antisymmetric matrix field σ(x)
to its self-dual component.

The second line in eqn. 1 is essentially a kinetic oper-
ator for the σ+ field. With κ set equal to zero we can
integrate out the auxiliary field and recover the pure four
fermion model studied in Ref. [7]. The rationale for in-
cluding such a bare kinetic term for the auxiliary field
is provided by arguments set out for a related contin-
uum model in Ref. [10]. More concretely, it should be
clear that κ > 0 favors ferromagnetic ordering of the
scalar field and associated fermion bilinear. This is to be
contrasted with the preferred antiferromagnetic ordering
observed in Refs. [5, 8] for the κ = 0 theory.1 The compe-
tition between these two effects raises the possibility that
the κ = 0 antiferromagnetic fermion bilinear condensate
may be suppressed as κ is increased.

In contrast to similar models studied by Refs. [13–21]
we fix the coefficient of the ((σ+)2−1)2 term in the action
to be λ = 0. Without this term to provide a constraint on
the magnitude of the scalar field, we will encounter insta-
bilities when the magnitude of κ is too large. We discuss
these instabilities in more detail in the next section.

In addition to the manifest SO(4) symmetry the action
is also invariant under a shift symmetry

ψ(x)→ ξρψ(x+ ρ) (4)

with ξµ(x) = (−1)
∑d
i=µ xi and a discrete Z2 symmetry:

σ+ → −σ+ (5)
ψa → iε(x)ψa. (6)

Both the Z2 and SO(4) symmetries prohibit local bilin-
ear fermion mass terms from appearing as a result of
quantum corrections. Non-local SO(4)-symmetric bilin-
ear terms can be constructed by coupling fields at differ-
ent sites in the unit hypercube but such terms break the
shift symmetry. Further discussion of possible bilinear
mass terms is presented in detail in Ref. [7].

III. ANALYTICAL RESULTS

Before we present numerical results we can analyze the
model in certain limits. For example, since the action
is quadratic in σ+ we can consider the effective action
obtained by integrating over σ+. The scalar part of the
action may be rewritten

1

4
σ+
(
−κ�+m2

)
σ+ (7)

where m2 = (1− 2dκ) is an effective mass squared for
the σ+ field in d dimensions and � is the usual discrete

1 Although Ref. [7] observed a strong response to an antiferro-
magnetic external source, evidence of spontaneous ordering in
the zero-source thermodynamic limit was not found until the
follow-up Ref. [8].

scalar laplacian. Integrating out σ+ yields an effective
action for the fermions

S =
∑

ψ (η.∆)ψ −G2
∑

Σ+
[
−κ�+m2

]−1
Σ+ (8)

where Σ+
ab = [ψaψb]+ is the self-dual fermion bilinear.

For κ small we can expand the inverse operator in powers
of κ/m2 and find

S =
∑

ψ (η.∆)ψ − G2

m2
Σ+
(
I +

κ

m2
�+ . . .

)
Σ+. (9)

To leading order the effect of non-zero κ is to renormalize
the Yukawa coupling G → G

m = G√
1−2κd . At next to

leading order we obtain the term

G2

m4

∑
Σ+ [−κ�] Σ+. (10)

For κ > 0 and sufficiently large G this term favors a
ferromagnetic ordering of the fermion bilinear 〈Σ+〉 6= 0.
Conversely it suggests an antiferromagnetic ordering with
〈ε(x)Σ+(x)〉 6= 0 for κ < 0. This can be seen more clearly
if one rewrites the action in the alternative form

S =
∑

ψ (η.∆)ψ −G2
∑

Σ+ [−κB + I]−1 Σ+ (11)

where BΣ =
∑
µ [Σ(x+ µ) + Σ(x− µ)]. Clearly chang-

ing the sign of κ can be compensated by transforming
Σ+ → ε(x)Σ+ since ε(x) anticommutes with B. Two of
us investigated the case κ = 0 in Ref. [8] and observed
a narrow phase with antiferromagnetic ordering. Since
κ > 0 produces ferromagnetic terms we expect the ten-
dency toward antiferromagnetic ordering to be reduced
as κ is increased. The numerical results described in the
following section confirm this.

For κ > 1
2d = 1

8 the squared mass changes sign and one
expects an instability to set in with the model only being
well defined for κ < 1

8 . Actually there is also a lower
bound on the allowed values of κ. To see this return to
eqn. 7 and perform the change of variables

σ+
ab(x)→ ε(x)σ+

ab(x) (12)
κ→ −κ.

This implies that the partition function Z (κ) is an even
function of κ at G = 0. We can show that this is also true
in the strong coupling limit G→∞. In this limit we can
drop the fermion kinetic term from the action in eqn. 1
and expand the Yukawa term in powers of the fermion
field

Z =

∫
DψDσ+

(
1−Gψσ+ψ +

1

2
(Gψσ+ψ)2

)
eS(σ

+).

(13)
The only terms that survive the Grassmann integrations
contain even powers of σ+. Using the same transforma-
tion eqn. 12 allows us to show that the partition function
is once again an even function of κ. Thus we expect
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that at least for weak and strong coupling the partition
function is only well defined in the strip − 1

8 < κ < 1
8 .

It is also instructive to compute the effective action for
the scalar fields having integrated out the fermions. This
takes the form2

Seff = −1

4
Tr ln

(
−∆2

µ +M2 +Gηµ(x)ε(x)∆µσ
+
)

(14)

where M2 = −G2(σ+)2. To zeroth order in derivatives
the resultant effective potential is clearly of symmetry
breaking form. The first non-trivial term in the derivative
or large mass M expansion of this action is

− G2

8M4

∑(
∆µσ

+
)2
. (15)

Thus even the pure four fermion model will produce ki-
netic terms for the scalar field through loop effects con-
firming the need to include such terms in the classical ac-
tion.3 In Ref. [10] it was argued that an additional term
should also be generated which is quartic in derivatives in
the continuum limit. This term only arises for a self-dual
scalar field and leads to the possibility that topological
field configurations called Hopf defects may play a role
in understanding the massive symmetric phase.

2 To facilitate the computation we have traded the original ferro-
magnetic Yukawa coupling ψσ+ψ in eqn. 1 for an antiferromag-
netic coupling ε(x)ψσ+ψ while simultaneously trading κ → −κ
as in eqn. 12. This allows us to simplify the expression for the
effective action by using the fact that ε(x) anticommutes with
∆µ.

3 A similar argument suggests that a quartic term λ((σ+)2 − 1)2

will also be produced. As mentioned in the previous section
we fix λ = 0 in the calculations reported here. In addition to
simplifying the parameter space to be considered, this step is
also motivated by observations [20, 21] that λ seems to have
little effect on the large-scale features of the phase diagram in
similar Higgs-Yukawa models.
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FIG. 2. χstag vs G at κ = 0 for L = 4, 8 and 12.

IV. PHASE STRUCTURE

One useful observable we can use to probe the phase
structure in the (κ,G) plane is

〈
σ2
+

〉
. This is shown for

three different values of κ on a 84 lattice in Fig. 1. At κ =
0 this observable served as a proxy for the four fermion
condensate and we observe this to be the case also when
κ 6= 0. Thus we see that a four fermion phase survives at
strong Yukawa coupling G even for non-zero values of κ.

Of course the key issue is what happens for intermedi-
ate values of G. At κ = 0 a narrow intermediate phase
was observed for 0.95 . G . 1.15 in two different ways:
from the volume scaling of a certain susceptibility [5] and
by examining fermion bilinear condensates as functions
of external symmetry breaking sources [8]. This suscep-
tibility is defined as

χstag =
1

V

∑
x,y,a,b

〈
ε(x)ψa(x)ψb(x)ε(y)ψa(y)ψb(y)

〉
(16)

where V = L4 and the subscript “stag” refers to the pres-
ence of the parity factors ε(x) associated with antiferro-
magnetic ordering. It is shown in Fig. 2 for three different
lattice volumes at κ = 0. The linear dependence of the
peak height on the lattice volume is consistent with the
presence of a condensate

〈
ε(x)ψa(x)ψb(x)

〉
6= 0.

Since κ < 0 generates additional antiferromagnetic
terms in the effective fermion action we expect this bi-
linear phase to survive in the κ < 0 region of the phase
diagram. This is confirmed in our calculations. Figure 3
shows a similar susceptibility plot for κ = −0.05, in which
the width of the broken phase increases while the peak
height continues to scale linearly with the volume indi-
cating the presence of an antiferromagetic bilinear con-
densate.

The situation changes for κ > 0. Fig. 4 shows the
susceptibility χstag for κ = 0.05. While a peak is still
observed for essentially the same value of G the height
of this peak no longer scales with the volume. Since
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FIG. 4. χstag vs G at κ = 0.05 for L = 6, 8 and 12.

κ > 0 induces ferromagnetic terms in the action we also
examine the associated ferromagnetic susceptibility

χf =
1

V

∑
x,y,a,b

〈
ψa(x)ψb(x)ψa(y)ψb(y)

〉
. (17)

This is plotted in Fig. 5 for κ = 0.05, which shows no
evidence of ferromagnetic ordering at this value of κ. In
the appendix we show that κ = 0.1 is sufficiently large
to produce a ferromagnetic phase.

The lack of scaling of the χstag peak with volume at
κ = 0.05 might suggest that the system is no longer crit-
ical at this point. This is not the case. Figure 6 shows
the number of conjugate gradient (CG) iterations needed
for Dirac operator inversions at κ = 0 and κ = 0.05 as
a function of G for L = 8. This quantity is a proxy
for the fermion correlation length in the system. The
peak at κ = 0.05 is significantly greater than at κ = 0.
Furthermore we have observed that it increases strongly
with lattice size rendering it very difficult to run compu-
tations for L ≥ 16. Our conclusion is that there is still a
phase transition around G ≈ 1.05 for small positive κ but
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FIG. 5. The ferromagnetic susceptibility χf vs G at κ = 0.05
for L = 6, 8 and 12. Unlike the other susceptibility plots, the
y-axis scale is not logarithmic.
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no sign of a bilinear condensate. We will reinforce this
conclusion in the next section where we will perform an
analysis of bilinear vevs versus external symmetry break-
ing sources.

It is interesting to investigate the phase diagram away
from the critical region. Figure 7 shows the four fermion
condensate vs κ at G = 2, which vanishes at |κ| = 1

8 as
expected by stability arguments. The structure of the
curve suggests that there may be a phase transition at
κ ≈ 0.085 from a four fermion condensate to a ferromag-
netic condensate. This is illustrated by Fig. 8 where for
κ > 0 we show the magnetization

M =
1

V

〈∣∣∣∣∣∑
x

∑
a<b

σ+
ab(x)

∣∣∣∣∣
〉
. (18)

The behavior near κ ≈ −0.085 in Fig. 8 shows a similar
transition from four fermion condensate to antiferromag-
netic phase. For κ < 0 we add the usual parity factor
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ε(x) to define the staggered magnetization Ms.

V. FERMION BILINEARS

In this section we add source terms to the action that
explicitly break both the SO(4) and Z2 symmetries and,
by examining the volume dependence of various bilinear
vevs as the sources are sent to zero, address the question
of whether spontaneous symmetry breaking occurs in the
system. The source terms take the form

δS =
∑
x,a,b

(m1 +m2ε(x))[ψa(x)ψb(x)]Σab+ (19)

where the SO(4) symmetry breaking source Σab+ is

Σab+ =

(
iσ2 0
0 iσ2

)
. (20)

For κ = 0 we find evidence in favor of antiferromag-
netic ordering consistent with the volume scaling of the
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susceptibility χstag. The antiferromagnetic bilinear vev〈
ε(x)ψa(x)ψb(x)

〉
plotted in Fig. 9 (with m1 = 0) picks

up a non-zero value in the limit m2 → 0, L → ∞ sig-
naling spontaneous symmetry breaking. The data cor-
respond to runs at the peak in the susceptibility G =
1.05, and similar results are found throughout the region
0.95 . G . 1.15. This confirms the presence of the con-
densate inferred from the linear volume scaling of the
susceptibility reported in the previous section.

For κ < 0 the picture is similar with Fig. 10 showing
the same vev vs m2 = m1 for κ = −0.05 at the same
G = 1.05. (Recall from Figs. 2–4 that the center of the
peak in χstag moves only very slowly for |κ| ≤ 0.05.) The
increase in vev with larger volumes at small m2 is again
very consistent with the presence of a non-zero conden-
sate in the thermodynamic limit. The magnitude of this
condensate at κ = −0.05 is clearly larger than at κ = 0.

The situation for κ > 0 is quite different. Figure 11
shows plots of both antiferromagnetic and ferromagnetic



6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

ε
(x

)ψ
a
(x

)ψ
b
(x

)

m

κ=0.05, G=1.05

L=6
L=8

L=12

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

ψ
a
(x

)ψ
b
(x

)

m

κ=0.05, G=1.05

L=6
L=8

L=12

FIG. 11. Antiferromagnetic (left) and ferromagnetic (right) bilinear condensates vs m2 = m1 at (κ,G) = (0.05, 1.05) for L = 6,
8 and 12.

FIG. 12. Sketch of the phase diagram in the (κ,G) plane.

bilinear vevs at (κ,G) = (0.05, 1.05) for several lattice
volumes. These plots show no sign of a condensate as the
source terms are removed in the thermodynamic limit.
Broken phases thus seem to be evaded for small κ >
0. In the appendix we include results for larger κ ≥
0.085. While we observe a similar absence of bilinear
condensates at κ = 0.085, the expected ferromagnetic
phase does clearly appear for κ ≈ 0.1 and we are able
to set loose bounds on the range κ1 < κ < κ2 within
which there appears to be a direct PMW–PMS transition,
namely 0 < κ1 < 0.05 while 0.085 < κ2 < 0.125.

VI. RESULTING PHASE DIAGRAM

Putting this all together we sketch the phase diagram
in Fig. 12. For small G the system is disordered and the
fermions massless. For large G and small κ we see a four
fermion condensate as before. As κ increases in magni-
tude one expects a transition to either a ferromagnetic
(κ > 0) or antiferromagnetic (κ < 0) phase for sufficiently
large G. However, for small positive κ close to G = 1.05,

while we observe no sign of a bilinear condensate there
are strong indications of critical slowing down and a large
fermion correlation length. Since the weak and strong
coupling phases cannot be analytically connected (one is
massless while in the other the fermions acquire a mass)
there must be at least one phase transition between them.
Unlike the situation for κ ≤ 0 we see no evidence for an
intermediate broken-symmetry phase in this region and
hence the simplest conclusion is that a single phase tran-
sition separates the two symmetric phases. Thus far we
have seen no sign of first order behavior so this transition
appears to be continuous.

VII. SUMMARY AND CONCLUSIONS

In this paper we have reported on investigations
of the phase diagram of a four-dimensional lattice
Higgs-Yukawa model comprising four reduced staggered
fermions interacting with a scalar field transforming in
the self-dual representation of a global SO(4) symmetry.
This extends recent work on a related four fermion model
in which a massless symmetric phase is separated from a
massive symmetric phase by a narrow broken symmetry
phase characterized by a small antiferromagnetic bilinear
fermion condensate [5–8].

Our main result is evidence that this broken phase may
be eliminated in the generalized phase diagram by tuning
the hopping parameter in the scalar kinetic term. This
should not be too surprising since the ferromagnetic or-
dering favored by κ > 0 counteracts the antiferromag-
netic ordering observed for κ ≤ 0. There is then a range
of positive κ1 < κ < κ2 throughout which the massless
and massive symmetric phases appear to be separated
by a single phase transition. Since no order parameter
distinguishes the two phases this transition is not of a
conventional Landau-Ginzburg type. Ref. [10] argues in
a related continuum model that the transition may be
driven instead by topological defects. It would be fas-
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cinating to investigate whether these topological defects
could be seen in numerical calculations.

Future work will also focus on better constraining the
values of κ1 and κ2 between which we observe the di-
rect PMW–PMS transition. Our current results suffice
to establish that these two points are well separated,
0 < κ1 < 0.05 while 0.085 < κ2 < 0.125, but neither
is very precisely determined yet. It is also important
to measure more observables in order to search for non-
trivial scaling behavior associated with this transition.
The lack of scaling that we observe for the susceptibility
χstag at the phase boundary in Fig. 4 currently suggests
that the scaling dimension of the bilinear fermion opera-
tor would be greater than two at any putative new critical
point.

Clearly the possibility of realizing new fixed points in
strongly interacting fermionic systems in four dimensions
is of great interest and we hope our results stimulate
further work in this area.
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APPENDIX

In this appendix we collect some additional results for
larger κ > 0.05, both to strengthen our conclusions that
there is no bilinear phase for a range of positive κ and to
confirm that a ferromagnetic phase does appear once κ
and G are sufficiently large. First, in Fig. 13 we consider
κ = 0.085, around the potential transition identified in
Figs. 7 and 8. Whereas those earlier figures considered
G = 2, here we use the same G = 1.05 as Fig. 11 for
κ = 0.05. We again observe an absence of spontaneous
symmetry breaking, with the antiferromagnetic and fer-
romagnetic bilinear condensates both vanishing as the
symmetry-breaking source terms are removed, with no
visible dependence on the lattice volume.

The situation is qualitatively different in Fig. 14, which
considers κ = 0.1 (at G = 1.1) and shows clear signs of a
non-zero ferromagnetic condensate in the L → ∞ limit.
In Fig. 15 we compare the ferromagnetic susceptibility
χf for three different κ = 0, 0.05 and 0.1. While this
susceptibility is uniformly small for κ = 0 and 0.05, the
larger κ = 0.1 produces a strong jump to a large value
for G & 1.1, suggesting a first-order transition into the
ferromagnetic phase.

Finally, Fig. 16 compares the four-fermion condensate
vs G for κ = 0.05 and 0.1. Although the larger value
of κ significantly reduces the four-fermion condensate for
large G & 1.2 (as previously shown in Fig. 7), there is a
very narrow peak around G ≈ 1.05. This may suggest
that the system still transitions directly from the PMW
phase into the PMS phase before undergoing a second
transition into the ferromagnetic phase. We are therefore
not yet able to set tighter constraints than 0.085 < κ2 <
0.125 on the upper boundary of the direct PMW–PMS
transition. This region of the phase diagram appears
rather complicated, though Fig. 15 makes it clear that
the ferromagnetic phase persists to large G rather than
being a narrow intermediate phase of the sort we see
for κ ≤ 0. This is reflected in our sketch of the phase
diagram, Fig. 12.
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