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Abstract. Nourdin and Peccati (2009a) established a neat characterization of
Gamma approximation on a fixed Wiener chaos in terms of convergence of only
the third and fourth cumulants. In this paper, we provide an optimal rate of
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examples in the context of quadratic forms are considered to illustrate our optimal
bound.
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1. Introduction and Main Result

Let X = {X(h) : h ∈ H} be an isonormal Gaussian process over a separable
Hilbert space H on a suitable probability space (Ω,F , P ). In the landmark article
Nualart and Peccati (2005), Nualart and Peccati discovered an astonishing central
limit theorem (CLT) known nowadays as the fourth moment theorem for a sequence
of normalized random variables inside a fixed Wiener chaos associated to X. It
states that the convergence in distribution towards a standard Gaussian distribution
is equivalent to the sole requirement that the fourth moments converge to 3. A few
years later, their findings have created a fertile line of research, culminating in the
popular article Nourdin and Peccati (2009b), introducing the so called Malliavin-
Stein approach, an elegant combination of two probabilistic techniques namely Stein
method (Stein, 1972; Chen et al., 2011) and Malliavin calculus (Nualart, 2006; Nu-
alart and Nualart, 2018) in order to quantify the probability distance between a
square integrable Wiener functional and a normal distribution. The reader may con-
sult the excellent monograph Nourdin and Peccati (2012), as well as the constantly
updated web resource https://sites.google.com/site/malliavinstein/home
for a huge amount of applications and generalizations of the aforementioned re-
sults. Our study is mainly inspired by the following discovery (item (b) of the
forthcoming theorem), which presents an optimal version of the fourth moment
theorem. For every real-valued random variable F the quantity κr(F ) stands for
the rth cumulant of F , see section 2.3.

Theorem 1.1 ((Optimal) fourth moment theorem, Nualart and Peccati, 2005;
Nourdin and Peccati, 2009b, 2015). Fix q ≥ 2. Let {Fn : n ≥ 1} be a sequence of
random variables in the qth Wiener chaos associated to X such that E[F 2

n ] = 1 for
every n ∈ N. Then

(a) Fn → N ∼ N (0, 1) in distribution if and only if E[F 4
n ] → 3. Also, the

following quantitative estimate is in order: for n ≥ 1,

dTV (Fn, N) ≤ 2

√
q − 1

3q

√
κ4(Fn). (1.1)

(b) Under the assumptions of item (a) there exist two constants C1 and C2

(independent of n) such that the following optimal rate of convergence in
total variation distance holds:

C1 max{|κ3(Fn)|, κ4(Fn)} ≤ dTV (Fn, N) ≤ C2 max{|κ3(Fn)|, κ4(Fn)}.

Fix a parameter ν > 0. In this paper, the target distribution of interest is the so
called centered Gamma distribution denoted by G(ν) ∼ CenteredGamma(ν). This
means that G(ν) = 2 Ĝ(ν/2)− ν, where Ĝ(ν/2) is a Gamma random variable with
density ĝ(x) = x

ν
2−1 e−x Γ(ν2 )−1 1(0,∞)(x). Here Γ(ν) :=

∫ +∞
0

xν−1e−xdx denotes
the Euler Gamma function. The centered Gamma distribution frequently appears
as a natural limiting distribution in the context of the fourth moment theorems
in several studies, see for example Azmoodeh et al. (2014, 2016, 2015); Kusuoka
and Tudor (2018, 2012); Arras and Swan (2017); Eichelsbacher and Thäle (2015);
Ledoux (2012); Nourdin and Rosiński (2014); Nourdin and Poly (2012); Arras et al.
(2017); Eden and Víquez (2015). Our principal goal is to provide an optimal rate
(analogous to that of item (b) Theorem 1.1) for the Gamma approximation on a
fixed Wiener chaos. The statement of the next result is an up-to-date significant
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improvement over the years of the findings in Nourdin and Peccati (2009a,b); Nour-
din et al. (2010); Döbler and Peccati (2018), and it can be directly obtained, for
example, by combining Döbler and Peccati (2018, Theorem 7.1) and Nourdin et al.
(2010, Theorem 3.6).

Theorem 1.2. Let ν > 0. Fix q ≥ 2 an even number (see Nourdin and Peccati,
2009a, Remark 1.3, item 3 when q is odd). Assume F = Iq(f) is an element in the
qth Wiener chaos such that E[F 2] = 2ν. Then

d1(F,G(ν)) ≤

(
max{2, 4

ν
}
√
q − 1

q

)√
M(F ) (1.2)

where
M(F ) := max

{∣∣∣κ4(F )− κ4(G(ν))
∣∣∣, ∣∣∣κ3(F )− κ3(G(ν))

∣∣∣}. (1.3)

Here d1 stands for the so called 1-Wasserstein metric (see below for definition). As
a consequence, for a sequence {Fn : n ≥ 1} of random variables in the qth Wiener
chaos such that E[F 2

n ] = 2ν for every n ∈ N, the following remarkable equivalence
of asymptotic statements are in order:
(a): Fn → G(ν) in distribution.
(b): κ3(Fn)→ 8ν, and κ4(Fn)→ 48ν.

Note that κ3(G(ν)), κ4(G(ν)) 6= 0 unlike the case of normal approximation. We
also recall the following natural generalization of the 1-Wasserstein metric d1 that
we will make use of throughout the paper. Let X and Y be two real-valued random
variables. For k ≥ 2, define

dk(X,Y ) := sup
h∈Hk

∣∣∣E[h(X)]− E[h(Y )]
∣∣∣

where the class of the test functions is

Hk := {h ∈ Ck−1(R) : ‖h(1)‖∞ ≤ 1, . . . , ‖h(k)‖∞ ≤ 1}.
Here, we adapt the following convention that for every function f : R → R the
quantity ‖f ′‖∞ stands for the smallest Lipschitz constant, i.e.

‖f ′‖∞ = sup
x,y∈R
x6=y

|f(x)− f(y)|
|x− y|

∈ R ∪ {+∞}. (1.4)

It is worth pointing out that ‖f ′‖∞ coincides with the uniform norm of the de-
rivative of f whenever f is differentiable. A significant and also very challenging
question, which we will deal with in this paper, is whether one can either provide
an optimal rate or improve the rate (1.2) available in Theorem 1.2. For a general
sequence {Fn : n ≥ 1} and a suitable probability metric d (often we assume that
the topology induced by metric d is stronger than convergence in distribution),
following Nourdin and Peccati (2012, Definition 9.2.1), we say that a numerical
sequence {ρ(n) : n ∈ N} of strictly positive real numbers, decreasing to 0, yields an
optimal rate with respect to the metric d, if there exist two constants C1 and C2

(independent of n) such that

C1 ≤
d(Fn, G(ν))

ρ(n)
≤ C2, ∀n ∈ N.

Our main result is the following non asymptotic optimal Gamma approximation in
terms of the maximum of the third and fourth cumulants within the second Wiener
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chaos in full generality that improves upon the rate (1.2) by a notable square power.
It presents an analogous counterpart to the same phenomenon in the case of normal
approximation, see Nourdin and Peccati (2015, Theorem 1.2) or Theorem 1.1 item
(b).

Theorem 1.3 (Non asymptotic optimal Gamma approximation). Let ν > 0,
and G(ν) ∼ CenteredGamma(ν). Then there exist two general constants 0 < C1 <
C2 (possibly depending on the parameter ν) such that for every random variable F
in the second Wiener chaos associated with X with E[F 2] = 2ν, it holds that

C1 M(F ) ≤ d2(F,G(ν)) ≤ C2 M(F ), (1.5)

where the quantity M(F ) is given by (1.3).

Remark 1.4. (a) A significant feature of the optimal rate (1.5) is that it is non
asymptotic and a priori does not assume the law of the chaotic random vari-
able F to be close to that of G(ν) unlike the one in item (b) of Theorem 1.1
in the normal approximation case. For the upper bound, the starting point
is an adaption of the technique developed in Nourdin and Peccati (2015).
However, in order to achieve the optimal upper bound we introduce a novel
technique within Stein’s method to split test functions relying on tools from
operator theory. This is the topic of section 3. Our methodology to obtain
the optimal lower bound is based on complex analysis and differs from that
in Nourdin and Peccati (2015). Up to our knowledge this method is new.

(b) Theorem 1.3 has to be seen as a full generalization of the main findings
of Azmoodeh et al. (2018), where we assumed some additional technical
conditions.

(c) Unlike the normal approximation, due to existence of singularity in the de-
rivative of solution of the Gamma Stein equation associated to non smooth
test functions (such as indicator functions) improvement of the optimal rate
(1.5) to non smooth probability metrics such as the Kolmogorov distance
or total variation distance or even d1 metric is out of the scope of the
techniques developed in this paper. The main reason is that we need to
employ at least twice Malliavin integration by parts formula (2.6) in order
to obtain the optimal upper bound in terms of Malliavin Gamma operators
Γj defined as (2.7). This issue also point out in Döbler and Peccati (2018,
Remark 1.3, item (b)).

(d) We also shortly comment on a natural thought relating to the generaliza-
tion of the optimal rate (1.5) to higher order Wiener chaoses. In fact, at
least for the upper bound, our investigations imply that such an exten-
sion would come at the cost of very complicated computations involving
norms of contraction operators to verify estimate (4.10) (possibly with a
different constant) for general chaotic random variables. Furthermore, our
method to achieve the optimal lower bound, relying on complex analysis,
cannot be used anymore in higher order chaoses, and hence one requires
the introduction of new ideas.

(e) In Gaunt et al. (2017, Theorem 3.3) the authors provide an upper opti-
mal rate of order n−1 for non centered chi-square approximation of the
Pearson’s statistic. Although their result allows for a wide class of random
variables (not necessary the Gaussian framework), however imposing the
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normal distribution to the entires of the partial sums leads to a special sub-
class – the so called quadratic forms in Gaussian random variables – of the
second Wiener chaos. Furthermore, they require more smooth probability
distance.

The outline of our paper is as follows: In section 2, we give a brief introduction
to Malliavin calculus on the Wiener space and specify the notation used in the
paper. Section 3 gathers the essential ingredients of Stein’s method for the centered
Gamma distribution, developed recently in Döbler and Peccati (2018). We also
present our novel operator theory viewpoint inside this section. Section 4 contains
the main theoretical findings of this paper – an upper bound for the d2 distance
between a general element F living in a finite sum of Wiener chaoses and the target
distribution G(ν) in terms of iterated Gamma operators, as well as the optimal
Gamma approximation rate. The end of this section is devoted to applications of
our main findings. Lastly, we close the paper with an appendix section with focus
on the newly introduced Gamma operators.

2. Preliminaries: Gaussian Analysis and Malliavin Calculus

In this section, we provide a brief introduction to Malliavin calculus and define
some of the operators used in this framework. For more details, see for example
the textbooks Nourdin and Peccati (2012); Nualart (2006); Nualart and Nualart
(2018).

2.1. Isonormal Gaussian Processes and Wiener Chaos. Let H be a real separable
Hilbert space with inner product 〈·, ·〉H, and X = {X(h) : h ∈ H} be an isonormal
Gaussian process, defined on some probability space (Ω,F , P ). This means that X
is a family of centered, jointly Gaussian random variables with covariance structure
E[X(g)X(h)] = 〈g, h〉H. We assume that F is the σ-algebra generated by X. For
an integer q ≥ 1, we will write H⊗q or H�q to denote the q-th tensor product of H,
or its symmetric q-th tensor product, respectively. If Hq(x) = (−1)qex

2/2 dq

dxn e
−x2/2

is the q-th Hermite polynomial, then the closed linear subspace of L2(Ω) generated
by the family {Hq(X(h)) : h ∈ H, ‖h‖H = 1} is called the q-th Wiener chaos of X
and will be denoted by Hq. For f ∈ H�q, let Iq(f) be the q-th multiple Wiener-
Itô integral of f (see Nourdin and Peccati, 2012, Definition 2.7.1). An important
observation is that for any f ∈ H with ‖f‖H = 1 we have that Hq(X(f)) = Iq(f

⊗q).
As a consequence Iq provides a modified isometry from H�q onto the q-th Wiener
chaos Hq ofX. It is a well-known fact, called theWiener-Itô chaotic decomposition,
that any element F ∈ L2(Ω) admits the expansion

F =

∞∑
q=0

Iq(fq), (2.1)

where f0 = E[F ] and the fq ∈ H�q, q ≥ 1 are uniquely determined.
Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H�p and

g ∈ H�q, for every r = 0, . . . , p ∧ q, the contraction of f and g of order r is the
element of H⊗(p+q−2r) defined by

f ⊗r g =

∞∑
i1,...,ir=1

〈f, ei1 ⊗ . . .⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ . . .⊗ eir 〉H⊗r . (2.2)
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Notice that the definition of f ⊗r g does not depend on the particular choice of
{ek, k ≥ 1}, and that f ⊗r g is not necessarily symmetric; we denote its sym-
metrization by f⊗̃rg ∈ H�(p+q−2r). Moreover, f ⊗0 g = f ⊗ g equals the tensor
product of f and g while, for p = q, f ⊗q g = 〈f, g〉H⊗q . Contractions appear
naturally in the product formula for multiple integrals: if f ∈ H�p and g ∈ H�q,
then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (2.3)

An important result is the following isometry property of multiple integrals. Let
f ∈ H�p and g ∈ H�q, where 1 ≤ q ≤ p. Then

E[Ip(f)Iq(g)] =

{
p! 〈f, g〉H⊗p if p = q

0 otherwise.
(2.4)

2.2. The Malliavin Operators. We denote by S the set of smooth random variables,
i.e. all random variables of the form F = g(X(ϕ1), . . . , X(ϕn)), where n ≥ 1,
ϕ1, . . . , ϕn ∈ H and g : Rn → R is a C∞-function, whose partial derivatives have
at most polynomial growth. For these random variables, we define the Malliavin
derivative of F with respect to X as the H-valued random element DF ∈ L2(Ω,H)
defined as

DF =

∞∑
i=1

∂g

∂xi

(
X(ϕ1), . . . , X(ϕn)

)
ϕi.

The set S is dense in L2(Ω) and using a closure argument, we can extend the
domain of D to D1,2, which is the closure of S in L2(Ω) with respect to the norm
‖F‖2D1,2 := E[F 2] + E[‖DF‖2H]. See Nourdin and Peccati (2012) for a more general
definition of higher order Malliavin derivatives and spaces Dp,q. The Malliavin
derivative satisfies the following chain-rule. If φ : Rm → R is a continuously
differentiable function with bounded partial derivatives and F = (F1, . . . , Fm) is a
vector of elements of D1,q for some q, then φ(F ) ∈ D1,q and

Dφ(F ) =

m∑
i=1

∂φ

∂xi
(F )DFi. (2.5)

Note that the conditions on φ are not optimal and can be weakened. For F ∈ L2(Ω),
with chaotic expansion as in (2.1), we define the pseudo-inverse of the infinitesimal
generator of the Ornstein-Uhlenbeck semigroup as

L−1F = −
∞∑
p=1

1

p
Ip(fp).

The following integration by parts formula is one of the main ingredients to
proving the main theorem of section 4.1. Let F,G ∈ D1,2. Then

E[FG] = E[F ]E[G] + E[〈DG,−DL−1F 〉H]. (2.6)
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2.3. Gamma Operators and Cumulants. Let F be a random variable with charac-
teristic function φF (t) = E[eitF ]. We define its n-th cumulant, denoted by κn(F ),
as

κn(F ) =
1

in
∂n

∂tn
log φF (t)

∣∣∣
t=0

,

provided that F ∈ Ln(Ω). Let F be a random variable with a finite chaos expansion.
We define the operators Γi, i ∈ N0 via Γ0(F ) := F and

Γi+1(F ) := 〈DΓi(F ),−DL−1F 〉H, for i ≥ 0. (2.7)

We also denote the centered versions of the Gamma-operators, i.e.

Γj(F ) := Γj(F )− E[Γj(F )].

Note that there is also an alternative definition, which can be found in most other
papers in this framework, see for example Definition 8.4.1 in Nourdin and Peccati
(2012) or Definition 3.6 in Biermé et al. (2012). For the sake of completeness,
we also mention the classical Gamma operators, which we call alternative Gamma
operators, which we shall denote by Γalt. These are defined via

Γalt0 (F ) := F and Γalti+1(F ) := 〈DF,−DL−1Γalti (F )〉H, for i ≥ 0. (2.8)

The classical Gamma operators are related to the cumulants of F by the following
identity from Nourdin and Peccati (2010): For all j ≥ 0, we have

E[Γaltj (F )] =
1

j!
κj+1(F ).

If j ≥ 3, this does not hold anymore for our new Gamma operators. Instead, in
our next result, we will list some useful relations between the classical and the new
Gamma operators.

Proposition 2.1. Let F be a centered random variable admitting a finite chaos
expansion. Then

(a) Γ1(F ) = Γalt1 (F ),
(b) E

[
Γj(F )

]
= E

[
Γaltj (F )

]
= 1

j!κj+1(F ) for j = 1, 2.
(c) E

[
Γ3(F )

]
= 2E

[
Γalt3 (F )

]
−Var

(
Γ1(F )

)
= 1

3κ4(F )−Var
(
Γ1(F )

)
,

(d) When F = I2(f), for some f ∈ H�2, is an element of the second Wiener
chaos, then

Γj(F ) = Γaltj (F ) for all j ≥ 1.

The proofs of these statements can be found in the appendix along with an
explicit representation of the Gamma operators in terms of contractions.

2.4. Useful facts on Second Wiener Chaos. Let F = I2(f), for some f ∈ H�2 be a
generic element in the second Wiener chaos. It is a classical result (see Nourdin and
Peccati, 2012, section 2.7.4) that these kind of random variables can be analyzed
through the associated Hilbert-Schmidt operator Af : H→ H that maps g 7→ f⊗1 g.
Denote by {cf,i : i ∈ N} the set of eigenvalues of Af . We also introduce the following
sequence of auxiliary kernels

{
f ⊗(p)

1 f : p ≥ 1
}
⊂ H�2, defined recursively as

f ⊗(1)
1 f = f , and, for p ≥ 2, f ⊗(p)

1 f =
(
f ⊗(p−1)

1 f
)
⊗1 f .

Proposition 2.2. (see e.g. Nourdin and Peccati, 2012, p. 43)
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(1) The random element F admits the representation

F =

∞∑
i=1

cf,i
(
N2
i − 1

)
, (2.9)

where the (Ni) are i.i.d. N (0, 1) and the series converges in L2(Ω) and
almost surely.

(2) For every p ≥ 2

κp(F ) = 2p−1(p− 1)!

∞∑
i=1

cpf,i = 2p−1(p− 1)!〈f, f ⊗(p−1)
1 f〉H

= 2p−1(p− 1)! Tr
(
Apf

) (2.10)

where Tr(Apf ) stands for the trace of the pth power of operator Af .

It is known that when ν is an integer, G(ν) ∼ χ2 is a centered chi-squared
random variable with ν degrees of freedom, and (2.9) shows that G(ν) is itself
an element of the second Wiener chaos, where ν-many of the eigenvalues are 1
and the remaining ones are 0. Hence, in this case, we deduce from (2.10) that
κp(G(ν)) = 2p−1(p− 1)! ν. Perhaps not surprisingly, this is also the case when ν is
any positive real number.

Lemma 2.3. Let ν > 0 and G(ν) ∼ CenteredGamma(ν). Then

κp(G(ν)) =

{
0, p = 1;

2p−1(p− 1)! ν, p ≥ 2.
(2.11)

Proof : Since the cumulant generating function of a Gamma random variable is
well-known, we can easily compute that of G(ν) to be K(t) = ν

2 log
(

1
1−2t

)
− νt.

By simple induction over p, we obtain

dpK

dtp
(t) =


−ν +

ν

1− 2t
, p = 1;

ν

2

2p(p− 1)!

(1− 2t)p+1
, p ≥ 2.

The result now follows by letting t = 0. �

Lemma 2.4. Let F = I2(f) for some f ∈ H�2, and denote by Af the corresponding
Hilbert-Schmidt operator with eigenvalues {cf,i : i ≥ 1}. Then for every r ≥ 1,

Var
(

Γr(F )− 2Γr−1(F )
)

= 22r+1
∞∑
i=1

c2rf,i(cf,i − 1)2

=
1

(2r + 1)!
κ2r+2(F )− 4

(2r)!
κ2r+1(F ) +

4

(2r − 1)!
κ2r(F ).

Proof : From Azmoodeh et al. (2015) equation (24), which follows by induction on
r, we have the representation

Γr(F ) = 2rI2

(
f ⊗(r+1)

1 f
)
. (2.12)

Fix s ≥ 1. Let’s us first to show that for every r ≥ 1 it holds that

〈f ⊗(r+1)
1 f, f ⊗(s)

1 f〉H⊗2 = 〈f, f ⊗(r+s)
1 f〉H⊗2 . (2.13)
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To do this, first without loss of generality, we can assume that H = L2(A,A, µ),
where µ is a σ- finite and non-atomic measure on the measurable space (A,A).
Using Fubini Theorem, and taking into account the symmetry of the kernel f , one
can write

〈f ⊗(r+1)
1 f, f ⊗(s)

1 f〉H⊗2 =

∫
A2

(f ⊗(r+1)
1 f)(x, y)(f ⊗(s)

1 f)(x, y)µ(dx)µ(dy)

=

∫
A2

(
(f ⊗(r)

1 f)⊗1 f
)

(x, y)(f ⊗(s)
1 f)(x, y)µ(dx)µ(dy)

=

∫
A2

[∫
A

(f ⊗(r)
1 f)(z, x)f(z, y)µ(dz)

]
(f ⊗(s)

1 f)(x, y)µ(dx)µ(dy)

=

∫
A2

f(z, y)

[∫
A

(f ⊗(r)
1 f)(z, x)(f ⊗(s)

1 f)(x, y)µ(dx)

]
µ(dz)µ(dy)

=

∫
A2

f(z, y)
(

(f ⊗(r)
1 f)⊗1 (f ⊗(s)

1 f)
)

(z, y)µ(dz)µ(dy)

=

∫
A2

f(z, y)(f ⊗(r+s)
1 f)(z, y)µ(dz)µ(dy)

= 〈f, f ⊗(r+s)
1 f〉H⊗2 .

Now, using relation (2.12), the isometry property (2.4), and relation (2.13), we
obtain

Var
(

Γr(F )− 2Γr−1(F )
)

= 22r+1 ‖f ⊗(r+1)
1 f − f ⊗(r)

1 f‖2H⊗2

= 22r+1
(
‖f ⊗(r+1)

1 f‖2H⊗2 − 2 〈f, f ⊗(2r)
1 f〉H⊗2 + ‖f ⊗(r)

1 f‖2H⊗2

)
= 22r+1

(
〈f, f ⊗(2r+1)

1 f〉H⊗2 − 2 〈f, f ⊗(2r)
1 f〉H⊗2 + 〈f, f ⊗(2r−1)

1 f〉H⊗2

)
= 22r+1 Tr

(
A2r+2
f − 2A2r+1

f +A2r
f

)
.

The result now follows with (2.10). �

3. Stein’s Method for the centered Gamma distribution

Let Xr ∼ Γ(r, 1) be distributed according to a Gamma distribution with shape
parameter r > 0. It means that random variable Xr admits the density

pr(x) =

{
1

Γ(r)x
r−1e−x, if x > 0,

0, otherwise.
(3.1)

Consider the centered Gamma random variable G(ν) = 2Xν/2 − ν ∼
CenteredGamma(ν). Stein’s method for Xν/2 has first been studied in Luk (1994)
and then later been refined in Pickett (2004). It is known (see e.g. Döbler and Pec-
cati, 2018, equation (24)) that the Stein equation for the centered Gamma random
variable G(ν) associated to the test function h is given by the following first order
ODE with polynomial coefficients

2(x+ ν)f ′(x)− xf(x) = h(x)− E [h(G(ν))] , (3.2)
where h : R → R is measurable and E|h(G(ν))| < ∞. The following result is
taken from Döbler and Peccati (2018, Theorem 2.3) and plays a crucial role in our
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analysis. For the reader’s convenience we restate it here. We recall our convention
that for every function f : R → R the quantity ‖f ′‖∞ stands for the smallest
Lipschitz constant, i.e.

‖f ′‖∞ = sup
x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|

∈ R ∪ {+∞}. (3.3)

Again one has to note that ‖f ′‖∞ coincides with the uniform norm of the derivative
of f whenever f is differentiable.

Theorem 3.1. (Döbler and Peccati, 2018, Theorem 2.3) (a) Let h be a Lipschitz-
continuous function on the whole real line R. Then there exists a unique bounded
Lipschitz-continuous solution S(h) to the equation (3.2) on the whole real line R
satisfying the bounds∥∥S(h)

∥∥
∞ ≤ ‖h

′‖∞, and
∥∥S(h)′

∥∥
∞ ≤ cν‖h

′‖∞,

where the constant cν = max{1, 2
ν }.

(b) Suppose that the function h is continuously differentiable on R such that both h
and h′ are Lipschitz-continuous. Then there is a continuously differentiable solution
S(h) of equation (3.2) on R whose derivative S(h)′ is Lipschitz-continuous, and
moreover ∥∥S(h)′′

∥∥
∞ ≤ cν‖h

′‖∞ + ‖h′′‖∞.

3.1. Explicit Formula for the Solution of the Stein Equation. This section is entirely
based on Döbler and Peccati (2018). It is known that a Stein equation for the Γ(r, 1)
distribution is given by

xf ′(x) + (r − x)f(x) = h(x)− E[h(Xr)], (3.4)

where h : R → R is a measurable test function with E|h(Xr)| < +∞. Döbler
and Peccati (2018, p. 3406) showed that if h ∈ Lip(R), then there exists a unique
Lipschitz-continuous function fh on R solving (3.4), given by

fh(x) =

{
f−h (x), x < 0,

f+
h (x), x > 0,

where for x < 0,

f−h (x) =
1

xql(x)

∫ x

0

(
h(t)− E

[
h(Xr)

])
ql(t)dt

= − 1

xql(x)

∫ 0

x

(
h(t)− E

[
h(Xr)

])
ql(t)dt

and ql(x) = −(−x)r−1e−x. Also f+
h (x) = 1

xpr(x)

∫ x
0

(
h(t) − E

[
h(Xr)

])
pr(t)dt for

x > 0. Furthermore, one can extend f−h and f+
h continuously by setting f−h (0) =

f+
h (0) := h(0)−E[h(Xr)]

r . Now, for a given test function h : R → R, set h1(x) :=
h(2x − ν). Following Döbler and Peccati (2018, p. 3399), if fh is the solution of
(3.4) (with r = ν/2), where h is replaced by h1, then S(h)(x) := 1

2 fh
(
x+ν

2

)
solves

(3.2). Therefore, the unique bounded solution S(h) of the Stein equation (3.2)
admits the following explicit representation

S(h)(x) =

∫ x

−ν

(
q̂(t)

2(x+ ν)q̂(x)
1{x≤−ν}(x) +

p̂ν(t)

2(x+ ν)p̂ν(x)
1{x>−ν}(x)

)
(3.5)
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h(t)− E

[
h(G(ν))

])
dt,

where p̂ν is the density of the centered Gamma distribution G(ν) given by

p̂ν(x) =
1

2
pν/2

(
x+ ν

2

)
=

{
2−

ν
2 Γ
(
ν
2

)−1
(x+ ν)

ν
2−1 e−

x+ν
2 , x > −ν

0, x ≤ −ν;

and q̂(x) := 1
2 ql

(
x+ν

2

)
= − 2−

ν
2

(
− (x+ ν)

) ν
2−1

e−
x+ν
2 . Also note that

S(h)(−ν) =
h(−ν)− E

[
h(G(ν))

]
ν

. (3.6)

The following lemma will be used in the proof of Proposition 3.7. Using a simple
adaptation, a similar statement also holds for the solution S(h) corresponding to
the Stein equation (3.2) of the centered Gamma distribution G(ν).

Lemma 3.2. Let Xr ∼ Γ(r, 1) with cumulative distribution function Fr, and h be a
Lipschitz-continuous function. Then there exist two non-negative bounded functions
U+ on (0,+∞), and U− on (−∞, 0] such that U± ↓ 0 as x→ ±∞, and the following
estimates are in order:

(a) for x > 0 it holds that
∣∣∣f ′h(x)

∣∣∣ ≤ 2‖h′‖∞U+(x),

(b) for x < 0 it holds that
∣∣∣f ′h(x)

∣∣∣ ≤ 2‖h′‖∞U−(x).

Proof : Let Ql(x) :=
∫ 0

x
(−ql(y))dy. Consider

V +(x) :=

∫ x
0
Fr(y)dy

∫∞
x

(1− Fr(y)) dy

x2pr(x)
, and V −(x) :=

(r − x)
∫ 0

x
Ql(y)dy

−x2ql(x)
.

It is known that both estimates in parts (a) and (b) take place with V ± instead
of U± (see Döbler, 2015, Corollary 3.15. Part (b), and Döbler and Peccati (2018,
relation (35), page 4304)). Moreover, for x > r, the function V + satisfies

0 ≤ V +(x) ≤ U+(x) :=

∫∞
x

(1− Fr(y)) dy

xpr(x)
≤ 1.

Also, it is straightforward to check that as x→ +∞, the function U+ is decreasing
to 0. (It is also true that 0 ≤ U+(x) ≤ 1 for 0 < x ≤ r Döbler and Peccati (2018,
see the top of page 3403)). Part (b) is similar. �

3.2. An Operator Theory Approach.
Let a, b ∈ R+ ∪ {∞}. Define

Ba,b :=
{
f : R→ R, Lipschitz-continuous : ‖f‖∞ < a, and ‖f ′‖∞ < b

}
.

Lemma 3.3. Let B := B∞,∞. For every given h ∈ B, define ‖f‖B := ‖f‖∞ +
‖f ′‖∞. Then ‖ · ‖B is a norm on the real vector space B, and furthermore the pair
(B, ‖ · ‖B) is a Banach space, the so-called Lipschitz-space.

Proof : It is straightforward to see that the pair (B, ‖ · ‖B) is a normed space. Fur-
thermore, it is a classical fact that it is a Banach space, see for example Weaver
(1999, Proposition 6.1.2). �
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Lemma 3.4. Consider the mapping S : B → B such that for every h ∈ B, the action
S(h) is defined as the unique bounded solution to the centered Gamma Stein equation
(3.2), which is guaranteed to exist by Theorem 3.1 item (a). Then S(h) ∈ B, and
S is a bounded linear operator from the Banach space B to itself.

Proof : Let h ∈ B. Then a direct application of Theorem 3.1 item (a) yields that
S(h) ∈ B. To show linearity of S, take h1, h2 ∈ B, and α ∈ R. Then using
the Gamma Stein equation (3.2), together with the fact that S(h) is the unique
bounded solution to the latter, we infer that S(h1 + αh2) = S(h1) + αS(h2). For
the boundedness of S : B → B we apply Theorem 3.1 part (a) to obtain

‖S(h)‖B = ‖S(h)‖∞ + ‖S(h)′‖∞ ≤ ‖h′‖∞ + cν‖h′‖∞ ≤ (1 + cν)
(
‖h‖∞ + ‖h′‖∞

)
= (1 + cν)‖h‖B.

Hence ‖S‖ ≤ 1 + cν . �

Proposition 3.5. Consider the bounded linear operator S : B → B defined as in
Lemma 3.4. Then the following statements are in order.

(a) The operator S does not admit any non-zero eigenvalue, i.e. if S(h) = λh
for some non-zero constant λ ∈ R, then necessary h = 0.

(b) For every non-zero scalar λ ∈ R, the operator I + λS : B → B is a one to
one map, where I : B → B stands for the identity operator.

Proof : (a) By contrary assume that there exists a non-zero scalar λ ∈ R such that

S(h) = λh. (3.7)

We claim that h(−ν) = 0. Otherwise introduce the auxiliary test function g =
h

h(−ν)−1. Then, obviously, g ∈ B, and moreover by virtue of relation (3.7), we have
S(g) = λ(g + 1). Furthermore, we have E [g(G(ν))] = −λν, because S(g)(−ν) = λ.
Therefore, the function g satisfies the first order non-homogeneous ode

2λ(x+ ν)g′ − (λx+ 1)g = λ(x+ ν). (3.8)

Then general solutions of the ode (3.8) on the interval (−ν,∞) are given by

g(x) = e
x
2 (x+ ν)β

{
C3 +

1

2

∫ x

−ν
e−

y
2 (y + ν)−βdy

}
, (3.9)

where β := 1−λν
2λ . Now, if β < 1, then as x→ +∞, we have∫ x

−ν
e−

y
2 (y + ν)−βdy → cβ <∞.

This implies that g(x)→ +∞ as x→ +∞, which is a contradiction to the fact that
g must be a bound function. When β ≥ 1, i.e. β̃ := 1 − β ≤ 0 as x → +∞, we
obtain that for some finite constant dβ that∫ x

−ν
e−

y
2 (y + ν)−βdy → dβΓ(β̃),

which is either an infinite number or a finite number depending on whether β̃ ∈
−N ∪ {0} is a negative integer or not. Therefore, in any case, we have obtained
that g(x) → +∞ as x → +∞, which is a contradiction. Hence always h(−ν) = 0.
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This implies that E [h(G(ν))] = 0 by using (3.6). On the other hand, S(h) = λh
satisfies the first order ode (3.2), and therefore

2λ(x+ ν)h′ − (λx+ 1)h = 0. (3.10)

The general solutions of the ordinary differential equation (3.10) on the interval
(−ν,∞) are given by

h(x) = C1e
x
2 (x+ ν)

1−ν
2λ , (3.11)

for some constant C1. If C1 6= 0, then this is a contradiction to the fact that S(h)
is a bounded function over the whole real line. Hence it must hold that C1 = 0.
Similarly, the general solutions of the ordinary differential equation (3.10) on the
interval (−∞,−ν) are given by

h(x) = C2e
− x2 (−x− ν)

1−ν
2λ (3.12)

where C2 is a general constant. Now if C2 6= 0, we infer that S(h) is unbounded on
the domain (−∞,−ν), which leads to a contradiction. Therefore C2 = 0, and as a
direct consequence we get h = 0.

(b) Assume that λ 6= 0 is a non-zero scalar. Then the mapping I+λS : B → B is a
linear operator. Hence, I+λS is a one to one map if and only if Ker (I + λS) = {0},
and the latter follows at once from part (a). �

Lemma 3.6. Let fn : [a, b]→ R be a sequence of L-Lipschitz continuous functions
for every n ∈ N: i.e. for all x, y ∈ [a, b], and every n,∣∣∣fn(x)− fn(y)

∣∣∣ ≤ L|x− y|.
Assume further that fn → f pointwise as n tends to infinity. Then f is also an
L-Lipschitz function and fn → f uniformly.

Proof : It is elementary. �

Proposition 3.7. The bounded linear operator S : B → B defined as in Lemma
3.4 is a compact operator.

Proof : Let UB := {h ∈ B : ‖h‖B = ‖h‖∞ + ‖h′‖∞ ≤ 1} denote the unit ball of
the Banach space B. We need to show that the image S (UB) of the unit ball is a
precompact set in B, or equivalently, that every sequence {S(hn)}n≥1 ⊆ S(UB) has
a convergent subsequence in the topology of the Banach space B. We divide the
rest of the proof in three steps.
Step (1): First we show that there exists a subsequence {hnk}k≥1 such that hnk → h
pointwise for some h ∈ UB. Moreover S(hnk) → S(h), and S(hnk)′ → S(h)′

pointwise. Note that {hn}n≥1 ⊆ UB is a bounded subset of B. It is well known
(see for example Weaver, 1999, Chapter 2 or Weaver, 2018, Theorem 2.4, and
Proposition 2.1 as well as the survey Godefroy, 2015) that the Banach space B
is a predual space, i.e. there exists a (unique) Banach space Æ(R), the so called
Arens-Eells space, such that Æ(R)∗ = B. On the other hand, the Banach-Alaoglu
theorem implies that the unit ball UB is weak-∗ compact. Moreover, R is a separable
Banach space, so the Arens-Eells Banach space Æ(R) is, too Godefroy (2015).
Hence the weak-∗topology on UB is metrizable. Therefore, weak-∗ compact is the
same as weak-∗ sequentially compact on the unit ball UB. It follows that the
sequence {hn}n≥1 contains a subsequence that converges in the weak-∗ topology to
an element h ∈ UB. Without loss of generality, we assume that the subsequence
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is given by the sequence itself. Hence there exists an element h ∈ UB such that
hn → h in the weak∗-topology. Furthermore, the weak-∗ topology on the bounded
subsets of B coincides with the topology of pointwise convergence, see Weaver
(2018, Proposition 2.1). As a consequence, hn → h pointwise (here one should
not expect that hn → h weakly; otherwise this implies that the unit ball is weakly
sequentially compact, and therefore the Banach space B is reflexive which is a
contradiction). An application of the Lebesgue dominated convergence theorem
implies that S(hn) → S(h) pointwise. Taking into account these observations
together with the fact that for every n ∈ N we have

2(x+ ν)S(hn)′(x)− xS(hn)(x) = hn(x)− E [hn(G(ν))] ,

there exists a function f such that S(hn)′ → f pointwise. On the other hand, for
every x ∈ R we have that

2(x+ ν)f(x) = h(x)− E [h(G(ν))] + xS(h)(x).

Recall that h ∈ UB. Hence, the function S(h) satisfies the Gamma Stein equation

2(x+ ν)S(h)′(x) = h(x)− E [h(G(ν))] + xS(h)(x).

Hence f = S(h)′, and also S(hn)′ → S(h)′ pointwise.
Step (2): In this step, we show that S(UB) ⊆ C0(R) is a family of functions having
the equivanishing at infinity property, i.e. for every given ε > 0, there exists
a compact interval K ⊂ R such that

∣∣f(x)
∣∣ < ε for all f ∈ S(UB) and for all

x /∈ K. To do this, we use the explicit integral representation (3.5). Note that since
‖h‖∞ ≤ 1, we have |h(t)− E[h(Gν)]| ≤ 2 for all t ∈ R. When x > −ν, then (recall
that p̂ν is the density of G(ν)):∣∣∣S(h)(x)

∣∣∣ =

∣∣∣∣∫ x

−ν

p̂ν(t)

2(x+ ν)p̂ν(x)

(
h(t)− E

[
h(Gν)

])
dt

∣∣∣∣
=

∣∣∣∣∫ ∞
x

p̂ν(t)

2(x+ ν)p̂ν(x)

(
E
[
h(Gν)

]
− h(t)

)
dt

∣∣∣∣
≤
∫ ∞
x

p̂ν(t)

(x+ ν)p̂ν(x)
dt =

1

x+ ν

∫ ∞
x

(
t+ ν

x+ ν

) ν
2−1

e−t/2

e−x/2
dt.

Now if ν ≤ 2, then
(
t+ν
x+ν

)ν/2−1

≤ 1 and thus∣∣∣S(h)(x)
∣∣∣ ≤ 1

x+ ν

∫ ∞
x

e−t/2

e−x/2
dt =

2

x+ ν

x→∞−→ 0.

When ν > 2, set r := dν/2− 1e. Then for every x ≥ −1, we have∣∣∣S(h)(x)
∣∣∣ ≤ ex/2

(x+ ν)ν/2

∫ ∞
x

(t+ ν)
ν
2−1 e−t/2 dt ≤ ex/2

(x+ ν)ν/2

∫ ∞
x

(t+ ν)r e−t/2 dt

= eν/2
ex/2

(x+ ν)ν/2

∫ ∞
x+ν

tr e−t/2 dt

= eν/2
ex/2

(x+ ν)ν/2
e−

x
2−

ν
2

r∑
i=0

(−1)r−i+1 r!

i!(− 1
2 )r−i+1

(x+ ν)i

=:
P (x)

(x+ ν)ν/2
,
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where P is a polynomial of degree r. Since we always have r < ν/2, it follows that
limx→∞|S(h)(x)| = 0. When x < −ν, again using (3.5) of the explicit representa-
tion of the solution function S(h), we get

|S(h)(x)| =
∣∣∣∣∫ x

−ν

q̂ν(t)

2(x+ ν)q̂ν(x)

(
h(t)− E

[
h(Gν)

])
dt

∣∣∣∣
≤
∫ −ν
x

q̂ν(t)

(−x− ν)q̂ν(x)
dt =

1

−x− ν

∫ −ν
x

(
−t− ν
−x− ν

) ν
2−1

e−t/2

e−x/2
dt.

Hence, the case x → −∞ can now be discussed similarly. Note that the upper
bounds for |S(h)(x)| that we found do not depend on the choice of the test function
h. Therefore, we have shown that, in addition to S(UB) ⊆ C0(R), the collection
S(UB) is a family of functions that are equivanishing at infinity.
Step (3): Next we show that as n→∞,∥∥∥S(hn)− S(h)

∥∥∥
B

=
∥∥∥S(hn)− S(h)

∥∥∥
∞

+
∥∥∥S(hn)′ − S(h)′

∥∥∥
∞
→ 0. (3.13)

By Step (2), for a given ε > 0, there exists a compact interval K ⊂ R such that

sup
n≥1

sup
x/∈K

max
{∣∣∣S(hn)(x)

∣∣∣, ∣∣∣S(h)(x)
∣∣∣} < ε. (3.14)

On the other hand, the family (S(hn) : n ≥ 1) consists of 1-Lipschitz-continuous
functions (see part (a), Theorem 3.1), and by step (1) converges pointwise to S(h)
on the compact interval K. Hence, Lemma 3.6 yields that

S(hn)→ S(h) uniformly on K. (3.15)

Finally relations (3.14) and (3.15) readily imply that S(hn) → S(h) uniformly on
the real line. Now, we are left to show that ‖S(hn)′−S(h)′‖∞ → 0. To this end, first
note that for every h ∈ UB, and every x 6= y ∈ R it holds that |S(h)′(x)−S(h)′(y)| ≤
cν‖h′‖∞|x − y| ≤ cν |x − y|. Hence, the family {S(hn)′, S(h)′ : n ≥ 1} consists of
cν-Lipschitz continuous functions. On the other hand, Lemma 3.2 yields that the
family {S(hn)′, S(h)′ : n ≥ 1} is equivanishing at infinity. The result now follows.

�

Theorem 3.8. Let λ ∈ R be a non-zero scalar. Then for every h ∈ B there exists
a unique solution g ∈ B to the functional equation

h = (I + λS) (g) = g + λS(g). (3.16)

Proof : This is a direct application of Propositions 3.5, 3.7, and the classical Fred-
holm alternative Theorem (Megginson, 1998, 3.4.24, page 329). �

For r > 0, let UB(r) := {h ∈ B : ‖h‖B ≤ r} denote the ball of radius r.

Proposition 3.9. Let r1 > 0, and λ ∈ R be a non-zero scalar. Then there exists a
universal constant r2 (may depend on r1, λ, and ν) such that for every h ∈ UB(r1)
the unique solution g of the functional equation (3.16) satisfies ‖g‖B ≤ r2.

Proof : From Proposition 3.5 and Theorem 3.8, the linear bounded operator I+λS :
B → B is a bijective map. Hence the result follows at once using the inverse mapping
Theorem (Megginson, 1998, 1.6.6 Corollary). �
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4. Optimal Gamma Approximation

4.1. A General Stein-Malliavin Upper Bound. In the following, we present a general
Malliavin-Stein upper bound that constitutes the cornerstone to achieve our final
optimal goal. We start with the following useful result.

Proposition 4.1. Let F be a centered random variable admitting a finite chaos
expansion with Var(F ) = 2ν. Let G(ν) ∼ CenteredGamma(ν). Then there exists
a constant C > 0 (only depending on ν), such that

d2(F,G(ν)) ≤ C sup
h∈B1,1

E
∣∣∣h(F )

(
Γ1(F )− 2F

)∣∣∣, (4.1)

where recall that B1,1 :=
{
h : R→ R, Lipschitz-continuous : ‖h‖ ≤ 1, ‖h′‖∞ ≤ 1

}
.

Proof : Consider the centered Gamma Stein equation (3.2). Let h ∈ H2 be an
arbitrary test function (note that E|h(G(ν))| < ∞). Then by using the Malliavin
integration by parts formula (2.6), we get

|E[h(F )]− E[h(G(ν))]| = |E [2(F + ν)S(h)′(F )− FS(h)(F )]|
=
∣∣E [2(F + ν)S(h)′(F )− S(h)′(F )〈DF,−DL−1F 〉H

]∣∣
=
∣∣E [S(h)′(F )

(
Γ1(F )− 2F

)]∣∣.
Now the claim follows at once by a direct application of Theorem 3.1. �

To simplify computations, we continue with the following useful Lemmas.

Lemma 4.2. Let g : R → R be a Lipschitz-continuous function, where g and g′
are bounded by a constant only depending on ν > 0. Consider the solution S(g)
of the Gamma Stein equation (3.2) associated to the test functions g. Assume that
F is a centered random variable belonging to a finite sum of Wiener chaoses with
variance E[F 2] = 2ν. Then for any r ∈ N:

E
[
g(F )

(
Γr(F )− 2 Γr−1(F )

)]
= −E

[
S(g)′(F )

(
Γr(F )− 2 Γr−1(F )

)(
Γ1(F )− 2F

)]
− E

[
S(g)(F )

(
Γr+1(F )− 2Γr(F )

)]
.

Proof : First note that 2ν = E[Γ1(F )]. Thus

E
[
g(F )

(
Γr(F )− 2 Γr−1(F )

)]
= E

[(
g(F )− E

[
g(G(ν))

])(
Γr(F )− 2 Γr−1(F )

)]
= E

[(
2(F + ν)S(g)′(F )− FS(g)(F )

)(
Γr(F )− 2 Γr−1(F )

)]
= 2E

[
FS(g)′(F ) Γr(F )

]
+ E

[
Γ1(F )

]
E
[
S(g)′(F ) Γr(F )

]
− E

[
FS(g)(F ) Γr(F )

]
− 4E

[
FS(g)′(F ) Γr−1(F )

]
− 2E

[
Γ1(F )

]
E
[
S(g)′(F ) Γr−1(F )

]
+ 2E

[
FS(g)(F ) Γr−1(F )

]
=:

6∑
i=1

Ti.

Now, we use the integration-by-parts formula (2.6) in combination with the chain
rule (2.5) to obtain

T3 + T2 = −E
[
FS(g)(F ) Γr(F )

]
+ E

[
Γ1(F )

]
E
[
S(g)′(F ) Γr(F )

]
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= −E
[
Γ1(F ) Γr(F )S(g)′(F )

]
− E

[
S(g)(F )Γr+1(F )

]
+ E

[
Γ1(F )

]
E
[
S(g)′(F ) Γr(F )

]
= −E

[
Γ1(F ) Γr(F )S(g)′(F )

]
− E

[
S(g)(F )Γr+1(F )

]
,

and similarly

T6 + T5 = 2E
[

Γ1(F ) Γr−1(F )S(g)′(F )
]

+ 2E
[
S(g)(F )Γr(F )

]
.

Hence, putting everything together, the result follows. �

Lemma 4.3. Let g : R→ R be a Lipschitz-continuous function, where g and g′ are
bounded by a constant only depending on ν > 0. Assume that S(g) and S (S(g))
stand for the solutions of the Gamma Stein equation (3.2) associated to the test
functions g and S(g) respectively. Let F be a centered random variable belonging
to a finite sum of Wiener chaoses with variance E[F 2] = 2ν. Then the following
identities take place.

(a)

E
[
g(F )

(
2F − Γ1(F )

)]
= E

[
S(g)′(F )

(
Γ1(F )− 2F

)2]
+ E

[
S(g)(F )

(
Γ2(F )− 2 Γ1(F )

)]
−
(
E[S(g)(F )]

)(1

2
κ3(F )− 2κ2(F )

)
(b)

E
[
g(F )

(
2F − Γ1(F )

)]
= E

[
S(g)′(F )

(
Γ1(F )− 2F

)2]
− E

[
S (S(g))

′
(F )
(

Γ2(F )− 2 Γ1(F )
)(

Γ1(F )− 2F
)]

− E
[
S (S(g)) (F )

(
Γ3(F )− 2 Γ2(F )

)]
−
(
E[S(g)(F )]

)(1

2
κ3(F )− 2κ2(F )

)
− E

[
S (S(g)) (F )

]
Var

(
Γ1(F )− 2F

)
+ E

[
S (S(g)) (F )

](1

3
κ4(F )− 3κ3(F ) + 4κ2(F )

)
.

Proof : We apply Lemma 4.2 twice to obtain

E
[
g(F )

(
2F − Γ1(F )

)]
= E

[
S(g)′(F )

(
Γ1(F )− 2F

)2]
+ E

[
S(g)(F )

(
Γ2(F )− 2Γ1(F )

)]
= E

[
S(g)′(F )

(
Γ1(F )− 2F

)2]
−
(
E[S(g)(F )]

)(
E [Γ2(F )]− 2κ2(F )

)
+ E

[
S(g)(F )

(
Γ2(F )− 2 Γ1(F )

)] (
this completes the proof of part (a)

)
= E

[
S(g)′(F )

(
Γ1(F )− 2F

)2]
−
(
E[S(g)(F )]

)(
E [Γ2(F )]− 2κ2(F )

)
− E

[
S (S(g))

′
(F )
(

Γ2(F )− 2 Γ1(F )
)(

Γ1(F )− 2F
)]

− E
[
S (S(g)) (F )

(
Γ3(F )− 2Γ2(F )

)]
= E

[
S(g)′(F )

(
Γ1(F )− 2F

)2]
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− E
[
S (S(g))

′
(F )
(

Γ2(F )− 2 Γ1(F )
)(

Γ1(F )− 2F
)]

− E
[
S (S(g)) (F )

(
Γ3(F )− 2 Γ2(F )

)]
−
(
E[S(g)(F )]

)(1

2
κ3(F )− 2κ2(F )

)
+
(
E
[
S (S(g)) (F )

])(
E
[
Γ3(F )

]
− κ3(F )

)
.

Note that we cannot translate E[Γ3(F )] directly into the fourth cumulant, but
instead by Proposition 2.1 part (c), we have E[Γ3(F )] = 1

3κ4(F ) − Var(Γ1(F )).
The variance term can be written as

Var
(
Γ1(F )

)
= Var

(
Γ1(F )− 2F

)
− 4κ2(F ) + 4E

[
FΓ1(F )

]
= Var

(
Γ1(F )− 2F

)
− 4κ2(F ) + 4E

[
Γ2(F )

]
= Var

(
Γ1(F )− 2F

)
− 4κ2(F ) + 2κ3(F ).

Putting everything together, the claim follows. �

Remark 4.4. We point out that for both linear cumulant combinations appearing
in the right hand sides of parts (a) and (b) in Lemma 4.3 it holds that

1

2
κ3(G(ν))− 2κ2(G(ν)) = 0, and

1

3
κ4(G(ν))− 3κ3(G(ν)) + 4κ2(G(ν)) = 0.

Now, we are ready to state the main result of this section.

Theorem 4.5. Let F be a centered random variable admitting a finite chaos ex-
pansion with Var(F ) = 2ν. Let G(ν) ∼ CenteredGamma(ν). Then there exists a
general constant C > 0 (only depending on ν), such that

d2(F,G(ν)) ≤ C
{

Var (Γ1(F )− 2F )

+
√

Var (Γ2(F )− 2Γ1(F ))×
√

Var (Γ1(F )− 2F )

+

√
Var

((
Γ3(F )− 2Γ2(F )

)
− 2
(
Γ2(F )− 2Γ1(F )

))
+
∣∣∣κ3(F )− κ3(G(ν))

∣∣∣+
∣∣∣κ4(F )− κ4(G(ν))

∣∣∣}. (4.2)

In particular, when F = Iq(f) belongs to qth Wiener chaos with q an even integer,
then for some general constant C > 0 (may depend on ν and q but, independent of
the kernel f) it holds that

d2(F,G(ν)) ≤ C
{√

Var
((

Γ3(F )− 2Γ2(F )
)
− 2
(
Γ2(F )− 2Γ1(F )

))
+
∣∣∣κ3(F )− κ3(G(ν))

∣∣∣+
∣∣∣κ4(F )− κ4(G(ν))

∣∣∣}. (4.3)

Proof : Using Proposition 4.1, Theorem 3.8 with λ = 2, and Proposition 3.9 we
obtain that

d2(F,G(ν)) ≤ C sup
h∈B1,1

E
∣∣∣h(F )

(
Γ1(F )− 2F

)∣∣∣
≤ C sup

h∈B1,1

E
∣∣∣(h(F ) + 2S(h)(F )

)(
Γ1(F )− 2F

)∣∣∣
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where C stands for a general constant depending only on the parameter ν. Now,
we apply Lemma 4.3 item (b) on E

[
h(F )

(
Γ1(F )− 2F

)]
, and item (a) on term

E
[
S(h)(F )

(
Γ1(F )− 2F

)]
. Then putting everything together the estimate (4.2)

follows by applying Cauchy-Schwarz inequality, Theorem 3.1, as well as using the
fact that κ2(G(ν)) = κ2(F ) = 2ν, κ3(G(ν)) = 8ν and κ4(G(ν)) = 48ν, see (2.11).
For the estimate (4.3), we first verify that for a general constant C > 0,

Var (Γ2(F )− 2Γ1(F )) ≤ C Var (Γ1(F )− 2F ) . (4.4)

Using Lemma 5.1 we can write

Γ1(F )− 2F = Iq
(
cq(q/2)f ⊗̃q/2 f − 2f

)
+

q−1∑
r=1
r 6=q/2

cq(r)I2q−2r

(
f ⊗̃r f

)
.

Hence,

Var (Γ1(F )− 2F ) = q!
∥∥∥cq(q/2)f ⊗̃q/2 f − 2f

∥∥∥2

H

+

q−1∑
r=1
r 6=q/2

cq(r)
2(2q − 2r)!‖f ⊗̃r f‖2H.

(4.5)

Therefore, the relation (4.5) implies that for a general constant C it holds that

Var (Γ1(F )− 2F ) ≥ C max

{∥∥∥cq(q/2)f ⊗̃q/2 f − 2f
∥∥∥2

H
, max
1≤r≤q−1
r 6=q/2

‖f ⊗̃r f‖2H

}

(4.6)

On the other hand, again using Lemma 5.1, we have

Γ2(F )− 2 Γ1(F ) =

q−1∑
r=1

[2q−2r]∧q∑
s=1

(r,s)6=(q/2,q)

r+s≤q/2

cq(r, s)I3q−2(r+s)

(
(f ⊗̃r f) ⊗̃s f

)

+

{
q−1∑
r=1

[2q−2r]∧q∑
s=1

(r,s)6=(q/2,q)

q/2<r+s<3q/2

cq(r, s)I3q−2(r+s)

(
(f ⊗̃r f) ⊗̃s f

)
− 2

q−1∑
r′=1

cq(r
′)I2q−2r′

(
f ⊗̃r′ f

)}

:= S1 + {S2 − 2S3},

where the coefficients cq are defined according to relation (5.2).
Estimating S1: for every indices (r, s) in the sum S1 (noticing that in particular
1 ≤ r ≤ q − 1, and restriction r + s ≤ q/2 yields that r 6= q/2 and s 6= q) we have∥∥∥(f ⊗̃r f) ⊗̃s f

∥∥∥2

H
≤ ‖f‖2H‖f ⊗̃r f‖2H =

2ν

q!
‖f ⊗̃r f‖2H ≤ C max

1≤r≤q−1
r 6=q/2

‖f ⊗̃r f‖2H.

(4.7)
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Furthermore, if two indices (r, s) and (r′, s′) in the sum S1 produce multiple inte-
grals of the same order then we use estimate (4.7) with the elementary inequality∥∥∥cq(r, s)(f ⊗̃r f) ⊗̃s f + cq(r

′, s′)(f ⊗̃r′ f) ⊗̃s′ f
∥∥∥2

H

≤ 4ν

q!
max{c2q(r, s), c2q(r′, s′)}

{
‖f ⊗̃r f‖2H + ‖f ⊗̃r′ f‖2H

}
≤ C max

1≤r≤q−1
r 6=q/2

‖f ⊗̃r f‖2H. (4.8)

Estimating S2 and S3: next, for every 1 ≤ r′ ≤ q − 1 in the sum S3, we split
indices (r, s) with the property 3q − 2(r + s) = 2q − 2r′ in the sum S2 in two
seperate parts: (i) (r, s) = (q/2, r′) and (ii) otherwise. Moreover, it holds that
cq(q/2, r) = cq(q/2)cq(r). Hence, for every 1 ≤ r′ ≤ q − 1 we get∥∥∥∥∥cq(q/2, r′)(f ⊗̃q/2 f) ⊗̃r′ f − 2cq(r

′)f ⊗̃r′ f

+

q−1∑
r=1

[2q−2r]∧q∑
s=1

(r,s)6=(q/2,q)

q/2<r+s<3q/2

(r,s)6=(q/2,1),...,(q/2,q−1)

cq(r, s)(f ⊗̃r f) ⊗̃s f

∥∥∥∥∥
2

H

(note that when s = q forces that r 6= q/2)

≤ 2

∥∥∥∥∥cq(q/2, r′)(f ⊗̃q/2 f) ⊗̃r′ f − 2cq(r
′)f ⊗̃r′ f

∥∥∥∥∥
2

H

+2

q−1∑
r=1

[2q−2r]∧q∑
s=1

(r,s) 6=(q/2,q)

q/2<r+s<3q/2

(r,s)6=(q/2,r′)

c2q(r, s)
∥∥∥(f ⊗̃r f) ⊗̃s f

∥∥∥2

H

≤ 4ν

q!
c2q(r)

∥∥∥∥∥cq(q/2)f ⊗̃q/2 f − 2f

∥∥∥∥∥
2

H

+
4ν

q!

q−1∑
r=1

[2q−2r]∧q∑
s=1

(r,s)6=(q/2,q)

q/2<r+s<3q/2

r 6=q/2

c2q(r, s)
∥∥∥f ⊗̃r f∥∥∥2

H

≤ C

{∥∥∥cq(q/2)f ⊗̃q/2 f − 2f
∥∥∥2

H
+ max

1≤r≤q−1
r 6=q/2

‖f ⊗̃r f‖2H

}

≤ C max

{∥∥∥cq(q/2)f ⊗̃q/2 f − 2f
∥∥∥2

, max
1≤r≤q−1
r 6=q/2

‖f ⊗̃r f‖2H

}
.

(4.9)

Now, the the variance estimate (4.4) follows directly from the relations (4.7), (4.8),
(4.9), and (4.6). Finally, estimate (4.3) follows from Proposition 2.1, item (a) and,
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the classical estimate (see Nourdin et al. (2010, Theorem 3.6))

Var (Γ1(F )− 2F ) ≤ q − 1

3q

{∣∣∣κ4(F )− κ4(G(ν))− 12
(
κ3(F )− κ3(G(ν))

)∣∣∣}.
�

Remark 4.6. (a): The splitting technique implemented in the proof of Theorem
4.5 by using operator theory is vital to obtain an optimal upper bound.
In fact, not doing it, instead of estimate (4.3), the best estimate one can
achieve (under the assumption in Theorem 4.5) is a similar bound as (4.3)
with the quantity

√
Var (Γ3(F )− 2Γ2(F )) instead of√

Var
((

Γ3(F )− 2Γ2(F )
)
− 2
(
Γ2(F )− 2Γ1(F )

))
.

On the other hand, it is not difficult to see that for a sequence {Fn =∑
1≤i≤ν ci,n(N2

i − 1) : n ≥ 1} in the second Wiener chaos with a finite
number of non-zero spectral coefficients such that for every i = 1, . . . , ν,
ci,n → 1 as n→∞ it holds that

Var (Γ3(Fn)− 2Γ2(Fn)) ≈C Var (Γ2(Fn)− 2Γ1(Fn)) ≈C Var (Γ1(Fn)− 2Fn) ,

resulting in a suboptimal rate. See also illustrating Example 4.8 for fur-
ther clarifications. Furthermore, only the special splitting with λ = 2 in
Theorem 3.8 provides the optimal upper bound. This is the message of
Proposition 4.7 estimate (4.10).

(b): Using Lemma 5.1 and orthogonality of Wiener chaoses (2.4), one can also
further translate the right hand sides of estimates (4.2), and (4.3) in the
language of norm of contraction operators. However, in order to keep our
presentation transparent we avoid it due to presence of complicated con-
tractions.

(c): When q = 2, i.e. the random variable F belongs to the second Wiener chaos,
the estimate (4.4) can readily be deduced from representation (2.12) to-
gether with the classical estimate (4.4) in Biermé et al. (2012, Lemma 4.2).

4.2. Proof of Theorem 1.3: Upper Bound. In order to handle the involved variance
quantity of the iterated Gamma operators appearing in the right hand side of
estimate (4.3) in terms of cumulants, we consider the case of second Wiener chaos.
In this setting, the connection is apparent thanks to Lemma 2.4.

Proposition 4.7. Let ν > 0, and F = I2(f) in the second Wiener chaos such
that E[F 2] = 2ν. Assume r ≥ 1. Then there exists a general constant C (possibly
depending on the parameters ν and r but, independent of the kernel f) such that

Var
(

(Γ2r+1(F )− 2Γ2r(F ))− 2 (Γ2r(F )− 2Γ2r−1(F ))
)

≤ 2 Var 2 (Γr(F )− 2Γr−1(F ))

≤C Var (Γr−1(F )− 2Γr−2(F ))×Var (Γr+1(F )− 2Γr(F )) .

In particular, by choosing r = 1, we obtain the crucial estimate

Var
(

(Γ3(F )− 2Γ2(F ))− 2 (Γ2(F )− 2Γ1(F ))
)
≤ 2 Var 2 (Γ1(F )− 2F ) . (4.10)
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Proof : For the first estimate, using representation (2.12) we can write

Var
(

(Γ2r+1(F )− 2Γ2r(F ))− 2 (Γ2r(F )− 2Γ2r−1(F ))
)

= 24r+3
∥∥∥f ⊗(2r+2)

1 f − 2f ⊗(2r+1)
1 f + f ⊗(2r)

1 f
∥∥∥2

H⊗2

= 24r+3
∥∥∥(f ⊗(r+1)

1 f − f ⊗(r)
1 f

)
⊗1

(
f ⊗(r+1)

1 f − f ⊗(r)
1 f

)∥∥∥2

H⊗2

≤ 24r+3
∥∥∥f ⊗(r+1)

1 f − f ⊗(r)
1 f

∥∥∥4

H⊗2

= 2 Var 2 (Γr(F )− 2Γr−1(F )) ,

where we have used the classical estimate (4.4) in Biermé et al. (2012, Lemma
4.2). The second estimate is a direct application of Lemma 5.2 with P = (Ar+1

f −
Arf )2, C = A2

f combined with Var (Γr+1(F )− 2Γr(F )) = 22r+3 Tr
(

(Ar+2
f −Ar+1

f )2
)

for every r ≥ 0, see the proof of Lemma 2.4. �

Proof for the upper bound of Theorem 1.3: combine Theorem 4.5 estimate (4.3)
with Proposition 4.7 estimate (4.10) as well as Lemma 2.4 with r = 1.

4.3. Proof of Theorem 1.3: Lower Bound. Proof for the lower bound of Theo-
rem 1.3: Fix a real number ρ > 0 whose range of values will be determined later
on. Taking into account the second moment assumption, it is a classical result
(see Lukacs, 1970, Chapter 7) that the characteristic functions φF and φG(ν) are
analytic inside the strip ∆ν := {z ∈ C : |Im z| < 1

2
√
ν
}. Moreover, in the strip of

regularity ∆ν , they follow the integral representations

φF (z) =

∫
R
eizxµ(dx) and φG(ν)(z) =

∫
R
eizxµν(dx),

where µ and µν stand for the probability measures of F and G(ν) respectively.
Recall that all elements in the second Wiener chaos have exponential moments,
see Nourdin and Peccati (2012, Proposition 2.7.13, item (iii)). Denote by Ωρ,ν the
domain

Ωρ,ν :=
{
z = t+ iy ∈ C : |Re z| < ρ, |Im z| < min{(2

√
ν)−1, e−1}

}
.

Then for any z ∈ Ωρ,ν , together with a Fubini’s argument, we have that∣∣∣φF (z)− φG(ν)(z)
∣∣∣ =

∣∣∣∫
R
eitx−yx(µ− µν)(dx)

∣∣∣ =
∣∣∣∑
k≥0

(−y)k

k!

∫
R
xkeitx(µ− µν)(dx)

∣∣∣
≤
∑
k≥0

e−k

k!

∣∣∣φ(k)
F (t)− φ(k)

G(ν)(t)
∣∣∣ ≤∑

k≥0

e−k

k!
ρk+1d2(F,G(ν))

= ρ eρe
−1

d2(F,G(ν)).

Hence |φF (z)− φG(ν)(z)| ≤Cρ d2(F,G(ν)) for every z ∈ Ωρ,ν . Let R > 0 such that
the disk DR ⊂ C with the origin as center and radius R is contained in the domain
Ωρ,ν (note that R depends only on ν, since ρ is a free parameter. For example, one
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can choose min{(2
√
ν)−1, e−1} < ρ < 2 min{(2

√
ν)−1, e−1}). Now for any z ∈ DR,

and using the fact that

1

φ2
G(ν)(z)

=
(
e2iz(1− 2iz)

)ν
,

one can readily conclude that the function φG(ν)(z) is bounded away from 0 on the
disk DR. Also, for any r ≥ 2,∣∣κr(F )

∣∣ ≤ 2r−1(r − 1)!
∑
i≥1

|ci|r ≤ 2r−1(r − 1)! max
i
|ci|r−2

∑
i≥1

|ci|2

≤ 2r−2(r − 1)!
√
ν
r−2 E(F 2) = 2r−2(r − 1)!

√
ν
r
.

(4.11)

Therefore, for any z ∈ DR,∣∣∣ 1

φF (z)

∣∣∣ ≤ exp
{∑
r≥2

|κr(F )|
r!

|z|r
}
≤ exp

{∑
r≥2

2r−2(r − 1)!
√
ν
r

r!
|z|r
}

≤ exp
{∑
r≥2

2r−2(r − 1)!
√
ν
r

r!
Rr
}

:= CR,ν <∞.

Hence the function φF (z) is also bounded away from 0 on the disk DR. Also,
relation (4.11) implies that the following power series (complex variable) converge
to some analytic function as soon as |z| < R;∑

r≥1

κr(F )

r!
(iz)r,

∑
r≥1

κr(G(ν))

r!
(iz)r. (4.12)

Thus we come to the conclusion that the functions φG(ν)(z) and φF (z) are analytic
on the disk DR. Moreover, there exists a constant c > 0 such that
|φG(ν)(z)|, |φF (z)| ≥ c > 0 for every z ∈ DR. This implies that on the disk DR

there exist two analytic functions g and gν such that

φF (z) = eg(z), φG(ν)(z) = egν(z),

i.e. g(z) = log(φF (z)) and gν(z) = log(φG(ν)(z)), for z ∈ DR. In fact, the functions
g and gν are given by the power series (4.12). Since the derivative of the analytic
branch of the complex logarithm is (log z)′ = 1

z (see Conway, 1995, Corollary 2.21),
one can infer that for some constant C whose value may differ from line to line and
for every z ∈ DR, we have∣∣∣∑

r≥2

κr(F )− κr(G(ν))

r!
(iz)r

∣∣∣ =
∣∣∣log(φF (z))− log(φG(ν)(z))

∣∣∣
≤C

∣∣∣φF (z)− φG(ν)(z)
∣∣∣ ≤C d2(F,G(ν)).

Now, using Cauchy’s estimate for the coefficients of analytic functions, for any
r ≥ 3, we obtain that∣∣∣κr(F )− κr(G(ν))

∣∣∣ ≤ r!Rr sup
|z|≤R

∣∣∣log φF (z)− log φG(ν)(z)
∣∣∣.

Therefore, max
{∣∣∣κ3(F )− κ3(G(ν))

∣∣∣, ∣∣∣κ4(F )− κ4(G(ν))
∣∣∣} ≤C d2(F,G(ν)).
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4.4. Examples. We start with the following naive example that illustrates the es-
sential role of our operator theory technique to achieve the optimal rate. It is worth
mentioning that all the rates achieved in the forthcoming examples are better (by a
square power) than those that can be obtained by the Malliavin-Stein bound (Nour-
din and Peccati, 2009b, Theorem 1.5). In the following, when (an)n≥1 and (bn)n≥1

are two non-negative real number sequences, we write an ≈C bn if limn→∞
an
bn

= C,
for some constant C > 0.

Example 4.8. Let N1, N2 ∼ N (0, 1) be independent. Consider the sequence

Fn = c1,n (N2
1 − 1) + c2,n (N2

2 − 1) :=

√
1 +

1

n
(N2

1 − 1) +

√
1− 1

n
(N2

2 − 1)

D−→ G(2), as n→∞.

First note that E[F 2
n ] = 4 for every n ∈ N. Also, using Proposition 2.2 item 2, and

relation (2.11), simple computations yield that κ4(Fn)− κ4(G(2)) = 48 2
n2 ≈C 1

n2 .
Similarly κ3(Fn) − κ3(G(2)) = 8

∑2
j=1

(
c3j,n − 1

)
≈C 1

n2 . Therefore, our main
Theorem 1.3 implies

d2

(
Fn, G(2)

)
≈C max

{∣∣κ3(Fn)− κ3(G(2))
∣∣, ∣∣κ4(Fn)− κ4(G(2))

∣∣} ≈C 1

n2
. (4.13)

The following important remarks are in order. (a) This example represents a typical
scenario, in which, in order to obtain the optimal upper bound, one needs to join
together two Gamma quantities Γ3(Fn)− 2Γ2(Fn) and Γ2(Fn)− 2Γ1(Fn). In fact,
it is not difficult, using Lemma 2.4, to see that

Var (Γr(Fn)− 2Γr−1(Fn)) ≈C Var (Γ1(Fn)− 2Fn) ≈C
1

n2
, ∀ r ≥ 1.

And now consider Remark 4.6. (b) It is classical that the density function fn of
the random variable Fn admits the following explicit representation in terms of
confluent hypergeometric functions,

fn(x) =
1

2
√
c1,nc2,n

e
− x+c1,n+c2,n

2c1,n × 1F1

(1

2
, 1,−c1,n − c2,n

2c1,nc2,n
(c1,n + c2,n + x)

)
× 1{x>−c1,n−c2,n}(x).

Also recall that the density of the target G(2) is given by fν(x) =
1
2e
− x2−11{x>−2}(x). Using rather long and tedious computations, one can show

that the optimal estimate (4.13) continues to hold in the stronger distance of total
variation, namely that

dTV (Fn, G(2)) =
1

2

∫ ∞
−∞
|fn(x)− fν(x)| dx

≈C max
{∣∣κ3(Fn)− κ3(G(2))

∣∣, ∣∣κ4(Fn)− κ4(G(2))
∣∣} ≈C 1

n2
.

In the next example we consider the important problem of the asymptotic be-
havior of the least squares estimators in the autoregressive models in the nearly
non-stationary regime, where the target distribution G(ν) shows up. For more de-
tails on this fascinating subject, we refer the reader to Chan and Wei (1987, 1988);
White (1958); Rao (1978); Buchmann and Chan (2013); Liu et al. (2011) and ref-
erences therein when the noise is a martingale difference, and Buchmann and Chan
(2007) when the innovation process exhibits long-range dependence. We also refer
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to Götze and Tikhomirov (2005, Proposition 2) for a study of optimal rates in a
general context of quadratic forms.

Example 4.9. (Least square estimator in nearly non stationary AR(1) model) Let
n ∈ N. Let βn := 1 − β

n . We consider the first order autoregressive process
Xt(n) = βnXt−1(n) + Zt, where t = 1, . . . , n, X0(n) = 0 for all n and (Zi) is
a white noise, i.e. a sequence of i.i.d. N (0, 1) random variables. It is classical
that the least squares estimator of the unknown parameter βn, based on discrete
observations X1(n), . . . , Xn(n), is given by

β̂n =

∑n
t=1Xt−1(n)Xt(n)∑n

t=1X
2
t−1(n)

.

Define

W β
n :=

2√
n(n− 1)

(
n∑
t=1

X2
t−1(n)

)
(β̂n − βn) =

2√
n(n− 1)

n∑
i=1

i−1∑
j=1

βi−jn ZiZj .

Then Chan and Wei (1987, Theorem 1) implies that as n→∞:

W β
n
D−→W β

∞ := 2

∫ 1

0

(
1 + t(e2β − 1)

)−1
BtdBt,

where B = (Bt)t∈[0,1] is a standard Brownian motion. In particular when β = 0,
we observe that W∞ := W β=0

∞ = G(1) (equality in law), and hence we obtain that
Wn := W β=0

n
D−→ G(1). Now, let {hi}i≥1 be an orthonormal basis of H and for

i ≥ 1 set Zi := I1(hi). Note that

Wn = I2

(
2√

n(n− 1)

∑
1≤i<j≤n

hi ⊗̃ hj
)

=: I2(fn).

We consider the associated Hilbert-Schmidt operator Afng = fn ⊗1 g. Using the
fact that (hi ⊗ hj) ⊗1 hk = 〈hi, hk〉H hj we can explicitly compute the non-zero
eigenvalues c1,n, . . . , cn,n of Afn . They are

c1,n =

√
n− 1

n
, and c2,n = . . . = cn,n =

−1√
n(n− 1)

. (4.14)

Therefore, as n→∞, gathering Proposition 2.2 item 2, relation (4.14) and Theorem
1.3 we get that

d2

(
Wn, G(1)

)
≈C

∣∣κ3(Wn)− κ3(G(1))
∣∣ ≈C ∣∣κ4(Wn)− κ4(G(1))

∣∣ ≈C 1

n
.

Example 4.10. (Least square estimator in AR(2) model) In this example, we con-
sider the second order autoregressive AR(2) model:

Xn = β1Xn−1 + β2Xn−2 + Zn, (4.15)

where (Zk) is a white noise, and X0 = X−1 = 0. Further, assume that the roots of
the associated characteristic polynomial 1− β1z− β2z

2 are eiθ and e−iθ, and lie on
the unit disk. Under this condition it is easy to see that β1 = 2 cos θ and β2 = −1.
The least square estimator β̂n = (β̂1,n, β̂2,n)′ of the parameter β = (β1, β2)′ =
(2 cos θ,−1)′ for n ≥ 2 is given by

β̂n =

(
n−1∑
k=0

XkXk
′

)−1 n∑
k=1

Xk−1Xk, where Xk = (Xk, Xk−1)′.
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In Chan and Wei (1988), the asymptotic behavior of n(β̂n−β) = A−1
n bn has been

derived where

An =
1

n2

n∑
k=2

[
X2
k−1 Xk−1Xk−2

Xk−1Xk−2 X2
k−2

]
, and bn =

[
b1,n
b2,n

]
:=

1

n

n∑
k=2

[
Xk−1Zk
Xk−2Zk

]
.

Following Chan and Wei (1988, Corollary 3.3.8), as n→∞, one can deduce that

W θ
n := 4(cos θ b1,n − b2,n) = 4

(
(cos θ)

1

n

n∑
k=1

Xk−1Zk −
1

n

n∑
k=1

Xk−2Zk

)
D→ G(2).

Note that the sequence (W θ
n : n ≥ 1) belongs to the second Wiener chaos. An

interesting feature of the previous limit theorem is that although the sequence does
depend on the parameter θ in the model, the target distribution is independent
of θ. On the other hand, relation (4.15) together with the assumption (β1, β2) =
(2 cos θ,−1) yields that

Xk =

k∑
j=1

sin(k − j + 1)θ

sin θ
Zj .

Therefore,

W θ
n =

4

n

n∑
i=2

i−1∑
j=1

cos θ sin(i− j)θ − sin(i− j − 1)θ

sin θ
ZiZj .

By elementary combinatorics, we have for any function f : N → R that∑n
i=2

∑i−1
j=1 f(i − j) =

∑n−1
k=1(n − k)f(k). Using this, and evaluating the sums

of sine functions (which are just geometric sums after writing them in terms of
complex exponentials), we get

E[(W θ
n)2]

=
16

n2

{
1

8 sin4 θ

(
cos
(
2θ(n− 1)

)
− 2 cos(θ) cos

(
θ(2n− 1)

)
+ cos2(θ) cos(2nθ)

)
+

1

8 sin2(θ)

(
n cos(2θ) + 1− n

)
+
n(n− 1)

4

}
. (4.16)

Note that
∣∣κ2(W θ

n)−4
∣∣ ≈C 1/n as n→∞. Now we scaleW θ

n so that it has variance
equal to 4 for every n ∈ N. Set σn :=

√
Var(W θ

n), and let W̃ θ
n := 2

σn
W θ
n . Using

(2.10), and after some tedious computations, we get that

κ3(W̃ θ
n) =

512

σ3
nn

3

(
− 3n cos2(nθ)

4 sin2(θ)
+

3 cos2(nθ)

2 sin2(θ)
+

5n cos4(θ)

4 sin4(θ)
+

13n

4 sin2(θ)
− 3

2 sin2(θ)

− 5n

4 sin4(θ)
+
n3

4
− 3n2

2
+

3n

4

)
.

Using that σ3
n → 8 as n → ∞, we see that limn→∞ κ3(W̃ θ

n) = 16 = 8ν (note that
ν = 2), and furthermore,

|κ3(W̃ θ
n)− κ3(G(2))| ≈C

1

n
.
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Similar computations yield that |κ4(W̃ θ
n) − κ4(G(2))| ≈C 1/n. Therefore, Theo-

rem 1.3 can be applied to deduce that d2(W̃ θ
n , G(2)) ≈C 1/n.

Example 4.11. (Quadratic forms of de Wet and Venter, 1973 and Arras et al., 2019,
section 3.2) In this example, we consider a general quadratic form in independent
standard normal random variables

Fn :=
∑

1≤i,j≤n

cn(i, j)ZiZj , n ∈ N,

where Cn = (cn(i, j))1≤i,j≤n is an n× n symmetric matrix, and (Zi) is a sequence
of i.i.d standard normal random variables. Let ν > 0 be an integer number. Now,
we make the following assumptions:

(a) The second moment assumption:
∑

1≤i,j≤n cn(i, j)2 = ν, ∀n ∈ N.
(b) There exists a sequence {bmn (i) : n, i = 1, 2, . . . ,m = 1, 2, . . . , ν} of real

numbers such that as n→∞:∑
1≤i≤n

bmn (i)bkn(i)→ δkm, and ∃b > 0, ∀i,m, n,
√
n | bmn (i) |≤ b < +∞.

(c) For every 1 ≤ m ≤ ν, as n→∞ it holds that:
∑

1≤i,j≤n cn(i, j)bmn (i)bmn (j)
→ 1.

Now a direct application of de Wet and Venter (1973, Theorem 2) implies that
Wn := Fn − E[Fn]

D→ G(ν). Note that E[W 2
n ] = 2ν for every n ∈ N relying on

condition (a). Moreover, one can write Wn = I2(
∑

1≤i,j≤n cn(i, j)hi ⊗̃ hj), where
{hi}i≥1 stands for an orthonormal basis of H, and for i ≥ 1,as before, we set
Zi := I1(hi). Therefore our main Theorem 1.3 entails that

d2(Wn, G(ν)) ≈C max
{∣∣κ3(Wn)− κ3(G(ν))

∣∣, ∣∣κ4(Wn)− κ4(G(ν))
∣∣}. (4.17)

Depending on the particular choice of the matrix Cn in the original quadratic form
Fn, we can provide explicit rates (in terms of suitable powers of n) in the asymptotic
relation (4.17). For example, following de Wet and Venter (1973, remark after
Theorem 2) and Arras et al. (2019, Corollary 3.2), assume that {em : m = 1, . . . , ν}
is a sequence of distinct orthonormal functions in L2[0, 1] such that em ∈ Cα([0, 1])
for some α ∈ (0, 1]. Here Cα([0, 1]) denotes the space of all Hölder continuous
functions with Hölder exponent α. Consider the square integrable kernelKν defined
as

Kν(x, y) =
∑

1≤m≤ν

em(x)em(y), ∀ (x, y) ∈ (0, 1)2.

Finally, for n ∈ N and 1 ≤ i, j ≤ n we set

dn(i, j) :=
1

n
Kν(

i

n
,
j

n
), and cn(i, j) :=

√
ν∑

1≤i,j≤n d
2
n(i, j)

× dn(i, j).

Now consider the sequence Wn = Fn − E[Fn] associated to the symmetric matrix
Cn = (cn(i, j)) belonging to the second Wiener chaos. Then, it is straightforward
to check that the conditions (a)-(b)-(c) are in order with bmn (i) = em(i/n)√

n
. On the

other hand, it has been shown Arras et al. (2019, Corollary 3.2) that:∣∣κr(Wn)− κr(G(ν))
∣∣ ≈C n−α, ∀ r ≥ 2. (4.18)
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Putting together the asymptotic estimates (4.17) and (4.18), we obtain the optimal
rate d2(Wn, G(ν)) ≈C n−α. Also, the example presented on page 107 in Nourdin
and Peccati (2009b) can be treated in this framework, and resulting in an improved
optimal rate of 1/n.

5. Appendix

The following lemma provides an explicit representation of the new Gamma
operators used in this paper in terms of contractions. Recall that these are not the
same as e.g. in Nourdin and Peccati (2010), but rather the new ones introduced in
(2.7).

Lemma 5.1. For q ≥ 1, let F = Iq(f), for some f ∈ H�q be an element of the
q-th Wiener chaos. Then

Γs(F ) =

q∑
r1=1

· · ·
[sq−2r1−···−2rs−1]∧q∑

rs=1

cq(r1, . . . , rs)1{r1<q} . . .1{r1+···+rs−1<
sq
2 }

× I(s+1)q−2r1−···−2rs

(((
. . . (f ⊗̃r1 f) ⊗̃r2 f

)
. . . f

)
⊗̃rs f

)
, (5.1)

where the constants cq(r1, · · · , rs) are recursively defined via cq(r) = q (r−1)!
(
q−1
r−1

)2
,

and for s ≥ 2,

cq(r1, · · · , rs) =

(sq − 2r1 − · · · − 2rs−1) (rs − 1)!

×
(
sq − 2r1 − · · · − 2rs−1 − 1

rs − 1

)(
q − 1

rs − 1

)
cq(r1, · · · , rs−1). (5.2)

Proof : It follows by induction on s and similar lines of arguments as in Nourdin
and Peccati (2010, Proof of Theorem 5.1).

�

Proof of Proposition 2.1: Part (a) is clear from the definition. Part (b) for j = 1
is also trivial. For j = 2, we use the fact that Γ1 = Γalt1 , as well as the integration
by parts formula (2.6), to get

E
[
Γ2(F )

]
= E

[
〈DΓ1(F ),−DL−1F 〉H

]
= E

[
Γ1(F )F

]
= E

[
F Γalt1 (F )

]
= E

[
〈DF,−DL−1Γalt1 (F )〉H

]
= E[Γalt2 (F )].

For part (c), consider

E
[
Γ3(F )

]
= E

[
〈DΓ2(F ),−DL−1F 〉H

]
= E

[
F Γ2(F )

]
= E

[
F 〈DΓ1(F ),−DL−1F 〉H

]
= E

[
〈D
(
F Γ1(F )

)
,−DL−1F 〉H

]
− E

[
Γ1(F )〈DF,−DL−1F 〉H

]
= E

[
〈D
(
F Γ1(F )

)
,−DL−1F 〉H

]
− E

[
Γalt1 (F )2

]
= E

[
F 2 Γalt1 (F )

]
− E

[
Γalt1 (F )2

]
= E[F 2]E

[
Γalt1 (F )

]
+ E

[
2F 〈DF,−DL−1Γalt1 (F )〉H

]
− E

[
Γalt1 (F )2

]
= E

[
Γalt1 (F )

]2
+ 2E

[
F Γalt2 (F )

]
− E

[
Γalt1 (F )2

]
= −Var

(
Γalt1 (F )

)
+ 2E

[
Γalt3 (F )

]
.
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For part (d), we follow an induction argument on j. For j = 1, this is part (a).
Now, let j ≥ 1, then using induction hypothesis, −L−1(F ) = 1

2F for F being in the
second Wiener chaos, and the fact that Γ

alt

j (F ) = Γaltj (F )−E
[
Γaltj (F )

]
belongs to

the second Wiener chaos (see Azmoodeh et al., 2015 equation (24)), we can write

Γj+1(F ) = 〈DΓj(F ),−DL−1(F )〉H =
1

2
〈DF,DΓaltj (F )〉H =

1

2
〈DF,D Γ

alt

j (F )〉H

= 〈DF,−DL−1Γaltj (F )〉H = Γaltj+1(F ).

�

Lemma 5.2 (Dragomir, 2016, Corollary 1). Let H be a Hilbert space. Assume
that C ∈ B(H) is a bounded, self-adjoint operator, and P ∈ B+(H) is a positive,
trace-class operator on the Hilbert space H. Then,∣∣∣∣∣Tr(PC)

Tr(P )

∣∣∣∣∣
2

≤ Tr(PC2)

Tr(P )
.
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