Arrow Update Synthesis

Hans van Ditmarsch™f Wiebe van der Hoek? Barteld Kooi®
Louwe B. Kuijer?

Abstract

In this contribution we present arbitrary arrow update model logic (AAUML). This
is a dynamic epistemic logic or update logic. In update logics, static/basic modali-
ties are interpreted on a given relational model whereas dynamic/update modalities
induce transformations (updates) of relational models. In AAUML the update modal-
ities formalize the execution of arrow update models, and there is also a modality for
quantification over arrow update models. Arrow update models are an alternative to
the well-known action models. We provide an aziomatization of AAUML. The ax-
iomatization is a rewrite system allowing to eliminate arrow update modalities from
any given formula, while preserving truth. Thus, AAUML is decidable and equally
expressive as the base multi-agent modal logic. Our main result is to establish arrow
update synthesis: if there is an arrow update model after which ¢, we can construct
(synthesize) that model from ¢. We also point out some pregnant differences in up-
date expressivity between arrow update logics, action model logics, and refinement
modal logic.

Keywords: modal logic, synthesis, dynamic epistemic logic, expressivity

1 Introduction

Modal logic In modal logic we formalize that propositions may not be merely true or
false, but that they are necessarily or possibly true or false, or that they may be desirable,
or forbidden, or true later, or never, or that they are known. A common setting is for such
modal propositions to be interpreted in relational models, also known as Kripke models.
They consist of a domain of abstract objects, called states or worlds; then, given a set
of labels, often representing agents, for each such agent a binary relation between those

*LORIA, CNRS, France, hans.van-ditmarsch@loria.fr

tHans van Ditmarsch is corresponding author. He is also affiliated to IMSc, Chennai, India. Support
from ERC project EPS 313360 is kindly acknowledged.

tComputer Science, University of Liverpool, United Kingdom, Wiebe .Van-Der-Hoek@liverpool.ac.uk

$Department of Philosophy, University of Groningen, the Netherlands, b.p.kooi@rug.nl

YComputer Science, University of Liverpool, United Kingdom, Louwe.Kuijer@liverpool.ac.uk

states; and, finally, a valuation of atomic propositions on the domain, typically seen as a
unary relation, i.e., a property satisfied on a subset of the domain. The truth of a modal
proposition is relative to a state in the relational model, called the actual state or the point
of the model. The unit of interpretation is thus a pointed model: a pair consisting of a
relational model and an actual state.

If a pair (s, s') is in the relation for a this can mean that after executing action a in state
s the resulting state is s’. But it can also mean that agent a considers state s’ desirable in
case she is in state s. The interpretation that we focus on, is that of information. That
is, it is consistent with a’s information in state s that the state would be s’. In state s it
is true that agent a knows ¢ (or believes ¢, depending on the properties of the relation),
notation [,¢, if the formula ¢ is true in all states s’ accessible from s, i.e., for all s with
(s,s) in the relation for a. The modal logics using that kind of interpretation of modalities
are called epistemic logics [T, 28§].

As an example, consider two agents a,b (commonly known to be) uncertain about the
truth of a propositional variable p. The uncertainty of a and b can be pictured as follows.
We ‘name’ the states with the value of the variable p. The actual state is framed. Pairs
in the accessibility relation are visualized as labelled arrows. In the actual state: p is true,
agent a does not know p because she considers a state possible wherein p is false (formally
—.p), agent a also does not know —p because she considers a state possible wherein p is
true (formally —J,—p, also written as (,p), and similarly for agent b. Agent a also knows
that she is ignorant about p, as this is true in both states that she considers possible. The
accessibility relations for @ and b are both equivalence relations. This is always the case if
the modalities represent knowledge.

ab ab

) ()
ﬂp<a—b>

Update logic In this work we focus on modal logics that are update logics. Apart from
the modalities that are interpreted in a relational model, they have other modalities that
are interpreted by transforming a relational model (and by then interpreting the formulas
bound by that modality in the transformed model). If the modal logic is an epistemic
logic, update logics are called dynamic epistemic logics. To distinguish them we call the
former static and we call the latter dynamic.

The updates X that we consider can be defined as transformers of relational models.
This transformation induces a binary update relation between pointed models. To an up-
date relation corresponds an update modality (often also called update) that is interpreted
with this relation, so we can see those as [X] or (X), where [X]p means that ¢ is true in
all pointed models transformed according to the X relation, and (X)p that there is a pair
of pointed models in the relation. Given a relational model we can change its domain of
states, the relations between the states, or the valuations of atomic propositions, or two
or more of those at the same time. There are therefore many options for change. Change

the valuation of a model is also known as factual change [30, 25]. Update involving factual
change is an interesting topic, but it is outside the scope of the current paper.

Public announcement logic The basic update for states is the model restriction, and
the basic update operation interpreted as a model restriction is a public announcement.
The logic with epistemic modalities and public announcements is public announcement
logic (PAL) [22, [6]. A public announcement of ¢ restricts the domain to all states where
the announced formula ¢ is true, thereby decreasing the uncertainty of the agents. As a
result of the domain restriction, the relations and the valuation are adjusted in the obvious
way. A condition for the transformation is that the actual state is in the restriction. This
means that the announcement formula is true when announced.
As an example, after the public announcement of p, both a¢ and b know that p:

ab ab ab

" (
—p ———|P] =

Arrow update logic The basic update for relations is the relational restriction, i.e.,
a restriction of the arrows: a pair in the relation is called an ‘arrow’. This leaves all
states intact, although some may have become unreachable. In arrow update logic (AUL),
proposed in [20] we specify which arrows we wish to preserve, by way of specifiying what
formulas should be satisfied at the source (state) of the arrow and the target (state) of the
arrow. This determines the model transformation. Such a specification is called an arrow
update. The logic AUL contains modalities for arrow updates.

Given initial uncertainty about p with both agents, a typical arrow update is the action
wherein Anne (a) opens an envelope containing the truth about p while Bill (b) observes
Anne reading the contents of the letter. We preserve all arrrows satisfying one of p —,
p,—p —> —p, and T —, T. Therefore, only two arrows disappear, =p —, p and p —, —p.

ab ab ab ab

Q ab Q Q b Q
P ——— |[P] = —p —— [P]

The boundary between state elimination and arrow elimination is subtle. If p is true, the
following arrow update with T —, p, T —, p is the same update as a public announcement
of p. This is because there is no arrow from the p state to the —p state after the update.
Therefore, if p is true, the —p state does not matter. In another formalism this arrow
update is known as the arrow elimination semantics of public announcement [13] [19].

ab ab ab

oo ()

Generalizations In PAL and AUL the complexity (the number of states) of the rela-
tional model cannot increase. By generalizing the mechanism underlying state elimination
and arrow elimination we can achieve that, and thus express more model transformations.
This increases their update expressivity. From the perspective of information change, this
adds uncertainty about what is happening. We obtain action models [0] as a generaliza-
tion of public announcements, and arrow update models [21] as a generalization of arrow
updates.

Action model logic Action model logic (AML) was proposed by Baltag, Moss and
Solecki in [6]. An action model is like a relational model but the elements of the domain
are called actions instead of states, and instead of a valuation a precondition is assigned to
each domain element. The transformed relational model is then the modal product of the
relational model and the action model, restricted to (state,action) pairs where the action
can be executed in that state. We refer to Section [6] for a formal introduction.

An example is the action as above wherein Anne reads the contents of a letter containing
p or —p, but now with the increasing uncertainty that Bill is uncertain whether Anne has
read the letter (and that they are both aware of these circumstances). The action model
is not depicted (details are in Section @ The model transformation is as follows. In the
resulting framed state, a knows that p, but b considers it possible that a is uncertain about
p, i.e., Jup A Op=(Lep V O,—p). In the figure we assume transitivity of the relation for b.

abC_‘pL:Dab
ab ab b

Q ab Q ab
—|p<—> = ab P —— DD ab

b

Similar logics (or semantics) for action composition are found in [26], 18] 25] 2] B6]. Action
model logic is often referred to as (the) dynamic epistemic logic. As said, we use the latter
more generally, namely to denote any update logic with an epistemic interpretation.

Arrow update model logic Generalized arrow update logic [21] is a (indeed) generaliza-
tion of arrow update logic where the dynamic modalities for information change formalize
execution of (pointed) arrow update models, structures akin to the action models of ac-
tion model logic. In this contribution, instead of generalized arrow update logic we call
it arrow update model logic (AUML). The arrow updates of [20] correspond to singleton
arrow update models. The next Section [2] formally introduces them. The above is also an
example of arrow update model execution — Section [f] explains how to get action models
from arrow update models and vice versa, and to what extent they define the same update.

Quantification over information change Another extension of update logics is with
quantification over updates. Arbitrary public announcement logic (APAL) adds quantifi-
cation over public announcements to PAL [5]. Arbitrary arrow update logic (AAUL) [32]
extends arrow update logic with quantifiers over information change induced by arrow up-
dates: it contains dynamic modalities formalizing that there is an arrow update after which
. Arbitary action model logic (AAML) by Hales [14] add quantifiers over action models
to AML. In arbitrary arrow update model logic (AAUML), the topic of this paper, we add
quantifiers over arrow update models to the logical language. It is like Hales’ arbitrary
action model logic. Refinement modal logic (RML) [9] has a modality representing quan-
tification over updates, but does not have (deterministic/concrete) update modalities in
the object language to quantify over. We show that the AAML and AAUML quantifier
behave much (but not quite) like the refinement quantifier in RML. Section [7]is devoted
to it.

Figure|[l| gives an overview of the different logics discussed in the paper, in their relation
to AAUML. The four logics in the left square are based on state manipulation, the four
logics in the right square are based on arrow manipulation. Entirely on the left we find
the base modal logic ML and the logic RML, that is also arrow manipulating.

All these logics are equally expressive as ML and are decidable, which can be shown
by truth-preserving rewriting procedures to eliminate updates (for AAUML this is one of
the results of the paper), except for APAL and AAUL, which are more expressive and
undecidable [, 11l B2, 33]. However, the logics greatly differ in update expressivity, as
the typical examples above already demonstrated. See also Sections [5] — [/} Finally, it
should be mentioned that all the logics are invariant under bisimulation. This is because
the parameters of the model transforming dynamic modalities and quantifiers are (model
restrictions induced by) formulas.

There are many other updates and update logics that we do not consider in this paper.
In particular we do not consider updates X that can only be defined as pointed model
transformers (that is, they cannot be globally defined on the entire model; they are defined
locally: how they transform the model depends on the actual state). If such were the
definition of an update, even the interpretation of a static modality can be seen as an
update, namely transforming the model with point s into the model with point s’, where
the point has shifted given a pair (s,s’) in the relation for an agent. Such local update
logics are often more expressive than modal logic, are often undecidable, are typically
not invariant under (standard) bisimulation, and may lack axiomatizations. Examples are
[24, [, 1]. In [I] not only relational restriction is considered but also relational ezpansion
(‘bridge’) and relational change that is neither restriction nor expansion, such as reversing
the direction of arrows (‘swap’). It should finally be noted that the distinction between
static modalities, interpreted in a model, and dynamic modalities, interpreted as updates,
is not rigid: unifying perspectives include [25].

Synthesis For these update logics we can ask whether there is an update that achieves
a certain goal. For the logics without quantification this question cannot be asked in the

//\;

ML PAL AML AUL

AUML

RML APAL

AAML AAUL

AAUML

Figure 1: An overview of update logics discussed in the paper. Horizontal arrows informally
represent more complex updates. Vertical arrows informally represent quantification over
updates. The arrows can be interpreted as syntactic extensions (modulo the names of
quantifiers) or as semantic generalizations. Assume transitive closure.

object language but only meta-logically. That is, we can ask whether there is an update
X such that (X) is true. For the update logics with quantification this question can be
asked in the object language. Let (?) be (the existential version of) that quantifier. Then
(7)¢ asks whether there is an update X that makes ¢ true.

Only knowing whether there is an update that achieves a goal is not very satisfying; we
would also like to know which update, if any, achieves the goal. So we would like to know
not only whether the goal is achievable but also how it can be achieved. The process of
constructing this update that achieves the goal is known as synthesis.

Formally, the synthesis problem for a given type of update takes as input a formula ¢,
and gives as output an update X of that type such that, whenever ¢ can be achieved, then
X achieves ¢. In symbols, this is the validity of (7)o — (X).

This is a rather strong goal. We do not consider it sufficient to find, for every pointed
model (M, s), an update X such that (M, s) satisfies (7)o — (X(a1,5))¢. We want one
single update X, that achieves ¢ in every model where ¢ is achievable. Because this goal
is so strong, there is, in general, no guarantee that synthesis is possible.

For PAL this strong kind of synthesis is impossible. If (M, s;) satisfies (1)1)¢ and
(Ms, s5) satisfies (¢9) ¢, so if p can be achieved in two different situations using two different
public announcements, then there is typically no unifying public announcement v such that
(M, s2) satisfies () and (M, s9) satisfies (1)

For AUL this strong kind of synthesis is also not possible. But, somewhat surprisingly,

'For example, consider the four-state model below; p means that p is false in that state, etc. Both
states where p, ¢, are all true satisfy that (?)(0.p A =Opp). In the top-left pgr-state this is true because
(q)(Dup A—Opp) is true, whereas in the bottom-right pgr-state this is true because (r)(d,p A —Opp) is true.
However, there is no announcement ¢ such that (¢)(d,p A =pp) is truth in both pgr-states. Assuming
that there were such an announcement easily leads to a contradiction.

abCP(P”#WT:)ab

S

ab C PqF —— pgr 7> ab

n [I4], Hales showed that this synthesis is possible for AML. This result was surprising
for the following reason. Hales obtained his synthesis result with refinement modalities as
quantifiers. It was already known that finite action model execution results in a refinement
of the current relational model, but also that the other direction does not hold: there are
refinements (i.e., updates) that can only be achieved by executing an infinite action model
[29]. However, as the synthesis is with respect to making a given formula ¢ true, a finite
syntactic object, synthesis for AML was after all possible.

In this contribution we show that synthesis is also possible for AUML. That is, for a
given goal formula ¢, we can construct an arrow update model X such that

For all (M, s): there is an arrow update model Y such that (M, s) satisfies
(Y, if and only if (M, s) satisfies (X)¢.

In AAUML we also have a quantifier over arrow update models. Therefore, in that logic the
synthesis translates to the above-mentioned validity (?)¢ — (X)p. In AUML / AAUML we
synthesize a (single-)pointed arrow update model, whereas for AAUML Hales synthesizes a
multi-pointed action model, and it can be easily shown that this cannot be single-pointed.

Results in the paper In this contribution we present arbitrary arrow update model logic
(AAUML), that further extends arrow update model logic AUML, namely with dynamic
modalities formalizing that there is an arrow update model after which . For this logic
AAUML we obtain various results. We provide an axiomatization of AAUML. The ax-
iomatization is a rewrite system allowing to eliminate dynamic modalities from any given
formula, while preserving truth. Thus, unlike AAUL, AAUML is decidable, and equally
expressive as multi-agent modal logic. We establish arrow update model synthesis: if there
is an arrow update model after which ¢, we can construct (synthesize) that model from .
We define a notion of update expressivity and we determine the relative update expressivity
of AAUML and other arrow update logics and action model logics, and RML.

Overview of content Section 2] presents the syntax and semantics of arbitrary arrow
update model logic, AAUML, and elementary structural notions. In Section [3| we describe
the procedure for synthesizing arrow update models. In that section we also introduce a
number of validities that are useful when introducing an axiomatization for AAUML, which
we do in the subsequent Section [l Section [5] introduces the notion of update expressivity.
Section [6] compares AAUML and AAML, and in particular their update expressivity. This
comparison also includes examples of arrow update models that have exponentially larger
corresponding action models. Section [7] compares AAUML to RML.

2 Arbitrary arrow update model logic

Throughout this contribution, let A be a finite set of agentsand let P be a disjoint countably
infinite set of propositional variables (or atoms).

2.1 Structures

A relational model is a triple M = (S, R, V) with S a non-empty domain (set) of states
(also denoted D(M)), R a function assigning to each agent a € A an accessibility relation
R, CSx S, and V : P — S a valuation function assigning to each propositional variable
p € P the subset V(p) C S where the variable is true. For s € S, the pair (M, s) is called a
pointed relational model, and for T'C S, the pair (M, T) is called a multi-pointed relational
model.

For any relation R on a domain X, instead of (z,y) € R (where z,y € X) we may
write R(z,y) or xRy, and R(x) or Rx for the set {y € X | R(z,y)}. If R(x,y) we also say
that R links x to y, or that there is an arrow from z to y. Relation R is: reflexive iff for
all x € X, R(x,x); serial iff for all x € X there is y € X such that R(z,y); transitive iff
for all x,y,z € X, if R(x,y) and R(y, z) then R(z,z2); Euclidean iff for all z,y,z € X if
R(z,y) and R(z,z) then R(y, z); an equivalence relation iff it is reflexive, transitive, and
Euclidean. Finally, for any Y, Z C X we let R(Y,Z) mean that for all y € Y there is a
z € Z such that R(y, z) and for all z € Z there is a y € Y such that R(y, z); this is known
as relational lifting.

The class of relational models is known as K. The class of relational models where all
accessibility relations are equivalence relations is known as §5, and the class of relational
models where all accessibility relations are serial, transitive, and Euclidean is known as
KDA45.

Let two relational models M = (S, R, V) and M' = (S', R', V') be given. A non-empty
relation R C S x S’ is a bisimulation if for all (s,s’) € R and a € A:

atoms s € V(p) iff & € V/(p) for all p € P;
forth for all t € S, if R,(s,t), then there is a t’ € S” such that R/ (s',t') and (¢,t') € R;
back for all ' € S’ if R/ (s,t'), then there is a t € S such that R,(s,t) and (¢,t') € R.

We write M < M' (M and M’ are bisimilar) iff there is a bisimulation between M and M’,
and we write (M, s)<(M',s") (M, s) and (M',s’) are bisimilar) iff there is a bisimulation
between M and M’ linking s and §'. Similarly, we write (M,T)< (M’,T") iff there is a
bisimulation between M and M’ linking every state in T to a state in 7" and linking every
state in 7" to a state in 7.

Using the above-defined notion of relational lifting, if M; and M are sets of pointed
models we say that M; and M, are bisimilar, denoted M; < Ma, if for every (M, s;) €
M there is an (My, s9) € My such that (M, s1) < (Ms, s2) and for every (Ms, s9) € My
there is an (M7, s1) € M; such that (Ml,SQ)@(Mg,Sg)H

We will now define arrow update models. We can think of them as follows. If you
remove the valuation from a relational model you get a relational frame. We now decorate

2For the purpose of bisimilarity, we could have treated a multi-pointed model (M, T) as a set of pointed
models {(M,t) | t € T}, so that (M;,Ty) < (Mz,Ts) if and only if for every ¢, € T there is a ty € T such
that (M, 1)< (Ma,t2), and vice versa. As a union of bisimulations is again a bisimulation, that would
have defined the same notion as above.

each arrow (pair in the accessibility relation for an agent) with two formulas in some logical
language L: one for a condition that should hold in the source (state) of the arrow and
the other that should hold in the target (state) of the arrow. The result is called an arrow
update model.

Definition 1 (Arrow update model) Given a logical language £, an arrow update model
U is a pair (O, RR) where O is a non-empty domain (set) of outcomes (also denoted D(U))
and where RR is an arrow relation RR : A — P((O x L) x (O x L)). .

For each agent a, the arrow relation links (outcome, formula) pairs to each other. We write
RR, for RR(a), and we write (0,¢) —, (0',¢’) for ((o0,¢),(0',¢')) € RR,, or even, if the
outcomes are unambiguous, p —, ¢'. Formula ¢ is the source condition and formula ¢’
is the target condition of the a-labelled arrow from source o to target o’. A pointed arrow
update model, or arrow update, is a pair (U,0) where o € O. Similarly, we define the
multi-pointed arrow update model (U, Q), where Q C O, known as well as arrow update.
There is no confusion with the arrow updates of AUL [20], as those correspond to singleton
pointed arrow update models.

Arrow update models are rather similar to the action models by Baltag et al. [6]. They
are compared in Section [6]

2.2 Syntax
We proceed with the language and semantics of arbitrary arrow update model logic (AAUML).

Definition 2 (Syntax) The language £ of AAUML consisting of formulas ¢ is induc-
tively defined as

L3> pu=pl-p|(eAe)|Oup|[Uo0e]|[T]e

where p € P, a € A, and where U = (O, RR) with o € O is an arrow update model with
O finite and with RR, finite for all a € A, and with source and target conditions that are
formulas . o

The inductive nature of the definition may be unclear from the construct [U, o]p. We should
think of [U, o]p as an n-ary operator where not only the formula bound by [U, o] is a formula
but also all the source and target conditions in U EI We read [U, o]y as ‘after executing
arrow update (U,0), ¢ (holds), and [f]p as ‘after an arbitrary arrow update, ¢ (holds)’.
Other propositional connectives and dual diamond versions of modalities can be defined
as usual by abbreviation: ¢,p = —0,—p, (U,0)p = =[U,o0]~¢, and (1) = —[1]—e.
Expression ¢[1/p] stands for uniform substitution of all occurrences of p in ¢ for .

3The BNF informatics-style presentation obscures the inductive nature of the language definition, be-
cause the source and target conditions of (U, 0) are implicit. The mathematics-style presentation of that
clause may be clearer:

Let ¢ € L, let U = (O, RR) be an arrow update with source and target conditions ¢1,..., ¢, € £ and
such that O and RR, for all a € A are finite, and let 0 € O. Then [U, o]y € L.

A formula is a modal formula if it has shape Oy, Ou, [T, (1)@, [U, ole, or (U, o0)e.
The modal depth of a formula ¢ € L is defined as: d(p) = 0, d(—p) = d(p), d(p A1) =
max(d(@%d(w))’ d(DaSO) = d(<T>90) = d(@) + 1, and d([U’ 0]90 = d(U) + d((p) + 1, where
d(U) is the maximum modal depth of the source and target conditions occurring in U.

The propositional sublanguage is called £, (the propositional formulas). Adding the
basic modal construct O,p to L, yields £, (the language of basic modal logic, the basic
modal formulas). Additionally adding the construct [U, o]y yields L,y (the language of
arrow update model logic). In the language £ of AAUML, (modalities for) multi-pointed
arrow update models are defined by abbreviation as [U, QJp := A ,c,[U, o]¢. From here on
we also consider such modalities as logical connectives, such that [U, Q]y is a formula in
the logical language.

When doing synthesis, we will put formulas in disjunctive negation normal form. This
fragment DNNF of £, that is inspired by the disjunctive normal form of propositional logic
and the negation normal form of modal logic, is defined as

DNNF > y:=:=v|(xVx)
Y= | (YA
@ u=p|-p|Oux | Cax | [Usox | (U 0)x [[TIx | (T)x

where the source and target conditions in (U, 0) are also formulas .

This means that a ¢ € £ is in disjunctive negation normal form if every subformula
of ¢ is a disjunction of conjunctions of formulas that are an atom, or the negation of an
atom, or that have one of O,, O, [U, o], (U, 0), [1] or (1) as main connective. In particular,
this means that formulas have to be in DNNF at every modal depth. So, for example,
pVO(qV (Op A—q))is in DNNF, while p vV O(g V =(=0p V q)) is not.

2.3 Semantics

We continue with the semantics. The semantics are defined by induction on ¢ € £, and
simultaneously with the execution of arrow update models.

Definition 3 (Semantics) Let a relational model M = (S, R, V), a state s € S, an arrow
update model U = (O, RR), and a formula ¢ € L be given. The truth (or satisfaction) of
@ in (M, s) is defined by induction on .

M,skE=p iff seV(p)

M, s E -y ifft M, sE

M,sEpny iff M,sk=pand M,s =

M, s = Oy iff M.t forall (s,t) € R,

M,s = [Uole iff M=xU,/ (s,0)E ¢ where M % U is defined in (f)
M, s E= [T it M,s = [U,olp for all (U, o) satistying (ff)

10

(f): MU = (5, R',V') is defined as

S’ = SxO
Forallae A,p,¢ € L,s,8 € S,0,0 € O :
((s,0),(s,0")) € R, iff (s,5') € Ry, (0,0) =4 (0/,¢),M,s =, and M,s" = ¢
For all p e P:
V'(p) = V(p)xO

(88): (U, o) is an arrow update with all source and target conditions in L.

Formula ¢ is valid in M, notation M |= ¢, iff M, s |= ¢ for all s € S; and ¢ is valid
iff for all relational models M we have that M |= ¢. Formulas ¢, € L are equivalent iff
for all M = (S, R, V) and for all s € S, M, s = ¢ iff M,s |= 1. The set of validities, also
more properly known as the logic, is called AAUML. o

Formulas ¢ and v from different languages will also be called equivalent if they satisfy
the above condition. The term AAUML will also continue to be informally used for arbi-
trary arrow update logic. The restriction of arrow formulas to £, in the semantics of [1]p
is to avoid circularity of the semantics, as [f]y could otherwise itself be one of those arrow
formulas. However, because we will prove that AAUML is as expressive as basic modal
logic, we also have

M,sk=[tle iff M,skE=[U,olp for all (U,o)

without any restriction on the source and target conditions of U. We will prove this
property in Proposition [T6] later.

We conclude this subsection by noting two relatively simple properties of AAUML that
will be useful in later sections. Firstly, AAUML is invariant under bisimulation, i.e., if
(M, s)< (M, s") then for all p € £ we have M, s |= ¢ iff M',s' |= . In [32, Lemma 3] it
was shown that AUML is invariant under bisimulation. The proof given in [32] can easily
be extended to a proof that AAUML is also invariant under bisimulation.

Secondly, every formula ¢ € L is equivalent to a formula ¢’ that is in DNNF. Proving the
existence of such ¢’ is conceptually simple but rather notationally complex. We therefore
provide only an example, and trust that the reader can see that the demonstrated process
can be generalized to any ¢ € L. Suppose that ¢ = pA—(O,01 A=[U, 0]hs). Our first step
is to treat the non-propositional subformulas of ¢ as atoms, i.e., we treat the formula as
p A =(q1 A —qa). This is a formula of propositional logic, so it is equivalent to a formula in
disjunctive normal form: (p A —¢q;)V (pAge). Then we recall what ¢; and ¢, represent, and
obtain (pA—O,¢1)V (pA[U, o]i)s). Using the fact that =,y is equivalent to ¢, =), we find
that ¢ is equivalent to (p A Qu—11) V (pA[U, 0]ths). We then repeat this process for =)y, 1
and every formula y that occurs as a source or target condition in U. The depth of =1/, 1
and every such y is strictly lower than that of ¢, so this process eventually terminates,
resulting in a formulas ¢}, ¥4 and x’ that are in DNNF and equivalent to =), and Y,
respectively. Let U’ be the result of replacing every x in U by the equivalent x’. Then the
formula (p A Qatb}) V (p A [U’, 0]bh) is in DNNF and equivalent to ¢.

11

2.4 Example

First consider the action of the introductory section of Anne reading a letter containing the
truth about p while Bill remains uncertain whether she performs that action. The arrow
update model producing the resulting information state is depicted in the upper part of
Figure 2] In the figure, an arrow — labelled with ¢ ; ¢’ and linking outcomes o, o’ stands
for the arrow ¢ —; ¢’ between these outcomes, i.e., ((0,¢), (¢/,¢')) € RR;; ¢ i ¢ stands
for o —; ¢ and ¢ —; ¢'.

In the resulting model Bill considers it possible that Anne knows p, that she knows —p,
and that she still is uncertain about p: ¢p.p A O, —p A Op—(Oap V O,—p).

Next, consider the action of Anne privately learning that p while Bill remains unaware
of her doing so. The arrow update model achieving that and the resulting relational model
are depicted in the lower part of Figure 2] In the resulting model it is true that, for
example, Anne believes p but Bill incorrectly believes that Anne is uncertain about p:
Dap A Dbﬁ(Dap V Daﬁp)'

“Pa P
Q b
T, Tl Dpap ab C (=p,0) ——|(p,°)| D ab
b
Ly " e =T, T = abC(ﬁp,.ya_b)(p,.)Dab
D Ta.p (=p,0) — = [(p,0)| Da
ab %’ T, T b hb
—|p<a—b, * e OT T = abC(—\p7o)<a—b,(p’o)Dab

Figure 2: Different ways of Anne learning that p

The relation RR, allows for multiple pairs between the same outcomes. This is neces-
sary. For an example, the singleton arrow update with two reflexive arrows p —, ¢, 7 —, s
(i.e., (0,p)RR4(0,q) and (o,7)RR, (0, s)) does not correspond to an arrow update where for
any given agent a at most a single arrow links any two outcomes, see [20, 21, 32].

Arrow updates apply to any kind of relational model, and also in particular to relational
models wherein all accessibility relations are equivalence relations, the class §5. These rela-
tions model knowledge of an agent. Relational models wherein all accessibility relations are
serial, transitive, and Euclidean, are of the class KD45. These relations model consistent
belief of an agent. As dynamic epistemic logics typically formalize change of knowledge or
change of belief, i.e., epistemic change, of particular interest are therefore arrow updates
that are Sh-preserving or KD45-preserving, by which we mean that, given a relational

12

model in class §5, the update will produce a relational model in class S5, and similarly
for KD45.

The examples in this section are indeed typical in that sense. The first example is an
Sbh-preserving update and the second example is a KD45-preserving update.

There is more to be learnt from these examples: the first arrow update ‘seems S5’ and
the second update ‘seems KD45’. It is easy to make ‘seem’ precise: consider the following
accessibility relation between outcomes induced by an arrow relation:

o—' o i (0,0) =, (0, ¢") for some ¢, .

Let an arrow update be in class S5 if for all agents a, these induced —!, are equivalence
relations; and similarly for XD45. The first arrow update is therefore §5 and the second
arrow update is KD45. However, an &5 arrow update of an §5 relational model may not
result in an S5 relational model (whereas an S5 action model executed in an S5 relational
model will always result in an S5 relational model). This is obvious, as the presence of
arrows in the resulting model is also determined by source and target conditions. For
example, if in the arrow update of the first example we change the arrow T —, T linking
o to e into L. —; T, then the resulting model will no longer be reflexive. It is no longer
S5. It is not known how to address such issues systematically (see Section .

As said, arrow updates are an alternative modelling mechanism to the better known
action models. In Section [6] and in particular Subsection [6.5] we compare the two mecha-
nisms in more detail, we will give action models that define the same update as the arrow
updates in this section, and we will also present typical applications on which they perform
differently.

3 Arrow update synthesis

The goal of synthesis is to find, given a goal formula ¢, an arrow update (i.e., pointed
arrow update model) (U, 0) that makes ¢ true. There are at least three ways in which we
could interpret this goal, however.

Definition 4 (Synthesis)

e The local synthesis problem takes as input a pointed model (M, s) and a goal formula
¢. The output is an arrow update (U, o0) such that M,s = (U,0)p, or “NO” if no
such arrow update exists.

e The wvalid synthesis problem takes as input a goal formula ¢. The output is an arrow
update (U, 0) such that = (U, 0)¢, or “NO” if no such arrow update exists.

e The global synthesis problem takes as input a goal formula ¢. The output is an arrow
update (U, 0) such that for every pointed model (M, s), if there is some (U’, o) such
that M, s = (U’, o), then M, s = (U, o).

13

We recall from the introduction that we take the third approach: when we say synthesis we
mean global synthesis. An alternative, equivalent characterization of the global synthesis
problem is that, for given ¢, we want to find (U, o) such that, for all (M, s), M, s = (1) <
(U, 0)¢ (see Proposition [16]). We further recall that synthesis is impossible for PAL and for
AUL, but possible for AML [14]. We now show that synthesis for AUML is also possible.
Because our version of synthesis is global, it cannot depend on any specific model. So our
synthesis process is purely syntactic.

In our synthesis, we make use of so-called reduction axioms. These reduction axioms are
a set of validities that, when taken together, show that AAUML has the same expressive
power as modal logic.

3.1 Reduction axioms for arrow update models
We start by considering the reduction axioms for the [U, o] operator.

Lemma 5 ([21]) Let (U,0) be an arrow update, p € P, a € A and ¢,1 € L. Then the
following validities hold.

= [Uop <+ p

= [U, 0o]-p +» =[U, ol

= [U.ol(p AY) < ([U, olp AU, oly)

= U0 < N\ @ — 0. — [U.d)p)

(0,9)—a (0’ ¥")

Proof The first three validities follow immediately from the semantics of [U, o]. The fourth
validity also follows from the semantics, in the following way.

M,w = [U,ol0,p it MxU, (w,0) EOup
iff for all (w',0) such that (w,0)R,(w',0") : M U, (w',0') = ¢
iff for all (¢/,4') and w’ such that (0,v) —, (¢/,7¢') and R,ww'’ :
if M,w =1 and M,w' =1 then M U, (w',0") = ¢
iff for all (¢/,¢") such that (0,v) —, (o/,¢') :
if M,w = then M, w = 0O,(¢" — [U,d]p)
iff M> w): /\(o,w)—m(o’,tb’)(d) — Da(w/ — [U> O/]Qp)) O

Note that, in particular, = [U,o0]—¢ <> —[U,0]¢ implies that [U, o] is self-dual: we have
= [U,olp < (U,o)p. This, of course, does not extend to the arbitrary arrow update
operator: there are ¢ for which [~ [f]e <> (1)¢.

The above lemma shows that [U, o] commutes with —, distributes over A and, in a
somewhat complicated way, commutes with [J,. As discussed in [21], this suffices to show
that [U, o] can be eliminated from the restriction of the language £ to Laum-

Corollary 6 For every ¢ € L, there is a formula ¢’ € £,,; such that = ¢ <> ¢'. -

14

3.2 Reduction axioms for the arrow update model quantifier

We can also write similar reduction axioms for [1]. In practice, however, it turns out to be
slightly more convenient to write them for the dual operator (1). Note that in the lemmas
in this subsection we restrict ourselves to the language L., as some of those lemmas
use that (1) quantifies over arrow updates with source and target conditions in L,,;, and
because we can meet this constraint by applying Corollary [6] Later, in Theorem [15]in the
next subsection, we will show that this restriction is unnecessary, and that the lemmas
apply to L as well.

Lemma 7 For every ¢ € L,,,; and every a € A, we have

= (1 0ap ¢ Qalh)e 2

Proof Let (M, w) be any pointed model, and suppose that M, w = (1)0.¢. Then there
is some (U, 0) such that M *x U, (w,0) = OQu¢. So (w,o0) has an a-successor (w’,0’) such
that M x U, (w',0) E .

This implies that M,w" = (U,0)¢ and therefore M,w’ = (1)¢. Since w' is an a-
successor of w, we obtain M, w = O (1)¢.

Now, suppose that M,w = Ou(T)p. Then there is an a-successor w’ of w such that
M,w' = (1)ep. As witness for this (1) statement there must be some U’, 0" such that
M, w' = (U, 0).

Let (U,0) be the arrow update obtained by adding one extra world o to U’, and a
transitions (o, T) —, (0/, T). Note that (M = U’ (w’,0')) is bisimilar to (M * U, (w', o)),
and therefore M * U, (w',0') = ¢. Finally, note that (w’,0") is an a-successor of (w,0), so
we have M * U, (w,0) = Qu¢ and therefore M, w = (1)0q¢. O

Note that the proof is constructive. That is, if we find (U’, 0') such that M, w |= 0, (U’, 0")¢
then not only do we know that M, w = (1)0.¢, we can also find a specific (U, o) such that
M, w = (U, 0)0qp.

Next, we consider a slightly stronger lemma.

Lemma 8 For every @1, , ¢, € Lo and every a € A we have

= (M /\ Qapi < /\ OalT) i

1<i<n 1<i<n

Proof The left-to-right direction is obvious, so we show only the right-to-left direction. So
suppose that M, w = A Oua(T)¢;i. Then there are a-successors wy, - - - , w,, of w and pointed
arrow update models (Uy,01),- -+, (Up, 0,) such that M, w; = (U;, 0;)p; for all i.

Now, let (U, 0) be the arrow update obtained by taking the disjoint union of all U; and
adding one extra outcome o, and adding arrows (o, T) —, (0;, T) for every o;.

For every i, (M *Uj;, (w;, 0;)) is bisimilar to (M = U, (w;, 0;)), so we have M xU, (w;, 0;) |=
wi. Finally, (w;,0;) is an a-successor of (w,o0) for every i. As such, we have M,w =
(U, 0) \ Ouatp; and therefore, as all the source and target conditions of U are in L,,;, M, w |=

<T> /\ <>a§013 O

15

Again, the proof is constructive, so given (U;, 0;) for all ¢, we can find the model (U, o).
Note also that the ¢; need not be consistent with each other.

Some reflection may be in order as to why Lemma [§] holds. Suppose that M, w =
A Ca(T)pi. So for every i, there is some world w; that a considers possible as well as some
event U; and outcome o; such that, if (U;, 0;) were to happen in w;, then ¢; would become
true.

Now let us look at the arrow update (U, 0) that we constructed. Effectively, this arrow
update represents us telling a that “we are performing one of the actions U;, 0;, but we are
not telling you which one.” Now, for every ¢ agent a considers it possible that w; is the
actual world, and that (U, 0;) is the event that happened. As such, after we execute our
event we are in a situation where every ¢; is held possible by a.

So far, we have only considered diamonds. Now, let us add a box modality.

Lemma 9 For every 1, ,¢0,, %Y € Ly and every a € A, we have
EMCA Qapi ADat) ¢\ 0l (i A W)
1<i<n 1<i<n

Proof The left-to-right direction is fairly obvious. Suppose that M, w = (1)(A;<,<, Cai\
Oa0). Then there is a (U, 0) such that M,w & (U,0)(\,<;<, Qapi A Oa0). Therefore,
M U, (w,0) = Oyt and for each 1 < i <n, M*U, (w,0) = Qups. Let (w;, ') be such that
(w, 0)Ry(w;, 0') and M % U, (w;, o) | ¢;. From M % U, (w,0) = O, and (w, 0) R,(w;, o)
also follows that M * U, (w;, o) = ¢. Combining both we have M x U, (w;,0') = @i A 1.
Therefore, M,w; = (U, 0)(p; A1), from which it follows that M, w; = (1)(p; A). From
(w, 0)Ry(w;, o) it follows by definition that wR,w;. From M, w; = (1)(p; A1) and wR,w;
we get the required M, w |= 0o (1) (wiAV). As i was arbitrary, M, w = A;<,<,, Ca(T) (@iAY).

We now show the right-to-left direction. So suppose that M, w = A, ;<. Oa(T)(pi A1).
Then for every 1 < i < n, there are an a-successor w; of w and (U;, 0;) such that M, w; =
(Ui, 0i) (pi N).

Let (U,0) be the model obtained by taking the disjoint union of all U;, and adding a
single outcome o with arrows (0, T) —, (05, (U;, 0;)1) for every i.

Consider (M U, (w,0)). By assumption, M, w; = (U;, 0;)(p; A1), so M, w; = (Us, 0;)1).
From that and the fact that model U contains arrow (o, T) —, (0;, (U;, 0;)%) it follows that
(w;, 0;) is an a-successor of (w, 0) in (M*U). Furthermore, also from M, w; = (U;, 0;) (p: A1)
it follows that M, w; | (U;, 0:)¢;, i.e., M x Uy, (w;,0;) | i, and as (M = U, (w;, 0;)) is
bisimilar to (M * U;, (w;, 0;)) it follows that M * U, (w;,0;) = ¢; (the bisimulation is the
identity relation on the restriction of the domain of M % U to the domain of M *U;). With
(w, 0) Ra(wy, 0;) we thus get M « U, (w,0) = Qapi, and as ¢ was arbitrary, M * U, (w,0) =
/\1§z’§n Qatpi-

Additionally, note that every outgoing a-arrow in (U, 0) has target condition (U;, 0;)1)
for some 7. Again observing that (M U, (w;, 0;)) is bisimilar to (M x U, (w;, 0;)), it follows
that for every (w;,o0;) that is an a-successor of (w,0), we have M x U, (w;,0;) E ¥. It
follows that M « U, (w,0) = Ou1.

16

Taken together, the above shows that M« U, (w, 0) = \;<;<, Qui AO.1 and thus that
M, w = (U, 0) (A <ic, Qapi \atb). Furthermore, every formula y occurring in U is either a
basic modal formula, or of the form (U;, 0;)1). Because 1) € L qumi, we have (U, 03)1 € L qumi
and therefore, by Corollary |§|, there is a formula y; € £, that is equivalent to (U;, 0;)%.
Let U’ be the arrow update model obtained from U by replacing (U;, 0;)1 by x;, for every 4.
Then we also have M, w = (U’, 0)(\ <<, Cai NOa0). Because U’ only contains formulas
of modal logic, it follows that M, w = (1) (A, <<, Catpi A Tat)), as was to be shown. O

Once again, the proof is constructive. Note that on the right-hand side we have eliminated
the [, connective. This is a consequence of the fact that as the designer of the arrow update
model U, we have the freedom to inform a that certain worlds, which she might previously
have considered possible, are not in fact the actual world. This results in the removal of
the a-arrows to these worlds. So if we want to make [, true after the application of U,
then we can simply have a eliminate all successors where 1) would otherwise become false.
In the construction used in the lemma, we do this using the target condition (U, 0;)1).

In the preceding three lemmas, we only considered ¢, and [J, operators for one single
agent a. However, when constructing (U, 0) we can place arrows for different agents in-
dependently, so the same construction works for multiple agents at the same time. This
yields the following lemma.

Lemma 10 For every a € A, let &, C L,y be a finite set of formulas, and let ¥, € L4
be a formula. Then

EMACA Oapa AT & A A Oalt)a A th)

a€A Pl D, a€A p €D,

Proof We proceed as in the previous Lemma [9] but simultaneously for all a € A.

Again, the left-to-right direction is fairly obvious, and completely analogous to the
treatment in Lemma (9 Suppose that M,w = (1) Ayca(A,,ca, QaPa A Uatba). Then
there is a (U, 0) such that M,w = (U, 0)(Aea(A,,ca, QaPa A Datla). Therefore, for all
a € A and for all p, € ®,, M x U, (w,0) = Ou¢p and M x U, (w,0) = Qupa. As before
we now obtain M, w = Qu(T)(pa A), for all @ € A and for all p, € ®,, and thus
M, w = /\aeA /\gpae@a CalM) (Pa A V).

From right to left, suppose that M,w | A,ca Ay, co, Qalt)(Pa A Ya). Let @, =

{pl ... ,gpl?“'} (&, may be empty). Then for every a € A and for every 1 < i < |®,], there
are (U!,0%) and an a-successor w’ of w such that M, w? = (U¢, 0!)(¢: A1b,). Similarly to
the previous lemma, we let (U, 0) be the model obtained by taking the disjoint union of
all U! (i.e., for all a € A and for all 1 <14 < |®,]|), but still only adding a single outcome
o with arrows (o, T) —, (0;, (U;, 0;)1) for every a € A and 1 < ¢ < |®,|. We then proceed

as before. 0

Lemma[10]is the most important reduction axiom for AAUML. However, not every formula
is of a form such that the lemma can be applied. We therefore need two validities that
allow us to put formulas in the correct form.

17

Lemma 11 For every o1, 93 € Lgym and every ¢y € L, we have

= (D (e1 V) & (e V(1))

and

= (o Apr) < (o A (Ther).

Proof The proof of this lemma is straightforward.

By the semantic definition, from M, w = (1)(p1 V ¢2) it follows that M, w = ()¢, or
that M, w [= (1)ya, and therefore that M, w = (1)1 V (1)¢2. In the other direction, from
M,w = (1)1 V (T)ps it follows that M, w |= (1) or that M, w = (1)ps, and therefore,
by weakening either formula to the disjunction ¢1 V ¢, that M, w = (1) (¢1 V ¢2).

For the second validity, we first observe that (1)¢o <> ¢o (%) is a validity of AAUML
(all our logics are logics of informational change, not of factual change). From M, w =
(M (po A 1) now follows M, w = (1)po and M,w = (1)¢1, and thus, using (x), that
M,w = ¢y and M,w = (1)1, and so M,w = o A (T)p1. For the other direction we
observe that, on the assumption of M,w = ¢o A (1)1, any arrow update executed in
(M, w) to make ¢; true will preserve, by (x), the truth of g, so that M, w = (1) (0 A ¢1).

U

It is important and non-trivial to note that the disjunction case can be made constructive.
Suppose that we have already synthesized (Uy,01) and (Us,0y) such that = (1)1 <
(U, 01)p1 and = (T)pe <> (Us, 02)p2. So we have two pointed arrow update models that
make ¢; and s true whenever possible. This does not, however, immediately give us a
single-pointed arrow update model (U, 0) that guarantees ¢ = ¢ V o whenever possibleﬁ
In order to find this (U, 0), we have to combine (Uy,01) and (Us, 02). We do this in the
following way.

First, we take the set of outcomes of U to be the disjoint union of the sets of outcomes
of Uy and U,, plus one extra outcome o. Then, we add arrows as follows to U.

For every (01,1) —, (0/,9") of Uy, add an arrow (0,9 A (Uy, 01)p1) —4 (0',¢).
For every (0g9,1) —, (0/,¢') of Uy, add an arrow (o, o A—=(Uy, 01) 1) —4 (o', ¢).

When executed in a (1)p; world, this arrow update (U, 0) will act as (Uy, 01), since every
such world satisfies (Uy, 01)¢1 and we added all arrows from o; with an extra (U, 01)¢1
precondition. When executed in any —(1)¢; world, (U, 0) acts as (Us, 02). As long as either
(1)1 or (T)ps holds, we therefore have (U, 0)(p1 V ¢2).

More formally, we have the following lemma.

Lemma 12 Let 1,02 € Laum, and for i = 1,2 let (U;,0;) be such that = (1)¢; <
(Ui, 0:)i, where U; = (O;, RR;). Furthermore, let U = (O, RR) be given as follows:

4An alternative technique to synthesize an arrow update for the disjunction is to take the double-pointed
direct sum of (U1, 01) and (Us, 02); its points are {01, 02}. This method is followed in [14].

18

o O= {0} W00y,

e RRR contains exactly the following arrows:

L. (0, ¢) =4 (0", 4") € RR;, for i = 1,2,
2.
3. (0,0

(0

(0,77Z) A <U1701>Q01) —a (0/’¢/) where (017¢) —a (OI,W) € RRl»
(0, AN =(Uy,01)p1) —a (0',1') where (09,1) =, (0',1") € RRs.
)

Then = (1) (01 V @2) <> (U, 0) (1 V ¢2). .

Proof The right-to-left direction is obvious, because, just as in the proof of Lemma [9]
source conditions 1 A (Uy, 01)¢1 and 1 A =(Uy, 01)¢1 can with Corollary |§| be assumed to
be equivalent to modal logical formulas.

We now show the left-to-right direction. Suppose therefore that M, w = (1)(p1 V ¢2).
Then, by Lemma [11] we have M, w = (1)¢1 V (1)p2. We continue by a case distinction.

First, suppose that M, w | (1)¢1. Then none of the (0,9 A =(Uy, 01)p1) —4 (0/,7)
arrows are applicable in w. The (0,1 A (Uy, 01)¢1) =, (¢/,9) arrows, on the other hand,
are applicable if and only if (01,v) —, (0/,¢’) applies. Therefore, for every agent a,
(w,0)Ry(w', o) iff (wR,w" and oR,0') iff (wR,w' and 01 R,0") iff (w,01)R,(w',0'): there
is an a-arrow from (w,o0) to (w’,0') in M * U if and only if there is an a-arrow from
(w,01) to (w',0") in M x Uy. Furthermore, because U contains a copy of U;, we have that
for every o’,0" € O; and every w',w” € W there is an a-arrow from (w',0’) to (w”,0")
in M % U if and only if there is such an arrow in M x U;. It follows that the relation
R = {((v',0), (W', o)) | w € W,o € O} U{((w,0), (w,01))} is a bisimulation between
M U, (w,0) and M = Uy, (w,01). (It also obviously satisfies atoms, as this depends on
correspondence of the first argument in each (state, outcome) pair.) By assumption we have
M,w = (1)¢1 and therefore M, w = (Ui, 01)¢1, which implies that M Uy, (w,01) | ¢1.
Because AAUML is invariant under bisimulation it then follows that M x U, (w,0) = ¢
and therefore that M, w = (U, 0)¢1, so that we also have M, w = (U, 0)(p1 V ¢2).

Suppose then that M,w = (T)¢;. Then we must have M, w = ()p2. In this case,
the (0,9 A (U1, 01)¢1) =4 (0/,9) arrows are inapplicable while the (0,1 A =(Uy, 01)¢1) —4
(o',1") arrows apply if and only if (0q,1%) —, (0/,9") does. Similarly to the previous case,
the relation Ry = {((w’, o), (w',0)) | w' € W,0' € Oz} U{((w,0), (w,02))} is therefore a
bisimulation between M * U, (w, 0) and M * Us, (w, 02). From the assumption that M, w =
(T2 it follows that M, w = (Us, 02)ps and therefore that M x Us, (w, 02) |= 2. Because
AAUML is invariant under bisimulation we then obtain M % U, (w,0) = ¢2 and therefore
M,w = (U, 0)ps and also M, w = (U, 0)(v1 V ¢2).

In either case, we have M, w = (U, 0)(¢1 V p2), as was to be shown. O

3.3 Reduction

Using the fact that [U, o] commutes with —, distributes over A and, in a convoluted but not
very complicated way, commutes with [J,, Corollary [0] showed that every L, formula is

19

equivalent to a L, formula. In order to be able to finally perform synthesis, it remains to
show that every £ formula is also equivalent to a L,,; formula. This is what we will show
in this section.

In Section we showed that (1) commutes, in a very complicated way, with boolean
combinations of basic modal formulas. Also, like [U, 0], a (1) operator disappears once it
encounters a propositional atom. From this we can show that, if ¢ is a formula of basic
modal logic, then we can transform (1) into an equivalent formula ¢’ of basic modal logic.

The proof that (1)¢ can be transformed into ¢’ is by induction on the order > given
by: ¢1 > 9 if and only if (i) 2 is a strict subformula of ¢y or (ii) 9 has a (strictly) lower
modal depth than ¢;. Let us first show that this order is well-founded.

Lemma 13 The relation = is well-founded. -

Proof This follows from the fact that both the > relation on the natural numbers and
the “strict subformula of” relation are well-founded.
Suppose towards a contradiction that there is an infinitely descending chain g = ¢ >
- of formulas. So for every i € N we have either (i) ;41 is a strict subformula of ¢;
or (ii) d(y;) > d(¢i+1). The modal depth of a formula is at least as large as that of its
subformulas, so in either case we have d(¢;) > d(y;11). Because the depth of a formula is
a natural number and > is well-founded on N, there can be only finitely many ¢ such that
d(pi) > d(p;+1). So there is some k € N such that for all m > k we have d(p,,) = d(px).
It follows that for every m > k, the formula ¢,, 1 must be a strict subformula of ,,.
This is impossible, however, since the “strict subformula of” relation is well-founded. We
have arrived at a contradiction, so > does not have an infinitely descending sequence and
is therefore well-founded. O

Now, we can prove the reduction from (1) to ¢'.

Lemma 14 For every ¢ € L,,, there is a formula ¢’ € L, such that = (1) < ¢ =

Proof Every formula is equivalent to a formula in DNNF (See Sections and , SO we
can assume without loss of generality that ¢ is in DNNF. We can also assume without loss
of generality that every conjunction in ¢ contains exactly one conjunct of the form [,y
for every agent a. We now proceed by induction on the order >, which, by the previous
lemma, is well-founded. Note that the minimal elements with respect to > are the formulas
that are of depth 0 and have no strict subformulas, i.e., the atoms.

Suppose therefore, as a base case in our induction, that ¢ is an atom. Then = (T)p <> ¢,
so the lemma holds with ¢’ = ¢. Assume now as induction hypothesis that the lemma
holds for every ¢’ such that ¢ > ¢’. We then continue by case distinction.

First, suppose that ¢ = ¢1Vs. By Lemmal[l1|we have = (1) (01Va) ¢ ((T)e1V (T)ea).
Furthermore, ¢ = ¢; and ¢ > s, so by the induction hypothesis there are ¢}, p, € L,

such that = (1)1 <> ¢) and = (1) s <> ¢h. It follows that = (T)¢ < (¢} V ¢h).
Secondly, suppose that ¢ = ¢ A ¢1, where ¢y € L£,;. Then, by Lemma we have

E (M (o A¢') <> (wo A (T)e1). Furthermore, ¢ > ¢4, so by the induction hypothesis there
is a ¢} such that = (1)1 <> ¢}. It follows that = (1)¢ <> (o A ¢)).

20

Finally, suppose that ¢ is a conjunction without a propositional conjunct. Then for
every a € A there are a finite set &, C L,,; and a formula ¢, € L,,; such that o =

/\aeA(/\@ae% OawaADa@Da)- By Lemma a we have): <T>S0 And /\aeA /\cpae@a Qa <T><90a/\¢a)‘
For every a € A and ¢, € ®,, the modal depth of ¢, A 9, is strictly lower than that of

©, 80 @ = ©, A ,. Therefore, by the induction hypothesis, there is a formula ¢!, € L,
such that = (1) (ga A ¥a) <> ¢@),. Let @/ be the set of such ¢/. It follows that = (1) <

Naca /\gogeég Qaply-
This completes the induction step and thereby the proof. O

We now have the following theorem.

Theorem 15 For every ¢ € L there is a formula ¢’ € £,,; such that | ¢ <> ¢'. o

Proof We now use Lemma [14] (in dual form) that
for every ¢ € L, there is a ¢’ € L, such that = [f]¢ < ¢/,
and we also use the consequence of Lemma [14] that

for every ¢ € L, and arrow update (U, 0) with source and target conditions
in L, there is a ¢' € L, such that = [U, o]y <> ¢,

in order to successively eliminate the innermost [U, o] or [1] operators of any given formula
of AAUML. We can thus transform this formula into an equivalent formula of modal logic.

g

It follows that in Lemmas the restriction to the sublanguage £, is unnecessary; the
lemmas also hold for the full language £. In this form we will also later use these validities
as axioms in the axiomatization. For the next section, it is important to keep in mind that
the reduction axioms not only guarantee the existence of ¢, but also enable us to find it.

Theorem also allows us to prove a claim that we made in Section [2.3, There, we
defined M, s = [t]¢ by

M,s = [T iff (M,s = [U,o]p for every arrow update (U, o) that has source
and target conditions only in L,,;).

Now that we have shown that every formula of £ is equivalent to a formula of L,,, it
follows immediately that the requirement of the source and target conditions being in L,
is unnecessary.

Proposition 16 For every ¢ € £ and every pointed relational model (M, s), we have

M;sE [t iff M, s [U,o|p for every arrow update (U, o). —

21

Procedure Synth(y)

Input: ¢ € L.
Output: (U, 0,) such that = (1) <> (Uy, 0,)¢.

1. If ¢ € L,,, then use the reduction axioms to find a formula ©,,090 € Lo
such that = ¢ < @moda, and return Synth(Ymeda). Otherwise, continue.

2. If ¢ is not in disjunction normal form, compute the DNNF ¢ pyyr of ¢ and
return Synth(ppyyr). Otherwise, continue.

3. If ¢ =1 V g, then compute Synth(pr) and Synth(ps), and combine
the two arrow update models as in Lemma . Return the combined
arrow update model.

4. 1If ¢ is not a disjunction, then since it is in DNNF it must be a conjunction,
where each conjunct is (i) a literal, (ii) of the form {41, or (iii) of the form O, Y.
Assume w.l.o.g. that for every a there is exactly one conjunct [, x,.

For every (.1, compute Synth(i) A x,). Then use Lemma @ to combine
the arrow update models, and return the result. If there are no ¢, operators for any

agent a, return the trivial arrow update model with one outcome and no arrows.

Table 1: Synthesis procedure

3.4 Synthesis

Recall that our goal, when performing synthesis, is to find, for given ¢ € L, an arrow update
(Uy,0,) such that |= (1) <+ (U,,0,)p. Using Theorem [15] we can transform ¢ into an
equivalent formula of modal logic. Then, using the procedure outlined in Section [3.2] we
can find (U,,0,). The procedure is found in detail in Table [1]

Our arrow update synthesis was motivated by Hales” already mentioned action model
synthesis published in [I4]. See also the next Section [4l Subsequently Hales et al. inves-
tigated these matters in [10] and in (his Ph.D. thesis) [15]. Alternatively, action model
synthesis by way of a dedicated action language was employed by Aucher in [3].

3.5 Example

In order to gain better understanding of Synth(y), let us consider an example. Suppose
© = 0upp A Op(Cagq V Our) ALpp). We want to perform synthesis for this ¢.

Goal: find Synth(Q.0wp A Op(Ouq V Our) A p).

Because ¢ € L,,;, ¢ is in DNNF and ¢ is not a disjunction, we continue past steps 1, 2
and 3. In step 4, it is assumed that for every agent there is exactly one [J conjunct. This
means we need to add a trivial conjunct [J, T.

Of the conjuncts of ¢, two have ¢ as primary operator. So we need to perform synthesis
for two more formulas; because of ¢,,p and O, T we need to find Synth(Oyp A T), and

22

because of Qp(0aq V Our) and Oyp we need to find Synth((Quq V Our) A D).
Subgoal 1: find Synth(Cyp A T).
Since we are doing synthesis for a conjunction, we continue in steps 1, 2 and 3.
Because there are no ¢ operators in [yp A T, we return the trivial arrow update
model in step 4.
Subgoal 2: find Synth((Cuq V Our) A p). In step 2, we need to put the formula
in DNNF. We therefore continue with (Q.q A p) V (Qur A p). In step 3 we are then
instructed to perform synthesis for the two disjuncts.
Sub-subgoal 2.1: find Synth(Q.q A p).
We continue up to step 4. There, we first add a a trivial conjunct [, T. Then,
we are instructed to find Synth(g A T).
Sub-sub-subgoal 2.1.1: find Synth(q A T).
We proceed to step 4. There, since there are no { operators in ¢ A T, we
return the trivial arrow update model (Up, o).
Now, in order to find Synth(Q.q A p), we take the trivial arrow update model
found in sub-sub-subgoal 2.1.1, and add one extra outcome. Then, we connect
this extra outcome to the trivial model by a T —, (U, 00) T arrow. The
source condition of this arrow is T because step 4 uses the construction from
Lemma [9] and that construction always gives precondition T. The arrow is for
agent a, because we started with a ¢, operator. Finally, the target condition is
(Uo, 09) T because the arrow update that the arrow points to is (Up, 0p) and the
[J, conjunct was [J, T. In other words, we obtain the arrow update depicted in
Figure [3la, where the framed state indicates the designated outcome.
Sub-subgoal 2.2: find Synth(Q.r A p).
Replacing the ¢ of $,q A p for an r does not change the arrow update model
that we end up with. So in this sub-subgoal we find the same model as in
sub-subgoal 2.1.
Now, in order to find Synth((QugADP)V (QurAp)), we need to combine the models found
in sub-subgoals 2.1 and 2.2. Since we are working with a disjunction, we combine
them as described in Lemma [I12] That, is, we take copies of the two (identical)
models and add one extra outcome. Then, we add two more arrows: every world that
is reachable from the origin world of the model from sub-subgoal 2.1 by ¢ —, 19,
becomes reachable from the extra world by a ¢y A (1) (OagAp) —4 1o arrow. Likewise,
every world reachable by 1y —, 15 from the origin of the model from sub-subgoal
2.2 becomes reachable from the extra world by ¥ A =(1)(Cug A p) —4 2. We now
get the model depicted in Figure 3 b.
Now, all that is left to do is to combine the arrow update models found in subgoals 1
and 2. The model we obtain is depicted in Figure c, where (U7, 01) is the model that
we found in subgoal 2. The root of the model is the leftmost outcome. Note that the
depth (i.e., the maximum path length) of this arrow update model is 2, just like the depth
(i.e., the maximum number of nested O or ¢ operators) of . In general, the depth of the
synthesized arrow update model is bounded by that of the formula for which synthesis is
performed.

23

(d)

Figure 3: Different stages in the synthesis of ¢,Lyp A Op(Ouq V Our) A Typ)

24

Also, note that the arrow update model that we obtained can quite easily be modified
to obtain a smaller model that is still sufficient. In particular:

e the two outcomes that are not reachable from the root can be eliminated,

the formulas (Up, 00) T, (Ur,01)p, T A (1)(Oug A p) and T A =(1)(0ug A p) can be
replaced by the equivalent formulas T, p, 0uq A p and =(Ouq A p), respectively,

e the three leaf outcomes can be merged into one,

e and O,g Ap —, T and —(0uq A p) —, T can be merged into one T —, T arrow.

With these optimizations, we get the more aesthetically pleasing arrow update depicted in
Figure [3]d.

4 Axiomatization

Using the reduction axioms introduced before, we can find an axiomatization for AAUML.
Let AAUML be the axiomatization shown in Table 2l In this section we show that the
axiomatization AAUML is sound and complete, and we give some derivable (well-known)
axiom schemata.

Prop all tautologies of propositional logic

K Oa(p =) = (Lo = Do)

U1l [U,olp <> p

U2 (U, o]=¢ <> =[U, o]y

U3 [Uo(eAv) < ([U,olp AU, oY)

Ud U ol0ap < N y)snorwn (¥ = Ha(¥ = [U, 0]))

Al (Do <> o where g € Ly
A2 (MeVy) & (e V (DY)
A3 (ND(poAp) « (oA where @y € Ly

A4) /\agA(/\@aeba Qatpa N Uatha) /\aeA A@aeéa Qa1 (Pa A a)
MP from ¢ — ¢ and ¢ infer ¥
NecK from ¢ infer [,¢

RE from x <> @ infer ¢[x/p| <> p[v/p]

Table 2: The axiomatization AAUML of the logic AAUML

Lemma 17 Axiomatization AAUML is sound for the logic AAUML. o

Proof Prop, K, MP, NecK, RE are known from modal logic, Ul-—U4 were demon-
strated in Section |3.1|and originate in [21], A1-—A4 were shown to be valid in Section
O

25

It is important to note that U1l-—U4 and A1—A4 are so-called reduction axioms for the
operators [U, o] and (1), respectively, as mentioned in the previous section. This means
that they are equivalences, where the formula inside the scope of the [U, o] or (1) operator
on the left-hand side is more complex than the formulas inside the scope of that operator
on the right-hand side.

The derivation rule RE is important as our reductions are inside-out, not outside-in.
Without it, for example, the validity [U, o][U, o](p V —p) would not be derivable.

The axioms A1—A4 could just as well have been formulated with the [1] dual of the
modality (1), e.g., A2" [T](¢ A¢) < ([T]e A [T]). We prefer the (1) versions as they
match our usage of these axioms in synthesis. Further note that there is no reduction of
shape (T)—p <> We assume that subformulas bound by (1) are first transformed into
disjunctive negation normal form before a further reduction can take place (and again, for
this, the derivation rule RE is essential).

Lemma 18 Axiomatization AAUML is complete for the logic AAUML. o

Proof Let ¢ € £ be valid. Using an induction argument, we can eliminate all [U, o] and
(1) operators from it: ¢ must be provably equivalent to a formula ¢’ € L,,;. As ¢’ must
also be valid (Theorem , ¢’ is provable in modal logic. From the provable equivalence
between ¢ and ¢ and the derivation of ¢’ we construct a derivation of ¢ in AAUML. O

We have now shown that:

Theorem 19 Axiomatization AAUML is sound and complete for the logic AAUML. —

In the proof system AAUML, we do not have necessitation for the [U,o] and [1]
operators. Such necessitation rules are derivable, however.

Proposition 20 The following two rules are derivable in AAUML.
e NecU: from ¢ infer [U, o]¢p;

e NecA: from ¢ infer [1]ep. -

Proof First, note that the axiom
Ul [U,0]po <> o where ¢ € Ly

is derivable, using Prop, U1-U3 and MP. It is also convenient to use a variant of MP
directly on bi-implications, instead of first converting the bi-implication to a single impli-
cation.

MP’ from ¢ <> ¢ and ¢ infer ¢, and from ¢ <> ¢ and) infer .

This MP’ is, of course, also easily derived. Using U1’ and MP’, we can derive NecU in
a reasonable number of steps:

26

1. premise
2. o= (peT) Prop

3. pe T MP(1,2)
4. [UdT e T Ur’

5. T Prop

6. [U,oT MP'(5,4)
7. [U,o]T < [U,olp RE(3)

8. [U,olp MP'(6,7)

A derivation of NecA can be found in a similar way. Here, too, it is convenient to first
derive an auxiliary axiom.

A1l [Meo < ¢o where ¢ € L,

This [1]-version of A1l is of course derivable. We can then derive NecA analogously to
how we derived NecU, with the application of U1’ replaced by A1’ O

The axiomatization AAUML is inspired by the somewhat similar axiomatization by
Hales of arbitrary action model logic [14], although the shape of some axioms and rules
is rather different. Axioms in Hales similar to our U1l-—U4, for the reduction for action
models, are of course taken from action model logic instead. Axioms in Hales similar to our
AT—AA4, that are used for the reduction of the quantifier, are taken from refinement modal
logic instead. There is nothing ‘of course’ about the latter: Hales’ mixture of AML and
RML was, we think, a quite original move. One can also move in the other direction: our
axioms U1—U4 allow an alternative axiomatization of refinement modal logic. However,
as this seems out of scope, these results are not presented here.

5 Update expressivity

5.1 Expressivity

Recall that we are considering the basic modal logic ML and the update logics PAL, APAL,
AML, AAML, AUL, AAUL, AUML, AAUML, and RML, as shown in Figure [I| on page
[6l Ome natural thing to do with such related logics that are all interpreted on a similar
class of structures is to compare their power to relate or to distinguish structures from
that class. The most straightforward way to make such a comparison is to compare their
eTpressivity.

Formally, given languages £, and L- interpreted on certain class of models M, a lan-
guage L1 is at least as expressive as a language L, if for every formula of £, there is an
equivalent formula of £,. Having equal expressivity or higher expressivity (by which we
always mean strictly higher expressivity) can be defined from the “at least as expressive”
relation in the usual way. If neither language is at least as expressive as the other, we
say that they are incomparable in expressivity. Informally, if L; and Ly are the logics for

27

languages L resp. Lo interpreted on M, we will also use the terminology for expressivity
to compare these logics.

In [22] that introduced PAL it was shown that PAL is equally expressive as ML (on
the class S5 of relational models, but this does not matter for the reduction), and in [6]
that introduced AML it was also shown that AML is equally expressive as ML. It is trivial
to show that PAL and AML are at least as expressive as ML, as they extend the logical
language. That every formula of PAL or AML is equivalent to a formula in ML, was
shown by reduction axioms and rules. Similarly, AUL [20], AUML [2I] and AAML [14]
were shown to be equally expressive as ML, and therefore also equally expressive as PAL
and AML. In [9] it was shown that RML is equally expressive as ML. Here, in Theorem
in Section 3, we showed that AAUML is also equally expressive as ML.

The two remaining logics are APAL and AAUL. The logic APAL was shown to be more
expressive than ML in [5] and AAUL was shown to be more expressive than ML in [32],
wherein it was also shown that APAL and AAUL are incomparable. This means that the
expressivity landscape is as shown in Figure [

ML, PAL, AML, AAML, AUL, AUML, AAUML, RML

/N

APAL AAUL

Figure 4: The relative expressivity of the update logics discussed in the paper. Arrows
indicate increasing expressivity. Absence of arrows indicates incomparable expressivity.

5.2 Update expressivity hierarchy

There is something a bit strange about this comparison, however. Although AML and
PAL have the same expressivity, AML is clearly in some sense more powerful, since action
models represent a far larger class of updates than public announcements. In order to
capture the sense in which AML is more powerful than PAL, we use the term update
expressivity. This concept was introduced as action equivalence in [35] (and its precursors)
and also subsequently used in that sense in [2I]. The definitions from [35, 21] do not
deal very well with multi-pointed update modalities and with arbitrary update modalities,
however, so we use a slightly adapted version.

We recall from the introduction that the updates X we consider are relational model
transformers and that such transformations are defined by pairwise relating pointed models:

An update X is a relation between pointed relational models.

In fact, three different things are called update: the update relation between pointed models,
the update modality in a logical language, and, in some sense, the update object, often a
name, that can be associated with the modality or the relation, such as an arrow update

28

(U,0). To simplify the presentation in this section we call the relations X, Y, ... and the
modalities [X],[Y],... and we do not consider the update objects separately: we identify
them with the update relations.

A relation between pointed relational models can be a one-to-one relation, i.e., a func-
tion or a partial function, a one-to-finitely-many relation, and a one-to-infinitely-many
relation. For example, it is a function for a pointed arrow update model, a partial func-
tion for a public announcement, a one-to-many relation for a multi-pointed arrow update
model, and a one-to-infinitely-many relation for an arrow update quantifier. In the first
place, one would now like to say that update relations X and Y are the same (are equiva-
lent) if they define the same relation between pointed models, modulo bisimulation. In the
second place, we also want to compare an update X that is a partial function, i.e., with a
restricted domain, to an update Y that is a total function (or similarly for relations with
restricted domains. In that kind of situation one would maybe like to say that updates
X and Y are the same if X and Y define the same relation on the domain of X: we will
then say that X is conditionally equivalent to Y (this relation is asymmetric). Such a
requirement seems common practice in dynamic epistemic logic, and it is also respected in
[21]. We recall from Section [1| the ‘state eliminating’ public announcement of p (i) and the
‘arrow eliminating’ public announcement of p (ii), originating with [I2]: whenever p can be
truthfully announced, the pointed relational models resulting from executing (i) and (ii)
are bisimilar, as in the example. But when p is false, (ii) can be executed but not (i). So
(i) and (ii) are equivalent on condition of the truth of the announcement.

In view of these considerations, we propose the following definition. In the defini-
tion, for X(M,s) read {(M',s") | (M,s),(M’',s")) € X}, and let dom(X) be {(M,s) |
X (M, s) # 0}, ie., dom(X) is the domain of X in the standard relational sense[| Recall
from Section that two sets of pointed models are bisimilar if every pointed model in
the first set is bisimilar to one in the second set and vice versa.

Definition 21 (Update equivalence, update expressivity) Given updates X and Y,
X is conditionally update equivalent to Y, if for all (M, s) € dom(X), X(M,s)< Y (M, s).
Further, X is update equivalent to Y, if X is conditionally update equivalent to Y, and Y
is conditionally update equivalent to X. Update modalities [X] and [Y] are (conditionally)
update equivalent, if X and Y are (conditionally) update equivalent.

A language L is at least as update expressive as L' if for every update modality [X] of
L’ there is an update modality [Y] of £ such that X is conditionally update equivalent
to Y; L is equally update expressive as L' (or ‘as update expressive as’) if L is at least as
update expressive as £’ and L is at least as update expressive as L. o

We define ‘(strictly) more update expressive’ and ‘incomparable in update expressivity’

SWe recall that given a relational model M = (S, R,V) or an arrow update model U = (O, RR), the
sets S = D(M) resp. O = D(U) of objects on which the accessibility relations R, resp. arrow relations
RR,, are defined are also called domains. This causes confusion if the arrow update model U is considered
as an update relation between sets of pointed relational models, with its domain dom(U) of application
defined as above. As the term ‘domain’ is extremely standard for both, we prefer to distinguish them by
using different symbols D and dom, instead of introducing a non-standard term for either one or the other.

29

as usual. We also extend the usage of ‘update expressive’ to the logics for the languages
that we compare. Instead of ‘update equivalent’” we may use ‘equivalent’ if the context is
clear. If updates X and Y are update equivalent, then [X]p <> [Y]p is valid. In the other
direction, this is not always the case! In Section [7] we give a counterexample.

We should stress that we do not claim that our definition is appropriate for all situations,
merely that it gives an accurate view of the strengths of the different logics that we consider
in this particular paper.

Let us now fill in the expressivity hierarchy for our target logics. The update expressiv-
ity of AUL is higher than that of PAL, and lower than that of AML [20]. The comparison
between AML and AUML that we will address in Section [0] is less straightforward than
that. In [21] it was shown that AML and AUML have the same update expressivity. That
result does not distinguish between single-pointed and multi-pointed action models and
arrow update models, however. Here, we therefore provide an alternative proof of their
results that makes that distinction. Specifically, we show that the result from [21] only
applies to the multi-pointed case, but that single-pointed arrow update models are more
update expressive than single-pointed action models.

To formulate such results we need to slightly expand our notation. We recall that
in the language £ of AAUML (see Section we permit multi-pointed arrow update
modalities. If we only allow single-pointed arrow update modalities, let us call the set of
validities AAUML;. For the ‘logic’ in the standard sense of the set of validities this makes
no difference, so that out of the context of update expressivity we can continue to also let
AAUML represent AAUML;. Similarly, without the quantifiers, we distinguish AUML;
from AUML, and we will later also introduce such a notational distinction for action model
logics.

Adding quantification increases update expressivity, since the non-quantified logics can-
not simulate a one-to-infinity relation. So, for example, APAL is more update expressive
than PAL, and AAUML is more update expressive than AUML. (The distinction between
single-pointed and multi-pointed is irrelevant here, as quantifying over all single-pointed
updates is equivalent to quantifying over all multi-pointed updates.) When comparing the
quantified logics among themselves, most pairs are incomparable. These incomparability
results are all rather trivial, so we do not prove them here. The only comparable pair is
(multi-pointed) AAUML and AAML, which have the same update expressivity because
their underlying updates have the same update expressivity (Section [6]). In Section [7] we
will show that RML is incomparable to the other quantified logics, and in particular that
the AAUML and AAML quantifiers are contained in the RML quantifier.

The landscape of update expressivity is therefore as shown in Figure [5

30

APAL AAUL

ML PAL AUL
RML AML, AUML,
AML AUML
AAML AAUML

Figure 5: The relative update expressivity of the update logics discussed in the paper. We
assume transitive closure of arrows.

6 Arrow updates versus action models

6.1 Action model logic

Arrow update model logic AUML is equally expressive as action model logic AML and
their update expressivity relates in interesting ways. We build upon the results known
from [21] but our constructions and proofs are slightly different. First we need to define
action models and their execution in relational models. An action model [6] is a structure
like a relational model but with a precondition function instead of a valuation function.
Executing an action model into a relational model means computing what is known as
their restricted modal product. This product encodes the new state of information, after
action execution. These are the technicalities:

An action model E = (S, R, pre) consists of a domain S of actionse, f, ..., an accessibility
function R : A — P(S x S), where each R, is an accessibility relation, and a precondition
function pre : S — L, where L is a logical language.

Let additional to a pointed action model (E,e) as above a pointed relational model
(M, s) be given where M = (S, R,V). Let M,s = pre(s). The update (M ® E, (s,e)) is
the pointed relational model where M ® E = (S’, R', V') such that

S’ {(t, f) | M,t = pre(f)}
(&,), (.) e R, iff (t,¥') € R,and (f,f) €R,
(t,f) € V'(p) iff t€V(p)

—

31

Action model modalities [E,e] are interpreted similarly to arrow update modalities but
unlike arrow update modalities are partial and not functional. Their execution depends
on the truth of the precondition of the actual action (point) e in the actual state s:

M,s E[E,ele iff M,s = pre(e) implies M @ E, (s,e) E ¢

Similarly to arrow update modalities we can conceive a modal logical language with [FE, e]¢
as an inductive language construct, for action models E with finite domains. The logic is
called action model logic AML. And also similarly we define multi-pointed action models
by notational abbreviation, and informally consider such modalities as logical connectives
binding formulas. As for AUML (see [21] and Section[4]), there is a complete axiomatization,
that is a rewrite system allowing to eliminate dynamic modalities [0, B1]. If we further
extend the logical language with a quantifier [®] over action models, such that

M,s E[®]e iff M,sE [E, e]p for all action models (E,e) satisfying (x)

where (*) requires all preconditions of actions in E to be in L,,, we get the language and
logic of arbitrary action model logic AAML. Hales showed in [14] that the (*) requirement
can be relaxed, similarly to our Proposition[16] If such a distinction is necessary, the action
model logics with only single-pointed action models are AML; and AAML;.

Example action models that are update equivalent to the example arrow update models
of Section 2] are depicted in Figure[6] We also depict their execution. The actions are given
their preconditions as names. Note that the pointed relational model resulting from the
(second) action of Anne privately learning that p is bisimilar to the four-state model in

Section [2] (Figure [2).

b b
ab C P ——— [P] D ab abC(ﬁp,ﬂp)<—> (p,p)| D ab
ab %’ b b bl b
_‘p‘a—b> @ T2Dab = abC(—\p,T)<a—b>(p,T)Dab

P|Da (pp)| Da

L | e,
LN I Tow = aC (T <L pT) Dab

Figure 6: Examples of action model execution

6.2 From action models to arrow updates

A given action model can be transformed into an arrow update model by decorating each
arrow in the action model with a source condition that is the precondition of the source

32

action and with a target condition that is the precondition of the target action. That is
all. Technically:

Let E = (S, R, pre) be given. Arrow update model U(E) = (O, RR) is defined as: O =S,
and for all agents a and actions e, €/, (e, pre(e)) —, (¢/,pre(¢')) iff (e,€') € R,ff| We can
now show that (F,e) is update equivalent to (U(FE),e), on condition of the executability
of the action e, i.e., restricted to the denotation of pre(e).

Proposition 22 ([21]) (E,e) is conditionally update equivalent to (U(FE),e). .

Proof Let M = (S,R, V), M@ E = (S',R,V') and M xU(E) = (5", R",V"). Define
the relation R by R = {((s,e),(s,e)) € " x S" | (s,e) € S'}. We will show that if
(M,s) € dom(E,e), so if M,s = pre(e), then R is a bisimulation linking (s,e) € S’ to
(s,e) € S".

Take any ((s1, f1), (s1, f1)) € R. The atoms clause is trivially satisfied as the states s
match (and updates do not change facts). We now consider forth. Suppose (s1, f1) R, (s2, f2)-
Given the definition of action model execution, this implies that (s1, s2) € Rq, (f1, f2) € Rq,
M,s; = pre(fi1) and M, sy |= pre(f2). Because of how we constructed U(FE), it follows
from (fi, fo) € R, that (fi,pre(fi)) —a (f2,pre(f2)). Then from M,s; = pre(fi) and
M, sy |= pre(fy) it follows that (s1, f1) R (se, f2). Also, ((s2, f2)(s2, f2)) € R by the def-
inition of the relation SR. So forth is satisfied. Finally, we consider back. Suppose
(s1, f1)R!(s2, f2). Then we must have (f1,pre(f1)) —a (f2,pre(f2)) with (fi, f2) € Rq,
since U(F) only contains arrows of that type. It follows that M,s; | pre(fi) and
M, sy = pre(fa), so (s1, f1)R.(S2, f2). Again, obviously, ((s2, f2)(s2, f2)) € R®. The back
condition is therefore also satisfied.

We have now shown that 9 is a bisimulation. Since (s,e)(s,e) this implies that
M ® E,(s,e)eM « U(FE),(s,e). This holds for every (M,s) € dom(E,e), so (E,e) is
conditionally update equivalent to (U(E),e).

U

Corollary 23 Let F C D(F). Then (F, F) is conditionally update equivalent to (U(E), F').

From Proposition 22| follows that, for all ¢ € L., [E,e]p is equivalent to pre(e) —
[U(E), e]e. See also [21][Cor. 3.9]. This can be used as a clause in an inductively defined
translation from the language of AUML to the language of AML. In Corollary the
condition for update equivalence is \/_ pre(e).

The arrow update models constructed by the above procedure from the action model
for Anne reading the letter containing p while Bill may notice her doing so, and for Anne
privately learning p, are as follows. Note that they are update equivalent (namely on their
domain of execution) to the arrow update models for these actions presented in Section
In the figure, by ¢ 4 ¢’ we mean the two arrows ¢ —, ¢, 0 — ©'. On the left, the dual
arrows for b between outcomes have not been labelled. They are as expected: T —} —p,
p —p p, p —p 1. (They are update equivalent to the example arrow update models in

Section 2.4 and Figure [2])

6In [21], arrows (e, T) —4 (¢/, ') instead of (e, @) —, (€¢/,¢') are stipulated. Both constructions deliver
the desired update equivalence.

33

PP

W PP Z[P]DOPap P|Dpap
— (Tep Po T

Figure 7: From action models to arrow updates — example

6.3 From arrow updates to action models

A given arrow update model can be transformed into an update equivalent action model
by conditionalizing in each outcome over any possible ‘valuation’ of (any subset of) the
source and target conditions of all outcomes. This leads to an exponential blowup. (See
[21, Theorem 3.7]. Our construction and subsequent proof are different.) We proceed with
the construction.

Let U = (O, RR) be given. Let ® be the collection of all source and target conditions
occurring in U:

/

® = {p|thereare a € A, ¢’ € L,0,0' € O s.t. (0,0) =4 (0/,¢) or (0,¢") =4 (0',0)}.

We consider the formulas in @ as ‘atomic constituents’ over which we consider ‘valuations’
v € 2% (lower case, to distinguish it from the relational model valuation V', upper case).

The characteristic formula of a valuation is d, := A\ ¢4 P, Where p = ¢ if v(¢) = 1 and
© = —p if v(p) = 0. Action model E(U) = (S, R, pre) is now such that:

S = Ox2?

((0,v),(d,v") € Ry iff T, ¢ : (0,0) =4 (0/,¢),v(p) = 1,0 (¢) =1

pre(o,v) = I
Further, given (U, 0), its single point o becomes a set of actions E(0) := {o} x 2®. The

corresponding action model (E(U), E(0)) is therefore multi-pointed (unless ® = {T} or
® = {1}). We note that the preconditions of actions need not be consistent formulas, just
as source and target conditions of arrows need not be consistent formulas. Our construction
is therefore different from that in [21], wherein only v € 2% are considered for which 4§, is
consistent. That construction is more economical, but computational efficiency is not our
goal. We can now show that (U, o) is update equivalent to (E(U), E(0)). Note that they
both can be executed on the entire domain.

Proposition 24 (U, 0) is update equivalent to (E(U), E(0)). .

Proof Let M = (S,R,V)and s € S be given, and let MU = (5", R', V') and MQE((U) =
(S”,R",V"). We show that for some (0,v) € E(0), (M * U, (s,))_(M® EU), (s,0,v)).
Define relation R as follows:

(s,0)R(s,0,v) iff M,skEd,

34

We show that R is a bisimulation.

For forth, assume ((s1,01),(s1,01,v1)) € R and ((s1,01), (s2,02)) € Rl. The latter
implies that there are o1, ps € L such that (01, 1) —4 (02, ¢2), and that M, s; | 1 and
M, ss = po. Choose v; and vy such that M, sy = d,, and M, sy = 6, (note that v; and vy
exist and are unique). As M, s, = ¢ and M, s; = d,, we have vi(p1) =1 and as M, s9 |=
o and M, so = d,, we have va(p2) = 1. We claim that (sq, 09, v2) is the requested witness
to close the forth argument. Firstly, ((s1,01,v1), (S2,02,v2)) € R because (s1,$2) € R,
and ((o1,v1), (02,v2)) € R, where the latter follows from (01, 1) —4 (02, ¢2), vi(p1) =1
and va(p2) = 1 (see the definition of E(U) above). Secondly, ((s2,02),(S2,09,v2) € fR.
Step back is very similar; now use that pre(o;,v1) = d,, and that pre(os,v2) = d,,, and
observe that (E(U), E(0)) can always be executed, it has precondition \/,ys d,, which is
equivalent to T. [l

Corollary 25 Let now @ C D(U). Then (U, Q) is update equivalent to (E(U), E(Q)).

As an example we now show the action models constructed by the above procedure
from the two example arrow update models of Section The set of source and target
condition formulas is {p, =p, T}. Of their 8 valuations the two non-trivial (and different)
valuations are characterized by p and —p. These formulas are also the action preconditions
in the action points of the resulting action models. The reader may observe that these
action models are, again, update equivalent to their ‘original’ action models at the start of
this section.

ab ([(0,7p) [(0,0)| D ab (0,-p)| == [(e.p) | D a

| |

ab C (8,7p) —— (,p) D ab ab C (8,=p) ——— (e,p) D ab

Figure 8: From arrow updates to action models — example

6.4 Relative update expressivity

We are now prepared to harvest the update expressivity results. First, let us show that
AUML; is more update expressive than AML;.

Proposition 26 AUML; is more update expressive than AML;. o

Proof From Proposition 22 follows that AUML; is at least as update expressive as AML;.
To show that the inclusion is strict, we need to show that for some (U, 0), there is no (E, e)
that induces the same relation.

Let U be the arrow update model with a single outcome o, and a single arrow (o, p) —,
(0, T). Suppose towards a contradiction that there is a single-pointed action model (F,e)

35

such that (M xU, (s,0))<2 (M ® E, (s, e)) for every (M, s). Then, in particular, (F,e) must
be executable everywhere, so pre(e) is equivalent to T. Furthermore, if M,s = p A O, T,
then (M * U, (s,0)) has at least one a-successor (s',0) (note that Q,T enforces that s has
an a-successor s', and the arrow s —, s’ satisfies p at the source and T at the target). By
assumption, (M ® E, (s,e)) is bisimilar to (M * U, (s,0)), so it has an a-successor (s, ¢e’).
This implies that eR,e’. Now, consider a different model (M’, s) such that (i) M’, s = —p
and (ii) s has an a-successor s’ such that M’ s" |= pre(¢/). Then (M’ ® E, (s,€e)) has an
a-successor, but (M’ x U, (s,0)) has no a-successor, because p is false in state s. This
contradicts the assumption that (M * U, (s,0))< (M ® E, (s, e)) for every (M, s). O

Proposition 27 AUML is as update expressive as AML. o

Proof From Corollary follows that AUML is at least as update expressive as AML.
From Corollary [25] follows that AML is at least as update expressive as AUML. O

It is obvious that AML is more update expressive than AML;, and that AUML is more
update expressive than AUML;.

6.5 Applications illustrating the succinctness of arrow updates

In this section we give some application areas for the modelling of information change,
where arrow updates are more succinct that corresponding (i.e., update equivalent) action
models.

Lying You are lying if you say that something is true while you believe that it is false —
and with the intention for the addressee(s) to believe that it is true. In the setting of public
announcement logic a lie is a public announcement that is false. This is then contrasted
to the (usual) public announcement that is true. Both are combined in the announcement
that has no relation to its truth. This is known as the conscious update ([12], see the
introduction) or, in a setting where lying is also distinguished, as the manipulative update
[34]. The arrow update for the conscious/manipulative update of ¢ is the singleton arrow
update model with arrows
(0, T) =a (0,9)

for all agents. Lying as such, wherein ¢ is required to be false, is not an arrow update as
arrow update models have no preconditions, but such executability preconditions can be
simulated as antecedents of logical implications.

A problem with the manipulative update is that an agent who already believes the
opposite of the lie, believes everything after incorporating the lie into her beliefs (believing
a contradiction comes at that price). This is because the accessibility of that agent becomes
empty as a result of the update. A solution to that is the cautious update that is also
known as lying to sceptical agents [23 20, 27]: the agent only updates her beliefs if the
new information is consistent with her current beliefs. The arrow update for the sceptical

36

update of ¢ (again, we cannot model sceptical lying as this requires ¢ to be false) is a
singleton arrow update model with arrows

(0, Qatp) —a (0,9)
(O, Da_‘cp) —a (07 T)

for all agents [20].

Given a group of agents, some may believe the announcement, and others not. The
arrow update modelling allows for this. However, if we make an action model for announce-
ments to sceptical agents, we need to distinguish all combinations explicitly (we used a
similar construction to get action model E(U) from arrow update U, above, in order to
prove Prop. . For example, for two agents a and b, the action model consists of eight
actions, with preconditions and accessibility relations as follows. In Figure [9] we ‘name’
the actions with their preconditions. To simplify the visualization, we do not label arrows
with a and b: solid arrows are for a and dashed arrows for b. We also assume transitive
closure of accessibility.

Qao N Qb N\

+
@(ﬂpAOwAw < Ua—p AUp—e /\D
A AN />v A\
/ '/;
g Y

__________ «
@ _‘<P/\<>b%0/_“ﬁ<-_/>ma—'¢/\mb—'80/_:§0>

!
| 1
1

\/

Figure 9: Action model for lying

For n agents there are O(2") actions in the action model. In [20] this example is treated
in greater detail, and also other, similar, examples are shown for which arrow updates are
shown to be more succinct (exponentially smaller).

Attentive announcements Another example where action models are exponentially
bigger than arrow updates is that of the attention-based announcements of [8]. This work
presents a logic of announcements that are only ‘heard’ (received) by agents paying at-
tention to it, paying attention to the announcer, so to speak. Such announcements are
modelled employing an auxiliary set of designated ‘attention (propositional) variables’ h,

37

expressing that agent a pays attention. The corresponding arrow update model has domain
{0,0'}, both outcomes designated, and with arrows

(07 h(l) %CL (07 (p)
(0,mhg) —4 (0,T)
(o, T) =4 (o, T)

for all agents. It cannot be modelled with a (singleton) [20] arrow update, the resulting
relational model is typically larger than then model before the update, as the agents not
paying attention believe that no announcement was made, and thus reason about the
structure of the entire initial model. Incorporating the announcements depends on h,
being true or false, just as for sceptical announcements it depends on ¢,y being true or
false. So, this is similar. But not entirely so, because an agent not paying attention is, so to
speak, inconscious of the announcement, and thus believes that the (entire) original model
still encodes her beliefs), whereas an agent believing the opposite of the announcement
‘knows’ that if she where to have found the announcement believable, she would have
changed her beliefs. So these are different parts of the same model, it is a mere restriction
of the accessibility relation. Again, for attentive announcements, a corresponding action
model is of exponential size, as any subset of agents may or may not be paying attention.

See [8].

Comparative size of action models and arrow updates In general, if the observa-
tional powers of all agents are commonly known to be partial, then we can expect arrow
updates for such dynamic phenomena to be exponentially smaller than corresponding ac-
tion models. This was the case for announcements to sceptical lying and for attention-based
announcements, and also for: agents making broadcasts (to all agents), agents seeing each
other depending on their orientation, partial networks representing agents with neighbours
or friends, etc. On the other hand, dynamic phenomena where all agents observe (some,
few) designated agents have similarly-sized arrow updates and action models, such as: the
private announcement to an individual agent or a subgroup of agents, and gossip scenarios
where two agents call each other in order to exchange secrets, and where this call may be
partially observed by all other agents. We do not know of scenarios where action models
are more succinct than arrow updates.

7 Arbitrary arrow updates versus refinements

7.1 Refinement modal logic

We now compare the arbitrary arrow update modality of AAUML to the refinement quan-
tifier of refinement modal logic RML [9]. Let us first be precise about its syntax and
semantics.

We recall the definition of bisimulation in Section 2.1} If atoms and back hold, we
call the relation a refinement (and dually, if atoms and forth hold, we call the relation

38

a simulation). In [9] such a refinement relation is considered for any subset of the set of
agents and defined as follows:

A relation Rp that satisfies atoms, back-a, and forth-a for every a € A\ B, and that
satisfies atoms, and back-b for every b € B, is a B-refinement, we say that (M’',s") refines
(M, s) for group of agents B, and we write (M, s) =g (M’',s"). An A-refinement we call a
refinement (clearly any B-refinement is also an A-refinement and thus a ‘refinement’ plain
and simple), and (M, s) =4 (M’,s’) is denoted (M, s) = (M’,s"). With this relation comes
a corresponding modality in the obvious way. Let B C A, and (M, s) and ¢ given, then

M,s k= [=lpp iff M' s | forall (M s") such that (M,s) =g (M’).

We continue with the comparison of the refinement quantifier to the other quantifiers.
We first focus on the refinement relation > for the set of all agents, to which corresponds
the [>=] modality. Consider three different ways to define quantification in information
changing modal logics. We formulate them suggestively so that their correspondences stand
out, where we recall Proposition [16| that the restrictions on source and target conditions
need not be met when interpreting [1], and similarly, [I4] showed that the restrictions on
action preconditions need not be met when interpreting [®].

M,s=[Tle iff M,s = [U,o|p for all arrow update models (U, o)
M,s E[=]e iff M' s | ¢ for all refinements (M’, s')
M;s = [®le iff M' s | [E,e]p for all action models (E, e)

Theorem 28 Let ¢ € L,,;. Then [, [=]¢, [®]¢ are pairwise equivalent. =

Proof
e The equivalence of [=]|p to [®]p was shown in [14].

e To show that [®]e is equivalent to [1]¢, we use the semantics of these modalities.
Let us do this for the diamond version. Both directions of the equivalence need to
be shown.

First, suppose that
M,s = (@),

According to the semantics of (®) this is equivalent to

A(E,e): M,s = (E,e)p.
By Proposition [22| that, in turn, is equivalent to

AU(E),e): M,s = pre(e) and M, s = (U(E),e)p.
This implies that, in particular,
AU(E)e) : M,s |= (U(E),e)¢

and therefore, by the semantics of (1), that

39

M, s |= (T)e.
For the other direction, suppose that
M,s = (e

According to the semantics of (1) this is equivalent to
AU,0): M,s = (U,).
By Proposition [24] that, in turn, is equivalent to
AEW), o) : M, s = (E(U), E(0)).
In particular, this implies that for some e € E(0) we have
AEW),€) : M,s = (B(U), e)p
and therefore, by the semantics of (®), that
M,s = (®)e.

e To show that [1]y is equivalent to [=]¢ we use the previous two equivalences. 0

The theorem is formulated to make the correspondence between the three quantifiers
stand out. Alternatively, we can have an inductively defined translation between the
language £ (of AAUML) and the language of arbitrary action model logic AAML that is
compositional to the extent that arrow update quantifiers are translated into action model
quantifiers (Theorem and arrow update models into action models (Proposition ,
and vice versa (Proposition 22)).

7.2 Update expressivity

Considering that [®]p, [t]e and [=]p are equivalent for basic modal formulas ¢ (Theo-
rem [28), and that [®] and [1] have the same update expressivity (Section [f]), one might
expect all three logics AAML, AAUML, and RML to have the same update expressiv-
ity. This, however, is not so, because [®]| and [1] are finitary quantifiers — they quantify
over, respectively, finite action models and over finite arrow update models — whereas
refinements can be infinitary.

For one example, consider the relational model N consisting of all valuations, with
the universal relation on that domain for all agents, and any state ¢ in that domain.
Clearly, the restriction of N to the singleton model consisting of ¢ (wherein the agents
have common knowledge of the valuation in t) is a refinement of (V,¢). It can be obtained
by successively announcing the value of each of the infinite number of atoms. However, it
cannot be obtained by a single announcement (or, equivalently, by any finite sequence of
those).

For another example, consider the models M, with as single state so, and M’, with sq
as its leftmost state, in Figure [L0] The pointed model (M’, sq) is a refinement of (M, so).
But M’ contains infinitely many states that are not bisimilar to one another. Furthermore,

40

every arrow update model U in the logical language is finite, so every product of U with
M is finite (and therefore contains finitely many non-bisimilar states). As a result, there
is no (U, 0) such that (M’, sq) is bisimilar to (M * U, (s, 0)).

Ta a
S0
(.) 50 Ta Ta a
a a a a a

Figure 10: Arbitrary arrow updates and refinements are incomparable

It follows that arbitrary arrow updates are not at least as update expressive as re-
finements. But it also follows that refinements are not at least as update expressive as
arbitrary arrow updates, since you cannot choose to exclude the above model (M’ s)
when performing a refinement in (M, so).

Proposition 29 RML and AAUML are incomparable in update expressivity. o

And therefore RML and AAML are also incomparable. The reason that [t]e and [=]¢
(and [®]p) are nonetheless equivalent is that while there is no (U,0) such that (M =
U, (sg,0)) is bisimilar to (M’ sg), it is the case that for every n there is an (U,,0,) such
that (M xU,, (o, 0,)) is n-bisimilar to (M, sq). Since every formula in the languages under
consideration is of finite depth, such finite approximations of M’ suffice.

Finally, we should note that the incomparability already applies to the language for
RML with only the [=] modality. The language above, as in [9], has [>=]p modalities for
any subgroup B C A, meaning that, modulo bisimulation, only arrows in B are removed
from a relational model. Similarly to the argument above it follows that this would only
further increase expressivity.

8 Conclusions and further research

Conclusions We presented arbitrary arrow update model logic (AAUML). We provided
an axiomatization of AAUML, which also demonstrates that AAUML is decidable and
equally expressive as multi-agent modal logic. We established arrow update model synthesis
for AAUML. We determined the update expressivity hierarchy including AAUML and
many other update logics, including other arrow update logics, action model logics, and
refinement modal logic.

Further research on B-restricted arrow update synthesis Let B be any subset of
the set of all agents. Building upon the B-refinements of [9] and motivated by a similar

41

approach used in [14], a variant of the synthesis problem for AAUML is to consider B-
restricted arrow update models. Roughly speaking, a B-restricted arrow update model
represents an event where only the agents in B can gain more factual information, while
the agents outside B remain at least as uncertain as they were before the event. The
B-restricted synthesis problem can be solved in a very similar way to the unrestricted
problem that we presented in this paper.

Similarly to how arrow update models have the same update expressivity as action mod-
els and refinements, B-restricted arrow update models have the same update expressivity
as B-restricted action models, and B-refinements have larger update expressivity.

Formally introducing B-restricted arrow update models, and showing that the results
apply there as well, would require a lot of complicate notation and several complex defini-
tions. So for the sake of readability we did not include them in this paper.

Knowledge and belief Arrow updates result in changes of knowledge and belief. Of
particular interest are therefore updates that preserve the S5 or KD45 nature of relational
models. It is unclear how to enforce such preservation semantically, as discussed in Section
2.4l Such issues need to be resolved in order to find an axiomatization for arrow update
logic, or arrow update model logic, or quantified versions of these, for the class &5 or
KD45. These well-known problems [20, [32] are related to similar issues for refinement
modal logic, as refinement also is relational change. Non-trivial S5 and XD45 versions of
refinement modal logic have been proposed in work by Hales et al. [16, [I7], and particular
mention deserves Hales’ Ph.D. thesis [I5 Section 9.3, Section 9.4] wherein the axiomati-
zation AAUML is adapted to the classes KD45 and S5, respectively. These diverse results
might inspire similar solutions for truly ‘epistemic’ arrow update logics.

Work in progress on the complexity of synthesis We have shown that it is possible
to perform synthesis for AAUML, and described an algorithm that does this synthesis.
We have not, however, discussed the computational complexity of that algorithm. The
complexity is non-elementary. The non-elementary blowup occurs when (1) operators are
nested. In general, if ¢ is a basic modal formula, then the procedure outlined in this paper
allows us to find a basic modal formula ¢’ that is equivalent to (1), but the size of this
¢’ is, in the worst case, exponential in the size of . As a result, a formula ¢ containing
n nested (1) operators can be translated to an equivalent formula ¢’ of modal logic using
this method, but both the formula ¢’ and the arrow update model synthesized for the
outermost (1) operator will have experienced exponential blowup n times, resulting in a
non-elementary blowup overall. We suspect that this is unavoidable, i.e., that the difficulty
of the synthesis problem is non-elementary. We do not, for now, have a hardness proof,
however.

42

References

1]

2]

[10]

[11]

[12]

[13]

[14]

C. Areces, R. Fervari, and G. Hoffmann. Moving arrows and four model checking
results. In Proc. of 19th WoLLIC' pages 142-153. Springer, 2012. LNCS 7456.

G. Aucher. Characterizing updates in dynamic epistemic logic. In Proceedings of

Twelfth KR. AAAI Press, 2010.

G. Aucher. DEL-sequents for progression. Journal of Applied Non-Classical Logics,
21(3-4):289-321, 2011.

G. Aucher, P. Balbiani, L. Farinas del Cerro, and A. Herzig. Global and local graph
modifiers. Electr. Notes Theor. Comput. Sci., 231:293-307, 2009.

P. Balbiani, A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi, and T. De Lima.
‘Knowable’ as ‘known after an announcement’. Review of Symbolic Logic, 1(3):305—
334, 2008.

A. Baltag, L.S. Moss, and S. Solecki. The logic of public announcements, common
knowledge, and private suspicions. In Proc. of 7th TARK, pages 43-56. Morgan Kauf-
mann, 1998.

P. Blackburn, J. van Benthem, and F. Wolter, editors. Handbook of Modal Logic.
Elsevier, 2006.

T. Bolander, H. van Ditmarsch, A. Herzig, E. Lorini, P. Pardo, and F. Schwarzentru-
ber. Announcements to attentive agents. Journal of Logic, Language and Information,
25(1):1-35, 2016.

L. Bozzelli, H. van Ditmarsch, T. French, J. Hales, and S. Pinchinat. Refinement
modal logic. Information and Computation, 239:303-339, 2014.

T. French, J. Hales, and E. Tay. A composable language for action models. In R. Goré,
B.P. Kooi, and A. Kurucz, editors, Advances in Modal Logic 10, pages 197-216. College
Publications, 2014.

T. French and H. van Ditmarsch. Undecidability for arbitrary public announcement
logic. In Advances in Modal Logic 7, pages 23—42, London, 2008. College Publications.

J.D. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, University of Amster-
dam, 1999. ILLC Dissertation Series DS-1999-01.

J.D. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal
of Logic, Language, and Information, 6:147-169, 1997.

J. Hales. Arbitrary action model logic and action model synthesis. In Proc. of 28th
LICS, pages 253-262. IEEE, 2013.

43

[15]

[16]

[17]

[18]

[19]

[20]

[27]
28]

[29]

J. Hales. Quantifying over epistemic updates. PhD thesis, School of Computer Science
& Software Engineering, University of Western Australia, 2016. https://research-
repository.uwa.edu.au/en/publications/quantifying-over-epistemic-updates.

J. Hales, T. French, and R. Davies. Refinement quantified logics of knowledge. FElectr.
Notes Theor. Comput. Sci., 278:85-98, 2011.

J. Hales, T. French, and R. Davies. Refinement quantified logics of knowledge and
belief for multiple agents. In Advances in Modal Logic 9, pages 317-338. College
Publications, 2012.

B. Kooi. Knowledge, Chance, and Change. PhD thesis, University of Groningen, 2003.
ILLC Dissertation Series DS-2003-01.

B. Kooi. Expressivity and completeness for public update logics via reduction axioms.
Journal of Applied Non-Classical Logics, 17(2):231-254, 2007.

B. Kooi and B. Renne. Arrow update logic. Review of Symbolic Logic, 4(4):536-559,
2011.

B. Kooi and B. Renne. Generalized arrow update logic. In Proc. of 15th TARK, pages
205-211, 2011. Poster presentation.

J.A. Plaza. Logics of public communications. In Proc. of the 4th ISMIS, pages 201-216.
Oak Ridge National Laboratory, 1989.

D. Steiner. A system for consistency preserving belief change. In Proc. of the ESSLLI
Workshop on Rationality and Knowledge, pages 133—144, 2006.

J. van Benthem. An essay on sabotage and obstruction. In Mechanizing Mathematical
Reasoning, volume 2605 of LNCS 2605, pages 268-276. Springer, 2005.

J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change.
Information and Computation, 204(11):1620-1662, 2006.

H. van Ditmarsch. Knowledge games. PhD thesis, University of Groningen, 2000.
ILLC Dissertation Series DS-2000-06.

H. van Ditmarsch. Dynamics of lying. Synthese, 191(5):745-777, 2014.

H. van Ditmarsch, J.Y. Halpern, W. van der Hoek, and B. Kooi, editors. Handbook
of epistemic logic. College Publications, 2015.

H. van Ditmarsch and B. Kooi. Semantic results for ontic and epistemic change. In
Proc. of 7th LOF'T, Texts in Logic and Games 3, pages 87-117. Amsterdam University
Press, 2008.

44

[30]

[31]

[32]

[33]

[34]

[35]

[36]

H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic epistemic logic with
assignment. In Proc. of 4th AAMAS, pages 141-148. ACM, 2005.

H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic, volume
337 of Synthese Library. Springer, 2008.

H. van Ditmarsch, W. van der Hoek, B. Kooi, and L.B. Kuijer. Arbitrary arrow
update logic. Artif. Intell., 242:80-106, 2017.

H. van Ditmarsch, W. van der Hoek, and L.B. Kuijer. The undecidability of arbitrary
arrow update logic. Theor. Comput. Sci., 693:1-12, 2017.

H. van Ditmarsch, J. van Eijck, F. Sietsma, and Y. Wang. On the logic of lying. In
Games, Actions and Social Software, LNCS 7010, pages 41-72. Springer, 2012.

J. van Eijck, J. Ruan, and T. Sadzik. Action emulation. Synthese, 185(1):131-151,
2012.

J. van Eijck, F. Sietsma, and Y. Wang. Composing models. Journal of Applied Non-
Classical Logics, 21(3-4):397-425, 2011.

45

	Introduction
	Arbitrary arrow update model logic
	Structures
	Syntax
	Semantics
	Example

	Arrow update synthesis
	Reduction axioms for arrow update models
	Reduction axioms for the arrow update model quantifier
	Reduction
	Synthesis
	Example

	Axiomatization
	Update expressivity
	Expressivity
	Update expressivity hierarchy

	Arrow updates versus action models
	Action model logic
	From action models to arrow updates
	From arrow updates to action models
	Relative update expressivity
	Applications illustrating the succinctness of arrow updates

	Arbitrary arrow updates versus refinements
	Refinement modal logic
	Update expressivity

	Conclusions and further research

