
ar
X

iv
:1

90
4.

11
81

0v
4

 [
cs

.G
T

]
 5

 J
un

 2
01

9

Improving the complexity of Parys’ recursive

algorithm⋆

K. Lehtinen, S. Schewe, and D. Wojtczak

University of Liverpool, Liverpool, UK
[k.lehtinen,sven.schewe,d.wojtczak]@liverpool.ac.uk

Abstract. Parys has recently proposed a quasi-polynomial version of
Zielonka’s recursive algorithm for solving parity games. In this brief note
we suggest a variation of his algorithm that improves the complexity
to meet the state-of-the-art complexity of broadly 2O((logn)(log c)), while
providing polynomial bounds when the number of colours is logarithmic.

1 Introduction

In 2017 Calude et al. published the first quasi-polynomial algorithm for solv-
ing parity games [CJK+17]. Since then, several alternative algorithms have ap-
peared [Leh18,JL17], the most recent of which is Parys’s quasi-polynomial ver-
sion of the Zielonka’s recursive algorithm [Par19].

Parys’s algorithm, although enjoying much of the conceptual simplicity of
Zielonka’s algorithm [Zie98], has a complexity that is a quasi-polynomial factor
larger than [CJK+17], [JL17], and [FJS+17]. More precisely, their complexity is,

modulo a small polynomial factor,
(

c
′
+l

l

)

, with c′ being c or c/2 and l ∈ O(log n),
for games with n positions and c colours. This also provides fixed-parameter
tractability and a polynomial bound for the common case where the number of
colours is logarithmic in the number of states. We propose a simplification that
brings the complexity of Pary’s algorithm down to match this. Note, however,
that in a fine grained comparison the recursive algorithm still operates symmet-
rically, going through every colour, rather than just half of them, and O(log n)
hides a factor of 2. Thus, a very careful analysis still reveals a small gap.

We also briefly comment on the relationship between this recursive algorithm
and universal trees.

2 Preliminaries

A parity game G = (V, VE , E,Ω : V → [0..c]) is a two-player game between
players Even and Odd, on a finite graph (V,E), of which positions are partitioned
between those belonging to Even, VE and those belonging of Odd VO = V \ VE ,
and labelled by π with integer colour from a finite co-domain [0..c] by π. We
assume that every position has a successor.

⋆ Supported by EPSRC project Solving Parity Games in Theory and Practice.

http://arxiv.org/abs/1904.11810v4

2 K. Lehtinen, S. Schewe, and D. Wojtczak

A play π is an infinite path through the game graph. It is winning for Even
if the highest colour occurring infinitely often on it is even; else it is winning for
Odd. We write π[i] for the ith position in π and π[0, j] for its prefix of length
j + 1.

A strategy for a player maps every prefix of a play ending in a position that
belongs to this player to one of its successors. A play π agrees with a strategy
σ for Even (Odd) if whenever π[i] ∈ VE (VO), then σ(π[0, i]) = π[i + 1]. A
strategy for a player is winning from a position v if all plays beginning at v that
it agrees with are winning for that player. Parity games are determined: from
every position, one of the two players has a winning strategy [Mar75].

Even’s (Odd’s) winning region in a parity game is the set of nodes from
which Even (Odd) has a winning strategy. We are interested in the problem of
computing, given a parity game G, the winning regions of each player.

Given a set S ⊆ V , the E-attractor of S in G, written AttrE(S,G), is the
set of nodes from which Even has a strategy which only agrees with plays that
reach S. O-attractors, written AttrO(S,G) are defined similarly for Odd.

An even dominion is a set of nodes P ⊆ V such that nodes in P ∩ VE have
at least one successor in P and nodes in P ∩ VO have all of their successors in
P , and Even has a winning strategy within the game induces by P . An odd
dominion is defined similarly.

We will use the following simple lemmas to prove the correctness of our
algorithm.

Lemma 1. If a dominion D for player P in a game G does not intersect with
X, then it does not intersect with AttrP̄ (X,G) either, where P̄ is the opponent
of P .

Proof. From the definition of a dominion, player P has a strategy that from
within D only agrees with plays staying within D, contradicting any node in D
being within the attractor of X .

Lemma 2. Let D be a dominion for player P in a game G. Then for all sets
X, D \AttrP (X,G) is a dominion for P in G \AttrP (X,G).

Proof. The same strategy that witnesses D being a dominion for P in G witnesses
D \AttrP (X,G) being a dominion for P in G \AttrP (X,G).

Lemma 3. If the highest priority h in a dominion D for a player P in a play
G is not of P ’s parity, then D contains a non-empty sub-dominion without h.

Proof. Otherwise, every position in D would be in the attractor of the nodes of
priority h, and the opponent would have a strategy to see h infinitely often.

3 The Algorithm

We first recall Parys’ quasi-polynomial version of Zielonka’s algorithm in
Algorithm 1. In brief, the difference between this algorithm and Zielonka’s is that

Improving the complexity of Parys’ recursive algorithm 3

Algorithm 1 SolveE(G, h, pE , pO)

1: if G = ∅ ∨ pE ≤ 1 then

2: return ∅;
3: end if

4: while WO 6= 0 do

5: Nh := {v ∈ G|π(v) = h};
6: H := G \AttrE(Nh, G)
7: WO := SolveO(H,h− 1, ⌊pO/2⌋, pE);
8: G := G \AttrO(WO, G);
9: end while

10: Nh := {v ∈ G|π(v) = h};
11: H := G \AttrE(Nh, G,)
12: WO := SolveO(H,h− 1, pO, pE);
13: G := G \AttrO(WO, G,);
14: while WO 6= 0 do

15: Nh := {v ∈ G|π(v) = h};
16: H := G \AttrE(Nh, G)
17: WO := SolveO(H,h− 1, ⌊pO/2⌋, pE);
18: G := G \AttrO(WO, G);
19: end while

20: return G

this procedure takes a pair of parameters that bound the size of the dominions,
for Eve and Odd respectively, that the procedure looks for; it first removes one
player’s dominions (and their attractors) of size up to half the parameter until
this does not yield anything anymore, then searches for a single dominion of the
size up to the input parameter, then again carries on with searching for small
dominions. In each of the recursive calls, the algorithm solves a parity game with
one colour less, and either half the input parameter (most of the time) or the
full input parameter (once). The correctness hinges on the observation that only
one dominion can be larger than half the size of the game, so the costliest call
with the full size of the game as parameter needs to be called just once.

Our simplification, in Algorithm 3, replaces each of the two while-loops with
a single recursive call that also halves a precision parameter, but, unlike Parys’s
algorithm, operates on the whole input game arena at once (or what is left of it,
in the case of the last call), rather than on a series of subgames of lower maximal
colour. In brief, our algorithm computes three regions W1, W2 and W3 one after
the other which together contain all small Odd dominions and no small Even
dominion, in order to return the complement of their union. W1 and W3 are
based on calls that only identify very small dominions; the correctness of the
algorithm hinges on proving that W1 and W2 together already account for over
half of any small Odd dominion, and hence the last call will correctly handle
what is left.

For both algorithms, the dual, SolveO is defined by replacing E with O and
vice-versa, although in our case SolveO returns ∅, rather than G, if h = 0.

4 K. Lehtinen, S. Schewe, and D. Wojtczak

Algorithm 2 SolveE(G, h, pE , pO)

1: if G = ∅ then

2: return ∅;
3: end if

4: if pO = 0 or h = 0 then

5: return G
6: end if

7: W = G \ SolveE(G,h, pE , ⌊pO/2⌋);
8: W1 = AttrO(W ′

O, G);
9: G1 := G \W1;

10: Nh := {v ∈ G1|π(v) = h};
11: G2 := G1 \AttrE(Nh, G1)
12: W ′ := SolveO(G2, h− 1, pO, pE);
13: W2 := AttrO(W ′, G1)
14: G3 := G1 \W2;
15: W3 := G3 \ SolveE(G3, h, pE, ⌊pO/2⌋);
16: G := G \ (W1 + W2 + W3);
17: return G

4 Correctness

We prove the following lemma, which guarantees that SolveE(G, h, pE , pO) and
SolveO(G, h, pE , pO) partition a parity game G of maximal priority at most h
into a region that contains all odd dominions up to size up to pO and a region
that contains all even dominions of size up to pE . Then SolveE(G, h, |G|, |G|)
solves G of maximal priority h.

Lemma 4. SolveE(G, h, pE , pO), where h is even and no smaller than the max-
imal priority in G, returns a set that:

i) contains all even dominions up to size pE, and
ii) does not intersect with an odd dominion with size up to pO.

Similarly, SolveO(G, h, pO, pE), where h is odd and no smaller than the maximal
priority in G, returns a set that:

i) contains all odd dominions up to size pO, and
ii) does not intersect with an even dominion with size up to pE.

Proof. We show this by induction over the sum h + pE + pO.

Base case h + pE + pO = 0. Then pE = pO = 0 and any set will do.
Induction step We consider the case of SolveE ; the case of SolveO is similar.

If h = 0, then G is a dominion for Even; we are done. We proceed with h > 0.
We first show i) that SolveE(G, h, pE , pO) returns all even dominions up to
size pE . Let D be such a dominion. According to the IH, D does not intersect
with W and therefore it does not intersect with W1 either. It is therefore
contained in G1.The intersection D′ of D and G2 is an even dominion in G2

Improving the complexity of Parys’ recursive algorithm 5

(Lemma 2) and therefore, from the IH, it does not intersect with W ′ nor
with its Odd attractor W2 in G1 (Lemma 1). Then, D does not intersect
with W2 either. D′ is also contained in G3 and by IH does not intersect with
W3 and therefore neither does D. Since D does not intersect with W1,W2

nor W3 it is contained in the returned G.
We proceed with showing ii) that SolveE(G, h, pE , pO) returns a set that
does not intersect with odd dominions of size up to pO. Let D be such a
dominion, let S be the union of odd dominions up to size ⌊pO/2⌋ contained
in D and let A be its Odd-attractor in D.
S is contained in W by IH, and therefore A is contained in W1 and does not
intersect with G1. If A = D then D is contained in W1 and we are done.
We consider the case of A 6= D. D \A is non-empty and a dominion in G\A
(Lemma 2). It contains an odd dominion C of G \ A in which h does not
occur (Lemma 3). Observe that since C is an odd dominion in G \ A and
A is an odd dominion in G, C ∪ A is an odd dominion in G. Since it is not
included in S, it is larger than pO/2. We now show that C ∪ A is included
in W1 + W2.
Since W1 is an odd attractor, G1 ∩ C is an odd dominion in G1, and since
C contains no h, also in G2. By IH, it is contained in W2 and C is therefore
contained in W1 ∪W2, as is A ∪ C.
Then, since A∪C is larger than pO/2, D \ (W1∪W2) is not only a dominion
of G3 (Lemma 2), it is also of size up to ⌊pO/2⌋ and by IH contained in W3.
Hence D is does not intersect with the returned G.

5 Analysis

Let f(h, l) be the number of calls to SolveE and SolveO of SolveE(G, h, pE , pO)
(or of SolveO(G, h, pE , pO), if it is greater) where l = ⌊log(pE)⌋ + ⌊log(pO)⌋.

An induction on l+h shows that f(h, l) ≤ 2l
(

h+l

l

)

. If h+ l = 0 then h = 0 so
SolveE(G, h, pE , pO) and SolveO(G, h, pE , pO) return immediately. For h+ l ≥
1, we have:

f(h, l) ≤ 2f(h, l− 1) + f(h− 1, l)

≤ 2l−1

(

h + l − 1

l− 1

)

+ 2l
(

h + l− 1

l

)

≤ 2l
(

h + l

l

)

(1)

Then, as l = 2⌊̇ logn⌋, this bring the complexity of the simplified algorithm
down by a quasi-polynomial factor from Parys’ version.

Remark 1. A (n, d)-universal tree is a tree into which all trees of height d with
n leaves can be embedded while preserving the ordering of children. These com-
binatorial objects have emerged as a unifying thread among quasi-polynomial

6 K. Lehtinen, S. Schewe, and D. Wojtczak

solutions to parity games and have therefore been the object of a recent spree of
attention [CDF+19,FGO18,CF]. In particular, the size of a universal trees is at
least quasi-polynomial, making this a potentially promising direction for lower
bounds. We observe that the call tree where the node SolveE(G, h, pE , pO) has
for children its calls to SolveE and SolveO with parameter h − 1 takes the
shape of a universal (n, d)-tree where n is the size of the parity game and d its
maximal colour. The recursive approach therefore does not seem to be free from
universal trees either.

6 Conclusion

This improvement brings the complexity of solving parity games recursively
down to almost match the complexity to the algorithms based on Calude et
al.’s method [CJK+17,FJS+17] and Jurdziński and Lazić’s algorithm [JL17].
In particular it is fixed-parameter tractable, and polynomial when the num-
ber of colours is logarithmic. However, since the recursion solves the game
symmetrically—that is, it goes through every colour, rather than just every
other colour—and since the size of only the guarantees for the even or odd do-
minions are halved, in the

(

a

b

)

notation both a (c vs. c/2) and b (2 logn vs. logn)
double compared to Jurdziński and Lazić’s algorithm [JL17].

Whether this simplification to the recursion scheme makes this algorithm
usable in practice remains to be seen.

Acknowledgements

We thank Nathanaël Fijalkow for enlightening discussions and Pawe l Parys for
his comments.

References

CDF+19. Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jur-
dziński, Ranko Lazić, and Pawe l Parys. Universal trees grow inside sep-
arating automata: Quasi-polynomial lower bounds for parity games. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2333–2349. SIAM, 2019.

CF. Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and good for
small games automata: New tools for infinite duration games. to appear in
proceedings of FOSSACS 2019.

CJK+17. Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. Deciding parity games in quasipolynomial time. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
252–263. ACM, 2017.

FGO18. Nathanaël Fijalkow, Pawe l Gawrychowski, and Pierre Ohlmann. The com-
plexity of mean payoff games using universal graphs. arXiv preprint
arXiv:1812.07072, 2018.

Improving the complexity of Parys’ recursive algorithm 7

FJS+17. John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik Wo-
jtczak. An ordered approach to solving parity games in quasi polynomial
time and quasi linear space. In Proceedings of the 24th ACM SIGSOFT In-
ternational SPIN Symposium on Model Checking of Software, pages 112–121.
ACM, 2017.

JL17. Marcin Jurdziński and Ranko Lazic. Succinct progress measures for solving
parity games. In 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), volume 00, pages 1–9, June 2017.

Leh18. Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-
polynomial time. In Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 639–648. ACM, 2018.

Mar75. Donald A Martin. Borel determinacy. Annals of Mathematics, pages 363–
371, 1975.

Par19. Pawe l Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time.
Available online: https://arxiv.org/abs/1904.12446, 2019.

Zie98. Wieslaw Zielonka. Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees. Theoretical Computer Science, 200(1):135
– 183, 1998.

https://arxiv.org/abs/1904.12446

	Improving the complexity of Parys' recursive algorithm

