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Abstract

Characterizing cracks within elastic media forms an important aspect of ultrasonic non-destructive evaluation

(NDE) where techniques such as time-of-flight diffraction and pulse-echo are often used with the presumption

of scattering from smooth, straight cracks. However, cracks are rarely straight, or smooth, and recent

attention has focussed upon rough surface scattering primarily by longitudinal wave excitations.

We provide a comprehensive study of scattering by incident shear waves, thus far neglected in models

of rough surface scattering despite their practical importance in the detection of surface-breaking defects,

using modelling, simulation and supporting experiments. The scattering of incident shear waves introduces

challenges, largely absent in the longitudinal case, related to surface wave mode-conversion, the reduced

range of validity of the Kirchhoff approximation (KA) as compared with longitudinal incidence, and an

increased importance of correlation length.

The expected reflection from a rough defect is predicted using a statistical model from which, given the

angle of incidence and two statistical parameters, the expected reflection amplitude is obtained instanta-

neously for any scattering angle and length of defect. If the ratio of correlation length to defect length

exceeds a critical value, which we determine, there is an explicit dependence of the scattering results on

correlation length, and we modify the modelling to find this dependence. The modelling is cross-correlated

against Monte Carlo simulations of many different surface profiles, sharing the same statistical parameter

values, using numerical simulation via ray models (KA) and finite element (FE) methods accelerated with a

GPU implementation. Additionally we provide experimental validations that demonstrate the accuracy of

our predictions.
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1. Introduction

The scattering of elastic waves in solids is well known to be affected by surface roughness [1]. The

changes in scattering amplitude and intensity, and their angular distribution, are generally considered to be

surface- and frequency-specific. Every rough surface is different, and can be viewed as a randomly generated

dataset so scattering characteristics differ from one surface to the next. The fundamental problem must5

therefore be addressed using statistical techniques. Understanding the statistical scattering of elastic waves

from rough surfaces is a ubiquitous problem for a wide range of applications in solid mechanics; examples

include the reflection of seismic waves from irregular, or rough, interfaces to improve oil/gas exploration and

productions [2], ultra-high frequency phonon reflection/transmission across an irregular solid-solid interface

with continuous approximations in physics [3, 4], biomedical ultrasound measurements of an artificial bone10

joint [5], possible ultrasonic approaches to measure roughness or textures of contacting surfaces in tribology

[6].

We are interested in providing an expected value for the scattering of ultrasound by a rough defect,

such as a thermal fatigue or stress-corrosion crack, primarily for applications in NDE, but as noted above

there are wider applications. Although it is not possible to predict the specific geometry of a crack, the15

statistics of its surface roughness may be anticipated from industrial databases of cracks formed within

certain environments. A statistical expectation of the subsequent scattering intensity is then used to justify

an expected sensitivity threshold for an ultrasonic inspection [7].

The scattered field is often expressed as the sum of the coherent (broadly speaking, scattering in the

specular direction) and the diffuse (wide angular spread) parts. As explained by [8], early investigations20

centred on predicting the coherent scattering intensity [9]. For the case of a Gaussian distribution of

roughness, a simple expression was derived:

Ic = I fs exp (−gαβ), α, β = p or s

gαβ = (kα cos θi + kβ cos θs)
2σ2, (1)

where I fs is the scattering intensity from a flat surface (of the same dimension as the rough surfaces under

consideration) and α, β denote the wave-type (longitudinal, p, or shear, s) for, respectively, the incident and

scattered fields, whose angles are given by θi, θs as shown in Figure 1. The wavenumbers for the incident

and scattered waves are kα|β , with unit vectors defined as:

k̂i = (sin θi, − cos θi), k̂s = (sin θs, cos θs). (2)

Rough surfaces are typically characterised by two statistical parameters [1]: the standard deviation of

height σ, and the lateral correlation length λ0. These parameters are shown in Figure 1 and they are defined
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Figure 1: A plane wave scattered by a rough surface in 2D with global incident and scattering angles θi, θs. The height data

of the surface is defined by z = h(x), λ0 is the correlation length and σ is the RMS height (see equations (3)).

as follows:

σ =
√
< h2 >, < h >=

∫ ∞
−∞
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1
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√

2π
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)
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σ2
= exp

(
−R

2

λ2
0

)
, (3)

where R is the distance between any two points on the surface.

It can be seen from equation (1) that the coherent intensity depends on the RMS height σ, but not on the

correlation length λ0. The term I fs is calculated using the integral formula for the far field approximation25

[10], or numerically, using Kirchhoff approximation (KA) discretisation. The corresponding numerical value

for the theoretical ensemble average Ic is calculated by determining the sample average of the scattering

amplitude, in the specular direction, over a large number of surface realisations.

The result (1) is widely used in industry for the justification of inspections of safety-critical components

in the nuclear sector [7]. For total independence of correlation length, implied when implementing solely the30

formula (1), the rough surface is of infinite length. This assumption is valid for sufficiently small λ0 such

that the ratio L/λ0 � 1, and when the roughness σ is also low. However, as outlined by [7, 8], for the range

of length and roughness of defects commonly considered, this approach is overly conservative [9], with the

diffuse field becoming increasingly important for higher levels of roughness and in off-specular directions.

To reduce the aforementioned conservatism when qualifying industrial inspections, it is highly desirable35

to develop a method to estimate the diffuse contribution to the total scattered field for specified roughness

and scattering angles. The recent publications [8, 4] present a stochastic method to calculate the expected

value of the diffuse intensity with the aid of the Kirchhoff approximation and the stationary phase method,
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by taking the elastic wave mode conversion into consideration. For longitudinal incidence, the theoretical

predictions were found to be very accurate upon validation against Monte Carlo simulations and experiments.40

The scattering of longitudinal waves by randomly rough surfaces has also been investigated using various

sophisticated numerical methods by [11, 12, 13, 7].

The extension of the same statistical approach [8] to shear wave incidence is far from straightforward,

but critical for practical NDE applications [14, 15]. Firstly, the range of validity of KA is much smaller

for shear, rather than longitudinal, wave incidence as explained by [16]. KA validity breaks down at half45

the roughness (in terms of units of incident wavelength) due to multiple scattering and surface wave mode

conversions that do not arise for analogous longitudinal cases. For this reason, the effect of correlation length

is more pronounced for the shear case, since for crack dimensions and incident frequencies of practical interest

in NDE, values of λ0 ≤ λs/2 remain in the KA validity range only for low values of σ. Thus, correlation

lengths longer than those considered by [17, 8] must be investigated. The increase in λ0 reduces the ratio50

L/λ0, which results in a correction to the conventional derivation of the ensemble averaging. These issues are

explained and addressed in what follows. Secondly, the critical angle for shear-longitudinal mode conversion

[18] contributes a singularity in the derivation of the stationary phase integral for the evaluation of the

diffuse field, and this is also addressed.

The stochastic model developed here to calculate expected scattering for shear wave incidence is validated55

against sample averaging from Monte Carlo simulations of large numbers of different surface profiles using FE

methods. Confidence bands of two standard deviations show a substantial improvement on the conservative

estimates [1] presently implemented within industry. Experimental validations are also provided here as

further supporting evidence for the outlined techniques.

The article is organised as follows: Section 2 reviews the KA method applied to 2D randomly rough60

surfaces, followed by the derivation of the stationary phase approximation for shear wave incidence to

obtain formulae for ensemble averages of the scattering intensities. Section 3 discusses the impact of long

correlation lengths on applications of the method to NDE, and includes the correction required for both

shear and longitudinal wave incidence. Section 4 presents the results of Monte Carlo simulations using

numerical and FE to validate the stationary phase formulae and experimental validations are provided in65

Section 5, with the agreement shown to be excellent. Concluding remarks and the future outlook for the

method are drawn together in Section 6.

2. Kirchhoff approximation

Kirchhoff approximation (KA) theory assumes that the motion of a single surface point is the same as if it

were part of an infinite tangential plane. A plane wave incident upon each point is then assumed to undergo70

specular reflection, as illustrated in Figure 2 for the case of shear wave incidence. The discretisation of a
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Figure 2: Illustration of KA discretisation for SV-incidence, facets of length dx. Shear-shear (S-S) and shear-longitudinal (S-P)

wave directions and polarisation vectors are shown, and local coordinates for each facet, x′, z′.

surface into a sufficiently large number of facets, of sufficiently small dimension, and the subsequent numerical

integration provide a good approximation to the total scattered field subject to certain assumptions. First

order KA does not include multiple scattering effects, surface wave mode conversion and tip diffraction

effects [1].75

The total displacement at a facet centre is approximated as a summation of the incident shear vertical

(SV) wave and the reflected shear-shear (S-S) and shear-longitudinal (S-P) waves:

uKA = Asv (d0 + rss ds + rsp dp), (4)

where the vectors d0,ds,dp are the displacement polarisation vectors and rss, rsp are reflection coefficients

of S and P waves respectively. SV-wave incidence means that the shear wave polarisation vector is in-

plane, and perpendicular to the directional vector, as indicated by the arrows in Figure 2. The term Asv

accounts for the change of sign of the local polarisation vector’s direction, which may occur for shear, but

not longitudinal, incidence [19].80

2.1. Reflection coefficients

The local reflection coefficients rss, rsp are derived following [18], assuming a traction-free boundary

condition on the boundary z′ = 0 of a local coordinate system for each facet, and therefore, each tangential

plane (see Figure 2). Thus, the coefficients depend on the local scattering angles and the wavenumbers
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ks, kp:

rss =
sin 2αs0 sin 2αsp − κ2 cos2 2αs0

sin 2αs0 sin 2αsp + κ2 cos2 2αs0
; rsp =

−κ sin 4αs0

sin 2αs0 sin 2αsp + κ2 cos2 2αs0
, (5)

where κ is the ratio of shear to longitudinal wavenumbers, and note that αss = αs0 for locally specular

scattering.

There is an important difference between the incident shear and incident longitudinal cases for the mode-

converted waves [16]. In the former case, the reflected angle αsp, becomes complex once a critical angle is

passed:
sinαs0

sinαsp
=

1

κ
; κ =

ks

kp
> 1, (6)

with the critical incident angle αs0 = αcrit defined by

αcrit = sin−1

(
1

κ

)
. (7)

The analogous longitudinal-shear mode conversion shares a similar condition to (6), but with the reciprocal

ratio of sines, ensuring that αps is always real.85

2.2. Formulation of scattering problem

The total displacement field is given by

u = usc + uinc,

with the scattered field represented by the elastodynamic Helmholtz integral formula [1, 8, 20]:

usc
k (R) =

∫
S(r)

Σijk (|R− r|)uKA

i (r)nj(r) dS(r), (8)

where Σijk is Green’s stress tensor, R is the location of the observation point, r is a point on the rough surface

S(r), n is the outward unit normal and uKA
i (r) is the ith component of the KA boundary displacement (4).

Note that since we are considering 2D, the k = 2 component of scattered displacement usc
k is zero and the

dummy indices i, j 6= 2 with the index values 1 and 3 corresponding to the x and z directions respectively90

(see Figure 1).

The Green’s stress tensor can be expressed explicitly as [21]:

ΣGij;k(|R− r|) = (1− 2k2
p/k

2
s)G(kp|R− r|),kδij −

2

k2
s

[G(kp|R− r|)−G(ks|R− r|)],ijk

+G(ks|R− r|),jδik +G(ks|R− r|),iδjk
(9)

where kp and ks are the compressional and shear wavenumber. The notation f,i = ∂f
∂xi

is used here, and δ

refers to the Dirac delta function. The function G(kβ |R− r|) is the acoustic Green’s function, which in 2D

is expressed as:

G(kβ |R− r|) = − i
4
H

(1)
0 (kβ |R− r|) (10)
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Here H
(1)
0 (kβ |R− r|) denotes the zero order Hankel function of the first kind.

Using far-field assumptions [19] R � r and ksR � 1, and |R − r| ≈ R − R̂ · r [4] where R̂ is the unit

vector in the direction of R, the integral (8) simplifies to

usc(R) = −ikβ

√
2πi

kβ

eikβR

2π
√
R

∑
β=p,s

∫
S0

Fsβ(κ,R)eikβφαβ dS0. (11)

Here, the term Fsβ represents the boundary displacement where the index β denotes the scattered wave-

type, which is shear, s, or longitudinal, p:

Fsp(κ,R) =

[
(uKA ·N)

(
1− 2

κ2

)
+

2

κ2

(
uKA · R̂

)(
N · R̂

)]
R̂ (12)

Fss(κ,R) =
(
N · R̂

)
uKA +

(
uKA · R̂

)
N − 2

(
uKA · R̂

)(
N · R̂

)
R̂. (13)

Note that the integral (11) has been transferred to one along the mean plane, S0, of the surface, and that N

is the unnormalised vector normal to the surface, defined by (−∂h/∂x, 1). We also clarify that the notation95

Fsβ has been adopted to anticipate the relationship 2Fsβ = Usβ used in previous publications [8, 4] which

followed the optical designation [22]. The constant in (11) has been adjusted to maintain consistency with

the previous work.

Equation (11) contains the phase term φαβ , which is defined in the following way:

φαβ = Aαβx+ Cαβh(x),

Aαβ =
kα
kβ

sin θi − sin θs,

Cαβ = −
(
kα
kβ

cos θi + cos θs

)
. (14)

The local nature of the rough surface is incorporated via the variation in height h(x), the local normal N

and the local boundary displacement uKA.100

It is not possible to simplify (11) in its present form, owing to the dependence of the surface slope on

local surface-specific parameters. However, by assuming that specular points are of stationary phase [4], and

provide the major contribution to the scattered field, an analytic expression can be derived to approximate

the total scattered intensity. This expected value for scattering depends only on the incident frequency and

the statistical characterisation of a surface, i.e. σ and λ0, and and not on specific surface geometry.105

2.3. Specular points and stationary phase method

The concept of using specular points to approximate scattering effects originates from the optical com-

munity [23, 24]. For a given global scattering angle θs (see Figure 1), specular points indicate those locations

where the local surface normal is such that the local specular scattering direction is parallel to the global
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direction θs. Such points are identified by applying a stationary phase approach [8], since the elastodynamic

term Fsβ is a slowly varying function relative to the phase φαβ ; the first-order derivatives with respect to x

are set to zero (see equation (14)):
∂h

∂x
= −Aαβ

Cαβ
. (15)

It can be seen from equations (14),(15) that the surface slopes are approximated as constants for given

incident/scattering angles, wave-types and material properties. The number of times a constant line inter-

sects the actual slope values for a specific rough surface indicates the number of specular points, and the

quality of the approximation, as illustrated in Figure 3.

rough	surface
slope
stationary	phase	constant

Figure 3: Stationary phase concept and specular points for a rough surface (solid curve). Local surface normals and specular

directions are denoted by, respectively, dashed and solid arrows. The dimensionless slopes of the rough surface (dashed curve)

and the stationary phase approximation (straight line) for θi = 0◦, θs = −16◦ are added for the sake of illustration.

110

A Gaussian rough surface characterised by λ0 = λs, σ = λs/6 is insonified by a normally incident plane

shear wave in Figure 3. The surface itself is shown by the solid curve, and for illustrative purposes, the

first order approximation to its slope by the dashed curve. For a specific frequency and scattered angle,

θs = −16◦ say, equation (15) determines the constant which is used by the stationary phase method to

approximate the slope. We have added a straight line at this value to Figure 3 to indicate the number of115

points on the surface for which the stationary phase constant coincides with the real slope values.

The intersections of this line and the slope curve give the stationary points, where the local surface

normals (dashed arrows) are such that the specular scattering direction coincides with the global angle

θs = −16◦. Thus, for a range of scattering angles, −60◦ ≤ θs ≤ 60◦, substitution of equation (15) into

equations (12),(13) yields x- and z- components for Fsβ , which can be plotted versus θs. A similar approach120
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is adopted for longitudinal incidence [8] to obtain Fpβ .

The evaluation of these constants is independent of roughness and for three of the four mode-types, i.e.

P-P, P-S and S-P, produces real values. However, for the S-S case, the existence of the critical incident angle

αcrit (7), means that for a range of θs, the local reflection coefficients become complex. These coefficients

are relevant via the Kirchhoff representation (4), which is present in (12),(13). It is simple to show that

the range of affected θs is given by

θs > 2αcrit − θi. (16)

For θs = 2αcrit − θi, the local specular scattering direction for the S-P mode is parallel to the surface, i.e.

90◦, as surface wave mode conversion takes place [18], p.179.

It may seem counter-intuitive that the effect of critical angle arises only for S-S waves in the stationary

phase approach, not the S-P case. Equations (14), (15) provide the explanation, since the approximation to

the normal substituted into (12)-(13) depends on the ratio Aαβ/Cαβ , and for S-P waves, this ratio is above

the threshold for all values of θs. However, for the S-S case, for θs > 2αcrit− θi, the ratio Aαβ/Cαβ becomes

sufficiently negative such that the local normal approximation enforces surface wave mode-conversion of the

S-P wave. All subsequent associated angles αsp become complex, as do the reflection coefficients, originally

defined by (5), but subsequently adjusted as (17):

rss = − exp(−2iξ);

rsp =
exp(−iξ + τks) sin 4αs0√

κ2 cos4(2αs0) + 4(κ2 sin2(αs0)− 1) sin2(2αs0) sin2(αs0)
, (17)

where the parameters ξ, τ are introduced for complex αsp, with the polarisation vector dp in (4) changed

accordingly, with γ = arg(αsp):

tan ξ =
2
√

(κ2 sin2 αs0 − 1) sin 2αs0 sinαs0

κ cos2 2αs0
,

τ =
sinh γ√

sinh2 γ + cosh2 γ
. (18)

The impact of the critical angle is illustrated in Figure 4. In Figure 4(a), the x- and z-components of

Fss are plotted using both equations (5) (dashed and dotted curves) and equations (17) (solid blue and red125

curves) for θi = 15◦ and over much of the range the solid and dashed/dotted curves are indistinguishable.

The extreme effect on Fss for θs > 2αcrit−θi ' 48.3◦ is clear, as is the improvement by adjusting the reflection

coefficients. The associated impact on the diffuse intensity (derived in the next section) is also evident in

Figure 4(b), where the dot-dashed curve shows the uncorrected result, with the solid curve indicating the

adjusted result. The singularity marking the vicinity of the surface wave conversion is clearly seen, but130

for subsequent values of θs the adjusted stationary phase value matches the Monte Carlo (MC) numerical

result (dot-dashed). Note from the inset in Figure 4(b) that the singular behaviour, which is a marker for

9



(a) (b)

Figure 4: Critical angles for shear wave incidence. (a) Elastodynamic term Fss plotted versus θs. Solid (adjusted) and dashed

curve pair represents the x-component and solid (adjusted) and dotted pair represents the z-component. (b) Diffuse intensity

plotted versus θs for θi = 15◦ for λ0 = λs, σ = λs/6, R = 50mm. Dot-dashed is the MC result, dashed is uncorrected stationary

phase and solid is adjusted stationary phase, all clearly visible around θs = 2αcrit − θi in the inset.

the mode conversion, initiates just below the critical angle at around θs = 45◦. This is consistent with the

observation by Harker [25] p.30, who noted the marked dip in the reflected shear wave amplitude prior to

the critical angle for SV-waves reflected by a traction-free boundary.135

From a practical point of view, the impact of the critical angle on the stationary phase approach for

shear wave incidence is negligible for ultrasonic inspection of defects, since the preferred choices of incident

angle, for example θi = 45◦ [15, 26], are selected with the critical angle in mind. As stated by [15], it is

common to operate within the range 32◦ < θi < 58◦ for angled shear wave pulse-echo contact inspection

set-ups [26], since it is beyond the first critical angle for steel such that only shear waves propagate within140

the component under inspection. Other important set-ups are designed for head-on incidence with respect

to the defect surface, i.e. low values of θi for which the range of affected scattering angles is small and

distant from both the specular direction, and peak of the diffuse field. However, for incident angles around

αcrit which are avoided in practice due to surface wave mode conversions, the specular scattered direction

coincides with the critical value of θs = 2αcrit − θi whereby the stationary phase and KA theories become145

unreliable.

2.4. Diffuse intensity

The motivation for applying a stationary phase approach is to remove the derived constant term Fsβ

from the integrand in (11) by substituting the expression (15) into (12),(13), obtaining:

usc(R) = −ikβ

√
2πi

kβ

eikβR

2π
√
R

∑
β=p,s

Fsβ

∣∣∣∣
N=

(
−
Asβ
Csβ

,1
)
∫
S0
eikβφsβ dS0, (19)
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for shear-wave incidence. The equivalent expression for longitudinal incidence was derived by [8, 4]. Thus,

the integrand in (19) no longer depends on the surface slope, but only on the frequency and height function

h(x). This allows one to derive the ensemble average formulae for scattering intensity:

It = 〈uscūsc〉 = Ic + Id, (20)

where the superscripts t, c, d denote the total, coherent and diffuse parts, respectively.

The formula for the coherent intensity was presented earlier in equation (1). The dominant component

of Id depends on the wave-type. Broadly speaking, longitudinal waves will possess a dominant z-component150

of Id, and the shear wave Id will be dominated by its x-component, provided that θi � 45◦. The method

to calculate either component is identical and involves assuming two arbitrary points on the rough surface

(x0, h0) and (x1, h1).

As first defined by [1], the average diffuse intensity can be written in the form:

Id = 〈uscūsc〉 − 〈usc〉 〈ūsc〉 . (21)

Using the arbitrary points defined above, and equation (19), we obtain

Id =
kβF

2
sβ

2πR

∫ L/2

−L/2

∫ L/2

−L/2
eikβAβ(x0−x1)

(〈
eikβCβ(h0−h1)

〉
−
〈
eikβCβh0

〉 〈
e−ikβCβh1

〉)
dx0dx1. (22)

Note that for the sake of brevity, we have omitted the subscript s, indicating shear incidence, for the terms

Aαβ , Cαβ .155

We make the change of variables ∆x1 = x1 − x0 and define the two-dimensional characteristic function

χ2 in the following way:〈
eikβCβ(h0−h1)

〉
= χ2(kβCβ ,−kβCβ ,∆x1) = exp{−gβ [1−W (∆x1)]}. (23)

The definition of χ2 is determined by the height distribution under consideration; for the Gaussian case

considered here, χ2 has the analytical form (23) [4] and, when ∆x1 � λ0, has the property [1]:

lim
∆x1→0

χ2(kβCβ ,−kβCβ ,∆x1)− χ(kβCβ)χ̄(kβCβ)→ 0. (24)

Here we also define the following functions:

W (∆x1) = exp

[
−
(

∆x

λ0

)2
]

χ(kβCβ) =
〈
eikβCβh0

〉
= exp

(
−
k2
βC

2
βσ

2

2

)
= exp(−gβ/2) =

〈
e−ikβCβh1

〉
= χ̄(kβCβ),

(25)

noting that the second term of (24) is equal to exp(−gβ), the importance of which will be explained below.
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Equation (22) then becomes

Id =
kβF

2
sβ

2πR

∫ L/2

−L/2

∫ L/2

−L/2
eikβAβ∆x1 [χ2(kβCβ ,−kβCβ ,∆x1)− χ(kβCβ)χ̄(kβCβ)]dx1d∆x1

=
kβF

2
sβ

2πR
L

∫ ∞
−∞

eikβAβ∆x1 [χ2(kβCβ ,−kβCβ ,∆x1)− χ(kβCβ)χ̄(kβCβ)]d∆x1,

(26)

where L is the finite length of the crack, but we have assumed that the limits of the integral are extended

from ±L/2 to ±∞, under the condition that L, and therefore max(|∆x1|), is much larger than λ0 so that

the condition (24) holds. Physically, for points on the surface with large separation, the function χ2 − χχ̄

(and therefore the integrand in (26)) is sufficiently small to be negligible. The assumption of infinite limits160

is an important step in deriving the analytical formula for the expected intensity, since it allows the use of

a Gaussian integral substitution in what follows.

Referring to the expression for χ2 (23), we use the Taylor expansion to approximate exp{gβW (∆x1)}:

egβW (∆x1) =

∞∑
n=0

k2n
β C2n

β σ2n[W (∆x1)]n

n!
, (27)

noting that the n = 0 term is 1. Thus, the substitution of the Taylor series (27) into (26) leads to:

Id =
kβF

2
sβ

2πR
Le−gβ

∫ ∞
−∞

eikβAβ∆x1

∞∑
n=1

k2n
β C2n

β σ2ne−n∆x2
1/λ

2
0

n!
d∆x1. (28)

Note that the sum in (28) starts from n = 1, since the n = 0 term cancels the coherent contribution

χ(kβCβ)χ̄(kβCβ) = e−gβ . Additionally in expression (28), we have removed the term e−gβ from within the

integral, since it has no dependence on ∆x1. Swapping the order of the integral and sum, and completing

the square of the integrand, results in a simple Gaussian integral which is solved analytically:

Id =
kβF

2
sβLλ0

√
πe−gβ

2πR

∞∑
n=1

gnβ
n!
√
n

exp

[
−
k2
βA

2
βλ

2
0

4n

]
. (29)

This result is similar to the longitudinal result derived in [4] but for shear incidence, there are differences

related to the critical angle and a reduced range of validity. The reason is that KA theory breaks down

for shear incidence for short correlation lengths [16]. For finite crack dimensions of practical interest, i.e.165

L ≤ 8mm [15, 16], the relatively larger correlation lengths required for KA validity invalidate the important

assumption L � λ0 used in the derivation above to obtain the analytical formulae for total and diffuse

intensities. In the next section, we explain how a correction to the formulae enables the stationary phase

approach to also be used for cases of long correlation length.

3. Stationary phase approach for rough surfaces with long correlation length170

It is increasingly important in industry to detect rough defects as early as possible, and of small enough

size. Certain inspection configurations achieve better sensitivity for smaller cracks with shear waves rather
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than with longitudinal waves [14, 15]. As explained by [16], KA theory has a smaller range of validity for

shear wave incidence. Two of the key factors are multiple scattering and surface wave mode conversion,

which are exacerbated by reduction in correlation length. For example, a rough defect of length 8mm for175

transducer frequency between 2 and 5MHz, is modelled reliably using KA theory for λ0 ≥ λs. In the paper

[16], validity ranges were provided for various σ for λ0 = 2λs, λs and λs/2. In contrast, for longitudinal

incidence, [17], values of λ0 ≤ λp/4 were considered.

3.1. Long correlation length correction term

Investigations of the stationary phase analytical formulae for diffuse intensity (29) for shear wave inci-180

dence show that the expected value predictions (29) have errors of up to 20% for cases of λ0 = 2λs and

λs/16 ≤ σ ≤ λs/8 for defects whose length L is such that the ratio L/λ0 is insufficently large. For a specific

example of ferritic steel, with a frequency 5MHz and L = 8mm, L/λ0 ' 6.28, which is insufficiently large

to justify the extension of the limits of the boundary integral (26) to infinity. An example is illustrated in

Figure 5(a).

(a) (b)

Figure 5: Normalised total intensity of S-S mode for θi = 15◦ versus scattering angle θs for MC KA (solid curves, N = 4000)

and SPM (dashed curves). R = 100mm, frequency = 5MHz and λ0 = 2λs for two values of crack length L: (a) L = 8mm, (b)

L = 12mm.

185

For two low values of the RMS height σ = λs/12 and λs/10, there are errors in the specular total

intensity with the stationary phase method (SPM) overpredicting the value by 5.9% and 7.3%, respectively,

as compared with the MC KA results. In contrast, for an increased value of L = 12mm, but all other

parameters defined as in Figure 5(a), the errors are negligible as illustrated in Figure 5(b), where the ratio

L/λ0 has increased from ' 6.28 to 9.42. In Figure 5(b), the increased number of correlation lengths per190

unit length ensures that the condition (24) is satisfied for a sufficient number of spacings ∆x1 such that the

assumption of infinite limits in the integral (26) is valid.
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We have found from extensive numerical simulation that formula (29) works well provided that the larger

values of surface point spacings ∆x1 satisfy (24). For contradictory cases, the source of error is identified

by considering the integrand function χ2 − χχ̄ in (26), and in particular referring to its Taylor expansion

form using (27):

χ2 − χχ̄ = e−gβ
∞∑
n=0

k2n
β C2n

β σ2n[W (∆x1)]n

n!
− e−gβ = e−gβ

(
k2
βC

2
βσ

2e−∆x2
1/λ

2
0 +

k4
βC

4
βσ

4e−∆x4
1/λ

4
0

2
+ . . .

)
.

(30)

Figure 6(a) illustrates the right hand side of (30) for a specific scattering direction, with the sum of the first

4 terms plotted successively using solid lines, along with the exact expression using equation (23) shown

with the dashed curve.195

It is clear that the Taylor series converges since the sum of the first 4 terms is very close to the true value.

The other striking feature of Figure 6(a) is that only the first term (solid blue) contributes non-zero values to

χ2 − χχ̄ for |∆x1| > 1.9mm. As the shaded regions indicated by the solid dashed lines in Figure 6(a) show,

around 12.5% of the total length is affected, such that all spacings in the range 1.9mm < ∆x1 < 2.8mm do

not satsify (24). In contrast, the second, third and fourth terms in the Taylor series are non-zero only for200

∆x1 < 1.9mm (i.e. less than a quarter of the defect) and so the dominant part of the errors when using

SPM for such cases are linked to the n = 1 term.

∆"# (mm)

$ %
−
$$

∗

(a)

Sources
of error

∆"# (mm)

$ %
−
$$

∗

(b)

Figure 6: Integrand function χ2 − χχ̄ plotted versus x for a defect of length L = 8mm, λ0 = 2λs, σ = λs/10, θi = 15◦,

frequency = 5MHz. (a) The sums of the Taylor expansion form for n = 1 − 4 are plotted successively using solid curves, the

true value with dashed curve. (b) The first 3 terms using the Taylor expansion are plotted using solid curves, the n = 1 term

for λ0 = λs (dashed blue) and for σ = λs/5 (dashed red) are also shown.

Figure 6(b) provides additional evidence for the contributions of the Taylor series terms (solid curves) as

well as the differences that arise for a reduction in λ0 (dashed blue, λ0 = λs) and an increase in σ (dashed

red, σ = λs/5). The Taylor n = 2 and n = 3 terms produce non-zero χ2 − χχ̄ values for a sufficiently205
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small range and magnitude of |∆x1| to justify the assumption of infinite limits in (26). However, for larger

spacings ∆x1, the n = 1 term contributes non-zero χ2 − χχ̄ values that are not sufficiently negligible to

justify the replacement of the finite limits of ∆x1 with ±∞. For a reduction in λ0 such that L/λ0 ' 12.56

in Figure 6(b), the n = 1 term (shown by the dashed blue curve) no longer contributes the same error when

applying SPM. Similarly, for the correlation length λ0 = 2λs of Figure 6(a), an increase in σ to λs/5 leads210

to the n = 1 term (dashed red curve) also no longer contributing an error.

Defining the ratio L/2λ0 to be ζ, we prescribe the following bounding criteria for when the conventional

SPM formula (29) requires correction:

ζ =
L

2λ0
< 4; λ/16 ≤ σ ≤ λ/8, (31)

where λ is the incident wavelength. For smaller values of σ, the diffuse field is negligible compared with

the coherent field, and for higher values of σ, the assumption of infinite limits is justified as illustrated, for

example, by the dashed red curve shown in Figure 6(b). For the corrected SPM, the formula for the diffuse

field (29) is used to calculate the expected diffuse intensity and then corrected by subtracting the leading215

order error coming from the n = 1 term in (30). For the range of σ affected, the term k2
βσ

2 = O(1) and we

bound the exponent using ζ = L/2λ0, leading to:

Id
corr = Id −

kβF
2
sβ

2πR
C2
βe
−ζ2

∫ L/2

−L/2
eikβAβ∆x1d∆x1,

= Id −
kβF

2
sβ

2πR
C2
βe
−ζ2L sinc

(
AβkβL

2

)
. (32)

Note that Aβ , Cβ contain information regarding the angular range and ζ carries the correction for the ratio

of defect length to correlation length.

Generally, the order of the term exp(−ζ2) is sufficiently small for assumption (24) to hold provided220

that ζ (31) is sufficiently large. Physically, one can think of the surface requiring a minimum number of

correlation lengths for the application of the stationary phase theory to be valid. The smaller the correlation

length λ0, the better the specular point approximation works. However, for a fixed length L, larger values of

λ0 reduce the number of peaks and troughs, which reduces the independence of neighbouring points leading

to larger sections of the surface being approximated by the specular point contributions. As a result, the225

stationary phase theory overpredicts the diffuse field as the Lλ0 term in (29) grows with decreasing ζ.

3.2. Illustrative examples

Examples illustrating the application of the leading order error correction to the stationary phase method

are shown for both shear and longitudinal incidence in Figure 7. The method for quantifying the initial

error, and subsequent correction, is the MC method described in detail in our previous publications [17, 16].230

For the valid range of KA, it is sufficient to compare the stationary phase formulae (29) and (32) with the

KA ensemble average of a very large number, N = 4000 here, of rough surface realisations for specified λ0, σ.
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(a)

XXXy
diffuse

XXy total

(b)

XXXy
diffuse

XXy total

Figure 7: Comparison of SPM and MC KA methods (N = 4000) for scattering intensity for shear and longitudinal incidence.

Solid curves are MC KA, dashed curves are corrected SPM and dotted curves are uncorrected SPM. (a) S-S mode for θi =

0◦, λ0 = 2λs, σ = λs/10, R = 100mm. (b) P-P mode for θi = 15◦, λ0 = λp, σ = λp/10, R = 50mm.

The MC KA method uses the following formulae to calculate the total and coherent intensities:

It
KA =

1

N

N∑
n=1

|usc
n (θs)|2 ; Ic

KA =

∣∣∣∣∣ 1

N

N∑
n=1

usc
n (θs)

∣∣∣∣∣
2

. (33)

The diffuse field is the difference of the two:

Id
KA = It

KA − Ic
KA. (34)

Thus, the more reliable the MC results for It
KA, I

c
KA, the more reliable Id

KA is. It is therefore important to

compare all three quantities with one another.

For the case of shear incidence with λ0 = 2λs, σ = λs/10, frequency = 5MHz, normal incidence, R =235

100mm and L = 8mm, the total and diffuse intensities are plotted versus θs in Figure 7(a). Normalisation

with respect to the reflection from a flat surface of the same length has been performed. The solid blue

curves are the MC KA results for N = 4000 surfaces. The dotted curves are the expected values generated

using SPM formulae (29), and the dashed curves are the results obtained using the formula corrected for long

correlation length (32). The original formula (29) overpredicts the diffuse, and therefore also total, intensity240

by 17.6% and 7.3%, respectively, in the specular direction. The corresponding errors after correction are

2.1% and 0.1%, respectively.

A similar improvement is observed for the P-P case with longitudinal incidence. An example for oblique

incidence with θi = 15◦ for λ0 = λp ' 2λs, R = 50mm is shown in Figure 7(b). Here, the ratio ζ = 3.30 < 4

so the correction formula (32) is required. The uncorrected formula gives specular errors of 8.2% and 19.6%245

for the total and diffuse fields, respectively. These values are improved to, respectively, 2.1% and 3.5% after

correction.
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There are some interesting features of Figure 7(b) with respect to the shape and distribution of the

scattering intensities. Oblique incidence highlights the shift in peak locations of the coherent and diffuse

parts of the scattered field, which is not discernible for the case of normal incidence in Figure 7. The250

diffuse field is shifted progressively towards the backscattering angles, as the roughness increases. For these

low σ = λ/10 values, the coherent field is still relatively strong, but as σ grows, the diffuse field starts to

dominate such that the coherent peak vanishes completely, as will be illustrated in the next section where

we consider cases without the need for correction.

4. Results255

The cross-validation of the theoretical model, described in Sections 2 and 3, is performed using a com-

bination of numerical, FE and experimental methods. The numerical simulations performed here use 4000

realisations but it is impractical to investigate 4000 surfaces using the FE method (each FE simulation takes

3 minutes per realisation for R = 50mm) so 400 realisations were analysed using FE methods [17, 8, 16]

to validate KA theory, since such a number is more than sufficient to ensure the convergence for sample260

averaging. For those statistical parameter values where the error between KA and FE methods is below

1dB [17, 16], numerical simulations with thousands of realisations can then be run rapidly, and compared

with the stationary phase theory.

4.1. Comparison of FE, KA and stationary phase results

In recent years, FE approaches have typically investigated between 50 and 100 rough surface realisations265

[11, 13, 17]. The latest advances made with the GPU-driven software package Pogo [27] have made it possible

to run many more surfaces, at a much quicker rate. The investigation of the valid range of roughness for

which KA theory applies to shear wave incidence [16] used 200 different realisations for each pair of statistical

parameters σ and λ0. The established bounds, summarised in Table 1, underpin the examples investigated

in this article.270

λ0(λs) σ(λs)

1/16 1/12 1/10 1/8 1/6 1/5 1/4 1/3

2

1 ( ) ×

1/2 ( ) × × × ×

Table 1: Range of validity of KA theory for incidence of plane shear waves for defects of length L ≥ 5λs and −15◦ ≤ θi ≤ 15◦.

Brackets indicate the threshold at which validity breaks down.
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Here, larger samples of 400 realisations were used for FE validation, since an additional far field approx-

imation is inherently assumed for the SPM when fixing the far field distance R = 50mm, measured from

the centre of the rough surface, for all θs. For the MC KA and FE methods, this distance varies with each

discretised facet, whereas those variations are neglected when applying SPM. Pure plane wave excitations

are implemented (see [16] for details of these plus Gaussian windowed alternatives) using a five-cycle tone275

burst with a centre frequency of 5MHz. Defect length is L = 8mm, the dimensions of the FE model are

100 × 65 mm2 and the absorbing layers are placed on all sides with a width of 5mm, following the recom-

mended guidelines [28]. Linear triangular elements, whose dimension ensures that there are 30 elements per

shear wavelength, are used and the time-step was chosen via a Courant number of 0.3 [28].

The plane wave is excited at a distance of 3mm from the centre of the defect, including the oblique280

incidence cases, where the defect is rotated, rather than the excitation line of nodes. The material parameters

represent ferritic stainless steel, with E = 210 GPa, ρ = 7900 kg m−3 and ν = 0.31. The theoretical

wavelengths and wave speeds are λs = 0.637 mm, cs = 3185 ms−1 and λp = 1.21 mm, cp = 6070 ms−1.

For each of three correlation lengths λ0 = 2λs, λs, λs/2, various RMS values σ, as listed in Table 1,

were analysed. Three examples are shown in Figure 8 for normal incidence, two within the valid range,285

and one outside. As can be seen from Table 1, the pairs λ0 = λs, σ = λs/6 and λ0 = λs, σ = λs/4 are

expected to show good agreement for the FE and MC KA results. The plot of total intensity in dB versus

θs in Figure 8(a) and (b) bear this out and also illustrate the good agreement with the stationary phase

prediction given by the formulae (20), (29).

In contrast, the case of λ0 = λs/2, σ = λs/6 illustrated in Figure 8(c) shows good agreement between the290

MC KA and stationary phase approaches, but a large error compared with the FE ensemble average. This

result is predicted by Table 1 and is indicative of the general conclusion for shear waves that for λ0 = λs, all

three methods show good agreement. For λ0 = 2λs, MC KA and FE methods show excellent agreement, but

the stationary phase method overestimates intensity unless the correction outlined in Section 3 is applied.

Finally, for λ0 = λs/2, MC KA and SPM show good agreement, but once σ is sufficiently large, KA theory295

breaks down [16], and no longer agrees with the FE results.

These conclusions also hold for oblique incidence. An example for θi = −15◦ (as defined in Figure 1)

is shown in Figure 9 for the same pair of roughness parameter values used in Figure 8(a). Thus, there

should be good agreement between all three methods, and this is clearly shown in Figure 9(a) where the

total intensity in dB is plotted versus θs. The FE result (dotted curve) veers away from the MC KA (solid)300

and SPM (dashed red) predictions as the scattering angles increase beyond the specular direction, but this

is likely to be related to tip diffraction and multiple scattering effects that would be reduced by employing

a Gaussian windowed plane wave. For the specular direction and peak of the diffuse field, the agreement is

excellent. We also note that the MC KA result for N = 4000 (additional dashed black curve) shows negligible

improvement over the dB scale, indicating that 400 FE surfaces are more than sufficient for validation.305
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(a) (b)

(c)

Figure 8: Total intensity (dB) of S-S mode for normal incidence plotted versus scattering angle θs with R = 50mm for MC

KA (solid curve, N = 400), FE (dotted, N = 400) and SPM (dashed). (a) λ0 = λs, σ = λs/6. (b) λ0 = λs, σ = λs/4. (c)

λ0 = λs/2, σ = λs/6.

The same results are plotted using normalised intensities in Figure 9(b), to emphasise two things. Firstly,

that the stationary phase ensemble average produces a rounder, more uniform shape than the MC KA

results, although as N is increased the two plots converge, as shown by the additional dashed black curve

for N = 4000 for MC KA. Secondly, as mentioned earlier at the end of Section 3, as σ is increased, the

coherent intensity Ic decreases as the diffuse field dominates. The coherent results for both the FE and MC310

KA methods are shown in Figure 9(b).

4.2. Expected values and confidence bands

The major advantages of the stationary phase approach to obtain expected scattering intensity values are

its speed of computation (< 1 second for all set-ups considered, using modern hardware) and its independence

of specific roughness geometries (in practice, these are also unknown). To better validate the model and315
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(a) (b)

Figure 9: Total intensity of S-S mode for oblique incidence θi = −15◦ plotted versus scattering angle θs for MC KA (solid

curve, N = 400), FE (dotted, N = 400) and SPM (dashed). λ0 = λs, σ = s/6, R = 50mm. (a) Total intensity measured in

dB, the additional dashed curve (black) represents the MC KA result for a set of 4000 surfaces. (b) Total intensity normalised

using the specular peak for flat surface of the same dimension. Coherent field also shown.

its theoretical formulae (1), (20), (29), MC numerical simulations were carried out using several thousand

realisations for roughness parameter values within the valid KA range, Table 1. Convergence tests showed

that N = 4000 and R = 50, 100mm produced good results for both shear and longitudinal incidence, enabling

direct comparison between both types of incident waves. Confidence bands of two standard deviations

(95.4%) have also been calculated for each λ0 for at least ten values of σ, including all of those listed in320

Table 1.

In Figure 10, we consider values of λ0 that are approximately equivalent for shear wave and longitudinal

incidence, recalling that κ ' 1.9 for ferritic steel, with λ0 = λs and λp/2, respectively. The far-field distance

is R = 50mm for both wave-types and σ is determined as in Table 1, but plotted in mm in Figure 10 so

that a direct comparison of S- and P-wave incidence can be made. We plot, respectively, total intensity and325

total reflected amplitude in the specular direction versus σ in Figures 10(a) and (b).

The solid curves show the S-S case, and the dashed curves denote the P-P modes. Confidence bands

extending over two standard deviations (95.4%) are calculated for the 4000 surfaces and plotted either side

of the mean intensities, plotted with × for S-S and + for P-P, in Figure 10(a), and the mean amplitudes

in Figure 10(b). The reduced validity range of KA for shear is evident since the shear curves terminate at330

RMS values less than half those seen for longitudinal incidence.

The confidence bands show some interesting trends. The lower band shows a significant drop when

comparing results for specular intensity in Figure 10(a) with specular amplitude in Figure 10(b), whereas

the upper band covers a similarly sized interval in both cases. This difference is to be expected from the

calculation of intensity and amplitude, and their conversion to a dB scale. Intensity is proportional to
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(a) (b)

Figure 10: Total intensities and reflected amplitudes in specular direction for S-S (solid curves) and P-P (dashed curves) modes

for normal incidence for cases of λ0 = λs, λp/2. Confidence bands of 2 standard deviations (95.4%) are also shown. (a) Total

specular intensity vs. σ. (b) Total specular amplitude vs. σ.

the square of amplitude; denoting the mean intensity as mI and mean amplitude as mA, the following

conversions are used:

mA(dB) = 20 log10(mA); mI(dB) = 10 log10(mI). (35)

The standard deviations (sI , sA) also have a quadratic relationship, so when converting the lower confidence

bands (i.e. mA−sA and mI−sI ∝ m2
A−s2

A) to dB, the amplitude has a dominant term ∝ 10 log10(m2
A+s2

A)

whereas the intensity has a dominant term ∝ 10 log10(m2
A − s2

A), which translates to a significant difference

on the dB scale. In contrast, for the upper band, both amplitude and intensity have a dominant term335

∝ (m2
A + s2

A), with the amplitude having an additional 2mAsA term.

The shapes of the bands for shear and longitudinal incidence are similar, although for corresponding

values of σ, amplitude and intensity drops for S-S modes are clearly much larger than for P-P modes.

The value of the lower bound is critical, since it determines the safety margin for a practical ultrasonic

inspection. It is also notable that the mean intensity and mean amplitude for P-P modes roughly match340

the upper confidence band for analogous shear cases for σ ≤ 0.15mm, highlighting the contrast between the

incident wave-types for rough surface scattering.

5. Experimental validations

Additional validation for the theoretical and Monte Carlo models was obtained through experimental

methods. A rough surface was manufactured using a CNC (computer numerical control) milling machine on345

one face of an aluminium block (230×80×30 mm3). The surface was corrugated so that the height remains

invariant in the y-direction (see Figure 11) and the profile was generated using a Gaussian distribution

of heights for the parameter values σ = 0.3mm and λ0 = 3mm. For a centre frequency of 2MHz, these
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roughness parameters roughly correspond to λ0 = 2λs, σ = λs/5 so within the range of validity for KA

theory (see Table 1). An FE simulation of the experiment was performed using Pogo [27] to validate the350

FE methods used in the preceding sections.

5.1. Experimental set-up parameters

Two ultrasonic phased arrays (Imasonic, Besançon, France) were used, with the transmitting array

attached (with couplant) to a rexolite wedge (Imasonic, Besançon, France) inclined at 34.75◦, to produce

mode-converted incident shear waves. The receiving array was placed tightly next to the wedge, and the355

two arrays systematically moved together across the top flat surface to insonify the maximum number of

rough surface sections that the sample size allowed. The experiment set-up is shown in Figure 11.

𝑥

𝑧

Figure 11: Experimental set-up with transmitting (on wedge) and receiving arrays placed on the top surface of an aluminium

block whose underside has been corrugated with a Gaussian randomly rough surface.

As can be seen from the photograph in Figure 11, the receiving array contains more elements (64)

than the transmitting (32) array. The receiving array was chosen to match as closely as possible the same

parameter values of the pitch and centre frequency as those of the transmitting array. The parameters for360

both arrays and the rexolite wedge are summarised in Table 2. A preliminary experiment was performed

to determine the longitudinal wavespeed cAl
p in the aluminium block prior to the manufacture of the rough

surface. The sample was placed in an immersion tank, on a computer-controlled platform, directly below

a partially submerged single crystal transducer (with a centre frequency of 10 MHz) connected to a signal

generator and oscilloscope. Measurements were performed at several locations across the surface of the365

material, and at several depths within the water. The mean value obtained was cAl
p = 6330 ms−1 which was

used via the standard bulk wave equations to obtain theoretical values for cAl
s = 3110 ms−1 and the mode-

converted shear angle θAl
i , assuming the Young modulus and density of the aluminium to be, respectively,

E = 70GPa and ρ = 2700kg m−3.
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Transmitting array Receiving array

Rexolite wedge, 2350 m/s, 34.75◦

Number of elements 32 64

Element width 22mm 22mm

Elementary pitch 1.5mm 1.57mm

Inter-element spacing 0.25mm 0.25mm

Centre frequency 2 MHz 2 MHz

Active length 47.75mm 100.23mm

Table 2: Parameter settings for phased arrays used in experimental set-up, replicated for the accompanying FE simulations.

(a) (b)

Figure 12: Images from BRAIN software (UoB) for rough surface corresponding to location 2. (a) Time domain signal for

single transmitting element (20) to single receiving element (11), with the amplitude normalised to 1. (b) B-scan image of

plane waves arriving at the first 20 receiving elements. The first arrival of S-S waves has large amplitude at element 11.

The theoretical expected incident angle for the shear waves mode-converted at the interface of the rexolite

wedge and the aluminium sample is calculated using the Snell-Descartes law:

sin θAl
i

sin θRex
i

=
cAl
s

cRex
p

; θAl
i = 48.95◦. (36)

This value, and those obtained for the wavespeeds, were used to generate a series of FE models to simulate370

the experiment. The FE models were constructed using Pogo [27], following similar methods to those used

to validate the KA and stationary phase methods in Section 2 and [8, 4, 17, 16]. It follows that experimental

validation of the FE method provides further validation of the theory and results of Sections 2 to 4.

The experiment set-up permitted measurements to be taken in 15 locations with the two arrays tightly

arranged as shown in Figure 11, with the first 13 locations spaced 5mm apart, and the final two separated375
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by 10mm. The wedge-length is 88mm, so its end position ranged from 88mm to 168mm. As can be seen

from the bottom row of Table 2, this allowed just over half of the receiving array’s elements to be active for

location 15. Five datasets were captured at each location using the MicroPulse FMC (Peak NDT, Derby,

UK) ultrasonic array controller. The University of Bristol’s (UoB) BRAIN software [29, 30] was used to

obtain signals and images of the form shown in Figure 12, and to store full matrix capture (FMC) datasets380

[29] which were post-processed to obtain the results for comparison with the FE results. The shear wave

is extracted using a time gate by estimating the arrival time of S-S waves from the wavespeed. For certain

elements, some difficulty arises when surface waves and other reflections arrive with the S-S waves, as can

be observed for elements 1-3 in Fig. 12(b).

5.2. Finite element simulation of the experiment385

The fundamental building blocks of the FE simulations of the experimental set-up shown in Figure 11

follow those used for all previous validations [8, 4, 17, 16], i.e. ratio of element length to wavelength,

time step, linear triangular elements, absorbing layer thickness etc. [28]. Additional specific details of the

experimental set-up have been included in the Pogo models in this section, including the physical parameters

of the rexolite wedge and its anti-reverberation material and the beam shape of the transmitting array (the390

source-line and number of cycles were adjusted). The flat aluminium surface was used to calibrate the FE

models by determining the location of the backwall “origin” from which the scattering angles defined by the

receiving array’s elements were then measured.

The FE models were generated after careful measurement of all component parts of the experimental

set-up and computation of the physical parameters, as summarised in Table 3. Figure 13 shows the FE

cRex
p cRex

s cAl
p cAl

s θRex
i θAl

i

2350 ms−1 1150 ms−1 6330 ms−1 3110 ms−1 34.75◦ 48.95◦

Table 3: Physical parameter settings for FE simulations.

395

set-up and a snapshot of waves propagating within the sample for location 2 (i.e. the wedge has been placed

5mm from the origin in the x-direction). The snapshot is taken after the mode-converted shear wave has

been scattered by the rough backwall, at a time of t = 42.85µs. Note that there is a strip of absorbing

elements (width 10mm) on the right side of the wedge, which is used to mimic the wedge’s anti-reverberation

system. The rough surface was generated with the same dataset used to mill the aluminium block, and the400

lengths and heights obtained from the post-corrugated sample itself.

In the FE model, a source-line consisting of 32 nodes with the same elementary pitch and inter-element

spacing as the real array, is excited on the surface of the wedge to generate a Gaussian tapered plane

longitudinal wave [4] that travels through the rexolite at 34.75◦. The chosen half beam width of 5λRex
p
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Figure 13: FE simulation snapshot at t = 42.85µs for location 2. Total time for simulation is T = 70µs, absorbing layers of

width 10mm are added to the right side of the rexolite wedge, all dimensions match those of the experimental set-up.

ensures that elements 9 to 24 are effectively fired with a Gaussian distribution of amplitudes; the use of405

such a Gaussian beam reduces edge effects [31], and a direct comparison can be made with the experiment

by post-processing the FMC data to collate the corresponding receiving elements. At the interface of the

rexolite and aluminium, mode conversion results in a shear wave that propagates to the rough backwall,

where 15 sections of approximately 8mm ' 12λAl
s are insonified in a sequential order.

The receiving array is simulated in a similar way, with 64 receiving nodes spaced to match the composition410

of the phased array. As in the case of the experiment, see Figure 12(a), the signals measured at the monitor

nodes are complicated. An example is shown for location 2 in Figure 14(a) for receiving element 9. The

large amplitude of the total displacement at around 42µs is consistent with both Figure 13, and with the

area of large amplitude in the vicinity of receiving elements 9-11 in Figure 12(b) for the experiment.

5.3. Comparison of experimental and FE results415

To accurately compare the experimental and FE results, the scattering angles θs corresponding to the

receiving element locations have to be determined. For location 1, the flat uncorrugated aluminium block

was used to determine the position of the virtual origin of scattering on the backwall (in mm) to be (73.43, 0)

by tuning with the FE simulation for the smooth backwall. The scattering angles were then simply com-

puted relative to this origin using the known locations of the centres of the receiving elements. Since each420

subsequent location was determined by an increment of 5mm (or 10mm for locations 14 and 15), the virtual

origin was shifted accordingly.

The first arrival of S-S scattered signals acts as the standard to validate the FE methods with the

experimental measurements. The B-scan images (like that shown in Figure 12(b)) and FE visualisation

snapshots (e.g. Figure 13) were used to identify a window of 37− 48µs in which the first arrival of the S-S425
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(a) (b)

Figure 14: (a) FE time-domain signal (total displacement) for receiving element 9 (θs = 55.3◦) for rough surface location 2.

(b) Comparison of FE method (’×’) and experimental method (’+’) for rough surface 2. Normalised amplitude vs. θs.

modes occurred, and that the first 20 receiving elements were sufficient to validate the S-S case. Receiving

location signals beyond element 20/θs = 65◦ (i.e. the remaining 44 elements) are not considered in this

article, since they are subject to surface wave and secondary scattering signals, as can be seen in Figure 13.

The range of scattering angles considered is 44.3◦ ≤ θs ≤ 64.4◦, with the specular direction being 48.95◦.

The experimental datasets contain all possible element to element signals, since they were recorded using430

FMC. Post-processing is used to simulate a beam generated by the central elements of the transmitting

array that is analogous to the tapered Gaussian plane wave simulated using the FE methods. Windowing

and zero padding are then applied in both cases to isolate the S-S modes, and maxima of Hilbert peaks are

found in both the time and frequency domains. Normalisation with respect to the maximum amplitude in

the window 37− 48µs is used to compare the experimental and FE results, since the amplitude of the FMC435

data obtained via the BRAIN software [29, 30] is scaled to unity.

An example for a specific rough surface (location 2) is shown in Figure 14(b). The amplitudes for the

experiment (denoted by +) are normalised with respect to receiving element 8 or θs = 54.2◦ (since this was

the largest Hilbert maximum amplitude in the window 37− 48µs) whereas the FE amplitudes (denoted by

×) have been normalised with respect to receiver 9’s amplitude (θs = 55.3◦). Although there is this small440

shift of the peak, its location between θs = 53◦ and 57◦ is obtained from both the experimental and FE

methods. There is also good qualitative agreement across the whole range of sampled scattering angles in

Figure 14(b).

The results of Figure 14(b) are for one realisation only. To compare the total intensities, the first formula

in (33) is employed for the 15 rough surface realisations, represented by the changes in location along the445

sample. The normalised total intensity (albeit normalised with respect to local maxima rather than a global
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(a) (b)

Figure 15: Comparison of experimental (’+’) and FE (’×’) results for 20 scattering angles, based on 15 realisations of rough

surfaces characterised by λ0 = 3mm and σ = 0.3mm. The incident angle is approximately 48.95◦. (a) Normalised total

intensity versus scattering angle, (b) same as part (a) but on dB scale.

reference as in Figure 7) is plotted in Figure 15(a) versus the scattering angle for the experiment (+) and

FE models (×). Figure 15(b) is plotted using the dB scale. The results for the flat surface are shown using

the dashed curves, and confidence bands covering a width of two standard deviations are shown by the solid

curves. The higher and lower (of FE or experimental) bands are used for, respectively, the upper and lower450

confidence bands. For smoother confidence curves, as in Figure 10, more than 15 realisations are required.

The results are very encouraging since the absolute error between the experimental and FE methods is

< 1dB for 15 of the 20 scattering angles considered, and the exceptions are < 1.5dB except for the largest

values of θs. The specular direction for this low roughness case (approximately λ0 = 2λs, σ = λs/5) also

sees fairly good agreement between the experimental and FE results, with only the second of the five values455

of θs that bracket the specular angle θs = 48.95◦, showing an error ≥ 1dB.

We note that the highest intensity/amplitude arises for a value of θs lower than the specular angle.

This may be due to a number of reasons including attenuation in the couplant and/or aluminium leading to

deviation of the specular angle from the expected value, the presence of additional surface waves contributing

to the signals arriving at the first receiving elements and the roughness of the surface. The coherent intensity460

contributes around 80− 85% of the total intensity for 44.3◦ ≤ θs ≤ 50.3◦ so it seems unlikely that only the

roughness will lead to the shift of the specular peak. The fact that both the experiment and FE simulations

detect the same shift provides further evidence of the fidelity of the FE validations performed using the

Pogo software.
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6. Conclusions465

Many industrial ultrasonic NDE inspections use shear waves to detect and characterise rough defects,

particularly in environments where higher sensitivity is crucial since the smaller wavelength is advantageous

in comparison with longitudinal incidence. In environments subject to extreme changes in temperature

and pressure, such as nuclear power station components, the damage that may occur is often far from

uniform; rough cracks are formed and these are much more challenging to characterise, resulting in excessive470

conservatism for the qualification of ultrasound inspections.

A comprehensive study of shear wave incidence incorporating stochastic methods, numerical and experi-

mental validations has been presented, whereby the expected reflection from a rough defect can be predicted

reliably using a time-efficient statistical model. The reduced range of validity of the Kirchhoff approximation

(KA) [16] highlights a hitherto uninvestigated dependence on correlation length for the application of the475

stationary phase method to both types of incidence. In Section 3, a correction term was introduced to the

expected diffuse intensity for those cases when the ratio of correlation length to defect length exceeds a

critical value, extending the range of applicability of the stochastic model.

The stationary phase adjustment to the KA integral was shown to be accurate upon validation against

Monte Carlo simulations of several thousands of different surface profiles, for both longitudinal and shear480

wave incidence, using numerical and finite element (FE) methods. Experimental validations were also shown

to give very encouraging results. We have also shown that for analogous roughness, the total scattering

intensity is attenuated much more rapidly for shear waves than for longitudinal waves, and we have provided

confidence bands covering two standard deviations for the expected values.

The advances in understanding the nature of scattering of shear waves by rough surfaces have great485

potential both for reducing the conservatism of presently qualified ultrasonic inspections in industry, and for

proposing new methods for components and environments for which the established protocols are difficult

to implement. The ability to rapidly estimate amplitudes, with associated confidence bands, will enable

targeted inspection set-ups to be investigated, analysed and stringently validated in a more efficient manner.
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