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We study the chiral properties of &t/ (3) gauge theory withV; massless Dirac fermions in the fun-
damental representation whévy is increased fron2 to 6. For Ny = 2, our lattice simulations lead to a
value of () /F3, whereF is the Nambu-Goldstone-boson decay constant/and is the chiral conden-
sate, which agrees with the measured QCD value .N50«= 6, this ratio shows significant enhancement,
presaging an even larger enhancement anticipatedascreases further, toward the critical value for
transition from confinement to infrared conformality.

PACS numbers: 11.10.Hi, 11.15.Ha, 11.25.Hf, 12.60.NZ30.0Qc

Introduction Theories with an approximate conformal low has been indicated by Feynman-graph-based studies.
symmetry could play a role in describing new physics atBut it is important also to use non-perturbative methods
the TeV scale and beyond. While a non-supersymmetricsince the couplings involved are strong. This letter de-
vector-like gauge theory exhibits confinement and spontascribes a first step in this program. We focus orb&n(3)
neous chiral symmetry breaking with a small numbBgr  gauge theory withV; massless Dirac fermions in the fun-
of massless fermions, it becomes conformal in the infrareddamental representation. Lattice studies have shown that
governed by a weak infrared fixed pointf; is larger, but  the Ny = 8 theory is chirally broken, with no evidence
just below the value for which which asymptotic freedomfor even an approximate infrared fixed point [2, 4, 7];
sets in [1]. There is evidence from lattice simulations [2—while there is lattice evidence for conformal behavior at
7] that this infrared conformality persists down through alN; = 12, indicating tha < N§ < 12 [2-6].

“conformal window” of NV;-values where the fixed point  \we present results here for the valuds = 2 and
can be_come strong, and that a transition to the conflnlng\[f = 6, drawing on newly available corhputational re-
and chirally broken phase takes place at some vAlfle  sources, including 150 million core-hours on the Blue-

Even forN; < N§¢ there can remain an approximate in- Gene/L supercomputer at Lawrence Livermore National
frared fixed point providing that < N7 — Ny < N7.  Laboratory (LLNL). Starting withN; = 2 allows us to
The scalel” of chiral symmetry breaking is then small rel- check the reliability of our methods by comparison with the
ative to the intrinsic scales of the theory, and the fixed poinphenomenological value dt)1p) /F? for QCD. Proceed-
approximately governs the theory from the breaking scalghg carefully towardN¢ is prudent since the emergence
out to some higher scale. of widely separated scales associated with the approximate

This “walking” phenomenon can play an important infrared fixed point of walking is problematic for lattice
phenomenological role in a technicolor theory of elec-methods.
troweak symmetry breaking. Flavor-changing neutral cur- \1athods For a range of small fermion masses we

rents (FCNC'’s), which are present when the technicoloEompme the Nambu-Goldstone-boson (NGB) mafs

theory is extended to provide for the gene_ration of quarky NGB decay constarft,,, and the chiral condensate per
masses, can be too large unless the associated/sgale fermion @Wm- To set a physical scale, we also com-

is high enough. But then the first- and second—generatioBute the mass/, ,, of the analogue of the meson and
guark masses are typically much too small. They are pro o P

_ = ) the Sommer scale, ,,, at whichr2dV (r)/dr = 1.65,
portional to the quantityiy) /A rc, wherey is atech- \yhere /(1) is the static potential [11]. Since our goal is
nifermion field and(«)¢)) is the bilinear fermion conden-

; _ , to search for the enhancement(ofy) /F* asN; — N,
sate defined (cut off) at yr¢. Walking can lift the quark  ¢rom the emergence of walking between the physical length
masses by enhancing the condensaté) significantly

, oy . scale and the ultraviolet cutoff, taken here to be the lat-
above its value@(4m ™)) in a QCD-like theory [8-10], ice spacing, it is important to keep the lattice spacingfixe

while keepingA% ¢ Iarg_e enough to suppress FCNC's.  (and small) in physical units. We first choose a value for
The enhancement dfy+)) /F* asN; — Nj frombe- (3 = 6/g5 at N; = 6, giving a physical scale of several



2

lattice units. ForN; = 2, we then tung3 to match the a future paper. Here, we present resultsifor = 0.005,
same physical scale in lattice units. but do not include them in our analysis. This also ensures
For small enough fermion mass (and yet large enougthat for eachn, M,,L > 4, keeping the NGB Compton
to insure that finite-volume effects are small), the extrapwavelength well inside the lattice (the p regime). Results

olationm — 0 can be carried out by fitting the results form; = 0.025, 0.03 are likewise not used in our analysis.

for M2, F,, and(y1)),, to continuumyPT. The next-to- Results We first report our results for the extrapolated
leading-order (NLO) expressions are [12] values of the physical scaléd,, ,,, and1/r ,,, with 3 =
2m ) 1 210 at Ny = 6 andf = 2.70 at N; = 2. For small
M? = — {1 + zm [aM + = log(zm)} } , enoughm, they can be extrapolated to = 0 usingxPT
F Ny [16], where the NLO terms are now linearin (there is

N @ no m log(m) term). This and the small change in these
_ _ AVy quantities in the range: = 0.01 — 0.02, indicate that a
b =F {1 e [QF 2 log(zm)] } - @ linear extrapolation should suffice for bofli; = 2 and
NZ 1 N; = 6. The extrapolated values in lattice units aje =
o), = (O 14 2m | — =2 log(zm)| v,  0.111(4) (Ny = 2) and0.100(6) (NV; = 6), andM, =
we) (WM{ { “ Ny 4 )]} 0.198(14) (N; = 2) and0.207(15) (N; = 6). Thus,

_ - ) (3) to within the10% accuracy of this paper, botly " and M,
where z = 2(¢1p)/(4m)* . The leading terms in-  remain fixed going fromV, = 2 (with 3 = 2.70) to N; =
corporate the Gell-Mann-Oakes-Renner (GMOR) relationg (with 3 = 2.10). We note finally that for QCDy, =
These expressions will be directly useful 8 = 2, but  .378(9) Gev~! [17], giving 1/M,ry = 0.488(12), in
because of the growth with; of the chiral log terms, not  reasonable agreement with abil; £y valuel/M,ry =
forst |:t'6' Details We use domain wallfermions with - - |

mulation Details We use domain wall fermions wi 2 — N
the Iwasaki improved gauge action, as used by the RBG; Wa/[r;ov;/ tl};n oM, IF m and_(l/”/’;g' r;]oUr(]ng(l;;t
UKQCD collaboration [13]. Lattice fermion discretiza- that M, /2mF,, extrapolates to{yy)/F” (the

tion typically breaks chiral symmetry, but in the domainrelat'on) in the chiral I|.m|t. 'We can get an estimate of
wall formulation the breaking is exponentially suppresse he enhancement of this ratio by comparlh@z/_ZmFm
(with flavor symmetry preserved), making it ideal for the or Ny — 6 to thqt for Vg - 2, at .f|n|te ms.
study of chiral dynamics. Gauge configurations are genelwe2 do this by pl20tt|ng the ratio of ratiod?,, =
ated using the hybrid Monte Carlo method as implementeWmm?Fm]w/[Mm/2mFm]2f in Fig. 1. We use the
in the USQCD application libraries, in particulars via ratio M,,/2mF, here, but we could also.use the ratios
a multi-level symplectic integrator, and using HasenbuschV¥)m/Fr, or (M, /2m)*? /(yu);/?, which also ex-
preconditioning and chronological inversion. Autocoarel trapolate to(y¢)/F*®, and which show the same trend.
tion is reduced by blocking over sets of 50 trajectories.  The evident trend in Fig. 1 is thak,, increases asn;
The lattice volume is set t82° x 64, with the length of ~decreases. Even disregarding the pointgt = 0.005,
the fifth dimensionL, = 16 and the domain-wall height this suggests that the extrapolated value will be well above
my = 1.8. All quantities are given in lattice units. For unity. A linear extrapolation of the data for = 0.01 —
N; = 6 we choosed = 2.10. For N; = 2 the choice 0.02 gives1.58(19) for m = 0, implying an enhancement
B = 2.70 then leads to nearly the same physical scale irin this range or above unless there is a downturijp.
lattice units. Simulations are performed for fermion masse This would require either special values of teT param-
m; = 0.005 to 0.03. At finite lattice spacing, even with €ters given the natural upturn of the combined chiral-log
m; = 0, the chiral symmetry is not exact, with the vi- terms in Egs. 1 and 2, or a significant downturn before
olation captured in a residual mass,., < m;. For  xPT turnsthe curve up againas— 0.

N; = 2, m,., = 2.60 x 1075, while for For N; = 6, The separate simulation results fdf2 /2m, F,,, and
Myes = 8.23 x 1074, The total fermion mass: is then  (y)),,, are shown in Figs. 2 — 4. We discuss first the evi-
M= My + Myes. dence that forVy = 2, NLO xPT (Egs. (1) — (3)) can be

Although global topological chargé), is an irrelevant used for the extrapolation ta = 0. We note that for the
quantity with infinite volume, in a finite volume it becomes rangem; = 0.01 — 0.02, for which M,,,L > 4, we have
relevant [14]. On a discretized lattic), is not conserved, F,,L = O(1), raising another concern about the appli-
with the system evolving between sectors, an evolution crueability of NLO yPT. Nevertheless, it has been observed
cial for the correct sampling of the path integral at finitethat for QCD studies with similaf,,, L values, the finite
volume. With very light fermions, the evolution @f slows  volume corrections are no more than a few percent [13].
dramatically using current Monte Carlo methods [15]. WeWe will examine these finite volume corrections in a fu-
find that@ evolves sufficiently forn, > 0.01 for both  ture paper [18], relying here on the smallness of the RBC
Ny =2and6. Atm; = 0.005 it does not, leading to sys- finite-volume corrections .

tematic shifts in(yv),,, and F,,,, which we will explore in From Figs. 2 and 3, we see that f@dt; = 2, M2 /2m
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FIG. 1: R = [M3/2mFmles/[Mi/2mFm)ay, Versusm =

(m(2f) + m(6£))/2, indicating enhancement ofjv)/F>
Ny = 6 relative toN; = 2.

andF;,, change little in the range:; = 0.01 — 0.02, in-
dicating along with theV; dependence in Eq. 3 that NLO
xPT should provide a reliable fit. Our results fapi)),,
show the expected dominance of the large linear contac
term (which does not preclude the usex#T). We there-
fore carry out theV, = 2 extrapolation ton = 0 using
the combined NLO chiral expansions of Egs. (1) — (3). The
five-parameter fit, shown in Figs. 2 - 4, leads to extrapo:
lated valued™ = 0.0209(41) and (y»¢)) /F? = 0.99(17),
giving the NLOxPT result

{Y)
Ny =2: = 47.1(17.6). (4)
The other fit parameters awe,, = 0.31(62), ar =

0.64(47) andae = 83(29). The values of the fit param-
eters excludingyc indicate that we are near the limit of
applicability of yPT. We note also that?/d.o.f. = 6.50
with an uncorrelated fit andl degrees of freedom.

We next compare ouN; = 2 results for(y¢))/F?
and M,/ F to the QCD quantitiesgq)/f2 andm,/ fx,
a reasonable comparison since the light-quark masses
are so small. Withf, = 92.4(0.3) MeV andm,,
775 MeV, we havem,/f, = 8.39(0.04), compared
to our valueM,/F = 9.4(2.5). The condensatéjq)
is renormalization-scheme dependent, asnig In the
MS scheme a2 GeV (~ 2.6m,), Ref. [19] finds
(@q)2 cev/f2 = 24.1(4.3). In our case{y)) is defined
by lattice regularization witlw~! ~ 5M, (equivalent to
3.85 GeV). The increase ifgq) going to this higher scale
can be estimated perturbatively from the anomalous dimer
sion of the mass operator [20]. We fiKi@ly) s g5 cev/ [ =
29.5(5.3). There is also a renormalization fact&™S,
which converts theMS condensate to the lattice-cutoff
scheme. Using Ref. [21], we findMS(3.85 GeV)
1.227(11), and therefordqq)s s5 eviat/ f2 = 36.2(6.5),
which agrees with Eq. 4 within errors.
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FIG. 2: The slope of the pseudoscalar mass squafd2m in
lattice units, as a function of fermion mass. The fit féf = 2
is a joint fit to M2, Fr, and (¢4, using the (solid) points at
my = 0.01 — 0.02, constrained to match NLQPT.
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FIG. 3: The Goldstone-boson decay const@ntin lattice units,
as a function of fermion mass. The fit fof; = 2 is a joint

fit to M2, Fm and (y)m, using the (solid) points at, =
0.01 — 0.02, constrained to match NLQPT.
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FIG. 4: The chiral condensate per fermi@hy), in lattice units,
as a function of fermion mass. The fit fof; = 2 is a joint
fit to M2, Fm, and (), using the (solid) points atny =
0.01 — 0.02, constrained to match NLQPT.



Finally, we discuss ouN; = 6 results, where both the based on the anomalous dimension@f)), gives an en-
simulation data and th&/; dependence of the NLQPT  hancement on the order &f05 to 1.1, depending on the
expressions indicate that the values are not yet small order of perturbation theory [18]. This can be converted to
enough, and the volume not yet large enough, to validatéhe lattice scheme using the results of Ref. [21] by multi-
the use of NLOxPT. (We nevertheless note that a sim-plying by the ratioZF/ZQ"? = 1.449(29)/1.227(11) =

ple polynomial fit to the solid points fo/7, /2m, F..,  1.18(3). The result is a perturbative enhancement on the
and (y)),, leads to extrapolated values that satisfy thegrder 0f20 — 30%.

GMOR relation atl.30.) We argue, though, that a conser-

vative lower bound can be indirectly placed af))/F3 It will be helpful to obtain results for smaller. (with a
for N; = 6 by boundingF from above and(yp) / F? larger lattice volume) and perhaps study the chiral extrap-
from below. olations at NNLO. We are now exploring larger values of

ForF,,, (Fig. 3), theN; = 6 pointsatn; = 0.01—0.02  Vy (= Ny) and other gauge groups, and we will study the
decline steeply with decreasing. The eventual reliabil- consequences of walking for quark and lepton mass gener
ity of YPT (Eq. 2) at lower masses will, because of theation and electroweak precision measurements.
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