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Abstract

In this paper we extend the refined second-order Poincaré inequality in [2] from a
one-dimensional to a multi-dimensional setting. Its proof is based on a multivariate
version of the Malliavin-Stein method for normal approximation on Poisson spaces.
We also present an application to partial sums of vector-valued functionals of heavy-
tailed moving averages. The extension we develop is not only in the co-domain of the
functional, but also in its domain. Such a set-up has previously not been explored in the
framework of stable moving average processes. It can potentially capture probabilistic
properties which cannot be described solely by the one-dimensional marginals, but
instead require the joint distribution.
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1 Introduction

In recent decades the combination of Malliavin calculus and Stein’s method for normal
approximation has led to a plethora of Gaussian limit theorems in fields ranging from
stochastic geometry, over cosmology to statistics. Classically, the assumptions require
third or fourth moment conditions which makes the Malliavin-Stein method unsuitable
for distributions with heavier tails. However, in [2] a careful differentiation between small
and large values has led to a refined so-called second-order Poincaré inequality for Poisson
functionals, which allows to circumvent these difficulties to a certain extent. Based on the
approach in [13] the principal goal of this paper is to obtain a multivariate extension of
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the central results in [2]. This opens the possibility to capture properties of the underlying
process not accessible solely by the one-dimensional marginal distributions.

We shall now define the heavy-tailed moving average model to which we are going
to apply our general multivariate central limit theorem. Let L = (Lt)t∈R be a two-sided
Lévy process with no Gaussian component and Lévy measure ν. We assume that the latter
admits a Lebesgue density w : R→ R such that

|w(x)| ≤ C |x|−1−β (1)

for all x 6= 0, some β ∈ (0, 2) and a constant C > 0. Hence, the distribution of L1 exhibits
β-stable tails, see [19]. Consider then for each i ∈ {1, . . . ,m}, m ∈ N, the process

Xi
t :=

∫
R
gi(t− s) dLs (t ∈ R) (2)

for some measurable function gi : R → R. Necessary and sufficient conditions for the
integral to exists are given in [15] and if L is symmetric around zero, i.e., if −L1 and L1 are
identically distributed, then we mention that a sufficient condition is

∫
R |gi(s)|

β ds <∞.

The main examples of kernels gi we consider satisfy a power-law behaviour around zero
and at infinity. Henceforth we shall assume for all i ∈ {1, . . . ,m} the existence of a constant
K > 0 together with exponents αi > 0 and κi ∈ R such that

|gi(x)| ≤ K(xκi1[0,ai)(x) + x−αi1[ai,∞)(x)) (3)

for all x ∈ R, where ai > 0 are suitable splitting points, which may alter the constant
K. Without loss of generality we choose ai = 1 for all i ∈ {1, . . . ,m} and let K stand for
the corresponding constant. Note that this in particular implies that gi(x) = 0 for x < 0,
consequently we will only consider casual moving averages.

The main objects of interest in this paper are rescaled partial sums of multi-dimensional
functionals of the joint distribution Xs = (X1

s , . . . , X
m
s ), namely

Vn(X; f) =
1√
n

n∑
s=1

(f(X1
s , . . . , X

m
s )− E[f(X1

0 , . . . , X
m
0 )]), (4)

where f : Rm → Rd is a suitable Borel-measurable function, with d being some positive
integer. Observe that Vn(X; f) is a d-dimensional random vector and for convenience we
shall denote by V i

n(X; f) its ith coordinate. We remark that in the one dimensional case
d = m = 1 the distributional convergence of Vn(X; f), as n → ∞, is studied for general
functions f in [1] and here the so-called Appell rank of f is seen to play an important
role. The results in that paper also imply that one cannot in general expect convergence in
distribution after rescaling with the factor

√
n as in (4) or a Gaussian limiting distribution if

the memory of the processes are too long, i.e., if the αi are too close to 0. We shall see that
if the tails are not too heavy and the memory is not too long, which in our case means that
αiβ > 2, we do in fact have convergence in distribution of Vn(X; f) to a Gaussian random
variable and we shall discuss the speed of this convergence by considering an appropriate
metric on the space of probability laws on Rd, see Section 2 below. To conclude such a result,
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we could also in principle rely on a multivariate second-order Poincaré inequality for random
vectors of Poisson functionals in [18]. But as already observed in the one-dimensional case,
the existing bounds are not suitable for the application to Lévy driven moving averages
just described. In fact, in this specific situation the bounds in [18] do not even tend to zero,
as n increases. Against this background, we will develop in this paper a refined multivariate
second-order Poincaré inequality for general random vectors of Poisson functionals, which
is more adapted to our situation and allows us to distinguish carefully between small and
large values. We believe that this result is of independent interest as well. This eventually
paves the way to the central limit theory for the random vectors Vn(X; f).

One motivation for the extension of the theory from [2] to a multivariate set-up is the
fact that important properties of random processes, such as self-similarity, are determined
by the finite dimensional distributions of X, but not by the one-dimensional marginals. The
one-dimensional theory, i.e., the case m = d = 1, could so-far capture only probabilistic
properties of the distribution of X1. In the case of the linear fractional stable motion this
made the estimation of the Hurst parameter problematic if jointly estimated with the scale
parameter and the stability index β, see [9]. We will come back to such applications of the
results we develop in this paper in a separate work. However, we would like to mention
finally that the case m = 1 and general d has been considered in the seminal paper [14].

2 Main results

2.1 A refined multivariate second-order Poincaré inequality

Consider a measurable space (S,S) equipped with a σ-finite measure µ. Let η be a Poisson
process on (S,S) with intensity measure µ. This means that η is a collection of random
variables of the form η(B), B ∈ S, with the properties that

(i) for each B ∈ S with µ(B) <∞ the random variable η(B) is Poisson distributed with
mean µ(B),

(ii) for m ∈ N and pairwise disjoint B1, . . . , Bm ∈ S with µ(B1), . . . , µ(Bm) < ∞ the
random variables η(B1), . . . , η(Bm) are independent.

We can and will regard η as a random function from an underlying probability space
(Ω,F ,P) to N , the space of all integer-valued σ-finite measures on (S,S). The set N is
equipped with the evaluation σ-algebra, i.e. the σ-algebra generated by the evaluation
mappings µ 7→ µ(A), A ∈ S.

To each Poisson process η we associate the Hilbert space L2η(P) consisting of all square
integrable Poisson functionals F , i.e., those random variables for which there exists a
function φ : N → R such that almost surely F = φ(η) ∈ L2(P). Finally, we introduce
the notion of the Malliavin derivative in a Poisson setting, which is also known as the
add-one-cost operator. For each z ∈ S and F = φ(η) ∈ L2η(P) we define DzF as

DzF := φ(η + δz)− φ(η)

and note that DF is a bi-measurable map from Ω× S to R. In a straightforward way this
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definition extends to vector-valued Poisson functionals. Indeed, consider F = (F1, . . . , Fd)
where each Fi lies in L2η(P), then the Malliavin derivative DzF at z ∈ S is given by

DzF = (DzF1, . . . , DzFd).

Similarly to DzF we may introduce the iterated Malliavin derivative D2F of F by putting

D2
z1,z2F := Dz1(Dz2F ) = Dz2(Dz1F ), z1, z2 ∈ S.

For further background material on Poisson processes we refer to the treatments in [4, 6, 12],
for the Malliavin formalism on Poisson spaces we refer to Section 3.1 below.

To measure the distance between (the laws of) two random vectors X and Y tak-
ing values in Rd we use the so-called d3-distance, see [13]. To introduce it, assume that
E[‖X‖2Rd ],E[‖Y ‖2Rd ] < ∞, where ‖ · ‖Rd stands for the Euclidean norm in Rd. The d3-
distance between (the laws of the) random vectors X and Y , denoted by d3(X,Y ), is given
by

d3(X,Y ) := sup
ϕ∈H3

∣∣E[ϕ(X)]− E[ϕ(Y )]
∣∣,

where the class H3 of test functions indicates the collection of all thrice differentiable
functions ϕ : Rd → R (i.e., ϕ ∈ C3(Rd,R)) such that ‖ϕ′′‖∞ ≤ 1 and ‖ϕ′′′‖∞ ≤ 1, where

‖ϕ′′‖∞ := max
1≤i,j≤d

sup
x∈Rd

∣∣∣ ∂2

∂xi∂xj
ϕ(x)

∣∣∣, ‖ϕ′′′‖∞ := max
1≤i,j,k≤d

sup
x∈Rd

∣∣∣ ∂3

∂xi∂xj∂xk
ϕ(x)

∣∣∣.
We can now formulate our multivariate second-order Poincaré inequality, which gener-

alises [2, Theorem 3.1] and refines [18, Theorem 1.1]. Its proof, which is given in Section 4
below, is based on the Malliavin-Stein technique for normal approximation of random
vectors of Poisson functionals. For two Poisson functionals F,G ∈ L2η(P) we define the
quantities

γ21(F,G) := 3

∫
S3

E
[
(D2

z1,z3F )2(D2
z2,z3F )2

]1/2E[(Dz1G)2(Dz2G)2
]1/2

µ3(dz1, dz2, dz3),

γ22(F,G) :=

∫
S3

E
[
(D2

z1,z3F )2(D2
z2,z3F )2

]1/2E[(D2
z1,z3G)2(D2

z2,z3G)2
]1/2

µ3(dz1, dz2, dz3).

Moreover, for x, y ∈ R we denote by x ∧ y = min{x, y} the minimum of x and y.

Theorem 2.1 Let d ≥ 1 and assume that F1, . . . , Fd ∈ L2η(P) satisfy DFi ∈ L2(P ⊗ µ)
and E[Fi] = 0 for all i ∈ {1, . . . , d}. Let σik := E[FiFk] and define the covariance matrix
Σ2 = (σik)

d
i,k=1. Let Y ∼ Nd(0,Σ

2) be a centred Gaussian random vector with covariance
matrix Σ2 and put F := (F1, . . . , Fd). Then

d3(F, Y ) ≤
d∑

i,k=1

(γ1(Fi, Fk) + γ2(Fi, Fk)) + γ3,

where the term γ3 is defined as

γ3 :=
d∑

i,j,k=1

∫
S
E
[
|DzFjDzFk|3/2 ∧ ‖DzF‖3/2Rd

]2/3E[|DzFi|3
]1/3

µ(dz). (5)
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Remark 2.2

(i) The difference between Theorem 2.1 and [18, Theorem 1.1] lies in the term γ3. We
emphasise that the bound in [18] does not lead to a meaningful error bound in the
application to heavy-tailed moving averages we consider in the next section as the
corresponding γ3-term in [18] would diverge. Similarly to the univariate case, the
bound provided by Theorem 2.1 is much more suitable for our purposes as it leads to
a reasonable error bound, which tends to zero, as the number of observations n there
tends to infinity.

(ii) It is in principal possible to derive error bounds as in Theorem 2.1 for probability
metrics different from the d3-metric. Namely, assuming in addition that the covariance
matrix Σ2 is positive definite, one can deal with the d2-distance used in [13] and even
with the convex distance introduced and studied in [18]. Since the corresponding error
bounds for these notions of distance become rather long and technical, we refrain from
presenting results in this direction. Moreover, in our application in the next section
it seems in general rather difficult to check whether or not the covariance matrix is
positive definite. This is another reason for us considering only the d3-distance.

(iii) We would like to point out that quantitative central limit theorems for random vectors
of Poisson functionals having a finite Wiener-Itô chaos expansion with respect to
the d3-distance were obtained [7]. Specifically, random vectors of so-called Poisson
U-statistics were considered in [7] together with applications in stochastic geometry
to Poisson process of k-dimensional flat in Rn.

2.2 Asymptotic normality of multivariate heavy-tailed moving averages

Here, we present our application of the refined multivariate second-order Poincaré inequality
formulated in the previous section. For this recall the set-up described in the introduction.
Especially, recall the definition of the random processes (Xi

t)t∈R, i ∈ {1, . . . ,m} from (2).
Also recall that the exponents αi control the memory of the processes Xi. Given the limit
theory for heavy-tailed moving averages as developed in [8] it comes as no surprise that the
smallest such αi will be of dominating importance. Hence, we define

α = min{α1, . . . , αm}.

Finally, by C2b (Rm,Rd) we denote the space of bounded functions f : Rm → Rd which are
twice continuously differentiable and have all partial derivatives up to order two bounded
by some constant.

Theorem 2.3 Fix d,m ≥ 1. Let (Xi
t), i = 1, . . . ,m, be moving averages as in (2) with

Lévy measure having density w satisfying (1) for some β ∈ (0, 2) and kernels gi which satisfy
(3) with αiβ > 2 and κi > −1/β. Let a function f = (f1, . . . , fd) ∈ C2b (Rm,Rd) be given and
consider Vn(X; f) as at (4) based on f and X = (X1, . . . , Xm). Let Σn = Cov(Vn(X; f))1/2

denote a non-negative definite square root of the covariance matrix Cov(Vn(X; f)) of the
d-dimensional random vector Vn(X; f). Then Σn → Σ = (Σi,j)

d
i,j=1, as n→∞, where, for
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i, j ∈ {1, . . . , d},

Σ2
i,j =

∞∑
s=0

Cov(fi(X
1
s , . . . , X

m
s ), fj(X

1
0 , . . . , X

m
0 ))

+
∞∑
s=1

Cov(fi(X
1
0 , . . . , X

m
0 ), fj(X

1
s , . . . , X

m
s )).

(6)

Moreover, Vn(X; f) converges in distribution, as n → ∞, to a d-dimensional centred
Gaussian random vector Y ∼ Nd(0,Σ

2) with covariance matrix Σ2. More precisely, there
exists a constant C > 0 such that

d3(Vn(X; f), Y ) ≤ C


n−1/2, if αβ > 3,
n−1/2 log(n), if αβ = 3,
n(2−αβ)/2, if 2 < αβ < 3.

Remark 2.4

(i) We remark that in the special case d = m = 1 the order for the d3-distance provided
by Theorem 2.1 is precisely the same as that for the Wasserstein distance in [2].

(ii) Even for particular functions f = (f1, . . . , fd), such as trigonometric functions, it
seems to be a rather demanding task to check whether the covariance matrix Σ2

is positive definite or not. Note in this context that even in the one-dimensional
case d = m = 1 the question of whether the asymptotic variance constant is strictly
positive or not is generally difficult. This is the reason why we are working with
the d3-distance in this paper, since more refined probability metric usually require
positive definiteness of the covariance matrix, see Remark 2.2.

(iii) It is straightforward to modify the proof of Theorem 2.3 to the situation where
X = (X1, . . . , Xm) for some fixed moving average (Xt)t∈R as in (2) and where the
kernel g satisfy

|g(x)| ≤ K(xκ1[0,a)(x) + x−α1[a,∞)(x))

for some constants a, α,K > 0 and κ ∈ R such that αβ > 2 and κ > −1/β. In
this case the kernel of Xi = Xi is simply gi = g(i + · ). Choosing an appropriate
functional f in Vn(X; f), such as the empirical characteristic function of X, opens up
the possibility of inference on (Xt)t∈R based on not only the marginal distribution X1

as in much of the previous literature, but also on the joint distribution (X1, . . . , Xm).

As in [2], Theorem 2.1 can be applied to particular processes (Xi
t). We mention here

the linear fractional stable noises, which may be regarded as heavy-tailed extensions of a
fractional Brownian motion. Let L be a β-stable Lévy process with β ∈ (0, 2) and put

Xi
t := Yt − Yt−1 for Y i

t :=

∫ t

−∞

[
(t− s)Hi−1/β

+ − (−s)Hi−1/β
+

]
dLs,

where H1, . . . ,Hm ∈ (0, 1) (if β = 1 we additionally suppose that L is symmetric). In this
case, αi = 1 −Hi + 1/β for all i ∈ {1, . . . ,m} and the condition αβ > 2 translates into
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β ∈ (1, 2) and max{H1, . . . ,Hm} < 1 − 1
β . Note that since β > 1 we automatically have

that αβ < 3. In this set-up the bound in Theorem 2.1 reads as follows:

d3(Vn(X; f), Y ) ≤ C n1/2−β(1−max{H1,...,Hm})/2.

As a second application we mention a stable Ornstein–Uhlenbeck process. Again, for a
β-stable Lévy process L with β ∈ (0, 2) define for i ∈ {1, . . . ,m},

Xi
t :=

∫ t

−∞
e−λi(t−s) dLs,

where λ1, . . . , λm > 0. In this case, the parameters α1, . . . , αm may be arbitrary and the
error bound in Theorem 2.1 reduces to

d3(Vn(X; f), Y ) ≤ C n−1/2.

In a similar spirit, one my consider multivariate quantitative central limit theorems for
functionals of linear fractional Lévy noises or of stable fractional ARIMA processes, see [2]
for the corresponding one-dimensional situations.

3 Background material

3.1 Malliavin calculus on Poisson spaces

To take advantage of the powerful Malliavin-Stein method we need to recall some background
material regarding the Malliavin formalism on Poisson spaces. For further details we refer
to [4, 6, 11].

Throughout this section η denotes a Poisson process with intensity measure µ defined
on some measurable space (S,S) and over some probability space (Ω,F ,P). We start by
recalling that any F ∈ L2η(P) admits a chaos expansion (with convergence in L2(P)). That
is,

F =

∞∑
n=0

In(fn), (7)

where In denotes the nth order Wiener-Itô integral with respect to the compensated Poisson
process η − µ and the kernels fn ∈ L2(µn) are symmetric functions (i.e., they are invariant
under permutations of its variables). Especially, I0(c) = c for all c ∈ R.

The Kabanov-Skorohod integral δ is defined for a subclass of random processes u ∈
L2(P⊗ µ) having chaotic decomposition

u(z) =
∞∑
n=0

In(hn( · , z)),

where for each z ∈ S the function hn( · , z) is symmetric and belongs to L2(µn). Denoting
by h̃ the canonical symmetrisation of a function h : Sn → R, i.e.,

h̃(z1, . . . , zn) =
1

n!

∑
σ∈Sn

h(zσ(1), . . . , zσ(n)),
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with Sn being the group of all permutations of {1, . . . , n}, we put

δ(u) :=
∞∑
n=0

In+1(h̃n),

whenever
∑∞

n=0(n+ 1) ‖h̃n‖2L2(µn+1) <∞ (we indicate this by writing u ∈ dom δ), where
‖ · ‖L2(µn+1) denotes the usual L2-norm with respect to µn+1.

Next, we shall define the two operators L : domL→ L2η(P) and L−1 : L2η(P)→ L2η(P),
where domL denotes the class of Poisson functionals F ∈ L2η(P) with chaos expansion as
in (7) satisfying

∑∞
n=1 n

2n! ‖fn‖2L2(µn) <∞. Then, we define

LF := −
∞∑
n=1

nIn(fn).

Similarly, the pseudo-inverse L−1 of L acts on centred F ∈ L2η(P) with chaotic expansion
(7) as follows:

L−1F :=
∞∑
n=1

1

n
In(fn).

Finally, we recall that for F ∈ L2η(P) with chaotic expansion (7) satisfying
∑∞

n=0(n +

1)! ‖fn‖2L2(µn) <∞ the Malliavin derivative admits the representation

DzF =

∞∑
n=1

nIn−1(fn( · , z)), z ∈ S.

Using these definitions and representations, one may prove the following crucial formulas
and relationships of Malliavin calculus, which also play a prominent role in our approach:

(1) LL−1F = F if F is centred.

(2) LF = −δDF for F ∈ domL.

(3) E[Fδ(u)] = E[
∫
S(DzF )u(z)µ(dz)], when u ∈ dom δ.

3.2 Multivariate normal approximation by Stein’s method

Stein’s method for multivariate normal approximation is a powerful device to prove quan-
titative multivariate central limit theorems. The proof of Theorem 2.1 is based on the
following result, which is known as Stein’s Lemma (see [10, Lemma 4.1.3]). To present it,
let us recall that the Hilbert-Schmidt inner product between two d× d matrices A = (aik)
and B = (bik) is defined as

〈A,B〉HS = Tr(B>A) =
d∑

i,k=1

bkiaki.

Moreover, for a differentiable function ϕ : Rd → R we shall write ∇ϕ for the gradient and
∇2ϕ for the Hessian of ϕ. Also, we let 〈 · , · 〉Rd denote the Euclidean scalar product in Rd.
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Lemma 3.1 (Stein’s Lemma) Let Σ2 ∈ Rd×d be a positive semi-definite matrix and
Y be a d-dimensional random vector. Then Y ∼ Nd(0,Σ

2) if and only if it for all twice
continuously differentiable functions ϕ : Rd → R with bounded derivatives one has that

E[〈Y,∇ϕ(Y )〉Rd − 〈Σ2,∇2ϕ(Y )〉HS] = 0.

4 Proof of Theorem 2.1

By definition of the d3-distance we need to prove that

|E[ϕ(Y )]− E[ϕ(F )]| ≤
d∑

i,k=1

(γ1(Fi, Fk) + γ2(Fi, Fk)) + γ3

for every function ϕ ∈ H3. For this, we may assume that Y and F are independent. We
start out by applying the interpolation technique already demonstrated in [13]. Consider
the function Ψ : [0, 1]→ R given by

Ψ(t) := E[ϕ(
√

1− tF +
√
tY )], t ∈ [0, 1].

Note that from the mean value theorem it follows that

|E[ϕ(Y )]− E[ϕ(F )]| = |Ψ(1)−Ψ(0)| ≤ sup
t∈(0,1)

|Ψ′(t)|.

Hence it is enough to consider Ψ′, which is given by

Ψ′(t) = E
[
〈∇ϕ(

√
1− tF +

√
tY ), 1

2
√
t
Y − 1

2
√
1−tF 〉Rd

]
=:

1

2
√
t
T1 −

1

2
√

1− t
T2.

We consider the two terms T1 and T2 separately. For T1 it follows first by independence
of F and Y and Stein’s Lemma (used on the function y 7→ ϕ(

√
1− ta +

√
ty) and then

dividing by
√
t) that

T1 = E[〈∇ϕ(
√

1− tF +
√
tY ), Y 〉Rd ]

= E
[
E[〈∇ϕ(

√
1− ta+

√
tY ), Y 〉Rd ] |a=F

]
=
√
tE
[
E[〈Σ2,∇2ϕ(

√
1− ta+

√
tY )〉HS] |a=F

]
.

Let ∂if denote the derivative of f in the ith coordinate. We have by independence of F
and Y and the Malliavin rules (1)–(3) rephrased at the end of Section 3.1 that

T2 = E[〈∇ϕ(
√

1− tF +
√
tY ), F 〉Rd ] =

d∑
i=1

E
[
E[∂iϕ(

√
1− tF +

√
ta)Fi] |a=Y

]
=

d∑
i=1

E
[
E[∂iϕ(

√
1− tF +

√
ta)L(L−1Fi)] |a=Y

]

9



= −
d∑
i=1

E
[
E[∂iϕ(

√
1− tF +

√
ta)δ(DL−1Fi)] |a=Y

]
=

d∑
i=1

E
[
E[〈D∂iϕ(

√
1− tF +

√
ta),−DL−1(Fi)〉L2(µ)] |a=Y

]
.

Consider now the function ϕt,ai : Rd → R defined by

ϕt,ai (x) := ∂iϕ(
√

1− tx+
√
ta).

By Taylor expansion we can write

Dzϕ
t,a
i (F ) =

d∑
k=1

∂kϕ
t,a
i (F )(DzFk) +Rai (DzF )

for any z ∈ Rd, where the remainder term Rai (DzF ) =
∑d

j,k=1R
a
i,j,k(DzFk, DzFj) satisfies

the estimate

|Rai,j,k(x, y)| ≤ 1

2
|xy|max

k,l
sup
x∈Rd

∣∣∂k,lϕt,ai (x)
∣∣

≤ 1

2
|xy|(1− t) max

k,l
sup
x∈Rd

∣∣∂i,k,lϕ(
√

1− tx+
√
ta)
∣∣

≤ 1

2
(1− t) |xy|.

(8)

Here, we have used the definition of the class H3. On the other hand, the remainder term
also satisfies the inequality

∣∣∣Dzϕ
t,a
i (F )−

d∑
k=1

∂kϕ
t,a
i (F )(DzFk)

∣∣∣ ≤ |Dzϕ
t,a
i (F )|+ |〈∇ϕt,ai (F ), DzF 〉Rd |

≤ 2 ‖∇ϕt,ai (F )‖Rd ‖DzF‖Rd

≤ 2
√

1− t ‖DzF‖Rd ,

(9)

where we used again the mean value theorem and the Cauchy-Schwarz inequality. We may
thus rewrite T2 as

T2 =
d∑

i,k=1

E
[
E[〈∂kϕt,ai (F )(DFk),−DL−1(Fi)〉L2(µ)] |a=Y

]
+

d∑
i=1

E
[
E[〈Rai (DF ),−DL−1(Fi)〉L2(µ)] |a=Y

]
=
√

1− t
d∑

i,k=1

E
[
∂k,iϕ(

√
1− tF +

√
tY )〈DFk,−DL−1(Fi)〉L2(µ)

]

10



+

d∑
i=1

E
[
E[〈Rai (DF ),−DL−1(Fi)〉L2(µ)] |a=Y

]
.

From this together with the Cauchy-Schwarz inequality and the bounds (8) and (9) it
follows that

|E[ϕ(Y )]− E[ϕ(F )]| ≤ sup
t∈(0,1)

|Ψ′(t)|

≤ sup
t∈(0,1)

1

2

d∑
i,k=1

E
[∣∣∂i,kϕ(

√
1− tF +

√
tX)

∣∣ ∣∣σik − 〈DFk,−DL−1(Fi)〉L2(µ)∣∣]

+ sup
t∈(0,1)

1

2
√

1− t

d∑
i=1

E
[
|〈Rai (DF ),−DL−1(Fi)〉L2(µ)| |a=Y

]
≤ 1

2

d∑
i,k=1

E
[
|σik − 〈DFk,−DL−1Fi〉L2(µ)|

]
+

d∑
i,j,k=1

∫
S
E[(|DzFjDzFk| ∧ ‖DzF‖Rd) |DzL

−1Fi|]µ(dz).

Applying now Proposition 4.1 in [5] to the first of these terms yields the inequality

d∑
i,k=1

E
[∣∣σik − 〈DFk,−DL−1Fi〉L2(µ)∣∣] ≤ 2

d∑
i,k=1

(γ1,i,k + γ2,i,k).

For the remainder term we deduce by Hölder’s inequality with exponents 3 and 3/2 that∫
S
E
[
(|DzFjDzFk| ∧ ‖DzF‖Rd) |DzL

−1Fi|
]
µ(dz)

≤
∫
S
E
[
(|DzFjDzFk| ∧ ‖DzF‖Rd)3/2

]2/3E[|DzL
−1Fi|3

]1/3
µ(dz)

≤
∫
S
E
[
|DzFjDzFk|3/2 ∧ ‖DzF‖3/2Rd

]2/3E[|DzFi|3
]1/3

µ(dz),

where we also used the contraction inequality E[|DzL
−1Fi|p] ≤ E[|DzFi|p] from [5, Lemma 3.4],

which is valid for all p ≥ 1 and z ∈ Rd. This completes the proof of Theorem 2.1. �

5 Proof of Theorem 2.3

In order to apply Theorem 2.1 we need to ensure that the processes (Xi
t) can be represented

in terms of a Poisson process. Indeed, following [16] and [2] we can represent Xi as the
integral

Xi
t =

∫
R2

gi(t− s)x
(
η(ds, dx)− τ(gi(t− s)x) ds ν(dx)

)
+ b̃i,

11



with
b̃i :=

∫
R

(
gi(s)b+

∫
R

(τ(xgi(s))− gi(s)τ(x)) ν(dx)
)
ds,

and where η is a Poisson process on R2 with intensity measure µ(ds, dx) := ds ν(dx). Here,
ν is the Lévy measure of L, b the shift parameter in the characteristic triple for L1 and τ is
a truncation function, cf. (8.3)–(8.4) in [17].

In what follows, C will denote a strictly positive constant whose value might change
from occasion to occasion.

5.1 Estimating the Malliavin derivative

We start out by deriving simple estimates on the Malliavin derivative. By definition of
the terms γ1, γ2, γ3 introduced in Section 2.1 it is sufficient to consider the Malliavin
derivatives of each of the coordinates of f = (f1, . . . , fd) separately. So, let i ∈ {1, . . . , d}
and zj = (xj , tj) ∈ R2 for j ∈ {1, 2} be given. Define for z = (x, t) ∈ R2 the vector δs(z),
for s ∈ R, as

δs(z) := x(g1(s− t), . . . , gm(s− t)) ∈ Rm. (10)

The mean value theorem together with the Cauchy-Schwarz inequality and the assumption
that fi ∈ C2b (Rm,R) then yield the existence of a constant C > 0 such that

|Dz1fi(X
1
s , . . . , X

m
s )| = |fi((X1

s , . . . , X
m
s ) + δs(z1))− fi(X1

s , . . . , X
m
s )|

≤ C(1 ∧ ‖δs(z1)‖Rm).
(11)

Similarly, we deduce again by the mean value theorem and boundedness of fi and its
derivatives the following inequality for the iterated Malliavin derivative:

|D2
z1,z2fi(X

1
s , . . . , X

m
s )| =

∣∣fi((X1
s , . . . , X

m
s ) + δs(z1) + δs(z2))

− fi((X1
s , . . . , X

m
s ) + δs(z1))

− fi((X1
s , . . . , X

m
s ) + δs(z2)) + fi(X

1
s , . . . , X

m
s )
∣∣

≤ C(1 ∧ ‖δs(z1)‖Rm)(1 ∧ ‖δs(z2)‖Rm).

(12)

Note that the estimates (11) and (12) are purely deterministic and allow us to replace
stochastic terms by deterministic estimates of the underlying kernels. This confirms in
another context that many properties of moving averages can be deduced solely from the
driving spectral density, see, for example, [3].

5.2 Analysing the asymptotic covariance matrix

Define for each k ∈ Z and i, j ∈ {1, . . . ,m} the integral

ρi,j,k :=

∫
R
|gi(x)gj(x+ k)|β/2 dx (13)

and observe that ρi,j,k = ρj,i,−k. Now, ρi,j,k is closely related to the asymptotic covariances,
which motivates the following technical lemma, which in turn leads to our assumption

12



that αiβ > 2 for any i ∈ {1, . . . ,m}. In what follows we write x ∨ y := max{x, y} for the
maximum of x, y ∈ R.

Lemma 5.1 Let k ∈ N and i, j ∈ {1, . . . ,m}. Then there is a constant C > 0 such that

ρi,j,k ≤ Ck−(αi∧αj)β/2.

Proof. The same technique as in the proof of [2, Lemma 4.1] yields the bound ρi,j,k ≤
Ck−αjβ/2 and to obtain a bound symmetric in i and j observe that obviously

ρi,j,k ≤ C(k−αiβ/2 ∨ k−αjβ/2) = Ck−(αi∧αj)β/2.

This completes the argument. �

Proposition 5.2 The series defining Σ2
i,j in (6) is absolutely convergent and we have that

Σ2
n → Σ2, as n→∞. In particular, Σn → Σ.

Proof. First, we prove that the series in (6) converges absolutely. By symmetry it is enough
to show that

∞∑
s=1

|Cov(fi(X
1
s , . . . , X

m
s ), fj(X

1
0 , . . . , X

m
0 ))| <∞ for all i, j ∈ {1, . . . , d}.

To this end, we let η̃ be a Poisson process on [0, 1]× R2 with intensity measure duµ(dz)
with the property that η = η̃([0, 1] × · ). Using now the covariance identity for Poisson
functionals from [6, Theorem 5.1] we conclude that

Cov(fi(X
1
s , . . . , X

m
s ), fj(X

1
0 , . . . , X

m
0 ))

= E
[∫ 1

0

(∫
R
E[Dzfi(X

1
s , . . . , X

m
s ) | Gu]E[Dzfj(X

1
0 , . . . , X

m
0 ) | Gu]µ(dz)

)
du
]
,

where Gu is the σ-algebra generated by the restriction of the Poisson process η̃ to [0, u]×R2.
Applying the Cauchy-Schwarz inequality, our assumption (1) on ν and (11) implies that

|Cov(fi(X
1
s , . . . , X

m
s ), fj(X

1
0 , . . . , X

m
0 ))|

≤
∫ 1

0

(∫
R2

E
[
|E[Dzfi(X

1
s , . . . , X

m
s ) | Gu]E[Dzfj(X

1
0 , . . . , X

m
0 ) | Gu]|

]
µ(dz)

)
du

≤
∫
R2

E
[
|Dzfi(X

1
s , . . . , X

m
s )|2

]1/2E[|Dzfj(X
1
0 , . . . , X

m
0 )|2

]1/2
µ(dz)

≤ C
∫
R

(∫
R

(1 ∧ |x|2 ‖(g`(s− t))m`=1‖Rm ‖(g`(−t))m`=1‖Rm) |x|−1−β dx
)
dt

= C

∫
R
‖(g`(s− t))m`=1‖

β/2
Rm ‖(g`(−t))m`=1‖

β/2
Rm dt

≤ C
m∑

k,`=1

∫
R
|g`(s− t)gk(−t)|β/2 dt
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= C
m∑

k,`=1

ρk,`,s

≤ Cs−αβ/2,

where the last inequality follows from Lemma 5.1. Since αβ > 2 by assumption the series
in (6) converges absolutely. To deduce the convergence Σ2

n → Σ2 we use the stationarity of
the sequence (X1

t , . . . , X
m
t ), t ∈ R, to see that, for any i, j ∈ {1, . . . , d},

Cov(V i
n(X; f), V j

n (X; f))

= n−1
n∑

s,t=1

Cov(fi(X
1
s , . . . , X

m
s ), fj(X

1
t , . . . , X

m
t ))

= n−1
n∑

s,t=1
s≥t

Cov(fi(X
1
s−t, . . . , X

m
s−t), fj(X

1
0 , . . . , X

m
0 ))

+ n−1
n∑

s,t=1
s<t

Cov(fi(X
1
0 , . . . , X

m
0 ), fj(X

1
t−s, . . . , X

m
t−s))

=
n−1∑
k=0

(1− k
n) Cov(fi(X

1
k , . . . , X

m
k ), fj(X

1
0 , . . . , X

m
0 ))

+

n−1∑
k=1

(1− k
n) Cov(fi(X

1
0 , . . . , X

m
0 ), fj(X

1
k , . . . , X

m
k )) −→ Σ2

i,j ,

as n→∞, where the convergence follows by Lebesgue’s dominated convergence theorem
together with the absolute convergence of the series defining the limit Σ2

i,j . Finally, the last
claim simply follows by continuity of the square root. �

5.3 Bounding d3(Vn, Y )

Recall for i, k ∈ {1, . . . ,m} the definition of the quantities γ1(Fi, Fk) and γ2(Fi, Fk) from
Section 2.1, which are applied with Fi = V i

n(X; f) and Fk = V k
n (X; f). According to

Theorem 2.1 we have that for any n ∈ N,

d3(Vn(X; f), Y ) ≤
d∑

i,k=1

(γ1(Fi, Fk) + γ2(Fi, Fk)) + γ3,

where γ3 is defined at (5). We consider each of these terms separately in the following three
lemmas. Let us point to the fact that the sum will converge at a speed of order 1/

√
n,

whereas the γ3-term will generally converge at a lower speed, depending on the parameters
α and β. It is also this last term that requires the stronger assumption (3) rather than
just

∑∞
u=0 ρi,j,u < ∞ for all i, j ∈ {1, . . . ,m}. Indeed, as a product, in γ3 we carefully

have to distinguish between small and large values, where the latter are non-negligible for
heavy-tailed moving averages.
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Lemma 5.3 There exists a constant C > 0 such that γ1(Fi, Fk) ≤ Cn−1/2 for any i, k ∈
{1, . . . ,m}.

Proof. To simplify the notation put V i
n := V i

n(X; f) and recall that

γ21(Fi, Fk) = 3

∫
(R2)3

E
[
(D2

z1,z3V
i
n)2(D2

z2,z3V
i
n)2
]1/2

× E
[
(Dz1V

k
n )2(Dz2V

k
n )2
]1/2

µ3(dz1, dz2, dz3).

If zi = (xi, ti) ∈ R2 for i ∈ {1, 2, 3}, the integrand can be bounded using (11) and (12) as
follows:

E
[
(D2

z1,z3V
i
n)2(D2

z2,z3V
i
n)2
]1/2E[(Dz1V

k
n )2(Dz2V

k
n )2
]1/2

≤ C

n2

( n∑
s1=1

(1 ∧ ‖δs1(z1)‖Rm)(1 ∧ ‖δs1(z3)‖Rm)
)

×
( n∑
s2=1

(1 ∧ ‖δs2(z2)‖Rm)(1 ∧ ‖δs2(z3)‖Rm)
)

×
( n∑
s3=1

(1 ∧ ‖δs3(z1)‖Rm)
)( n∑

s4=1

(1 ∧ ‖δs4(z2)‖Rm)
)

≤ C

n2

n∑
s1,...,s4=1

[
(1 ∧ ‖δs1(z1)‖Rm ‖δs3(z1)‖Rm)(1 ∧ ‖δs2(z2)‖Rm ‖δs4(z2)‖Rm)

× (1 ∧ ‖δs1(z3)‖Rm ‖δs2(z3)‖Rm)
]

≤ C

n2

n∑
s1,...,s4=1

m∑
j1,...,j6=1

(1 ∧ x21 |gj1(s1 − t1)gj2(s3 − t1)|)

× (1 ∧ x22 |gj3(s2 − t2)gj4(s4 − t2)|)(1 ∧ x23 |gj5(s1 − t3)gj6(s2 − t3)|).

Using the substitution ui = x2i yi for yi > 0, i ∈ {1, 2, 3}, one easily verifies the relation∫
R3

(1 ∧ x21y1)(1 ∧ x22y2)(1 ∧ x23y3) |x1x2x3|
−1−β dx1 dx2 dx3 = Cy

β/2
1 y

β/2
2 y

β/2
3 ,

for β ∈ (0, 2). This yields the bound

γ21(Fi, Fk) ≤
C

n2

m∑
j1,...,j6=1

n∑
s1,...,s4=1

(∫
R
|gj1(s1 − t1)gj2(s3 − t1)|β/2 dt1

×
∫
R
|gj3(s2 − t2)gj4(s4 − t2)|β/2 dt2

∫
R
|gj5(s1 − t3)gj6(s2 − t3)|β/2 dt3

)
=
C

n2

m∑
j1,...,j6=1

n∑
s1,...,s4=1

ρj1,j2,s3−s1ρj3,j4,s4−s2ρj5,j6,s2−s1

≤ C

n

m∑
j1,...,j6=1

( n∑
u=−n

ρj1,j2,u

)( n∑
u=−n

ρj3,j4,u

)( n∑
u=−n

ρj5,j6,u

)
≤ C

n
,
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where the penultimate inequality follows by substitution and the last inequality is due to
Lemma 5.1, and where we used that

∑∞
u=0 ρj,`,u <∞ for all j, ` ∈ {1, . . . ,m}. �

Lemma 5.4 There exists a constant C > 0 such that γ2(Fi, Fk) ≤ Cn−1/2 for all i, k ∈
{1, . . . ,m} and n ∈ N.

Proof. Using (12) we conclude that the integrand in the definition of γ2(Fi, Fk) is bounded
as follows:

E
[
(D2

z1,z3V
i
n)(D2

z2,z3V
i
n)
]1/2E[(D2

z1,z3V
k
n )(D2

z2,z3V
k
n )
]1/2

≤ C

n2

n∑
s1,...,s4=1

(1 ∧ ‖δs1(z1)‖Rm ‖δs3(z1)‖Rm)(1 ∧ ‖δs2(z2)‖Rm ‖δs4(z2)‖Rm)

× (1 ∧ ‖δs1(z3)‖Rm ‖δs2(z3)‖Rm ‖δs3(z3)‖Rm ‖δs4(z3)‖Rm)

≤ C

n2

n∑
s1,...,s4=1

m∑
j1,...,j8=1

(1 ∧ x21 |gj1(s1 − t1)gj2(s3 − t1)|)

× (1 ∧ x22 |gj3(s2 − t2)gj4(s4 − t2)|)
× (1 ∧ x43 |gj5(s1 − t3)gj6(s2 − t3)gj7(s3 − t3)gj8(s4 − t3)|).

Moreover, as in the proof of the previous lemma we have that∫
R3

(1 ∧ x21y1)(1 ∧ x22y2)(1 ∧ x43y3) |x1x2x3|
−1−β dx1 dx2 dx3 = Cy

β/2
1 y

β/2
2 y

β/4
3

for β ∈ (0, 2) and real numbers y1, y2, y3 > 0. This implies that

γ22(Fi, Fk) ≤
C

n2

m∑
j1,...,j8=1

n∑
s1,...,s4=1

∫
R
|gj1(s1 − t1)gj2(s3 − t1)|β/2 dt1

×
∫
R
|gj3(s2 − t2)gj4(s4 − t2)|β/2 dt2

×
∫
R
|gj5(s1 − t3)gj6(s2 − t3)gj7(s3 − t3)gj8(s4 − t3)|β/4 dt3

≤ C

n2

m∑
j1,...,j8=1

n∑
s1,...,s4=1

ρj1,j2,s3−s1ρj3,j4,s4−s2(ρj5,j6,s2−s1 + ρj7,j8,s4−s3)

≤ C

n
,

where the last inequality follows as in Lemma 5.3 and the penultimate inequality follows
immediately from the fact that |xy| ≤ x2 + y2 for all x, y ∈ R. �

Finally, we consider the crucial term γ3.

Lemma 5.5 There exists a constant C > 0 such that, for all n ∈ N,

γ3 ≤ C


n−1/2, if αβ > 3,
n−1/2 log(n), if αβ = 3,
n(2−αβ)/2, if 2 < αβ < 3.
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Proof. Recall the definition of δs(z) = (δ1s(z), . . . , δ
m
s (z)) from (10) and define for i ∈

{1, . . . ,m},

Ain(z) :=
1√
n

n∑
s=1

(1 ∧ |δis(z)|).

By (11) and the sub-additivity of the minimum it follows that

γ3 ≤ C
∫
R2

(
n−1/2

n∑
s=1

1 ∧ ‖δs(z)‖Rm

)2
∧
(
n−1/2

n∑
s=1

1 ∧ ‖δs(z)‖Rm

)3
µ(dz)

≤
m∑

i,j=1

∫
R2

(Ain(z)2 ∧Ajn(z)3)µ(dz).

From this point on, we can literally follow the proof of Lemma 4.6 in [2]. In fact, this shows
that for any p ∈ [0, 2], q > 2 and i, j ∈ {1, . . . ,m}, one has that

∫
R2

(Ain(z)p ∧Ajn(z)q)µ(dz) ≤ C


n1−q/2, if αβ > q,
n1−q/2 log(n), if αβ = q,
n(2−αβ)/2, if 2 < αβ < 3.

Indeed, these bounds rely solely on the tail behaviour (in terms of the αi’s) of the kernels
gi, where α reflects the weakest behaviour, and the power behaviour (in terms of the κi’s)
around 0, all of which satisfies the condition κi > −1/β. This completes the argument. �

Proof of Theorem 2.3. According to Theorem 2.1 we have that for any n ∈ N,

d3(Vn(X; f), Y ) ≤
d∑

i,k=1

(γ1(Fi, Fk) + γ2(Fi, Fk)) + γ3.

Using now Lemmas 5.3, 5.4 and 5.5 we see that

d3(Vn(X; f), Y ) ≤ C(n−1/2 + n−1/2) + C


n−1/2, if αβ > 3,
n−1/2 log(n), if αβ = 3,
n(2−αβ)/2, if 2 < αβ < 3,

≤ C


n−1/2, if αβ > 3,
n−1/2 log(n), if αβ = 3,
n(2−αβ)/2, if 2 < αβ < 3.

This completes the argument. �
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