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cTheoretical Physics Department, CERN,

Geneva 23, 1211 Switzerland
dDepartment of Mathematical Sciences, University of Liverpool,

Liverpool, L69 3BX U.K.

E-mail: james.currie@durham.ac.uk, thomas.gehrmann@uzh.ch,

e.w.n.glover@durham.ac.uk, alexander.huss@cern.ch,

jan.m.niehues@durham.ac.uk, andreas.vogt@liverpool.ac.uk

Abstract: Computations of higher-order QCD corrections for processes with exclusive

final states require a subtraction method for real-radiation contributions. We present the

first-ever generalisation of a subtraction method for third-order (N3LO) QCD corrections.

The Projection-to-Born method is used to combine inclusive N3LO coefficient functions

with an exclusive second-order (NNLO) calculation for a final state with an extra jet. The

input requirements, advantages, and potential applications of the method are discussed,

and validations at lower orders are performed. As a test case, we compute the N3LO

corrections to kinematical distributions and production rates for single-jet production in

deep inelastic scattering in the laboratory frame, and compare them with data from the
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1 Introduction

Collider experiments have provided a wealth of precision measurements of basic low-

multiplicity production processes and scattering reactions in particle physics. An equally

high level of accuracy in the theoretical predictions is required to turn the experimental

data into highly accurate determinations of fundamental parameters (e.g., coupling con-

stants and particle masses) or to use them in indirect searches for new-physics effects. The

necessary theoretical precision can be obtained by computing the relevant scattering cross

sections to a sufficiently high order in perturbation theory.

In this context, one distinguishes predictions for exclusive (sometimes also called fully

differential or fiducial, depending on the specific application) cross sections and inclusive

cross sections. Fiducial cross sections take account of the kinematical coverage and final-

state reconstruction procedure of the experimental measurement, and can be compared

directly with data. Inclusive cross sections are the result of an extrapolation to full kine-

matical coverage. This extrapolation is usually performed as part of the experimental

analysis; it does however require detailed modelling and theory input, thereby introduc-

ing additional sources of uncertainty. Wherever possible, experimental measurements of

precision observables at the LHC have started to shift their focus towards fiducial cross

sections.

The computation of higher-order corrections differs in important technical details be-

tween inclusive and exclusive cross sections. In inclusive cross sections, kinematical infor-

mation on individual final-state products can be fully integrated over, thereby considerably

reducing the number of independent scales in the problem under consideration. Results for

higher-order corrections for inclusive cross sections can be cast in the form of coefficient

functions, which can often be obtained in closed analytical form. In contrast, predictions

for exclusive cross sections need to keep track of the full final-state information in all sub-

processes relevant at a given order. This is usually realised in the form of a parton-level
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event generator, which applies the experimental event reconstruction and kinematical cuts

(collectively called measurement function) to all subprocesses in order to reconstruct the

fully exclusive differential cross section. Owing to these important technical differences,

inclusive cross sections can often be computed to a higher perturbative order than exclusive

cross sections.

QCD corrections for inclusive cross sections are available to the fourth order (N4LO)

for e+e− → hadrons [1–4], and to the third order (N3LO) for deep inelastic scattering [5, 6]

and Higgs-boson production (integrated over rapidity) in gluon fusion at hadron collid-

ers [7, 8]. Building upon the results for deep inelastic scattering (DIS), corrections to this

order have also been inferred for Higgs boson production in vector boson fusion [9]. In

processes with hadrons in the initial state, these results for the partonic coefficient func-

tions in principle require parton distributions accurate to N3LO, which will be enabled

by the ongoing progress in the calculation of the Altarelli-Parisi splitting functions to this

order [10–12].

For fully differential exclusive cross sections, QCD corrections to the second order

(next-to-next-to-leading order, NNLO) were computed for the 2 → 1 processes vector-

boson production [13, 14] and Higgs-boson production [15, 16] already about a decade ago.

In recent years, NNLO calculations have become available for many 2 → 2 reactions at

hadron colliders: pp → γγ [17, 18], pp → VH [19], pp → V γ [20, 108], pp → tt̄ [21, 22],

pp → H + j [23–25], pp → W + j [26, 27], pp → Z + j [28–32], pp → γ + X [33, 34],

pp → ZZ [35, 36], pp →WW [37, 38], pp → ZW [39] and pp → 2j [40, 41], as well as for

the electron-positron collisions e+e− → 3j [42–47] and lepton-proton processes ep→ 1j [48]

ep → 2j [49, 50] and for the related 2 → 3 hadron-collider process of Higgs production

in vector boson fusion [51, 52]. These NNLO calculations of fully differential exclusive

cross sections were enabled by substantial methodological developments [52–66] of infrared

subtraction methods for the handling of singular contributions that appear in all parton-

level subprocesses.

Infrared singular contributions appear in two forms: either as explicit poles from virtual

loop corrections or in the form of implicit poles from real-radiation corrections, which

turn into explicit poles only after integration over the phase space associated to the real

radiation. An infrared subtraction method extracts the infrared poles from singular real

radiation contributions, optimally in a process-independent manner, and allows them to be

cancelled against the virtual corrections. The currently available methods require a varying

level of preparation and partly allow the re-use of results from lower-order calculations in

order to obtain NNLO corrections to exclusive cross sections.

In this respect, the Projection-to-Born (P2B) method [52] is very efficient in re-

purposing already available calculations: to compute the NNLO corrections to fully differ-

ential exclusive cross sections related to a final state X, it combines the next-to-leading

order (NLO) calculation for differential cross sections for X+ j final states with the NNLO

corrections to the inclusive cross section for final state X. In its practical implementation,

it requires an extension of the NLO X+j calculation, in which the kinematics of each X+j

final state is projected to an equivalent Born kinematics to construct a subtraction term

that is subsequently used to regulate the singular behaviour present when the jet becomes
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unresolved. This method is applicable to all processes where NNLO corrections to the

fully inclusive cross section are known differentially in the Born-level kinematics, i.e., the

production of a vector boson [67, 68] or a Higgs boson, the latter both in gluon fusion [69]

and in vector boson fusion [70], at hadron colliders as well as deep inelastic lepton-hadron

scattering [71, 72]. Up to now, it has been applied in the calculation of NNLO corrections

to Higgs-plus-two-jet production in vector boson fusion [52].

There has been substantial recent progress in calculating N3LO corrections to inclusive

cross sections [7–9], and NNLO calculations are now becoming available for fully differential

cross sections involving jet final states. By combining these two recent developments, we are

now able to extend the P2B method to compute N3LO corrections to fully differential cross

sections. This is the main purpose of this paper which is organized as follows. Section 2

summarises the different parton-level contributions to cross sections up to N3LO in QCD,

and describes how the P2B method is applied to cancel their infrared singularities. As a

proof-of-principle application of the method, we compute the N3LO corrections to single-jet

production in the laboratory frame of deep inelastic scattering in section 3 and compare our

predictions to data from the HERA electron-proton collider in section 4. Finally, section 5

contains our conclusions.

2 Method

Infrared singularities from real-radiation contributions at higher orders in perturbation

theory arise from phase-space regions where one or more of the final-state particles become

soft and/or collinear. These singularities appear only upon integration over the final-state

phase space, and can be extracted from the real-radiation contributions by using an infrared

subtraction method. The currently available methods at NNLO can be broadly classified

in two types, depending on whether the divergent phase-space integral is regulated by

applying cuts to prevent it to encompass the singular regions (cut-based or slicing: [63–

66]), or whether it is regulated by introducing counter-terms that render the integrand finite

in the singular regions (counter-term-based or subtraction: [52–62]). In the latter methods,

the construction of counter-terms typically exploits the known factorisation properties of

the phase space and the QCD matrix elements in all singular regions.

The P2B method [52] is the simplest possible incarnation of a counter-term-based

method. The counter-term is given by the full matrix element itself, which is evaluated at

its original phase-space point. The only difference between the real-radiation contribution

and its counter-term is in the measurement function: the real-radiation contribution uses

the actual measurement function that defines the exclusive cross section, while the mea-

surement function of the counter-term is unity everywhere in phase space (i.e., projected to

the Born-level kinematics of the leading-order process), corresponding to a fully inclusive

cross section. This method can be applied provided that the complete kinematics of the

inclusive cross section for a final state X can be inferred from the momenta of non-QCD

particles (i.e., not requiring a recombination or clustering of momenta); this restricts its

application in principle to the production of one or more colourless particles at hadron

colliders and to DIS processes.
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For processes at hadron-hadron colliders, it should be kept in mind that the kinematics

of the inclusive process is described by two variables: the mass of the final state X and

its rapidity, and that the inclusive cross section is thus not to be confused with the total

cross section (which is integrated over rapidity). Conceptually, the P2B method can be

extended for these processes to any order in perturbation theory, provided the ingredients

(the inclusive cross section at the desired order, and the fully differential cross section with

an extra jet at one order below) are available:

dσNkLO
X

dO
=

dσNk−1LO
X+j

dO
−

dσNk−1LO
X+j

dOB
+

dσNkLO, incl.
X

dOB
. (2.1)

Here dO abbreviates the kinematical definition (usually multiply differential) of an infrared-

safe observable, defined using the actual event-kinematics, while dOB is the limiting value

of dO if evaluated for the Born-level production process of X. The essence of the P2B

method is to define a kinematical mapping that uniquely assigns OB to each O,

dO −−→
P2B

dOB . (2.2)

It should however be noted that the P2B method only accounts for the infrared sub-

traction of the most singular parts, i.e. for those contributions that turn from implicit to

explicit poles when integrating out the last remaining parton. All other infrared cancella-

tions have taken place already within the construction of the exclusive cross section with

an extra jet at the previous order, dσNk−1LO
X+j /dO. In this part of the calculation, a differ-

ent infrared subtraction method must be applied, since the kinematics of the process with

an extra jet typically does not allow one to define a fully inclusive cross section. In the

application of the P2B method to the NNLO corrections to Higgs-plus-two-jet production

in vector boson fusion [52], the NLO corrections to Higgs-plus-three-jet production were

taken from an existing calculation [73, 74] based on the dipole subtraction method [75].

Fully differential NNLO corrections are now becoming available for a substantial num-

ber of jet production processes. These calculations can be used as ingredients to P2B

calculations at N3LO accuracy, provided the corresponding inclusive cross sections are

known to this order. To understand how the P2B method is implemented at this order,

we note that the N3LO cross section for the production of a final state X (which consists

of n particles at Born level) is assembled as follows:

dσN3LO
X

dO
=

∫
Φn+3

dσRRR
X J(On+3) +

∫
Φn+2

dσRRV
X J(On+2)

+

∫
Φn+1

dσRV V
X J(On+1) +

∫
Φn

dσV V V
X J(On) , (2.3)

where dσABC
X denotes the parton-level contributions to the cross section from tree-level

triple-real radiation (RRR), from double-real radiation at one loop (RRV ), from single-

real radiation at two loops (RV V ) and from the three-loop virtual corrections to the Born

process (V V V ). The virtual loop contributions are ultraviolet-renormalised. Processes

with incoming partons also contain mass factorisation counter-terms; these are implicitly
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contained in the virtual loop corrections in the above formula. The mass factorisation

counter-terms up to N3LO are constructed from the three-loop splitting functions [76, 77].

The function J(Oi) defines the observable under consideration for an i-particle final state,

with the Born-level definition J(OB) ≡ J(On), and
∫

Φi
denotes the i-particle phase space

integration. Each term in the above sum is separately infrared divergent, with infrared

singularities arising from the virtual loop integrations and from the phase-space integrations

over unresolved particles. The inclusive cross section depends only on the n-particle Born-

level kinematics, and its N3LO contribution can be assembled as

dσN3LO, incl.
X

dOB
=

∫
Φn+3

dσRRR
X J(OB) +

∫
Φn+2

dσRRV
X J(OB)

+

∫
Φn+1

dσRV V
X J(OB) +

∫
Φn

dσV V V
X J(OB) . (2.4)

The parton-level processes dσRRR,RRV,RV V
X also contribute to the NNLO corrections

to the (fully differential) X + j production. Provided that a jet j is resolved in the final

state, the infrared cancellations among these three contributions can be accomplished by

an NNLO subtraction method. Using the antenna subtraction method [55–58, 78], the

NNLO cross section schematically reads [58]

dσNNLO
X+j

dO
=

∫
Φn+3

(
dσRRR

X J(On+3)− dσS,aX+jJ(On+2)− dσS,bX+jJ(On+1)
)

+

∫
Φn+2

(
dσRRV

X J(On+2)− dσT,aX+jJ(On+2)− dσT,bX+jJ(On+1)
)

+

∫
Φn+1

(
dσRV V

X J(On+1)− dσUX+jJ(On+1)
)
, (2.5)

where dσS, T, UX+j denote the subtraction terms, constructed from antenna functions and re-

duced matrix elements for the three parton-level contributions. Using the factorisation

properties of the multi-particle phase space into a phase space of lower multiplicity and an

antenna phase space [78],

dΦn+3 = dΦn+2 × dΦA,1 , dΦn+2 = dΦn+1 × dΦA,1 ,

dΦn+3 = dΦn+1 × dΦA,2 , (2.6)

dσS, TX+j can be integrated such that all antenna subtraction terms in eq. (2.5) can be shown

to add up to zero,∫
ΦA,1

dσS,aX+j = −dσT,aX+j ,

∫
ΦA,2

dσS,bX+j +

∫
ΦA,1

dσT,bX+j = −dσUX+j . (2.7)

By construction, the integrations do not depend on the definition J of the observable,

and can thus be carried out for all antenna functions [55–57, 79–82] in a process-independent

and observable-independent manner.
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In the N3LO contribution to the exclusive cross section for final state X, the final

state jet j in eq. (2.5) is no longer guaranteed to be resolved, but can become soft and/or

collinear, thereby resulting in an infrared divergence upon phase-space integration. At this

point, the P2B subtraction sets in:

dσN3LO
X

dO
=

dσNNLO
X+j

dO
−

dσNNLO
X+j

dOB
+

dσN3LO, incl.
X

dOB

=

∫
Φn+3

(
dσRRR

X J(On+3)− dσS,aX+jJ(On+2)− dσS,bX+jJ(On+1)
)

−
∫

Φn+3

(
dσRRR

X J(On+3→B)− dσS,aX+jJ(On+2→B)− dσS,bX+jJ(On+1→B)
)

+

∫
Φn+2

(
dσRRV

X J(On+2)− dσT,aX+jJ(On+2)− dσT,bX+jJ(On+1)
)

−
∫

Φn+2

(
dσRRV

X J(On+2→B)− dσT,aX+jJ(On+2→B)− dσT,bX+jJ(On+1→B)
)

+

∫
Φn+1

(
dσRV V

X J(On+1)− dσUX+jJ(On+1)
)

−
∫

Φn+1

(
dσRV V

X J(On+1→B)− dσUX+jJ(On+1→B)
)

+
dσN3LO, incl.

X

dOB
. (2.8)

The agreement of the above equation with the original N3LO contribution (2.3) can be

seen by using eq. (2.7) to eliminate all antenna subtraction terms, observing OB ≡ On,

and by expanding the last line using eq. (2.4). With the P2B subtraction, the contribution

from each phase-space multiplicity in eq. (2.8) is manifestly finite and can be integrated

numerically,

dσN3LO
X

dO
=

∫
Φn+3

(
dσRRR

X

(
J(On+3)− J(On+3→B)

)
− dσS,aX+j

(
J(On+2)− J(On+2→B)

)
− dσS,bX+j

(
J(On+1)− J(On+1→B)

))
+

∫
Φn+2

(
dσRRV

X

(
J(On+2)− J(On+2→B)

)
− dσT,aX+j

(
J(On+2)− J(On+2→B)

)
− dσT,bX+j

(
J(On+1)− J(On+1→B)

))
+

∫
Φn+1

(
dσRV V

X

(
J(On+1)− J(On+1→B)

)
− dσUX+j

(
J(On+1)− J(On+1→B)

))

+
dσN3LO, incl.

X

dOB
. (2.9)

For completeness, we also summarise the structure of the NLO and NNLO correc-

tions [52] for the final state X in the P2B method, where the NNLO corrections take the

– 6 –
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NLO calculation of X + j production using antenna subtraction as an ingredient:

dσNLO
X

dO
=

∫
Φn+1

(
dσRX

(
J(On+1)− J(On+1→B)

))
+

dσNLO, incl.
X

dOB
, (2.10)

dσNNLO
X

dO
=

∫
Φn+2

(
dσRR

X

(
J(On+2)− J(On+2→B)

)
− dσS,NLO

X+j

(
J(On+1)− J(On+1→B)

))
+

∫
Φn+1

(
dσRV

X

(
J(On+1)− J(On+1→B)

)
− dσT,NLO

X+j

(
J(On+1)− J(On+1→B)

))

+
dσNNLO, incl.

X

dOB
. (2.11)

The contributions dσAX denote the corrections to the Born-level process from single-real

radiation (A = R), double-real radiation (A = RR) and real-virtual corrections (A =

RV ), and mass-factorisation contributions are again implicitly included with the virtual

corrections.

3 Application to jet production in deep inelastic scattering

The basic parton-level process in deep inelastic lepton-proton scattering (DIS) is the elastic

scattering at large momentum transfer of the lepton and a quark, mediated by a virtual

photon, W- or Z-boson. The outgoing quark forms a jet, of which the momentum can be

inferred using momentum conservation using the initial state momenta and the outgoing

electron momentum. Viewed in the laboratory frame of the lepton-proton system (which

can be either of fixed-target or collider type), this jet always has a non-vanishing transverse

momentum and a finite rapidity. The inclusive single-jet cross section (at fixed kinematics

of the jet) at Born level is therefore identical to the inclusive structure function (at fixed

kinematics of the lepton).

Jet production in DIS has been measured [83] in the laboratory frame [84–89] and in

the Breit frame [90–94]. In the latter, the virtual photon and the proton collide head-

on and the basic lepton-quark scattering process always yields a quark at zero transverse

momentum. Consequently, the first non-trivial jet production process in the Breit frame is

two-jet production. Owing to the higher final state multiplicity, this process has a higher

sensitivity to QCD dynamics; the vast majority of jet production studies at HERA were

therefore performed in the Breit frame [90–94].

Next-to-leading order QCD corrections to jet production in DIS have been available

for a long time for single-jet production in the laboratory frame [95, 96] as well as for

two-jet [97–100] and three-jet production [101] in arbitrary frames. Very recently, the cal-

culation of NNLO QCD corrections to two-jet production in DIS [49, 50] was completed.

This calculation uses the antenna subtraction method [55–58] and is implemented in a flex-

ible parton-level event generator (NNLOjet), which allows to compute any infrared-safe

observable derived from the process under consideration. While [49, 50] and its subsequent

application to a precision determination of the strong coupling constant [102] discuss only

– 7 –
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jet production observables in the Breit frame, the very same NNLOjet implementation

can be applied to compute two-jet production in DIS in the laboratory frame.

The Born level kinematics of single-jet production in DIS in this frame can be recon-

structed entirely from the lepton kinematics: denoting the incoming and outgoing lepton

momenta by pa and p1 (with q = pa − p1), and the incoming proton momentum by P , the

incoming and outgoing quark momenta are determined by pb = xP and p2 = xP − q with

x = −q2/(2q · P ). The Born-level value of any observable OB ≡ O2 derived from single-jet

production in DIS is therefore expressed in terms of the momenta (pa, p1, P ). As a result,

we can define a mapping which, starting from any momentum set of final-state multiplicity

m > 2, maps onto to this Born kinematics: {pi}m → {pi,B}2. It is then given by

p1,B = p1 , p2,B = xP − q . (3.1)

With this mapping at hand and the identification X = 1j and X+j = 2j, eqs. (2.9)–(2.11)

provide the N3LO corrections to single-jet production in DIS in the laboratory frame, based

on the existing NNLO calculation of two-jet production processes [49, 50] and the inclusive

N3LO DIS structure function [5, 6]. It should be noted that this reasoning exploits the

specific constraints on the Born-level kinematics in the laboratory frame, and that the P2B

method can not be applied in the Breit frame.

In order to validate our implementation of the P2B method up to NNLO, we have

performed an independent calculation of single jet production in the laboratory frame

based entirely on the antenna subtraction method. In figure 1, we compare results from

both methods for the inclusive jet pseudorapidity η jet, the inclusive jet transverse energy

Ejet
T , the momentum transfer Q2 = −q2, and the Bjorken scaling variable x. The setup

of the calculation follows the ZEUS measurement [89] described in section 4.1 below. The

bottom panels in each plot display the ratios between the P2B and antenna subtraction

method for the NLO and NNLO coefficients and the central choice µR = µF = Q of the

renormalization and mass-factorization scales. The error bars correspond to the numerical

integration error of the P2B prediction, while the filled area shows the corresponding error

of the antenna-subtraction results. The dashed lines are for illustrative purposes and show

±1% for NLO-only and ±5% for NNLO-only.

We observe agreement between the two methods for the O(αs) NLO coefficient, which

is well below 1% across almost the entire kinematic range and fully consistent within the

respective Monte Carlo errors. For the O(α2
s ) NNLO coefficient, the statistical uncertainties

are typically below 1% in regions which contribute the bulk of the cross section; they can

increase to a few percent in the tails of the distributions. Again, we observe excellent

agreement between the two independent calculations. With respect to the full NNLO

prediction, the agreement between the two methods was validated at the sub-permille level.

A similar level of agreement is also observed for the other scale settings of the seven-point

scale variation described below.

4 N3LO results and comparison to HERA data

The first observation of jet production in DIS was made by the fixed-target E665 exper-

iment [84, 85]. Shortly thereafter, the experiments H1 and ZEUS at the electron-proton

– 8 –
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Figure 1. Comparison of results up to NNLO obtained with the P2B and the antenna subtraction

methods. The upper frames in each plot show the absolute predictions obtained using the P2B

method. The lower frames display the ratio of the predictions obtained in the P2B and antenna

subtraction computations for the NLO-only and NNLO-only contributions to the differential cross

sections, with error bars and filled areas representing numerical integration errors of the P2B and

antenna-subtraction results, respectively. The cuts and jet definition are as in eqs. (4.1) and (4.2).

collider HERA embarked on a large program of jet production studies in deep inelas-

tic scattering, with measurements both in the laboratory frame [86–89] and in the Breit

frame [90–94]. Early measurements established the jet production process and determined

total jet rates as function of the resolution parameter [86–88]. Subsequent studies on a

larger dataset led to the determination of differential distributions of jets [89–94] in the
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kinematical variables. The resulting HERA legacy dataset provides important constraints

on QCD dynamics and the parton distributions of the proton.

In the following, we will compare the N3LO results to single-jet measurements in the

laboratory frame that were performed by the ZEUS collaboration for differential distribu-

tions [89] and jet rates [88]. The theory uncertainties on the predictions are obtained from

a seven-point scale variation of renormalisation and factorisation scales around a central

value of µ2
F = µ2

R = Q2, independently varying µR and µF up and down by factors [1/2 , 2]

and discarding the two combinations with the largest separation of both scales. Parton

distribution functions fitted at N3LO accuracy are not yet available; the results presented

below are obtained using the NNLO NNPDF3.1 set [103] with αs(MZ) = 0.118. The same

set is also used to evaluate the LO and NLO expressions.

4.1 Differential distributions

The ZEUS measurement [89] of differential distributions for jet production in the laboratory

frame is based on data that were taken with a proton beam energy Ep = 820 GeV and

an electron beam energy Ee = 27.5 GeV. We compare our results to the measurement

performed in the ‘global’ region1 defined by ZEUS through the fiducial cuts

Q2 > 25 GeV2, y =
Q2

xs
> 0.04, E′e > 10 GeV, (4.1)

where E′e denotes the energy of the outgoing electron. Jets are reconstructed using the kT

clustering algorithm [104] in the longitudinally invariant mode (ET-weighted recombination

scheme) [105] and are required to satisfy

Ejet
T > 6 GeV, −1 < η jet < 3 . (4.2)

Figure 2 compares the cross sections calculated at LO, NLO, NNLO and N3LO to the

experimental measurements [89] for the inclusive jet pseudorapidity η jet, the inclusive jet

transverse energy Ejet
T , the momentum transfer Q2, and the Bjorken scaling variable x. We

observe that, for the first time, the scale-uncertainty bands overlap across the full kinematic

range, when going from NNLO to N3LO. The inclusion of the N3LO corrections further

reduces the scale uncertainties, by typically a factor of two or more.

The low-x region as well as the first Q2 bins are kinematically suppressed at LO, hence

the perturbative accuracy is effectively reduced. As a consequence, we observe larger

higher-order corrections with residual N3LO scale uncertainties at the level of about ±10%

in this region. Large perturbative corrections and correspondingly large uncertainties are

also observed in the forward region, η jet & 1. In this region, the LO process is again sup-

pressed kinematically, and most of the jet activity here arises from final states containing

several jets. Forward jet production in DIS has been studied extensively [83] with a view

on establishing large logarithmic corrections arising from the high-energy limit [106] that

potentially require resummation. We observe that in the forward region these corrections

1The other two regions that are presented in the ZEUS study are subsets of the ‘global’ region, obtained

by applying additional cuts to effectively remove the Born-level one-jet production process. We do not

consider these here.
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Figure 2. Kinematical distributions in single inclusive jet production in deep inelastic scattering

up to N3LO in QCD, compared to ZEUS measurements [89]. The error bars on the data represent

the statistical and systematic uncertainties added in quadrature; the uncertainty in the absolute

energy scale of the jets is shown separately as a shaded yellow band.

are built up by including consecutive perturbative orders. The overlap of the scale uncer-

tainty bands at NNLO and N3LO indicates a stabilization of the expansion at the present

order.

Overall, the N3LO QCD predictions provide an excellent description of the ZEUS data.

An improvement over the NNLO description is observed in particular in those kinematical

regions where higher-order corrections are large (low x, low Q2, forward region: η jet & 1):
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here the N3LO corrections induce changes to the shape which bring the central predictions

in line with the measurements. The shape of the Ejet
T distribution, especially in the region

8–20 GeV, is also affected by higher-order corrections; however, its experimental accuracy

is systematically limited by relatively large jet-energy-scale uncertainties.

4.2 Jet rates

Earlier ZEUS measurements [87, 88], based on a smaller dataset taken with Ep = 820 GeV

and Ee = 26.7 GeV, determined the jet production rates, i.e., the fraction of events with

a certain jet multiplicity. These studies applied the JADE clustering algorithm [107] with

the four-momentum recombination scheme. The jet rates were measured as a function of

the JADE clustering parameter ycut in the fiducial region defined by [88]:

160 < Q2 < 1280 GeV2, 0.04 < y < 0.95 , 0.01 < x < 0.1 . (4.3)

In this particular measurement, the two-jet rate is defined as

RZEUS
(2+1) =

N2+1

N2+1 +N1+1
, (4.4)

where N1+1 and N2+1 are the number of recorded (1 + 1)- and (2 + 1)-jet events, with

the extra “+1” denoting the proton remnant forming the beam jet. The normalisation is

chosen such that

RZEUS
(1+1) ≡ 1−RZEUS

(2+1) , (4.5)

which is different from the usual convention to normalise with respect to the total hadronic

cross section.

In figure 3 we present the results for the 2-jet rate RZEUS
(2+1) up to N3LO and compare

them to the measurement in ref. [88]. We refrain from showing the one-jet rate separately,

as it is trivially related to RZEUS
(2+1) via eq. (4.5). It should be noted that the errors on the

data [88] correspond only to the statistical uncertainties. Systematic uncertainties from

jet acceptance corrections (which amount to up to 20%, and whose uncertainty is not

quantified) are not provided on a bin-by-bin basis in [88].

It can be seen that the N3LO corrections result in a substantial reduction of scale

uncertainties. As the value of ycut is lowered, less of the final-state radiation is clustered,

thereby resolving more jet structure. As a result, the fractions of two-jet events increases

towards lower values of ycut. The low-ycut region is also where the largest scale dependence

is observed. At N3LO the scale band starts to overlap in the low-ycut region with that of

the previous order for the first time. This is accompanied with a substantial reduction of

scale uncertainties, and the ycut-dependence of the data is well-described by the predictions

at NNLO and N3LO.

Using the same kinematical cuts, we have also calculated the jet rates normalising to

the total hadronic cross section, i.e. not applying the unusual normalisation in eq. (4.5). In

this setting, the zero-, three-, and four-jet rates are also well-defined and can be evaluated,

as shown in figure 4. Similar features as in figure 3 are observed concerning the reduction of

the scale uncertainty and the ycut-dependence. Moreover, it can be seen that the fractions

of one- and two-jet events dominate over events with higher jet multiplicities by at least

an order of magnitude.
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Figure 3. Comparison of ZEUS data to theoretical predictions up to N3LO in QCD for the two-jet

rate, normalised according to eq. (4.5). Data are corrected to give parton level results and were

extracted from figure 9 of ref. [88]; the error bars show the statistical uncertainties.

5 Conclusions

In this paper, we demonstrated how the P2B method for infrared subtractions can be

applied to compute fully differential third-order (N3LO) QCD corrections to observables

with sufficiently simple Born-level kinematics. The implementation of the method for a

given process X requires the knowledge of the fully inclusive N3LO cross section for the

production of X, and a fully differential NNLO calculation for X+jet final states.

As a first application, we have computed the N3LO corrections to jet production in

deep inelastic lepton-proton scattering. Predictions at this order lead to very small residual

scale uncertainties (often at sub per-cent level in the bulk of the phase space) and account

properly for enhancements of distributions from multiple radiation near boundaries of the

phase space. The N3LO results provide an excellent description of data on distributions and

rates in jet production, obtained by the ZEUS experiment [88, 89], also in those kinematical

regions where the NNLO predictions were insufficient to describe their behaviour.
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Figure 4. Predictions up to N3LO in QCD for zero-, one-, two-, three-, and four-jet rates in the

JADE algorithm for the kinematical cuts of eq. (4.3).

The P2B method could be used in the near future to evaluate more processes at N3LO

accuracy in particular in proton-proton collisions.
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