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ABSTRACT
A Reconfigurable Manufacturing System (RMS) facilitates changes in a customized manufacturing process to accomplish changes in operational requirements or machine status. The effective development of an RMS is supported by dynamic reconfiguration management, that is, by detecting process errors and offering the possibility of exploring reconfiguration strategies. Research on current reconfigurability, however, is focused on production while ignoring inspection and fault detection. In the RMS, a Reconfigurable Inspection System (RIS) is developed for data-oriented detection of product quality with the minimally sufficient number of inspection machines. Therefore, we propose a key feature-based method for designing the RIS’s configuration to achieve a satisfactory RIS design (i.e., designing the number of inspection machines, their positions and the number of sensors) that detects different processes and satisfies the inspection requirement for each phase of the RMS’s lifecycle. First, the key features of the RIS (i.e., modularity, integrability, customization, scalability, convertibility, and diagnosability) are identified based on the RMS’s detection mechanism. Then, a specific model-based procedure to explore the RIS’s configuration design is discussed to ensure that the RIS satisfies multiple constraints (i.e., provides detection functionality and capability) and goals (i.e., minimizes cost and maximizes diagnosability). Finally, an example of the inspection of a spindle box-type part is completed to demonstrate the effectiveness and practicability of the proposed method. 
KEYWORDS
Reconfigurable Inspection System; Configuration Design; Error Detection; Diagnosability; Cost.

NOMENCLATURE
	RMS
	Reconfigurable Manufacturing System

	RMT
	Reconfigurable Machine Tool

	RIM
	Reconfigurable Inspection Machine

	RIS
	Reconfigurable Inspection System

	SoV
	Stream of Variation

	k
	Station number

	X(k)
	Part accumulated deviation of the kth station

	U(k)
	Processing deviation due to the kth station

	Y(k)
	Measurement vector for the kth station

	CRIS
	RIS configuration

	Cp 
	Processing route of the part

	FCRIS
	Detection functionality of the RIS configuration.

	CCRIS 
	Detection capability of the RIS configuration

	ECRIS
	Cost of the RIS configuration

	RCRIS 
	Diagnosability of the RIS configuration

	XCRIS
	Detection validity of the RIS configuration design

	TCRIS
	Detection time of the RIS configuration design

	dg1 r 
	Cost deviation from the target value

	dg2
	Diagnosability deviation from the target value.

	a1, a2
	Weights of the cost and diagnosability


1. FRAME OF REFERENCE
[bookmark: _Hlk514065589]In the era of Industry 4.0, a cyber-physical system (CPS) is defined as the integration of virtual and physical processes (Lee, 2008). Using sensors and communication networks leads to continuous data feedback, and therefore the current performance of a manufacturing system can be assessed and system behavior can be modified based on observations. Similarly to the work on disaster management a CPS can be developed for rapid, data-oriented dynamic management of multi-stage manufacturing processes where informed decision-making related to enhancing manufacturing process efficiency is supported by the knowledge extracted from raw data (Liu, et al., 2008; Gabor et al. 2016; Lee et al. 2015). Therefore we suggest a method for designing reconfigurable manufacturing systems supported by information feedback from reconfigurable inspection systems. These systems have the dynamic management capability of being upgraded automatically to repeatedly identify and fix errors and modify the manufacturing process.
In current manufacturing systems, the frequent fluctuation of product demand and the variation in product design (external changes) leads to processing errors and random equipment failures (internal changes) which increase the difficulty of maintaining the production process (Kagermann et al. 2013 and Yam et al. 2001). Errors caused by these external and internal changes, detect the difference between the expected and actual states of the manufacturing system and can modify or interrupt the manufacturing process (Bruccoleri, et al. 2006). To address these inevitable errors, a complete reconfigurable manufacturing system (RMS) which includes a Reconfigurable Inspection System (RIS) can be the foundation for a customized, adaptable manufacturing process for a family of products (Koren, 1999, Bi, 2002, Lui, et al. 2008, Mehrabi et al. 2000, Bi et al 2010, Chaube et al., 2012). In this work, we extend the definition of an RMS to refer to the combination of an RIS and reconfigurable manufacturing equipment. 
An RMS provides sufficient functionality and capability for a part family unless random internal and/or external errors occur. When an RMS fails to satisfy the needs of the current manufacturing process, its components may be removed or rearranged and additional components may be added. This reconfiguration enables an RMS to continue to provide the needed functionality and thus update the manufacturing process (Huang et al. 2017). In this way, the RMS is repeatedly reconfigured to reduce the impact of errors. Therefore, an effective RMS-based manufacturing process requires dynamic reconfiguration management so that the RMS can detect process errors and corresponding reconfiguration strategies can be explored in a timely manner. Due to the complicated and volatile manufacturing process environment, the following requirements are needed: 1) the RMS must be adaptable to meet the requirements of manufacturing processes for different products (i.e., customized production) and 2) the RMS system should capture information about the state of the manufacturing process, especially error detection.
Koren, 1999, proposes a reconfigurable machine tool (RMT) and a reconfigurable inspection machine (RIM) for customized production and error detection, respectively. Thus, the effectiveness of the manufacturing process can be improved repeatedly by adjusting the production performance of RMTs. In response to the first requirement for dynamic management, there has been considerable progress in research in RMTs in areas such as modeling performance (Yigit et al. 2002, Pattanaik and Kumar, 2010; Goyal et al., 2013 and Abdi, 2009), designing prototypes (Moon and Kota, 2001; Koren, 1999, Koren, et al. 2003; Padayachee et al. 2009), and selecting configurations (Chen and Macwan, 2005; Mpofu et al. 2008; Mpofu and Tlale, 2014). These results enable an RMS to provide the needed production functionality and capability in a cost-effective way. To remain competitive in digital manufacturing, the RMS must also be able to monitor the manufacturing process. However, the research on RIM design is limited; some progress has been made on patents (Koren and Katz, 2003) and conceptual analysis (Xiaobo et al. 2000; Tang and Qui, 2004; Barhak et al. 2005). 
The well-developed understanding of Reconfigurable Machine Tool and Reconfigurable Inspection Machines can be applied to support the dynamic reconfiguration management of an RMS. In this work, we focus on the required response of a Reconfigurable Inspection System to satisfy the needs of detection. In keeping with the rapid development of information technology, advanced manufacturing systems need to be able to detect automatically the current status of a manufacturing process. Process detection can ensure that process errors are identified in a timely manner so that the RMS can be reconfigured, reducing the production of poor-quality products (Koren, 2013). In an RMS, we envision that the reconfigurable inspection system (RIS), which consists of multiple RIMs, is used to detect product quality (Koren, 2010). Hence, effective detection requires sufficient status data from the RIS and this requires a design method for RIS configuration. An RIS configuration design provides to capability for customized detection which is sensitive to process errors and that can collect enough data to support the identification of an error’s root cause. To address the above requirements, a key-feature-based method for RIS configuration design is proposed in this work. This method is used to explore a design scheme that ensures that the RIS can perform timely and comprehensive detection with a minimum, but sufficient, number of inspection machines.
The remainder of this paper is organized as follows. The manufacturing process detection by an RIS is described in Section 2. As a component of the RMS, the RIS’s key features, are discussed to facilitate an understanding of the reconfigurable fault detection process. In Section 3, a configuration design framework is developed. Then, in Section 4, decision-making for design based on the designed RIS configuration is discussed. In Section 5, the efficacy of this method is illustrated with an example associated with the processing of a spindle-box type part. We end with closing remarks in Section 6.


2. DESIGN OF THE RIS CONFIGURATION 
The manufacturing process facilitated by the RMS, as shown in Figure 1. It has multiple stages. The workpieces are machined into products in multiple operations. To ensure excellent quality, there are 4 types of component in the RMS, namely, operational stations, inspection stations, a delivery system and a return system. As shown in the example in Figure 1, the operational stations (i.e., Stations 1, 2, 4, …, n+k-1) provide one or more machining operations via RMTs, while the inspection stations (i.e., Stations 3, …, k) measure the product quality during the process using RIMs. The workpiece is transferred from one station to the next using the delivery system. When errors are detected by inspection stations, the return system is used to return the workpiece to related upstream operational stations. Therefore, the RIM in the kth inspection station is used to monitor its upstream operational stations, which are behind the k-1th inspection station.
[bookmark: _Hlk514066409]In a traditional manufacturing system, the inspection station is usually at the end of the line. End-line detection is regarded as cost-effective and is a popular approach in industry. However, only some errors can be detected this way and also delayed detection can cause waste. In a comprehensive RMS, each operational station is followed by an inspection station. In this way, the comprehensive inspection can be used to ensure product quality completely. However, this approach is costly and not necessarily realistic. Therefore, it is important to select a minimal, but sufficient number of inspection stations, to monitor the manufacturing process. Decision-making about RIS configuration design is the result of a compromise between the cost and possible error diagnosability. The cost is positively related to the number of inspection stations and their sensors, while  diagnosability is positively related to the position of the inspection station. When the RIS has more inspection stations and more sensors, errors can be detected immediately but the cost for construction will be greater. When we reduce the number of inspection stations and the distance from an operation station to the corresponding inspection station increases, the delayed error detection can cause more low-quality product or semi-finished product, so that the cause of the fault is more difficult to identify.  
[image: C:\Users\Janet_Allen\Dropbox\0.MOVE-between-Computers\Jelena-Paper-2\RMS-ManufacturingProcess.jpg]
Figure 1: An Example of an RMS Configuration.

2.1 RIS Detection Mechanism with an RIM
A manufacturing process includes multiple operations and the product quality is affected by the processing parameters of the operational stations. During the RMS’s lifecycle, deviations in the processing parameters lead to variations in product quality. These variations can propagate and accumulate among the stations and an error in a product quality characteristic is not only directly derived from the process parameters of the current station but also affected by the process parameters from upstream stations. The influences of the different stations on product quality are interrelated, and this interrelatedness results in a complex flow of information throughout the manufacturing process. To describe the information flow, the Stream of Variation (SoV) theory has been proposed (Ding, et al., 2000). This theory can be used to model the accumulation and propagation of errors in the production process as shown in Figure 2.
[image: C:\Users\Janet_Allen\Dropbox\0.MOVE-between-Computers\Jelena-Paper-2\Station-k.jpg]
Figure 2: Information Flow at One RIM Station Based on SoV Theory.
In Figure 2, the variable X(k) represents the part accumulated deviation of the kth station, U(k) represents the processing deviation contributed by the kth station, and the variable Y(k) represents the measurement vector of the kth station. In addition, the noise in processing and measurement are[image: ]and[image: ], respectively. Moreover, considering the flow of product through the workstations as a time series, the manufacturing process can be modeled as a one-dimensional discrete system. With the aid of a state-space equation, the relationship between the process parameters and the product quality is described quantitatively in Equation (1),
X(k) = A(k)X(k-1) + B(k)U(k) + k
Y(k) = C(k)X(k) + k					  (1)

where the coefficient matrix A(k) represents the effect of transferring the product features from stage k-1 to stage k, which reflects the relationship between the k-1th station and the kth station, and A(1) is the unit matrix. The coefficient matrix B(k) represents the input matrix, which reflects the influence of the process parameters at the kth station on product quality. Matrix C(k) is the measurement matrix corresponding the number of sensors and their positions, contains the information about sensor locations on a station. When no measurement is made at the kth station, C(k) is a zero matrix. Obviously, the coefficient matrices A(k), B(k) and C(k) depend on the system’s structure. Therefore, identifying the root cause of errors using SoV theory depends on the RIS configuration design as a basis for error diagnosis. The RMS detection process based on SoV theory is shown in Figure 3
[image: C:\Users\Janet_Allen\Dropbox\0.MOVE-between-Computers\Jelena-Paper-2\JMS-Fig-expandedinput-output.jpg]
Figure 3: Detection Mechanism via Integration of the RIS and the SoV.
The essence of identifying root causes via SoV theory is to simulate the manufacturing process based on Equation (1). A product quality error refers to a deviation of the actual position from the ideal position, and the main types of error include fixturing error caused by imperfect locators, datum errors caused by errors in the datum feature, and machine tool errors caused by loops in the machine’s structure. Fixture and machine tool errors are part of the current station, whereas datum errors are influenced by other stations. Therefore, a virtual station is simulated using data from datum measurements. If the virtual station is in the same state as the corresponding real station, the real station is of high quality; otherwise, the station should be maintained or updated. When the SoV model is used to identify the root cause of an error, it is important that the quality features of the product and the datum of the processing feature are detected. 
2.2 Key Features of the RIS for Reconfiguration
In the dynamic manufacturing process, the main function of an RIS is to ensure the quality of the final product. The RIS can quickly adjust the detection functionality and detection capability. Detection functionality refers to the product features that the RIS can detect, and detection capability refers to the RIS’s sensitivity to product errors. The RIS divides the manufacturing process into several production line partitions. The RIM is more sensitive when there are fewer machine tools in the production line partition. Because the RIS is a component of the RMS, reconfiguration design principles for RMS’s are also useful for the RIS design. The important features for reconfiguration of an RMS include modularity, integrability, convertibility, scalability, customization, and diagnosability. (Koren 1999, Mehrabi et al. 2002, Elmaraghy 2005, Goyal 2013).  These are defined as:
(1) Modularity. This refers to the modular structure of the RIS. Its components (such as RIMs) are treated as independent modules. We combine different RIMs to form diverse RIS configurations and reconfigure the RIS by changing the RIM layout. The RIS can provide different detection functionalities and capabilities by changing the number of RIMs and their positions, and a RIM can perform different detection tasks by changing its sensors. However, too many RIMs in an RIS can result in high management costs and increase the system’s ramp-up time. Similarly, having too many sensors in an RIM increases structural complexity and decreases the equipment’s reliability. Therefore, the modularity of the RIS requires determination of a reasonable assignment of detection tasks and the selection of the minimum sufficient number of RIMs and sensors. In this paper, we assume that a single processing feature can be detected by each sensor. Based on the above description of the detection mechanism, the number of products is related to each process feature and its datum feature. The number of sensors in an RIM is proportional to the processing characteristics to be measured by the RIM.
(2) Integrability. This refers to the standardization of interfaces in an RIM which is beneficial for the introduction of modern technologies or new devices. When the number of sensors in an RIM is small and the number of idle interfaces is large, the RIS has greater configuration flexibility. High flexibility of the RIS reduces the reconstruction time and cost. Hence, integrability requires the RIS has a reasonable sensor density. In addition, the ease of RIM reconfiguration is governed by the extent of sensor changes. Reconfiguration time and cost are proportional to the number of sensor changes.
 (3) Convertibility. This refers to the ability of the RIS to quickly adjust its detection functionality based on the process route. The RIS can change its detection functionality to satisfy the requirements of different parts or part families. The RIS provides the required detection functionality when sensors are added, deleted, or replaced. Ensuring product quality requires that the RIS can detect all the product features. Accordingly, different product features alter the RIS’s required detection functionality. Therefore, convertibility enables the RIS to monitor the manufacturing process with a sufficient number of RIMs and sensors. That is, the number of sensors should be greater than the number of product features to be detected, which ensures that quality errors in each production line can be detected. At the same time, when the product features change, we consider changing the number of sensors to change the RIS’s detection functionality.
 (4) Scalability. This refers to the ability of the RIS to rapidly adjust its detection capability based on the process route. That is, an RIM’s position can be adjusted based on the processing route to detect each operation as quickly as possible. Timely detection of an operation refers to direct monitoring of the process as much as possible. Decreasing the distance between an RIM and the operational station increases the error sensitivity of the RIM. Conversely, if the distance between an RIM and the operational station is greater, the RIM cannot detect the quality error quickly and this results in unnecessary waste. Therefore, scalability requires the RIM in the RIS must be close to the operation. However, as the operation changes, the position of the RIM must also change.
(5) Customization. This refers to designing an RIS configuration based on the quality detection required by a given process route while minimizing redundant detection functionality and detection capabilities. The customizability of an RIS is measured by its device utilization. An RIS is more customizable for higher device utilization rates. As the process route changes, the RIS the required equipment is added to the RIS while unnecessary equipment is removed to avoid redundancy.
(6) Diagnosability. This refers to the validity and timeliness of the data collected by the RIS. This determines whether the data collected can be used to meet the needs of a root cause diagnosis process. Data validity is related to the influence of device reliability on data acquisition. Data timeliness refers to fault duration from generation to detection. Therefore, for RIS diagnosability enough RIMs and sensors must be chosen based on device reliability and detection range and these must be installed in reasonable locations. If the complexity of the RIS’s device structure is low, device reliability is high and the impact of the device on data acquisition is smaller. This makes data collection more efficient. If the RIS’s equipment distribution density is large, the detection range is small. As a result, data are available more quickly. 
Analysis of the key features shows that diagnosability is the most important of the six key RIS features, and the remaining five support diagnosability. In summary, the essence of the RIS's configuration design is to provide quality detection in the reconfiguration process through the number of RIMs and their locations as well as the number of sensors, and a satisfactory configuration has the key features, but especially diagnosability.
2.2 Overview of RIS Configuration Design
Maintaining an excellent manufacturing process state in an RMS requires reconfiguration at each available point, and the critical problem is to detect product quality. In the RMS, the use of an RIS and RIMs to collect data not only provides a basis for quality assurance and process testing but also enhances the quality of the system-related process fault diagnosis. The ability of the RIS to collect data depends on its configuration design. At present, researchers mainly focus on discussing the concept of the detection or control system architecture. There is a lack of research on the physical configuration design of the detection system. Therefore, we present a key-feature-based method for RIS configuration design. The specific process is as follows:
(1) Build an RIS configuration design model. This is the basis of the proposed method, which is described in detail in Section 3.1. The RIS design variables are defined as the number of RIMs, their positions, and the number of sensors. These design variables are described mathematically using vectors. Then, the process route is analyzed, a mathematical model of it is constructed, and the configuration’s design parameters are determined.
(2) Explore feasible RIS configuration schemes. This is the core of the proposed method and is described in detail in Section 3.2. In the process of RIS configuration design, the constraints of the configuration design are modeled based on RIS’s detection capability and the detection functionality of the process route. Multiple feasible RIS configuration schemes are generated.
(3) Decision-making on based on a satisfactory Reconfigurable Machin Tool, RMT, configuration scheme. This issue is key to the proposed method and is described in detail in Section 4.5. To increase the efficiency of the detection process, cost and diagnosability are used to evaluate each RIS configuration. Thus the most satisfactory configuration design is selected with the goal of minimizing cost and maximizing diagnosability.
3. SPECIFIC MODEL-BASED PROCEDURE FOR RIS CONFIGURATION DESIGN 
An RIS is composed of multiple RIMs. Different numbers or positions of RIMs generate different RIS configurations. Additionally, each RIM is composed of multiple sensors. Different sensors represent different detection functionalities and capabilities. This affects the RIS’s detection process. Hence, the RIS configuration design variables include the number of RIMs, the positions of the RIMs and the number of sensors. Based on this, we build a mathematical model to describe a RIM configuration as shown in the Equations (2) and (3),
[image: ]        （2）
[image: ]              （3）
where CRIS represents the RIS configuration. cri represents the ith RIM in the RMS and M represent the number of RIMs. In addition, yi represents the position of the ith RIM, which means this RIM follows the yi RMT, and xi represents the number of sensors in the ith RMT, which means this RIM can detect xi features. For example, [image: ]describes a RIS with three RIMs. The first RIM is placed after the third RMT and equipped with four sensors. The second RIM is set after the fifth RMT and equipped with three sensors. The final RIM is set after the eighth RMT and equipped with three sensors. Also, this formulation shows that the RMS has eight RMTs, which are divided into 3 sets as shown in Figure 4. 
[image: C:\Users\Janet_Allen\Dropbox\0.MOVE-between-Computers\Jelena-Paper-2\Paper-2-Input-output.jpg]

Figure 4: Example RIS Configuration in RMS.

A processing route is a requirement for any RIS configuration design and the process route should be considered while designing the RIS configuration. A better description of the RIS design process, based on a set of mathematical descriptions of the process, is shown in Equation (4),
[image: ],             (4)
where Cp represents the processing route and cpi represents the ith operation. N is the number of operations in processing route Cp. Based on the model of the RMS configuration and the processing route, constraints and goals are modeled as shown in the next sections. 
3.1 Modeling the RIS Constraint Design
[bookmark: _Toc501264324]To detect product quality based on the processing route, we construct an RIS configuration constraint model to explore the feasible domain of RIS configuration designs. Quality detection is related to the ability to inspect errors and identify their root causes. This is a hard constraint for RIS configuration design. An RIS can successfully provide a quality detection process if and only if its detection capabilities and the detection capabilities provided by the RIS configuration satisfy the processing route’s quality requirements. This RIS configuration is a feasible configuration. Therefore, the process of designing a feasible RIS configuration is as follows: establish a mathematical model with the detection functionality and capabilities necessary to create a feasible model of the domain design constraints and, then using the routing parameters of the design process within the constraint model, obtain all feasible RIS configuration designs.
3.1.1 Construction of the Detection Functionality Model
[bookmark: _Hlk514072900]The basic detection tools in an RIS are sensors. Each sensor detects an operational feature. Therefore, more operational features are detected when there are more sensors, which improves the detection functionality. The detection functionality is based on the number of sensors, as shown in Equation (5).
[image: ],          （5）
where FCRIS represents the detection functionality of the RIS configuration, xi is the number of sensors in the ith RIM, and M is the number of RIMs.

[bookmark: _Toc501264325]3.1.2 Construction of the Detection Capability Model
The detection capability of an RIS is described by its sensitivity to quality errors. The sensitivity to errors is the time at which the RIS detects a quality error after it occurs. We assume that the delivery time for the product in the system is constant. The length of time before a fault is detected is based on the distance from the fault station to its nearest detection machine. Therefore, the mathematical expression for the detection capability of an RIS is shown in Equation (6),
[bookmark: _Ref501209798][image: ],      （6）
where CCRIS represents the detection capability of the RIS configuration, which has a value in [0, 1]. When CCRIS is closer to 0, the detection capability of the RIS is higher. yi represents the position of the ith RIM in the RIS, and y0=0. [image: ] is the distance from the jth operation to the ith RIM. [image: ] is used to describe the sensitivity to error of the ith RIM. N is the number of RMTs in the RMS.
3.1.3 Modeling Constraints with Detection Functionality and Capability 
When the detection functionality and capability satisfy product quality requirements, the RIS configuration design is feasible. The requirements for detecting the processing route are the number of processes, N, the characteristic surfaces of the product [image: ], the CM is the number of characteristic surfaces of the product, and the fault diagnosis distance is T. The characteristic surface of the product is manufactured by the RMTs or is used to locate the product in the manufacturing process. The fault diagnosis distance T is the least upper bound on the distance between the fault station and its corresponding inspection station. Based on the processing route, the constraint model of the RIS configuration design is based on the required detection functionality and detection capability. The number of processes and the surface of the product features in the processing route are constrained by the RIS’s detection functionality, therefore the number of sensors in the RIS configuration must not be less than the number of product features. The number of processes in the processing route and the fault diagnosis distance constrain the RIS’s detection capability and the position of the RIM determines the distance available for detecting the error. Therefore, the constraint model used to design feasible RIS configurations is expressed by Equation (7),

, (7）
where FCRIS indicates the number of constraints on the detection functionality of the RIS configuration design. H(*) represents the judgement function of the processing surface – which is used to determine whether the surface is acceptable or not. If surface fj is machined in operation cpi, then,[image: ]is equal to 1; otherwise, it is equal to 0.  G(*) represents the judgement function of the datum surface. If surface fk is the datum of surface fj, then, [image: ]is equal to 1; otherwise, it is equal to 0. The function D(*) is an operation, namely, [image: ]. INT(*) is used to insure that this is an integer. 
3.2 Modeling the RIS Design Goal 
The low cost and high diagnosability of an RIS configuration are fundamental to improving an RMS’s efficiency and reducing its ramp-up time. The low cost of an RIS design refers to minimizing design costs and resource waste, such as management costs, scrap costs and so on. The high diagnosability of an RIS design refers to maximizing data collection performance, including timeliness, comprehensiveness, and effectiveness. Therefore, we consider two goals, cost and diagnosability, in evaluating configurations. The process is as follows: analyze and establish cost and diagnosability models for each RIS configuration design. Then, a design decision model based on these two quantitative models is established and solved. 

3.2.1 Construction of the Cost Model
Different RIS configurations have different numbers of RIMs and sensors which result in different design costs. The design cost is the cost of adding RIMs and sensors to the RIS configuration, which is positively related to the number of additions to the configuration design. As the RIS’s product inspection requires increasing accuracy, more RIMs and sensors are needed, and the cost of the RIS design increases. RIM installation and removal is more expensive and consumes more manpower than sensor installation and removal and, enlarging the RIS as much as possible increases design flexibility with regard to sensors and decreases the flexibility of the RIM design. A quantitative model of the economic costs of RIM configuration is shown in Equation (8),

,
[bookmark: _Ref501248295]       （8）
where ECRIS is the cost of RIS configuration, c1 is the fixed average cost of installing an RIM, and c2 is the fixed average cost of installing a sensor. xi represents the number of sensors in the ith  RIM and M is the number of RIMs in the RIS.
3.2.2 Construction of the Diagnosability Model
Diagnosability is crucial to RIS configuration design to ensure the validity and timeliness of process data collection. In the RIS, both the RIMs and the sensors have specific levels of reliability. Only when a sensor is in its normal state can the data collected be used for fault diagnosis; otherwise, the data are invalid. A RIM in its normal state has all its sensors in normal states. Therefore, data validity requires that the RIM and its sensors are in a normal state in the RIS. When an error cannot be found rapidly, the system produces waste. The later an error is detected, the more serious the damage to the product and the greater the number of errors there are, and the more the system is damaged. The degree of damage to the system is defined as the number of workstations traversed from the failed process to the test equipment. The timeliness of the data reporting is defined as the average of the reciprocal of the maximum degree of damage to the system for each line segment. When this value is close to 1, the data are reported more quickly, with less damage to the system. Based on the above analysis, quantitative models of diagnosability in an RIS is shown in Equations (9), (10) and (11),
[image: ] 
[bookmark: _Ref501248363]      （9）
 (10)
[bookmark: _Ref501248365][bookmark: _Ref501248367]   [image: ],  （11）
Where RCRIS represents the diagnosability of the RIS configuration. Larger values are associated with higher diagnosability. XCRIS represents the validity of the RIS configuration design. pk is the validity of the kth sensor. yi is the position of the ith RIM in the RIS. [image: ] is the maximum amount of damage done to the product in the process.
3.2.3 Modeling Goals with the Cost and Diagnosability
[bookmark: _Hlk533013901][bookmark: _Hlk533013783]The decision-making process for the RIS configuration design uses weighted goals to minimize cost and maximize diagnosability. RIS diagnosability will be reduced when costs are as low as possible, and RMT costs may increase in terms of diagnosability; cost and diagnosability are conflicting goals. The decision-making process to find an optimal design involves a trade-off between these two goals. In order to give the goal functions a uniform format, the data for the cost and diagnosability are normalized and a deviation variable is introduced to describe how much the proposed scheme deviates from the target value for the most satisfactory value of the goal. Cost and diagnosability goals are re-expressed by Equations (12) and (13),
[image: ]
        （12）
[image: ],
       （13）
where dg1 represents the deviation of the cost from its target value for the gth feasible RIS configuration and dg2 represents the deviation of diagnosability from its target value.
[bookmark: _Hlk514074900]A satisfactory RIS configuration design is a feasible configuration design with an acceptable balance between cost and diagnosability. That is, the sum of the cost and diagnosability deviations are minimized. However, in actual production situations, designers may choose different levels of cost and diagnosability. Therefore, weight coefficients are introduced to represent the designer’s priorities, as shown in Equation (14),
[image: ],
        （14）
[bookmark: OLE_LINK27][bookmark: OLE_LINK19][bookmark: OLE_LINK31][bookmark: OLE_LINK28]Where I represents the decision function, which is the weighted sum of dg1 and dg2.  a1 and a2 are, respectively, the weights of the cost and diagnosability, which are determined by experts based on their experience. The sum of a1 and a2 is one. When maintaining product quality is preferred, a2 is greater than a1. When cost reduction is preferred, a1 is greater than a2. In the next section, this method is illustrated for the production of a spindle box for a lathe headstock.
4. EXAMPLE 
The headstock is an important part of a lathe that is used to lay out the machine tool spindle, its drive parts and any additional mechanisms. The spindle box includes the basic components of the headstock, which is used to machine the shaft, sleeve, gear and other components as a whole and to ensure that their relative positions are correct. Therefore, the processing quality of the box directly affects the accuracy, performance and life of the machine. Therefore, based on the example of a lathe spindle, the proposed method is described, and the part of the process relevant to the spindle housing is shown in Table 1. 
[bookmark: _Hlk521577534]
Table 1: Process Requirement Example.
	Number
	Processing surface
	Datum surface

	1
	M
	R

	2
	N
	R

	3
	Slide
	R

	4
	P
	M, N

	5
	Q
	M, N



For the product, the company plans to establish an efficient detection system to ensure quality. At present, there are 5 stations in the manufacturing process, and each error must be detected at up to 3 stations. Based on the constraint models for the required RIS configuration design in Equation (15), there must be at least 12 sensors in the RIS and the distance from each process to its detector is no more than 4. This is the maximized sum of all distances from the operation to the corresponding RIM. Based on permutations and combinations, a total of 13 feasible design solutions are identified, as shown in Figure 5.
[bookmark: _Ref501250930]	[image: ]（15）
For each of the feasible RIS configuration designs described above, the cost and diagnosability decision index values are calculated, Table 2. The reliability of each sensor is 0.9, the cost of installing one RIM averages 10,000 and the cost of one sensor averages 1,000 in arbitrary units. By using the data in the table, the deviations of cost and diagnosability are obtained. If 0.5 is chosen as the weight of diagnosability and 0.5 as the weight of cost, the value of the target function is obtained by combining the deviations and weights, and the variations are shown in Figure 6. Note that Solution 8 is the preferred design as the total deviation is least, based on the given preferences because its economic cost and diagnosability reach a relative balance; and Solution 8 is a satisfactory RIS configuration. In the proposed processing route, satisfactory quality detection relies on four RIMs and its focus is on the downstream area.
Figure 5: Schemes for Feasible RIS Configuration Design. The Blocks Refer to RMTs and the Vertical Lines Represent RIMs and the Corresponding Mathematical Descriptions Are Given

	Number
	RIS configuration
	Model

	1
	

	


	2
	

	


	3
	

	


	4
	

	


	5
	

	


	6
	

	


	7
	

	


	8
	

	


	9
	

	


	10
	

	


	11
	

	


	12
	

	


	13
	

	



[bookmark: _Hlk521577617]Table 2:  Feasible Solution Results for the RIS Configuration Design.
	Index
	Solution 1
	Solution 2
	Solution 3
	Solution 4
	Solution 5

	ECRIS
	6.2*103
	5.1*103
	5.2*103
	5.0*103
	5.0*103

	XCRIS
	0.5335
	0.5362
	0.5340
	0.5866
	0.5733

	TCRIS
	1
	0.875
	0.875
	0.875
	0.875

	RCRIS
	0.5335
	0.4692
	0.4672
	0.5132
	0.5016

	Index
	Solution 6
	Solution 7
	Solution 8
	Solution 9
	Solution 10

	ECRIS
	4.0*103
	3.9*103
	4.0*103
	4.0*103
	4.1*103

	XCRIS
	0.5457
	0.5960
	0.6049
	0.4944
	0..4911

	TCRIS
	0.7778
	0.6667
	0.7778
	0.7778
	0.6667

	RCRIS
	0.4244
	0.3973
	0.4705
	0.3845
	0.3274

	Index
	Solution 11
	Solution 12
	Solution 13
	
	

	ECRIS
	3.9*103
	2.9*103
	2.8*103
	
	

	XCRIS
	0.5690
	0.5582
	0.5433
	
	

	TCRIS
	0.6667
	0.4167
	0.4167
	
	

	RCRIS
	0.3793
	0.2326
	0.2264
	
	




[image: C:\Users\Janet_Allen\Dropbox\0.MOVE-between-Computers\Jelena-Paper-2\Paper-2-Excel-fig-with-axes-3.jpg]
Figure 6: RIS Configuration Design Objective Function Results
5. CLOSURE
In contrast with the use of traditional machines, the development of an RMS is focused on reconfiguration from processing one part family to processing another. Because RMS reconfiguration increases the complexity of the manufacturing process, product quality increases with the equipment’s reliability and production accuracy. Therefore, effective quality detection is important for RMS implementation. In view of quality detection and fault diagnosis, a key-feature-based method for RIS configuration design is proposed. This method is used to explain the principles of fault diagnosis based on the SoV and is used to describe the key features of an RIS configuration, especially diagnosability, combined with the detection process. Then, based on the key features, RIS detection capabilities are used to quantify the design constraints model and, thereby, generate feasible RIS configuration designs. Finally, the RIS’s cost and diagnosability are used to establish a quantitative model that minimizes cost and maximizes diagnosability in order to choose a satisfactory configuration. This method helps designers select an available RIS to detect the manufacturing process in an RMS and facilities the dynamic management of RMS reconfiguration. In view of dynamic management, an RIS is used to detect the status of the RIMs to enhance product quality, and RMT reconfiguration promotes RIS reconfiguration. 
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