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Abstract

The research presented in this thesis is directed at investigating and evaluating the
usage of cryptography to provide secure data analysis using a third party. The moti-
vation is the emergence Data Mining as a Service (DMaaS), which in turn has been
motivated by cloud computing technology that provides the potential for reducing the
operational cost of analysing data by utilising the storage and computing services pro-
vided by cloud service providers. DMaaS has also opened the door for collaborative
data mining whereby multiple data owners pool their data for analysis, using a cloud
provider offering DMaaS, to gain some mutual benefit. The challenge is for the data
analysis to be conducted in a secure manner. Data privacy can be substantially pre-
served using cryptography. With the emergence of Homomorphic Encryption (HE)
schemes encrypted data can, to an extent, be securely processed without decryption.
However, current HE schemes have imposed constraints on the computation, both in
terms of the arithmetic operations provided (not all operations required by data mining
algorithms are supported) and computational overhead (multiplication can become very
slow). Solutions that have been introduced in the literature include: (i) resorting to
Secure Multi-Party Computation (SMPC) protocols or (ii) substantial data owner in-
volvement whenever unsupported operations are required. In both cases, the amount of
data owner participation is significant, calling into question the advantages that DMaaS
has to offer. The research presented in this thesis asks the question “Using cryptogra-
phy is it possible to securely, effectively and efficiently delegate data analysis to a third
party data miner while minimising any required interaction with data owners?”. The
fundamental idea presented, so as to achieve secure DMaaS, is the idea of using a proxy
for the data rather than the data itself. In particular to use the concept of distance
matrices as the proxy. A range of distance matrix implementations are presented each
of increasing sophistication. The utility of the data proxy idea is illustrated using a
collection of proposed secure data clustering and classification algorithms that operate
over encrypted data. The thesis also introduces several encryption schemes designed to
address the limitations of existing schemes in the context of DMaaS. Throughout the
thesis two distinctive DMaaS scenarios are considered, the single data owner scenario
and the multiple data owner scenario. The proposed distance matrices directed at the
single data owner scenario are: (i) Updatable Distance Matrices (UDMs), (ii) Encrypted
Updatable Distance Matrices (EUDMs), (iii) Encrypted Distance Matrices (EDMs) and
(iv) Secure Chain Distance Matrices (SCDMs); while the distance matrices directed at
the multiple data owner scenario are: (i) Global EDMs (GEDMs) and Super SCDMs
(SSCDMs). The proposed concepts, schemes and secure data mining algorithms were
evaluated using two categories of data; UCI datasets and randomly generated synthetic
datasets. The synthetic datasets were used to evaluate the scalability of proposed solu-
tions by analysing the runtime as the data size increases. The evaluation was conducted
to compare the operation of the proposed approaches with each other, and the relevant
standard (insecure) algorithms. The evaluations considered the proposed approaches in
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terms of: (i) the amount and complexity of the data owner participation in preparing
data and participating when secure data mining was undertaken by the TPDM, (ii) effi-
ciency of the secure data mining algorithms, (iii) accuracy of proposed approaches, (iv)
the security and (v) the scalability in the case of collaborative data mining approaches.
The accuracy was measured by comparing the operation of the proposed algorithms
to that of standard algorithms operating over unencrypted data. The evaluations in-
dicted that the proposed solutions reduced the data owner participation, compared to
alternative approaches, while maintaining the effectiveness of the data analysis.
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Chapter 1

Introduction

1.1 Overview

Recent technological advances and digital innovations have exponentially increased the
amount of data collected by enterprises of all kinds. This has created a storage and pro-
cessing challenge; most enterprises have only limited storage and processing capabilities
because of the resource involved [1]. Many data owners (enterprises) have consequently
moved their data to “the cloud”. Figure 1.1 shows an organisation view of the most im-
portant benefits that can be gained from adopting cloud storage capabilities as reported
in a Microsoft TechNet survey [2]. Cloud storage also facilitates cloud computing, the
ability to process data using the cloud service providers servers rather than servers local
to the enterprise. Cloud computing, as an alternative to traditional local computing,
offers advantages of: (i) high scalable storage and computational capacity, (ii) low cost
(low infrastructure investment) and (iii) increase in the collaboration potential between
cloud users.

Coupled with a rise in the usage of cloud storage and computing is a corresponding
increase in the quantity of data that enterprises collect. This increase, in turn, is coupled
with an increased desire, on behalf of enterprises, to apply the techniques of machine
learning and data mining to their data. Many Cloud Service Providers (CSPs) thus also
provide Data Mining as a Service (DMaaS) facilities. Examples include Microsoft Azure,
Google Cloud Platform (GCP) and Amazon Web Services (AWS). More generically,
throughout this thesis, any provider of DMaaS will be referred to as a Third Party Data
Miner (TPDM) who may, or may not, also be a CSP. The DMaaS provided typically
comprises a set of data analytics and data mining algorithms such as anomaly detection,
data classification and clustering. The “studios” and “workbenches” provided frequently
also provide easy to use “drag and drop” interfaces. However, there are significant
concerns, on behalf of data owners, related to data privacy and security. This, in turn,
has served to limit the adoption of DMaaS [3, 4]. This is evidenced by a recent report
compiled by the Cloud Security Alliance (CSA)1 which concluded that, despite the
many security measures currently adopted by CSPs, 66.5% of enterprises continue to
have reservations about cloud security in the context of the outsourcing of sensitive
data [5]. These concerns have been reflected in the actions of legislative bodies that
have enacted privacy legislation, such as the U.S. Health Insurance Portability and
Accountability Act (HIPAA) [6] and the European Union’s General Data Protection
Regulation (GDPR) [7]. The work presented in this thesis is therefore motivated by
the reservations that enterprises have expressed concerning the adoption of DMaaS, as

1A non-profit organisation that promotes research into best practices for securing cloud computing
and the use of cloud technologies to secure other forms of computing.

1
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Figure 1.1: Statistics concerning the most important benefits of adopting cloud stor-
age [2]

facilitated by current cloud storage and cloud computing capabilities, with respect to
data privacy and security in the context of the requirements of frameworks such as
HIPAA and GDPR. More specifically, the work presented is directed at an investigation
into mechanisms to provide secure, efficient and effective third party data clustering and
classification without compromising the accuracy of results.

The CSPs (TPDMs) who offer DMaaS are governed by contractual commitments
under which the services are provided. However, the majority of CSPs do not guarantee
the security and privacy in their Service Level Agreement (SLA) [8–10], a part of the con-
tractual terms and conditions between CSPs and consumers (data owners). Many CSPs
maintain data privacy and security using “best practices”, such as: (i) the encryption of
data when in transit between a CSP and data owners and when “at rest” in storage; (ii)
providing data owners with permissions to configure data access controls, (iii) deletion
of confidential data once data analysis is complete (this encompasses any data backups)
and (iv) usage of Trusted Execution Environments (TEEs), a secure area within the
main processor (the CPU) that serves to isolate the execution environment therefore
preventing data from being accessed during processing [11]. However, using these best
practices, there is no guarantee that the data will be completely secure, and data privacy
preserved when data is manipulated, by TPDMs, in plaintexts form. TPDMs are vul-
nerable to external malicious attacks and internal misuse behaviours within the confines
of a CSP. Therefore, encrypting the dataset in transit or at rest using the key of the
CSP is also of concern.

Given the above, in addition to the best practices applied by the CSPs, data own-
ers have adopted additional protection methods to preserve their data confidentiality
such as data anonymisation [12] and the private cloud computing model [13]. Using
data anonymisation, data owners remove confidential and deemed “personal” attributes
before outsourcing the data to a TPDM. However, recorded incidents have shown that
this method is insufficient and data cannot be 100% anonymised [14–16]. For example,
Sweeney et al. [16] identified (by name) 84% of patients that had consented to partic-
ipate in the Personal Genome Project (PGP) by “cross-referencing” the PGP dataset
with publicly available voter registration archives. This allowed not only access to DNA
data, but also other types of highly sensitive data present in the PGP dataset. The
second method is to adopt the private cloud model that provides computing power as a
service within a virtualised environment using an underlying pool of physical computing
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resources which are only accessible by a single enterprise (data owner), therefore pro-
viding that enterprise with greater control and privacy. However, using a private cloud,
the data owners not only have to invest in computing and storage resources, but also in
the related software and maintenance activities which in many cases negates the reason
for adopting cloud storage in the first place.

Data encryption provides a powerful potential alternative solution to the DMaaS
data confidentiality problem [17]. Although the majority of encryption schemes prevent
any manipulation of data once it is encrypted, thus precluding any form of DMaaS.
There are a number of emerging encryption schemes, named Property Preserving En-
cryption (PPE) schemes [18], that maintain some of the properties of the plaintext data
so that the cyphertext data can still be manipulated, although in a prescribed manner.
One form of PPE is Homomorphic Encryption (HE) which allows simple mathematical
operations over cyphertext without decryption. The precise nature of the mathemat-
ical operations supported by a HE scheme is dependant on the nature of the adopted
scheme. The primary homomorphic properties supported by different HE schemes are
limited to cypher addition (⊕), cypher multiplication (⊗) and in some cases multiplying
cyphers by real numbers (~). However, although HE schemes do partially address the
security obstacles limiting the widespread adoption of DMaaS, the existing HE schemes
identified in the literature do not provide all the mathematical operations required for
any form of sophisticated DMaaS and typically their usage entails a large computational
overhead. For example similarity calculation operations, required with respect to many
data mining algorithms, are not supported.

The solutions that have been developed to date to address the limitations associated
with the adoption of HE schemes can be broadly categorised (at least at a high level)
as follows:

1. Recourse to data owner: The operations not supported by the selected HE
scheme are conducted using unencrypted data by the data owner or data owners
(see for example [19–24]).

2. Multiple-CSPs model: Use two (or more) non-colluding CSPs where one holds
the encrypted data and the other holds the private key (an example can be found
in [25]). In this context, the operations not supported by the adopted HE scheme
will be delegated to the key holder CSP party who acts on behalf of a data owner
or data owners [26]. Several methods have been adopted to preserve the data
confidentiality and privacy for delegated operations.

3. Secret sharing: Use HE schemes that mathematically split a secret key among
multiple semi-honest and non-colluding parties, such as the scheme presented in
[27]. The TPDM will uses the HE properties of the adopted scheme to manipulate
the data whilst the unsupported operations are collaboratively conducted using the
party’s shared secret key on behalf of the data owner (see for example [19, 28]).

4. Secure Multi-Party Computation (SMPC): Use well-established SMPC pro-
tocols [29–32] to securely calculate statistical values over data distributed across
several data owners. A solution only applicable in the context of collaborative
data mining. In this case, the TPDM is typically involved only as a mediator as
in the case of [20, 33–37], or not used at all as in the case of [36, 38–40].

To date, most existing work falls into the first and last of the above categories,
both entail a significant element of data owner participation. The degree of data owner
participation is such that the only remaining reason for adopting a DMaaS facility is to
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support collaborative data mining. In the case of a single data owners there seems little
point in conducting third party data analysis if most of the work needs to be conducted
by the data owners themselves (given that there is no HE scheme that provides all the
mathematical operations that might be required by a DMaaS provider). The requirement
for a number of semi-honest and non-colluding parties (in the remaining categories of
solution) is also of concern, and for many data owners a security risk as the secret key
cannot be revoked even when a party is deemed to be untrustworthy. Given the above,
there is a widespread requirement for effective and accurate DMaaS solutions where data
can be outsourced in encrypted form and mined in a secure manner by a TPDM without
the need for significant interaction with data owners and without the need to expose
secret keys to non-colluding parties. The need for appropriate encryption schemes and
supporting frameworks to achieve this is therefore the central concern of this thesis. To
address this issue this thesis proposed a number of encryption mechanisms, coupled with
secure processes and protocols, that dramatically reduce, or in some case avoid, data
owner participation with respect to data mining operations conducted by a TPDM. The
thesis considers scenarios where data belonging to a single data owner is outsourced,
and scenarios that involve two or more data owners who wish to conduct collaborative
data mining.

The rest of this introductory chapter is organised as follows. In Section 1.2 the
motivation for the research is discussed in further detail. The research question and
associated research issues are then presented in Section 1.3. Section 1.4 outlines the
research methodology adopted to address the research question and the associated issues.
Section 1.5 summaries the research contributions followed, in Section 1.6, by a list of
published work to date resulting from the work presented in this thesis. In Section 1.7,
the structure of the remainder of the thesis is outlined. Finally, the chapter is concluded,
in Section 1.8, with a brief summary.

1.2 Motivation

From the foregoing, the main motivation for the work presented in this thesis is the
need for secure, scalable and effective (in terms of accuracy, cost and the complexity of
data owner participations) mechanisms for third party data analysis. The fundamental
idea presented in this thesis is, as already noted above, to use cryptography to eliminate
current privacy and security concerns when delegating data analysis to a TPDM. The
proposed cryptography methods, mostly founded on the use of distance matrix data
proxies as a means of preserving data privacy, provide the following advantages over
other Privacy Preserving Data Mining (PPDM) methods found in the literature:

• The cryptography has a mathematical foundation that can be used to prove the
security of the individual proposed schemes and/or identify the potential attacks
that can be instigated over any proposed solution [17].

• The mathematical properties preserved in the cyphertexts generated using the
proposed schemes permit data manipulation (for example distance calculation and
cluster centroid calculation) without loss of accuracy with respect to final data
analysis results. This was not the case in other methods [41–44] which featured
trade-offs between accuracy and security.

• The entire dataset can be encrypted without the requirement of deleting the private
(or confidential) attributes as in the case of annonymisation PPDM methods [12].
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Existing research directed at HE for secure data analysis, in the case of a single
data owner scenario, has either featured extensive data owner participation and a cor-
responding communication overhead [21, 23, 24] or made use of a Trusted Third Party
(TTP) [25, 45]. Both solutions entailed significant security concerns rendering them
to be inappropriate with respect to many application domains. Furthermore, most of
the existing work in the context of collaborative data mining (the multiple data own-
ers scenario) relies on SMPC protocols that introduce a considerable computation and
communication overhead with respect to data owners, and thus require the availability
of a good local IT infrastructure. The disadvantages associated with this previous work
provides further motivation for the work presented in this thesis.

It should also be noted that the work on secure data analysis presented in the litera-
ture has concentrated on providing a solution with respect to particular individual data
mining algorithms that cannot easily be extended to support alternative data mining
algorithms; in other words a generic solution. Therefore, in this thesis, the intuition
is that any proposed new method directed at DMaaS, that does not feature the dis-
advantages associated with earlier work, should also support a range of data analysis
algorithms; proposed solutions should feature “versatility”.

From the preceding discussion, the work presented in this thesis, is motivated by the
disadvantages associated with existing approaches to secure data mining concerned with
mechanism to address the disadvantages of current HE schemes.

1.3 Research Questions and Related Issues

Given the above, the research question which this thesis seeks to address, is:

“Using cryptography is it possible to securely, effectively and efficiently delegate data
analysis to a third party data miner while minimising any required interaction with

data owners?”

The provision of an answer to this research question entailed the resolution of a number
of subsidiary questions as follows:

1. What is the most appropriate HE scheme that satisfies the requirements for out-
sourcing data mining activities to a TPDM in the context of PPDM and the single
data owner scenario?

2. Is HE the best form of cryptography to provide an effective solution to the PPDM
problem?

3. Following on from 2, if HE is not the most appropriate form of cryptography, what
is the most appropriate form of encryption required to provide a better solution?

4. What is the most effective way of supporting the required operations not supported
by an encryption scheme (without decrypting the data) so as to, where necessary,
minimise the number of data owner interactions?

5. Given potential solutions to above, what is the most appropriate mechanism, or
mechanisms, for evaluating these solutions?

6. Can the proposed single data owner scenario solutions be extended to support scal-
able collaborative data mining (the multiple data owners scenario) while keeping
the data owner participation at a minimum?
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7. Is it possible to tailor (or modify) any proposed HE scheme so that it can support
the operations required by a range of data mining algorithms, as opposed to only
a small number of specific algorithms?

1.4 Research Methodology

To provide answers to the above listed research issues, and the overriding research ques-
tion, the start point for the work presented in this thesis, was to review established
HE schemes and their HE properties. The aim was to identify appropriate schemes
that could, with some adaptation, provide a solution to a wide range of data mining
algorithms by considering the following criteria: (i) schemes efficiency, (ii) scheme se-
curity and (iii) the supported HE mathematical properties. The Property Preserving
Encryption (PPE) schemes were also reviewed to identify the potential properties that
can be preserved in cyphertext and could therefore go some way to support PPDM. At
the commencement of the research the potential of using PPE schemes instead of, or in
conjunction with, HE was not clear as most of the research reported in the literature
directed at PPDM was founded on the exclusive usage of HE schemes. From the review
of existing work a number of schemes were identified to act as a foundation for further
investigation.

One of the aims of the proposed research was to derive a generic (versatile solution)
to the PPDM challenge encompassing a range of data mining algorithms. However,
to limit the scope of the thesis, it was decided to commence the investigation with a
focus on data clustering algorithms and then move on to data classification algorithms,
particularly Back-Propagation Neural Networks (BPNNs). Regardless of the considered
algorithm, the key issue was how to achieve the envisioned DMaaS in such a way that the
entire data analysis process (or at least most of it) was delegated to the TPDM. At the
commencement of the research, the focus was on the single data owner scenario where
a single data owner outsourced their data clustering to a TPDM as shown in Figure
1.2(a). The first phase of the research presented in this thesis was therefore directed at
investigating and evaluating a series of single data owner secure data cluster techniques
that, with respect to existing work, reduced data owner participation and minimised the
communication overhead between data owner and the TPDM, both while maintaining
the accuracy of final data analysis results. The proposed techniques were evaluated
using the established k-Means [46], Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [47] and Nearest Neighbour Clustering (NNC) [48] algorithms.
The research was then extended by considering the multiple data owners scenario in
terms of collaborative PPDM [49]; the idea being to enable analysis over large datasets
supplied by a number of data owners, so as to gain some mutual advantage (as illustrated
in Figure 1.2(b)). The preliminary idea was to extend the single data owner solutions
by involving multiple data owners. To this end, the previously proposed schemes had to
be extended to support multiple data owner data privacy preservation.

The final phase of the adopted research methodology was to consider data classifi-
cation. Two types of classification algorithm were considered: kNN data classification
and Back-Propagation Neural Networks (BPNNs). The work commenced by consider-
ing the application of the previously proposed secure clustering techniques to support
classification. The initial work directed at secure BPNN classification highlighted a fur-
ther challenge with respect to non-linear activation function estimation over encrypted
data. Another challenge, when a collaborative query is allowed, was how to best allow
authorised parties to securely query an encrypted classification model.



Chapter 1. Introduction 7

(a)

Data owner

D

TPDM

D′

D′ Analysis

Results

(b)

P1

D1

D′1 Analysis

Results

. . . . . .

Pu

Du

D′u Analysis

Results

TPDM

D′

Figure 1.2: Data owner scenarios considered in this thesis; (a) the single data owner
scenario where data belonging to a single data owner is outsourced to a TPDM for
analysis and (b) the multiple data owners scenario featuring collaborative outsourcing
of data mining activities where D′= ∪i=u

i=1D
′
i belongs to different participating parties

p1 to pu

In all cases the proposed solutions (algorithms, concepts and protocols) were evalu-
ated and (where possible) compared with respect to: other mechanisms proposed in the
literature and to standard algorithms that operated over unencrypted data. The evalua-
tion was conducted using synthetic datasets and a number of benchmark datasets taken
from the University of California Irvine (UCI) machine learning repository [50], these
were selected so that datasets of a variety of sizes and different numbers of classes could
be considered. The evaluation was performed to assess: (i) the amount and complexity
of data owner participation, (ii) the accuracy (effectiveness) of the data mining, (iii) the
efficiency (the runtime complexity), (iv) the level of security and (v) the scalability of
the proposed solutions.

The reasons for choosing the selected algorithms (k-Means, DBSCAN and NNC data
clustering, kNN data classification and BPNN) were as follows:

• The selected algorithms had wide application and are currently offered by many
DMaaS service providers although in an insecure manner.

• Clustering algorithms that involve distance comparison against threshold values
entail a security challenge in the context of collaborative data mining; as other
participants can use the knowledge of their own data and results of comparisons
(when the clustering is undertaken) to instigated overlapping attacks that could
help to estimate the record attribute values of the private data belonging to other
participants.

1.5 Contributions

The work presented in this thesis makes a number of contributions with respect to PPDM
and cryptography that can be summarised as follows (the relevant chapter where the
contribution is presented is included in parenthesis):

1. Improvement in data security by obviating the need for sending data in any form
to TPDMs and/or sharing it with other participating parties using the concept of
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Super Secure Chain Distance Matrices (SSCDMs) and the idea of virtual record
lists (Chapter 8).

2. Reducing the amount of data owner participation when undertaking secure data
mining operations, and in some cases avoiding it entirely, when the data mining is
undertaken by a TPDM using the concept of distance matrices (Chapters 4 to 8).

3. Introducing the idea of Cryptographic Ensembles that comprise a HE scheme and
a bespoken OPE scheme, therefore providing a solution to secure data clustering
involving distance comparison (Chapter 5).

4. Six secure data clustering algorithms, in the context of the single data owner
scenario, that operated over encrypted data, without requiring decryption and
without delegating keys to non-colluding parties:

(a) Secure k-Means using Updatable Distance Matrices (UDMs) (Sk-Means) (Chap-
ter 4).

(b) Double Blind Secure k-Means using Encrypted UDMs (EUDMs) (DBSk-
Means) (Chapter 5).

(c) Double Blind Secure Nearest Neighbour Clustering (DBSNNC) using En-
crypted Distance Matrices (EDMs) (Chapter 5).

(d) Sk-Means, SNNC and SDBSCAN using Secure Chain Distance Matrices (SC-
DMs) (Chapter 7).

5. Four Secure collaborative data clustering algorithms, addressing the multiple data
owners scenario, that operated over encrypted data without decryption and with-
out sharing data between participants or delegating keys to non-colluding parties:

(a) Secure DBSCAN (S-DBSCAN) and Secure NNC (S-NNC) using Global EDMs
(GEDMs) (Chapter 6).

(b) Secure DBSCAN (SDBSCAN) and Secure NNC (SNNC) using Super SCDMs
(SSCDMs) (Chapter 8).

6. A Secure Neural Network algorithm (SecureNN) that facilitates model training
and query classification/prediction with only very limited data owner participation
(Chapter 9).

7. A novel Order Preserving Encryption scheme, the Multi-Users Order Preserving
Encryption (MUOPE) scheme, that supported collaborative data clustering and
facilitates preservation of the ordering of data distributed across multiple data
owners (Chapter 6).

8. The Frequency and Distribution Hiding OPE (FDH-OPE) scheme, an amalgama-
tion of two order preserving encryption schemes, the nonlinear order preserving
scheme [51] and Zheli et al.’s scheme [52], each of which facilitates information
hiding and the reduction of information leakage (Chapter 5).

9. A “dimensionality reduction” algorithm that addressed the scalability issue of the
exponentially increasing size of cyphertexts with the application of each multipli-
cation operation as in the case of Liu’s fully HE scheme (Chapter 9).

10. The Modified Liu’s Scheme (MLS) that supports secure data comparison while
preserving the same HE mathematical properties as Liu’s original scheme [53]
(Chapter 9).
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11. Scalable collaborative data clustering that allows a very large number of parties
(multiple data owners) to conduct data analysis over the union of their data with-
out sharing private data and without recourse to the expensive SMPC protocols
(Chapters 6 and 8).

12. The Secure Query Cyphering (SQC) protocol that preserves a query record’s
privacy, while at the same time preserving the data owner key confidentiality
when classifying the query record using a proposed Secure kNN (SkNN) algorithm
(Chapter 7).

1.6 Publications

The work presented in this thesis has been the subject of a number of refereed publica-
tions. Extended and revised versions of a number of published conference papers have
been submitted to journal special issues and, at time of writing, some of these are still
under reviewing. The published and submitted papers are itemised below, each with a
short summary of the paper highlighting its significance with respect to this thesis. In
each case a reference to the chapter where the material appears is also given.

Journal Papers

1. Nawal Almutairi, Frans Coenen and Keith Dures (2018): Cryptography for Secure
Third Party Data Clustering Using an Encrypted Updatable Distance Matrix, Sub-
mitted to: Transactions on Large Scale Data and Knowledge Centered Systems.
Journal article comprising an extended and revised version of conference paper (1)
(see below). Usage of HE and OPE in secure data clustering is introduced and
evaluated using Encrypted Updatable Distance Matrices (EUDMs). The proposed
solution addresses the issue of the potential of the reverse engineering of the origi-
nal dataset that was a feature of the UDM concept published earlier, while at the
same time significantly reducing the data owner participation. The work presented
in this paper is included in Chapter 5.

2. Nawal Almutairi, Frans Coenen and Keith Dures (2019): Secure Third Party Data
Clustering Using SecureCL, Φ-Data and Multi-User Order Preserving Encryption,
Submitted to: Expert Systems: the Journal of Knowledge Engineering. Journal
paper that presents the Secure CLustering (SecureCL) collaborative data cluster-
ing mechanism founded on the idea of the Super Secure Chain Distance Matrix
(SSCDM) and two secure clustering algorithms; the SNNC and SDBSCAN. The
SecureCL operates over the SSCDM data proxy, without requiring access to the
original data (in any form), and without the requirement of involving any data
owner participation while SecureCL is undertaken by a TPDM. Three forms of
data partitioning (distribution) are considered; horizontal, vertical and arbitrary
data partitioning. The content of this paper was used as the foundation for work
presented in Chapter 8.

3. Nawal Almutairi, Frans Coenen and Keith Dures (2019): A Cryptographic Ensem-
ble for Secure Third Party Data Analysis: Collaborative Data Clustering Without
Data Owner Participation, Accepted for publication in Data and Knowledge Engi-
neering (DKE). The work presented in this paper was an extended version of con-
ference paper (2) (see below). The paper introduces the Cryptographic Ensemble,
Global Encrypted Distance Matrices (GEDM) and Multi-Users OPE (MUOPE),
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that facilitate secure collaborative data clustering. The proposed solution was ex-
tensively evaluated in the context of NNC and DBSCAN clustering. The content
of this paper was used with respect to the work presented in Chapters 5 and 6.

4. Nawal Almutairi, Frans Coenen and Keith Dures (2019): SecureNN: A Third
Party Privacy Preserving Neural Network With Back-Propagation Learning, to
be submitted to: Transactions on Machine Learning and Data Mining. The pa-
per introduces the Modified Liu’s Scheme (MLS) that addresses the problem of
the exponential increasing size of cyphertexts in Liu’s original HE scheme after
encrypted multiplication ⊗ has been applied, and also presents a mechanism that
serves to produce order preserving cyphers. An illustrative secure neural network
using back-propagation learning algorithm, that operates over MLS, was presented
and evaluated using UCI datasets. Chapter 9 uses material from this paper.

5. Nawal Almutairi, Frans Coenen and Keith Dures (2019): Secure Outsourced kNN
Data Classification Over Encrypted Data Using Secure Chain Distance Matrices,
Submitted to: Communications in Computer and Information Science (CCIS).
The paper extends conference paper (3) (see below). The concept of Secure Chain
Distance Matrices (SCDMs) is evaluated in the context of the kNN data classifi-
cation and the kNN query process. The paper also presents a protocol for securely
encrypting the query belonging to a query owner while maintaining the privacy of
the data owner encryption key. The content presented in paper has contributed
to the material presented in Chapter 7.

Conference Papers

1. Nawal Almutairi, Frans Coenen and Keith Dures (2017): K-Means Clustering
Using Homomorphic Encryption and an Updatable Distance Matrix: Secure Third
Party Data Clustering with Limited Data Owner Interaction, 19th International
Conference on Big Data Analytics and Knowledge Discovery (DaWaK 2017), pp.
274-285. Springer International Publishing. This conference paper reports on the
results of the UDM concept applied in the context of the Sk-Means algorithm. The
idea was to encrypt the data belonging to a single data owner, using Liu’s scheme,
and use the associated homomorphic properties to calculate distances and cluster
centroids on each clustering iteration. The UDM served to guide the TPDM to
determine the data similarity between records and cluster centroids. The UDM
was updated on each iteration using only very limited data owner participation. A
criticism of the approach was that it might support re-engineering of the original
data given that a UDM is, in essence, simply a large collection of linear equations.
The ideas presented in this paper contributed to significantly reducing the data
owner participations while maintaining the accuracy of final clustering results.
The work presented in this paper, and results from the evaluation, are included in
Chapter 4.

2. Nawal Almutairi, Frans Coenen and Keith Dures (2018): Third Party Data Clus-
tering Over Encrypted Data Without Data Owner Participation: Introducing The
Encrypted Distance Matrix., 20th International Conference on Big Data Analytics
and Knowledge Discovery (DaWaK 2018), pp. 163-173. Springer International
Publishing. This paper built on the earlier conference paper, listed above, by con-
sidering the issue of a potential attack, founded on reverse engineering processes,
given that the UDM discloses distances between records in terms of a set of linear
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equations. Two encryption schemes were used; a HE scheme and a proposed Fre-
quency and Distribution Hiding Order Preserving Encryption (FDH-OPE) scheme.
The proposed FDH-OPE was an amalgamation of two existing encryption schemes
so as to provide an adequate level of security. The solution proposed in this paper
is presented in Chapter 5 along with the results and evaluation.

3. Nawal Almutairi, Frans Coenen and Keith Dures (2018): Data Clustering Using
Homomorphic Encryption and Secure Chain Distance Matrices, 10th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K 2018), pp. 41-50. Springer International Publishing. This
conference paper built on the UDM concept with the aim of reducing the mem-
ory requirement and hence improving the scalability. The SSCDM concept was
proposed which substantially reduced the number of elements in a UDM, and con-
sequently the required memory resource. The reported evaluation demonstrated
that the SCDM concept, and the non-deterministic properties of the scheme (pre-
sented in Chapter 5), led to small differences between standard algorithms and the
proposed secure algorithms (Sk-Means, SNNC and SDBSCAN). However, the dif-
ference is not significant and positively served to reduce information leakage. The
SCDM concept, the associated secure data clustering algorithms and obtained
evaluation results are included in Chapter 7.

4. Nawal Almutairi, Frans Coenen and Keith Dures (2018): Secure Third Party Data
Clustering Using Φ-data: Multi-User Order Preserving Encryption and Super Se-
cure Chain Distance Matrices, 38th BCS SGAI International Conference on Arti-
ficial Intelligence (BCS SGAI 2018), pp. 3-17. Springer International Publishing.
Winner of the British Computer Society Specialist Group on AI (BCS-
SGAI) prize for best technical paper. This paper introduced the concept of
SSCDMs, a proxy for real data, directed at secure collaborative data clustering.
This idea served to obviate the need for outsourcing the real data in any form,
or the sharing of real data with participants. The data clustering was delegated
entirely to the TPDM. Three different data partitionings (distribution formats)
were considered and three associated “binding” processes to build a SSCDM for
data belonging to different data owners. The work in this paper is included in
Chapter 8.

1.7 Thesis Structure

The rest of this thesis is organised as follows:

Chapter 2: Privacy Preserving Data Mining Background and Related
Work. This chapter presents the background and relevant literature to the work
presented in this thesis. The chapter commences with some definitions and a pre-
sentation of the formal notations used throughout the thesis. This is followed by a
review of existing PPDM techniques and the associated security considerations in
the context of both the single data owner and the multiple data owner scenarios.

Chapter 3: Cryptography Fundamentals and Preliminaries. The fundamen-
tals and associated preliminaries of Homomorphic Encryption (HE) are presented
in this chapter by considering the basic notation for these scheme, the HE math-
ematical properties they possess, their limitations and their security. The chapter
also introduces, in further detail, the Liu [53] and Paillier [54] schemes which are
the foundation for schemes and solutions presented later in the thesis.
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Chapter 4: Updatable Distance Matrices. This chapter considers the first
proposed approach directed at secure outsourced data clustering founded on the
idea of Updatable Distance Matrices (UDMs). This chapter also presents the
Secure k-Means (Sk-Means) clustering algorithm which operates over encrypted
data and is founded on the UDM concept. The chapter presents a mechanism
for updating the UDM, whenever this is required, with very limited data owner
participation. The proposed approach is evaluated using benchmark datasets taken
from the UCI machine learning repository.

Chapter 5: Encrypted Updatable Distance Matrices. The chapter introduces
the idea of the Cryptographic Ensemble and Encrypted (Updatable) Distance Ma-
trices (EUDMs/EDMs) which address the problem of the potential reverse engi-
neering aspect of original data when using UDMs. The Cryptographic Ensemble
comprises a HE scheme and a bespoken OPE scheme (FDH-OPE), which in turn
is an amalgamation of two existing OPE schemes. The proposed approach is eval-
uated in the context of two clustering algorithms; Double Blind Sk-Means (DBSk-
Means) and Double Blind Secure Nearest Neighbour Clustering (DBSNNC). Ex-
tensive evaluation is reported using the UCI datasets used earlier. The chapter also
includes a worked example of the DBSk-Means algorithm using the Cryptographic
Ensemble and the EUDM concept.

Chapter 6: Global Encrypted Distance Matrices. The chapter presents fully
outsourced collaborative data clustering using the Cryptographic Ensemble and
the Global EDM (GEDM), the first collaborative data clustering approach (the
multiple data owners scenario) considered in this thesis. The chapter presents the
Multi-Users OPE (MUOPE) scheme designed to facilitate data order preservation
for data belonging to multiple users/sources. The chapter also presents the Pooling
algorithm that allows multiple data owners to “pool” their EDM, with respect to
horizontally partitioned data, so as to conduct collaborative data clustering. Two
clustering algorithms are considered using the proposed GEDM and the Crypto-
graphic Ensemble; Secure NNC (S-NNC) and Secure DBSCAN (S-DBSCAN). An
extensive evaluation concerning the performance, security and scalability of the
algorithms is presented with respect to randomly generated synthetic data and
UCI datasets.

Chapter 7: Secure Chain Distance Matrices. In this chapter, secure outsourced
data clustering and secure data classification are considered. The algorithms are
founded on the concept of Secure Chain Distance Matrices (SCDMs) and Cryp-
tographic Ensemble (as presented in the previous chapter). SCDMs dramatically
reduce the required memory resources compared to when UDMs or EUDMs/EDMs
are used. The Secure k-Means (Sk-Means), Secure DBSCAN (SDBSCAN), Secure
NNC (SNNC) and Secure kNN (SkNN) classification algorithms are also intro-
duced in this chapter. Particular challenges are considered associated with kNN
query classification concerning queries that belongs to authorised Query Owners
(QOs), namely: (i) preserving data owner key confidentiality when encrypting a
QO’s query, (ii) determining the similarity between the outsourced datasets and
the new query records without involving the data owner or QO in the process
and (iii) making the query process controllable by the data owner but with a
minimum data owner participation. The chapter thus also presents the Secure
Query Cyphering (SQC) protocol and secure binding algorithms. The presented
evaluation again uses random synthetic datasets and UCI datasets.
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Chapter 8: Super Secure Chain Distance Matrices. The chapter introduces
the Super Secure Chain Distance Matrix (SSCDM) concept that obviates the need
for outsourcing or sharing data in any form (encrypted or in plaintext form) to a
TPDM. The concept of SCDMs, presented in Chapter 7, is extended by consider-
ing collaborative data mining over data distributed among different data owners.
Three different “Binding” processes are introduced in this chapter each coupled
to a different data partitioning scenario: horizontal, vertical and arbitrary data
partitioning. This chapter also introduces the idea of virtual record lists and the
possibility of updating the SSCDM by allowing record deletion and/or addition.
Finally the chapter provides detail concerning the adoption of the proposed ap-
proach in the context of Secure Clustering (SecureCL) that encompasses NNC and
DBSCAN. Evaluation is presented with respect to both random synthetic datasets
and UCI datasets.

Chapter 9: Secure Neural Network Using Modified Liu’s Scheme. This
penultimate chapter presents the SecureNN approach that allows model training
and prediction to be securely delegated to a TPDM with minimal data owner
participation. The chapter also presents the Modified Liu’s Scheme (MLS), a
modification of Liu’s original HE scheme to address the computational complex-
ity of model learning; a complexity caused by the increasing size of cyphertexts
through the continuous application of multiplication operations (⊗) as the learn-
ing progresses. The proposed MLS, as far as the author is aware, is the first fully
HE scheme that also provides an order preserving feature. The results from an
extensive evaluation using the UCI datasets and random synthetic datasets are
presented.

Chapter 10: Conclusion and Future Work. Chapter that concludes the thesis
with a summary of the presented work, the main findings regarding the research
question and the associated subsidiary questions and some discussion concerning
possible future research directions.

1.8 Summary

This chapter has introduced the background and main ideas underpinning the research
presented in this thesis. In particular the chapter has presented the research motivation,
the research question, the adopted research methodology and the main contributions of
the thesis. The next chapter (Chapter 2) provides further background to the work
presented and a literature review designed to provide more detail regarding existing
work and previous research concerning the research presented in this thesis.





Chapter 2

Privacy Preserving Data Mining
Background and Related Work

2.1 Introduction

As noted in Chapter 1, the work presented in this thesis is directed at a cryptographic
approach for providing privacy preserving third party data clustering and classification.
Therefore, there are two aspects of research which, from the perspective of this thesis,
are important to review: (i) the previous work related to PPDM and the adopted pri-
vacy preservation techniques, in particular those that can be adopted when a TPDM
is involved; and (ii) the previous work on cryptography and encryption schemes which
provide the potential for secure data analysis without first decrypting the data. This
chapter will thus provide the necessary background on the PPDM techniques, secu-
rity fundamentals and potential attacks that can be instigated when data analysis is
delegated to a TPDM. The following chapter, Chapter 3, will present the necessary
background concerning cryptography with emphasis on HE and PPE schemes.

In the introduction to this thesis it was noted that data mining is a well-established
research field that aims to extract useful information by exploration and analysis of
data. The resources facilitated through cloud computing have allowed businesses to
reduce the operational cost of such processing by outsourcing the data and delegating
any consequent data analysis to a TPDM who provides DMaaS. It has also opened the
door for collaborative data mining where a number of data owners pool their data for
analysis so as to gain some mutual advantages. However, the nature of the data mining
process and the associated legal data security requirements, have raised privacy and
security concerns when a third party is involved. This has instigated the emergence
of the research domain of Privacy Preserving Data Mining (PPDM) [55, 56] that aims
to provide techniques to allow secure data mining by attempting to achieve a balance
between data utility and data privacy preservation.

The remainder of this chapter is structured as follows. Section 2.2 considers what
is meant by the phrase “data privacy”. The privacy requirements for individual and
collaborative data analysis, the scenario where a single data owner outsources their data
analysis to a TPDM and the scenario where multiple data owners mine their data col-
laboratively, are then considered in Section 2.3. In Section 2.4, a comprehensive review
of PPDM techniques is presented. The section includes material on data modification,
SMPC, secret sharing and HE techniques; coupled with discussion of the associated
privacy measures, potential attacks and security vulnerability of each technique. The
adopted security model in the context of work presented in the main chapters of this

15
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thesis and the possible security threats that might be instigated, are discussed in Section
2.5. The chapter is concluded with a short summary in Section 2.6.

2.2 Data Privacy

Data privacy, confidentiality and security, are used in the literature in an interchangeable
manner. Given the nature of the work presented in this thesis it is important that a
single definition of the term data privacy is identified. Many definitions of the concept
of data privacy found in the literature are expressed in the context of a particular
research field to which the definition is applied [57]. In the context of data mining,
data privacy is defined in [58] as “getting valid data mining results without learning the
underlying data values” and in [59] as “prevention of unwanted disclosure of information
when data mining is performed on aggregate results”. These definitions highlighted:
(i) the dilemma of balancing privacy preservation with maintaining the effectiveness
of the data mining results and (ii) the importance of the “unwanted” disclosure of
underlying data. The concept of data privacy is also dependent on differing perspectives,
including individual desires and expectations, legislative perspectives and subjective
ethical considerations (which are all subject to change over the time). The above has
led to different understandings of what the phrase data privacy actually means, and by
extension what “unwanted disclosure” is understood to mean [60].

A start point for establishing a definition with respect to this thesis is to consider
the nature of the individual data attributes that may be included in a dataset D. These
can be classified as follows:

1. Explicit Identifiers (EIDs): Attributes that directly link to a subject (which might
be a person or enterprise) such as name, national identification number or phone
number.

2. Quasi Identifiers (QIDs): Attributes which individually are not EIDs, but which
jointly may link a data record in D to a specific subject, for example date of birth,
post code and gender [61].

3. Sensitive Attributes: Attributes which hold information, such a medical condition,
which will cause embarrassment or in some way be detrimental to an individual if
disclosed.

4. Other: None of the above; attributes that create no problem if revealed even to
untrustworthy parties.

It has been suggested that the last category of data can be disclosed without any
consequence, whilst the remaining categories need to be kept secure and confidential.
In other words the suggestion is that data can be split into “confidential” and “none-
confidential” attributes and PPDM techniques only applied to confidential data at-
tributes (an example for this argument and approach can be found at [62]). However,
given the changing regulatory landscape and the changing popular perception of what
data privacy is, it is argued in this thesis that all data should be considered to be con-
fidential irrespective of the nature of the data. This is a view for which supported can
also be found in the literature, see for example [63]. The definition of data privacy
adopted in this thesis, and one of the central ideas presented in this thesis, is that all
data is private and therefore any outsourced data should be encrypted in its entirety,
analysed in its encrypted form, and that the analysis results should be maintained in an
encrypted form accessible only to the data owner or owners.
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2.3 Privacy Requirements for Individual and Collaborative
Data Analysis

In Chapter 1 it was emphasised that two different data owner scenarios have been con-
sidered in this thesis. The single data owner scenario and the multiple data owners
scenario. These can also be referred to as the individual data mining/analysis and col-
laborative/shared data mining/analysis scenarios, respectively. The data owner (owners)
in both cases is (are) the data holder (holders). In this section, the two scenarios are
formally presented and their data privacy preservation requirements, in the context of
the definition of data privacy presented in Section 2.2 above and with respect to the rest
of this thesis, are defined. In the context of the multiple data owners scenario different
forms of data distribution are also considered.

2.3.1 Single Data Owner Scenario

The single data owner scenario refers to the situation where a single data owner out-
sources their private dataset D to a TPDM for analysis. This scenario is as depicted
earlier in Figure 1.2-(a) in Chapter 1. The aim is to reduce the operational cost of con-
ducting the data mining process in-house by harnessing the computational power avail-
able to the TPDM (typically a cloud computing provider). The data owner instructs
the TPDM to perform the desired data analysis on their behalf, over the outsourced
data, by specifying the nature of the desired analysis and the associated parameters.
The TPDM performs the desired analysis and then sends the results back to the data
owner. The ideal privacy preservation requirements in this case are that:

1. The TPDM must not have any direct access to the unencrypted outsourced dataset.

2. Any intermediate results, such as cluster centroids, actual distances between records,
results of neural network activation functions and neural network weights and bi-
ases, must not be revealed to the TPDM.

3. The data owner is the only party to have access to the data mining results and/or
developed model.

2.3.2 Multiple Data Owners Scenario

The multiple (distributed) data sources scenario refers to the scenario where the data
D = {D1, . . . , Du} is distributed across multiple data owners P = {p1, . . . , pu} who
wish to share their data in the context of some data mining enterprise, for example
the generation of a shared classification model or cluster configuration. This scenario is
depicted in Figure 1.2-(b) in Chapter 1. It is argued that by sharing data a better data
mining result is produced than that which might have been obtained if only local data
was used. This scenario is therefore also referred to as the collaborative data mining
scenario. In terms of data privacy, collaborative data mining clearly needs to be con-
ducted in a secure manner [49]. In this case the ideal privacy preservation requirements,
in the context of this thesis, will be as follows:

1. The privacy of the data belonging to each participating party pi must be preserved
with respect to the TPDM and all other participants.

2. Intermediate results produced when the data mining is in progress must not be
revealed to the TPDM or any other parties.
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3. Each participant only receives the data analysis results of their own data (not the
other participants results and not TPDM).

Additional privacy preservation requirements are imposed in the context of collab-
orative query service provision where authorised parties use a shared (classification or
prediction) model to label additional private data records. Figure 2.1 shows the system
model for this scenario. The figure shows a number of “data owners”, one data owner
whose data has been used to create a data model, a number of additional data owners,
identified as authorised Query Owners (QOs) and a TPDM. The idea in the context of
this thesis, and the above identified requirements, is that the data is outsourced to the
TPDM in encrypted form (D′), using a key belonging to the data owner, who builds the
desired model. Therefore for any query to be processed correctly the query record needs
to be encrypted using the same key used to encrypt the data D. In this case, given the
previous multiple data owners privacy preservation requirements, the following should
be added:

1. The data owner private key should be kept confidential so that QOs do not have
access to it.

2. The secure collaborative querying process must be controllable by the data owner
but with minimum data owner participation (the point of DMaaS is that the data
owner does not want to be involved in the actual analysis or query processing).

3. QOs must be unable to launch queries without being authorised to do so by the
data owner.

4. The secure collaborative query process must preserve the privacy of the outsourced
data from the QOs.

5. The privacy of the query record, and derived predicted label/value, must be pre-
served with respect to the TPDM and the data owner or data owners.

Query Owners (QOs)

. . . . . .

Data Owner

D

TPDM

D′

Query′

D′

Predicted Label

Figure 2.1: The collaborative query service system model

Data distributed across multiple data owners, in the context of a collaborative data
mining scenario, can be partitioned in different forms. Three different forms of data par-
titioning can be identified from the literature; horizontal [64], vertical [65] and arbitrary.
Horizontal data partitioned is where the participating parties conform to the same set
of attributes, A, but each holds different records [64]. In other words, the global dataset
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D is decomposed into “horizontal” segments each belonging to a single party. Figure
2.2-(a) shows an example of a dataset that has been horizontally partitioned across two
parties. All the participating parties have the same data schema that comprises ID,
Status, Credit, Trans. and Post. Vertical data partitioning is where the participating
parties conform to the same set of records, but each holds different attributes derived
from a global set of attributes A [65]. In other words, the global dataset D is decom-
posed into “vertical” segments each belonging to a single party. Figure 2.2-(b) shows
an example of a dataset that has been vertically partitioned across two parties. In this
case, each participant has a different data schema but all the collected data is referenced
to the same set of entities. The arbitrary data partitioning generalises the vertical and
horizontal partitioning cases and thus there is no schema agreed across parties for the
collected data.
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ID Status Credit Trans. Post
ID1

ID2

ID Status Credit Trans. Post
ID3

ID4

ID Status Credit Trans. Post
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Figure 2.2: Horizontal (a) and vertical (b) data partitioning scenarios
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2.4 Privacy Preserving Data Mining Techniques (Previous
Work)

Over recent years, the problem of Privacy Preserving Data Mining (PPDM) has be-
come prominent due to the increasing business need to outsource data analysis and for
share/collaboratively data analyses. Consequently many techniques have been proposed
designed to preserve data privacy while at the same time maintaining data utility when
data analysis needs to be securely conducted in a collaborative setting. Some of these
techniques are directed at the single data owner scenario (the individual data mining
scenario), while others are only applicable to the multiple data owner scenario (the col-
laborative data mining scenario). In this section, a review of existing PPDM techniques
is presented. These techniques can be categorised as follows: (i) data modification, (ii)
Secure Multi-Party Computation (SMPC), (iii) secret sharing and (iv) Homomorphic
Encryption (HE). Each is discussed in turn in the following four sub-sections, Sub-
sections 2.4.1 to 2.4.4. Each sub-section will also discuss the relevant privacy measures
and associated security vulnerability.

2.4.1 Data Modification

Data modification is a straightforward PPDM technique which operates by modifying
the data, before it is released for data mining, in such a way that the quality of the
released data is sufficient to maintain the effectiveness of the data analysis outcome.
Two well documented data modification techniques are data anonymisation and data
perturbation, these are considered in further detail in the following two sub-sections;
Sub-sections 2.4.1.1 and 2.4.1.2.

2.4.1.1 Data Anonymisation

Data anonymisation has been widely used with respect to publishing datasets that have
been made available for research and public benefit purposes [12]. It has been adopted
with respect to many research disciplines including medical/healthcare [66], social net-
works [67] and marketing [68]. Data anonymisation has been used as a privacy preserv-
ing technique in the context of many data mining applications, examples include data
clustering [69], data classification [70–72] and association rule mining [62].

Typically, data anonymisation operates by first removing the EID attributes from the
dataset to prevent the direct identification of subjects. Then modifying the QID and/or
sensitive attributes, according to whatever desired privacy requirements are in force.
The data is modified using one or more of the following data “sanitising” operations: (i)
data suppression, (ii) data generalisation and (iii) data permutation. Data suppression
modifies data by masking part of the attributes’ values (for example replacing part of
the values using asterisks). Data generalisation aims to reduce the precision of the data
fields by replacing values with a parent value in a given taxonomy. For example, replace
exact phone numbers in a given dataset with area codes, or replacing numeric values
(such as age) with an interval within which the value belongs. Data permutation (or
anatomisation) aims to de-associates QIDs and sensitive attributes either by separating
QIDs and sensitive attrubites in two datasets making it more difficult to link the two
sets or by swapping the attributes values among records [73–75]. In the former technique
the attribute values remain unchanged [75]. How the dataset is anonymised in practice,
using the above operations, mainly depends on the nature of the privacy requirements,
which in turn is influenced by the application domain.
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From the literature there is much reported work that uses the above operations to
implement data anonymisation [76–85]. The most common data anonymisation tech-
niques found in the literature are: k-anonymisation [76–79, 85], l-diversity [81] and
t-closeness [80]. The first, k-anonymisation, typically operates by modifying the QIDs,
using generalisation and suppression operations, in such a way that the QID attributes
for at least k− 1 records in dataset are the same in the anonymised version of the data.
The k-anonymisation will thus reduce the risk of identifying identities using a “linkage
attack” that uses QIDs and some background knowledge, or alternative linkage attack
that uses external data sources that hold QID values associated with entities in the
target dataset. However, k-anonymisation entails a trade-off between privacy and data
utility especially when the QID attributes are of particular relevance to the data analysis
to be undertaken. More importantly, k-anonymisation is only applied on the QID at-
tributes and disregarding sensitive attributes as it is assumed that without QIDs, there
is no risk of a linkage attack with public information. The fact that sensitive attributes
are not taken into consideration when forming the k-anonymised dataset may lead to
the sensitive attribute values within the k− 1 records having the same value which may
lead to the disclosure of private information concerning the individuals referenced by the
k − 1 records. For example, all the employees referenced in the k − 1 records have the
same salary or all the patients in the same k − 1 records suffer from the same disease.
In k-anonymisation, the value of k is used as a privacy measure; the higher the value of
k, the harder it is to de-anonymise records but at the cost of reducing the utility of the
data.

The l-diversity [81] and t-closeness [80] techniques were introduced to address the
limitation of k-anonymisation. When using the l-diversity technique the sensitive data
attributes values within the k−1 records in the k-anonymised dataset are further modi-
fied, by either generalising or suppressing data attributes values, in such a way that the
probability of associating entity with a sensitive attribute is bounded by 1

l (the value of
l is used as a measure of privacy). The higher the value of l the higher the variability of
the existing values of the sensitive attribute in the k− 1 data records and the lower the
possibility of sensitive attribute disclosure. The t-closeness technique further reinforced
the l-diversity by ensuring that the distribution of a sensitive attribute values in the
k − 1 data records is close to the distribution of the whole data (the distance between
the two distributions are not greater than a threshold t).

Generally, data anonymisation features a number of limitations:

1. All the data anonymisation techniques cause information loss, which must be min-
imised to maintain the accuracy of data mining results. Data anonymisation can
adversely affect the accuracy of the data mining as demonstrated by the extensive
experimentation reported on in [86].

2. In many cases QID attribute data modification is only applicable with respect to
the single data owner scenario as to operate correctly data modification operations
required access to the entire data to be modified [71, 72, 85].

3. Data anonymisation tends not be effective when using high dimensional datasets,
even in the case of the single data owner scenario. This is because of the diffi-
culty of perform data modification operations on partial ranges to find an optimal
anonymisation as discussed in [87].

4. Limitation of application, as demonstrated in [86], because the way that data is
anonymised is very dependent on the data itself and the purpose for which it is to
be used, consequently limiting the type of data analytics that may be applied.
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5. Security concerns in that data anonymisation techniques do not have provable se-
curity guarantees as in the case of many SMPC and cryptographic approaches [66].
Many incidences have been reported [14–16] that demonstrate the possibility of
de-anonymising the anonymised data using “linkage attacks” as will become clear
shortly in Sub-section 2.5.2. Therefore, data anonymisation does not sufficiently
preserved the data privacy as the TPDM has access to sensitive attributes and the
degraded QID.

Given the first of the above limitations, various metrics for measuring information
loss, or loss of data utility for data mining purpose, have been proposed such as the
minimal distortion metric [12, 78], the discernibility metric [79] and the normalised
average equivalence class size metric [88]. To address the limitation that many pro-
posed QID attribute modification techniques are only suited to the single data owner
scenario a number of alternative k-anonymisation techniques have been introduced for
collaborative data mining in the context of both vertically partitioned data [70, 84] and
horizontally partitioned data [85]. The broad idea in both cases was to agree on the
QID attributes to be modified and the adopted sanitising operations. However, the com-
plexity of such agreement limits the scalability of this technique. In [89] the scalability
of data anonymisation was addressed by introducing a Trusted Third Party (TTP) to
act on behalf of multiple data owners. The TTP will thus perform the desired data
anaonymisation without the requirement of interaction between data owners. However,
usage of a TTP is not always applicable and in many cases may present a significant
security risk.

Given the foregoing, and the requirements for PPDM in the context of both the
single data owner scenario and the multiple data owner scenario, as identified above, it
is suggested in this thesis that data anonymisation is unsuitable.

2.4.1.2 Data Perturbation

Data perturbation has been widely used as a disclosure control mechanism for preventing
the release of sensitive statistical information. For example, before publishing a survey
that holds sensitive/personal questions, statistical agencies perturb real responses (ac-
cording to some distribution) so as to prevent (or at least limit) the potential of linking
a respondent to a specific identity in the population [90]. This technique has been used
extensively in the domain of PPDM for preserving data privacy while conducting various
kinds of data mining, especially classification model generation [55].

Data perturbation preserves the data privacy by first suppressing or generalising the
EIDs and QIDs and then distorting individual sensitive data attributes value in such a
way that statistical information is retained in the perturbed data (unlike in the case of
data anonymisation). This is achieved by introducing statistically generated “random
noise” applied to the original data attribute values [55, 91–93]. The random noise can
be added to distort individual values as in the case of [55, 94] or can be multiplied as
in the case of [91, 92, 95]. Noise multiplicative guarantees stronger security compared
to noise additive due to the amount of noise introduced using multiplication [91, 95].
For the purpose of security, it is assumed that the variance of the added noise is large
enough so that the original data cannot be easily “guessed” from the perturbed version.
The statistical quality of perturbed data, that is correlated to the accuracy of data
analysis, is measured in terms of bias, precision, and consistency [96]. Bias represents
the difference between the unperturbed statistics and the expected value of its perturbed
estimate. Precision refers to the variance of the estimators obtained by the users while
consistency represents the lack of contradictions and paradoxes.
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Data perturbation has been used to implement varies secure data mining algorithms;
these are surveyed in [97]. Specific examples can be found in [92], [93] and [55] in
the context of k-Means, anomaly detection and decision trees. Data perturbation is
applicable in both the single data owner [91, 92] and collaborative data mining contexts
[55, 93, 94, 98].

Data perturbation is usually conducted over plaintext data. However, it can be
applied over encrypted data as in the case of [94, 99] where the data is encrypted using
homomorphic schemes that support addition or/and multiplication. In this case the data
perturbation is used to preserve data privacy in the multiple data owner, collaborative,
data mining context. In [99], an interactive protocol, to delegate the evaluation of the
sigmoid activation function to the data owner by adding noise to encrypted weights and
biases is presented. While the study in [94] introduces a secure collaborative DBSCAN
that includes the sharing of encrypted perturbed data records between parties that
facilitates the distances calculation between records belonging to different data owners.
However, data perturbation has a number of major disadvantages as follows:

1. It is not easy to apply with respect to categorical attributes due to the absence of
any natural ordering which limits the application of this technique to numerical
datasets.

2. As already noted above, perturbation involves a security-accuracy trade-off, since
the higher the level of security provided by the perturbation method the worse
the accuracy of the applied data mining algorithm. This is especially the case
with respect to the multiple data owners scenario when each party applies a local
perturbation method to their data. To address the latter it is suggested in [94]
that, to maintain the accuracy of results, all participating parties should use the
same perturbation method so as to ensure an acceptable accuracy. This constraint
raises a consequent security vulnerability and security risk when a third party,
such as a TPDM, is involved [56].

3. Data perturbation does not provide an adequate level of security as it provides the
potential for reconstructing the original data distributions using reverse engineer-
ing methods [100, 101].

2.4.2 Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) is a well-established research field that com-
prises a set of protocols which enable a number of parties to compute collaboratively
functions or statistics concerning their data without disclosing their respective inputs
[29, 30]. There are many SMPC protocols that were designed to support the calcula-
tion of different functions, including secure sum [102], secure multiplication [37], secure
scalar product [36, 37, 103] and secure data comparison [30, 104]. The security primi-
tives used to guarantee security of the underlining computation run jointly across parties
depending on the nature of the individual SMPC protocol.

SMPC was first proposed, in [56], as a potential solution for PPDM security and
privacy, with a focus on a secure implementation of the ID3 decision tree classifier.
Subsequently many SMPC protocols have been suggested directed at the fundamental
functions required by different data mining algorithms. Using these protocols, a range
of secure data mining algorithms have been implemented. Examples include DBSCAN
[36, 37, 40, 102, 105], k-Means [33] and Nearest Neighbour Clustering (NNC) [103].
These implementations considered different numbers of participants, two-party [36, 40,
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102, 103] and multiple-party [33, 37]; and different data partionings, horizontal [33, 36,
37, 40, 103], vertical [36, 40, 102] and arbitrary [40]. A range of mechanisms was also
employed to determine “similarity” between data records distributed across multiple
data owners: (i) “secure scalar product” as in the case of [36, 37, 103], (ii) secure
accumulation using “secure sum” as in the case of [102] and (iii) secure comparison using
“Yao’s Millionaires Problem Protocol” (YMPP) as in the case of [36, 37, 40, 102, 103]. In
these proposed solutions, data owners are expected to undertake a significant proportion
of the work and thus are required to have adequate IT resources and ability to carry
out the desired analysis. Therefore, the use of SMPC protocols, regardless of the precise
nature of the adopted protocol, introduces a computation and communication overhead
on behalf of data owners, rendering the approach only applicable for small datasets and
a limited number of data owners.

Research has been directed at reducing the SMPC computation and communication
overhead by involving a third party to act as mediator [20, 33–37]. The reported re-
search describes a range of behaviours for the third party with the third party being
viewed as either a trusted party or a semi-honest party. The Trusted Third Party (TTP)
will “honestly” behave and thus not deviate from pre-designed process and not use any
intermediate computations for any further investigation, while the Semi-honest Third
Party (STP) will have honest behaviours when executing the pre-designed process, how-
ever the intermediate computations will be analysed to learn additional information.
Therefore, the former behaviour does not require any security measures to be adopted
whilst the latter required the adopting of some security measures to prevent the infer-
ence of sensitive information using the intermediate computations. Sub-section 2.5.1 will
consider further expelanatios for potential third party behaviours that required security
measures. In [36] a TTP was used to calculate global data statistics on behalf of data
owners to reduce the communication complexity of the adopted SMPC protocol. How-
ever, in this case the data owners are still required to run the entire data mining and
thus the computational complexity is not avoided. More importantly, the involvement
of a TTP is of concern, and for many data owners a security risk. This security issue
was address in [33] by involving a STP who only had access to encrypted data.

SMPC provides a solid theoretical underpinning for PPDM. It supports a higher
level of security compared to the data modification techniques considered above in Sub-
section 2.4.1. The security of each protocol can be proven using the “zero knowledge
proof” which is used to ensure that each party has gained “zero” knowledge concern-
ing the data and results of other participants [106]. However, in the case where the
intermediate results of a data mining algorithm are revealed to all participants, this
raises a security vulnerability, especially when a non-honest data owner is involved. A
non-honest participant can launch an “overlapping attack” and use the obtained results
of distance calculations, and data comparisons with thresholds, to determine how sim-
ilar the data belonging to other participants is to the attacker’s own records [40, 105].
This information can then be used to estimate the nature of the data belonging to the
other participants as demonstrated in Section 2.5. A further security issue associated
with SMPC is that, depending on the nature of the data mining to be undertaken, for
the data mining to be executed correctly, divulging of some sensitive statistics is often
required. For example in the special context of DBSCAN the total number of records
within the ε-radius has to be revealed to all participants. In the context of k-Means
clustering, “global” centroid need to be divulged to all participating parties. These dis-
closures constitute a threat in the presence of “non-honest” data owners participating
with bogus datasets (such as empty datasets) [56]. These limitations render the SMPC
technique to be inadequate for many instances of secure collaborative data mining.
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2.4.3 Secret Sharing

The idea of secret sharing as a cryptography method was first introduced in [107, 108].
It involves using an encryption scheme in such a way that the secret key SK is split
into a number of shares {sk1, sk2, . . . , sku} distributed across a predefined set of u
collaborating parties. Each party can encrypt their data records independently from
the other participants using the scheme public key. However, decrypting the data is not
straightforward. The secret key SK, used to decrypt the data, should be reconstructed
by combining the shares belonging to participating parties. For example, in t threshold
setting schemes, the cyphertexts can be decrypted by combining shares of any group of
t or more parties. However, below this threshold non valid decryption results. There
are varies encryption schemes designed to work using the concept of secret sharing,
ranging from standard forms of encryption, as in [109], to PPE schemes as in [27]. As
already noted in Chapter 1, PPE schemes maintain some properties from the plaintext
data with respect to the generated cyphertext. This allows collaborative secure data
manipulation using the preserved properties. PPE schemes which support secret sharing
have provided for a new form of collaborative data mining where a number of parties can
locally encrypt their datasets which are then sent to a TPDM who will use the properties
of the scheme to manipulate the entire outsourced dataset on behalf of the data owners.
However, as will become clear in Chapter 3, there is no existing PPE scheme that
provides an entire solution to a PPDM problem in that data owner participation is still
considerable. For example in [19] secret sharing is adopted in the context of a secure
DBSCAN clustering approach where data owners participation is required in order to
compare distances that are calculated by the TPDM. This comparison required jointly
decrypting the calculated distances and resorting to SMPC comparison protocols. In
[28] a collaborative secure neural network mechanism was presented using a TPDM
who manipulates the data, so far as possible, using the properties of an HE scheme.
However, the data owners’ participation was still required to calculate the activation
function and to determine if the termination condition had been achieved or not. The
intermediate results were randomly shared between data owners. The random shares
allowed the parties to collaboratively execute the required calculations without knowing
the provenance of the values.

Although data owner participation is reduced using the concept of secret sharing
compared to that found when using SMPC protocols, secret sharing has some limita-
tions. Firstly, the requirement that the parties are semi-honest and non-colluding is of
concern, and for many data owners present a security risk. As the secret sharing allows
the decryption of data whenever t shares of secret key are combined, therefore, in the
case when t parties are colluding the data can be decrypted without the data owner’s
permission. Secondly secret sharing tends to be inefficient for large datasets and thus it
is only suitable for limited collaborative data mining. Thirdly, as the secret key is split
among the parties, data owners cannot decrypt their own data without the involvement
of the other parties, and thus a copy of the private data needs to be kept locally by each
individual data owner.

2.4.4 Homomorphic Encryption

Homomorphic Encryption (HE) is an emerging form of encryption that allows limited
mathematical operations over cyphertexts without decryption. The nature of the sup-
ported mathematical operations, and their associated meaning with respect to plaintext
equivalents, is dependant on the nature of adopted HE scheme. The permitted opera-
tions are usually referred to as homomorphic properties of the scheme. Because of the
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significance with respect to the work presented in this thesis an extensive review, coupled
with examples, of relevant HE schemes is presented in the following chapter, Chapter
3. Using an HE scheme data privacy is preserved by encrypting the dataset before it is
outsourced to a TPDM so that the TPDM does not have access to data in its plaintext
form and does not have access to the relevant decryption key. The TPDM then manip-
ulates the encrypted data using the homomorphic properties of the chosen HE scheme.
For example to calculate distances between encrypted records, or to calculate cluster
centroids, and so on. Many secure data mining algorithms have been implemented using
this technique. Examples include k-Means [20–22, 25, 26, 39, 110], DBSCAN [19, 94],
association rule mining [111], k-NN [24, 45] and BPNN [112, 113]. However, as already
noted, HE schemes support only limited operations and thus when unsupported oper-
ations are required by the data mining algorithm in question alternative methods need
to be implemented.

The most common approach used to address the limited operations of HE schemes
is again recourse to data owners who will perform the required operations on plaintext
values, encrypt the results and send the encrypted result back to the TPDM [19, 20, 28].
To give one detailed example, in [20] where a secure k-Means mechanism is considered,
the calculation of distances between data records and cluster centroids, calculated using
the homomorphic properties of the utilised HE scheme, are delegated, on each k-Means
iteration, to the data owner to determine the appropriate cluster of each encrypted
record. The complexity of data owner participation in this case is thus O(k×n×i) where
k, n and i are the desired number of clusters to be generated using k-Means, the number
of records in the dataset and the number of iterations, respectively. Further examples
can be found in other contexts: (i) the secure DBSCAN implementation presented in
[19] requires that distances between records need to be compared with threshold values
by the data owners; (ii) the secure Artificial Neural Network (ANN) implementation
presented in [28] requires that the activation function that needs to be calculated for
each neuron is done by the data owners; and (iii) the secure feed-forward neural network
also presented in [28] requires that the termination condition is checked by data owners.

The main advantage of the HE solution is that no party, except the data owner, has
access to intermediate results when mining algorithms are in progress. However, the
amount, and the complexity, of delegating functions to data owners introduces an unde-
sirable communication and computation overhead on behalf of the data owners. More
importantly, in the context of collaborative data mining, the data owner’s involvement
in comparing distances between data partitioned across parties raise the potential of an
“overlapping attack” where one party can estimate the values of data attributes owned
by other data owners using knowledge of their data records and results of comparisons
[40]. Such attacks can be prevented by adopting established multi-party secure com-
parison protocols, such as YMPP [30] and Cachin’s scheme [104]. However, these have
the same major disadvantages as those encountered when using SMPC; the significant
computation and computation overhead introduced with respect to the data owners in
turn limits the scalability of proposed solution.

Some research has been directed at reducing the amount of data owner participation
[20–22, 25, 26]. Of noted, is the “trapdoor” concept proposed in [21, 22] that aims to
reduce data owner participation when comparing cyphertexts belonging to a single data
owner. In this solution, static and dynamic trapdoors are provided, prior to outsourcing,
and used to allow cyphertext comparison by a TPDM without data owner involvement.
However, in the case of secure k-Means clustering which generates new cyphertext cluster
centroids, the dynamic trapdoors need to be recalculated on each iteration. To maintain
the accuracy of the final clustering results, any cyphertexts generated, by HE properties,
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when k-Means is in progress, needs to be re-encrypted by the data owner. Although this
approach reduces the data owner participation compared to “näıve” approaches, data
owner participation remains high. In addition, from an efficiency perspective, dynamic
trapdoor calculation requires data owners to maintain all intermediate random values
used to encrypt their data; in other words, there is a significant computational overhead,
particularly in the case of large datasets.

To reduce the data owners participation when a dataset is partitioned across multiple
parties, in [20] the similarity between records is determined with reference to a randomly
selected data owner. In [25, 26] a multiple non-colluding Cloud Service Provider (CSP)
setting was introduced to avoid data owner participation. The primary idea was to
outsource data to one CSP and a secret key to another CSP who will act on behalf of
the data owners whenever unsupported operations were required. The CSP who holds
the secret key can decrypt the intermediate results, perform the required operations on
plaintext and send the encrypted results back to the CSP who runs the data analysis.
However, this approach increases the cost of outsourcing the data and the assumption
that the CSPs are non-colluding may not always hold.

2.5 Security

This section presents some security fundamentals concerning adversarial behaviours and
potential attacks that can be instigated against proposed PPDM solutions. The section
comprises two sub-sections. Sub-section 2.5.1 considers the adversarial behaviour that
can be expected and introduces the assumed behaviour of the participants for all the
proposed solution presented in this thesis. Sub-section 2.5.2 then defines, and when
possible gives examples, of different types of attack model.

2.5.1 Adversarial Behaviour

In the work presented in this thesis a client-server model is assumed. The client is
the data owner (or a set of data owners) while the server is the TPDM who uses the
data owners’ data to develop a data mining model of some kind, and when desired
provides data querying/labelling or prediction services for a set of authorised Query
Owners (QOs) as established in Sub-section 2.3.2. In general, cryptographic design
considers two possible behaviours for the parties involoved [17]. The first is the semi-
honest or passive adversary behaviour where the parties involved follow the pre-designed
data mining algorithms correctly, but in the meantime learn additional information by
analysing the intermediate results and messages exchanged during algorithm execution,
which means that parties could infer private information. The second is malicious or
active adversary behaviour where the parties involved arbitrarily deviate from the pre-
designed data mining algorithm. For example, intermediate results that may be sent
to data owners, whilst data mining is in progress, by the TPDM can be altered by the
TPDM or by one of the participated data owners. In the work presented in this thesis,
the behaviour of the TPDM and the data owners are assumed to be semi-honest while
the QOs are assumed to be active adversaries. This is a reasonable assumption since
the main objective of the CSP (the adopted TPDM) is to deliver a high quality and
accurate service by constructing accurate data mining models; this can only be achieved
when the TPDM is honestly follow the designated, pre-designed, algorithm. The data
owner or owners also share the same goal of developing accurate models, however at the
same time they may be “curious” about the data content held by the TPDM; and, in
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the multiple data owner scenario, data belonging to the other participating data owners.
It is assumed that the QOs will deviate from the designated, pre-designed, algorithms.

2.5.2 Attack Models

In cryptography the word “attack” refers to any attempt to break an encryption scheme
or reveal information concerning private data. There are many types of attacks that can
be instigated against the different PPDM techniques presented earlier in this chapter and
later in this thesis. Some of these attacks rely on information leakage of the adopted
PPDM technique and others assume the attackers have some background knowledge
(such as data frequency). When the attack is successful it implies that data security
has been compromised. In this sub-section, an overview of the major sources of threats
to user privacy using PPDM techniques, and the most common attacks, are presented.
Knowledge concerning these attacks is required by the reader as a precursor to the work
presented later in this thesis.

Linkage Attack (LA): A LA can be instigated when an attacker has accessed to
anonymised data that retains the QIDs and other sensitive data for analysis pur-
poses. The anonymised dataset can be de-anonymised by cross-referencing the
anonymised dataset with some public dataset where the QIDs attributes also exist.
Figure 2.3 shows an example. Consider an anonymised patient’s dataset (Danon)
that holds {date of visit, symptoms, diagnosis, disease, charges, data of birth,
sex, race, postCod}. Consider a voter archive dataset (Darchive) that holds {
data of birth, sex, race, postCod, IdNo, name, parentage, address, econStatus,
issue date}. From the attribute values present in both datasets the corresponding
medical records published in Danon for some entities may be revealed.

date of visit
symptoms
diagnosis
disease
charges

data of birth
sex
race

postCod

IdNo
name

parentage
address

econStatus
issue date

Danon Darchive

Figure 2.3: Example of a linking attack

Overlapping Attack (OA): An OA can be lunched in the context of a collaborative
data mining process when a non-honest party has access to intermediate results
when data clustering or classification model generation is in progress. The most
likely intermediate results revealed in collaborative data clustering and classifica-
tion are distances between records and the results of comparisons. Figure 2.4 shows
two parties (Alice and Bob) who collaboratively run a DBSCAN data clustering
process with radius parameter ε. The parties will jointly calculate the distances be-
tween each pair of data records belong to different parties. Consider three records
for Bob {B1, B2, B3} and one record for Alice {A}. The following distances are
calculated (B1, A), (B2, A) and (B3, A) and the results will then be compared
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with the DBSCAN radius parameter ε. The results of the data comparisons will
be revealed to both Alice and Bob. Using these intermediate results Bob (a non-
honest party) can determine how similar the record A is to his own records. The
intermediate results coupled with the final clustering configuration will define the
cluster within which record A is contained. Bob may then be able to estimate the
attributes value of record A using his known values for {B1, B2, B3}.

B1

B2

B3

Bob

Alice
A

ε

Figure 2.4: Example of an overlapping attack

Cyphertext Only Attack (COA): A COA is where an attacker only has access
to cyphertexts, but no access to any plaintext. The cyphers might represent an
encrypted dataset, encrypted cluster centroids, encrypted queries and/or a trained
model’s weights and biases. This attack is most likely to be encountered in real
life when the adversary has access to TPDM storage or when the TPDM behaves
as a curious party and thus wants to analyse cyphertexts to reveal some informa-
tion. For a COA to be successful requires the adversary to have some background
knowledge concerning the data under analysis, such as data distributions or data
frequencies. Therefore schemes that reveal these statistics (distribution or fre-
quency) are vulnerable to COAs. The data frequency can be revealed when the
encryption scheme encrypts plaintexts to the same cyphertexts using the same
key every time; schemes that do this are usually referred to as Deterministic En-
cryption (DET) schemes; such schemes will be considered in further details in
Sub-section 3.4.1.

Knowing Plaintext Attack (KPA): A KPA is where the attacker has access to a
limited number of pairs of plaintext and their corresponding cyphertexts.

Chosen Plaintext Attack (CPA): Using a CPA the attacker is able to choose a
number of plaintexts to be encrypted and consequently have access to the result-
ing cyphertexts. This attack is most likely to occur in the case of asymmetric
encryption schemes were the public key used to encrypt the data is publicly an-
nounced and anyone may use it. Schemes that produce the same cyphertext every
time when the same plaintext value is encrypted using the public key are also
vulnerable to a Dictionary Attack (DA). In this case the attacker creates a dictio-
nary by simply encrypting all potential plaintext values using the scheme public
key. Therefore, the inclusion of noise is an essential part of any encryption scheme
designed to safeguard against CPAs and DAs.

Model Inversion Attack (MIA): A MIA is when the attacker has access to a clas-
sification model (for example an ANN or a decision tree classifier) and directs
prediction queries at the model with the intention of acquiring information con-
cerning the model’s behaviour beyond simply the prediction results. In this attack,
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and as noted in [114], the attacker will exploit the query predictions to reveal con-
fidential aspects of the data originally used to train the model. Therefore, when
the data classification model generation algorithms are delegated to a TPDM, it
is important to preserve the privacy of the weights and biases of the developed
model from the TPDM and QOs. More importantly, the query launch should be
controllable by the party or parties who own the model.

2.6 Summary

This chapter has presented the necessary background concerning PPDM that underpins
the work presented in the following chapters of this thesis. The chapter commenced by
defining data privacy and determining what the term “private” constitutes. The privacy
preservation requirements in the context of the two scenarios considered in this thesis,
the single data owner scenario and the multiple data owners scenario, were presented.
The requirements highlighted the dilemma of protecting privacy while at the same time
maintaining the accuracy and the efficiency of any data mining activity. A range of
existing PPDM techniques were reviewed. Some of these techniques, such as SMPC
and secret sharing, were only relevant to collaborative data mining whilst the other
techniques could be extended to the collaborative data mining context, although both
will have some consequent computation and communication overhead. In the single data
owner scenario data privacy can be preserved using data anonymisation, perturbation
and data encryption using an appropriate homomorphic encryption. The chapter was
concluded with a discussion of the assumed participant behaviours in the context of the
work presented in this thesis, and the set of potential attacks that can be instigated in the
context of PPDM. The following chapter presents some fundamentals and preliminaries
concerning cryptography with an emphasis on schemes relevant to PPDM.



Chapter 3

Cryptography Fundamentals and
Preliminaries

3.1 Introduction

As noted in Chapter 1 the research described in this thesis aimed to use Homomor-
phic Encryption (HE), coupled with the concept of distance matrices, as a technique to
address the PPDM problem in the context of data clustering and classification. This
chapter will thus provide the necessary background concerning cryptography with an
emphasis on HE and Property Preserving Encryption (PPE) Schemes. HE and PPE
schemes, in general, are designed to be used with respect to long-term data storage and
computation outsourcing of sensitive data to a third party (such as CSPs). The data
owners encrypt their data prior to uploading it to a third party tasked with manipulate
the encrypted data, using the properties of the encryption scheme, without decryption.
The remainder of this chapter is constructed as follows. Section 3.2 presents a com-
prehensive background to cryptography and HE. The section includes consideration of
basic cryptographic terminologies, HE schemes and their mathematical properties, an
overview of HE schemes and a discussion of the limitations associated with HE as rel-
evant to the development and implementation of data mining algorithms. The chapter
then continues, in Section 3.3, with material concerning two HE schemes adopted with
respect to the proposed solutions presented later in Chapters 4 to 9: (i) Liu’s fully HE
scheme [53] and (ii) the Paillier HE scheme [54]. This is followed by a review of different
PPE schemes as potential solutions to third party data mining. Finally, the chapter is
concluded with a summary in Section 3.5.

3.2 Homomorphic Encryption Fundamentals

HE is an emerging encryption technique which allows certain computations to be per-
formed on cyphertexts without decryption. The results of these operations, once de-
crypted, should match the result of some form of operation performed using the original
unencrypted data. This means, effectively, that we can perform computation (algebraic
operations) without having access to the original data and thus preserve data privacy.
This is not the case in traditional encryption techniques, where the result of operations
involving encrypted data has no meaningful interpretation. However, HE shares many
of the key concepts, terms and notation with the traditional encryptions. Therefore, this
section will present some fundamental background to cryptography with an emphasis
on HE. The Section is organised as follows. Sub-section 3.2.1 presents the fundamental

31
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principles of encryption. This is followed, in Sub-section 3.2.2, with the fundamental
principles of HE schemes. The nature of HE schemes is then discussed in further detail in
Sub-section 3.2.3. The sub-section includes consideration of three categories of scheme,
their characteristics and homomorphic mathematical properties: (i) Partial Homomor-
phic Encryption, (ii) SomeWhat Homomorphic Encryption and (iii) Fully Homomorphic
Encryption. The limitations of HE schemes which are pertinent to the implementation of
PPDM are discussed in Sub-section 3.2.4 along with solutions that have been proposed
in the literature.

3.2.1 Background to Encryption

Encryption is the process of encoding data, so that it is no longer in its original form,
in such a way that it cannot be de-encoded by unauthorised parties. It is a well-known
security primitive, that substantially guarantees data privacy preservation, which is
widely adopted with respect to many application domains [17, 115]. Examples include
Electronic Health Records [116], wireless sensor networks [22], and smart cities and
Internet of Things [117, 118]. The unencrypted data value v is referred to as a plaintext
value, whilst the encrypted equivalent e is referred to as a cyphertext value. The plaintext
belongs to what is known as the message space (M), whilst generated cyphertexts
belongs to what is known as the cyphertext space (C). Each encryption scheme defines
its own message space and cyphertext space. The message space is required to comprise
numeric data such as: integers, as in the case of [54, 119–125]; real values, as in the
case of [53, 126]; or binary data as in the case of [127–135]. Categorical data needs to
be translated into an appropriate numeric form. The cyphertext space depends on the
encryption algorithm used.

The encryption (Encrypt) and decryption (Decrypt) functions utilise scheme keys to
map plaintext from the message space (M) into cyphertext in the cyphertext space (C)
and recover the value back from cyphertexts respectively. The encryption/decryption is
conducted using what are known as encryption keys. There are two classes of encryp-
tion schemes categorised according to nature of the encryption keys used: asymmetric
and symmetric encryption schemes [136]. The asymmetric (or public key) schemes use
different keys for encrypting and decrypting the data referred to as the Public Key (PK )
and the Secret Key (SK ) respectively. The symmetric (or private key) schemes use the
same key (the secret key SK ) for the encryption and decryption. The schemes that
belong to the latter category need to keep their key private whilst the former category
of scheme can widely distribute their PK without compromising security since the pub-
lic key provides no information about the secret key which is required for decryption.
Examples of asymmetric HE schemes can be found in [54, 120, 121, 127–130, 137, 138],
whilst examples of symmetric HE schemes can be found in [53, 119, 122, 126, 139].

Using the encryption key, PK in the asymmetric scheme and the SK in the sym-
metric scheme, the Encrypt function maps a plaintext value v to a cyphertext e. An
encryption scheme that produces different cyphertexts for the same plaintext value each
time the same plaintext is encrypted using the same key is referred to as probabilistic
scheme whilst an encryption scheme that produce the same cyphertext on each occasion
is referred to as a deterministic scheme. Many HE schemes are probabilistic in nature.
Examples can be found in [53, 54, 119–122, 126–130, 137–139]; whilst there are few HE
schemes that can be considered to be deterministic [123, 140]. Probabilistic schemes
featured semantic security, which makes the scheme preferable in terms of PPDM. Se-
mantic security means that the knowledge of a cyphertext does not provide any useful
information concerning the plaintext with respect to a hypothetical adversary [17]. In
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other words, an adversary would be unable to recover plaintext values from their corre-
sponding cyphertexts. More formally, given cyphertext e and plaintexts v1 and v2 the
adversary cannot guess, with a higher probability than 1

2 , whether e is an encryption
of plaintext v1 or v2. Conversely, the Decrypt function decodes the cyphertext to the
original plaintext using the scheme secret key (SK ).

3.2.2 Homomorphic Encryption: Definition and Basic Properties

As already noted, the phrase “Homomorphic Encryption” refers to encryption tech-
niques which allows certain computations to take place directly over cyphertexts; that
is, without the need to first decrypt the cyphertext. The concept of HE has its roots in
the work of Rivest et al. [124], although the phrase “privacy homomorphism” was used.
The first true additive HE scheme is that presented in [141], referred to as R-additive
privacy homomorphism, in which only the addition of at most R plaintexts was allowed.
Formally HE schemes can be defined as in Definition 3.1.

Definition 3.1 (Homomorphic Encryption). An encryption scheme is said to be ho-
momorphic for some operation ◦ ∈ FM, where FM is a set of operations that can be
applied to the message space (such as addition), if there exist a corresponding operation
� ∈ FC , where FC is the set of operations in cyphertext space, if the following property
is satisfied:

Decrypt
(
SK, Encrypt(PK, v1) � Encrypt(PK, v2)

)
= v1 ◦ v2 (3.1)

This is illustrated in Figure 3.1 which shows an HE message space, containing three
plaintext values, together with the associated cyphertext spaces holding corresponding
cyphertext values. The operation (◦) defined for the message space equates to an alter-
native operation (�) in the cyphertext space. As depicted in the figure, cyphertext e3 is
generated by applying a homomorphic operation (�) to the cyphertexts e1 and e2. The
cyphertext e3, when decrypted, will result in v3, which will equate to the value produced
when applying the plaintext operation (◦) to the plaintexts v1 and v2. It should also be
noted here that the cyphertext that is the results of a homomorphic operation should
retain semantic security (as described early in Sub-section 3.2.1).

Message space (M) Cyphertext space (C)

v1

v3 = v1 ◦ v2

v2

e1

e3 = e1 � e2

e2

Decrypt(e1)

Decrypt(e3)

Decrypt(e2)

Figure 3.1: The homomorphic property: the result of applying homomorphic opera-
tion � to cyphertexts e1 and e2, to give e3, will match the result of applying operation

◦ to plaintexts v1 and v2 to give v3

In practice, each scheme defines their set of permitted operations, FM and FC , with-
out the restriction that the operations should necessarily corresponds. For example,
Liu’s scheme [53] defines FM = {+,×} and FC = {+,×} in such a way that addition on
cyphertexts will correspond to the addition of plaintexts, and multiplication on cypher-
texts will correspond to the multiplication of plaintexts. However, in the case of Paillier
encryption [54], which is homomorphic only for addition, FM = {+} and FC = {×} are
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defined; thus applying multiplication on cyphertexts corresponds to applying addition to
plaintexts. Liu’s and Paillier schemes are both used with respect to solutions presented
later in this thesis and are therefore considered in further detail in Section 3.3 below. For
the purpose of distinguishing between the two sets of operations, FM and FC , the work
presented in this thesis will use the standard symbols + and × for plaintext addition
and multiplication, and the symbols ⊕ and ⊗ for cyphertext addition and multiplication.
From a practical perspective, the operations ⊕ and ⊗ are typically more complicated to
implement than the standard arithmetic operations. For instance there implementation
may involve polynomial addition, or multiplication when cyphertexts are polynomial in
nature [53, 142], or matrix addition and multiplication when cyphertexts are matrices
[126, 143].

It should also be noted here that in the case of probabilistic HE schemes, as op-
posed to deterministic HE schemes, the homomorphic properties do not commute due
to the probabilistic feature used in these schemes to achieve semantic security. This is
because the same value presented twice will encrypt to two different cyphertexts with
high probability. In general:

Encrypt(PK, v1) � Encrypt(PK, v2) 6= Encrypt(PK, v1 ◦ v2) (3.2)

3.2.3 Overview of Homomorphic Encryption Schemes

HE schemes can support addition and/or multiplication over cyphertexts. Depending on
the nature of the supported homomorphic operations and the number of operations, HE
schemes can be categories into: (i) Partial Homomorphic Encryption (PHE) schemes,
(ii) SomeWhat Homomorphic Encryption (SWHE) schemes and (iii) Fully Homomorphic
Encryption (FHE) schemes. Each will be discussed in further detail in the following three
sub-sections; Sub-sections 3.2.3.1 to 3.2.3.3.

3.2.3.1 Partial Homomorphic Encryption

Schemes that are categorised as PHE schemes support addition or multiplication on
cyphertexts, but not both. These schemes can be further divide on the basis of the
operation they support as Additive PHE and Multiplicative PHE schemes. A survey
of the literature indicates that most PHE schemes adopt an asymmetric encryption
approach, and that most PHE schemes are probabilistic. Exceptions are the Rivest,
Shamir and Adleman (RSA) without padding [140] and Modified RSA Encryption Al-
gorithm (MREA) PHE schemes [123], which are deterministic schemes. Table 3.1 lists
some of the more common PHE schemes labelled in terms of their scheme properties,
the nature of their message space (M), the homomorphic operations they support and
the “hardness” of the associated security assumptions. The security assumption refers
to the adopted mathematical structure and is used to estimate their security level in
a formal manner. The security assumptions are based on well-identified mathematical
problems which are hard to solve in general, but easy to solve when a trapdoor (a secret
key) is known. The security assumptions listed in the table are: Semantic Security (SS),
Quadratic Residuosity (QR), Discrete Logarithm (DL) problem, Composite Residuosity
(CR), Integer Factorization (IF) and e’ the Root (eR). The majority of schemes reported
in Table 3.1 are categorised as Additive schemes whilst only RSA without padding and
Elgamal are Multiplicative. In terms of performance, the RSA, Elgamal, and Paillier
schemes have been shown to be efficient [144]. The GM scheme [127] is defined on a bi-
nary message space (F2) and encrypts one bit at a time. Therefore, when using the GM
scheme, values to be encrypted need to first be converted to their binary form and every
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bit in the resulting binary string encrypted individually. Therefore, in this scheme the
homomorphic addition over cyphertexts are performed as a bitwise exclusive-or (XOR)
operation. The remaining five schemes listed in the table [54, 120, 121, 123, 140] are
defined over a positive integer message space (Z+

N ) in such a way that the message space
of the values that may be encrypted range from 0 to N−1 where N is the RSA modulus.
This will be illustrated further in Sub-section 3.3.2 using the Paillier scheme used with
respect to the work presented later in this thesis.

The performance efficiency associated with PHE makes it appealing for many real-
world privacy preserving applications. PHE schemes have been widely applied in elec-
tronic voting protocols [145], biometric applications [146, 147] and MIT CryptDB1 [148].
However, the limitation of PHE schemes is the limited range of operations available. This
is sometimes solved by adopting multiple PHE schemes, one for each operation required.
However, this has limited PHE schemes from being accepted as solutions for outsourced
data analysis given that the data mining algorithms require operations that are not all
supported by PHE schemes (as will be discussed in further detail in the next sub-section;
Sub-section 3.2.4).

Table 3.1: A Survey of different partially homomorphic encryption schemes

Scheme

S
y
m

m
et

ri
c

A
sy

m
m

et
ri

c

P
ro

b
ab

il
is

ti
c

D
et

er
m

in
is

ti
c

M FM FC
Security Assumption

S
S

Q
R

D
L

C
R IF eR

CEG [121]
√ √ Z+

N + ⊗ √ √

Elgamal [120]
√ √ Z+

N × ⊗ √ √

GM [127]
√ √ F2 + XOR

√ √

MREA [123]
√ √ Z+

N + ⊗ √ √

Paillier [54]
√ √ Z+

N + ⊗ √ √ √

RSA [140]
√ √ Z+

N × ⊗ √ √

3.2.3.2 SomeWhat Homomorphic Encryption

A few researchers have attempted to improve the versatility of HE schemes through, to
some extent, permitting both addition and multiplication. The result was what became
known as SWHE schemes which supported both homomorphic addition and multipli-
cation, but limited in the number of times the operations can be performed before the
cyphertext noise grows too large and correct decryption becomes impossible. The noise
originates from the probabilistic encryption process where some noise is added during
the encryption and removed during the decryption. This noise grows with successive
homomorphic operations and eventually makes it impossible to decrypt the results. Be-
cause of this limitation, where by any proposed scheme is bounded by cyphertext noise,
SWHE schemes cannot have an arbitrary (unlimited) number of operation applications;
hence the name “somewhat” HE.

There are a number of examples of SWHE schemes that support unlimited addi-
tion but only one multiplication over cyphertexts, these include BGN [137], Smart and
Vercauteren (SV) [138] and Polly Cracker with Noise [149]. In other cases the precise

1CryptDB is a system designed by MIT to execute enterprise queries regarding encrypted data in a
MySQL database.
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number of multiplications depends on the scheme parameters as in the case of [125, 129].
It is not always the total number of multiplications which is the limiting factor, rather
the depth of multiplication. For example, x1 × x2 × x3 has a multiplicative depth of
2, whereas (x1 × x2) + (x3 × x4) + · · · + (xn−1 × xn) has multiplicative depth of 1. As
already mentioned, the exact depth for a SWHE scheme is dependent on the scheme
itself and the parameters chosen, which commonly involves a trade-off between speed,
security and/or memory requirements against multiplication depth.

3.2.3.3 Fully Homomorphic Encryption

The FHE schemes allow an unlimited number of additions and multiplications to be
performed on cyphertexts without losing the ability to correctly decrypt the results.
The first FHE scheme was introduced by Gentry [130] and constructed by coupling an
existing SWHE scheme with a noise management technique called bootstrapping. The
preliminary idea was to refresh the SWHE cyphertexts after each multiplication so as to
bring the noise level down to that of a freshly encrypted cyphertext and thus permit an
arbitrary number of homomorphic multiplications given that the adopted SWHE scheme
already supported an arbitrary number of additions. Many FHE schemes that have been
proposed subsequently have followed the same fundamental idea. The disadvantage of
these schemes is that the adopted noise management techniques tend to be complex. A
technical review of a number of FHE schemes, in terms of their encryption characteristics,
message space (M) and adopted noise management technique, is given in Table 3.2.
Note that the listed schemes are all probabilistic and mostly asymmetric schemes. From
the table it can be seen that the noise management techniques include: bootstrapping,
modulus switching, scale invariant and flattening. However, the performance overhead
associated with these techniques remains a major obstacle in the face of the practical
implementation of FHE schemes. Each of the noise management techniques included in
Table 3.2 is discussed in some further detail in the remainder of this sub-section.

The bootstrapping noise management technique has access to the secret key that is en-
crypted as a portion of the public key and is associated with asymmetric FHE schemes.
The bootstrapping process refreshes the cyphertexts by homomorphically computing
the decryption function using an encrypted secret key. Although bootstrapping meth-
ods allow the performance of an arbitrary number of multiplication operations, its main
drawback is the complexity of the homomorphic decryption, making it impractical for
many applications. Improving the efficiency of bootstrapping, as first proposed by Gen-
try [130], has received much attention, see for example [150–152], which has resulted in
an enhanced asymptotic performance [152, 153]. Despite all these attempts, bootstrap-
ping is far from being practical for PPDM due to the requirement to repeatedly apply
the bootstrapping process given that many data mining algorithms, such as Artificial
Neural Network (ANN), require many data multiplication operations. The performance
issue associated with bootstrapping has instigated the emergence of more lightweight
techniques as discussed below.

The modulus switching noise management technique does not fully refresh a cypher-
text (as in the case of bootstrapping), but successfully limits the noise growth in the
cyphertext during homomorphic computations. Using a technique similar to the “di-
mension reduction” mechanism proposed later in this thesis, the magnitude of the noise
can be reduced without knowing any information about the secret key as in the case
of bootstrapping. Instead, the process only needs to know the cyphertext size bound
in order to transform a cyphertext, e modulo q into a different cyphertext modulo p
without sacrificing the correctness of the decryption procedure (so that the modulo is
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Table 3.2: A survey of different fully homomorphic encryption schemes
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BGV [125]
√ √ Z+

N

√

BLLN [132]
√ √ F2

√

Brakerski’s [131]
√ √ F2

√

BV-LWE [129]
√ √ F2

√

DGHV [128]
√ √ F2

√

F-NTRU [134]
√ √ F2

√

Gentry [130]
√ √ F2

√

GSW [133]
√ √ F2

√

KH [122]
√ √ Z+

N

√

Liu’s (2015) [119]
√ √ Z+

N

√

Liu’s (2013) [53]
√ √ R √

LW [126]
√ √ R √

Niu15 [135]
√ √ F2

√

WANG [139]
√ √ Fq

√

switched from q to p). However, as a result, this technique has a small cyphertext size
as compared to the bootstrapping technique, which may be a security concern.

The scale invariant technique was introduced in [131]. The schemes that adopt
the scale invariant technique encode the plaintexts differently from other FHE schemes
in such a way that the noise, caused by the homomorphic multiplications, increases
by a fixed factor independent of the magnitude of the noise in the cyphertexts. In
other schemes the homomorphic multiplication is essentially sensitive, and each time
the multiplication is performed the amount of noise is squared. In scale invariant based
schemes, a new cyphertext for a given plaintext value can be generated using one of the
plaintext cyphers by multiplying the cyphertext with an appropriate “scalar”; a modulus
switching technique is used to manage the amount of noise in generated cyphertexts.
However, the limitation of the scale invariant technique is that a more complex rounding
operation is required for homomorphic multiplication [154].

The flattening noise management technique was introduced in [143] and is based
on the modulus switching technique. However, it is only useful when the cyphertext is
presented in matrix form and the encryption key is presented as a vector. The flattening
technique uses a transformation to modify the vectors, which results in a better bound
on noise growth.

Given the foregoing, most FHE schemes are founded on the seminal work by Gentry
[130] and hence FHE schemes are constructed in two steps: (i) design of a SWHE scheme
and (ii) adoption of a noise management techniques to transform the proposed SWHE
scheme into a FHE scheme. There is a need for more efficacious FHE schemes that
achieve FHE directly without the need for a SWHE precursor. Recent work is directed
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at constructing noise-free FHE schemes based on what is referred to as the “number
theoretic approach” [53, 119, 122, 126, 135, 139].

3.2.4 Homomorphic Encryption Limitations

In this sub-section, an overview of the most significant limitations of HE schemes, as
relevant to the development and implementation of secure data mining algorithms to sup-
port PPDM, is presented. These limitations vary slightly between encryption schemes,
however, a large number of these are common to most HEs. The work presented in
Chapters 4 to 9 of this thesis is, in part, directed at mitigating against some of the HE
limitations presented here, especially to limit data owner participation. In the following
the broad limitations in HE are discussed and their possible mitigation, as proposed in
the literature, presented.

1. Message space: Most HE schemes restrict the message space to either binary
(M = F2 = {0, 1}) or positive integer (M ∈ Z+). This means that the direct
encryption of categorical values and real number values is not supported. With
respect to categorical values the solution is to assign an integer ordinal numbering
of some kind. With respect to real numeric values the solution that is frequently
adopted is to use rational approximations by encrypting the numerator and de-
nominator separately and using the rules of arithmetic for fractions (although this
is very inefficient). A more efficient transformation technique is presented in [155]
designed to represent real values within the practical limitation of HE schemes.
The transformation is based on the IEEE standard for floating-point arithmetic
(IEEE 754) [156]. However, it is still an expensive process and impractical for
many instances of PPDM problem. A more straightforward solution is to approx-
imate the value to the nearest integer value, however, this will clearly effect the
effectiveness of the data mining. This solution is insufficient in the context of
some data mining algorithms, such as ANNs, which required network weights to
be real values of less than 1. The most effective and efficient solution to date was
presented in [157], the solution required the predefinition of the number of decimal
places to be retained in the plaintext value to be encrypted. This value is selected
according to the desired accuracy level, say a. The plaintext value to be encrypted
is first multiplied by 10a and then rounded to the nearest integer. The result will
be then encrypted using any scheme defined over Z. When the cyphertext needs to
be decrypted it is first decrypted and then divided by 10a to arrive at the correct
plaintext value.

Referring back to Table 3.2 only two schemes operate over a real number message
space (M ∈ R), Liu’s FHE scheme [53] and the LW scheme [126]; these schemes
therefore permit direct real value encryption. The LW scheme is not as efficient as
Liu’s scheme. However, Liu’s scheme features substantial inflation of cyphertexts
after each multiplication rendering the scheme to be insufficiently scalable for some
instances of PPDM as will be discussed in Sub-section 3.3.1.

2. No division: Homomorphic division, where the two operands are cyphertexts, is
currently not supported; in other words there is no FHE scheme for which there
exists a homomorphic operation � such that Decrypt(e1 � e2) = v1

v2
. In some cases,

it is possible to avoid division altogether by rescaling the algorithms appropriately
to give results proportional to the true results. Examples of this approach are
given in [158].
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3. Non-polynomial function: Evaluating non-polynomial functions, for example
ex or

√
x, is problematic in practice when x is encrypted. Iterative methods [159]

and lookup tables [160] can be used as an alternative to approximate the value of
some particular non-linear functions. Polynomial approximations methods such as
Taylor series expansions [159] is an alternative solution, however it is unreliable as
the approximation needs to be done using a high degree polynomial for accurate
results to be obtained, this in turn increases the amount of noise and the size of
cyphertexts.

4. Bounding cyphertext noise: As already noted, using FHE schemes, as the
number of operations performed on the cyphertexts increases the noise component
also increases. Once the noise has crossed a certain threshold, a cyphertexts can
no longer be decrypted correctly and the data is lost. Noise management mecha-
nisms were considered in Sub-section 3.2.3.3 where it was noted that FHE schemes
adopt computationally intensive mechanisms to re-encrypt (or refresh) cypher-
texts without exposing the underlining plaintexts values in the process. Four such
mechanisms were outlined in Sub-section 3.2.3.3: (i) bootstrapping [128, 130], (ii)
modulus switching [125, 129], (iii) scale invariant [131, 132] and (iv) flattening
[133, 134]. These mechanisms produce another cyphertext for the same plaintext
value, but with less noise so that more additions and multiplications can be per-
formed without losing the ability to decrypt the outcomes. However, in many
cases these mechanisms introduce performance limitations. A recent innovation is
the noise-free encryption scheme which avoids the requirement of adopting noise
management mechanisms by allowing arbitrary large quantities of noise without
losing the ability of decrypting the cyphertexts. Examples of these schemes can
be found in [53, 119, 122, 126, 135, 139, 161, 162].

5. No comparison: Comparison operators, such as tests of equality and inequality
(<, >, 6, >, 6= and =) cannot be performed on HE cyphertexts. HE schemes
tend to be probabilistic, only deterministic schemes can support equality checking
(= and 6=). The most significant obstacle here is with respect to algorithms that
require the evaluation of data comparisons or logical conditions to decide what
action to perform next. This is a particular feature of the majority of data mining
algorithms. For example, for some data clustering algorithms, the decision to add
a data record to an existing cluster or create a new cluster requires comparison
operations. One mitigating proposal is recourse to data owners to perform these
operations, or to resort to SMPC comparison protocols such as Yao’s Millionaires
Problem Protocol (YMPP) [30] or Cachin’s scheme [104]. Both feature an extensive
computation and communication overhead. The inability of HE schemes to realise
comparison operations is the most significant limitation of these schemes with
respect to PPDM.

The above limitations raise numerous difficulties for homomorphic computation, in
particular with respect to the implementation of statistical and data mining algorithms
and, as emphasised later in this thesis (Chapters 4 to 9) represent a significant limitation
of the application of HE schemes in the context of PPDM. Arguably, the most substantial
of these limitations is the absence of comparison operations which are typically required
by most data clustering and classification applications, and to calculate the non-linear
polynomial functions that are required, for example, in the case of ANN training.
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3.3 Homomorphic Encryption Schemes Examples

The work presented in this thesis has adopted two existing HE schemes that feature: (i)
a sufficient level of security, (iii) efficiency in term of execution time and (iii) provided
adequate homomorphic properties which could facilitate a wide range of data mining
algorithms. These are the Liu’s FHE scheme defined in the patent specification [53] and
Paillier PHE [54]. The former encryption scheme has been adopted for encrypting the
outsourced data in proposed solutions presented in Chapters 4 to 7 and is also considered
in term of scalability in Chapter 9. The Paillier scheme has been utilised to facilitate
the functionality of the Multi-Users Order Preserving Encryption (MUOPE) scheme
proposed in Chapter 6. Therefore, in the following two sub-sections, Sub-sections 3.3.1
and 3.3.2, Liu’s FHE scheme and the Paillier PHE scheme are comprehensively pre-
sented. The sub-sections will consider the scheme key generation process, encryption
and decryption functions, scheme homomorphic properties and scheme security. In addi-
tion, the schemes are also considered in terms of their computational aspects, especially
Liu’s FHE schemes as it is one of the FHE schemes that feature inflation in the number
of sub-cyphertexts as homomorphic multiplications are applied. The inflation problem,
associated with Liu’s homomorphic multiplication, is addressed in this thesis by intro-
ducing a novel scheme that modifies Liu’s original scheme, referred to as the Modified
Liu’s Scheme (MLS) and presented in Chapter 9. The MLS provides a potential to
reduce the number of sub-cyphertexts back to their original size using a “dimensionality
reduction” algorithm and the concept of trapdoor.

3.3.1 Liu’s Fully Homomorphic Encryption Scheme

The Liu’s scheme [53] is a “modern” FHE scheme, in the sense that: (i) it does not require
any noise management technique and (ii) the scheme message space accommodates the
representation of real numbers R. In the following sub-sections, Liu’s scheme is presented
in detail, covering: (i) the key generation process, encryption and decryption in Sub-
section 3.3.1.1; (ii) the scheme’s homomorphic properties in Sub-section 3.3.1.2; (iii)
the level of security provided by the scheme in Sub-section 3.3.1.3; and (iv) details on
the computational costs, and the associated dependency on the scheme’s parameters, in
Sub-section 3.3.1.4.

3.3.1.1 Key, Encryption and Decryption

Liu’s scheme is symmetric scheme that uses the same key for encryption and decryption

purposes. The secret key SK is a list; SK(m) =
[
(k1, s1, t1), . . . , (km, sm, tm)

]
where ki,

si and ti are real numbers. The scheme requires that SK(m) satisfies the following two
conditions: (i) m > 3 and (ii) km + sm + tm 6= 0. Given SK(m), the scheme encrypts
a plaintext value v to a set of m sub-cyphertexts; E = {e1, . . . , em}. The pseudo code
for the data encryption is as given in Algorithm 1. The algorithm starts by generating
m non-zero random numbers, R= {r1,. . . , rm} (line 2). For the purpose of security, the
value of the random numbers should be sufficiently large. In line 3, the cyphertext E
is dimensioned as a set of m elements; E= {e1, . . . , em}. The cyphertext set elements
are calculated as per the equations given in lines 4 to 8. The first and last elements in
the sub-cyphertexts set are calculated in a manner different to that used for the middle
sub-cyphertexts as clearly shown in Algorithm 1. The Encryption algorithm will exit
with the cyphertext E (line 9).
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Algorithm 1 Liu’s scheme encryption algorithm

1: procedure Encrypt(v, SK(m))
2: Uniformly generate m large random numbers

R = {r1, ....., rm}
3: Declare E as a set of m elements

4: e1 = k1 × t1 × v + s1 × rm + k1 × (r1 − rm−1)
5: for i = 2 to m− 1 do
6: ei = ki × ti × v + si × rm + ki × (ri − ri−1)
7: end for
8: em = (km + sm + tm)× rm
9: Exit with E

10: end procedure

Given a set of sub-cyphertexts E = {e1, . . . , em} and the scheme secret key SK(m),
Algorithm 2 will decrypt E and return the value of the original plaintext v as per the
equations given in lines 2 to 4.

Algorithm 2 Liu’s scheme decryption algorithm

1: procedure Decrypt(E,SK(m))
2: t =

∑m−1
i=1 ti

3: s = em
(km+sm+tm)

4: v =

(∑m−1
i=1 (ei−s×si)/ki

)
t

5: Exit with v
6: end procedure

3.3.1.2 Homomorphic Properties

Liu’s scheme supports the addition and multiplication of cyphertexts which, as previ-
ously noted, are indicated using the notation ⊕ and ⊗ respectively. The homomor-
phic addition for Liu cyphertexts, E1 = {e11 , . . . , e1m} and E2 = {e21 , . . . , e2m} that
encrypt v1 and v2 respectively, are implemented as sub-cyphertexts additions. Each
sub-cyphertexts in E1 will be added to the corresponding sub-cyphertexts in E2 as per
Equation 3.3. Homomorphic multiplication is implemented by determining the outer
product of the two cyphertexts to be multiplied as also given in Equation 3.3. There-
fore, for one multiplication the number of sub-cyphertexts is increased from m to m2 and
continues to exponentially increase with each homomorphic multiplication operation.

E1 ⊕ E2 = {e11 + e21 , . . . , e1m + e2m} = v1 + v2
E1 ⊗ E2 = {e11 × e21 , . . . , e11 × e2m , . . . e1m × e21 , . . . , e1m × e2m} = v1 × v2

(3.3)

The scheme also allows cyphertexts multiplication by a plaintext value c; indicated
using the notation ~ and implemented as given in Equation 3.4. By extension, cypher-
texts subtraction (	) can be implemented by concatenating the operations ~ and ⊕ as
shown in Equation 3.4. As already noted, cyphertext multiplication changes the num-
ber of sub-cyphertexts; however the homomorphic operations ⊕ and 	 require the two
operand cyphertexts to be of the same length. As a result, when ⊕ or 	 is required
to be conducted with operands that have different sub-cyphertexts sizes, the cyphertext
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with the lower number of sub-cyphertexts is iteratively homomorphically multiplied with
Encrypt(1, SK(m)) till the appropriate number of sub-cyphertexts are arrived at. For
example, to evaluate v1+v1×v2+v1×v2×v3 using Liu’s FHE scheme the operands need
to be of the same length (same number of sub-cyphertexts). This means, the operands
v1 and v1×v2 need to be multiply with Encrypt(1, SK(m)) twice and once respectively.
This is demonstrated in Equation 3.5 where E1, E2 and E3 are the encrypted equivalents
of v1, v2 and v3 respectively.

c~ E1 = {c× e11 , . . . , c× e1m}
E1 	 E2 = E1 ⊕ (−1 ~ E2)

(3.4)

v1 + v1 × v2 + v1 × v2 × v3 ≡ E1 ⊗ Encrypt(1, SK(m))⊗ Encrypt(1, SK(m))
⊕E1 ⊗ E2 ⊗ Encrypt(1, SK(m))
⊕E1 ⊗ E2 ⊗ E3

(3.5)

3.3.1.3 Security

Liu’s FHE scheme is a probabilistic scheme in that it produces different cyphertexts
for the same plaintext on each occasion, even when the same secret key is used. This
is achieved by the usage of a random set R in Liu’s encryption algorithm (Algorithm
1). Liu’s scheme is semantically secure when the size of the plaintext message space M
is bounded, not allowing arbitrarily large plaintexts. The semantic security, as already
noted in Sub-section 3.2.1, can be proven by demonstrating that attackers will be unable
to guess, with higher probability than 1

2 , whether cyphertexts E is an encryption of
plaintext v1 or v2 [163]. Using Liu’s encryption function, and given that the plaintexts
are bounded and the random number set R={r1, . . . , rm} is arbitrarily large, a Liu’s
scheme cyphertext E will be dominated by the nature of R. Hence, the probability
of distinguishing whether E encrypts v1 or v2 is asymptotically equal to distinguishing
the value of the random numbers used to encrypt E. If the random number has p
decimal digits, then, the probability of distinguishing a particular value of a random
numbers is O( 1

10p ) due to the uniformity of sampling used to draw from the random set
R (Algorithm 1). Therefore, the probability of guessing correctly is negligible given that
1

10p <
1
2 .

3.3.1.4 Computational Aspects: Cyphertext Inflation

The number of sub-cyphertexts m, and the number of homomorphic multiplications,
will have an impact on the computational cost and memory resources required when
using Liu’s scheme. Therefore, in this sub-section, some important computational as-
pects of the Liu’s FHE scheme are presented. The sub-section provides details on the
processing time for: (i) key generation, (ii) data encryption and decryption; and (iii)
the conducting of homomorphic operations (⊕, ⊗ and ~) for different values of m and
different dataset sizes (number of attributes). Liu’s FHE key generation is a one-time
process that increases in time with m. Experiments, not presented here, demonstrated
that Liu’s secret key SK(m) can be generated in negligible time. For example, when
the number of sub-cyphertexts m = 3, 9 and 15 the secret key SK(m) was generated in
0.85ms, 0.87ms and 0.89ms, respectively. The experiments reported in Figure 3.2 show
that, the processing time for all homomorphic operations increases linearly with the size
of the data and the value of m. Encryption and decryption are one-time operations and
so contribute relatively little to the overall runtime. Homomorphic addition, ⊕, and
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Figure 3.2: The computational cost of the homomorphic operations supported by
Liu’s FHE scheme for different numbers of attributes in a record: [top left] Encrypt(v);
[top right] Decrypt(E); [middle left] addition: E1⊕E2; [middle right] two cypher-
texts multiplication: E1 ⊗ E2 and [bottom] cyphertext multiplication with plaintext

c~ E1. The given runtime values are averages over 10 iterations

multiplications, ⊗ and ~, are clearly much slower than the corresponding regular plain-
text arithmetic operations. Homomorphic multiplication (⊗) is more expensive than
cypher addition and multiplying a cyphertext with a plaintext value as evidenced in
the experimental results reported in Figure 3.2. The complexity of each homomorphic
operation increases with m as well as the number of attributes featured in data records.

The high computational costs are a reflection of the increase in size when data
is encrypted. Liu’s scheme homomorphic multiplication, as described in Sub-section
3.3.1.2, performs cyphertexts multiplication by determining the outer product of the
two cyphertexts to be multiplied. Therefore, for one multiplication the cyphertext size,
and consequently the required memory, is increased from m to m2 and continues to ex-
ponentially increase with each homomorphic multiplication operation (⊗). In this thesis
this issue is referred to as cyphertext inflation. Figure 3.3 shows the degree of inflation,
in the form of a 3D histogram, for a range of values of m, m = {3, 9, 15, 21, 27, 33}, when



Chapter 3. Cryptography Fundamentals and Preliminaries 44

multiplying with other cyphertexts. In the figure, the vertical axis indicates the num-
ber of sub-cyphertexts resulting from homomorphic multiplication, while the horizontal
axises represent the number of sub-cyphertexts involved in the multiplication. For the
work presented in this thesis the value of m was fixed at m = 3 because it guarantees
the best performance as shown in the experiments reported in this sub-section.

Figure 3.3: 3D histogram showing the increase in the number of sub-cyphertexts as a
result of multiplying cyphertexts using homomorphic multiplication (⊗) with different

values of m

3.3.2 Paillier Partial Homomorphic Encryption Scheme

The second HE scheme adopted with respect to the work presented in this thesis is the
Paillier scheme [54]. This is a probabilistic, Additive HE scheme, which relies on the
Decisional Composite Residuosity (DCR) assumption. The scheme is defined over the
positive integer message space (M= Z+

N ) in such a way that the values that may be
encrypted range from 0 to N − 1 where N is the RSA modulus. The following, Sub-
sections give details of the scheme. Sub-section 3.3.2.1 considers scheme key generation,
encryption and decryption. Sub-section 3.3.2.2 presents the homomorphic properties of
the Paillier PHE scheme. The Sub-section 3.3.2.3 reviews the security of the scheme.
The section is concluded, Sub-section 3.3.2.4, with details on the computational costs,
and the associated dependency on the scheme’s parameters.

3.3.2.1 Key, Encryption and Decryption

The Paillier public key is generated by randomly selecting two different prime numbers (p
and q), with k bit-length, where k is a scheme security parameter. In the literature [164]
it is recommended that the value of k be either 2048 or 3072 bits. The Rivest-Shamir-
Adleman (RSA) modulus (N) is then calculated by multiply the randomly selected two
prime numbers, N = p × q. The value of N is then considered as a scheme public key.
The secret key is given by (λ, µ) which is calculated as given in Equation 3.6 where
LCM is a Least Common Multiple function, L is a function defined as L(x) = x−1

N
and g is a non-zero integer of order divisible by N . The value of g should be small for
performance reasons, g = 2 was used with respect to the work presented in this thesis.
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λ = LCM(p− 1, q − 1)
µ = (L(gλ (mod N2)))−1 (mod N)

(3.6)

The Paillier scheme will encrypt the plaintext value v to cyphertext e using equation:

e = gvrN (mod N2) (3.7)

where r is a random number drawn from the range (1, N − 1) such that GCD(r,N)= 1
where GCD is the Greatest Common Divisors. The decryption function decodes e to
the original plaintext value v as per equation 3.8.

v = L
(
eλ (mod N2)

)
µ (mod N) (3.8)

3.3.2.2 Homomorphic Properties

The Paillier PHE scheme has an additive homomorphic feature that maps plaintext
addition (+) to cypher multiplication (⊗) as per Equation 3.9, where v1, v2 ∈ Z+

N are
encrypted using Paillier (Equation 3.7) to give e1 and e2 respectively. Equation 3.10
demonstrates this mapping.

e1 ⊗ e2 (mod N2) = v1 + v2 (3.9)

Encrypt(v1)⊗ Encrypt(v2) =
(
gv1rN1 (mod N2)

)
×
(
gv2rN2 (mod N2)

)
= gv1+v2(r1r2)

N (mod N2)
= Encrypt(v1 + v2)

(3.10)

In addition to the additive homomorphic property, Pailliler PHE has some additional
homomorphic properties, which allow multiplication with plaintexts. A plaintext value c
can be multiplied with a cyphertext e, that encrypts a plaintext value v, as in Equation
3.11. This feature can be used to support cyphertexts subtraction, as in the case of
Liu’s FHE scheme, by multiplying a cyphertexts by −1 and then adding the result with
another cyphertext.

c~ e = ec (mod N2) = c× v (3.11)

3.3.2.3 Security

The Paillier encryption scheme [54], as noted above, is a probabilistic encryption scheme
that has been demonstrated to be semantically secure if the DCR assumption holds.
The probabilistic property is incorporated by using a random value r in the encryption
equation (Equation 3.7). The DCR assumption states that, given a composite integer
N and an integer x ∈ Z, it is computationally hard to decide whether there is a y ∈ Z
such that x ≡ yN (mod N2). This is related to the “hardness” to factorise N , when N is
the product of two large primes (p and q). This makes the probability of distinguishing
cyphertexts hard, and thus Paillier is demonstratively semantically secure.
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Figure 3.4: The computational cost of Paillier PHE scheme homomorphic operations
for different numbers of attributes in a record: [top left] Encrypt(v) [top right]
Decrypt(e) [bottom left] addition: e1 ⊗ e2; [bottom right] multiplication: c ~ e.

The given runtime values are averages over 10 iterations

3.3.2.4 Computational Aspects

The performance (efficiency) of the Paillier PHE scheme and its HE mathematical prop-
erties relies on the selected security parameter k. Recall that the value of k represents
the bit-length of the two prime numbers, p and q, used to generate the public key N .
Therefore, in this sub-section, some computational aspects of Paillier PHE scheme are
presented. The sub-section provides details on the processing time for: (i) data encryp-
tion and decryption; and (ii) the homomorphic operations (⊗, ~) for different value
of the security parameter (k) and different dataset sizes (number of attributes). The
experiments conducted considers three different values of k; k = {512, 2048, 3072}. The
results are shown in Figure 3.4. The figure shows that the processing time for all homo-
morphic operations increases linearly with the size of the data and k. However, the data
encryption and decryption are one-time operations that do not introduce a significant
overhead to the overall runtime. The homomorphic operations, ⊗ and ~, are clearly
much slower than the corresponding regular plaintext arithmetic operations, although
the multiplication ~ is more expensive than the cypher addition as evidenced in the
experimental results reported in Figure 3.4.

3.4 Property Preserving Encryption

There are several encryption schemes that preserve plaintext properties over cyphertexts.
These are generically referred to as Property Preserving Encryption (PPE) schemes
[165]. The HE schemes considered in the foregoing section are a special form of PPE
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scheme [165], schemes that preserve arithmetic operations. However, there are other
properties that may be preserved using PPE schemes. Examples of such schemes include:
(i) Deterministic Encryption (DET), (ii) Distance Preserving Encryption (DPE), (iii)
Asymmetric Scalar Product Encryption (ASPE) and (iv) Order Preserving Encryption
(OPE); examples that could all provide potential operations required for PPDM. These
schemes have different performance and security characteristics as they permit a range
of different operations [18]. In the following sub-sections the above listed PPE schemes
are considered in further detail, Sub-section 3.4.1 to 3.4.4. Each sub-section describes
the nature of the relevant schemes along with the associated potential security threats.
OPE is described in further detail than the others because it is of particular relevance
with respect to the work presented in this thesis as will become clear later in the thesis.

3.4.1 Deterministic Encryption

The Deterministic Encryption (DET), as noted above, is a type of encryption whereby
plaintext values are encoded to the same cyphertext each time they are presented using
a prescribed encryption key. Therefore, it allows for equality checking over encrypted
data. Formally, the cyphertexts e1 and e2, generated using a DET scheme, can be
directly compared using e1 == e2 or e1 6= e2 without having access to the original
plaintext values. From the literature, only a few DET schemes also have homomorphic
properties, two examples are: (i) the Rivest-Shamir-Adleman (RSA) without padding
scheme [140] which allows homomorphic multiplication as well as equality checking,
and (ii) the Modified RSA Encryption Algorithm (MREA) scheme [123] which permits
addition mapped as multiplication over cyphertexts as well as equality checking. DET
schemes have been widely adopted in many application domains, especially with respect
to secure outsourced database storage and secure SQL query resolution over encrypted
data, as in the case of the CryptDB project [148].

However, DET schemes have serious security vulnerabilities. DET schemes leak a
considerable amount of information. Simple frequency analysis or dictionary attack can
often be used to attack such schemes (the reader may wish to refer back to Sub-section
2.5.2 where the nature of dictionary attacks was described). The frequency analysis
attack exploits the absence of randomness during the encryption process whereby the
same cyphertext is produced when the same plaintext value is encrypted multiple times.
Therefore, with basic information about the message space (for example the frequency of
a particular attribute value), attacks can match the frequencies of cyphertexts with the
frequencies of plaintexts data. The dictionary attack is typically applied to semantically
insecure schemes where the attacker has access to the public key. In this case, the at-
tacker can create their own dictionary by simply encrypting all potential plaintexts using
the scheme’s public key. This vulnerability renders DET schemes to be inappropriate
for PPDM and by extension DMaaS.

3.4.2 Distance Recoverable Encryption

Distance Recoverable Encryption (DRE) schemes provide a straightforward solution for
many data clustering and classification algorithms that required distance comparison.
Given an encryption function Encrypt and key Key, if Encrypt(v1,Key) is the encryp-
tion of data value v1 and Encrypt(v2,Key) is the encryption of data value v2, the scheme
is denoted as a DRE scheme if and only if there exists a computational procedure F
such that:



Chapter 3. Cryptography Fundamentals and Preliminaries 48

F
(
Encrypt(v1,Key), Encrypt(v2,Key)

)
= v1 − v2 (3.12)

The scheme preserved distances between any two encrypted records, and thus the
calculated distance over encrypted data records are the same as that between the cor-
responding original records. Distance Preserving Transformation (DPT) is an example
of DRE, which has been adopted in the context of secure k-Means data clustering and
Chameleon hierarchical data clustering in [166]. However, as shown in [167, 168], DRE
schemes have serious security vulnerabilities if some of the plaintext data values are
known to an attacker, or if the mapping between some plaintexts and cyphertexts is
known; the Known-Plaintext Attack (KPA) and the Chosen-Plaintext Attack (CPA).
Using either of these attacks the attacker can recover the original data values with very
high confidence via knowledge of the mutual distances between data records together
with the probability distribution from which they are drawn. Therefore, any data trans-
formation/encryption that preserve the “actual or real distances” between data records
may be vulnerable to the disclosure of private information [169]. Therefore, the DRE
schemes were deemed not sufficiently secure for the purpose of PPDM.

3.4.3 Asymmetric Scalar Product Encryption

The weakness of DRE comes from the fact that the attacker is able to recover “real”
distances from the encrypted data. The Asymmetric Scalar Product Encryption (ASPE)
schemes address this by allowing distance comparison between two data records in such
a way that the real distance cannot be recovered. ASPE has been used in [23, 167, 170]
to implement k-Nearest Neighbour (kNN) classification. Using an ASPE scheme the
two values to be compared are encrypted using two distinct matrices. One is encrypted
using what is known as an “invertible matrix” and the other using an “inverted ma-
trix”, thus avoiding an attack based on distance preservation between unencrypted data
and encrypted data, hence avoiding distance recovery [167]. More formally, given an
encryption function Encrypt and key Key the ASPE scheme allows the secure deter-
mination of whether value v3 is nearer to value v1 or v2 by directly comparing the
cyphertexts: d(Encrypt(v1,Key) and Encrypt(v3,Key)), and d(Encrypt(v2,Key) and
Encrypt(v3,Key)). However, the requirement of using two encrypted versions of the
data renders the scheme impractical for large scale PPDM.

3.4.4 Order Preserving Encryption

The Order Preserving Encryption (OPE) approach ensures that the numerical order of
plaintexts persists in the generated cyphertexts. Therefore, when plaintexts v1 < v2
the encryption scheme preserves the relation Encrypt(v1) < Encrypt(v2). This feature
allows comparison operations to be directly applied over the encrypted data, without
decryption, in the same way as on plaintexts using operations such as: =, 6=, <, >, 6 and
>. Therefore, OPE has been adopted in many real applications such as CryptDB [148]
developed by the Massachusetts Institute of Technology (MIT), Encrypted BigQuery
[171, 172] developed by Google, and other solutions directed at secure database query
resolution [51, 148, 173–177]. There has been a significant amount of work on OPE
schemes [178–181]. In the remainder of this sub-section a review of some of the most
well known OPE schemes is presented, together with their respective efficiency and
security attributes.

The first OPE scheme that provided a rigorous level of security was the Boldyreva,
Chenette, Lee and O’Neill (BCLO) scheme presented in [178]. The scheme defined a
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Random Order-Preserving Function (ROPF) to be used for generating order preserving
cyphers. Each cyphertext assignment was made according to the output of their Hyper-
Geometric Distribution (HGD) sampling algorithm run on appropriate parameters for
each plaintext. However, the scheme was inefficient due to the HGD sampling. Exper-
iments, conducted on an iMac running under the macOS High Sierra operating system
with 8GB of RAM using the BCLO Java implementation available at [182], demon-
strated that a dataset with 452 records and 279 attributes required 8 hours to encrypt.
Due to its functional requirements, the BCLO OPE scheme (as in the case of most OPE
schemes) is defined to be deterministic, so as to allow for data equality comparison. This
inherent deterministic property, as in the case of other DET schemes, results in leakage
of a lot of information which renders the scheme to be vulnerable to the deterministic
attacks presented early in this section (Sub-section 3.4.1). The research presented in
[179] was directed at improving the performance of ROPF by reducing the number of
HGD sampling invocations in the BCLO scheme. However, in [183, 184] it was shown
that ROPF, as used in the BCLO scheme, exposed more than the order of the data
values; at least half of the plaintext bits were also revealed. Therefore, BCLO schemes
cannot satisfy the security requirements expected for PPDM. BCLO schemes are not
secure against CPAs and are vulnerable to simple statistical analysis which may reveal
confidential data.

The mutable Order Preserving Encryption (mOPE) proposed in [180] was designed
to be used by TPDMs and addressed the threat of CPAs. The mOPE scheme changes the
generated cyphertexts, using a small number of pre-encrypted cyphertexts, whenever an
already-encrypted plaintext value is presented again. The scheme works by constructing
a balanced search tree (an AVL tree) containing all of the plaintext values encrypted
using a DET scheme. The order-preserving encoding of a value is the path from the root
to that plaintext value in the search tree. Tree paths are denoted using a binary encoding
where 0 denotes the left child edge and 1 the right child edge. Thus, if x is less than y, the
path to x will be to the left of y (as the binary encodings used increase from left to right
in the tree). Each time a value is encrypted it is inserted into the tree at an appropriate
tree node using an interactive protocol with the data owner. Dynamic Order Preserving
Encryption (DOPE), presented in [181], is founded on the mOPE scheme presented in
[180]. The DOPE scheme modified the mOPE scheme by introducing a trusted proxy
between the data owner and the TPDM to manage the interactive protocol for inserting
new encrypted data records.

Generally speaking, the above mentioned OPE schemes are all deterministic encryp-
tion schemes (one-to-one mapping). An adversary who is either aware of the message
space or gathers statistical data concerning the message space (data distribution and
frequency) is capable of building a mapping between the actual and the encrypted val-
ues. The leakage associated with the usage of DET OPE schemes discussed in [185] and
techniques for minimising such leakage have been suggested. One of these technique
is to introduce randomisation to the OPE encryption function, and trade some of its
functionality (equivalence checking) to enhance security. This idea was implemented in
[51, 186] where a one-to-many order preserving mapping function was introduced. In
[51], the secret key consists of two integers, a and b, and the encryption of a value v is
a × v + b + ε, for some randomly chosen noise ε ∈ [0, a − 1], small enough to preserve
the ordering. However, the a and b variables (the secret key) are the same across all the
encrypted data and this makes the scheme vulnerable to statistical attacks as demon-
strated in [187]. An alternative OPE scheme is presented later in this thesis that address
the disadvantages associated with the above OPE schemes, thus rendering it suitable
for PPDM and by extension DMaaS.
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3.5 Summary

This chapter has presented the cryptographic background concerning HE schemes, and
some PPE schemes, that are relevant to PPDM. The chapter commenced by introducing
the basic cryptography terminology. The concept of HE was discussed, and an overview
of a range of different HE schemes and their properties was presented. The limitations
of HE schemes, pertinent to the research presented in this thesis, were highlighted.
The presented HE limitations included consideration of the techniques that may be
adopted to addressing each limitation. Two HE schemes that feature later in this thesis
were presented in detail, and their security limitations and computational complexity
considered with respect to the central research question of the thesis. The following
chapter introduces the first proposed solution to PPDM, founded on the idea of HE
and with a focus on reducing the data owner participation (compared to alternative
solutions) when delegating data clustering to a TPDM.



Chapter 4

Updatable Distance Matrices

4.1 Introduction

In the previous chapter, a number of preliminaries relevant to cryptography and PPE
schemes were presented. As established, there is no scheme that supports all the oper-
ations required in the context of PPDM and by extension DMaaS. The solutions that
have been proposed to date, and that were reported in Chapter 2, either require a
significant element of data owner participation or incorporate unreasonable security as-
sumptions that require the delegation of the secret key to a third party or the splitting
of the key among multiple non-colluding parties using the technique of secret sharing.
These solutions also have significant disadvantages concerning efficiency; in many cases
because of the required communication and computation overhead to securely fulfil the
unsupported operations.

In this chapter, the concept of Updatable Distance Matrices (UDMs) is presented
that dramatically reduces the data owner participation and thus the communication
and computational overhead which is a feature of previous solutions. The focus is data
clustering using a TPDM because clustering is arguably the simplest data mining appli-
cation to implement over encrypted data, a number of examples taken from the literature
were cited in the previous chapter [19–22, 33–37]. A Secure k-Means (Sk-Means) data
clustering algorithm, founded on the UDM concept, is therefore also proposed which
operates over encrypted data. This algorithm is the first of a number of secure data
mining algorithms proposed in this thesis designed to outsource data mining tasks to a
TPDM with only a limited data owner participation. In the introduction to this thesis
two kinds of secure DMaaS scenarios were identified, the single data owner scenario and
the multiple data owners scenario. The work presented in this chapter is directed at
the single data owner scenario, the multiple data owners scenario will be considered in
later chapters. The reader may wish to refer back to Sub-section 2.3.1 where the data
privacy preservation requirements for the single data owner scenario were presented.

The main idea underpinning the UDM was to provide the TPDM with a mechanism
to accurately compare cyphertexts without involving the data owner. A further feature
of the UDM is that it can be readily updated as new cyphertexts are generated using
the HE properties of the scheme. The updating process allows the data comparison
to be performed between newly generated cyphertexts and the outsourced data. The
updating process uses the concept of a Shift Matrix which requires very limited data
owner participation, substantially less than that required in the case of comparator
approaches [19–22, 33–37]. In the case of the proposed Sk-Means the TPDM still needs
to have access to the original data to assign records to clusters. The data privacy in this
case is preserved using data encryption applied at the attribute level. Liu’s FHE scheme
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[53], previously presented in Chapter 3, was used for this purpose. The intuition was to
modify k-Means to work with the UDM concept and replace the mathematical operations
with the HE properties of Liu’s FHE scheme. The evaluation criteria were data clustering
accuracy, clustering efficiency and security. For the proposed Sk-Means data clustering
algorithm to be said to be operating correctly it should produce comparable or similar
clustering results to those produced in the case of the standard k-Means algorithm using
unencrypted data.

The rest of this chapter is structured as follows. Section 4.2 provides a detailed
description of the proposed UDM mechanism. This is followed, in Section 4.3, by pre-
sentation of the proposed Secure k-Means (Sk-Means) data clustering algorithm designed
to operate using encrypted data and founded on the UDM concept. In Section 4.4 the
results of an extensive evaluation concerning the UDM concept and the proposed Sk-
Means algorithm, using benchmark datasets from the UCI machine learning repository,
are presented. Finally, Section 4.5 provides a summary of the material presented in this
chapter.

4.2 Updatable Distance Matrices

This section introduces the Updatable Distance Matrices (UDMs). The section provides
details concerning the nature of UDMs, their utilisation in the context of k-Means se-
cure clustering and how such matrices are updated when new clustering centroids are
generated (using the properties of Liu’s FHE scheme). This section thus comprises two
sub-sections. The first, Sub-section 4.2.1, is concerned with the nature of UDMs and
their usage in the context of k-Means clustering; and the second, Sub-section 4.2.2,
with the updating process that uses the concept of a Shift Matrix (SM). Procedural
details concerning the practical generation of UDMs and the proposed secure Sk-Means
algorithm are given in the following section, Section 4.3.

4.2.1 The Updatable Distance Matrices

Data encryption using HE schemes, as in the case of standard encryption schemes,
typically involves translating from plaintexts form to cyphertexts form in a way that
any data ordering that might have been a feature of the plaintext data is not transferred
to the generated cyphertexts. Therefore data comparisons over the cyphertexts cannot
be performed. Data clustering, as in the case of many data mining algorithms, requires
substantial data comparison. To address this issue many proposed solutions [19, 20,
35–37], where the secret key is not shared (which raises a security concern), require
that the data comparisons be performed by the data owner either by: (i) the data
owner decrypting the cyphertexts, comparing the results and then sending the results
of the comparisons back to the TPDM; or (ii) in the case of the multiple data owner
scenario, by using a SMPC comparison protocol such as YMPP or Cachin’s scheme
[30, 104]. The UDM concept was designed to allow the TPDM to compare encrypted
data records without recourse to data owners or complex SMPC comparison protocols.
Although, as will become clear, in the case of the proposed Sk-Means algorithm data
owner participation is still required to update the UDM once new cluster centroids have
been generated as the Sk-Means algorithm progresses; however, as will also become
clear, this data owner participation is minimal in comparison with existing solutions.

A UDM is a 3D matrix that holds (unencrypted) distances between the attribute
values in each record with the corresponding attributes values in every other record.
Therefore, the first and the second dimension of a UDM correspond to the number of
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records in the dataset and the third dimension corresponds to the number of attributes
featured in the data. More formally, given a dataset D = {r1, . . . , rn} where each record
rx features a set of values that correspond to a set of attributes A = {rx,1, . . . , rx,a};
the UDM associated with the dataset D will measure n× n× a. The matrix UDM (U)
will comprise a set of elements ux,y,z where x and y reference record identifiers and z
an attribute identifier. The value in each element ux,y,z is a plaintext (unencrypted)
value calculated by the data owner, as rx,z − ry,z. The element ux,y,z thus expresses
the difference between the value of attribute z in record x and the value of the same
attribute in record y. A UDM (U) has the form shown in Equation 4.1 (the third
dimension represented as a list). It is symmetric about the leading diagonal so only the
values for the lower (or the upper) 3D triangle of the matrix needs to be considered.

U =


(
u1,1,1, · · · , u1,1,a

) (
u1,2,1, · · · , u1,2,a

)
· · ·

(
u1,n,1, · · · , u1,n,a

)
...

...
. . .

...(
un,1,1, · · · , un,1,a

) (
un,2,1, · · · , un,2,a

)
· · ·

(
un,n,1, · · · , un,n,a

)
 (4.1)

A UDM U and the encrypted dataset D′, generated by the data owner, can col-
lectively provide a solution to data clustering. They allow the TPDM to cluster the
encrypted data records. The idea is illustrated in this chapter using the k-Means clus-
tering approach. This will operate as follows. On the first iteration the first k encrypted
records in D′ will be selected by the TPDM to represent the first iteration cluster cen-
troids Cent′1 ={cent′11 ,. . . , cent′1k}. The remaining encrypted data records in D′ are
added to the nearest cluster by comparing the distances between each record and the
cluster centroids. The content of U is used for this purpose. As already noted the
first dimension of U represents the data record identifiers, the second the centroids and
the third the attribute identifiers. On each occasion that the data owner causes the
k-Means clustering to be executed the data owner must specify the number of cluster k,
only the first k elements in the second dimension of U are then used, the remaining can
be ignored. Thus if a maximum value for k is known in advance the size of the UDM
can be limited. As in the case of standard k-Means, the data records that have been
added to cluster in the first iteration are used to calculate the next iteration centroids.
The HE properties of Liu’s FHE scheme, used to encrypt D (presented in Chapter 3),
are used to re-calculate encrypted cluster centroids to arrive at new set of centroids
Cent′2 = {cent′21 , . . . , cent

′
2k
}. On the next iteration, the TPDM needs to re-determine

the cluster content by comparing each encrypted record in D′ with the new set of cen-
troids Cent′2. This cannot be achieved directly as Liu’s FHE scheme does not support
data comparison and U holds the distances with respect to the first iteration centroids.
One solution would be to return U to the data owner along with the newly calculated
cluster centroids for an update. However, this solution will introduce a substantial com-
munication and computational overhead. Instead, a novel updating process is proposed
that allows U to be updated, regardless of the dataset size, with only very limited data
owner participation as presented in the following sub-section.

4.2.2 Updating Process

The updating process aims to effectively and efficiently update a UDM in the context of
the Sk-Means algorithm introduced in the preceding sub-section. Algorithm 3 shows the
pseudo code for the updating process. The inputs are the UDM U to be updated, the ith
iteration clusters centroids (Cent′i) and the i+ 1th iteration cluster centroids (Cent′i+1).
The first step is for the TPDM to calculate what is referred to as a Shift Matrix S′ (line
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2) that represents the distances between cluster centroids of two consecutive iterations,
Cent′i and Cent′i+1. The distances are calculated using the cyphertext subtraction (	)
property of Liu’s FHE scheme. More formally a shift matrix is a 2D matrix of the form
(k is the k-Means clustering parameter):

S′ =

s
′
1,1 s′1,2 · · · s′1,a
...

...
. . .

...
s′k,1 s′k,2 · · · s′k,a


Each element s′x,y holds the difference (“offset” or “shift” value) between the yth at-
tribute in centroid cent′ix ∈ Cent

′
i and the yth attribute in centroid cent′i+1x

∈ Cent′i+1;
thus the difference between the iteration i centroids Cent′i and newly calculated itera-
tion i + 1 centroids Cent′i+1. The values are encrypted using Liu’s FHE scheme. The
calculated shift matrix S′ is then sent to the data owner for decryption to arrive at the
plaintext shift matrix S (line 3); this is the only data owner participation that is required
in the proposed Sk-Means algorithm. The matrix S, once received by the TPDM, is
then used to update U (line 4) using Equation 4.2. Recall that k-Means uses only the
first k columns in U and thus the updated process is only directed at these k columns.
Equation 4.3 demonstrates the value held in element ux,y before and after applying the
updating process to prove the correctness of the updating process. The first line in
the equation shows the initial value held in ux,y that represents the distance between
record rx and the yth centroid of the current clustering iteration. The second line of the
equation shows the value of shift matrix element sy added during the updating process.
The updated ux,y element is shown in the last line of the equation. The updated UDM
element will hold the distances between data records and new clustering iteration cen-
troids. The algorithm exits (in line 5) with the UDM U that has been updated and is
ready for the next iteration of the algorithm and a decrypted shift matrix S.


(
u1,1,1 + s1,1, · · · , u1,1,a + s1,a

)
· · ·

(
u1,k,1 + sk,1, · · · , u1,k,a + sk,a

)
...

. . .
...(

un,1,1 + s1,1, · · · , un,1,a + s1,a
)
· · ·

(
un,k,1 + sk,1, · · · , un,k,a + sk,a

)
 (4.2)

ux,y = rx − centiy
ux,y + sy = rx − centiy + (centiy − centi+1y)

ux,y = rx − centi+1y

(4.3)

Algorithm 3 UDM updating process

1: procedure UpdateUDM(U,Cent′i,Cent
′
i+1)

2: S′ = Cent′i 	 Cent′i+1

3: S = S′ decrypted by data owner (Algorithm 2 in Chapter 3)
4: U = U + S . Equation 4.2
5: Exit with U and S
6: end procedure

4.3 Secure Data Clustering

This section presents the secure data clustering process founded on the concept of UDMs.
The process has two parts, a data preparation part and a clustering part. The first is



Chapter 4. Updatable Distance Matrices 55

conducted by the data owner and is detailed in Sub-section 4.3.1, while the second is
conducted by the TPDM and is detailed in Sub-section 4.3.2.

4.3.1 Data Preparation for Outsourcing

This section presents the preparation step, conducted by data owners, to securely out-
source their data to the TPDM who provides DMaaS. The data preparation comprises:
(i) data preprocessing, (ii) data encryption and (iii) UDM calculation. The pseudo code
for the data outsourcing process is given in Algorithm 4. The inputs are the raw dataset
to be outsourced RawD, the number of attributes a that features in RawD and Liu’s
FHE scheme parameter m as presented in Sub-section 3.3.1. During the data prepro-
cessing the data owner casts any categorical attributes values to appropriate discrete
counterparts to arrive at a preprocessed dataset D (line 2). The Liu’s scheme secret key
SK(m) is then generated by the data owner following the process presented earlier in
Chapter 3. The reader may wish to refer back to Sub-section 3.3.1 where Liu’s FHE
scheme was presented. The empty dataset D′ is then created in line 4 to hold the en-
crypted dataset. The preprocessed dataset D is then encrypted attribute-wise in lines
5 to 7 using Algorithm 1 given in Chapter 3. The next preparation step is to calculate
the UDM U (lines 8 to 15). Only the lower 3D triangle is calculated in this algorithm.
The UDM calculation commences by dimensioning the desired matrix U in line 8 and
then populating it (lines 9 to 15); recall from Sub-section 4.2.1 that rx,z is the value of
the zth attribute in the feature set describing the xth record in the dataset, while ry,z is
the value of the zth attribute in the feature set describing the yth record in the dataset.
The output from the data preparation step is the encrypted dataset D′ and the UDM
U, ready to send to the TPDM.

Algorithm 4 Data preparation for outsourcing process when using the UDM concept

1: procedure OutsourceData(RawD,a,m)
2: D = Dataset RawD converted to numeric dataset where necessary
3: SK(m) = Liu’s scheme secret key generated as in Sub-section 3.3.1
4: D′ = ∅
5: for all r ∈ D do
6: D′ = D′ ∪ Encrypt(r, SK(m)) . Algorithm 1
7: end for
8: U = Empty UDM dimensioned according to |D|, |D| and a
9: for x = 1 to x = |D| do

10: for y = 1 to y = x do
11: for z = 1 to z = a do
12: ux,y,z = rx,z − ry,z (ux,y,z ∈ U)
13: end for
14: end for
15: end for
16: Exit with D′ and U
17: end procedure

4.3.2 Secure k-Means

The Secure k-Means (Sk-Means) data clustering algorithm that operates using the con-
cept of UDMs over encrypted data is given by the pseudo code presented in Algorithm
5. Most of the algorithm is executed by the TPDM following a process very similar to
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standard k-Means as described in [46]. The inputs are: (i) the encrypted dataset D′,
(ii) the UDM U and (iii) the desired number of clusters k to be produced using the
k-Means as prescribed by the data owner. The output will be a set of clusters C. The
algorithm commences by dimensioning the set of cluster C = {c1, . . . , ck} (line 2). The
first k records in the encrypted dataset D′ are then assigned to cluster C one per cluster
in line 3. The iteration counter, i, is then initialised (line 4). The set of current iteration
cluster centroids Cent′i = {cent′i1 , . . . , cent

′
ik
} is then defined in line 5 and initialised

with the first k encrypted records in D′. The remaining encrypted data records are then
assigned to clusters using a call to the populateClusters sub-procedure (line 6) give in
lines 18 to 28. The populateClusters sub-procedure inputs are: (i) the record number
rid in D′ where the process needs to start from, (ii) the UDM U, (iii) the set of cluster
so far C, (iv) the encrypted dataset D′ and (v) the set of current iteration cluster cen-
troids (Cent′i). The populateClusters sub-procedure uses U to determine the similarity
between the cluster centroids in Cent′i and the remaining records in D′ starting with
record r′rid and continuing to record r|D′|. Equation 4.4 is used to derive the distance
between r′x and r′y (where r′x ∈ D′, and r′y ∈ Cent′i (1 6 y 6 k).

sim(U, r′x, r
′
y) =

z=a∑
z=1

|ux,y,z| (4.4)

Once all records have been assigned to a cluster the clusters centroids are re-calculated
(line 7) using the CalculateCentroids sub-procedure given at the end of the algorithm
(lines 29 to 44). The encrypted records belonging to the same cluster (cj) are used
to calculate the cluster centroid (lines 33 to 41). The values of each attribute for the
records in a cluster are added using homomorphic addition, ⊕ (line 36) and then multi-
plied by ( 1

|cj |) using homomorphic multiplication ~, where |cj | is the number of records

in cluster cj , to arrive at a set of new cluster centroids (line 40). The CalculateCentroids
sub-procedure exits with a new set of cluster centroids assigned in line 7 to Cent′i+1.
The UpdateUDM is called in line 8 as presented earlier in Algorithm 3. Next we enter
into a loop (lines 9 to 15), which repeats until the shift matrix (S) holds only zero
values; the cluster centroids are the same for two consecutive iterations. Note that (not
shown in the algorithm) when updating U we only need to update the first k records in
the second dimension representing cluster centroids. The loop commences by creating
a new empty cluster set C (line 10). With the new centroids (Cent′i+1) the algorithm
again assigns all records to C using the populateClusters sub-procedure (line 11) in the
same manner as before. In line 12 the iteration counter (i) is updated. The algorithm
continues in this manner until the termination condition is arrived at.

4.4 Experimental Results and Evaluation

This section reports on the experimental analysis conducted to evaluate the performance
of the UDM concept in the context of the proposed Sk-Means data clustering algorithm
presented in this chapter. The objectives of the evaluation were to consider the following
criteria:

1. Data owner participation: The amount and complexity of the required data
owner participation.

2. Efficiency: The efficiency of the proposed Sk-Means data clustering, which oper-
ates over encrypted data and utilised the UDM, compared to the standard algo-
rithm which operates over unencrypted data.
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Algorithm 5 Secure k-Means (Sk-Means) clustering algorithm

1: procedure Sk-Means(D′, U, k)
2: C = Set of k empty clusters
3: Assign the first k records in D′ to C (one per cluster)
4: i = 1
5: Cent′i = Set of first k records in D′ (the k cluster centroids)
6: C = populateClusters(k + 1,U, C,D′, Cent′i)
7: Cent′i+1 = CalculateCentroids(C,k)
8: U, S = UpdateUDM(U, Cent′i, Cent

′
i+1) . Algorithm 3

9: while S 6= 0 do
10: C = Set of k empty clusters
11: C = populateClusters(1,U, C,D′, Cent′i+1)
12: i = i+ 1
13: Cent′i+1 = CalculateCentroids(C,k)
14: U, S = UpdateUDM(U, Cent′i, Cent

′
i+1)

15: end while
16: Exit with C
17: end procedure
18: procedure populateClusters(rid,U,C,D′,Cent′)
19: id = null
20: for x = rid to x = |D′| do
21: for y = 1 to y = |C| do
22: sim = sim(U, r′x, cent

′
y) where r′x ∈ D′ and cent′y ∈ Cent′ (Equation 4.4)

23: id = cluster identifier with lowest sim value so far
24: end for
25: cid = cid ∪ r′x (cid ∈ C and r′x ∈ D′)
26: end for
27: Exit with C
28: end procedure
29: procedure CalculateCentroids(C, k)
30: Cent′ set of k empty centroids
31: for j = 1 to j = k do
32: Average′ set of a elements initialised by 0
33: for i = 1 to i = |cj | do
34: Rec′ = Get(cj ,i) where Rec′ is the ith record in cj
35: for q = 1 to q = a do
36: average′q = average′q ⊕ rec′q
37: end for
38: end for
39: for q = 1 to q = a do
40: cent′j,q= average′q ~

1
|cj |

41: end for
42: end for
43: Exit with Cent′

44: end procedure

3. Accuracy: The accuracy (correctness) of the resulting cluster configuration pro-
duced by the Sk-Means.
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4. Security: The level of security provided by the proposed solution and the encryp-
tion scheme adopted.

The proposed solution was implemented using the Java object oriented programming
language. For the evaluation fifteen “classification” benchmark datasets from the Uni-
versity of California Irvine (UCI) machine learning repository [50] were used. Some
statistical and descriptive information concerning these datasets are given in Table 4.1.
The datasets have integer, real and categorical attributes. Note that the number of
classes for each dataset (column 4 in the table) was used as the value for k in the k-
Means clustering. The experiments were run using an iMac (3.8 GHz Intel Core i5)
running under the macOS High Sierra operating system with 8GB of RAM. The re-
sults obtained, in the context of the above objectives are presented in the following four
sub-sections, Sub-Sections 4.4.1 to 4.4.4, respectively.

Table 4.1: Statistical information for the datasets used to evaluate the UDM concept
and Sk-Means

No. UCI Dataset
Num. Num. Num.

Attributes Description
Records Attributes

Clus-
ters

(n) (a) (|C|)
1. Arrhythmia 452 279 16 Categorical, int. & real
2. Banknote Auth. 1372 4 2 Real
3. Blood Trans. 748 4 2 Integer
4. Breast Cancer 198 33 2 Real
5. Breast Tissue 106 9 6 Integer & real
6. Chronic Kidney 400 24 2 Categorical, int. & real
7. Dermatology 366 34 6 Categorical & int.
8. Ecoli 336 8 8 Categorical & real
9. Indian Liv. Pat. 583 10 2 Integer & real
10. Iris 150 4 3 Categorical & real
11. Libras Mov. 360 90 15 Real
12. Lung Cancer 32 56 3 Integer
13. Parkinsons 195 22 2 Categorical & real
14. Pima Disease 768 8 2 Integer & real
15. Seeds 210 7 3 Integer & real

4.4.1 Data Owner Participation

This sub-section considers the results for evaluating the amount and the complexity of
data owner participation when utilising the proposed Sk-Means data clustering and the
UDM concept. In the proposed solution the data owner will participate in: (i) preparing
the data for outsourcing as per Algorithm 4 and (ii) decrypting the shift matrix on each
Sk-Means iteration. The data preparation process comprises: (i) data encryption (Data
Enc.) and (ii) UDM Calculation (UDM Cal.). Table 4.2 shows the recorded runtimes
associated with these sub-processes using the UCI datasets, and the total time required
for data preparation. The table shows that the overall time (column 4) required to
prepare the data is negligible, even for the largest dataset, Arrhythmia, runtime values
of 9.80ms and 230.2ms were recorded to encrypt the dataset and calculate the UDM. The
complexity of the UDM generation can be calculated as being of order O(n×(n+1)

2 × a);
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Table 4.2: Time required by data owner to prepare data for outsourcing

UCI Dataset Data Enc. UDM Cal. Total UDM App.
(ms) (ms) (ms)

Arrhythmia 9.80 230.2 240.00
Banknote Auth. 1.85 388.0 389.85
Blood Trans. 4.04 62.0 66.04
Breast Cancer 1.70 11.0 12.70
Breast Tissue 0.40 3.0 3.40
Chronic Kidney 2.65 29.0 31.65
Dermatology 1.80 40.2 42.00
Ecoli 0.98 8.8 9.78
Indian Liv. Pat. 1.30 41.8 43.10
Iris 0.20 2.0 2.20
Libras Mov. 4.80 49.8 54.60
Lung Cancer 0.59 1.0 1.59
Parkinsons 1.90 6.3 8.20
Pima Disease 1.44 47.0 48.44
Seeds 0.48 5.0 5.48

if we know that value for k in advance this can be reduced to O((k×(2n−k+1)
2 )×a). Note

that in the UDM only the upper or lower 3D triangle needs to be calculated.
The data owner also participated in the updating of the UDM while the Sk-Means

data clustering was undertaken by the TPDM. The updating process, as already noted
in Sub-section 4.2.2, requires the data owner to decrypt the shift matrix after each Sk-
Means iteration. The shift matrix measures k × a, a very small matrix that requires
negligible time for decryption. However, in the experiments reported in this thesis, the
data owner and TPDM were both hosted on the same machine. In a real life single data
owner scenario the data owner and the TPDM will be hosted on different machines and
thus there will be a “message passing” overhead. The time for message passing would add
to the overall runtime, although this is again not anticipated to add a significant further
overhead. The runtime for decrypting the shift matrix was evaluated by considering the
effect of the number of attributes featured in the dataset D′ and the effect of the number
of iterations on the execution time. The results are presented in Figure 4.1 which shows
two plots. The first is the runtime against the number of attributes and the second is
the runtime against the number of iterations required by the Sk-Means to arrive at the
clustering configuration. The two plots show that, as anticipated, the runtime increased
with the number of attributes and number of iterations.

4.4.2 Secure Clustering Efficiency

The utilisation of the HE properties of Liu’s scheme clearly introduce a computational
overhead with respect to the same operations conducted using plaintext data. This
sub-section reports on an analysis of the overhead introduced by utilisation of the HE
properties in the proposed Sk-Means algorithm. The overhead is measured in terms
of the runtime required by the TPDM to cluster the encrypted dataset (this will also
include the time required for decrypting the shift matrices on each Sk-Means iteration).
The runtime required will be compared with the runtime to clustering the datasets using
the standard k-Means algorithm. The results are shown in columns 2 and 5 of Table
4.3 (note that the runtimes for Sk-Means does not include any data owner preparation
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Figure 4.1: Time required (ms) by data owner to decrypt the shift matrix between
two centroids for different numbers of attributes and different iterations

time). The runtimes required by the proposed Sk-Means data clustering were slightly
higher than the standard algorithm but inspection of the table indicates that this was
not significantly so.

4.4.3 Secure Clustering Accuracy

Clustering accuracy was measured by comparing the generated cluster configurations
obtained using Sk-Means with those obtained using standard k-Means when using the
same value for k. For it to be argued that the Sk-Means algorithm is operating correct-
ly/accurately it should produce comparable cluster configurations with that produced
using standard k-Means with the same value for k. The measure used to compare the two
clustering configurations was the established Silhouette Coefficient (Sil. Coef.) [188].
The value for Sil. Coef. was calculated as per Equation 4.5 where: (i) rij is the jth
record in cluster ci, (ii) aij is the average distance of the record from all other records
within ci and (iii) bij is the minimum average distance of the record from all the records
included in every other cluster. Thus a(xj) is a measure of the cohesiveness of the indi-
vidual clusters, whilst b(xj) is a measure of the separation between clusters. The value
of the Sil. Coef. can thus vary between −1 to 1, where the closer the coefficient is to
1 the better the clustering configuration. In the context of the work presented in this
thesis the intention was not to achieve a “best” clustering configuration but to compare
the configurations for the purpose of establishing the accuracy of the proposed solution.
The results are presented in Table 4.3.
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Table 4.3: Execution time for secure k-Means clustering

UCI Dataset
Standard k-Means Secure k-Means

Runtime Num. Sil. Runtime Num. Sil.
(ms) Iter. Coef. (ms) Iter. Coef.

Arrhythmia 38 10 0.602 215 10 0.602
Banknote Auth. 58 16 0.207 87 16 0.207
Blood Trans. 19 12 0.370 27 12 0.370
Breast Cancer 11 8 0.020 31 8 0.020
Breast Tissue 19 18 0.787 26 18 0.787
Chronic Kidney 14 8 0.009 29 8 0.009
Dermatology 14 15 0.801 35 15 0.801
Ecoli 6 23 0.628 39 23 0.628
Indian Liv. Pat. 12 13 0.169 18 13 0.169
Iris 9 14 0.836 14 14 0.836
Libras Mov. 26 18 0.590 125 18 0.590
Lung Cancer 3 8 0.645 17 8 0.645
Parkinsons 5 7 0.079 11 7 0.079
Pima Disease 19 8 0.000 30 8 0.000
Seeds 9 6 0.706 10 6 0.706

Sil. Coef. =

∑i=k
i=1

∑j=|ci|
j=1

Sil(rij
)

|ci|
k

Sil(rij ) =
b(xij )−a(xij )

max(a(xij ),b(xij ))

(4.5)

Inspection of Table 4.3, columns 4 and 7, shows that identical Sil. Coef. values
were obtained in all cases, indicating that the final clustering configuration produced
using Sk-Means were the same as those produced using standard k-Means. Therefore
it can be argued that the encryption scheme used, the proposed UDM concept and the
proposed updating process using shift matrices do not adversely affect the quality of the
produced cluster configurations. Table 4.3 also shows the number of iterations required
using standard k-Means and the proposed Sk-Means algorithms (columns 3 and 6), the
number of required iterations was the same with respect to each dataset. Thus, the
proposed mechanism does not only produce the same clustering configuration, it is also
arrived at in the same number of iteration.

4.4.4 Secure Clustering Security

The security of the proposed solution was evaluated by identifying the potential attacks
that can be directed to breach the outsourced data privacy when using the UDM concept.
The most likely attacks are those that can be launched by adversaries who have access to
the encrypted dataset and/or the UDM, and by an adversary who is also a TPDM who
is able to send the Shift Matrices (SMs) for decryption. As defined earlier in Chapter 2,
the TPDM is considered to be a semi-honest party and thus a passive adversary who will
follow the Sk-Means data clustering algorithm, but in the meanwhile may try to learn
additional information by analysing the intermediate results and messages exchanged
during algorithm execution. The adversaries are thus able to launch: (i) COAs against
the encrypted datasets, (ii) utilises the elements of UDM (that are in plaintext) by
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reveres engineering the elements to reveal statistical aspects of original data and (iii)
develop dictionary attacks using the updating process.

With the reference to the first category of attack, COAs, the dataset in the pro-
posed solution is encrypted using Liu’s FHE scheme which features semantic security as
presented earlier in Sub-section 3.3.1.3. In semantically secure encryption schemes an
adversary who has access to cyphertexts cannot obtain any partial information about
the corresponding plaintext values. Thus, examination of cyphertexts by external ad-
versaries or by the TPDM will yield nothing about the corresponding plaintext values
[17]. Therefore, COAs cannot be successful against Liu’s FHE cyphertexts. Possible
successful attacks are those directed at the UDM and making use of the updating pro-
cess. The UDM elements are exchanged in plaintext and represent (a very large) set of
linear equations, therefore attackers may be able to reverse engineer this set of equations
so as to obtain the statistical distribution of the distance values contained in the UDM.
The UDM updating process requires the sending of a HE encrypted shift matrix to the
data owner for decryption, this may allow the TPDM to develop knowledge about the
HE cyphertext and their corresponding plaintext values. This is not limited to Knowing
Plaintext Attacks (KPAs), it can take the form of a Dictionary Attack (DA) whereby the
adversary generates new cyphertexts and then derive their plaintext equivalent values
using the HE properties and the knowledge obtained when the shift matrix cyphertext
is decrypted.

4.5 Summary

This chapter has presented the concept of the Updatable Distance Matrix (UDM) and
its usage in the context of Secure k-Means (Sk-Means) data clustering. The proposed
algorithm operated over encrypted data without necessitating decryption, the UDM was
used to determine the data similarity between data records and cluster centroids. The
UDM could be updated using the proposed updating process utilising the idea of a shift
matrix and required only very limited data owner participation. The proposed solution
was presented in detail and its performance was evaluated using UCI datasets. The
significance of the UDM was that it dramatically reduced the data owner participation
from k × n× i to k × a× i where i is the iteration count. It should also be noted that
use of a shift matrix, and the associated data owner participation, can be avoided if
alternative forms of clustering were considered that avoid the need for cluster centroid
recalculation. However, the UDM has significant security issue in that it is sent in
plaintext form and thus its usage entails significant security concerns as it is vulnerable
to reverse engineering attack, and susceptible to Known Plaintext Attacks (KPAs) and
Dictionary Attack (DA). In the following chapter mechanisms whereby these security
concerns may be addressed are considered using the idea of a Cryptographic Ensemble
that utilises a HE and an OPE scheme to provide a comprehensive solution to the PPDM
problem.



Chapter 5

Encrypted Updatable Distance
Matrices

5.1 Introduction

The previous chapter presented the concept of Updatable Distance Matrices (UDMs).
The fundamental idea was, instead of working with the actual dataset D, to use a
proxy for the data, more specifically the distances between each attribute in D and
every other attribute in D. The utility of UDMs was illustrated in the context of
secure k-Means clustering; the Sk-Means algorithm was proposed. However, UDMs had
celar application with respect to any clustering mechanism that involved comparison of
records, such as Nearest Neighbour Clustering (NNC) [48]. The original dataset D was
still required to determine the changing cluster centroids used in Sk-Means clustering.
To maintain security it was proposed that the data be encrypted using a suitable HE
scheme that supports centroid calculation; the proposed Sk-Means algorithm used Liu’s
FHE scheme. The advantage offered was that secure clustering could be conducted in
a manner that dramatically reduced the required data owner participation compared
to previously proposed solutions to realised secure k-Means clustering. Using Sk-Means
most of the processing was delegated to the TPDM. The FHE mathematical properties of
the adopted scheme (Liu’s scheme) were used to manipulateD′ without decryption; while
the UDM concept was used, on each Sk-Means iteration, to determine the similarity
between the encrypted data records and encrypted clusters centroids. However it was
observed that the UDM was essentially a set of linear equations exchanged in plaintext
form, and that this might be used to reverse engineer statistical aspects concerning the
original dataset.

This chapter considers a solution to the observed disadvantages associated with the
UDM approach described in the previous chapter. The main idea presented is to encrypt
the UDM so that any statistical information concerning data frequency and distribution
can no longer be derived. So that the UDM can still be used as described in the
foregoing chapter the encryption scheme needs to support comparison operations. Liu’s
FHE scheme, used previously to encrypt D, does not support comparison, for this to
be supported an OPE scheme is required. However, OPE schemes do not support the
arithmetic functions required to calculate centroids (assuming k-Means clustering). A
Cryptographic Ensemble, comprised of two encryption schemes, was therefore envisaged.
The first to encrypt the dataset D to arrive at D′ and the second to encrypt the UDM
to arrive at an Encrypted UDM (EUDM). For the first it was decided to use Liu’s FHE
scheme [53], because this was a well-established scheme and because it was used with
respect to the Sk-Means algorithm presented in the previous chapter. With respect
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to the second no suitable “off-the-shelf” OPE scheme was available [51, 173, 178, 180,
181] hence a bespoke Order Preserving Encryption (OPE) scheme was designed, the
Frequency and Distribution Hiding OPE (FDH-OPE) scheme, to facilitate the required
UDM operation. The FDH-OPE scheme is one of the contributions of the thesis. The
dataset D is encrypted using an HE scheme, Liu’s scheme is suggested, and the UDM
is encrypted using the proposed OPE scheme. Together the two schemes collectively
provided the required privacy preservation.

To evaluate the proposed EUDM concept, coupled with the idea of a Cryptographic
Ensemble, a secure variation of k-Means [46] clustering was implemented, the Double
Blind Secure k-Means (DBSk-Means) algorithm. A disadvantage of the EUDM is that it
requires a substantial amount of storage resource. An alternative variation of EUDMs,
Encrypted Distance Matrices (EDMs), was proposed which required less storage but
did not support the updating required to support secure k-Means clustering (a feature
of which is repeated re-calculation of cluster centroids). The EDM concept was there-
fore illustrated using a Double Blind Secure Nearest Neighbour Clustering (DBSNNC)
approach. Both algorithms are referred to as “double blind” algorithms because the
TPDM worked with two encryption schemes, the Cryptographic Ensemble referred to
earlier. In the case of k-Means use of EUDMs still required data owner participation,
however this was limited to translating (flipping) a small set of cyphertexts from one
encrypted form to another.

The rest of the chapter is organised in a similar manner to the previous chapter
that described the UDM and Sk-Means data clustering approach. Section 5.2 presents
the proposed FDH-OPE scheme. Section 5.3 presents the idea of Encrypted Updatable
Distance Matrices (EUDMs) and Encrypted Distance Matrices (EDMs); which is fol-
lowed, in Section 5.4, with descriptions of the DBSk-Means and DBSNNC algorithms.
A worked example illustrating how the Cryptographic Ensemble is used in the context
of the EUDM and DBSk-Means is given in Section 5.5. Section 5.6 presents an extensive
evaluation of the Cryptographic Ensemble idea, EUDMs and EDMs. A summary of the
work considered in this chapter, and a review of the main findings, is given in Section
5.7.

5.2 Frequency and Distribution Hiding Order Preserving
Encryption

As noted in the above introduction the fundamental idea presented in this chapter, to
address the disadvantages of the UDM approach presented in the foregoing chapter, was
to use a Cryptographic Ensemble comprised of two encryption schemes. In the context
of work presented in this thesis, the Cryptographic Ensemble used: (i) the established
Liu’s FHE scheme and (ii) the proposed FDH-OPE scheme. The latter is one of the
main contributions of this thesis and is therefore considered in detail in this section.

The proposed Frequency and Distribution Hiding Order Preserving Encryption (FDH-
OPE) scheme is an amalgamation of two existing OPE schemes, the nonlinear order pre-
serving scheme proposed in [51] and the scheme of Zheli et al. [52]. The former was used
to hide the data frequency in the generated cyphertexts and the latter to hide the data
distribution. Note that revealing the data distribution in generated cyphertexts raises
the potential of disclosing statistical features concerning the plaintext data. Encrypt-
ing data so that the data distribution is hidden requires knowledge of the distribution
within the plaintext data, the plaintext intervals where the data density is high, and
then generating the cyphertexts in such a way that high density plaintext intervals are
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dispersed over large cyphertext intervals. The frequency of data is hidden by adopting a
probabilistic approach to generating cyphertext so that different cyphertext values are
generated for the same plaintext value when using the same encryption key.

The FDH-OPE scheme utilises two functions: (i) KeyGen to generate the encryption
keys and (ii) Encrypt to encrypt plaintext values (using the generated encryption keys).
There is no Decrypt function as the adopted encryption function is a one way function
that randomly maps plaintexts to order preserving cyphertexts, there is no requirement
for decryption.

The KeyGen component consists of several steps that cumulatively generate a secret
key (SK) to be used by the Encrypt function. The first step is for the data owner to
determine the “interval” of the message space M = [l, h) and the expanded “interval”
of the cyphertext space C = [l′, h′) in such a way that |M| � |C| and the l, l′, and h,
h′, are the minimum and maximum interval boundaries for the message and cyphertext
spaces respectively (see Figure 5.1). For the FDH-OPE scheme to operate correctly
with respect to work presented in this thesis, the generated cyphertexts should preserve
the “sign” so that positive plaintext values will always have positive cyphertexts and
the negative plaintext values will always have negative cyphertexts. This requirement is
essential to maintain correctness when updating UDMs (as will become clear in the next
section, Section 5.5). The second step is the data distribution hiding process that itself
comprises two steps, message space splitting and non-linear cyphertext space expansion
which operate as follows:

Message space splitting: The data owner randomly splits the message space interval
M into t consecutive intervals; M = {m1, . . . ,mt}, where t is a random number.
The length of each intervals is determined randomly by deciding the minimum and
maximum interval boundaries in such a way thatM = ∪i=ti=1mi = ∪i=ti=1[li, hi)= [l, h)
and [li, hi)∩[lj , hj) = φ for all i 6= j (Figure 5.1). The data density for each interval
is then calculated as Dens = {dens1, . . . , denst} where densi is the density of data
in message space mi. The data density in this case refers to the number of plaintext
values in the data to be encrypted that fall in a given message space interval.

Non-linear cyphertext space expansion: The data owner then splits the cypher-
text space C into t intervals; C = {c1, . . . , ct}. So that the data distribution is
hidden, the length of each cyphertext space interval ci is determined according
to the density of the data stored in densi ∈ Dens. Thus message space intervals
with high data density will have large corresponding cyphertext space intervals.
In other words if densi > densj then |ci| > |cj |. The length of each cyphertext in-
terval is determined by selecting an appropriate minimum and maximum interval
boundaries in such a way that; C = ∪i=ti=1ci = ∪i=ti=1[l

′
i, h
′
i)= [l′, h′) and [l′i, h

′
i)∩[l′j , h

′
j)

= φ for all i 6= j (Figure 5.1).

On completion of the KeyGen process the calculated message space and cyphertext space
interval boundaries will be the FDH-OPE secret keys.

The data frequency is hidden using a “one-to-many” encryption function that maps
v ∈ mi to an OPE equivalent cyphertext v′ ∈ ci. Algorithm 6 gives the pseudo code for
the encryption function (Encrypt). The inputs are the plaintext value to be encrypted
v and the data sensitivity sens. The data sensitivity is defined in [51] as a minimum
distance between the plaintext values in the dataset to be encrypted. More formally,
given a set of all dataset attributes values V the sensitivity of V is the smallest difference
value in the set; |v1 − v2| v1 ∈ V and v2 ∈ V v1 6= v2. The sensitivity is usually specific to
a dataset. For example, if the attribute value in a dataset can only be even numbers, then
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Figure 5.1: Message and cyphertext space splitting

the minimum sensitivity will be 2. Given a dataset of the salaries of staff in a company
that takes the format d1d2d3.d4d5, where di is a digit, the minimum sensitivity will be
0.01. That is, the smallest possible salary difference between two staff members in the
company is 0.01. The Encrypt algorithm commences by determining the message space
interval ID, i, within which |v| is contained by calling the IntervalID procedure (line
2). The interval boundaries (the keys) of the ith message and cyphertext space are then
retrieved in lines 3 and 4 by calling the Boundary and Boundary′ procedures. The values
of the interval boundaries, and data sensitivity, are then used to calculate the interval
scale value, scalei, and the sample random value δi as per the equations given in lines
5 and 6. The scalei and δi values are then used in line 7 to calculate the cyphertext v′.
The value of δi represents the amount of noise added to the cyphertext while maintaining
the data ordering. To hide the distribution of the generated cyphertext, especially with
respect to high density intervals so that cyphertexts are spread across the cyphertext
space interval, the required value of δi may need to be high. In the proposed FDH-
OPE scheme, the value of δi is determined individually for each interval so that longer
intervals with a larger scalei value will consequently have a larger δi value than in the
case of shorter intervals. The algorithm will exit (line 11) with cyphertext v′. As the
encryption function requires the preservation of the plaintext’s “sign”, any plaintexts
will be post-processed in terms of their absolute value. For negative plaintext values the
resulting cyphertexts will multiplied by −1 (lines 8 to 10). Adding the random value δi
to generated cyphertexts will guarantee that identical attribute values will not always
have the same encryption.

Algorithm 6 FDH-OPE encryption algorithm

1: procedure Encrypt(v, sens)
2: i← IntervalID

(
|v|
)

3: li, hi ← Boundary(i)
4: l′i, h

′
i ← Boundary′(i)

5: scalei =
l′i−h′i
li−hi

6: δi = Random(0, sens× scalei)
7: v′ = l′i + scalei ×

(
|v| − li

)
+ δi

8: if v < 0 then
9: v′ = v′ ×−1

10: end if
11: Exit with v′

12: end procedure
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5.3 Encrypted UDMs and Encrypted Distance Matrices

This section presents the twin concepts Encrypted Updatable Distance Matrices (EU-
DMs) and Encrypted Distance Matrices (EDMs). The first is the encrypted equivalent
of the UDM presented in Chapter 4. The second addresses the storage disadvantage
associated with EUDM but with the disadvantage that the updateability feature is lost.
Both are discussed in detail in this section. The section is divided into two sub-sections.
Sub-section 5.3.1 describes the EUDM concept, whilst the idea of EDMs is presented in
Sub-section 5.3.2.

Note that in the remainder of this chapter, to differentiate between Cryptographic
Ensemble cyphertexts, the value x encrypted using Liu’s FHE scheme is denoted as [x′]
while the value x encrypted using the proposed FDH-OPE scheme is denoted by [[x′]].

5.3.1 Encrypted Updateable Distance Matrices

An EUDM, as in the case of the UDM, is a 3D matrix where the first and the second
dimensions correspond to the number of records n in a given dataset D, and the third
dimension corresponds to the number of attributes a featured in D. However, an EUDM
in contrast to the UDM, holds the (encrypted) distances between attributes values in
each record with the corresponding attributes values in every other record; as opposed
to the unencrypted distances. The encryption scheme used to this end is the FDH-
OPE scheme presented in Section 5.2. The form of a specific EUDM, [[EU ]], is given
in Equation 5.1 where the first two elements in the suffix of a matrix element are the
relevant record numbers and the third the relevant attribute number. An EUDM is
generated in two steps: (i) UDM calculation and (ii) UDM encryption to arrive at the
Encrypted UDM (EUDM). The first was detailed in Section 4.2 of Chapter 4. Given
[[EU ]], each element [[eux,y,z]] ∈ [[EU ]] is calculated as per Equation 5.2 and then
encrypted using the FDH-OPE scheme; the relevant pseudo code is given in Algorithm
6.

Using an EUDM the TPDM will thus have access to the “order” of the distances
but not the original distance values. From Equation 5.1 and Equation 5.2 it can be
observed, as in the case of UDMs, that an EUDM is symmetric about the leading
diagonal and hence only the lower (or upper) “triangle” of the matrix needs to be
calculated. The dataset D is encrypted using Liu’s FHE scheme and hence the TPDM
will have access only to encrypted data records. Two encryption schemes are therefore
used, the Cryptographic Ensemble referred to earlier.

[[EU]] =


(
[[eu1,1,1]], · · · , [[eu1,1,a]]

)
· · ·

(
[[eu1,n,1]], · · · , [[eu1,n,a]]

)
...

. . .
...(

[[eun,1,1]], · · · , [[eun,1,a]]
)
· · ·

(
[[eun,n,1]], · · · , [[eun,n,a]]

)
 (5.1)

eux,y,z = rx,z − ry,z (5.2)

A feature of UDMs, described in the previous chapter, was that they can be updated;
this is also a requirement for EUDMs. The EUDM updating process, assuming a secure
k-Means algorithm, is given in Algorithm 7. The inputs are: the EUDM [[EU ]] to be
updated, the ith iteration cluster centroids [Cent′i] and the i + 1th iteration centroids
[Cent′i+1]. The updating process starts by generating an encrypted shift matrix [S′]
(line 2). The matrix [S′] holds the difference between the k-Means iteration i and i+ 1
centroids and hence it measures k × a as shown in Equation 5.3. [S′] is calculated
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using the mathematical properties of Liu’s FHE scheme, thus to update [[EU ]] an order
preserving cypher is required. Therefore, the content of [S′] needs to be “flipped”, from
the HE format to the FDH-OPE format, to give [[S′]]. This is done in lines 3 and 4 by
the data owner. The TPDM can then use the encrypted shift matrix [[S′]] to update
[[EU ]] (line 5). The algorithm exits (line 11) with the updated EUDM and a Boolean
variable terminate that is set to “true” when the shift matrix S is comprised entirely
of zeros; in other words when the k-Means achieves stable centroids in two continuous
iterations, and “false” otherwise (as per lines 6 to 10).

[S′] =

[s′1,1] [s′1,2] · · · [s′1,a]
...

...
. . .

...
[s′k,1] [s′k,2] · · · [s′k,a]

 (5.3)

Algorithm 7 EUDM updating process

1: procedure UpdateEncryptedUDM([[EU ]],[Cent′i],[Cent
′
i+1])

2: [S′] = [Cent′i]	 [Cent′i+1]
3: S = the data owner will decrypt [S′]
4: [[S′]] = the data owner will re-encrypt the elements using the FDH-OPE key
5: [[EU ]]=[[EU ]]+[[S′]]
6: if S == 0 then
7: terminate = true
8: else
9: terminate = false

10: end if
11: Exit with [[EU ]], terminate
12: end procedure

5.3.2 Encrypted Distance Matrices

An EUDM requires considerable storage, this storage can be reduced by turning the 3D
EUDM into a 2D Encrypted Distance Matrix (EDM). The distinction is that an EUDM
measures n × n × a whilst an EDM measures n × n, a reduction in size by a factor of
a. An alternative way of expressing the distinction is that an EUDM holds distances
at the attribute level whilst an EDM holds distances at the record level. The proposed
EDM, although serving to reduce the storage requirement, therefore entails the trade-off
that its application in the context of data clustering will be limited to secure clustering
techniques that do not entail new cyphertext generation as in the case of secure k-Means
clustering which entails centroid re-calculation. This means, at least in the context in
which distance matrices have been used as reported in this thesis so far, that EDMs do
not require updating. The effort required on behalf of a data owner to update an EDM,
should this be a requirement, is such that from a practical perspective EDMs are not
updatable.

The nature of a specific EDM, [[ED]], is formally defined in Equation 5.4. The
first and the second dimensions corresponding to the number of data records, n, in the
encrypted dataset [D′]. The EDM is generated in two steps: (i) DM calculation and (ii)
DM encryption to arrive at an Encrypted DM (EDM). The value (distance) for each
EDM element [[edx,y]] is calculated as per Equation 5.5, this value is then encrypted, in
step 2, using the proposed FDH-OPE. As in the case of UDMs and EUDMs, an EDM
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is symmetric about the leading diagonal, so only the values for the lower (or the upper)
2D triangular of the matrix needs to be calculated.

[[ED]] =

[[ed1,1]] [[ed1,2]] · · · [[ed1,n]]
...

...
. . .

...
[[edn,1]] [[edn,2]] · · · [[edn,n]]

 (5.4)

edx,y =
i=a∑
i=1

(|rx,i − ry,i|) (5.5)

5.4 Secure Data Clustering Using EUDM and EDM

This section presents the proposed secure data clustering processes designed to utilise
the EUDM and EDM concepts presented above, as well as the idea of a Cryptographic
Ensemble where more than one encryption technique are incorporated into a single ap-
proach so that PPDM can be realised. The proposed process is generic in nature, and
not dedicated to any single specific data clustering algorithm; it is directed at provid-
ing a general solution for secure data clustering where the adopted technique requires
distance comparisons. It is suggested that this encompasses all current data clustering
algorithms in that, by definition, clustering entails the grouping of examples that are
similar, similarity is always defined according to some kind of distance measurement.
However, to illustrate the utility of the proposed process two specific algorithms that
encapsulate the process are used; the Double Blind Secure k-Means (DBSk-Means) al-
gorithm which is founded on the use of EUDMs and the Double Blind Secure Nearest
Neighbour Clustering (DBSNNC) which is founded on the use of EDMs. The phrase
“double blind” is used because the Cryptographic Ensemble features two encryption
schemes.

The remainder of this section is organised as follows. Sub-section 5.4.1 presents
the data preparation process required when adopting the proposed Cryptographic En-
semble and EUDM/EDM approach. The next two sub-sections, Sub-section 5.4.2 and
Sub-section 5.4.3, present respectively the Double Blind Secure k-Means (DBSk-Means)
algorithm founded on the EUDM concept and the Double Blind Secure NNC (DBSNNC)
algorithm founded on the EDM concept. The following section, Section 5.5, presents
worked examples of the DBSk-Means algorithm using EUDM.

5.4.1 Data Preparation for Outsourcing

This section presents the process conducted by a data owner to prepare a dataset for
outsourcing to a TPDM, who provides DMaaS, using the proposed EUDM/EDM ap-
proach. The pseudo code for the data preparation process is presented in Algorithm 8.
The inputs are the raw dataset RawD, the number of attributes a featured in RawD
and the number of Liu’s scheme sub-cyphertexts m (as presented in Sub-section 3.3.1).
Similar to the UDM approach, the first step is to process the raw data by casting the
categorical attributes into a discrete integer value form to prepare the data for encryp-
tion (line 2). The secret key list, SK(m), required using Liu’s FHE scheme, is then
generated in line 3. The processed dataset is then encrypted, using Liu’s FHE scheme,
to give [D′] using Algorithm 1 (lines 4 to 7). Dependent on the adopted approach,
the algorithm then starts the generation of the desired matrix; either EUDM or EDM.
The desired matrix is generated in two steps: (i) matrix calculation (line 8) and (ii)
matrix encryption (line 15). The matrices (EU and ED) are calculated by calling the
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sub-procedure CalculateUDM or sub-procedure CalculateDM as appropriate, given
at the end of the algorithm (lines 18 to 28 and lines 29 to 37, respectively). The ma-
trix calculation algorithms commence by dimensioning the desired matrix (line 19 and
line 30 in the context of EUDM and EDM respectively). Recall that, the EUDM is a
3D matrix where the first and the second dimensions corresponding to the number of
data records feature in RawD, and the third dimension is the number of attributes a.
The EDM is 2D matrix where the two dimensions are correlated to the number of data
records feature in RawD. Recall also that the value rx,z in lines 23 and 33 is the value
of the zth attribute in the feature vector describing the xth record in the dataset, while
ry,z is the value of the zth attribute in the feature vector describing the yth record.
The matrix encryption commences by generating the FDH-OPE key (lines 9 to 14) as
discussed in Section 5.2. The first step is for the data owner to decide the message space
and cyphertext space interval boundaries (lines 9 and 10). The data owner will then
randomly split the message space intervals (line 11, where t is a random number). The
data density is then calculated in line 12, for each message space interval, by calling the
DensityCalculation procedure. According to the data density in the desired calculated
matrix, EU or ED, the cyphertext space is split in line 13 to result in a set of cyphertext
intervals. The data sensitivity is then calculated in line 14 (as described in Section 5.2).
The key generated is then used to encrypt the desired matrix elements in line 15. The
output from the data preparation process is the encrypted dataset [D′] and an EUDM
[[EU ]] or EDM [[ED]], ready to be sent to the TPDM.

5.4.2 Double Blind Secure k-Means Clustering

This sub-section presents the Double Blind Secure k-Means (DBSk-Means) clustering
algorithm used to illustrate the utility of the EUDM concept. The pseudo code for the
DBSk-Means algorithm is given in Algorithm 9. The inputs are an encrypted dataset
[D′], an EUDM [[EU ]] (because updating the matrix is required when new centroids have
been calculated) and the desired number of clusters k. The operation of DBSk-Means is
very similar to Sk-Means as presented earlier in Chapter 4. The differences are that: (i)
an EUDM is used instead of a UDM and (ii) the EUDM and SM are encrypted. On each
k-Means iteration the SM is returned by the data owner to the TPDM in encrypted form
(using the proposed FDH-OPE scheme). Therefore, the TPDM has access to the “order
of distance” instead of original distance values as in the case of the UDM approach.
The data similarity between cluster centroids [cent′y] and encrypted data record [r′x] is
determined using the EUDM as per Equation 5.6.

sim([[EU ]], [r′x], [cent′y]) =
z=a∑
z=1

|eux,y,z| (5.6)

5.4.3 Double Blind Secure Nearest Neighbour Clustering

This sub-section presents the Double Blind Secure Nearest Neighbour Clustering (DB-
SNNC) algorithm used to illustrate the utility of the EDM concept. Recall that an EDM
is not updatable (at least from a practical perspective), but offers the advantage of a
reduced storage requirement compared with the EUDM. The DBSNNC process is con-
ducted by a TPDM following a manner similar to that used for standard NNC [48]. The
algorithm does not feature any need to generate new cyphertexts and hence an EDM
is well suited. The pseudo code for the DBSNNC algorithm is presented in Algorithm
10. The inputs are the encrypted dataset [D′], an EDM [[ED]] (previously generated by
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Algorithm 8 Data outsourcing process required when using the EUDM or EDM concept

1: procedure OutsourceData(RawD,a,m)
2: D = Dataset RawD converted to numeric form where necessary
3: SK(m) = Liu’s scheme secret key generated as in Sub-section 3.3.1
4: [D′] = ∅
5: for all r ∈ D do
6: [D′] = [D′]∪ Encrypt(r, SK(m)) . Algorithm 1
7: end for
8: Matrix Calculation:

EUDM: EU = CalculateUDM(D,a)
EDM: ED = CalculateDM(D,a)

9: l, h ←− Decide the message space interval boundaries
10: l′, h′ ←− Decide the cyphertexts space interval boundaries
11: MessageIntervals[] = MessageSpaceSplitting(t)
12: Density Calculation:

EUDM: Dens[] = DensityCalculation(MessageIntervals[],EU)
EDM: Dens[] = DensityCalculation(MessageIntervals[],ED)

13: CypherIntervals[] = CypherSpaceExpansion(Dens)
14: sens= Calculate data sensitivity using selected matrix EU or ED
15: Matrix Encryption: . Algorithm 6

[[EU ]] = [[EU ]]∪ Encrypt(eu, sens)) (eu ∈ EU)
[[ED]] = [[ED]]∪ Encrypt(ed, sens)) (ed ∈ ED)

16: Exit with [D′] and [[EU ]] or [[ED]]
17: end procedure
18: procedure CalculateUDM(D,a)
19: EU = Empty EUDM dimensioned according to |D|, |D| and a
20: for x = 1 to x = |D| do
21: for y = 1 to y = x do
22: for z = 1 to z = a do
23: eux,y,z = rx,z − ry,z (eux,y,z ∈ EU) . Equation 5.2
24: end for
25: end for
26: end for
27: Exit with EU
28: end procedure
29: procedure CalculateDM(D,a)
30: ED = Empty EDM dimensioned according to |D| and |D|
31: for x = 1 to x = |D| do
32: for y = 1 to y = x do
33: edx,y =

∑z=a
z=1 |rx,z − ry,z| (edx,y ∈ ED) . Equation 5.5

34: end for
35: end for
36: Exit with ED
37: end procedure
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Algorithm 9 Double Blind Sk-Means (DBSk-Means) clustering algorithm

1: procedure DBSk-Means([D′], [[EU ]], k)
2: [C] = Set of k empty clusters
3: Select the first k records in [D′] and assign to [C] (one per cluster)
4: i = 1
5: [Cent′i] = Set of first k records in [D′]
6: [C] = populateClusters(k + 1, [[EU ]], [C], [D′], [Cent′i])
7: [Cent′i+1] = CalculateCentroids([C],k) . Sub-procedure in Algorithm 5
8: [[EU ]], terminate = UpdateEncryptedUDM

(
[[EU ]],[Cent′i], [Cent′i+1]

)
.

Algorithm 7
9: while ! terminate do

10: [C] = Set of k empty clusters
11: [C] = populateClusters(1, [[EU ]],[C],[D′],[Cent′i+1])
12: i = i+ 1
13: [Cent′i+1] = CalculateCentroids([C],k)
14: [[EU ]], terminate = UpdateEncryptedUDM([[EU ]], [Cent′i], [Cent′i+1])
15: end while
16: Exit with [C]
17: end procedure
18: procedure populateClusters(rid,[[EU ]],[C],[D′],[Cent′])
19: id = null
20: for x = rid to x = |[D′]| do
21: for y = 1 to y = |[C]| do
22: [[similarity]] = sim([[EU ]], [r′x], [cent′y]) where [r′x] ∈ [D′] and [cent′y] ∈

[Cent′] (Equation 5.6)
23: id = cluster identifier with lowest similarity value so far
24: end for
25: [cid] = [cid] ∪ [r′x] ([cid] ∈ [C] and [rx]′ ∈ [D′])
26: end for
27: Exit with [C]
28: end procedure

data owner) and the desired NNC threshold [[σ′]]. The dataset is encrypted using the
Liu’s FHE scheme whilst the EDM and σ are encrypted using the FDH-OPE scheme.
The algorithm commences by creating an empty set of clusters [C] that will hold records
encrypted using Liu’s scheme (line 2). The first record in [D′] is then used to create
cluster [C1] which is then added to the set of clusters [C] (lines 3 and 4). The number
of generated clusters so far is set to 1 (line 5). A loop is then entered (lines 6 to 16)
that iteratively clusters the remaining records in [D′]. The loop commences by finding
a record [r′m] whose distance from [r′i] is the smallest. To this end, the EDM is used
to determine the similarity as per Equation 5.7 where [r′i] and [r′m] are two encrypted
records. Note that the value calculated in Equation 5.7 is the “order of the distance” (or
encrypted distance) not a plaintext distance value. The calculated value is then com-
pared with the encrypted threshold value [[σ′]] (line 8) and in the case when the value is
less than or equal to [[σ′]] the record [r′i] is added to cluster [Cx] where the record [r′m]
is contained (lines 9 and 10), otherwise a new cluster is created (lines 12 to 14). The
algorithm will continue until all records in [D′] are assigned to clusters and exits with a
cluster configuration [C].
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Algorithm 10 Double Blind Secure Nearest Neighbour Clustering (DBSNNC)

1: procedure DBSNNC([D′], [[ED]], [[σ′]])
2: [C] = Empty set of clusters
3: [C1] = {[r′1]}
4: [C] = [C] ∪ [C1]
5: k = 1
6: for i = 2 to i = |[D′]| do
7: Find [r′m] in some cluster Cx where the sim([[ED]], [r′i], [r

′
m]) is the smallest

8: if sim([[ED]], [r′i], [r
′
m]) 6 [[σ′]] and [r′m] is founded then

9: [Cx] = [Cx] ∪ [r′i]
10: Update the cluster set [Cx] in the set of clusters [C]
11: else
12: k = k + 1
13: [Ck] = {[r′i]}
14: [C] = [C] ∪ [Ck]
15: end if
16: end for
17: Exit with [C]
18: end procedure

sim([[ED]], [r′i], [r
′
m]) = edi,m (5.7)

5.5 Worked Example Using An EUDM and The DBSk-
Means Algorithm

To assist in the understanding of the EUDM concept presented in this chapter, in the
context of the data preparation for outsourcing process described in Sub-section 5.4.1
and DBSk-Means introduced in Sub-section 5.4.2, a worked example is presented in this
section using the sample dataset D given in Table 5.1. The dataset D comprises five
records and two attributes; D = {r1, r2, r3, r4, r5} and ri = {ri,1, ri,2}. The outsourcing
process, applied to this data, is illustrated in Sub-section 5.5.1, whilst the DBSk-Means
process is illustrated in Sub-section 5.5.2. The operation of EDMs is not illustrated here
but it operates in a similar, although not appropriate for k-Means clustering.

Table 5.1: Worked example dataset D

0.73 8.84

49.93 34.44

0.57 65.04

62.15 32.29

59.47 36.04

5.5.1 Data Preparation for Outsourcing Worked Example

As noted above, the data outsourcing process commences by translating the raw data
into a suitable format and then generating a UDM which is then encrypted to give an
EUDM. Recall that a UDM is a 3D matrix that holds distances between the attribute
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values in the records. For the given example the UDM will measure 5 × 5 × 2. Each
element in the UDM is calculated using Equation 5.2, given in Section 5.3. Recall that
a UDM is symmetric about the leading diagonal; hence only the elements (distance
values) for the lower (or upper) triangle need to be calculated. In this worked example,
the lower triangle is calculated. The resulting unencrypted UDM, U , is then as shown
below (the third dimension is indicated using value pairs):

U =


(0.00, 0.00)

(49.20, 25.60) (0.00, 0.00)
(−0.16, 56.20) (−49.36, 30.60) (0.00, 0.00)
(61.42, 23.45) (12.22,−2.15) (61.58,−32.75) (0.00, 0.00)
(58.74, 27.20) (9.54, 1.60) (58.90,−29.0) (−2.68, 3.75) (0.00, 0.00)


Thus, the value for element u2,1,1 is r2,1 − r1,1 = 49.93− 0.73 = 49.20, that for element
u2,1,2 is r2,2 − r1,2 = 34.44 − 8.84 = 25.60, and so on. The elements in the leading
diagonal are all zeros as they hold the distance between the same data records in D.
For example, the value for element u3,3,1 is r3,1 − r3,1 = 0.57− 0.57 = 0.0.

Once calculated a UDM is encrypted, using the proposed FDH-OPE scheme, to give
an EUDM. The first step to generate the FDH-OPE secret key is to determine the
intervals of the boundaries (message space interval M and cyphertexts space interval
C) and then randomly split the message space and non-linearly split the cyphertext
space to determine the interval boundaries of M and C respectively. For simplicity,
small message space and cyphertexts space will be used. The message space is set to
M = [−70, 70) and cyphertext space is set to C = [−1026, 1026). Thus, the message
space maximal interval is 70 and the minimal interval is −70, whereas the cyphertext
space maximal interval is 1026 and the minimal interval is −1026. This means that
the maximum value that can be encrypted using this FDH-OPE scheme is 70 and the
minimum value that can be encrypted is −70. The maximum cyphertexts generated
by the FDH-OPE scheme encryption process is 1026 and the minimum is −1026. The
message spaces will be split randomly, for example into four intervals (t = 4).

As noted earlier in Section 5.2, for the EUDM to operate correctly with respect to
k-Means clustering it is required that the “sign” of each distance value is preserved. This
is a crucial feature for the correctness of the updating process when the shift matrix is
added to the EUDM to be used for the next iteration. Therefore, in the encryption
function, Algorithm 6, any plaintexts will be processed in terms of their absolute value
and then the generated cyphertext multiplied by -1 in the case of negative values. This
means the message space splitting is only required to consider the positive intervals
M = [0, 70). However, for the density calculation process, required for expanding the
cyphertext space, negative values to be encrypted contribute to the density count of
the interval within which their absolute equivalent value contains. For the example the
size for the four message space will be defined as follows m1 = [0, 16), m2 = [16, 26),
m3 = [26, 39) and m4 = [39, 70) as shown in Figure 5.2 (the value above each interval
is the attribute value density for that interval). For the purpose of not revealing the
cyphertexts of zeros, the leading diagonal values, which are all zeros, are not encrypted
and are thus not involved in the density calculation. For example, the density of data
within the interval [0, 16) is calculated by counting the attribute values in U that belongs
to this interval (−0.16, 12.22, −2.15, 9.54, 1.60, −2.68 and 3.75); hence the dens1 = 7.
The corresponding cyphertext space will then be split into four intervals such that
the length of each interval is determined according to the density of the data in the
corresponding message space interval. Consequently, dense message space intervals will
correspond to large cyphertext space intervals. To this end, Equation 5.8 was used to
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Figure 5.2: Message and cyphertext space splitting example

determine the length of the cyphertext space intervals, where: (i) CIS is the Cypher
Interval Size, the maximum interval boundary of the cyphertext space (1026), and (ii)
ratioi is the interval density in terms of the number of values in the interval divided
by the total number of values in U , 20 in this case (we only need to consider the 20
elements in the lower triangle).

interval lengthi = round(CIS × ratioi) = round(1026× ratioi)

ratioi = interval density
|U | = densi

20

(5.8)

In the first message space interval, m1 the density, dens1, is 7; thus ratio1 = 7
20 =

0.35 and consequently the first cyphertext interval length1 = 1026×0.35 = 359.1 ≈ 359.
The maximal interval will then be l′1 + 359 = 0 + 359 = 359 (note that l′1 is the minimal
interval boundary of the first cyphertext space interval that equals l′ for the first inter-
val). For the next intervals the l′i = h′i−1. The calculation is repeated for each interval
so as to give a final result. The cyphertext intervals c1 = [0, 359), c2 = [359, 462), c3 =
[462, 667), c4 = [667, 1026) will produce the result shown in Figure 5.2. From the figure
it can clearly be seen that intervals with high density have longer cyphertext intervals
than intervals with low density. The UDM elements are then encrypted using Algorithm
6. For example, u2,1,2 = 25.60 will be encrypted as follows:

v = 25.60 =⇒ |25.60| = 25.60 ∈ m2

scale2 =
l′2−h′2
l2−h2 = 359−462

16−26 = 10.3

[[v′]] = l′2 + scale2 ×
(
|v| − l2

)
= 359 + 10.3

(
|25.60| − 16

)
= 457.88

[[v′]] = 457.88 + δ2 0 6 δ2 6 (10.3× 0.01) 0.01 is data sensitivity

[[v′]] = 457.88 + 0.103 = 457.983 if δ2 = 0.103

Recall that in the above the value of δ2 is equivalent to scale2× sens, where sens is the
sensitivity value calculated as described in Section 5.2 and scalei is calculated for each
interval as shown in Algorithm 6. As a consequence of the above, the EUDM [[EU ]] will
be:
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[[EU]] =

([[eu1,1,1]], [[eu1,1,2]]) · · · ([[eu1,5,1]], [[eu1,5,2]])
...

. . .
...

([[eu5,1,1]], [[eu5,1,2]]) · · · ([[eu5,5,1]], [[eu5,5,2]])

 =


(0.0, 0.0)

(785.23, 457.98) (0.0, 0.0)
(−3.81, 866.29) (−787.08, 534.70) (0.0, 0.0)
(926.74, 435.84) (274.44,−48.47) (928.59,−568.61) (0.0, 0.0)
(895.71, 481.08) (214.30, 36.13) (897.56,−509.47) (−60.36, 84.37) (0.0, 0.0)



The dataset D also needs to be encrypted using Liu’s FHE scheme following the
pseudo code given in Algorithm 1. Assume that the private secret key list, generated by

the data owner, is SK(m) = SK(3) =
[
(k1, s1, t1), (k2, s2, t2), (k3, s3, t3)

]
=
[
(3.2, 2.7, 0),

(9.1, 3.1, 1.5), (3.6, 7.9, 0)
]

and that the following three random numbers are generated

for the encryption r1 = 5689.23, r2 = −8523.87 and r3 = 24231.47. In practice different
random numbers will be generated each time the encryption function is invoked and the
values of the secret key SK will be very large; however, for illustrative purposes the
same random variables will be used to encrypt the entire dataset D and a small value
for the secret key selected. Recall that, when using Liu’s FHE scheme the plaintext
value v will be encrypted to a cyphertext E that comprises m sub-cyphertexts. In the
considered example 3 cyphertexts were used E = {e1, e2, e3}. Consider attribute value
r1,2 = 8.84 as an example, v = 8.84 will be encrypted as follows:

e1 = k1 × t1 × v + s1 × r3 + k1 × (r1 − r2)
= 3.2× 0× 8.84 + 2.7× 24231.47 + 3.2× (5689.23 + 8523.87)
= 110906.889

e2 = k2 × t2 × v + s2 × r3 + k2 × (r2 − r1)
= 9.1× 1.5× 8.84 + 3.1× 24231.47 + 9.1× (−8523.87− 5689.23)
= −54100.9870

e3 = (k3 + s3 + t3)× r3
= (3.6 + 7.9 + 0)× 24231.47
= 278661.905

The encrypted value will then be (110906.889,−54100.9870, 278661.905). The encrypted
dataset will be as shown in Table 5.2. Note that e1 and e3 are always the same because
we use the same random numbers. However, this will not be the case in practice. The
data owner is now in a position to send the encrypted dataset [D′], and the associated
EUDM [[EU ]], to the TPDM.

Table 5.2: Worked example encrypted dataset [D′]

(110906.889,−54211.6885, 278661.905) (110906.889,−54100.9870, 278661.905)

(110906.889,−53540.1085, 278661.905) (110906.889,−53751.5470, 278661.905)

(110906.889,−54213.8725, 278661.905) (110906.889,−53333.8570, 278661.905)

(110906.889,−53373.3055, 278661.905) (110906.889,−53780.8945, 278661.905)

(110906.889,−53409.8875, 278661.905) (110906.889,−53729.7070, 278661.905)
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5.5.2 Double Blind Sk-Means Worked Example

Data clustering, using DBSk-Means, is conducted by the TPDM on receiving a request
from the data owner specifying the number of clusters k. Following Algorithm 9, and
assuming k = 2, the first step is to select the first two encrypted records in [D′] as cluster
centroids where cent′11 is the first centroid for the first DBSk-Means iteration and cent′12
is the second centroid for the first DBSk-Means iteration, thus:

[cent′11 ] = [(110906.889,−54211.6885, 278661.905),
(110906.889,−54100.9870, 278661.905)]

[cent′12 ] = [(110906.889,−53540.1085, 278661.905),
(110906.889,−53751.5470, 278661.905)]

The remaining encrypted records in [D′] are added to the clusters according to their
similarity with the centroids using [[EU ]]. Only the first two columns in [[EU ]] are
used; the number of cluster centroids. Therefore, the following sub-matrix from [[EU ]]
is used to determine data similarity where the rows are records and the columns the
cluster centroids: 

(0.0, 0.0) (−785.23,−457.98)
(785.23, 457.98) (0.0, 0.0)
(−3.81, 866.29) (−787.08, 534.70)
(926.74, 435.84) (274.44,−48.47)
(895.71, 481.08) (214.30, 36.13)


For illustrative purpose, all sub-matrix elements are calculated. In practice, the val-
ues for elements in the upper triangle can be obtained by simply reversing the sign
of corresponding elements in the lower triangle. The element eu1,2,1 is then assigned
using the value in element eu2,1,1 but with a reversed sign. Using the above sub-
matrix the similarity between each xth record and each ith centroid is determined
using equation 5.9. For example, the similarity between the third record and first
centroid is |[[−3.81]]|+ |[[866.29]]| = [[870.1]] whilst the similarity with the second cen-
troid is |[[−787.08]]| + |[[534.70]]| = [[1321.78]]. Therefore, the third record will be
assigned to the first cluster. This can be verified by conducting the same calcula-
tion using the plaintext equivalent values where the third record is r3 =(0.57,65.04)
and the plaintexts centroids are cent11 =(0.73,8.84), cent12 =(49.93,34.44). Hence
r3 − cent11=(|0.57− 0.73|, |65.04− 8.84|) = (0.16 + 56.2) = 56.36 and r3 − cent12=
(|0.57− 49.93|, |65.04− 34.44| = (49.36 + 30.6) = 79.96; thus the third record will also
be assigned to the first cluster in the unencrypted case. The remaining data records
will be assigned to the nearest cluster following the same process. Therefore, [r′4]
and [r′5] will be assigned to the second cluster because [r′4] − cent′11 = [[1362.58]] and
[r′4]− cent′12 = [[322.91]] whilst [r′5]− cent′11 = [[1376.79]] and [r′5]− cent′12 = [[250.43]].

sim([[EU]], [r′x], [cent′i]) =
z=2∑
z=1

|[[eu]]x,i,z| (5.9)

On completion of the first iteration the following cluster configuration will have been
arrived at: [C1] = {[r′1], [r′3]} and [C2] = {[r′2], [r′4], [r′5]}. The cluster centroids, for the
next iteration Cent′2 = {cent′21 , cent

′
22
}, will be recalculated as the means of the relevant

record attribute values. For example, the centroid of the first cluster will be calculated
as follows:
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[cent′21,1 ] = (110906.889+110906.889
2 , −54211.6885−54213.87252 , 278661.905+278661.905

2 )

= (110906.889,−54212.7805, 278661.905)

and:

[cent′21,2 ] = (110906.889+110906.889
2 , −54100.9870−53333.85702 , 278661.905+278661.905

2 )

= (110906.889,−53717.422, 278661.905)

The centroid of the second cluster will be calculated in a similar manner:

[cent′22,1 ] = (110906.889,−53441.1005, 278661.905)

[cent′22,2 ] = (110906.889,−53754.0495, 278661.905)

The correctness of the centroids can be established by comparing the decrypted
centroid values with calculating plaintext centroid values. The first cluster comprises r1
and r3; therefore the plaintext attribute values for the centroid will be:

cent21,1 = 0.73+0.57
2 = 0.65

cent21,2 = 8.84+65.04
2 = 36.94

The second cluster comprises r2, r4 and r5; therefore the plaintext attribute values for
the centroid will be:

cent22,1 = 49.93+62.15+59.47
3 = 57.183

cent22,2 = 34.44+32.29+36.04
3 = 34.257

Decrypting the HE centroids, using Algorithm 2, gives the same values:

t = 0 + 1.5 = 1.5

s = 278661.905
(3.6+7.9+0) = 24231.47

cent′21,1 = ( (110906.889−24231.47×2.7)3.2 + (−54212.7805−24231.47×3.1)
9.1 ) /1.5 = 0.65

cent′21,2 = ( (110906.889−24231.47×2.7)3.2 + (−53717.422−24231.4×3.1)
9.1 ) /1.5 = 36.94

cent′22,1 = ( (110906.889−24231.47×2.7)3.2 + (−53441.1005−24231.47×3.1)
9.1 ) /1.5 = 57.183

cent′22,2 = ( (110906.889−24231.47×2.7)3.2 + (−53754.0495−24231.4×3.1)
9.1 ) /1.5 = 34.257

(5.10)

Table 5.3: First and second iteration centroids

[cent′11 ] [(110906.889,−54211.6885, 278661.905), (110906.889,−54100.9870, 278661.905)]

[cent′12 ] [(110906.889,−53540.1085, 278661.905 ), (110906.889,−53751.5470, 278661.905)]

[cent′21 ] [( 110906.889,−54212.7805, 278661.905), (110906.889,−53717.422, 278661.905)]

[cent′22 ] [(110906.889,−53441.1005, 278661.905), (110906.889,−53754.0495, 278661.905)]

The next stage is to update [[EU ]] using a shift matrix calculated from the differences
between the initial centroids allocated at start-up, and those determined at the end of
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the first iteration (ready for the start of iteration 2). Table 5.3 shows the first and the
second sets of centroids, [Cent′1] and [Cent′2], for the two clusters. The Shift Matrix
[S′], encrypted using Liu’s FHE scheme, calculated by the TPDM as [Cent′1]	 [Cent′2],
is as follows:

[S′] =

[
(0, 1.092, 0) (0,−383.565, 0)
(0,−99.01, 0) (0, 2.5025, 0)

]
The corresponding plaintext values, decrypted by the data owner, using Algorithm 2,
are then:

S =

[
0.08 −28.1
−7.253 0.183

]
The values re-encrypted, using the proposed FDH-OPE scheme, and sent to the TPDM
by the data owner, will then be as follows:

[[S′]] =

[
[[s′1,1]] [[s′1,2]]

[[s′2,1]] [[s′2,2]]

]
=

[
2.019 −495.275
−162.982 4.331

]
The re-encrypted [[S′]] is then used to update [[EU ]]:

[[EU]] =


([[eu1,1,1]] + [[s′1,1]], [[eu1,1,2]] + [[s′1,2]]) ([[eu1,2,1]] + [[s′2,1]], [[eu1,2,2]] + [[s′2,2]])
([[eu2,1,1]] + [[s′1,1]], [[eu2,1,2]] + [[s′1,2]]) ([[eu2,2,1]] + [[s′2,1]], [[eu2,2,2]] + [[s′2,2]])
([[eu3,1,1]] + [[s′1,1]], [[eu3,1,2]] + [[s′1,2]]) ([[eu3,2,1]] + [[s′2,1]], [[eu3,2,2]] + [[s′2,2]])
([[eu4,1,1]] + [[s′1,1]], [[eu4,1,2]] + [[s′1,2]]) ([[eu4,2,1]] + [[s′2,1]], [[eu4,2,2]] + [[s′2,2]])
([[eu5,1,1]] + [[s′1,1]], [[eu5,1,2]] + [[s′1,2]]) ([[eu5,2,1]] + [[s′2,1]], [[eu5,2,2]] + [[s′2,2]])


The result will be:

=


(0.0 + 2.019, 0.0− 495.275) (−785.23− 162.982,−457.98 + 4.331)

(785.23 + 2.019, 457.98− 495.275) (0.0− 162.982, 0.0 + 4.331)
(−3.81 + 2.019, 866.29− 495.275) (−787.08− 162.982, 534.70 + 4.331)
(926.74 + 2.019, 435.84− 495.275) (274.44− 162.982,−48.47 + 4.331)
(895.71 + 2.019, 481.08− 495.275) (214.30− 162.982, 36.13 + 4.331)



=


(2.019,−495.275) (−948.212,−453.649)
(787.249,−37.295) (−162.982, 4.331)
(−1.791, 371.015) (−950.062, 539.031)
(928.759,−59.435) (111.458,−44.139)
(897.729,−14.195) (51.318, 40.461)


The next iteration can now commence. Each record is again assigned to a clus-

ter and the similarity with the updated cluster centroids determined using Equation
5.9. For example, comparing record [r′1] with cent′21 and cent′22 gives respective sim-
ilarities of [[497.294]] and [[1401.861]]; consequently, [r′1] is assigned to the first clus-
ter. To check the correctness of this assignment we can compare with the plaintext
result. Recall that, the plaintext centroids are given in equation 5.10; in which case
cent21 − r1 = (|0.65− 0.73|, |36.94− 8.84|) = (0.08 + 28.1) = 28.18 and cent22 − r1 =
(|57.183− 0.73|, |34.257− 8.84|) = (56.453 + 25.417) = 81.87; this confirms the assign-
ment of r1 to the first cluster. The process will continue in this manner, with subsequent
iterations, until the cluster centroids stabilise.
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5.6 Experimental Results and Evaluation

This section reports on the experimental analysis conducted to evaluate the operation of
the proposed EUDM/EDM mechanisms, the idea of the Cryptographic Ensemble and the
secure data clustering algorithm using DBSk-Means and DBSNNC. For the evaluation
the same UCI datasets used with respect to the evaluation reported in Chapter 4 were
used. The objectives of the evaluation were:

1. To evaluate the Cryptographic Ensemble and the concept of EUDMs/EDMs in
terms of four evaluation criteria: (i) extent of data owner participation, (ii) clus-
tering efficiency, (iii) comparative clustering accuracy and (iv) security.

2. To compare the operation of EUDMs with the concept of UDMs presented in
Chapter 4 in terms of the complexity of data owner participation, efficiency, accu-
racy and security (comparison of the operation of EDMs with UDMs was deemed
inappropriate because they used different clustering techniques).

As in the case of the evaluation presented in Chapter 4 the number of classes in a dataset
were used to indicate the desired number of clusters to be produced by DBSk-Means (the
k value). The DBSNNC parameter value (σ) was randomly selected from a sequence
of experiments (not reported here) conducted using different values for σ although in
practice the σ value would be selected by the data owner. The outcomes from the
experiments related to the four criteria associated with the first objective are presented
and discussed in Sub-sections 5.6.1 to 5.6.4, while the outcomes from the experiments
related to the second objective are presented in Sub-section 5.6.5.

5.6.1 Data Owner Participation

The first criteria used to evaluate the Cryptographic Ensemble idea and the concept of
EUDMs/EDMs was to analyse the processing time required by the data owner to prepare
the dataset for the TPDM and to participate whilst the data clustering algorithm was
in progress. Table 5.4 presents the runtime values obtained to prepare the selected
UCI datasets when utilising both EUDMs and EDMs. Recall that, when using EUDMs
the data preparation comprises: (i) data encryption (Data Enc.), (ii) UDM calculation
(UDM Cal.) and (iii) UDM encryption (UDM Enc.), to arrive at an EUDM; whilst
when using EDMs the preparation process comprises: (i) data encryption (Data Enc.),
(ii) DM calculation (DM Cal.) and (iii) DM encryption (DM Enc.), to arrive at an
EDM. The Data Enc. and UDM Cal. sub-process are the same as those used with
respect to UDMs as described in the previous chapter, Chapter 4, because an EUDM is
an extension of a UDM. For completeness, the runtimes for Data Enc. and UDM Cal.
(that were previously presented in Table 4.2) are included in columns 2 and 3 of Table
5.4.

From the table, it can be observed that the overall runtime required to prepare data
when using an EUDM was higher than the overall runtime required to prepare data using
an EDM, as indicated by inspection of columns 5 and 8. Note that the runtimes using
EUDMs is given in Seconds (Sec.); whilst that for EDMs is given in milli-seconds (ms).
The required runtime associated with the UDM Cal. and DM Cal. sub-processes, as
shown in columns 3 and 6, is negligible; the UDM/DM can be calculated in a matter of
milli-second, although the time required to calculate the UDM is larger. More formally,
the time complexity for calculating an initial UDM is in the order of O(|[D′]|×|[D′]|×a);
if we know the value for k in advance this can be reduced to O(|[D′]| × k × a). The
complexity of the DM calculation, in turn, is given by O(|[D′]| × |[D′]|). The times to
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Table 5.4: Time required by the data owner to prepare data for outsourcing. The
reported results are an average of ten runs

EUDM EDM
No. UCI Dataset Data UDM UDM Total DM DM Total

Enc. Cal. Enc. App. Cal. Enc. App.
(ms) (ms) (Sec) (Sec) (ms) (ms) (ms)

1. Arrhythmia 9.80 230.20 45.90 46.13 47.70 168.80 216.50
2. Banknote Auth. 1.85 388.00 9.00 9.39 27.30 1485.40 1512.70
3. Blood Trans. 4.04 62.00 1.90 1.96 11.30 252.70 264.00
4. Breast Cancer 1.70 11.00 1.50 1.51 5.67 58.10 63.77
5. Breast Tissue 0.40 3.00 0.20 0.20 1.70 34.40 36.10
6. Chronic Kidney 2.65 29.00 3.80 3.83 8.30 144.60 152.90
7. Dermatology 1.80 40.20 3.40 3.44 10.30 102.70 113.00
8. Ecoli 0.98 8.80 0.70 0.71 4.23 121.20 125.43
9. Indian Liv. Pat. 1.30 41.80 3.10 3.14 9.20 239.10 248.30
10. Iris 0.20 2.00 0.20 0.20 1.90 50.90 52.80
11. Libras Mov. 4.80 49.80 10.40 10.45 13.40 123.50 136.90
12. Lung Cancer 0.59 1.00 0.10 0.10 1.00 11.90 12.90
13. Parkinsons 1.90 6.30 1.10 1.11 3.90 61.30 65.20
14. Pima Disease 1.44 47.00 4.10 4.15 12.50 422.40 434.90
15. Seeds 0.48 5.00 0.50 0.51 2.70 70.00 72.70

encrypt a UDM or DM, to arrive at an EUDM or EDM, are given in columns 4 and 7
of Table 5.4. The time to encrypt a DM is much lower than that for a UDM; note that
the time for UDM encryption is given in seconds whilst the time for DM encryption
is given in milli-seconds. Although in both cases the encryption takes understandably
longer than the other preparation processes, it can be argued that the preparation time
does not present a significant overhead.

In addition to data preparation, in the case of DBSk-Means, the data owners will
also participate in updating the EUDM through decrypting the Encrypted Shift Matrix
(ESM) using Liu’s decryption algorithm (Algorithm 2) and re-encrypting the resulting
SM using the FDH-OPE scheme on each DBSk-Means iteration. Shift matrices are
small, measuring k× a; therefore the time required to decrypt/re-encrypt a shift matrix
is negligible. Column 9 of Table 5.5 gives the runtime required to decrypt and re-encrypt
shift matrices for the entire DBSk-Means process which, as expected, is slightly higher
compared to that required when using shift matrices with respect to UDMs (see Chapter
4).

Some further analysis, in the case of DBSk-Means, was undertaken to evaluate the
data owner participation when decrypting and re-encrypting shift matrices in comparison
with the number of iterations required for each clustering exercise, and to determine
the effect of the number of attributes (a) featured in a given dataset, on runtime. The
results are presented in Figure 5.3 which shows two plots. The first plots runtime against
attributes a, the second against the number of required iterations. From the plots, it can
be seen that, as anticipated, runtime using the EUDM approach is higher compared to
the UDM. The figure also shows that the runtime increases with the number of iterations
and the number of attributes, although not in any clear linear manner.
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Figure 5.3: Time required by the data owner to decrypt shift matrices in the case of
the UDM and EUDM approaches coupled with k-Means clustering

5.6.2 Secure Clustering Efficiency

The usage of the homomorphic mathematical properties of the adopted FHE scheme
and the secure data comparison founded on the use of EUDMs or EDMs as appro-
priate, encrypted using the proposed FDH-OPE scheme, will clearly introduce some
computational overhead. This section reports on the evaluation conducted regarding
the usage of EUDMs in the context of DBSk-Means, and the usage of EDMs in the con-
text of DBSNNC, by considering the reported runtimes and comparing the results with
the runtimes required by the equivalent standard algorithms (using plaintext datasets).
The runtime required to cluster the datasets using standard k-Means were given in
Table 4.3; however, for the purpose of comparison, the results are again presented in
columns 3 to 5 of Table 5.5. The table also gives the DBSk-Means runtime (columns
6 to 9). The results obtained for NNC and DBSNNC are given in Table 5.6 (note that
the runtimes for DBSk-Means and DBSNNC do not include any data owner preparation
time). Inspection of these results indicates that the runtime required by DBSk-Means
and DBSNNC was greater than that required using the standard equivalent algorithms;
this was to be expected. The largest dataset, Arrhythmia, can be clustered using the
DBSk-Means in 5191ms compared to 38ms using standard k-Means, and clustered using
DBSNNC in 4924ms compared to 4801ms. From Tables 5.5 and 5.6 it can be observed
that the difference in runtime between k-Means and DBk-Means is higher than the dif-
ference between NNC and DBSNNC. However, it is argued here, these times were still
within acceptable limits.
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Table 5.5: Experimental results comparing the operation of DBSk-Means and stan-
dard k-Means

No.

Standard k-Means DBSk-Means

Run- Num. Sil. Run- Num. Sil. Re-enc. ESM
k time Iter. Coef. time Iter. Coef. (ms)

(ms) (ms)

1. 16 38 10 0.602 5191 10 0.602 54.00
2. 2 58 16 0.207 208 16 0.207 2.55
3. 2 19 12 0.370 67 12 0.370 2.32
4. 2 11 8 0.020 71 8 0.020 2.11
5. 6 19 18 0.787 60 18 0.787 2.63
6. 2 14 8 0.009 138 8 0.009 16.62
7. 6 14 15 0.801 672 15 0.801 19.85
8. 8 6 23 0.628 221 23 0.628 4.81
9. 2 12 13 0.169 274 13 0.169 1.83
10. 3 9 14 0.836 23 14 0.836 1.11
11. 15 26 18 0.590 2626 18 0.590 20.67
12. 3 3 8 0.645 25 8 0.645 4.82
13. 2 5 7 0.079 49 7 0.079 1.90
14. 2 19 8 0.000 128 8 0.000 1.31
15. 3 9 6 0.706 26 6 0.706 0.92

Table 5.6: Experimental results comparing the operation of DBSNNC and standard
NNC

No.

Standard NNC DBSNNC

Run- Num. Sil. Run- Num. Sil.
σ time Clus. Coef. time Clus. Coef.

(ms) (ms)

1. 1980.00 4801 16 0.889 4924 16 0.889
2. 11.00 3444 3 0.752 3462 3 0.752
3. 1046.00 515 4 0.895 540 4 0.895
4. 20.00 597 6 0.470 668 6 0.470
5. 990.00 3 38 0.999 4 38 0.999
6. 952.00 329 16 0.981 359 16 0.981
7. 26.00 344 8 0.745 368 8 0.745
8. 0.76 78 7 0.881 82 7 0.881
9. 100.00 449 98 0.997 481 98 0.997
10. 3.00 6 2 0.722 6 2 0.722
11. 10.00 765 19 0.753 822 19 0.753
12. 0.10 2 32 1.000 2 32 1.000
13. 91.00 34 8 0.930 38 8 0.930
14. 498.00 1068 2 0.741 1129 2 0.741
15. 4.00 18 2 0.579 19 2 0.579
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5.6.3 Secure Clustering Accuracy

The “correctness” of the clustering configurations produced using the proposed secure
data clustering, DBSk-Means and DBSNNC, were compared using the established Sil-
houette Coefficient (Sil. Coef.) metric calculated as explained in Sub-section 4.4.3. As
already noted, the intuition was that the secure algorithms should produce equivalent
(or comparable) configurations to those produced using equivalent standard algorithms,
and if so the secure algorithms could be said to be operating correctly. The Sil. Coef. for
k-Means and DBSk-Means are shown in columns 5 and 8 of Table 5.5 respectively, whilst
the Sil. Coef. for NNC and DBSNNC are shown in columns 5 and 8 of Table 5.6. The
results show that identical Sil. Coef. values were obtained in all cases. Thus indicating
that the final cluster configurations produced using DBSk-Means and DBSNNC were
similar to those produced using the corresponding standard algorithms. This, there-
fore, indicates that the proposed mechanisms can be used to provide a solution to the
challenge of DMaaS.

The number of cluster iterations required using k-Means/DBSk-Means clustering
was also compared and also the number of produced clusters using NNC/DBSNNC.
The results are shown in columns 4 and 7 of Table 5.5, and columns 4 and 7 of Table
5.6. The results show that the number of iterations and number of clusters produced
were the same in all cases, although (in the case of k-Means) the bigger the dataset the
more iterations that were typically required regardless of whether secure or standard
clustering was applied.

5.6.4 Security

In this section the security of the proposed EUDM/EDM approaches and Cryptographic
Ensemble idea are discussed in terms of potential attacks. In the proposed solution, the
TPDM has access to: (i) the encrypted dataset [D′], (ii) the encrypted UDM [[EU ]] or
encrypted DM [[ED]] and (iii) the encrypted and re-encrypted shift matrix [S′]/[[S′]],
thus Cyphertext Only Attacks (COAs), Chosen Plaintext Attacks (CPAs) and Knowing
Plaintext Attack (KPA) are theoretically possible. These attacks can also be lunched
when the external attackers somehow have access to the TPDM storage, and by an
adversary, who is also a TPDM, who is able to send the ESM for re-encryption. In the
following, the potential attacks are discussed.

A COA is where the attacker has access only to cyphertexts; no access to any plain-
text data. In the proposed approach, this attack can be instigated whenever an at-
tacker has access to the encrypted data [D′] and/or the corresponding EUDM/EDM
([[EU ]]/[[ED]]). The [D′] and [[EU ]]/[[ED]] are encrypted using one of the schemes
within the Cryptographic Ensemble; either Liu’s FHE scheme or the proposed FDH-
OPE scheme. Recall that Liu’s FHE scheme is a probabilistic scheme that produces
different cyphertexts for the same plaintext value each time it is applied, even when us-
ing the same secret key. This feature means that Liu’s cyphertext is semantically secure
and hence accessing cyphertexts does not provide any useful information with respect
to the associated plaintexts from the perspective of an adversary.

With respect to EUDMs/EDMs a COA is the most likely form of attack. However,
in practice, it is a very weak form of attack because of the adversary’s lack of infor-
mation. In the unlikely event that an adversary has background knowledge of the data
distribution, or data frequency of the original data values, it might be possible to apply
some form of statistical analysis or frequency analysis to an EUDM/EDM (secured us-
ing the FDH-OPE scheme) to gain information. For instance, by extracting statistical
information from the cyphertexts, the adversary might be able to infer ranges containing
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dense data. Using frequency analysis, an adversary could highlight cyphertexts bearing
the same frequency as plaintexts (if such plaintexts were available) and then identify
some cyphertexts values that have the same frequency. To guard against this possibility,
the proposed FDH-OPE scheme firstly incorporates both message space splitting and
non-linear cyphertext space expansion so as to obscure the statistical features of the
generated cyphertexts (such as data distribution). Secondly, the proposed FDH-OPE
scheme hides the data frequency using a “one-to-many” mapping function incorporating
a random variable δ.

A CPA is where an attacker chooses random plaintexts to be encrypted so as to
obtain the corresponding cyphertexts for further analysis (refer to Section 2.5 for more
detail). In the proposed approaches, the only possible interaction with the data owner
that could be used to launch the CPA attacks is the EUDM updating process when
sending the ESM for re-encrypting. The attacker may send the chosen set of plaintexts,
to be encrypted to FDH-OPE cyphertexts, in a form of shift matrix [S′]. However, as
specified in Algorithm 7, for the shift matrix [S′] to be processed correctly by the data
owner it needs to be encrypted using Liu’s FHE scheme. Encrypting [S′] requires access
to the Liu’s FHE secret key; however, this is not shared with other parties as the scheme
is symmetric.

A KPA is when the attacker is able to build knowledge of cyphertexts and their
corresponding plaintexts values. In this attack the attacker cannot choose the value of
the desired plaintext, as in the case of CPA, instead the plaintexts is only known. A
KPA is only possible when data is exchanged with a data owner in cyphertext form and
received in plaintext form. When using an EDM a KPA cannot be launched as there is
no data exchanged with the data owner. When using an EUDM, the data exchanged
with the data owner is in cyphertext form, and thus the attacker will only have HE
cyphertexts and their corresponding FDH-OPE cyphertexts.

Given the above, it is argued that the proposed EUDM and EDM approaches are
secure against COAs, CPAs and KPAs.

5.6.5 Comparison Between UDM and EUDM

The second evaluation objective was to compare the operation of UDMs to EUDMs.
Comparison with EDMs was not conducted as it does not support the updating process
required for k-Means clustering. The idea underpinning the evaluation was to com-
pare the performance of standard k-Means clustering with secure k-Means clustering
algorithms founded on EUDM (DBSk-Means) and the UDM (Sk-Means) from the pre-
vious chapter. The evaluation criteria were: (i) data owner participation, (ii) clustering
efficiency, (iii) clustering accuracy and (iv) security.

The data owner participates for both secure clustering mechanisms was limited to
preparing the data for outsourcing and decrypting and re-encrypting the shift matrix
on each k-Means iteration. The data preparation process comprised data encryption,
UDM calculation and, in the case of EUDMs, encryption. Therefore, the data owner
participation in the EUDM case added an encryption process compared to using UDMs.
Tables 4.2 and 5.4 show the overall preparation runtime using UCI datasets in the con-
text of UDMs and EUDMs, respectively. For comparison purposes, the results are also
presented in Figure 5.4 in such a way that the dataset ID numbers used in Tables 4.2
and 5.4 are listed along the x-axis. The figure clearly shows the difference in complex-
ity. In most cases EUDMs required more preparation time than UDMs, although the
results show that the preparation time did not entail any significant overhead on behalf
of the data owner. In addition to data preparation, data owners will also participate
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Figure 5.4: Compare the complexity of data owner participation in the context of
UDMs and EUDMs

in updating UDMs and EUDMs through decrypting the shift matrix on each k-Means
iteration and re-encrypting the results using the FDH-OPE scheme in the case of EU-
DMs. Therefore, participation can be expected to be slightly higher in the EUDM case
than in the UDM case. The data owner participation to decrypt (and re-encrypt) shift
matrices were analysed with respect to the number of iterations and attributes as shown
in Figure 5.3. The figure shows an increase in the runtime as the number of attributes
and iterations increase, although again not in any clear linear manner.

The runtime required for clustering data by utilising an EUDM, and the Crypto-
graphic Ensemble, was compared with that required using a UDM. Both approaches
were also compared with the standard k-Means runtime. The results were reported in
Table 4.3 for standard k-Means compared to Sk-Means (using UDMs), and are given
in Table 5.5 for standard k-Means compared to DBSk-Means (using EUDMs). From
the tables it can be observed that the runtimes to cluster datasets using DBSk-Means
and Sk-Means was higher than the time required to cluster the same datasets using the
standard algorithm. This result was expected as the secure algorithms use the HE math-
ematical properties instead of standard operations, hence an overhead is introduced. The
DBSk-Means runtime was slightly higher than that of Sk-Means. This was also expected
as DBSk-Means operates using the Cryptographic Ensemble; the encryption of the UDM
and shift matrix introduced another overhead. Interestingly, the number of iterations
using Sk-Means, DBSk-Means and standard k-Means were all the same in the context
of the considered UCI datasets.

The “accuracy” of the generated cluster configurations produced using UDMs and
EUDMs, Sk-Means and DBSk-Means, was also compared with that produced using the
standard algorithms. The Silhouette Coefficient was used as an evaluation measure.
From Table 5.5, and with reference to Table 4.3, it can be seen that the clustering con-
figurations were identical in all three cases algorithms (k-Means, Sk-Means and DBSk-
Means). Indicating that the final clustering configurations produced using Sk-Means
and DBSk-Means were identical to those produced using standard k-Means. Therefore,
it was concluded that the Cryptographic Ensemble and their secure mathematical prop-
erties did not adversely affect the correctness of the cluster configurations generated.

In term of security, as noted in the foregoing chapter, the unencrypted UDM repre-
sents a very large set of linear equations that introduce a security risk when disclosed
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in their plaintext form. An attacker who somehow has access to the UDM might be
able to obtain some statistical information concerning the original data by reverse en-
gineered the UDM’s linear equations. The other potential threat that exists is with
respect to the UDM updating process; in particular the process of sending an encrypted
shift matrix [S′] and receiving the corresponding plaintext shift matrix S values. This
might allow attackers to develop knowledge using the plaintexts and their corresponding
HE cyphertexts. Therefore, it can be argued that the UDM approach is vulnerable to
Known Plaintext Attacks (KPAs) and provide potential for reverse engineer of statis-
tics concerning the data. A UDM is also vulnerable to dictionary attack whereby the
adversary generates new cyphertexts and then derives their plaintext equivalent values
using the HE properties and knowledge obtained when the shift matrix cyphertext is
decrypted. This is prevented by encrypting the UDM elements to produce an EUDM.

5.7 Summary

This chapter has presented the idea of Cryptographic Ensembles and the twin concepts
of Encrypted Updatable Distance Matrix (EUDM) and Encrypted Distance Matrices
(EDM) that collectively provide a solution for supporting PPDM in the context of
DMaaS. The proposed Cryptographic Ensemble seeks to address the security issue as-
sociated with the UDM concept presented in Chapter 4 whilst allowing data clustering
to be conducted over encrypted data without decryption. The utility of the proposed
EUDM/EDM approach was illustrated using two secure data clustering mechanism,
DBSk-Means which used EUDMs, and DBSNNC which used EDMs. The evaluation
demonstrated that the Cryptographic Ensemble could provide a solution to secure out-
sourced data clustering while maintaining the clustering effectiveness. The data owner
participation with respect to DBSk-Means was limited to decrypting and re-encrypting
the data using the FDH-OPE scheme, whilst data owner participation was entirely
avoided using DBSNNC once the data had been prepared and the data clustering com-
menced. The evaluation also indicated that, although the encrypted approaches required
more runtime (as expected), the runtime was not significant. The main advantage of
the EUDM/EDM approach over the UDM approach, was that it was secure against a
variety of attacks, including: (i) Cyphertext Only Attacks (COAs), (ii) Chosen Plain-
text Attacks (CPAs) and (iii) Known Plaintext Attacks (KPAs). In the next chapter, an
extension of the proposed EDM approach is presented to facilitate secure collaborative
data clustering (the multiple data owners scenario).





Chapter 6

Global Encrypted Distance
Matrices

6.1 Introduction

The work presented in this chapter is directed at providing an answer to the subsidiary
research question originally posed in Chapter 1:

• Can the proposed single data owner scenario solutions be extended to support scal-
able collaborative data mining (the multiple data owners scenario) while keeping
the data owner participation at a minimum?

The fundamental idea presented in this chapter is that of a Global Encrypted Dis-
tance Matrix (GEDM) generated from a collection of locally generated distance matrices
produced by multiple data owners. To facilitate the generation of a GEDM, and its util-
isation, the idea of a Cryptographic Ensemble was maintained but with the Frequency
and Distribution Hiding OPE (FDH-OPE) scheme from the previous chapter replaced
with a bespoken Multi-Users Order Preserving Encryption (MUOPE) scheme that pre-
serves the order of data distributed across multiple sources. The application focus for the
work presented in this chapter continuous to be data clustering. However, as in the case
of EDMs, GEDMs are not updatable so not suited to secure k-Means style clustering,
but entirely appropriate to DBSCAN and NNC style clustering. Secure classification
will be considered later in this thesis.

Generally, the nature of collaborative data analysis introduces additional privacy
preservation concerns compared to the single data owner scenario as discussed in [49].
The reader might find it useful to refer back to Section 2.3 where the data privacy preser-
vation requirements for the single and multiple data owner scenarios were discussed. The
main challenge in collaborative data clustering is that of maintaining the confidentiality
of the data during processing without adversely affecting the effectiveness of the anal-
ysis. For example, in the case of many data clustering algorithms, when calculating
distances between records and when comparing such distances against each other or
against a threshold. From the literature, as already noted in Chapter 2, two different
categories of solutions can be identified. The first is to resort to well-established Secure
Multi-Party Computation (SMPC) protocols to securely calculate the comparator values
required by individual data mining algorithms [20, 33, 36–40, 56, 103, 105]. The second
is to adopt an appropriate Fully Homomorphic Encryption (FHE) scheme that splits
the secret key among the multiple parties so that each party can locally encrypt their
dataset. In this case the TPDM can manipulate the dataset using the FHE mathemati-
cal properties of the adopted scheme [19, 27, 28]. Although, to a certain extent, SMPC
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and secret sharing address the problem of data confidentiality, the requirement for data
owner participation, as the data mining progresses, results in a significant computation
and communication overhead. This disadvantage consequently effects the scalability of
the approaches rendering them infeasible for any form of large scale collaborative data
mining. The work presented in this chapter seeks to address this disadvantage using the
concept of GEDMs which allow secure collaborative data clustering facilitated by the
proposed Multi-Users Order Preserving Encryption (OPE) scheme.

The remainder of this chapter is structured as follows. Section 6.2 presents the
proposed MUOPE scheme designed to facilitate data order preservation in the context
of the multiple data owners scenario. In Section 6.3 the idea of GEDMs, founded on the
EDM concept first presented in Chapter 5, and designed to support multiple data owner
scenario and collaborative data clustering, is presented. The application of GEDMs in
the context of secure data clustering is detailed in Section 6.4; two specific approaches
are considered, Secure DBSCAN (S-DBSCAN) and Secure NNC (S-NNC). Section 6.5
presents an extensive evaluation of the GEDM idea and the supporting MUOPE scheme.
Finally, Section 6.6 provides a summary of the material presented in this chapter.

6.2 Multi-Users Order Preserving Encryption Scheme

From earlier work presented in the foregoing chapters a Distance Matrix (DM), gen-
erated by a single data owner, as described in Chapter 5, is essentially a set of linear
equations that might support the undesirable re-engineering of the original data distri-
bution. The proposed solution was to encrypt the DM using the bespoken FDH-OPE
scheme which hides the data distribution and frequency in the generated cyphertexts,
while still permitting comparison of distances. However, the FDH-OPE scheme, part
of the Cryptographic Ensemble detailed in Chapter 5, could not provide a solution in
the context of the multiple data owners scenario. The generated FDH-OPE cyphertexts
would preserve the order for the DM belonging to a single data owner but not the order
across all DMs were these DMs to be somehow combined. The MUOPE scheme was
therefore proposed that will support order preservation across multiple DMs brought
together into a single GEDM. The proposed MUOPE scheme is presented in detail in
this section.

The MUOPE scheme can be seen as an extension of the FDH-OPE scheme pre-
sented previously in Section 5.2 in that the MUOPE scheme shares many of the FDH-
OPE scheme’s main features; data distribution and data frequency hiding in the gener-
ated cyphertexts. The MUOPE scheme is supported by two processes; Key Generation
KeyGen and data encryption Encrypt. There is no decryption process as this is not
required, at least in the context of the collaborative data clustering presented in this
chapter. The MUOPE key is generated by a Semi-honest Third Party (STP) who acts
as a mediator between the participating data owners (the set of participating parties
P = {p1, . . . , pu}). Once the key is generated, the scheme key will be sent to all partic-
ipating parties who will locally encrypt their DM to arrive at an EDM.

Algorithm 11 gives the pseudo code for the MUOPE KeyGen process. The inputs are
the message space intervalM and the associated cyphertext space interval C as depicted
previously in Figure 5.1 in Chapter 5. Each interval comprises maximum and minimum
interval boundaries; l, l′ and h, h′ for the message space and corresponding cyphertext
space, respectively. The interval boundaries are as agreed by the participating data
owners selected in such a way that |M| � |C|.

The algorithm commences with the STP splitting the message space interval (M)
into t consecutive intervals, where t is a random number, to arrive at Minterval =
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Algorithm 11 MUOPE key generation process

1: procedure KeyGen(M, C)
2: Minterval←Message Space Splitting(M, t)
3: Dens = SecureDensityAccumulation(t, Minterval)
4: Cinterval← Non-linear Cypher Space expansion(Dens, C)
5: Exit with Cinterval and Minterval
6: end procedure
7: procedure SecureDensityAccumulation(t, Minterval)
8: STP: generates SK, PK Paillier’s key
9: STP: shares the Paillier’s public key (PK) andMinterval with all participants

10: STP: declares V initial as a set of t elements initialised randomly
11: STP: declares V as a set of t elements and assign V initial to it
12: STP: V ′= Encrypt(V , PK) . Paillier encryption Equation 3.7
13: STP: sends V ′ to p1
14: p1: dens1= calculate density in DM1 for each message space interval

(Minterval)
15: p1: dens

′
1= Encrypt(dens1, PK) . Paillier encryption

16: p1: V
′ = V ′ ⊕ dens′1

17: for i = 2 to i = u do
18: pi−1: will send V ′ to pi
19: pi: densi = calculate density in DMi for each message space interval
20: pi: dens

′
i= Encrypt(densi, PK) . Paillier encryption

21: pi: V
′ = V ′ ⊕ dens′i

22: end for
23: pu: will send V ′ to STP
24: STP: Dens = Decrypt(V ′,SK) . Paillier keys
25: STP: Dens = Dens− V initial
26: Exit with Dens
27: end procedure

{m1, . . . ,mt} (line 2). As in the case of FDH-OPE, the cyphertext interval needs to split
into the same number of intervals t. For the data distribution to be hidden, the message
space intervals that have a large data density need to be related to large cyphertext space
intervals. Therefore, again as in the case of FDH-OPE, the length of each cyphertexts
space interval is determined according to the density of the data within the corresponding
message space interval. The density for each interval in the message space, representing
data distributed across multiple data owners, is securely accumulated by calling the
SecureDensityAccumulation sub-procedure in line 3 which is given in lines 7 to 27 in
the algorithm. In the pseudo code for the SecureDensityAccumulation sub-procedure
STP indicates a command executed by the STP and pi a command executed by data
owner (party) pi.

The inputs to the SecureDensityAccumulation sub-procedure are the number of
intervals (t) and message space intervalsMinterval = {m1, . . . ,mt}. The sub-procedure
commences with the STP generating Paillier key pairs, SK and PK (line 8); recall that
detail concerning Paillier encryption was presented in Sub-section 3.3.2 of Chapter 3.
The generated public key PK and Minterval are sent to all participating parties (line
9). The next step is for the STP to create a list V initial of t elements that is initialised
randomly (line 10). The STP then creates a list V of t elements corresponding to
Minterval and Cinterval, V = {v1, . . . , vt} (line 11) which on start-up is initialised
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with the values in V initial. The list V is encrypted using Paillier Encryption to give
an encrypted list V ′ (line 12). The encrypted list V ′ will be then sent to the first
data owner (party), p1, who will calculate the density (dens1) values with reference
to his/her DM, DM1 (lines 13 and 14). Data owner p1 will then encrypt these values
(again using Paillier encryption) and add them to the values held in V ′ using the Paillier
HE additive property, ⊕ (lines 15 and 16). A loop is then entered (lines 17 to 22) in
which the density of the data for each interval for the remaining participants p2 to pu
is securely accumulated. The loop commences by sending the updated list V ′ to the
next data owner who will calculate the data density with the reference to their DM,
encrypt the density values and add the encrypted values to V ′ using the HE additive
property. The process will be repeated for the remaining parties till there are no more
data owners to be considered. The last party, pu, will return V ′ to the STP (line 23).
The STP then decrypts V ′ (line 24) using the Paillier scheme secret key to arrive at
Dens and subtracts the original random values V initial, first used to populate V , to
give the density value for each interval (line 25). The SecureDensityAccumulation
sub-procedure will exit with data density Dens (line 26). The Dens values are then
used, by the STP, to determine the length of each cyphertext space interval (line 4) by
performing Non-linear Cyphertext Space expansion (as discussed in Section 5.2). The
message space and cyphertext space interval boundaries that represent the MUOPE
encryption keys are the returned in line 5. The MUOPE keys are used by individual
data owners to locally encrypt their DM. The encryption function is the same as that
given for FDH-OPE scheme; see Algorithm 6.

6.3 Global Encrypted Distance Matrices

This section presents the GEDM concept. As in the case of EDMs, a GEDM is a 2D
matrix that holds distances between every record in the global dataset GData with every
other record in GData; GData = ∪i=ui=1D

′
i, where D′i is the dataset belonging to data

owner (participant party) pi which is encrypted using Liu’s FHE scheme, and u is the
number of parties. In other words, GData is the union of the participating encrypted
datasets and a GEDM is the combination of the associated EDMs where the EDMs are
generated as described in Chapter 5. The GEDM is constructed by the STP. How the
GEDM is constructed depends on how the data is partitioned across the participants.
As noted in Chapter 2 (Sub-section 2.3.2), three different data partitionings can be
identified; horizontal, vertical and arbitrary. This chapter considers the horizontal data
partitioning, where each partition conforms to the same set of attributes A, but features
different records. Alternative partitionings are considered in [39, 94, 102].

Recall that a DM, as presented in the previous chapter, is a 2D matrix that holds
distances (differences) between each record in a dataset D with every other record in D
(where D belongs to a single party). Therefore, a DM’s dimensions are defined by the
number of records in D. The matrix is symmetric about the leading diagonal so only
values for the lower (or upper) triangular of the matrix need to be calculated. An EDM
is then an encrypted DM that has been encrypted using the MUOPE scheme described
in Section 6.2. Each participant pi generates an EDM, EDMi, for their dataset Di. The
resulting set of EDMs, EDM = {EDM1, EDM2, . . . , EDMu}, are used to construct
the desired GEDM. This is not simply a matter of appending EDMs to one another,
because to be used as intended a GEDM needs to hold the encrypted distances between
every record in GData to every other record in GData, thus most of the content of a
GEDM will hold encrypted distances between data records which belonging to different
data owners. Figure 6.1 indicates (dark grey boxes) where the content of EDMs can be
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used directly to populate a GEDM; along the leading diagonal. The remainder of the
GEDM needs to be populated using a process, referred to as pooling, conducted between
pairs of data owners as indicated by the examples also highlighted (light grey boxes) in
Figure 6.1.

PM (u & i) EDMu

PM (i & 2) EDMi

PM (2 & 1) EDM2

EDM1

pip1 p2 pu

pu

p2

p1

pi

Figure 6.1: A GEDM highlighting (dark grey boxes) where the content of EDMs can
be directly incorporated and examples (light grey boxes) of where pooling takes place

between individual data owners.

The pseudo code for the pooling process is given in Algorithm 12. The process
comprises two steps. The first uses the global set of EDMs, EDM, to populate the
“leading diagonal band” of the GEDM, GE (lines 4 to 13). The second step requires
data owner participation to generate Pool EDMs (PoolEDMs) that are then used to
populate the remaining GE elements (lines 14 to 33). The pooling method is managed
by the STP. The inputs to pooling sub-process are the global set of EDMs, EDM,
and the number of attributes in the dataset a. The first step (lines 2 and 3) is for
the STP to dimension the GE according to the number of records in GData (given
that only horizontal portioning is considered in this chapter this will be the sum of
the number of records in each EDM belonging to each participant). Next, the distance
values in each participant’s EDM are inserted into GE (lines 4 to 13) thus populating
the GEDM’s “leading diagonal band” with the existing encrypted distances as shown
in Figure 6.1. Note that in the pseudo code the notation |EDMp| indicates the number
of records in EDMp and not the overall size of EDMp. The next stage (lines 14 to 33)
is to populate the remainder of the GEDM with the distances between records held by
pairs of data owners. The number of pairs will be u(u−1)

2 . For each pair (i and j), a
Pooled Matrix (PM) is constructed (line 16). A PM is a 3D matrix designed to hold
the encrypted difference between each attribute in each record held by a data owner
(pi) and each record held by another owner (pj). The dimensions for a PM are thus:
the number of records held by pj , the number of records held by pi and the number
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of attributes a in GData (recall that horizontal partitioning features the same set of
attributes across the participants). The PM will then be populated with a set of random
values. Next (line 17) the PM is encrypted (using the MUOPE) to give PM ′, which
is then sent to the data owners pi and pj who each create temporary EDMs holding
the differences between their encrypted records and the contents of PM ′. Data owner
pi will calculate the distance between each value in PM ′, using their MUOPE cypher,
with the corresponding encrypted attribute value in their dataset Di to produced PM ′1
(line 18); data owner pj will do the same with respect to their dataset Dj to give PM ′2
(line 19). Both are returned to the STP where they are used to create a pooled EDM by
adding the PM ′1 and PM ′2 elements to give PoolEDM (line 20) which is then used to
populate the appropriate section of GE. The relevant “start” indexes into GE are first
calculated (lines 21 and 22) and then the pooled EDM is processed and used to populate
the appropriate section of the GE (lines 23 to 31). The process will be repeated until
GE has been fully populated.

A GEDM, once generated, can be used to determine the data similarity between
any pair of records in the global dataset. Equation 6.1 is used to derive the “order” of
similarity between encrypted records r′x and r′y regardless of who the records belong to.

sim(GE, r′x, r
′
y) = gex,y (6.1)

6.4 Secure Data Clustering Using GEDMs

Using a GEDM and the proposed Cryptographic Ensemble, collaborative data mining
activities can be outsourced securely to a TPDM. Recall, in this case that the Crypto-
graphic Ensemble comprises Liu’s FHE scheme, described in Sub-section 3.3.1, and the
MUOPE scheme described in Section 6.2 of this chapter. The first was used to encrypt
the datasets belonging to individual data owners, and the second to encrypt EDMs and
hence a GEDM.

To use a GEDM with respect to data mining activities the standard data mining algo-
rithms that operate with unencrypted data need to be modified to work with encrypted
data. This is illustrated, in this section, by considering two secure data clustering algo-
rithms: (i) Secure DBSCAN (S-DBSCAN), a secure variation of DBSCAN [47] and (ii)
Secure NNC, (S-NNC) a secure variation of NNC [48]. Preparing the dataset for secure
collaborative data clustering, regardless of the algorithm used, required: (i) encrypt-
ing the datasets, (ii) EDM generation which in turn requires DM calculation and DM
encryption to arrive at an EDM and (iii) generating the associated GEDM using the pro-
posed pooling method. Once the datasets were encrypted and the GEDM generated no
further data owner participation would be required. In the following two Sub-sections,
Sub-sections 6.4.1 and 6.4.2, the S-DBSCAN and S-NNC data clustering algorithms are
presented in further detail.

6.4.1 Secure DBSCAN

The pseudo code for the S-DBSCAN algorithm, founded on the use of a GEDM, is
presented in Algorithm 13. The processing is entirely conducted by a TPDM, there is
no data owner involvement. The inputs are: (i) an encrypted global dataset GData′

collated by the TPDM; (ii) a GEDM GE; and (iii) the DBSCAN minimum number of
points and radius parameters, MPts and ε′, agreed by the participating parties. The
dataset GData′ is built from the participating parties’ datasets using the same ordering
as used to build GE. To allow secure comparison using GE, the ε parameter value is
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Algorithm 12 Pooling Methods for GEDM generation

1: procedure PoolingMethod(EDM,a)
2: GDataSize =

∑p=u
p=1 |EDMp| (EDMp ∈ EDM)

3: GE = 2D matrix measuring GDataSize×GDataSize
4: currentRow = 0, currentCol = 0
5: for p = 1 to p = u do
6: for r = 1 to r = |EDMp| do
7: for c = 1 to c = |EDMp| do
8: gecurrentRow+r,currentCol+c = EDMp[r,c] (gex,y ∈ GE)
9: end for

10: end for
11: currentRow = currentRow + |EDMp|
12: currentCol = currentCol + |EDMp|
13: end for
14: for i = 1 to i = (u− 1) do
15: for j = (i+ 1) to j = u do
16: PM = 3D matrix measuring |EDMj | × |EDMi| × a and

populated with random values
17: PM ′ = PM encrypted using MUOPE
18: Participant pi: PM

′
1 = differences between PM ′ and D′i

19: Participant pj : PM
′
2 = differences between D′j and PM ′

20: PoolEDM = PM ′1 and PM ′2 combined to form a pooled EDM

21: startRow =
∑n=(j−1)

n=1 |EDMn|
22: startCol =

∑n=(i−1)
n=1 |EDMn|

23: for gRow = 1 to gRow = |EDMj | do
24: for gCol = 1 to gCol = |EDMi| do
25: v′ = 0
26: for att = 1 to att = a do
27: v′ = v′ + |PoolEDMgRow,gCol,att|
28: end for
29: gestartRow+gRow,startCol+gCol = v′

30: end for
31: end for
32: end for
33: end for
34: Exit with GE
35: end procedure

encrypted using MUOPE to give ε′. Thus the TPDM does not have access to the raw
(plaintext) radius value.

The algorithm commences by creating an empty set C, and initialising the number
of clusters so far, k, to 0 (line 2). For each encrypted record r′i in GData′, which has not
been previously assigned to a cluster (is “unclustered”), the RegionQuery sub-procedure
is called to determine the ε-neighbourhood set S of the record (lines 4 and 5). The set S
comprises the set of records in GData′ whose distance from r′i is less than or equal to ε′.
To this end GE is used to provide secure data comparison (line 33 in the RegionQuery
sub-procedure). In lines 6 to 9, if the number of records in S is greater than or equal to
MPts, record r′i is marked as “clustered”, the number of clusters so far is incremented
by 1 and a new cluster Ck is created. The cluster Ck is then expanded by considering
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the set of records in S using the ExpandCluster sub-procedure (line 10). The inputs
to the ExpandCluster are: (i) the cluster Ck so far, (ii) the list S, (iii) the GE, (iv)
the density parameters and (v) GData′. The ExpandCluster procedure is a recursive
procedure, that adds the records in set S to cluster Ck if a record is “unclustered” (lines
19 to 21). The ε-neighbourhood for each record added to Ck is retrieved by another
call to the RegionQuery procedure and returned in list S2 (line 22). If the size of S2 is
greater than or equal to MPts the ExpandCluster procedure is called again; and so on.
The ExpandCluster procedure exits with expanded cluster C (line 28). The expanded
cluster is then added to the cluster set in line 11. The S-DBSCAN procedure continues
in this way until all the records in GData′ have been processed. The algorithm exits
with the cluster configuration C (line 15).

6.4.2 Secure NNC

The pseudo code for S-NNC, founded on the use of a GEDM and the Cryptographic
Ensemble (comprised of Liu’s FHE scheme and MUOPE) is given in Algorithm 14. As in
the case of the S-DBSCAN algorithm, S-NNC is entirely conducted by a TPDM following
a process similar to standard NNC and to the DBSNNC process presented in Chapter
5; the distinction is that a GEDM is used instead of an EDM to determine similarity
(Equation 6.1). The inputs are: (i) a global dataset GData′ encrypted using Liu’s FHE
scheme and collated by the TPDM, (ii) a GEDM GE and (iii) a NNC threshold σ′ agreed
by participating parties and encrypted using the proposed MUOPE scheme. The reader
might find it useful to refer back to Sub-section 5.4.3 where the DBSNNC algorithm
founded on the EDM idea was presented.

6.5 Experimental Results and Evaluation

This section presents the results obtained from the experimental analysis conducted to
evaluate the GEDM concept, the proposed MUOPE scheme and the proposed secure
data clustering algorithms. The evaluation objectives, in more detail, were as follows:

1. Data owners participation: To determine the complexity (in terms of runtime)
of the data preparation process.

2. Clustering efficiency: To analyse the runtime required by a TPDM to cluster a
dataset using either S-DBSCAN and S-NNC founded on the use of GEDMs.

3. Clustering accuracy: To compare the “correctness” of the clustering configu-
rations produced using S-DBSCAN and S-NNC with the configurations produced
using the “standard” equivalent algorithms.

4. Clustering security: To investigate the security of the proposed mechanisms in
terms of potential attacks and revealed information.

5. Clustering scalability: To determine the effect on efficiency when the number
of participating parties was increased.

The conducted evaluation considered two different kinds of datasets, synthetic datasets
and UCI machine learning repository datasets as also used with respect to the UDM and
EUDM/EDM evaluation presented in Chapters 4 and 5. The S-DBSCAN and S-NNC
algorithms were implemented using the Java programming language and all experiments
were run using an iMac (3.8 GHz Intel Core i5) running under the macOS High Sierra
operating system with 8GB of RAM. The results obtained are discussed, in the context
of the above objectives, in the following five sub-sections; Sub-sections 6.5.1 to 6.5.5.
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Algorithm 13 Secure DBSCAN (S-DBSCAN) clustering algorithm

1: procedure S-DBSCAN(GData′,GE,MPts,ε′)
2: C = ∅, k = 0
3: for i = 1 to i = |GData′| do
4: if r′i is unclustered then
5: S = RegionQuery(r′i,ε

′,GE,GData′)
6: if |S| >MPts then
7: mark r′i as clustered
8: k = k + 1
9: Ck = r′i (new cluster)

10: Ck = ExpandCluster(Ck,S,GE,ε′,MPts,GData′)
11: C = C ∪ Ck
12: end if
13: end if
14: end for
15: Exit with C
16: end procedure
17: procedure expandCluster(C,S,GE,ε′,MPts,GData′)
18: for ∀ r′i ∈ S do
19: if r′i is unclustered then
20: mark r′i as clustered
21: C = C ∪ r′i
22: S2 = RegionQuery(r′i, ε

′,GE, GData′)
23: if |S2| >MPts then
24: C = ExpandCluster(C,S2,GE,ε′,MPts,GData′)
25: end if
26: end if
27: end for
28: Exit with C
29: end procedure
30: procedure RegionQuery(r′index,ε′,GE,GData′)
31: Nε = ∅
32: for ∀ r′j ∈ GData′ do
33: if sim(GE, r′index, r′j) 6 ε′ then
34: Nε.add(r′j)
35: end if
36: end for
37: Exit with Nε

38: end procedure

6.5.1 Data Owner Participation

Data owners participation was measured in terms of the runtime required for: (i) data
encryption (Data Enc.), (ii) DM calculation (DM Cal.), (iii) DM encryption (DM Enc.)
and (iv) calculation of the data density required to dimension the MUOPE cyphertext
space (Dens. Cal.). The amount of time required to generate Liu’s FHE scheme key
(FHE Key Gen.) did not entail any significant overhead on behalf of the data owner.
Experiments reported in Chapter 3 demonstrated that 0.85ms,0.87ms and 0.89ms were
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Algorithm 14 Secure Nearest Neighbour Clustering (S-NNC)

1: procedure S-NNC(GData′,GE, σ′)
2: C = Empty set of clusters
3: C1 = {r′1}
4: C = C ∪ C1

5: k = 1
6: for i = 2 to i = |GData′| do
7: Find the r′m in some cluster Cx where the sim(GE, r′i, r

′
m) is the smallest

8: if sim(GE, r′i, r
′
m) 6 σ′ and r′m is founded then

9: Cx = Cx ∪ r′i
10: Update the cluster set Cx in the set of cluster C
11: else
12: k = k + 1
13: Ck = {r′i}
14: C = C ∪ Ck
15: end if
16: end for
17: Exit with C
18: end procedure

required for Liu’s FHE scheme key generation when the number of sub-cyphertexts m
was set to 3, 9 and 15 respectively.

The evaluation was conducted using a sequence of ten synthetic datasets, ranging in
size from 1, 000 to 10, 000 records, increasing in steps of 1, 000. The number of attributes
was kept constant at 125. UCI datasets were also used, but not reported on here because
the runtimes for Data Enc., DM Cal. and DM Enc. were reported on previously in Table
5.4 in Chapter 5 where it was also noted that the recorded runtimes were negligible.

The recorded runtimes using the synthetic datasets for Data Enc., DM Cal., DM
Enc. and Dens. Cal. are given in Figure 6.2. As expected, the recorded runtimes
increased in a linear manner as the number of records (n) increased. The reported
time for Data Enc., DM Cal., DM Enc. and Dens. Cal. for n = 1, 000 were 0.02Sec,
0.27Sec, 0.74Sec and 0.44Sec, respectively. The time required when the dataset size
increases to n = 10, 000 were 0.36Sec, 62.6Sec, 385.7Sec and 564.9Sec. Whatever
the case, as found using the experiments conducted previously using the UCI datasets,
regardless of the number of records considered, the amount of data owner participation
was not found to be significant in that it did not introduce any perceivable overhead
on behalf of the participating parties. Once the data owners have encrypted their data,
and jointly created their GEDM, no further data owner participation was required; the
entire clustering process being delegated to the TPDM.

6.5.2 Clustering Efficiency

The runtimes required for the TPDM to cluster the UCI datasets using standard (unen-
crypted) DBSCAN/NNC and (encrypted) S-DBSCAN/S-NNC were compared to eval-
uate any potential overhead that might be incurred from using the proposed MUOPE
scheme coupled with the GEDM concept. In the reported experiments, the DBSCAN
parameters, MPts and ε, were as given in columns 2 and 3 of Table 6.1 and the NNC
σ parameter was as given in column 2 of Table 6.2. The algorithm’s parameters were
randomly selected from a sequence of experiments (not reported here) conducted using
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Figure 6.2: Time required (Sec.) for data owner participation in terms of number of
records (n) in a data owner’s local dataset

different values for the parameters, although in practice these values would be selected
by the data owner. As expected, the runtime for S-DBSCAN and S-NNC were greater
than when using the standard algorithms. However, inspection of the tables indicate
that this did not present a significant overhead. For example, the Banknote Auth.
dataset, the largest UCI dataset, in terms of number of records, required 44.2ms us-
ing DBSCAN compared to 264.9ms using S-DBSCAN; whilst standard NNC require
1630.22ms compared to 2228.84ms using S-NNC.

6.5.3 Clustering Accuracy

The reported Sil. Coef. and number of classes obtained using DBSCAN, and S-
DBSCAN, and NNC and S-NNC, are given Tables 6.1 and 6.2, respectively. From the
tables, it can be seen that the clustering configuration produced using S-DBSCAN and
S-NNC were identical to those generated by the equivalent standard algorithms (using
the same parameters). Recall that the main focus of the work presented in this thesis
was not to produce an optimal clustering solution but to produce a secure clustering
solution that was comparable with the clustering solutions produced using “standard” al-
gorithms. Therefore, the values of algorithm parameters were selected without applying
any methods that might help to achieve an optimal or better clustering configuration.
Whatever the case, the obtained results provided clear evidence of the benefits that
can be gained using the idea of a Cryptographic Ensemble and the GEDM concept to
preserve data privacy without any loss of accuracy of the data clustering results.

6.5.4 Clustering Security

The TPDM is considered to be a “passive adversary” who follows the semi-honest model
where the proposed S-DBSCAN and S-NNC algorithms given in Algorithm 13 and Algo-
rithm 14 are honestly executed. As already noted in Chapter 2 (Sub-section 2.5.1) this
was considered to be a reasonable assumption since the main objective of the TPDM
(the CSP who provides the DMaaS) is to deliver a high quality service, that is both
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Table 6.1: Algorithm parameters used in the evaluation, cluster configuration com-
parison and execution time in (ms) using DBSCAN and S-DBSCAN

No. UCI Dataset MPts ε

Standard DBSCAN S-DBSCAN
Num Exc. Num Exc.

of Sil. Time of Sil. Time
Clus. Coef. (ms) Clus. Coef. (ms)

1. Arrhythmia 2 600 6 0.472 14.4 6 0.472 51.3
2. Banknote Auth. 2 3 7 0.922 44.2 7 0.922 264.9
3. Blood Trans. 2 10 27 0.971 28.5 27 0.971 65.6
4. Brest Cancer 2 5 4 0.678 30.8 4 0.678 44.8
5. Breast Tissue 2 100 3 0.628 2.7 3 0.628 5.5
6. Chronic Kidney 2 70 19 0.970 12.1 19 0.970 48.4
7. Dermatology 2 10 16 0.853 12.4 16 0.853 24.7
8. Ecoli 2 60 1 -1.000 33.0 1 -1.000 43.0
9. Indian Liv. Pat. 3 40 7 0.789 12.0 7 0.789 56.6
10. Iris 5 2 2 0.722 5.5 2 0.722 13.7
11. Libras Mov. 5 5 11 0.715 12.0 11 0.715 39.5
12. Lung Cancer 2 20 1 0.053 1.8 1 0.053 2.4
13. Parkinsons 3 10 5 0.829 4.4 5 0.829 14.8
14. Pima Disease 5 20 4 0.691 10.9 4 0.691 74.6
15. Seeds 5 1 7 0.852 5.1 7 0.852 13.7

Table 6.2: Algorithm parameters used in the evaluation, cluster configuration com-
parison and execution time in (ms) using NNC and S-NNC

No. UCI Dataset σ

Standard NNC S-NNC
Num Exc. Num Exc.

of Sil. Time of Sil. Time
Clus Coef. (ms) Clus Coef. (ms)

1. Arrhythmia 1 452 1.000 2736.91 452 1.000 2127.34
2. Banknote Auth. 5 21 0.895 1630.22 21 0.895 2228.84
3. Blood Trans. 68 34 0.999 342.04 34 0.999 388.84
4. Brest Cancer 10 108 0.903 253.08 108 0.903 282.19
5. Breast Tissue 1 105 1.000 2.4 105 1.000 3.83
6. Chronic Kidney 100 243 0.999 144.69 243 0.999 187.32
7. Dermatology 18 32 0.919 146.2 32 0.919 149.14
8. Ecoli 1 2 0.353 32.76 2 0.353 46.68
9. Indian Liv. Pat. 99 100 0.997 399.59 100 0.997 446.59
10. Iris 1 15 0.922 4.6 15 0.922 7.51
11. Libras Mov. 4 224 0.969 359.22 224 0.969 355.14
12. Lung Cancer 1 32 1.000 0.99 32 1.000 0.93
13. Parkinsons 73 11 0.953 18.16 11 0.953 22.9
14. Pima Disease 100 22 0.956 693.01 22 0.956 880.18
15. Seeds 1 103 0.979 9.12 103 0.979 14.88
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efficient and effective, to clients (data owners). In the proposed solution, the data and
GEDM were encrypted and no decryption takes place at the TPDM side. Therefore,
the security of the proposed solution relies on the security of the adopted Cryptographic
Ensemble; thus, Liu’s FHE scheme and the proposed MUOPE scheme. The security and
threats associated with encrypting the dataset using Liu’s FHE scheme were discussed
in Chapter 4. The reader can refer back to Sub-section 4.4.4 where the security of Liu’s
FHE scheme and potential attacks that may be directed at it were discussed. The se-
curity of the data clustering, the MUOPE scheme and GEDM concept are discussed
further in this sub-section.

Potential attacks that can be directed at the proposed solution are: (i) Cyphertext
Only Attacks (COAs) when the adversary somehow has access to the encrypted GEDM
and (ii) Overlapping Attacks (OAs) when the TPDM compares the distances with al-
gorithm thresholds (as discussed in Sub-section 2.5.2). In terms of COAs, the GEDM
could be used to extract statistical measures describing the frequency of distribution pat-
terns which could be used to identify frequently occurring distributions which in turn
could be used to identify the nature of plaintexts; but only if examples were available.
As a countermeasure, the MUOPE (as in the case of FDH-OPE) uses “message space
splitting” and “non-linear cyphertext space expansion” to hide the data distribution for
data belonging to multiple data owners, and a “one-to-many” encryption function to
hide data frequency; which makes inferences using COAs unlikely. OAs are precluded
by encrypting the raw data used in the clustering, the DBSCAN radius parameter and
the intermediate distances calculated by the TPDM using GEDM, which means that
the TPDM compares the “order” of distance values and not the original distance values.

6.5.5 Clustering Scalability

The scalability of the proposed collaborative clustering was measured by considering: (i)
the effect on runtime as the number of participants increased and (ii) the required mem-
ory resource as the size of the dataset considered increased. In the proposed approach
collaboration between data owners occurs when: (i) generating the MUOPE encryption
key (the MUOPE Key Gen. process) and (ii) deriving the Pooled EDMs to arrive at a
GEDM (the GEDM Gen. process). A sequence of experiments was conducted whereby
the number of participating data owners was increased from 10 to 100 in steps of 10;
for completeness, the experiment also considered two and four data owners. Synthetic
datasets were used, comprised of 10, 000 data records and 125 attributes equally dis-
tributed among the participants. The results are presented in Figure 6.3. From the
figure, it can be seen that the MUOPE Key Gen. time was negligible, even for 100 par-
ticipants; only 1541.39ms was required. As expected, the time required for GEDM Gen.
increased with the number of participants. The GEDM can be generated in 0.05mins
given only two participants, and in 390mins for 100 participants. The reason was that
the increase in the number of participants (data owners) increased the number of EDM
pairs to be considered, and consequently the number of Pooled EDMs that needed to
be generated.

The GEDM, as already noted, is a 2D matrix where the two dimensions are correlated
with the number of records in a given global dataset. Therefore, usage of a GEDM
introduces a significant memory resources that might limit the adoption of the proposed
solution. Figure 6.4 shows the number of elements for a range of GEDMs where the
associated datasets feature different numbers of records and attributes. Recall, due to
the similarity around the leading diagonal only the upper or lower triangle of a GEDM is
required. As demonstrated by the Figure 6.4, regardless of the number of attributes, the
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(a) (b)

Figure 6.3: Runtime to generate MUOPE keys and the GEDM as the number of
participating parties (data owners) increases

number of elements in a GEDM is exponentially associated with the number of records
in the given global dataset.

Figure 6.4: Number of elements in a GEDM for different sizes of data

6.6 Summary

This chapter has presented secure collaborative data clustering, in the context of the
multiple data owners scenario, using the concept of a GEDM and a collaborative Crypto-
graphic Ensemble. The proposed approach extended the EDM concept presented earlier
and used a variation of the Cryptographic Ensemble presented in Chapter 5. The idea
was that multiple data owners processed their dataset and generated local EDMs from
which a GEDM was generated with reference to a STP. A particular advantage of the
process was that it featured limited data owner participation. The process of combining
EDMs to form a GEDM was conducted using what was referred to as the pooling method.
The way that EDMs are “pooled” is dependent on the nature of data partitioning; in
this chapter, only horizontal data partitioning was considered. The FDH-OPE scheme
in the Cryptographic Ensemble, as used in connection with the single data owner sce-
nario, was replaced with a novel multiple data owners scenario encryption scheme called
the MUOPE scheme. The MUOPE scheme allowed a number of parties to encrypt their
EDMs in such a way that the ordering of the data records was preserved across the
parties. The proposed approach, unlike existing solutions, did not require data owner
participation when the clustering was undertaken by a TPDM and did not entail any
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loss of accuracy. The application of GEDM and the Cryptographic Ensemble was il-
lustrated using secure variations of the established DBSCAN and NNC data clustering
algorithms.

The proposed approach was extensively evaluated using UCI datasets and a sequence
of synthetic datasets. The objectives of the evaluation were to consider the contribution
of this chapter in terms of: (i) the amount of data owner participation, (ii) the efficiency
of data clustering, (iii) the effectiveness (accuracy) of the data clustering, (iv) security in
terms of potential attacks and (v) scalability. The results demonstrated that there was
no overhead introduced on behalf of data owners when the GEDM idea was adopted.
The clustering configurations obtained matched the results obtained using standard
algorithms in terms of recorded Sil. Coef. values and number of clusters. The reported
evaluation also demonstrated the scalability of the proposed approach. However, the
memory resource required by GEDMs was substantial. In the next chapter, the idea
of a Secure Chain Distance Matrices (SCDMs) is presented motivated by the memory
resource requirement associated with GEDMs.





Chapter 7

Secure Chain Distance Matrices

7.1 Introduction

In the preceding chapters, Chapters 4, 5 and 6, the concept of the secure distance
matrix that reduced the data owner participation was presented together with the idea
of Cryptographic Ensembles. A number of variations of the distance matrix concept
(UDMs, EUDMs, EDMs and GEDMs), and the Cryptographic Ensemble idea (FDH-
OPE and MUOPE), were presented and illustrated in the context of secure single data
owner and multiple data owner (collaborative) clustering. The key objective was to
delegate most of the clustering process to a TPDM; previous approaches had involved
substantial data owner involvement. In the proposed approaches, subsequent to data
encryption, data owner participation was, in the worst case, limited to updating distance
matrices, and in the best cases involved no data owner participation at all, depending
on the nature of the clustering algorithm adopted (experiments were conducted using
k-Means, NNC and DBSCAN).

However, the issue of concern with respect to the distance matrix approaches de-
scribed so far was the extensive memory resources required. UDMs and EUDMs mea-
sured n×n×a, and EDMs and GEDMs n×n. Where encryption was used, the storage
requirement was compounded by the fact that cyphertext values require more space
than the equivalent plaintext values. The issue of concern here was that the storage
requirements would serve to limit the adoption of the proposed approaches with respect
to large datasets. Recall that one of the research objectives central to the work pre-
sented in this thesis (see Chapter 1) was to provide a generic “versatile” solution that
can be used to cater for a range of data mining algorithms especially data clustering and
classification algorithms. To address this issue the concept of the Secure Chain Distance
Matrix (SCDM) is proposed in this chapter, which can be used as an alternative to the
previously considered distance matrices. As such SCDMs have the potential to provide
for a wider range of secure third party data mining algorithms, in the context of both
the single data owner scenario and the multiple data owner scenario, while at the same
time significantly reducing the required memory resource.

This chapter introduces the SCDM concept and demonstrates its usage in the context
of the single data owner scenario. The following chapter considers SCDM usage in the
context of the multiple data owner scenario. Therefore, in this chapter the operation of
the SCDM concept is compared with UDMs, EUDMs and EDMs; comparison of GEDMs
is left to the following chapter.

The rest of this chapter is structured as follows. Section 7.2 provides a detailed
description of the proposed SCDM concept. The section considers the process of gener-
ating SCDMs and updating them as required when clustering data using k-Means style
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algorithms. Section 7.3 presents the required data preparation process, conducted by
the data owner, ready for data outsourcing. This is followed by consideration of the
application of SCDMs in the context of data clustering in Section 7.4 and data classifi-
cation in Section 7.6. Each section presents one or more proposed secure data mining
algorithms. The proposed algorithms were evaluated in Sections 7.5 and 7.7. Finally,
Section 7.8 provides a summary and concludes the chapter.

7.2 Secure Chain Distance Matrices

This section presents the concept of Secure Chain Distance Matrices (SCDMs) designed
to provide for third party data mining using Cryptographic Ensembles. The section
comprises two sub-sections. The first, Sub-section 7.2.1, is concerned with the nature
of SCDMs and how they can be used to derive (calculate) the similarity between data
records and, where applicable, cluster centroids. The second, Sub-section 7.2.2, is con-
cerned with the process of effectively and efficiently updating SCDMs whenever required
as in the case of the Sk-Means algorithm presented later in Sub-section 7.4.1.

7.2.1 Secure Chain Distance Matrices

A SCDM is a 2D matrix that holds the encrypted distances (differences) between every
attribute in every xth record in D, except the last record, and the following x+1th record
in D, according to whatever ordering is featured in D. Given a dataset D that contains
n records, D = {r1, . . . , rn}, where each record rx features a set of values corresponding
to a attributes rx = {rx,1, . . . , rx,a}. A SCDM, SC, will comprises a set of elements scx,y
where each element holds the distance between the value for attribute y in record x and
the value for attribute y in record x+ 1; rx,y − rx+1,y. A SCDM, SC, thus has the form
shown in Equation 7.1.

SC =

 sc1,1 sc1,2 · · · sc1,a
...

...
. . .

...
scn−1,1 scn−1,2 · · · scn−1,a

 (7.1)

Given the above a SCDM associated with D will measured (n−1)×a. In comparison
with the storage requirement for a UDM or an EUDM, n2 × a, this is a reduction of
(n2−n+ 1)× a. In comparison with an EDM where the storage requirement is n2, this
is a reduction of (n2 − na+ a). In either case a substantial reduction.

SCDMs are generated by data owners in two steps: (i) Chain Distance Matrix (CDM)
calculation and (ii) CDM encryption to arrive at a Secure CDM (SCDM). Algorithm 15
gives the pseudo code for the CDMCalculation process. The inputs are the raw dataset
to be outsourced, RawD, and the number of attributes a that feature in RawD. The
first step is for the data owner to process the raw data, where necessary, by casting
categorical attributes values to an appropriate numeric form to arrive at a processed
dataset D (line 2). The number of records (n) in the processed dataset is calculated in
line 3 to be used for dimensioning the CDM. The CDM is dimensioned as n−1×a (line
4). The CDM is then populated (lines 5 to 9); as already noted, the element cdmx,y is
calculated as the distance between the yth attribute value in the xth record with the
value for the same attribute in the following record (the x+ 1th record). The output of
the CDMCalculation procedure is a CDM (line 10).

Although the CDM reduces the memory requirement with respect to UDMs, EUDMs
and EDMs it still essentially comprises a set of linear equations that may support reverse
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Algorithm 15 Chain Distance Matrix (CDM) calculation

1: procedure CDMCalculation(RawD, a)
2: D = Dataset RawD converted to numeric dataset where necessary
3: n = |D|
4: CDM = 2D matrix measuring n− 1× a
5: for x = 1 to x = n− 1 do
6: for y = 1 to y = a do
7: cdmx,y = rx,y − rx+1,y (cdmx,y ∈ CDM)
8: end for
9: end for

10: Exit with CDM
11: end procedure

engineering. Therefore, the second step is to encrypt each element in the CDM. With
respect to the single data owner scenarios, on which this chapter is focused, the FDH-
OPE scheme proposed earlier (Algorithm 6 presented in Section 5.2 of Chapter 5) was
the most appropriate scheme for this; the MUOPE scheme entails overheads to facilitate
multiple data owner collaboration that is not required in the single data owners scenario.
The key feature of an encrypted CDM, a SCDM, is that a TPDM now has access to
the distance value ordering, not the original distance values, between data records. The
small set of elements in a SCDM, SC, allows a TPDM to derive/calculate the similarity
between any two data records rx and ry (where x < y) in D as per equation 7.2.

sim(SC, rx, ry) =

j=a∑
j=1

∣∣∣∣∣∣
i=(y−1)∑
i=x

sci,j

∣∣∣∣∣∣ (7.2)

A SCDM can not only be used to determine the data similarity between data records,
but can also be used to compare calculated distances against each other and with a par-
ticular threshold value. This means that the SCDM concept can be used to cluster
encrypted data or to develop a classification model using the encrypted data records. In
this section, the usage of the SCDM concept is illustrated using k-Means data clustering;
however, as will become clear, SCDMs can be used with respect to other data mining
algorithms. At the first k-Means iteration, the TPDM will use the first k records in the
encrypted dataset (D′), encrypted using Liu’s encryption (part of the proposed Crypto-
graphic Ensemble), as the k-Means cluster centroids, Cent′1= {cent′11 , . . . , cent

′
1k
}. The

remaining records in the encrypted dataset are then added to the nearest cluster by
comparing the distances between data records and each cluster centroids. To this end
the content of the generated SCDM, SC, will be used as per equation 7.2, but such that
x represents the centroid identifier and y the data record identifier, hence the value of x
is 1 6 x 6 k. The encrypted data records that have been added to clusters in the first
iteration are then used to calculate the next iteration cluster centroids. The FHE math-
ematical properties of Liu’s scheme were used to this end as presented in Chapter 3 to
arrive at the new cluster centroids; Cent′2={cent′21 , . . . , cent

′
2k
}. On the next iteration

the TPDM re-determines the cluster contents using the distances between data records
in D′ and the set of new cluster centroids Cent′2. However, the content of SC cannot
be used as the new clustering centroid Cent′2 are not added to the SC. The straight-
forward solution would be to send SC and Cent′2 to the data owner for an update.
However, this will create a computational and communication overhead on behalf of the
data owner. The proposed solution, as in the case of UDMs, is to use the idea of a shift
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matrix to update SC so that it can be used to determine data similarities with a new
set of centroids. The SCDM updating process is presented in the following sub-section.
The reader should be reminded that the need to update SCDMs is more to do with the
operation of k-Means clustering than any deficiency with respect to the SCDM idea; if
an alternative form of clustering were adopted, such as NNC or DBSCAN, there would
be no need to update SCDMs.

7.2.2 SCDM Updating Process

The updating of a SCDM is not required in all cases. In the case of the secure k-Means
clustering used to illustrate the utility of SCDMs in this section this is a requirement.
As already noted, if an alternative form of secure data clustering were adopted, such
as NNC or DBSCAN, there would be no need to update SCDMs. However, secure k-
Means clustering is considered here because it allows illustration of the full potential of
SCDMs. The same process can be used to allow for similarity determination between
the outsourced encrypted data records and any other record, for example in the context
classification querying processing as discussed in Chapter 2 and discussed in further
detail in Section 7.6 below.

Whatever the case, the updating process is managed by the TPDM with very limited
data owner participation. The pseudo code for the updating process is given in Algorithm
16. The inputs are: (i) the SCDM to be updated SC, (ii) the previous iteration clusters
centroids Cent′i, (iii) the new set of clusters centroids Cent′i+1, (iv) the iteration number
i, (v) the encrypted dataset D′ and (vi) the number of attributes featured in dataset a.
The first step in the process is for the TPDM to declare and dimension a 2D Chain Matrix
CH (line 2). The first dimension of CH is associated with the number of centroids in
Cent′i and Cent′i+1, and the second dimension is associated with the number of attributes
a. The ideas is that CH can be added (or “bound”) to SC so that the chain feature
can be extended to allow similarity determination over the new cluster centroids. In
line 3 a Shift Matrix, S′, is generated by the TPDM using the differences between the
centroids from the previous iteration and the current cluster centroids. Recall that the
cluster centroids are encrypted using Liu’s FHE scheme. Therefore, the differences are
calculated using the FHE mathematical property of Liu’s FHE scheme (	). The CH
matrix is then populated by the TPDM (lines 4 to 11). The CH will hold distances
(or difference) between two consecutive centroids in Cent′i+1. The last element of CH
will hold the distance between the last centroid cent′i+1k

and the first record in D′; the
record r′1. The form of CH is thus as shown in the following equation:

CH =

ch1,1 ch1,2 · · · ch1,a
...

...
. . .

...
chk,1 chk,2 · · · chk,a



=


(
cent′i+11,1

	 cent′i+12,1

) (
cent′i+11,2

	 cent′i+12,2

)
· · ·

(
cent′i+11,a

	 cent′i+12,a

)
...

...
. . .

...(
cent′i+1k,1

	 r′1,1
) (

cent′i+1k,2
	 r′1,2

)
· · ·

(
cent′i+1k,a

	 r′1,a
)


Returning to the pseudo code given in Algorithm 16 we now have an encrypted chain

matrix, CH, encrypted using Liu’s FHE scheme. For this to be bound to a SCDM it
must be encrypted using the proposed FDH-OPE scheme because the SCDM, SC, is
encrypted using FDH-OPE. The TPDM does not have the encryption keys to either,
these are with the data owner. Thus data owner involvement is required. In line 12 of
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the pseudo code CH is sent to the data owner and then re-encrypted using the FDH-
OPE scheme to give CH′ which is returned to the TPDM. This is achieved by calling
the ReEncryptCH sub-procedure given in lines 20 to 30. The TPDM can then use CH′

to update SC. On the first iteration (the first time the SC is updated), CH′ will be
concatenated to the matrix SC (lines 13 and 14 and also shown in Equation 7.3). For
the remaining iterations, the first k elements in SC are modified by assigning the values
of CH′ to the first k elements of SC (line 16).

The algorithm exits with an updated SC and terminate in line 18. The k-Means
algorithm continues in this manner until a stable cluster configuration is arrived at. This
happens when the shift matrix S′, calculated on line 3, is comprised of all zeros. Note
that the shift matrix is encrypted using Liu’s FHE scheme for which the data owner has
the key, so the checking of the shift matrix for all zeroes also needs to be done by the
data owner. If so the data owner sets the value for the termination variable to true,
otherwise to false. This is done at the same time as CH′ is generated so as to reduce
the amount of data owner participation in the secure data mining.

SC =



ch′1,1 ch′1,2 · · · ch′1,a
...

...
. . .

...
ch′k,1 ch′k,2 · · · ch′k,a
sc1,1 sc1,2 · · · sc1,a

...
...

. . .
...

scn−1,1 scn−1,2 · · · scn−1,a


(7.3)

7.3 Data Outsourcing Process

This section discusses the data preparation process conducted by the data owner, on
start-up, to prepare data and the SCDM for the TPDM. The data privacy is preserved
by utilising the same Cryptographic Ensemble, comprised of Liu’s FHE scheme and
the proposed FDH-OPE scheme, as presented in Chapter 5. The initial step is for the
data owner to process the raw data, RawD, by translating categorical attributes into
a suitable format that allows distance calculation and data encryption. Similar to the
approaches presented in the earlier chapters, casting is used to transfer categorical values
to a discrete integer form. The next step is to encrypt the processed data (attribute-wise)
to produce an encrypted dataset D′. The data is encrypted using Liu’s FHE scheme
following process given in Algorithm 1. Therefore, the data owner is also responsible for
generating Liu’s FHE encryption key SK(m) as presented in Sub-section 3.3.1. Using the
processed data, the CDM is then calculated by the data owner using algorithm 15 which
is then encrypted using the FDH-OPE scheme (Section 5.2) to arrive at a Secure CDM
(a SCDM). The outputs from the preparation process are thus the encrypted dataset D′

and the SCDM ready to be sent to the TPDM. Once the data is outsourced different
data clustering and data classification mechanisms, that required distances comparisons,
can be conducted on behalf of the data owner who instructs the TPDM by specifying
the desired algorithm and the relevant parameters. The process for conducting secure
k-Means clustering using the SCDM concept and the Cryptographic Ensemble idea have
already been discussed earlier in this chapter. For evaluation purposes three different,
single data owner scenario, data clustering mechanisms where considered: k-Means as
introduced earlier, DBSCAN and NNC, and the k-NN data classification mechanism.
The first three are considered in further detail in Section 7.4 and the last in Section 7.6.
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Algorithm 16 SCDM updating process

1: procedure UpdateSCDM(SC, Cent′i, Cent
′
i+1, i, D

′, a)
2: CH = 2D matrix measuring |Cent′i| × a
3: S′ = Cent′i 	 Cent′i+1

4: for x = 1 to x = |Cent′i+1| − 1 do
5: for y = 1 to y = a do
6: chx,y= cent′i+1x,y

	 cent′i+1x+1,y
(chx,y ∈ CH)

7: end for
8: end for
9: for y = 1 to y = a do

10: chk,y = cent′i+1k,y
	 r′1,y (chk,y ∈ CH and r′1,y ∈ D′)

11: end for
12: CH′, terminate = ReEncryptCH(CH, S′)
13: if i == 1 then
14: SC = CH′ + SC . (Equation 7.3)
15: else
16: SC = replace the first k elements of SC with CH′

17: end if
18: Exit with SC and terminate
19: end procedure
20: procedure ReEncryptCH(CH, S′)
21: CHPlaintexts= Decrypt(CH) . using Liu’s decryption Algorithm 2
22: CH′ = Encrypt(CHPlaintexts) . using FDH-OPE Encryption Algorithm 6
23: S = Decrypt(S′) . using Liu’s decryption Algorithm 2
24: if S==0 then
25: terminate = true
26: else
27: terminate = false
28: end if
29: Exit with CH′ and terminate
30: end procedure

7.4 Secure Data Clustering Using SCDM

This section presents the three exemplar secure data clustering algorithms considered
with respect to the evaluation reported on later in this chapter. Note that in each case
the proposed secure data clustering is delegated to a TPDM. Two of the algorithms
considered, Secure NNC and Secure DBSCAN, achieve the ideal solution of no further
data owner participation once the clustering was commenced; whilst the Secure k-Means
algorithm, as noted above, requires minimal data owner participation. Each is discussed
in further detail in the following three sub-sections; Sub-sections 7.4.1 to 7.4.3.

7.4.1 Secure k-Means

The Secure k-Means (Sk-Means) algorithm, operated in a very similar manner as the
standard k-Means algorithm [46]. The difference was that the mathematical operations
in standard k-Means were replaced with the equivalent mathematical properties of Liu’s
FHE scheme as presented in Sub-section 3.3.1.2. The pseudo code for Sk-Means is
given in Algorithm 17. The inputs are the encrypted dataset D′, the SCDM SC and
the number of desired clusters k. The algorithm commences by dimensioning the set
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of cluster C = {c1, . . . , ck} and assigning the first k encrypted records in D′ to the k
clusters, one per cluster, to act as cluster centroids (lines 2 and 3). In line 4, the iteration
counter, i, is initialised. A centroid set Cent′i = {cent′i1 , . . . , cent

′
ik
} is then defined to

hold the current centroids (lines 5 and 6). The remaining encrypted data records are
then assigned to their appropriate clusters according to their similarity with respect to
the cluster centroids in Cent′i using the populateClusters sub-procedure (called from line
7) and given at the end of the algorithm (lines 19 to 29).

The populateClusters sub-procedure inputs are: (i) the starting index (or identifier)
for the records that remain in the encrypted dataset that still need to be allocated
to appropriate clusters (rid), (ii) the set of cluster C, (iii) the set of current iteration
cluster centroids Cent′, (iv) the SCDM (SC) and (v) the encrypted dataset (D′). The
populateClusters sub-procedure uses SC to determine the similarity between encrypted
data record r′y and each cluster centroid in Cent′ (lines 21 to 27). Equation 7.2 is used
to this end where the cluster centroids are always the first k elements in SC (line 23).
Using the determined similarity values the record r′y will be added to the nearest cluster
(line 26). The sub-process continues until all remaining records have been processed.
The result is then returned (line 28).

Returning to the main process, once a cluster configuration has been generated,
a new set of encrypted cluster centroids, Cent′i+1, is calculated as the mean of each
attribute value for each record belonging to the same cluster (line 8). This calculation
is achieved using the HE features of Liu’s FHE scheme following the CalculateCentroids
sub-procedure given in Algorithm 5 in Chapter 4. The content of SC is then updated
in line 9 by calling the UpdateSCDM sub-procedure given in Algorithm 16. Recall that
UpdateSCDM will return SC and the variable terminate set to true if the termination
condition has been met. The content of SC then provides the information required
for determining the similarity between the new set of cluster centroids Cent′i+1 and the
encrypted content of D′. Next, a loop is entered (lines 10 to 16) that is repeated until the
termination condition, steady centroids, is arrived at, terminate true. The loop starts
by creating a new empty set of cluster C (line 11) and all records will be assigned to
appropriate cluster with respect to the new set of centroids Cent′i+1 (line 12) by calling
the populateClusters sub-procedure. The iteration counter i is then incremented (line
13). The process of calculating the centroids, updating SC and populating the cluster is
continue until the termination condition is arrived at. The algorithm will exit, line 17,
with the final cluster configuration C.

7.4.2 Secure NNC

The pseudo code for the proposed Secure NNC (SNNC) is presented in Algorithm 18.
The SNNC algorithm operated in a similar manner to the standard NNC algorithm [48].
The main differences were that the dataset, D′, and threshold value σ′ were encrypted,
and that the similarity between data records was determined using the SCDM concept.
The algorithm’s inputs were: (i) an encrypted dataset D′, (ii) a SCDM SC and (iii) the
value for σ encrypted using the FDH-OPE scheme to give σ′. The algorithm commences
by creating an empty set of cluster C (line 2). The first cluster, C1, is created and the
first record in D′ assigned to it (lines 3 and 4). The number of generated clusters k is
initialised to 1 in line 5. A loop is then entered (lines 6 to 16) which repeats until all
encrypted records in D′ have been processed. The loop commences by finding a record
r′m in some cluster Cx where the distance to the current record r′i is the smallest (line
7). To this end SC was used as per Equation 7.2. The calculated distance was then
securely compared with σ′ (line 8). In the case where the calculated distance is less
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Algorithm 17 Secure k-Means (Sk-Means) clustering algorithm

1: procedure Sk-Means(D′, SC, k)
2: C = Set of k empty clusters
3: Assign the first k records in D′ to C (one per cluster)
4: i = 1
5: Cent′i = Set of k cluster centroids
6: Assign first k records in D′ to Cent′i
7: C = PopulateClusters(k + 1, C, Cent′i,SC,D′)
8: Cent′i+1 = CalculateCentroids(C,k) . Algorithm 5
9: SC, terminate = UpdateSCDM(SC, Cent′i, Cent

′
i+1, 1, D′, a) . Algorithm 16

10: while ! terminate do
11: C = Set of k empty clusters
12: C = PopulateClusters(1, C, Cent′i+1,SC,D′)
13: i = i+ 1
14: Cent′i+1 = CalculateCentroids(C,k) . Algorithm 5
15: SC, terminate = UpdateSCDM(SC, Cent′i, Cent

′
i+1, i, D

′, a)
16: end while
17: Exit with C
18: end procedure
19: procedure populateClusters(rid,C,Cent′,SC,D′)
20: id = null
21: for y = rid to y = |D′| do
22: for x = 1 to x = |C| do
23: sim = sim(SC, cent′x, r

′
y) where cent′x ∈ Cent′ and r′y ∈ D′ . (Equation

7.2)
24: id = cluster identifier with lowest sim value so far
25: end for
26: cid = cid ∪ r′y (cid ∈ C)
27: end for
28: Exit with C
29: end procedure

than or equal to σ′ the currently record (r′i) will be added to cluster Cx (lines 9 and 10).
Otherwise r′i is assigned to a new cluster (lines 12 to 14). The algorithm will continue
in this manner until all data records have been assigned to a cluster. The algorithm will
exit, line 17, with a cluster configuration C.

7.4.3 Secure DBSCAN

The pseudo code for Secure DBSCAN (SDBSCAN) is presented in Algorithm 19. The
inputs are: (i) the encrypted dataset D′; (ii) the SCDM, SC, previously generated by
the data owner; and (iii) the desired density parameters (MPts, ε′). Similar to standard
DBSCAN [47], density is defined as the minimum number of points, MPts, within a
certain distance ε. The threshold ε is encrypted to allow secure comparison and also
to hide the correlation (distance below or above the threshold) between data records
when the TPDM executes SDBSCAN. The algorithm commences by creating an empty
set of clusters C and initialising the number of clusters so far variable k to 0 (lines 2
and 3). For each record r′i in D′ that has not been previously assigned to a cluster, is
“unclustered”, the set S is determined (lines 5 and 6). The set S is the ε-neighbourhood
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Algorithm 18 Secure NN Clustering (SNNC) algorithm

1: procedure SNNC(D′,SC, σ′)
2: C = Empty set of clusters
3: C1 = {r′1}
4: C = C ∪ C1

5: k = 1
6: for i = 2 to i = |D′| do
7: Find r′m in some cluster Cx where sim(SC, r′i, r

′
m) the smallest

8: if sim(SC, r′i, r
′
m) 6 σ′ and r′m is founded then

9: Cx = Cx ∪ r′i
10: Update Cluster set Cx in cluster set C
11: else
12: k = k + 1
13: Ck = {r′i}
14: C = C ∪ Ck
15: end if
16: end for
17: Exit with C
18: end procedure

of r′i and comprises the set of records in D′ whose distance from r′i is less than or equal
to ε′. The set is determined by calling the RegionQuery sub-procedure (line 6) that is
given at the end of the algorithm (lines 31 to 40). In the RegionQuery sub-procedure
SC is used to determine the overall distances between records (line 34). If the number
of records in S is greater than or equal to MPts the density requirement is satisfied and
hence r′i is marked as “clustered” and considered to represent a new cluster Ck (lines
7 to 10). The Ck cluster is then expanded by considering the records in S using the
ExpandCluster sub-procedure called in line 11 and given in lines 18 to 30. The inputs
to the ExpandCluster sub-procedure are: (i) the cluster Ck so far, (i) the set S, (ii) the
SCDM SC, (iv) the DBSCAN density parameters (MPts and ε′) and (v) the encrypted
dataset D′. The ExpandCluster sub-procedure is a recursive procedure. For each record
in S which has not been previously clustered we add the record to Ck and then determine
the ε-neighbourhood S2 for this record (lines 19 to 23). If the size of S2 is greater than
or equal to MPts we call the ExpandCluster sub-procedure again (lines 24 and 25) and
so on until all the records in D′ are processed, at which point the algorithm will exist
in line 16 with the cluster configuration C.

7.5 Results and Evaluations

This section reports on the experimental analysis conducted to evaluate the utilisation
of the SCDM concept, coupled with the Cryptographic Ensemble idea, with respect to
secure data clustering. The evaluation was directed at two objectives:

1. To evaluate the application of SCDMs in a context of the secure data clustering
processes present in Sub-sections 7.4.1, 7.4.2 and 7.4.3.

2. To compare the operation of SCDMs with that of EUDMs as presented in Chapter
5.
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Algorithm 19 Secure DBSCAN (SDBSCAN) clustering algorithm

1: procedure SDBSCAN(D′, SC, MPts, ε′)
2: C = ∅
3: k = 0
4: for i = 1 to i = |D′| do
5: if r′i is unclustered then
6: S = RegionQuery(r′i, ε

′,SC, D′)
7: if |S| >MPts then
8: mark r′i as clustered
9: k = k + 1

10: Ck = r′i
11: Ck = ExpandCluster(Ck, S,SC,MPts, ε′, D′)
12: C = C ∪ Ck
13: end if
14: end if
15: end for
16: Exit with C
17: end procedure
18: procedure ExpandCluster(C,S,SC,MPts,ε′, D′)
19: for ∀ r′i ∈ S do
20: if r′i is unclustered then
21: mark r′i as clustered
22: C = C ∪ r′i
23: S2 = RegionQuery(r′i, ε

′,SC, D′)
24: if |S2| >MPts then
25: C = ExpandCluster(C, S2,SC,MPts, ε′, D′)
26: end if
27: end if
28: end for
29: Exit with C
30: end procedure
31: procedure RegionQuery(r′index, ε′, SC, D′)
32: Nε = ∅
33: for ∀ r′j ∈ D′ do
34: distance = sim(SC, r′index, r

′
j) . (Equation 7.2)

35: if distance 6 ε′ then
36: Nε.add(r′j)
37: end if
38: end for
39: Exit with Nε

40: end procedure

The first of the above objectives is considered in Sub-section 7.5.1 below, while the
second in Sub-section 7.5.2.

7.5.1 SCDM Application Evaluation

To evaluate the application of SCDMs the operation of the three proposed secure clus-
tering algorithms presented above were considered. The following criteria were used:
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1. Amount and complexity of data owner participation: The computation
overhead introduced on behalf of data owners when the proposed secure data clus-
tering algorithms were adopted.

2. Clustering efficiency: The runtime complexity of the proposed approaches.

3. Clustering accuracy: The “correctness” (or effectiveness) of the resulting clus-
tering configurations produced by proposed approaches compared to equivalent
standard approaches.

4. Security: The potential for attacks.

For the evaluation the selected fifteen UCI datasets used previously were again used.
Each of the above criteria is considered in further detail below.

Amount and complexity of data owner participation: Data owner participation
was measured in terms of the runtime required for data preparation and the amount of
data owner involvement whilst secure data clustering, undertaken by the TPDM, was
in progress. Recall that data preparation comprises: (i) Cryptographic Ensemble key
generation (Key Gen), (ii) data encryption (Data Enc), (iii) CDM calculation (CDM
Cal) and (iv) CDM encryption (CDM Enc) to arrive at the SCDM. The Key Gen process
is a one time process that does not add any overhead on behalf of the data owner. The
evaluation results demonstrated that the average time required to generate the FDH-
OPE encryption keys was 80.32ms, whilst the Liu’s FHE scheme keys were generated
in 0.85ms. The results obtained with respect to Data Enc, CDM Cal and CDM Enc,
using the UCI datasets, are given in columns 6, 7 and 8 of Table 7.1, respectively.
From the table, it can be seen that negligible time was required for preparing the data.
For example, the total time required for data preparation in the context of the largest
dataset, Arrhythmia, was 149.22ms (reported as 9.80ms for data encryption, 3.33ms
for CDM calculation and 136.09ms for CDM encryption). The degree of data owner
involvement once data clustering was in progress (undertaken by the TPDM) depends
on the nature of adopted algorithm. The SNNC and SDBSCAN approaches do not
entail any data owner participation, whereas in the case of Sk-Means the participation
was limited to the decryption and re-encryption of the Chain matrix, CH, on each
iteration. The data owner involvement, compared to the entire data clustering runtime
is shown in Figure 7.1. Formally, in the case Sk-Means, data owner participation is
O(k × i× a), where k is the number of desired clusters to be produced, i is the number
of iterations and a is the number of attributes.

Clustering efficiency: Clustering efficiency was evaluated by comparing the runtime to
cluster the datasets using the proposed secure clustering mechanisms (Sk-Means, SNNC
and SDBSCAN) with the standard equivalent algorithms that operates on unencrypted
data. The aim was to demonstrate that the overhead introduced when the clustering
was conducted over encrypted data was not significant. The clustering runtime results
are given in Figure 7.2. The results are the average of ten runs. For each dataset the
reported time is the entire time for clustering the datasets and thus the time for data
preparation by the data owners are excluded, whilst the involvement of the data owner
when clustering is progress (in the case of Sk-Means) is included. From the figure,
it can be seen that the overall runtimes required for the secure clustering algorithms,
as expected, were longer than in the case of standard algorithms. The largest dataset
(Arrhythmia), as anticipated, resulted in the longest runtime. From the figure it can also
be seen that Sk-Means is the more efficient algorithm as only the distances between data
records and cluster centroids were required, and not distances between each data record
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Figure 7.1: The complexity of the data owner participation to decrypt and re-encrypt
the CH matrix against the entire runtime for Sk-Means

Table 7.1: Runtimes for data owner data preparation and algorithm operating statis-
tics

Data CDM CDM
No. UCI Dataset σ k MPts ε Enc Cal Enc

(ms) (ms) (ms)

1. Arrhythmia 1 16 2 600 9.80 3.33 136.09
2. Banknote Auth. 5 2 2 3 1.85 0.2 32.08
3. Blood Trans. 68 2 2 10 4.04 0.13 20.17
4. Brest Cancer 10 2 2 5 1.70 0.19 27.36
5. Breast Tissue 1 6 2 100 0.40 0.03 23.73
6. Chronic Kidney 100 2 2 70 2.65 0.28 37.38
7. Dermatology 18 6 2 10 1.80 0.43 31.77
8. Ecoli 1 8 2 60 0.98 0.09 31.54
9. Indian Liv. Pat. 99 2 3 40 1.30 0.15 39.39
10. Iris 1 3 5 2 0.20 0.04 17.87
11. Libras Mov. 4 15 5 5 4.80 1.26 92.07
12. Lung Cancer 1 3 2 20 0.59 0.05 13.34
13. Parkinsons 73 2 3 10 1.90 0.13 36.00
14. Pima Disease 100 2 5 20 1.44 0.18 37.18
15. Seeds 1 3 5 1 0.48 0.06 26.77

and each other record as in the case of SNNC and SDBSCAN. However, inspection
of the recorded results indicates that this did not present a significant overhead. The
results also show that the bigger the dataset the larger the SCDM, and consequently
the greater the time required to interact with the SCDM to cluster the data; this was
to be expected.

Clustering accuracy: The accuracy (the “correctness”) of generated cluster config-
urations was measured by comparing the results obtained using the proposed secure
algorithms with the standard (unencrypted) equivalents. The parameters (σ, k, MPts
and ε) used in each case are given in columns 2 to 5 of Table 7.1. The accuracy metric
used was the Silhouette Coefficient (Sil. Coef.) [188] as described in Sub-section 4.4.3.
Table 7.2 shows the results obtained. For reasons of reader convenience, the results
obtained from the standard algorithms that were given previously in Tables 4.3, 5.5
and 6.2, are again given in columns 2, 3, 6, 7, 10 and 11 of Table 7.2. From the Table
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Figure 7.2: Comparison of the runtimes (Sec.) using standard and secure clustering
algorithms (k-Means, NNC and DBSCAN)

7.2, it can be seen that the cluster configurations produced using the proposed secure
algorithms were the same in 35 of the 45 cases (same number of clusters and same Sil.
Coef.). Where the configurations were different, in one case the Sil. Coef. value was the
same, in the remaining cases the Sil. Coef. value using the secure clustering was better
in seven of the nine cases. The reason for the different configurations obtained was the
nature of the FDH-OPE scheme which featured a degree of deliberately introduced ran-
domness so that identical plaintexts values resulted in different cyphertext values, even
when the same encryption key was used. Consequently, because differences between
records was obtained using a “summing-up” process, this randomness was compounded
when differences were calculated along the chain matrix, this was especially the case
given a large degree of separation between records within the chain. It is interesting to
note that this “randomness” sometimes produced better cluster configurations.

Security: The TPDM, as already noted, is considered to be a passive adversary who will
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Table 7.2: Cluster configuration comparison using standard and secure algorithms (differing results highlighted in bold font)

No.
Standard DBSCAN SDBSCAN Standard NNC SNNC Standard k-Means Sk-Means
Num. Sil. Num. Sil. Num. Sil. Num. Sil. Iter. Sil. Iter. Sil.
Clus. Coef Clus. Coef Clus. Coef Clus. Coef Coef Coef

1. 6 0.472 6 0.472 452 1.000 452 1.000 10 0.602 10 0.602
2. 7 0.922 7 0.922 21 0.895 21 0.895 16 0.207 16 0.207
3. 27 0.971 33 0.976 34 0.999 35 0.999 12 0.370 12 0.370
4. 4 0.678 1 0.485 108 0.903 135 0.926 8 0.020 8 0.020
5. 3 0.628 3 0.628 105 1.000 105 1.000 18 0.787 18 0.787
6. 19 0.970 19 0.970 243 0.999 243 0.999 8 0.009 8 0.009
7. 16 0.853 15 0.881 32 0.919 37 0.915 15 0.801 7 0.822
8. 1 -1.000 1 -1.000 2 0.353 2 0.353 23 0.628 14 0.631
9. 7 0.789 7 0.789 100 0.997 100 0.997 13 0.169 13 0.169
10. 2 0.722 2 0.722 15 0.922 16 0.927 14 0.836 14 0.836
11. 11 0.715 11 0.715 224 0.969 224 0.969 18 0.590 18 0.590
12. 1 0.053 1 0.053 32 1.000 32 1.000 8 0.645 10 0.738
13. 5 0.829 5 0.829 11 0.953 11 0.953 7 0.079 7 0.079
14. 4 0.691 4 0.691 22 0.956 22 0.956 8 0.000 8 0.000
15. 7 0.852 7 0.852 103 0.979 103 0.979 6 0.706 6 0.706
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process a given data mining task as specified. However, it is assumed that the passive
adversary will also try to learn additional information about the data by analysing
intermediate results and messages exchanged during algorithm execution. Using the
proposed clustering algorithms the dataset, the SCDM and any intermediate results
were all encrypted using the Cryptographic Ensemble and no decryption took place at
the TPDM side. Therefore, the security of the proposed clustering relies on the security
of proposed Cryptographic Ensemble composed of Liu’s FHE scheme, to encrypt the
raw data, and the proposed FDH-OPE scheme, to encrypt the CDM to arrive at the
SCDM. The security analysis is thus as reported in Chapter 5.

7.5.2 Comparison Between SCDMs and EUDMs

The second evaluation objective was to compare the operation of SCDMs to EUDMs
in the context of their application to secure data clustering. The comparison criteria
were: (i) complexity of data owner participation, (ii) clustering efficiency, (iii) clustering
accuracy and (iv) scalability in terms of required memory resource. The outcomes from
the comparative analysis related to the above criteria are presented below.

Complexity of data owner participation: The EUDM and SCDM were compared
in terms of their data owner participation. This encompassed two main processes, data
preparation and involvement once data clustering was in progress. The data preparation
process with respect to the EUDM, as discussed in Sub-section 5.4.1, comprised: data
encryption, UDM calculation and UDM encryption. The SCDM preparation comprised:
data encryption, CDM calculation and CDM encryption as described previously in Sec-
tion 7.3. The reported runtimes to prepare the UCI datasets using both the EUDM
and SCDM approaches are given in Tables 5.4 and 7.1, respectively. The results demon-
strate that negligible time was required, even for large datasets. It should be noted
that Liu’s FHE scheme, adopted with respect to the proposed approaches, encrypted
plaintexts values to three sub-cyphertexts (m = 3); therefore the reported runtimes can
be expected to increase when using larger values of m. The reader may wish to refer
back to Sub-section 3.3.1.4 where the computational aspects of Liu’s FHE scheme were
discussed. The time complexity for calculating the UDM and encrypting it, as expected,
was higher than that required for calculating the CDM and encrypt it, as the number of
elements to be calculated is higher in the case of EUDMs. From the results, it was con-
cluded that approaches founded on SCDMs are more efficient than approaches founded
on EUDMs in terms of data preparation.

Data owner involvement whilst the TPDM was undertaking the data clustering, as
noted earlier, is dependant on the nature of the clustering algorithm used. The NNC and
DBSCAN approaches, using either EUDMs or SCDMs, did not entail any data owner
participation, whist the k-Means approach requires data owner participation during the
decryption and re-encrypting of the Shift Matrix or Chain Matrix of size k × a. Figure
7.3 shows the recorded times required to decrypt and re-encrypt the matrices using
the Secure k-Means approach coupled with either an EUDM or a SCDM, DBSk-Means
and Sk-Means respectively. As expected, the time for data owner involvement was
comparable as the matrices used were of the same size.

Clustering efficiency: With respect to the efficiency of secure data clustering founded
on the use of SCDMs compared to EUDMs, this was determined in terms of overall
runtime for clustering the encrypted data, both UCI datasets and synthetic datasets.
The later to conduct a more in-depth analysis. The usage of the EUDM concept was
illustrated using DBSk-Means and DBSNNC, as described in Chapter 5; whilst the
usage of the SCDM concept was illustrated using Sk-Means, SNNC and SDBSCAN
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Figure 7.3: Runtime required by the data owner to decrypt and re-encrypt Encrypted
Shift Matrices (ESMs) and Chain matrices (CH) during data clustering using Secure

k-Means

as described in this chapter. Therefore the efficiency comparison was conducted with
respect to DBSk-Means and Sk-Means, and DBSNNC and SNNC.

The individual runtime results obtained using the UCI datasets were presented previ-
ously in Tables 5.5, 5.6 and Figure 7.2. These results are brought together in Figure 7.4.
From the figure, as expected, the recorded runtimes for data clustering using SCDMs
is longer than that required using EUDMs. The reason for this is the “chain” feature
used to derive the similarity using the SCDM. Using SCDMs the similarity between
two records required the “summing-up” process that add of a number of SCDM records
(as shown in Equation 7.2), whilst in the case of EUDMs the similarity can be simply
determined by adding up a one record in EUDM as shown in Equation 5.6.

For the experiments using simulated datasets comprised of 10, 000 records, but with
varying numbers of attributes from 10 to 100 increasing in steps of 10, was used. For the
comparison of the operation EUDMs and SCDMs the time complexity of determining the
similarity between the first and the last record in each dataset was considered. Figure
7.5 shows the obtained average runtimes for ten runs. The reported runtime for using
the EUDM and SCDM for similarity determination increased in time with number of
attributes featured in data records although in the case of SCDM was higher as the
similarity is determined by “summing-up” a number of SCDM elements.

Clustering accuracy: The accuracy (effectiveness/correctness) of secure data cluster-
ing algorithms founded on EUDM and SCDM were compared by comparing the pro-
duced clustering configurations. The “correctness” of clustering configurations were
then evaluated using the equivalent standard algorithm that operates over unencrypted
dataset. As already demonstrated with respect to the evaluation of EUDMs reported
on in Sub-section 5.6.3, the clustering configurations produced using EUDM based algo-
rithms were identical to the clustering configuration produced using standard algorithms
as evidenced by the Silhouette Coefficient Sil. Coef. (Tables 5.5 and 5.6). The cluster-
ing algorithms that utilise SCDMs produced comparable results, as opposed to identical
results, to those produced in the case of standard algorithms (Table 7.2). The reason for
these differences, as noted earlier, was caused by the chain feature of SCDMs coupled
with the FDH-OPE scheme that produced different cyphertexts by adding noise to the
generated cyphertexts. This noise was accumulated when determining similarity that
in turn resulted in the production of different configurations to those produced using
standard algorithms.
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Figure 7.4: Efficiency of the Secure k-Means and Secure NNC algorithms founded on
the EUDM and SCDM

Figure 7.5: Complexity of comparing a single data record, using EUDMs and SCDMs,
with datasets comprised of 10K records and features different numbers of attributes

Scalability: Recall that an EUDM is a 3D matrix where the first and second dimension
are equivalent to the number of records n and the third dimension is the number of
attributes a featured in the given dataset. Recall also that a SCDM is a 2D matrix where
the first dimension is equivalent to n − 1 and the second to a. The required memory
resources are thus different according to the number of elements in both matrices. The
number of elements in the EUDM and SCDM with respect to UCI datasets were shown
in Table 7.3. The number of elements and thus the memory resources are more compact
in the case of SCDMs compared to EUDMs. Experiments were also conducted to study
the effect of increasing values of n and a, using synthetic datasets, on the size of EUDMs
and SCDMs. The results are shown in Figure 7.6. From the figure it can clearly be seen
that SCDMs are more memory efficient than EUDMs.
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Table 7.3: Number of elements in EUDMs and SCDMs for different UCI datasets

No. UCI Dataset Num. of UDM Num. of CDM
Elements Elements

1. Arrhythmia 28563462 125829
2. Banknote Auth. 3767512 5484
3. Blood Trans. 1120504 2988
4. Brest Cancer 650133 6501
5. Breast Tissue 51039 945
6. Chronic Kidney 1924800 9576
7. Dermatology 2283474 12410
8. Ecoli 452928 2680
9. Indian Liv. Pat. 1702360 5820
10. Iris 45300 596
11. Libras Mov. 5848200 32310
12. Lung Cancer 29568 1736
13. Parkinsons 420420 4268
14. Pima Disease 2362368 6136
15. Seeds 155085 1463

Figure 7.6: Number of elements in SCDMs and EUDMs for different sizes of synthetic
datasets

7.6 Secure Data Classification Using SCDM

This section describes the application of the SCDM concept, coupled with the Crypto-
graphic Ensemble idea, in the context of secure data classification. The basic concept
is that a data owner outsources their prelabelled encrypted data to a TPDM who then
uses this to create a classification model of some kind that can be used to label new
encrypted records, without decryption and without involving the original data owner
in the process. The new records to be labelled may be submitted by the original data
owner whose data was used to create the classification model, however, the proposed
system can also be used to provide a collaborative query service whereby authorised
Query Owners (QOs) can label their private records (as described in Chapter 2). In this
thesis, the term “querying” refers to the process of labelling/classifying a new record
using a pre-constructed classification model held by a TPDM. The query record thus
refers to the unlabelled data record sent by the QO to the TPDM.

The section is divided into two sub-sections. The proposed secure classification
system model is presented in Sub-section 7.6.1 where the role of each participant and
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the design goals of the system are considered. The system model can be used with
respect to a number of established classification model generation algorithms. However,
the k Nearest Neighbour (kNN) data classification mechanism [189] is considered here
for illustrative and evaluation purposes, both because of its simplicity and because of
its wide domain of application [190–193]. The implementation of Secure kNN (SkNN)
classification, using the proposed model, is thus discussed in Sub-section 7.6.2.

7.6.1 Secure Classification System Model

The proposed secure classification system model is given in Figure 7.7. From the figure
it can be seen that it features three types of participant: a data owner, a TPDM and
one or more QOs. The TPDM is the CSP that provides storage and computation
services such as DMaaS. The data owner is the party that has a prelabelled dataset D
available for secure sharing, that consists of n records, D = {r1, . . . , rn}. Each record ri
has a + 1 attribute values; ri = {ri,1, . . . , ri,a, ri,a+1} where ri,a+1 is the class label for
data record ri. The QOs are authorised parties who wish to classify their data records
Q = {q1, q2, . . . }. Each query record qi has a attribute values; qi = {qi,1, . . . , qi,a}. The
dataset D is prepared, by the data owner, for outsourcing to the TPDM, as described
previously in Section 7.3. The dataset is thus encrypted using Liu’s FHE scheme and the
associated SCDM using the proposed FDH-OPE scheme. However, for the classification
to operate as intended, the class label (the a+ 1th attribute) are not encrypted.

Query Owners (QOs)

. . . . . .
Q = {q1, q2, . . . }

Data Owner

D

TPDM

SCDM
D′

SQC protocol BindRec′′1

BindRec′2

Predicted Label

Figure 7.7: Secure classification system model

The primary design goal for the proposed system model is to preserve the privacy of
both the data and query records. To maintain the privacy of any query qi ∈ Q (where Q
is a set of queries) the query needs to be encrypted by the QO who owns the query, before
it is submitted to the TPDM for processing. Clearly to allow qi to be processed using
the proposed approach qi needs to be encrypted using the same encryption key as that
used to encrypt the SkNN classification model held by the TPDM. The data owner holds
the encryption key and clearly this should not be directly shared with the QOs. Using
the proposed system query encryption is therefore achieved using a proposed Secure
Query Cyphering (SQC) protocol that preserves the privacy of the query record and the
confidentiality of data owner’s private key. A second requirement, to enhance security, is
that querying is controlled by the data owner. How both the query encryption and data
owner control is achieved depends on the nature of the encrypted classification model.
In the following section this is considered in further detail in the context of Secure kNN
(SkNN) classification.
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7.6.2 Secure k Nearest Neighbour

This section describes how the proposed secure classification system model, described
in the foregoing sub-section can be used to realise Secure k Nearest Neighbour (SkNN)
data classification. The proposed SkNN approach consists of three main steps:

1. Query encryption: The secure encryption of the QO’s query record to preserve
privacy, while maintaining data owner encryption key confidentiality. To this end
a Secure Query Cyphering (SQC) protocol is used, described in further detail in
Sub-section 7.6.2.1.

2. QO authorisation and binding process: The encrypted query q′ is “bound”
with the SCDM to allow the data similarity between the contents of D′ and q′ to
be determined. Only the query belonging to an authorised QOs can be bound to
the SCDM. The QO authorisation and binding process are detailed in Sub-section
7.6.2.2.

3. SkNN query classification: Query resolution (classification) conducted in two
sub-steps: (i) nearest neighbour record retrieval and (ii) major class label deter-
mination. Both are discussed further in Sub-section 7.6.2.3.

7.6.2.1 Secure Query Cyphering Protocol

The Secure Query Cyphering (SQC) protocol operates between a data owner and one or
more QOs and is designed to allow the QOs to encrypt a query record, qi = {qi,1, qi,2, . . . ,
qi,a}, using FDH-OPE, so that a “binding” record can be generated which in turn is
utilised by the TPDM to update its SCDM. The binding process and the updating of
the SCDM is discussed in the following sub-section, this sub-section presents the SQC
protocol. To encrypt the query record qi, using the FDH-OPE scheme, QO requires
the FDH-OPE key. As the FDH-OPE scheme, presented in Section 5.2, is a symmetric
scheme sharing the key with the QO presents a security risk. The idea, instead of
providing the FDH-OPE key, is therefore to provide the QO with the parameters to
allow FDH-OPE encryption. However, provision of these parameters still presents a
security threat. Therefore, the parameters are encrypted using Liu’s FHE scheme whose
mathematical features permit the FDH-OPE encryption of qi without decryption of the
parameters. As a result, qi will be double encrypted, firstly using FDH-OPE to give q′i,
and secondly using Liu’s FHE scheme to give q′′i . Equation 7.4 shows the sequence of
double encryption. It should be noted here that the Liu FHE scheme keys used with
respect to the SQC protocol are different to the Liu FHE scheme keys used to encrypt
the dataset D. To distinguish between the two, the former will be referred to as the
Shared Liu’s scheme (shared because later in the SkNN process the keys will be shared
with the TPDM).

q′′i = EncryptLiu′sFHE
(
EncryptFDH−OPE(qi)

)
(7.4)

The process for encrypting the value v using FDH-OPE was given in line 7 of Al-
gorithm 6, but is given again in equation 7.5. As illustrated earlier in Chapter 5, l′j
is the minimum boundary for the cyphertext space interval in question, scalej is the
required scaling between the cyphertext space interval and the corresponding message
space interval, and δj is a random noise value included to prevent identical values being
encrypted in the same way on repeated encryptions. The reader may find it useful to re-
fer back to Section 5.2 where the FDH-OPE scheme was presented. Equation 7.5 can be
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rewritten as per Equation 7.6 (with noise δj removed). Removing the δj from encryption
function provides the potential to reduce the effect of accumulating error when deter-
mining the similarity between the query and encrypted data using the SCDM. This will
contribute to maintaining the accuracy of query prediction services, however revealing
the frequency of attribute values in the query set as no random values are incorporated
to hide the frequency.

v′ = l′j + scalej × (|v| − lj) + δj (7.5)

v′ = scalej × |v|+ l′j − scalej × lj (7.6)

Equation in 7.6 can be further simplified to:

v′ = scalej × |v|+ ej

where ej = l′j − scalej × lj . The parameters scalej and ej are calculated by the data
owner, encrypted using the Shared Liu’s FHE scheme to give scale′j and e′j , and sent
to the relevant QO. Of course, the values of scalej and ej are dependent on the interval
in which |v| falls; thus this also needs to be established within the context of the SQC
protocol. The SQC protocol to achieve the above can be summarised as follows:

Protocol: Secure Query Cyphering (SQC)

1: Data owner generates the Shared Liu’s key and sends the key to the TPDM.
2: Using binary questioning with the QO, the data owner identifies the FDH-OPE

interval ID(j) within which each query attribute value in qi is contained.
3: Data owner calculates the FDH-OPE values for scalej and ej for each attribute

value in qi.
4: Data owner encrypts the scalej and ej values using the Shared Liu’s FHE scheme

to arrive at scale′j and e′j .
5: Data owner sends scale′j and e′j to QO.
6: Using scale′j and e′j , QO double encrypts the query attribute values in qi using the

HE mathematical properties of Shared Liu’s scheme (~,⊕) as equation: q′′i,att =
(qi,att ~ scale′j)⊕ e′j

7.6.2.2 QO Authorisation and Binding Process

The binding process is the process whereby a query record is incorporated into the
SCDM held by the TPDM. Recall that the SCDM contains distances (differences) be-
tween corresponding attribute values in each pair of consecutive records in the dataset
encrypted using the FDH-OPE scheme. The binding process requires that the difference
between the query record q held by QO and the first record in the dataset held by the
data owner be added to the SCDM without sending either to the TPDM. The binding
process is therefore a collaborative process conducted between the data owner and the
QO, and is required not only to allow a response to QO’s query, but also for the query
to be authorised by the data owner.

The pseudo code for the binding process is given in Algorithm 21. The inputs
are: (i) the SCDM SC and (ii) the query record encrypted using the SQC protocol
q′′i . The process starts with the data owner generating a random record p of length
a, p = {p1, . . . , pa} (line 2). This is then encrypted twice, firstly using the FDH-OPE
scheme to give p′, and secondly using the Shared Liu’s scheme to give p′′, which is then
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Algorithm 21 Authorisation and binding process

1: procedure AuthorisationBinding(SC,q′′i )
2: Data owner: generate a random record p
3: Data owner: p′= Encrypt (p) . using FDH-OPE
4: Data owner: p′′= Encrypt (p′) . using Shared Liu’s

5: Data owner: send p′′ to relevant QO
6: QO: BindRec′′1= q′′i 	 p′′
7: QO: send BindRec′′1 to TPDM
8: Data owner: BindRec2= p− r1
9: Data owner: BindRec′2= Encrypt(BindRec2) . using FDH-OPE

10: Data owner: send BindRec′2 to TPDM
11: TPDM: BindRec′1= Decrypt(BindRec′′1) . using Shared Liu’s

12: TPDM: Pivot= BindRec′1 + BindRec′2
13: TPDM: SCupdated = Pivot + SC . Equation 7.7
14: Exit with SCupdated

15: end procedure

sent to the relevant QO (lines 3 to 5). The double encryption is required because, to
retain the confidentiality of the FDH-OPE key held by the data owner, qi is also double
encrypted as discussed in Sub-section 7.6.2.1 above. The QO will then generate a binding
record BindRec′′1 representing the difference between their double encrypted query record
q′′i and the p′′ (line 6). This is achieved using the Shared Liu’s FHE mathematical
property 	 as described in Sub-section 3.3.1.2. The binding record BindRec′′1 is then
sent (line 7) to the TPDM (see Figure 7.7). At the same time the data owner will
calculate the binding record BindRec2 (line 8), representing the distances between p and
the first record in the dataset D. The binding record, BindRec2 is encrypted (line 9)
using FDH-OPE to give BindRec′2, which is then sent to the TPDM (line 10). Receipt of
BindRec′2 signals to the TPDM that the data owner has given “approval” for the query,
without this the TPDM will not process the query. The role of the data owner and QO
is now finished.

Once the TPDM has received BindRec′′1 and BindRec′2, the TPDM single decrypts
the double encrypted BindRec′′1, to give BindRec′1 (line 11). Both binding records are
now encrypted using FDH-OPE. The TPDM then creates a Pivot record by adding
BindRec′1 to BindRec′2 (line 12). The Pivot record will now hold the encrypted distance
between the query record qi and the first record in r1 ∈ D without either being confided
to the TPDM, or each other. The pivot record is then added to the SCDM SC in line
13 as indicated by Equation 7.7. The algorithm will exit in line 14 with the updated
SC, SCupdated. The similarity between the query record q (at index 1 in SCupdated) and
the xth encrypted record in the dataset is calculated using Equation 7.8.

SCupdated =


pivot1,1 pivot1,2 · · · pivot1,a
sc1,1 sc1,2 · · · sc1,a

...
...

. . .
...

scn−1,1 scn−1,2 · · · scn−1,a

 (7.7)

sim(SCupdated, q, r
′
x) =

j=a∑
j=1

∣∣∣∣∣
i=x∑
i=1

scupdated i,j

∣∣∣∣∣ (7.8)
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7.6.2.3 SkNN Query Classification

The processing (classification) of queries from an authorised QO (note that the data
owner may also be a QO) is entirely delegated to the TPDM following a process similar
to standard kNN [189]. The main reasons for using a TPDM for query classification are:

1. The limited computing resource and technical expertise that data owners are an-
ticipated to have. The assumption is that the data owner’s core business is not
data analytics, but some other form of commerce whereby data is generated which
the data owner is prepared to share for commercial gain.

2. The expectation that data owners and QOs are likely to want to avail themselves
of the analytical capabilities offered using a mobile device of some kind.

Using a TPDM for query resolution also provides the additional benefit that query
outcomes (query predicted label) for queries belonging to a QO are not shared with the
data owner (unless of course the data owner and the QO are the same individual).

Algorithm 22 shows the pseudo code for SkNN data classification. The inputs are:
(i) the SCDM (SCupdated) on completion of the authorisation and binding process (Al-
gorithm 21) whereby the distance between the query record and the first record in D
has been inserted at index 1 (scupdated 1) of the SCDM, (ii) the encrypted dataset D′

and (iii) the desired value for k as in the original kNN. The SkNN process comprises two
stages: (i) secure Nearest Neighbour (NN) retrieval (lines 2 to 6) and (ii) determination
of the major class label (line 7 which calls a procedure given in lines 10 to 18). The first
stage starts with the calculation of the similarity between query record q′ and each other
record r′j ∈ D′ as per Equation 7.8 (line 4). The calculated distance (dist′), together
with the associated class label held at r′j,a+1, is added to the neighbour list NL (line
5). The second stage, determining the major class label, is commenced by ordering the
neighbour list according to the dist′ values (line 11). Recall that the FDH-OPE scheme
used to encrypt the SCDM is an order preserving encryption scheme, thus facilitating
secure data ordering. The first k elements in the neighbour list are then used to create
a list C of length l that represents the number of class labels in D′. The list C holds
counts of the number of records in the first k elements in NL that correspond to each
class label featured in the first k elements in NL. Recall that, the class label attributes
are not encrypted as discussed in Sub-section 7.6.1. The maximum class label (the class
label with the highest count) is returned as the predicted label for the query (line 8).

7.7 Results and Evaluations

The evaluation of the proposed SkNN data classification approach, including the binding
process and the SQC protocol, is presented in this section. The evaluation was conducted
using the same UCI and synthetic datasets as used for earlier evaluations. The objectives
were to consider the proposed solution in terms of: (i) computation and communication
costs on behalf of the data owner, (ii) computation and communication costs on behalf
of QOs, (iii) performance of SkNN in terms of runtime, (iv) performance of SkNN in
terms of classification accuracy and (v) the security of the proposed approach. Each will
be discussed in detail in the following sub-sections.

7.7.1 Data Owner Computation Cost Analysis

Using the proposed SkNN approach the data owner will participate in: (i) preparing
data for the TPDM, (ii) running the SQC protocol and (iii) authorising QO queries.
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Algorithm 22 Secure kNN (SkNN) classification algorithm

1: procedure SkNN(SCupdated,D
′,k)

2: NL = ∅
3: for j = 1 to j = |D′| do
4: dist′ = sim(SCupdated, q

′, r′j) where q′ is the current query . Equation 7.8
5: NL = NL ∪ {dist′, r′j,a+1}
6: end for
7: predictedClass = majorClassLabel(NL, k)
8: Exit with predictedClass
9: end procedure

10: procedure majorClassLabel(NL, k)
11: Order NL using dist′

12: C = {c1, . . . , cl}
13: for i = 1 to i = k do
14: LabelCurrentRec = label of nli
15: cLabelCurrentRec = cLabelCurrentRec + 1
16: end for
17: Exit with Max(C)
18: end procedure

The SkNN approach requires no data owner involvement during the processing of QO
queries once authorisation has taken place. The data preparation was the same as in
the case of the SCDM data clustering approach, and encompasses: (i) the generation
of secret keys, (ii) data encryption, (iii) CDM calculation and (iv) CDM encryption to
produce a SCDM. The evaluation of the complexity of data owner participation was
presented in Sub-section 7.5.1. The SQC protocol requires data owner participation in
determining and encrypting the scale (scale) and e values required by the Shared Liu’s

scheme so as to allow QOs to encrypt their queries. The runtimes for calculating scale
and encrypting e for some interval was recorded as 0.16ms and 0.11ms respectively,
which means that no significant computational overhead is encountered by the data
owner. The data owner also participates in authorising QO queries by generating and
then encrypting the binding record BindRec′2. Table 7.4 (row 4) shows the recorded
runtimes (ms) for different sizes of the BindRec′2 record. The runtime results presented
in the table are the average of ten runs. As anticipated, the average runtime required
to generate the BindRec′2 increases with the dimension of the query record; for example
a query record with 1K attributes will be generated in 2.4ms, while 16.4ms is required
to generate a BindRec′2 with 10K attributes. These results have shown that the process
of authorising QO queries does not introduce any significant overhead.

7.7.2 Query Owner Computation Cost Analysis

The QO will participate in: (i) the SQC protocol to encrypt their query records and
(ii) compute the binding record, BindRec′′1. Rows 2 and 3 of Table 7.4 give the average
runtime, over ten runs, required to encrypt a range of query records of increasing length
(number of attributes) and the time required by a QO to calculate a binding record
BindRec′′1. The required runtime to encrypt a query record increases with the number
of attributes featured in the query. A query with 1, 000 attributes can be encrypted in
4.4ms whilst a query with 10, 000 attributes can be encrypted in 18.9ms. The required
runtime to generate BindRec′′1 increases with the number of attributes. The QO binding
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Table 7.4: Average runtimes (ms) for data owner and QO participation when gener-
ating binding records and running the SQC protocol with respect to different numbers

of attributes (a)

Number of attribute values (a)

Process 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

Encrypt query
record q′′

4.4 6.1 10.8 11.3 11.6 13.4 14.2 15.5 17.8 18.9

Calculate and
encrypt the
BindRec′′1

2.3 5.0 6.3 7.0 8.8 9.3 9.4 11.4 11.6 13.8

Calculate and
encrypt the
BindRec′2

2.4 4.2 9.5 7.0 8.9 9.9 12.0 13.9 15.6 16.4

record for a query with 1, 000 attributes can be generated in 2.3ms while 13.8ms was
recorded for a query with 10, 000 attributes. These results shown that regardless of
query dimension, the runtime associated with QO participation was not significant and
therefore did not introduce any overhead of note.

7.7.3 SkNN Efficiency

The runtime required to classify data using the proposed SkNN approach was compared
with the runtime required for the standard kNN algorithm operating over unencrypted
data. Figure 7.8 shows the average recorded runtimes required to classify the UCI
datasets for the two stages of the kNN algorithm: secure NN retrieval (Stage 1) and
determination of the major class label (Stage 2). The x-axis gives the evaluation dataset
number from Table 7.5. The reported runtimes were measured in terms of average
runtimes obtained using Ten-fold Cross Validation (TCV). As expected, the overall
time required for SkNN Stage 1 was longer than in the case of the standard approach.
Note that runtimes for (standard) kNN Stage 1 are reported in milli-second (ms), while
runtimes for SkNN Stage 1 are reported in second (Sec). The results shows that the
bigger the dataset the larger the SCDM, and consequently the greater the time required
to interact with the SCDM to classify a record. However, inspection of the recorded
results indicates that this did not present a significant overhead. The largest dataset,
in terms of number of records and number of attributes, is the Arrhythmia dataset for
which the recorded runtime was 78.29ms for standard kNN and 55.13Sec for SkNN.
The Stage 2 runtimes were almost the same since the major class was determined over
unencrypted class labels in both cases.

The effect of the size of a query record, measured in terms of a (number of attribute
values) and the selected value for k was also evaluated. A range of values for a was
considered from 1, 000 to 10, 000 increasing in steps of 1, 000, coupled with k = 1, k = 5
and k = 9. The required classification runtime in each case is plotted in Figure 7.9.
As expected, the runtime increases as the size of the query record increases, whilst the
value of k does not introduce any significant overhead.

7.7.4 SkNN Accuracy

The classification accuracy obtained using the proposed SkNN approach was compared
with the accuracy obtained using standard kNN. The aim was to evidence that SkNN
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(a) Standard kNN

(b) SkNN

Figure 7.8: Comparison of runtimes using standard kNN and SkNN classification

Figure 7.9: Average computation costs of SkNN for varying values of k and number
of attributes in a query record

operated correctly; for this to be the case the accuracy values obtained should be com-
parable. The UCI evaluation datasets were split into training (the outsourced dataset
D) and testing (the query set Q). Average Precision, Recall and the F1 measure [194]
were used as the evaluation metrics, obtained using TCV. So as to conduct a fair com-
parison the same value for k was used in all cases. The values of Precision (P), Recall
(R) and the F1 measure were calculated as per Equation 7.9 where TP is the True
Positive count, the number of times the model correctly predicts the positive class; and
TN is the True Negative count, the number of times the model correctly predicts the
negative class. FP and FN are thus the False Positive and False Negative counts when
the model incorrectly predicts the positive and negative classes, respectively. Note that
high precision relates to a low false positive rate, and high recall relates to a low false
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negative rate. High scores for precision and recall show that the predictor is performing
well. The F1 measure combines both precision and recall and is thus the most significant
measure.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2× Precision×Recal
Precision+Recal

(7.9)

The obtained results are presented in Table 7.5. From the table, it can be seen that
from the fifteen datasets considered, in six cases the results obtained were different
(highlighted in bold font); interestingly in five of the cases SkNN produced a better
performance. In the remaining case the performance was not as good (lower F1 value
recorded in the context of Arrhythmia). The difference, it was again conjectured, was
because the FDH-OPE scheme does not support equality matching in that two identical
plaintext values will have different encrypted equivalents because of the δ random noise
added. The usage of SCDMs in determining the data similarity results in an accumu-
lation of the added noise value (δ). Sometimes this operated in favour of SkNN by
preventing overfitting. The overall average Precision, Recall and F1 values were 0.71,
0.72 and 0.71 for standard kNN and 0.72, 0.73 and 0.72 for SkNN, indicating that both
approaches produced similar results and therefore it was concluded that the proposed
SkNN approach operated correctly.

Table 7.5: Comparison of prediction accuracies using standard kNN and SkNN (dif-
fering results highlighted in bold font)

No. UCI Dataset
Standard kNN SkNN

P R F1 P R F1

1. Arrhythmia 0.25 0.22 0.24 0.25 0.22 0.23
2. Banknote Auth. 1.00 1.00 1.00 1.00 1.00 1.00
3. Blood Trans. 0.60 0.59 0.60 0.61 0.61 0.61
4. Breast Cancer 0.64 0.63 0.63 0.64 0.63 0.63
5. Breast Tissue 0.57 0.57 0.57 0.57 0.57 0.57
6. Chronic Kidney 0.82 0.84 0.82 0.82 0.85 0.82
7. Dermatology 0.90 0.90 0.90 0.92 0.92 0.92
8. Ecoli 0.58 0.61 0.59 0.65 0.69 0.67
9. Indian Liv. Pat. 0.58 0.58 0.58 0.58 0.58 0.58
10. Iris 0.96 0.96 0.96 0.96 0.96 0.96
11. Libras Mov. 0.88 0.87 0.87 0.88 0.87 0.87
12. Lung Cancer 0.45 0.51 0.47 0.50 0.58 0.52
13. Parkinsons 0.81 0.82 0.81 0.81 0.82 0.81
14. Pima Disease 0.67 0.66 0.66 0.67 0.66 0.66
15. Seeds 0.90 0.90 0.90 0.90 0.90 0.90

Average 0.71 0.72 0.71 0.72 0.73 0.72

7.7.5 SkNN Security

In the same manner as when the security of UDMs and EUDMs were considered, using
the SkNN approach, the TPDM and QOs are assumed to be non-colluding parties, and
the TPDM is considered to be a “passive adversary” who follows the semi-honest model
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where the proposed solution (algorithms and protocols) are honestly executed. As noted
previously (Section 2.5) this is a reasonable assumption since the primary objective of
CSPs, acting as TPDMs offering DMaaS, is to deliver a high quality services to clients
(data owners). The private data belonging to a data owner and the private queries
belonging to a QOs are not shared with any other parties in the proposed solutions.
The TPDM is the only party who gains access to the encrypted dataset D′, the SCDM
and the query binding records. No decryption takes place at the TPDM side which
implies even more security. Therefore, the associated threats when the attacker has
access to D′ and SCDM are as discussed in Sub-section 7.5.1. Therefore only the SQC
protocol security, and the binding and authorising process security, are discussed in this
section.

The SQC protocol operates between the data owner and QOs as presented in Sub-
section 7.6.2.1. Using this protocol, the parameters required to encrypt a query record
q are only exchanged in cyphertext form. The confidentiality of the FDH-OPE keys
was guaranteed by encrypting the required parameters, scale and e, using Liu’s FHE
scheme. Therefore, the security of SQC depends on the security of Liu’s FHE scheme
which has been demonstrated to be semantically secure.

The QO authorisation and binding process are dependent on the security of the FDH-
OPE scheme. The binding records, BindRec1 and BindRec2 are sent to the TPDM in
encrypted from using the FDH-OPE scheme. The TPDM will have access to the order
of the distance between random record p and the first record r1 and the order of the
distance between query record q and the random record p. The latter is encrypted using
Liu’s FHE scheme. The only potential attack is a COA as discussed in Sub-section
7.5.1. In the case where the QOs are active adversaries; the QOs will deviate from the
designated, pre-designed, algorithm. The only affect is that the QO may receive a wrong
prediction label.

7.8 Summary

This chapter has presented the concept of Secure Chain Distance Matrices (SCDMs)
that utilise the Cryptographic Ensemble idea, presented earlier, to provide for secure
outsourced data mining. The proposed approach seeks to reduce the required mem-
ory resource, in comparison with the UDM and EUDM approaches, by minimising the
number of elements in the SCDM. The SCDM has a chain feature that allows data
similarity determination between records. The level of data owner participation when
using the SCDM concept is the same as in the case of the EUDM concept. The SCDM
can support a number of different kinds of data mining algorithms. The application
of SCDMs was considered in the context of three different data clustering mechanisms
(k-Means, NNC and DBSCAN) and data classification using kNN. The main advantage
of SCDMs, over the forgoing approaches presented in Chapters 4 and 5, was that it
dramatically reduced the required memory resource by factor equivalent to the number
of records in the input data. Moreover, the SCDM provided a scalable solution. The
evaluation demonstrated that the proposed secure algorithms founded on the SCDM
and the Cryptographic Ensemble, produced comparable results to the equivalent stan-
dard algorithms, this indicating that the approach was correct. Recorded differences
were due to the semantic security property of the FDH-OPE scheme and the associated
chain feature, which in turn resulted in an accumulation of the amount of noise. In
the following chapter the concept of SCDMs is extended to facilitate the multiple data
owner scenario; collaborative mining using the Super SCDM (SSCDM) concept.



Chapter 8

Super Secure Chain Distance
Matrices

8.1 Introduction

In the previous chapter the SCDM concept, founded on the Cryptographic Ensemble
idea, and its application in the context of secure data clustering and classification was
presented. The discussion of the application of SCDMs was focused on the single data
owner scenario. In this chapter the SCDM concept is extended to the multiple data
owner scenario, again in the context of the subsidiary research question considered in
Chapter 6, namely:

• Can the proposed single data owner scenario solutions be extended to support scal-
able collaborative data mining (the multiple data owners scenario) while keeping
the data owner participation at a minimum?

The involvement of multiple data owners imposes new security challenges; as dis-
cussed in [49] and briefly highlighted in Sub-sections 2.3.2 and 2.5.2. To facilitate the
multiple data owner scenario the Super Secure Chain Distance Matrix (SSCDM) is pre-
sented in this chapter. The SSCDM concept is an extension of the SCDM concept
presented in the previous chapter. The fundamental idea was for individual data owners
to locally generate a CDM following the process given in Algorithm 15. Each CDM is
then encrypted using the MUOPE scheme, presented in Chapter 6, to arrive at a Se-
cure CDM (SCDM). The Super SCDM (SSCDM) is then generated using a Semi-honest
Third Party (STP) who “binds” multiple SCDMs to arrive at a single SSCDM. The
process for binding multiple SCDMs to form a single SSCDM depends on the nature
of the partitioning; how the data is split across the participating parties. This chap-
ter presents also the “binding” processes required for horizontal, vertical and arbitrary
data partitioning, in the multiple data owner context, designed to maintain the joint re-
quirements for low memory resource and limited data owner participation. The SSCDM
idea allows the calculation of distances between records distributed over multiple data
sources, without having access to “actual” data records and without resorting to the
SMPC protocols who’s use is frequently reported in the literature [36, 37, 40, 102, 103].

An issue with the distance matrix solutions presented in earlier chapters is that
although the clustering (classification) has been conducted using a proxy for the real
data (UDMs, EUDMs and SCDMs), the proposed matrices have been accompanied with
an encrypted version of the actual data. The reason for this was to make the proxies
proposed as versatile as possible. For example to support k-Means clustering where

133
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access to the original data was required, as well as other forms of clustering such as
NNC and DBSCAN. The vision of the work presented in this chapter is that the original
data should not be sent to the TPDM in any form. If the versatility of the proxies
is reduced, for example by precluding k-Means clustering, this ambition can be fully
realised. This is explored in this chapter using the concept of virtual record lists.

As in the case of all the secure clustering approaches considered in earlier chapters
the secure collaborative clustering approaches considered in this chapter, at a high level,
operate in a similar manner. In this chapter this high level process is referred to as
Secure CLustering (SecureCL). The SecureCL process is compatible with a number of
clustering approaches. Two are considered in this chapter, Secure DBSCAN and Secure
NNC. Secure k-Means is not considered for reasons outlined above.

The rest of this chapter is organised as follows. Section 8.2 presents the SecureCL
algorithm. This is followed in Section 8.3 with a presentation of the SSCDM concept and
the generation of SSCDMs with respect to three types of data partitioning; horizontal,
vertical and arbitrary. SSCDM management, the adding and deleting of records, is then
considered in Section 8.4. Section 8.5 presents the SecureCL high level algorithm, and
the SSCDM concept, with respect to a range of clustering algorithms including Secure
DBSCAN and Secure NNC. An extensive evaluation of the SSCDM concept, and the
SecureCL algorithms, was conducted and reported on in Section 8.6. The chapter is
concluded with a summary in Section 8.7.

8.2 Secure CLustering

As noted in the introduction to this chapter the collaborative clustering algorithms
presented in this chapter conform, at least at a high level, to a generic Secure CLustering
(SecureCL) process. A schematic of SecureCL is presented in Figure 8.1. The numbering
used in the figure indicates the individual steps in the process as follows.

1. Each individual data owner (pi) creates their own CDM (CDMi) from their local
dataset Di (as presented in Algorithm 15). Recall that the CDM, is a (|Di|−1×a)
matrix designed to hold “distance” values, where |Di| is the number of records in
the dataset Di and a is the number of attributes in the associated attribute set A.

2. The Semi-honest Third Party (STP) and data owners generate the key for the
MUOPE scheme, as presented in Algorithm 11. Recall that the MUOPE scheme
is an OPE scheme designed for use with respect to data distributed across multiple
data owners.

3. Each data owner encrypts their CDM, using the generated MUOPE scheme. The
scheme preserves the ordering of the encrypted data; this means that the simi-
larity between data records can be determined, an essential requirement for data
clustering.

4. An SSCDM is then generated by the STP with some data owner participation.
The SSCDM is a combination of the SCDMs generated by the individual data
owners. The SSCDM is constructed according to the data partitioning featured in
the global dataset, using a binding process, as discussed in Section 8.3.

5. The STP passes the SSCDM to the TPDM, after which STP is then ready to
repeat the process with new datasets and/or new data owners.
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Figure 8.1: Schematic of the SecureCL process

6. The TPDM is now in a position to provide secure collaborative data clustering
as a service (SecureCL). Data owners can request a clustering by specifying a
supported clustering algorithm together with the associated parameters. Data
owners can launch secure data clustering over the encrypted data proxy, without
further data owner involvement.

7. The entire secure data clustering is conducted by the TPDM. The data similarities
between records, regardless of their data owner, is determined using the SSCDM
as per equation 8.1 and compared using the ordering preserved in the generated
MUOPE cyphertexts.

8. The results of the data clustering are returned to participating parties, in such a
way that each party will receive the results for their own records.

sim(SSCDM, vrx, vry) =

j=a∑
j=1

∣∣∣∣∣∣
i=(y−1)∑
i=x

sscdmi,j

∣∣∣∣∣∣ (8.1)

So as to realise the vision of secure data mining espoused within the context of this
thesis, as noted in the introduction to this chapter, the SecureCL process uses a Virtual
Record (VR) list instead of encrypted versions of the data to be processed. A VR is
simply a list of cluster identifiers which on start up will simply contain default values.
Figure 8.2, shows the structure of a VR list. From the figure it can be seen that the list
indices refer to the records held by data owners, index numbers 1 to |SCDM1| + 1 for
records belonging to data owner p1, |SCDM1| + 2 to (|SCDM1| + |SCDM2| + 2) for
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Figure 8.2: Example of using Virtual Records (VR) list indices to refer to dataset
records held by different data owner

records belonging to data owner p2, and so on. The overall length of a VR matches the
number of records in the global datasets; D=∪i=ui=1Di. A VR list can thus formally be
defined as V R = {vr1, . . . , vr|SSCDM |+1}. The start point, sti, for the indices associated
with a particular data owner pi is calculated as per Equation 8.2; the end point, eni, is
calculated as eni = sti + |SCDMi|.

sti =

{
1, if i = 1

(
∑z=i−1

z=1 |SCDMz|+ 1) + 1, otherwise
(8.2)

8.3 Super Secure Chain Distance Matrices

As already noted a SSCDM is a combination of one or more SCDMs generated by in-
dividual data owners. The SCDMs are generated in two steps: (i) CDM calculation
and (ii) CDM encryption using the MUOPE scheme to arrive at a SCDM. The SCDMs
are then “bound” together to form a SSCDM. As noted earlier, the nature of the bind-
ing process depends on the nature of the partitioning. Three different forms of data
partitioning can be identified: horizontal [64], vertical [65] and arbitrary as discussed
previously in Sub-section 2.3.2. The binding process in the context of each of these is
discussed in the following three sub-sections respectively.

8.3.1 Binding Process for Horizontally Partitioned Data

Horizontal data partitioned, as defined in Sub-section 2.3.2, is where the participating
parties conform to the same set of attributes, A= {v1, . . . , va}, but each holds different
records [64]. In other words, the global dataset D is decomposed into “horizontal”
segments each belonging to a single party. The global data schema is thus the same
for all participant’s data. Multiple SCDMs, representing horizontally partitioned data,
can be “bound” by the STP with a very limited data owner participation, to form a
SSCDM using the HorizontalBinding process presented in Algorithm 23. The inputs
are: (i) an “ID” number i that represent the ID of the last party whose SCDM was
bound to the SSCDM, (ii) the SCDMi+1 belonging to party pi+1 (the current party)
to be bound with SSCDM, and (iii) the global SSCDM (SSC) accumulated so far. At
the beginning of the process the SSC so far is SCDM1 belonging to the first party and
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i = 1. The algorithm starts with the STP generating a random record Rand of length a,
Rand = {rand1, rand2, . . . , randa} which is then encrypted using the MUOPE scheme
(line 2). The record Rand is sent to pi and pi+1. Party pi will calculate the difference
between the MUOPE cypher of the last record in their local dataset Di and record
Rand to give C1 = {c1,1, c1,2, . . . c1,a} (line 3). At the same time pi+1 will calculate the
difference between Rand and the MUOPE cypher of the first record in their dataset Di+1

to give C2 = {c2,1, c2,2, . . . c2,a} (line 4). C1 and C2 are then sent back to the STP. On
receiving C1 and C2 the STP will next generate a Pivot record by adding each attribute
in C1 with the corresponding attribute in C2 (line 5). The Pivot record will then be
used to bind SCDMi (already added in SSC) and SCDMi+1 (line 6). The process exits
with the SSC accumulated so far. The process will be repeated using SCDMi+1 and
SCDMi+2 until the entire SSCDM (SSC) is constructed.

Algorithm 23 Horizontal binding process

1: procedure HorizontalBinding(i, SCDMi+1,SSC)
2: STP: Rand = {rand1, rand2, . . . , randa} that is encrypted using MUOPE
3: Pi: C1 = Distances between MUOPE cypher of last record in Di and Rand
4: Pi+1: C2 = Distances between Rand and MUOPE cypher of first record in Di+1

5: STP: Pivot = C1 + C2

6: STP: SSC = concatenate(SSC, P ivot, SCDMi+1)
7: Exit with SSC
8: end procedure

8.3.2 Binding Process for Vertically Partitioned Data

Vertical data partitioning is where the participating parties conform to the same set
of records, but each holds different attributes derived from a global set of attributes A
[65]. In other words, the global dataset D is decomposed into “vertical” segments each
belonging to a single party. In this context, multiple SCDMs can be bound following
the process given in Algorithm 24. The inputs are SCDMi belonging to party pi and
the SSCDM (SSC) accumulated so far. At the beginning of process, the SSCDM so far
is simply SCDM1, the SCDM belonging to the first data owner. The vertical binding
process does not require generation of a Pivot record as in the case of horizontal binding;
it operates by simply appending the SCDMs to one another. The algorithm will exit
with an updated SSCDM comprised of the bound SCDMs for parties p1 to pi. This
process will be repeated until the entire SSCDM (SSC) is constructed.

Algorithm 24 Vertical binding process

1: procedure VerticalBinding(SCDMi,SSC)
2: SSC = concatenate(SSC, SCDMi)
3: Exit with SSC
4: end procedure

8.3.3 Binding Process for Arbitrary Partitioned Data

The arbitrary data partition generalises the vertical and horizontal partitioning cases.
The data is assumed to comprise an arbitrary collection, hence there is no agreed global
schema. As such, arbitrary partition data dictates an alternative SCDM binding. The
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process commences with a schema agreement process to derive an ordered global set of
attributes A and an ordered global set of records R, this is orchestrated by the STP.
The binding process is then as shown in Algorithm 25. The inputs are: (i) the number
of attributes a and number of records n that result from the schema agreement process,
(ii) the current SCDM (SCDMi) belonging to data owner pi and (iii) the SSCDM so far
(SSC). On start up the SSC so far will simply be a zero valued (n−1)×a matrix. The
process commences with the construction of a temporary (n− 1)× a SSCDM, SCDM ′,
initially populated with only zero values (line 2), to which SCDMi is added (line 3) in
such a way that matches the order of the agreed attribute schema. The updated SSCDM
is then constructed by adding the content of SCDM ′ to SSC (line 4). The algorithm
exits with an updated SSCDM so far (that binds the SCDMs belong to parties p1 to pi)
in line 5. This process will be repeated until the entire SSCDM (SSC) is constructed.

Algorithm 25 Arbitrary binding process

1: procedure ArbitraryBinding(a, n, SCDMi,SSC)
2: SCDM ′ = n− 1× a matrix populated with 0 values
3: SCDM ′ = SCDM ′ + SCDMi

4: SSC = SSC + SCDM ′

5: Exit with SSCDM
6: end procedure

8.4 SSCDM Management

Given any data mining scenario directed at an evolving dataset, there is the potential
that new records may be added or existing records may be deleted. However, where this
occurs, the SSCDM does not need to be regenerated, the relevant content can simply
be updated. This process is referred to as SSCDM management and is considered in
this section. New records when added to participant datasets can be simply inserted
in to the SSCDM so far, in the part that holds the participant in question’s SCDM, in
a manner similar to the binding processes described above depending on the nature of
the data partitioning. This will consequently require revision the participant’s SCDM
length held by the TPDM and the VR list.

Deletion of records is more complex, the appropriate SSCDM elements need to be
removed and new pivot records need to be derived. The pseudo code for achieving
this is given in Algorithm 26. The inputs are: (i) the index (index) of the record to be
deleted with reference to the participant’s dataset, (ii) the size of the attribute set a, (iii)
the SSCDM (SSC) and (iv) the virtual record list V R. The algorithm commences by
determining the caller party id, pid (the party that wishes to delete the record), using the
Caller procedure (line 2). The index associated with the record to be deleted, of party
pid, in the SSCDM (SSC) and the VR list are determined using the CalculateIndex
procedure which returns the SSCDM index i and the virtual id record vrvirtualId in the
VR list (line 3). In the case when the index of the record to be deleted is the first or the
last element in the SSCDM, the updating process is accomplished by removing ssci and
updating the VR list by deleting vrvirtualId (line 9). Otherwise, the updating process
is accomplished by generating a new record that replaces two SSCDM rows, ssci−1 and
ssci. The newly generated record will then be used to update ssci−1 (lines 5 and 7),
while ssci will be deleted (line 9). The procedure will exit with an updated SSCDM and
an updated virtual record list V R.
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Algorithm 26 Delete SSCDM element

1: procedure DeleteSSCDMElement(index, a,SSC, V R)
2: pid ← Caller()
3: i, virtualId← CalculateIndex(SSC, index, pid)
4: if (i 6= 1 and i 6= |SSC|) then
5: for j = 1 to j = a do
6: ssci−1,j = ssci−1,j + ssci,j (ssci,j ∈ SSC)
7: end for
8: end if
9: Delete ssci, vrvirtualId

10: Exit with SSC and VR
11: end procedure

8.5 SecureCL: Secure Collaborative Data Clustering

This section presents two secure clustering algorithms, a secure DBSCAN implementa-
tion and a secure NNC implementation, that make use of the proposed SSCDM concept
coupled with the Cryptographic Ensemble idea. Both of the algorithms represent im-
plementations of the SecureCL “parent” algorithm presented above. Note that the al-
gorithms do not entail any data owner participation and do not require resort to SMPC
protocols for data comparison as in the case of earlier work [20, 33–37, 40, 102, 103, 105].
The secure DBSCAN implementation (SDBSCAN) is described further in Sub-section
8.5.1 and the secure NNC implementation (SNNC) in Sub-section 8.5.2.

8.5.1 Secure DBSCAN

Using the Secure DBSCAN (SDBSCAN) algorithm the clustering is entirely conducted
by the TPDM, but following a process very similar to the standard DBSCAN [47]. The
pseudo code is given in Algorithm 27. The inputs are: (i) the SSCDM (SSC) received
from the STP, and (ii) the desired density parameters, minimum number of points
(MPts) and radius (ε′) as agreed by the participating parties. Recall that the actual
data will not be sent to the TPDM; only the SSCDM will be sent to the TPDM. The
ε value is encrypted using the proposed MUOPE scheme to give ε′ so that the TPDM
does not have the real radius value. Hiding the real radius value is seen as essential
to hide the correlation between data records when the TPDM compares the distances
between data records and the radius value, so as to prevent the launch of Overlapping
Attacks (OAs) as discussed in Sub-section 2.5.2. The SDBSCAN algorithm commences
by: creating a “virtual” record list V R comprised of the individual record IDs, V R=
{vr1, vr2,. . . , vr|SSCDM |+1} and an empty set of clusters C; and by initialising the
number of cluster so far to 0 (line 2). The virtual record list V R is then processed (lines
3 to 14). For each record vri ∈ V R that has not been previously assigned to a cluster, is
“unclustered”, the set S is determined (lines 4 and 5). The set S is the ε-neighbourhood
of vri and comprises the set of virtual record IDs in V R whose distance from vri is less
than or equals to ε′. The set is determined by calling the RegionQuery sub-procedure,
given in lines 30 to 39, where SSC is used to determine the overall distances between
records (see Equation 8.1). If the number of records in S is greater than MPts the
density requirement is satisfied and thus vri is marked as “clustered” and considered to
represent a new cluster Ck (lines 6 to 9). This cluster is then expanded by considering
the virtual records in S using the ExpandCluster sub-procedure called in line 10. The
inputs to the ExpandCluster are: (i) the cluster Ck so far, (ii) the set S, (iii) SSC
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Algorithm 27 Secure DBSCAN (SDBSCAN) clustering algorithm

1: procedure SDBSCAN(SSC, MPts, ε′)
2: V R =list of virtual record IDs that set all to be “unclustered” , C = ∅, k = 0
3: for i = 1 to i = |V R| do
4: if vri is unclustered then
5: S = RegionQuery(vri, ε

′,SSC)
6: if |S| >MPts then
7: mark vri as clustered
8: k = k + 1
9: Ck = vri (new cluster)

10: Ck = ExpandCluster(Ck,S, SSC,ε′,MPts)
11: C = C ∪ Ck
12: end if
13: end if
14: end for
15: Exit with C
16: end procedure
17: procedure expandCluster(C, S, SSC, ε′, MPts)
18: for ∀ vri ∈ S do
19: if vri is unclustered then
20: mark vri as clustered
21: C = C ∪ vri
22: S2 = RegionQuery(vri, ε

′,SSC)
23: if |S2| >MPts then
24: C = ExpandCluster(C, S2, SSC, ε′, MPts)
25: end if
26: end if
27: end for
28: Exit with C
29: end procedure
30: procedure RegionQuery(vrindex, ε′, SSC)
31: Nε = ∅
32: for ∀ vrj ∈ V R do
33: distance = sim(SSC, vrindex, vrj) . Equation 8.1
34: if distance 6 ε′ then
35: Nε.add(j)
36: end if
37: end for
38: Exit with Nε

39: end procedure

and (iv) the density parameters ε′ and MPts. The ExpandCluster sub-procedure is a
recursive procedure (lines 17 to 29). For each record in S which has not been previously
assigned to a cluster we add the record to Ck and then determine the ε-neighbourhood
S2 for this record (lines 18 to 22). If the size of S2 is greater than MPts we call the
ExpandCluster sub-procedure again (lines 23 to 25), and so on until all the records in
V R are processed. The algorithm will exist with the cluster configuration C. At the end
of the data clustering process each party will only receive from the TPDM the cluster
labels for their own data (virtual record list).
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8.5.2 Secure NNC

The Secure NNC (SNNC) algorithm, as in the case of all SecureCL derivative algorithms,
is conducted, by the TPDM, in a similar manner to that of standard NNC [48] as
summarised in Algorithm 28. The inputs are the SSCDM (SSC) and the desired SNNC
threshold σ′; the later agreed by the participating parties. To allow secure data clustering
the threshold σ is encrypted using MUOPE to give σ′. As in the case of the SDBSCAN
algorithm, the SNNC algorithm commences by creating the “virtual” record list V R
and an empty cluster set C; and initialising the cluster so far variable to 1 (line 2). The
first virtual record (vr1) is added to the first cluster (lines 3 and 4), then iteratively the
remaining records are assigned to clusters (lines 5 to 15). As for standard NNC, virtual
record vri will be assigned to cluster Cm if there exist some virtual record vrj in cluster
m whose distance from vri is less than or equals to σ′. Otherwise, vri is assigned to a
new cluster. Therefore, in line 6, the findNearestRecordCluster sub-procedure is called
to return the cluster ID (m) of the nearest record and their corresponding distance value
(smallDist′). The findNearestRecordCluster sub-procedure, given in lines 18 to 30. To
this end the SSC is used to determine the similarity between records (line 23). The
record vri will be assigned to cluster m when the distance (smallDist′) is less than the
threshold σ′ (lines 7 to 9), otherwise a new cluster is generated (lines 11 to 13). The
algorithm exits with clustering configuration C in line 16.

8.6 Experimental Results and Evaluation

This section reports on the evaluation of the SSCDMs concept in the context of Se-
cureCL. The evaluation was conducted using datasets selected from the UCI machine
learning repository as listed in Table 4.1 of Chapter 4, and synthetic datasets increasing
in size from 1, 000 to 10, 000 records in steps of 1, 000. The objectives of the evaluation
were as follows:

1. Time Complexity of data owner participation: To analysis the runtimes
required for data owner participation when preparing the data using the SSCDM
approach.

2. Collaborative clustering efficiency: To compare the efficiency of the proposed
SecureCL algorithms with the “standard” equivalent algorithms that operate over
unencrypted data.

3. Collaborative clustering accuracy: To compare the accuracy of final clustering
configurations obtained using the proposed SecureCL algorithms with respect to
the standard algorithms (using the same algorithm parameters).

4. Collaborative clustering scalability: To analysis the scalability of the proposed
approach by considering the effect on runtimes as the number of participants is
increased.

5. Security: To analysis the security when adopting the SSCDM concept, and the
proposed binding process, in terms of potential attacks.

6. Comparison of SSCDM and GEDM for collaborative data clustering: To
compare the SSCDM concept presented in this chapter with the GEDM concept
presented in Chapter 6 in terms of: (i) data owner participation prior to data
outsourcing, (ii) efficiency, (iii) accuracy and (iv) required memory resources.
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Algorithm 28 Secure Nearest Neighbour Clustering (SNNC)

1: procedure SNNC(SSC, σ′)
2: V R =list of record IDs, C = Empty set of clusters, k = 1
3: Ck = {vr1}
4: C = C ∪ Ck
5: for i = 2 to i = |V R| do
6: m, smallDist′ ← findNearestRecordCluster(i, C,SSC)
7: if smallDist′ 6 σ′ and m 6= null then
8: Cm = Cm ∪ vri
9: Update the cluster set Cm in the set of clusters C

10: else
11: k = k + 1
12: Ck = {vri}
13: C = C ∪ Ck
14: end if
15: end for
16: Exit with C
17: end procedure
18: procedure findNearestRecordCluster(index, C, SSC)
19: smallDist′ =MaxNumber and m = null
20: for clusterID = 1 to clusterID = |C| do
21: for j = 1 to j = |CclusterID| do
22: rid = Get(j, CclusterID) where rid is the jth record in CclusterID
23: if sim(SSC, vrindex, vrrid) < smallDist′ then . Equation 8.1
24: smallDist′ = sim(SSC, vrindex, vrrid)
25: m = clusterID
26: end if
27: end for
28: end for
29: Exit with m and smallDist′

30: end procedure

Each of these objectives is considered in the following six sub-sections, (Sub-section 8.6.1
to Sub-section 8.6.6). The SDBSCAN and SNNC algorithms, and the associated pro-
cesses, were all implemented using the Java programming language. All the experiments
reported in this chapter were conducted using 3.8 GHz Intel Core i5 with 8GB 2400 MHz
DDR4 memory, running under the macOS High Sierra operating system.

8.6.1 Complexity of Data Owner participation

The complexity of data owner participation with respect to the calculation and encryp-
tion of their CDMs (CDM Cal. and CDM Enc.), and data density calculation (Dens.
Cal.), was presented and discussed previously in Sub-section 7.5.1 of Chapter 7 and
Sub-section 6.5.1 of Chapter 6, respectively. The observation was, not unexpectedly,
that runtime increased with dataset size. The experiments were therefore not repeated
with respect to SecureCL.

However, experiments were conducted, using synthetic datasets, directed at evaluat-
ing the effect on data owner participation of increasing the number of records (n) and
increasing the number of attributes (a). The data used in the experiments belonged to
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one data owner. In each case the size of the targeted dimension (n or a) was increasing
from 1, 000 to 10, 000 in steps of 1, 000, while the other dimension was kept constant at
100. The results are presented in Figure 8.3. As expected, the average runtime required
to generate the CDM, encrypt the CDM and calculate data density increased linearly
as the size of data records n and attributes a increased. For example, when a = 1K,
where K is 1, 000, the CDM was generated in 63.73ms, encrypted in 168.04ms and den-
sity calculated in 42.27ms, when a = 10K the corresponding runtimes are 468.31ms,
1101.37ms and 228.3ms. The recorded runtimes when n = 1K were 60.7ms, 158.57ms
and 42.89ms, compared to 569.99ms, 1225.79ms and 293.09ms when n = 10K. These
results shown that, regardless of dataset size, at least in the context of the conducted
experiments, the runtime associated with data owner participation was not significant
and therefore did not introduce any limiting overhead with respect to the data owner.

(a) (b)

Figure 8.3: Average runtimes (ms) for CDM calculation, CDM encryption and den-
sity calculation using a range of values for n (number of records) and a (number of

attributes)

Note that when using SecureCL, because of the limitations imposed (see discussion
at the start of this chapter) no data owner participation was required once clustering
was in progress. This was achieved without recourse to key delegation, as in the case
of “secret sharing” (as found in [19]), and without resorting to SMPC protocols (for
example as found in [20, 33–37]).

8.6.2 Collaborative Clustering Efficiency

The utilisation of the SSCDM data proxy for secure data comparison will clearly in-
troduce a computational overhead compared to standard clustering algorithms (using
plaintext data). To evaluate the computational overhead associated with the secure
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approach the runtimes required to cluster the experimental datasets using standard
algorithms were compared with the runtimes required using the proposed SecureCL al-
gorithms. The fifteen UCI machine learning repository datasets given in Table 8.1 were
used for this purpose.

The results are presented in Figure 8.4; the numbering used on the x-axes matches the
dataset numbering used in Tables 8.1 and 8.2. The algorithm thresholds and parameters
(MPts, ε and σ) are as given in columns 2 and 3 of Table 8.1 and column 2 of Table
8.2 and were randomly selected from a sequence of experiments (not reported here);
in practice these will be agreed and specified by the data owners (how this might be
done is beyond the scope of this thesis). The results indicated that: (i) the runtimes
required by SDBSCAN and SNNC, as expected, are greater than those require using
standard DBSCAN and NNC, and (ii) the efficiency of the SecureCL algorithms is not
correlated to the number of parties involved as the data clustering is entirely delegated
to the TPDM.

The difference between the standard and secure data clustering is caused by the
utilisation of SSCDMs to determine similarity. The usage of SSCDM, as in the case of
the SCDM concept, depends on the size of the datasets; the bigger the dataset the larger
the SSCDM the greater the time required to use the SSCDM for determining similarity.
However, it is argued here that these runtimes were still in acceptable bounds. As the
SSCDM concept is an extension of the SCDM concept, the reader might find it useful
to refer back to Sub-Section 7.5.2 where the usage of SCDM for data similarity, in the
context of different sizes of records, was evaluated.

8.6.3 Collaborative Clustering Accuracy

The “correctness” of cluster configurations produced using SecureCL, either SDBSCAN
or SNNC, were measured by comparing the clustering configuration results obtained with
those obtained using the equivalent standard (unencrypted) approach. The Silhouette
Coefficient (Sil. Coef.) was used as the evaluation metric [188]. To demonstrate that
the proposed solutions to support collaborative clustering operated correctly, SDBSCAN
and SNNC should produces comparable Sil. Coef. values to those produced using
the standard approaches when using the same algorithm parameters. The number of
produced clusters was also compared. The results are presented in Tables 8.1 and 8.2.
The standard DBSCAN and NNC results were presented previously in Tables 6.1 and
6.2; however, for comparison purposes, these results have been included in Tables 8.1
and 8.2 (columns 4 and 5 of Table 8.1, and columns 3 and 4 of Table 8.2). From the
tables it can be seen that, in most cases, the SecureCL algorithms produced identical
configurations to those produced using standard approaches; only in 7 out of 30 cases
were different results obtained (highlighted in bold font). The reason for the difference
is that the distances calculated using the chaining feature of SSCDMs sometimes caused
an accumulated error because of the random noise (δ) included in the MUOPE scheme.
Interestingly, with respect to the differing results, the SecureCL algorithms produced
slightly better configurations in four out of the seven cases (Iris and Breast cancer in the
context of NNC, and Dermatology and Blood Trans in the context of DBSCAN). The
Blood Trans dataset produced a different number of classes using NNC but with the
same Sil. Coef. In the remaining two cases (Breast Cancer in the context of DBSCAN
and Dermatology in the context of NNC) the standard approach was slightly better.
In the worst case, Breast Cancer, the unencrypted dataset clustered to four classes.
The number of records in each cluster were 434, 4, 3, 3 respectively and the remaining
records marked as outliers. In the second, third and fourth clusters the distances between
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Figure 8.4: Comparison of runtimes using standard and secure clustering algorithms
founded on the SSCDM concept, for different number of parties (u)

records were exactly equal to 5, the threshold value ε for DBSCAN. The probabilistic
feature of MUOPE made the comparison between the threshold and, the distance derived
using SSCDM unequal and thus clustered these records to the outliers class. The results
demonstrate that SecureCL approach provides a suitable solution to secure collaborative
data clustering in that accuracy is not adversely affected. The results obtained using
the SSCDM concept, in the context of collaborative clustering, corroborated the results
obtained using the SCDM approaches presented previously in Chapter 7, when using
the same threshold parameters for equivalent algorithms.

8.6.4 Collaborative Clustering Scalability

The scalability of the proposed solution to the collaborative clustering problem was eval-
uated by analysing the runtime as the number of participating parties (u) was increased.
Using SecureCL, increasing the number of participants would have an effect on the ef-
ficiency of: (i) the MUOPE key generation process (MUOPE Key Gen) and (ii) the
binding process for generating SSCDMs (SSCDM Gen). Experiments were conducted
using a range of values for u from 10 to 100 increasing in step of 5; for completeness
u = 2 and u = 4 were also considered. For the experiments a n = 7000 and a = 125 syn-
thetic dataset, distributed equally across the participants, was used, and the runtimes
recorded. The results concerning the MUOPE Key Gen scalability evaluation were as
discussed in Sub-section 6.5.5. The results for SSCDM Gen are shown in Figure 8.5. As
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Table 8.1: Cluster configuration for standard and secure DBSCAN (differing results
highlighted in bold font)

UCI Dataset
DBSCAN SDBSCAN

MPts ε Num. Sil. Num. Sil.

Clus. Coef. Clus. Coef.

1. Arrhythmia 2 600 6 0.472 6 0.472
2. Banknote Auth. 2 3 7 0.922 7 0.922
3. Blood Trans. 2 10 27 0.971 33 0.976
4. Breast Cancer 2 5 4 0.678 1 0.485
5. Breast Tissue 2 100 3 0.628 3 0.628
6. Chronic Kidney 2 70 19 0.970 19 0.970
7. Dermatology 2 10 16 0.853 15 0.881
8. Ecoli 2 60 1 -1.000 1 -1.000
9. Indian Liv. Pat. 3 40 7 0.789 7 0.789
10. Iris 5 2 2 0.722 2 0.722
11. Libras Mov. 5 5 11 0.715 11 0.715
12. Lung Cancer 2 20 1 0.053 1 0.053
13. Parkinsons 3 10 5 0.829 5 0.829
14. Pima Disease 5 20 4 0.691 4 0.691
15. Seeds 5 1 7 0.852 7 0.852

Table 8.2: Cluster configuration for standard and secure NNC (differing results high-
lighted in bold font)

UCI Dataset
NNC SNNC

σ Num. Sil. Num. Sil.

Clus. Coef. Clus. Coef.

1. Arrhythmia 1 452 1.000 452 1.000
2. Banknote Auth. 5 21 0.895 21 0.895
3. Blood Trans. 68 34 0.999 35 0.999
4. Breast Cancer 10 108 0.903 135 0.926
5. Breast Tissue 1 105 1.000 105 1.000
6. Chronic Kidney 100 243 0.999 243 0.999
7. Dermatology 18 32 0.919 37 0.915
8. Ecoli 1 2 0.353 2 0.353
9. Indian Liv. Pat. 99 100 0.997 100 0.997
10. Iris 1 15 0.922 16 0.927
11. Libras Mov. 4 224 0.969 224 0.969
12. Lung Cancer 1 32 1.000 32 1.000
13. Parkinsons 73 11 0.953 11 0.953
14. Pima Disease 100 22 0.956 22 0.956
15. Seeds 1 103 0.979 103 0.979

expected, the time complexity for both MUOPE key Gen and SSCDM Gen increased
linearly with the number of parties. However, the increased runtime was not significant.
The experimental results show that the MUOPE key can be effectively generated even
for large numbers of parties; in the case of 100 participants in 1541.39ms. The bind-
ing process runtime for horizontal and vertical partitioning was negligible, whilst for
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arbitrary partitioning this was higher due to the requirement for schema agreement.

Figure 8.5: Runtime to construct SSCDMs for different types of partitioning as the
number of participants (data owners) increases

8.6.5 Security

The security of SecureCL was evaluated by identifying potential attacks that could be
directed to breach the privacy of the outsourced data. For the purpose of this evaluation,
as in the case of similar evaluations reported on in previous chapters, the TPDM was
treated as a “passive adversary” in the context of what is usually referred to as the
“semi-honest model”. Recall that in this model the TPDM is expected to “honestly”
execute the SecureCL facilitated clustering; but during the process uses the results, and
any intermediate knowledge, to extract additional information about the parties’ data, as
defined in [17]. This was considered a reasonable assumption since the main objective of
the CSP (the DMaaS provider) is to deliver high quality and accurate services to clients
(data owners).

Using SecureCL attacks directed over the actual data are entirely precluded because
only a proxy for the data was exchanged, the SSCDM encrypted using MUOPE; no ac-
tual data (encrypted or otherwise) is therefore confided to the TPDM or shared with any
other participants (other data owners). Hence the only possible attacks are Cyphertext
Only Attacks (COAs) that can be launched when the attacker somehow has access to the
SSCDM. COAs are more likely to succeed when the attacker has background knowledge
about the original data (data frequency and/or distribution) that can be used to identify
cyphertexts associated with highly frequent data items. However, as a countermeasure
to COAs, the proposed MUOPE scheme reduces the information leakage in the gener-
ated cyphertexts by obscuring the data frequency and distribution as discussed earlier
in Chapter 6. Recall that the data distribution is obscured using the concept of message
space splitting and non-linear cypher space expansion, which is derived from the shared
data density, in such a way that message space intervals with high data density will
have larger (expanded) cypher space intervals. The data frequency is hidden using the
encryption function that generates different cyphertexts for the same plaintext value,
even when the same encryption keys are used. In the proposed solution no decryption
takes places on the TPDM side; thus providing for additional security. The TPDM, who
compares data records using the encrypted SSCDM and assigns records to appropriate
clusters, cannot initiate OAs that rely on the results of comparisons and the real data,
because the real data will not be available. The entire clustering process is delegated to
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the TPDM and each party will receive the cluster labels for their own dataset, hence a
non-honest data owner party cannot launch any form of attack.

8.6.6 Comparison of SSCDMs and GEDMs for Secure Collaborative
Data Clustering

This section considers the results from the comparative evaluation of the GEDM and
SSCDM concepts and their application in the context of secure collaborative data clus-
tering. The evaluation criteria was to consider the two approaches in terms of: (i) the
complexity of the data preparation process, (ii) the efficiency of the collaborative data
clustering, (iii) the accuracy of the obtained clustering configurations and (iv) the re-
quired memory resource. Security was not considered as an evaluation criteria as both
approaches utilised the same encryption scheme (the MUOPE scheme), although the
SSCDM approach does not required confiding of the data in any form to the TPDM or
with other participants. Each of the above criteria is considered in further detail in the
following sub-sections, Sub-section 8.6.6.1 to 8.6.6.4.

8.6.6.1 Comparison of SSCDMs and GEDMs In Terms of The Complexity
of The Data Preparation Process

This sub-section considers the complexity of the data preparation process when adopting
GEDMs, as presented previously in Chapter 6, and that of SSCDMs as presented in this
chapter. The complexity, in both cases, was measured in terms of the runtime required
to securely prepare datasets for outsourcing.

Using GEDMs for secure collaborative data clustering the preparation process com-
prises: (i) data encryption, (ii) DM calculation, (iii) DM encryption, (iv) density calcu-
lation (required to MUOPE key generation) and (v) participating in the pooling method
to construct the GEDM with reference to STP. The complexity of GEDM data owner
participation was evaluated using synthetic dataset ranging in size from 1, 000 to 10, 000,
increasing in steps of 1, 000. The results are presented in Figures 6.2 and 6.3.

The data owner participation using SSCDMs for secure collaborative data clustering,
encompasses: (i) CDM calculation, (ii) CDM encryption, (iii) density calculation and
(iv) participating in the binding process to construct SSCDMs. The same synthetic
datasets were used for the evaluation. The results obtained were as shown in Figures
8.3 and 8.5.

Table 8.3 shows the total runtime required to prepare the synthetic datasets in
both cases. The SSCDM generation and GEDM generation were not considered as the
runtimes were dependent on the number of parties involved (the presented runtimes are
the average of ten runs). From the table, it can be observed that the GEDM data owner
participation is higher than that required by the SSCDM, but closer inspection of the
table indicates that this difference is not significant. It can be observed from Figures
6.3(b) and 8.5 that the runtimes for the pooling process using GEDMs is higher than
the runtime required to generate the SSCDMs. However, it should also be noted that
the data preparation process is a one time process that is conducted before the data is
outsourced to the TPDM and thus it will not introduce any significant overhead in both
cases.

8.6.6.2 Comparison of SSCDMs and GEDMs In Terms of Efficiency

This sub-section considers the results from the comparative evaluation of the two secure
data clustering approaches in terms of runtimes. Tables 6.1 and 6.2, and Figure 8.4,
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Table 8.3: Average runtimes (Sec.) for GEDM and SSCDM data preparation process

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

GEDM 1.5 8.2 20.0 47.1 89.4 144.2 166.5 294.9 430.8 1013.6

SSCDM 0.3 0.4 0.6 0.8 1 1.1 1.3 1.5 1.7 1.8

summarise the runtime results obtained using NNC and DBSCAN in the case of both
GEDMs and SSCDMs. The reported results show that the runtimes required to clus-
ter datasets using algorithms that use the GEDM concept were much faster than the
algorithms that adopted the SSCDM concept; note that the runtime for the SSCDM
results is given in Seconds (Sec.) whilst for the GEDM results it is given in milli-seconds
(ms). The reason for this difference is due to the time required to utilise the SSCDM,
and the “chain feature”, to determine similarity. Therefore, for completeness, the time
required to use the GEDM and SSCDM for determining the similarity between the two
data records were also compared by considering datasets with 10K records but with
varying numbers of attributes from 10 to 100 increasing in steps of 10. Figure 8.6 shows
the required runtime for determining the similarity between the first and the last record
in each dataset. Regardless of the number of attributes, the GEDM features an almost
steady runtime as similarity can be simply “looked up”, whilst the runtime required
when using SSCDMs increased linearly with the number of attributes and was always
higher than the runtime associated with GEDMs.

Figure 8.6: Time (ms) for TPDM to determine the similarity between two records
using the SSCDM and the GEDM concepts

8.6.6.3 Comparison of SSCDMs and GEDMs In Terms of Accuracy

The clustering configuration results obtained using the secure clustering algorithms
founded on the SSCDM concept (SNNC and SDBSCAN) were compared with those
obtained using the equivalent algorithms founded on the concept of GEDMs (S-NNC
and S-DBSCAN). The correctness of the clusters produced in each case was again com-
pared with those obtained using standard equivalent algorithms (NNC and DBSCAN).
The same threshold parameters (ε, MPts and σ) were used as listed in Tables 6.1 and
6.2. It was found that the SSCDM approach produced clustering configurations com-
parable with those produced using GEDMs and standard equivalents, but not identical
(columns 5 and 7 of Table 8.1 and columns 4 and 6 of Table 8.2). The reason for these
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difference, as described in Sub-section 8.6.3, was due to the noise added to the MUOPE
scheme which accumulated because of the “chain feature” used to determine similarity.

8.6.6.4 Comparison of SSCDM and GEDM In Terms of Memory Resources

Both GEDMs and SSCDMs are 2D matrices. As described in Chapter 6, the GEDM’s
two dimensions are correlated with the number of records in the dataset; however, due
to the similarity around their leading diagonal, only the upper or lower triangle of the
GEDM is required. The SSCDM’s first dimension is correlated with the number of data
records (-1), whilst the second dimension is correlated with the number of attributes.
The number of elements within GEDMs and SSCDMs associated with a range of datasets
featuring different numbers of records and attributes is presented in Figure 8.7. From
the figure, it can be clearly seen that the GEDM is more suited to datasets where the
number of attributes is larger than the number of records, whilst the SSCDM is suited
to datasets where the number of records is larger than the number of attributes (the
more usual case).

Figure 8.7: Number of elements in GEDMs and SSCDMs for different sizes of data

8.7 Summary

This chapter has presented a mechanism, founded on SCDMs, whereby the data to be
outsourced is entirely replaced by a proxy for the data, the SSCDM, that supports the
required operations for a number of data mining algorithms. The SSCDM data proxy
is generated by the data owner in the form of CDMs that are then encrypted using the
MUOPE scheme to give SCDMs. Multiple SCDMs can then be combined, using a secure
binding process dictated by the nature of the data partitioning features within the global
dataset under consideration. The SSCDM is the only “data” sent to a TPDM.

This chapter also presented the SecureCL algorithm, a high-level algorithm directed
at collaborative secure data clustering. Two realisations of SecureCL were considered,
SDBSCAN and SNNC. The experimental evaluation demonstrated that the SecureCL
approach provides the following advantages:

1. The data clustering is entirely delegated to a TPDM without the requirement of
resorting to computationally expensive SMPC protocols or secret key sharing.

2. The quality of the data clustering is comparable to that produced using standard,
unencrypted methods.

3. No data owner participation is required once the data proxy encryption has been
completed.
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4. Non-honest data owner attacks, and OAs, are precluded since the third party does
not have access to data to conduct the OAs, and data owners are not involved in
the process of data clustering.

5. The solution can be scaled to a large number of participants.

In the following chapter the work presented so far is extended to encompass secure
neural networks. An approach is presented that allows model training and query predic-
tion to be securely delegated to a TPDM with minimal data owner participation. The
following chapter also presents the Modified Liu’s Scheme (MLS) that: (i) addresses
the cyphertext inflation problem associated with homomorphic multiplication and (ii)
facilitates secure data comparisons over cyphertexts without decryption.





Chapter 9

Secure Neural Network Using
Modified Liu’s Scheme

9.1 Introduction

In the thesis so far a range of secure data clustering mechanisms have been presented.
The fundamental idea was the usage of a data proxy coupled with an encryption mech-
anism or mechanisms. The data proxy in all cases considered so far has been some
form of distance matrix, culminating in the Super Secure Chain Distance Matrix (SS-
CDM) concept presented and evaluated in the preceding chapter. The first form of
distance matrix considered, the UDM, did not feature any encryption. However, the
subsequent, EUDM, EDM, GEDM, SCDM and SSCDM concepts featured data encryp-
tion using OPE schemes. More specifically Cryptographic Ensembles were used where
two encryption schemes were used in tandem; one to allow homomorphic addition and
multiplication, and one to allow comparison of records. For the first, Liu’s FHE scheme
was adopted. For the second, two alternative OPE schemes were proposed: (i) the Fre-
quency and Distribution Hiding Order Preserving Encryption (FDH-OPE) scheme for
the single data owner scenario, and (ii) the Multi-User Order Preserving Encryption
(MUOPE) scheme for the multiple data owner scenario.

However, the use of Cryptographic Ensembles is not ideal, it would be better to use
a single encryption mechanism. A further disadvantage with respect to FHE schemes,
such as Liu’s FHE scheme adopted with respect to many of the solutions presented in
the foregoing chapters, is the cyphertext inflation problem where the number of sub-
cyphertext increases with each homomorphic multiplication, and consequently there
is a corresponding increase in memory demand (as discussed in Sub-section 3.3.1.4 of
Chapter 3). The work presented in this chapter was directed at the identification of an
encryption scheme that is both fully homomorphic and addresses the cyphertext inflation
problem. The fundamental idea was to adapt Liu’s existing FHE scheme. The advantage
offered was that a far greater range of PPDM algorithms could be considered than the
clustering approaches mostly considered so far in this thesis. The chapter focuses on a
single data owner scenario as depicted in Figure 1.2-(a).

In summary the work presented in this chapter was directed at providing an answer
to the following subsidiary research question, originally posed in Chapter 1:

• Is it possible to tailor (or modify) any proposed HE scheme so that it can support
the operations required by a range of data mining algorithms, as opposed to only
a small number of specific algorithms?

153
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In more detail, this chapter presents the Modified Liu’s Scheme (MLS), a modifi-
cation of Liu’s original FHE scheme that addresses the cyphertext inflation problem
and also provides for secure data comparison over cyphertexts without decryption while
maintaining the same FHE properties. To address the cyphertext inflation problem a
dimensionality reduction mechanism was devised that used the trapdoor concept. The
proposed MLS, as far as the author is aware, is the first FHE scheme that provides
an order preserving feature. To illustrate the utility of MLS this chapter also presents
the Secure Neural Network (SecureNN) algorithm which uses Back-Propagation (BP)
for learning. SecureNN allows model training and query classification to be securely
delegated to a TPDM with minimal data owner participation. Using SecureNN, the
non-linear activation function is estimated using the low degree polynomial based on
Taylor series expansion [195]. For this to operate a limited amount of data owner par-
ticipation is required.

The remainder of this chapter is organised as follows. Section 9.2 presents MLS and
detail concerning the key generation, trapdoor calculation, the associated encryption
and decryption algorithms and dimensionality reduction algorithm. In Section 9.3 some
preliminaries concerning the Neural Network activation functions and learning methods
are briefly presented. Section 9.4 discusses methods for approximating the Sigmoid
function using a low degree polynomial founded on Taylor series expansion and using the
friendly computation function introduced in [196]. Privacy preserving BPNN, SecureNN,
is fully described in Section 9.5. Section 9.6 reports on the evaluation of SecureNN and
the experimental results obtained. Finally, Section 9.7 summarises and concludes the
chapter.

9.2 Modified Liu’s Scheme

The proposed Modified Liu’s Scheme (MLS), utilised by the proposed SecureNN ap-
proach, is a new scheme that modifies Liu’s original FHE scheme presented in [53]. The
modifications incorporated into the MLS have two primary objectives:

1. To address the cyphertext inflation problem; the exponential increase in the num-
ber of sub-cyphertexts that occurs whenever homomorphic multiplication (⊗) is
applied.

2. To provide an order preserving feature in the generated cyphers so as to allow
encrypted data comparison in a similar manner to the proposed FDH-OPE and
MUOPE schemes presented earlier.

The first is achieved using the concept of trapdoors. The second using conditions
imposed in key generation coupled with what is referred to as the ω-concept, the idea of
including a “gap” between sub-cyphertexts so that data ordering is preserved (but not
data equality). The original FHE properties of Liu’s scheme, that supports addition (⊕),
multiplication over cyphertexts (⊗), and multiplication of cyphertexts with plaintexts
values (~) as discussed in Sub-section 3.3.1.2, were maintained. Also, as in the case of the
original Liu’s FHE scheme, the proposed MLS does not require any noise management
technique and thus there is no limitation on the number of multiplications. The message
space and cyphertext space are as defined for the original scheme; R and Rm respectively.
The following sub-sections, Sub-sections 9.2.1 to 9.2.5, provide detail concerning MLS
key generation, trapdoor calculation, data encryption/decryption and the proposed sub-
cyphertext dimensionality reduction algorithm.
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9.2.1 Key Generation

The same Secret Key (SK) configuration as used in Liu’s original FHE scheme is used

in MLS, SK(m)=
[
(k1,s1,t1), . . . , (km,sm,tm)

]
. The first step required to generate the

secret key is to randomly select real numbers for SK in such a way that the following
conditions are satisfied:

1. The number of sub-cyphertexts generated by the MLS (m) is m > 3

2. The km, tm and sm is selected in such a way that km + tm + sm 6= 0

3. ki and si are positive values (1 6 i 6 m) and the GCDs (Greatest Common
Divisors) for ki and si are > 1 and not equal to si or ki.

4. There exists only one element q (1 6 q < m) such that tq 6= 0. This condition
was introduced in [21] for facilitating secure data comparison in a secure k-Means
data clustering context. In MLS tq = (sq + kq) × ω, where ω is the numeric gap
between cyphertexts included so that ordering is preserved. The ω value adopted
with respect to this chapter was 10ρ selected to create a large gap that permits
increasing the number of cyphertexts that can be generated for the same plaintext
value.

The values for the sub-keys K = {k1,. . . ,km−1} and S = {s1,. . . ,sm−1} are split into a
“secret key” and “shared key” part. The secret parts of the key are kept locally by the
data owner, while the shared parts are used to calculate trapdoors that allow the desired
sub-cyphertext “dimensionality reduction” (see Sub-sections 9.2.2 and 9.2.5). The list
of random numbers R = {r1, . . . , rm−1}, used for encryption purposes together with the
secret key (SK), are all positive numbers between 0 and ω. These random values are
generated on every occasion the data encryption function is called, and selected in such
a way that rq, corresponding to element q in the SK, is greater than the other generated
random values.

9.2.2 Trapdoors Calculation

Trapdoors, as noted above, are used for “reducing” the number of sub-cyphertexts after
each homomorphic multiplication (⊗). There is one set of trapdoors, Trap = {trap1,
. . . , trapm}, associated with a single secret key; there is a one-to-one correspondence
between the two. The last element of the set Trap, trapm, as will be demonstrated
later, is of particular significance and is designated as the kst value and is calculated
separately; thus for practical purposes Trap = {trap1, . . . , trapm−1}. The process for
producing the trapdoor list is given by Algorithm 29. The input is the secret key list
(SK(m)) generated as described in Sub-section 9.2.1. The algorithm commences by
calculating the “secret key” parts (secretS, secretK), as the Greatest Common Divisor
(GCD) of the sub-keys S = {s1, . . . , sm−1} and K = {k1, . . . , km−1} respectively, to
be retained locally by the data owner (lines 2 and 3). The list Trap and shared lists
(SharedS and SharedK) are then defined in lines 4 and 5 as sets of m−1 elements. The
set Trap holds the trapdoor values whilst SharedS and SharedK hold the shared part
of the secret key used to calculate the trapdoor held in Trap. The algorithm then loops
from i = 1 to i = m− 1 (lines 6 to 10) to calculate the shared part of the key, SharedS
and SharedK, that are then used to calculate the trapdoors as per the equations given
in lines 7 to 9. The kst value is calculated in line 11 as the sum of km, sm and tm.
The algorithm exits with the trapdoor list Trap and the kst value (line 12). The set
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Trap and kst can be shared with a TPDM so that the TPDM can reduce the number
of sub-cyphertexts after each homomorphic multiplication as described in Sub-section
9.2.5 below.

Algorithm 29 MLS trapdoor calculation

1: procedure TrapdoorsCalculation(SK(m))
2: secretS= GCD(s1, . . . , sm−1)
3: secretK= GCD(k1, . . . , km−1)
4: Declare Trap as a set of m− 1 elements to hold trapdoor values

5: Declare SharedS and SharedK as a set of m− 1 elements

6: for i = 1 to i = m− 1 do
7: sharedSi = si

secretS

8: sharedKi = ki
secretK

9: trapi = sharedSi
sharedKi

10: end for
11: kst = km + sm + tm
12: Exit with Trap and kst
13: end procedure

9.2.3 Encryption

The MLS encryption function uses SK(m) to convert a value v to m sub-cyphertexts
E = {e1, . . . , em}. The MLS encryption is given in Algorithm 30. The inputs are
the value to be encrypted v and secret key list SK(m). The algorithm commences by
generating a random number list R = {r1, . . . , rm−1} in such a way that the rq is bigger
than the remaining random numbers (as discussed with respect to the key generation
process in Sub-section 9.2.1). The cyphertext (E) is then dimensioned in line 3 as a set
of m elements, E = {e1, . . . , em}, that are calculated in lines 4 to 8. The variable l,
associated with each cyphertext, is then initialised (line 9). This variable is the cypher
level counter, the number of times that dimensionality reduction has been applied to the
cyphertext. There is no limit for the number of levels supported by the MLS, however,
the value of l is required for decryption purposes (see Sub-section 9.2.4 below).

The MLS encryption function associated with the conditions defined by the key
generation conditions presented in Sub-section 9.2.1 preserves the order of the plaintext
value. The proof of correctness for these features are given in Appendix A. The feature of
preserving the data ordering in the qth sub-cyphertext (eq) can be used to calculate the
absolute value of the cyphertexts, when the cypher is negative this can be derived by first
comparing the eq with the qth cyphertext of zero and then multiplying the cyphertext
by (-1) using the ~ HE property, as included in the Liu’s original FHE scheme (see
Sub-section 3.3.1.2).

9.2.4 Decryption

The decryption function decodes cyphertext E to its plaintext equivalent v, following
the process shown by the pseudo code given in Algorithm 31. The inputs are: the
cyphertext to be decrypted E, the secret key list SK(m) and secret part of the sub-keys
secretS and secretK. If the level number (E.l) is not zero, the dimensionality of the sub-
cyphertext has been reduced. The algorithm starts by calculating a new sub-cyphertext
value for each sub-cypher ei in E (lines 2 to 6). The algorithm then calculates t and
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Algorithm 30 MLS encryption

1: procedure Encrypt(v, SK(m))
2: Uniformly generate m-1 arbitrarily random numbers R = {r1, ..., rm−1}
3: Declare E as a set of m elements

4: e1 = (k1×t1×v+s1+k1×(r1−rm−1))
s1

5: for i = 2 to m− 1 do
6: ei = (ki×ti×v+si+ki×(ri−ri−1))

si
7: end for
8: em = km + sm + tm
9: E.l = 0

10: Exit with E
11: end procedure

s in lines 7 and 8 that are used in line 9 with the SK(m) to calculate the decoded
value v. The algorithm will exit in line 10 with the decoded value v. As the MLS
modifies Liu’s original FHE scheme encryption and decryption algorithm to facilitate
the dimensionality reduction and order preserving feature, a mathematical proof for the
correctness of the decryption algorithm is provided in Appendix A.

Algorithm 31 MLS decryption

1: procedure Decrypt(E,SK(m), secretS, secretK)
2: if E.l 6= 0 then
3: for i = 1 to i = m do
4: ei = (ei×(secretSE.l/secretKE.l))

tE.l

5: end for
6: end if
7: t =

∑m−1
i=1 ti

8: s = em
(km+sm+tm)

9: v =
(
∑m−1

i=1 ((ei×si)−(s×si))/ki)
t

10: Exit with v
11: end procedure

9.2.5 Sub-cyphertexts Dimensionality Reduction

MLS, as in the case of Liu’s scheme, performs cyphertext multiplication (⊗) by determin-
ing the outer product of the two cyphertexts to be multiplied. Given two plaintext values
v1 and v2, which are encrypted using MLS with the SK(m) to give E1 = {e11 ,. . . e1m}
and E2 = {e21 , . . . , e2m} respectively; the cyphertext multiplication, E1 ⊗ E2, is im-
plemented as: {e11 , . . . ,e1m} ⊗ {e21 ,. . . ,e2m}={e11 × e21 , . . . , e11 × e2m , . . . e1m × e21 ,
. . . , e1m × e2m}. Therefore, for one multiplication, the number of sub-cyphertext is in-
creased from m to m2 and continues to exponentially increase with each multiplication
operation. This cyphertext inflation, as noted earlier, causes a computational overhead
and also leads to a scalability issue. Using the proposed MLS the number of the gener-
ated sub-cyphertext, after a multiplication operation has been applied, is “reduced” back
to m using trapdoor information that allows re-encryption of the cyphertext (without
prior decryption); this is referred to, in this thesis, as “dimensionality reduction”.

Algorithm 32 presents the pseudo code for the dimensionality reduction process. The
algorithm takes as inputs: (i) a sequence of sub-cyphers E = {e1, . . . , em2}, (ii) a set of
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trapdoors Trap and (iii) the kst value. The algorithm commences (line 2) by declaring
a reduced cyphertext set RE of length m. Next, an index j for the cyphertext set E
and index z for reduced cyphertexts RE are declared (line 3). The algorithm then loops
through E (lines 4 to 15). Each iteration commences (line 5) with the creation of a
temporary cypher, Temp, made up of the consecutive m sub-cyphers in E starting with
index j. The mth sub-cypher in Temp, tempm, and the trapdoor value kst are used to
calculate the value for the parameter s (line 6). The algorithm then (line 7) defines the
variable subCypher in which to hold the current sub-cyphertext value once calculated.
Next the algorithm loops through Temp (lines 8 to 11) and determines the new sub-
cyphertext value and, on completion, assigns the value to the zth element of RE which
holds the cyphertexts as calculated so far. The values of index z and j are then updated
in lines 13 and 14. The loop continues until the set RE is calculated. In line 16, the
cypher level counter is incremented by one, E.l+ 1. At the end of the process the newly
calculated cyphertext, of length m, is returned (line 17). In the remainder of this chapter
the multiplication of two cyphertexts, followed by dimensionality reduction, is indicated
using the operator

⊗
. Recall that the operator ~ is used to refer to multiplying a

cyphertext with a plaintext value.

Algorithm 32 Dimensionality reduction process

1: procedure DimensionalityReduction(E, Trap, kst)
2: RE set of m elements to hold a re-encrypted cyphertexts

3: j = 1, z = 1
4: while j < |E| do
5: Temp = Copy sub-cyphertext in E started by jth index of length

m
6: s = tempm

kst (tempm ∈ Temp)
7: subCypher = 0
8: for i = 1 to i = m− 1 do
9: t = tempi − s~ trapi (trapi ∈ Trap)

10: subCypher = subCypher + t
11: end for
12: rez = subCypher (rez ∈ RE)
13: z = z + 1
14: j = j +m
15: end while
16: RE.l = E.l + 1
17: Exit with RE
18: end procedure

The correctness of the sub-cyphertext dimensionality reduction algorithm given in
Algorithm 32 is evaluated by decrypting the cyphertext result using the decryption
algorithm (Algorithm 31). The results of decryption have to match the result of the
basic multiplication operator (×). The mathematical proof of the correctness of the
sub-cyphertext dimensionality reduction process is provided in Appendix A.
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9.3 Neural Network Preliminaries: Activation Functions
and Learning Methods

The cyphertext inflation problem, addressed using MLS, is not a significant issue with
respect to the PPDM processes described in this thesis so far where the processes con-
sidered have been restricted to data clustering and on one occasion Nearest Neighbour
classification. For example in the case of the Secure k-Means clustering algorithm de-
scribed earlier, division (multiplication by a fraction) was used to determine the cluster
centroids, but this did not present a restrictive overhead. It would of course be prefer-
able if the encryption techniques presented in this thesis could also be applied to a more
sophisticated range of PPDM activities. A good exemplar of such a PPDM activity is
secure Neural Network (NN) training and utilisation. Therefore the remainder of this
chapter is devoted to how the MLS presented in the previous section can be used to
achieve secure NN. This section looks at some necessary preliminaries concerning NNs;
so as facilitate a complete understanding. The next section considers the various ele-
ments required to realise secure NN using the MLS. The following section presents the
SecureNN algorithm, which is then evaluated in the next section.

An Artificial Neural Network (ANN) comprises several neurons that can be connected
in different ways. The multiple-layer feed-forward NN orders the neurons into different
layers. The first layer is the input layer and the last layer is the output layer; the
layers between are the hidden layers. Each neuron has a threshold coefficient bias and
a weighted connection to all neurons in the next layer. The output of the ith neuron
is determined as per Equation 9.1 and Equation 9.2 where wji is the weight of the
connection between the ith and jth neuron and p is the number of neurons in the
predecessor layer where the ith neuron is located.

yi = f(xi) (9.1)

xi = θi + (

j=p∑
j=1

wji × yj) (9.2)

The function f in Equation 9.1 is the activation function; a mathematical equation
used to determine whether a neuron will be activated (“fired”) or not, based on the
relevance of the neuron’s input for the model prediction purposes. There are several
activation functions that can be used. Popular activation functions include: (i) Binary
Step, (ii) Hyperbolic Tangent (Tanh), (iii) Rectified Linear Unit (ReLu) and (iv) the
Sigmoid function. These are summarised in Figure 9.1.

Regardless of the specific activation function adopted, the weights and biases for the
activation function, associated with each neuron in the hidden layers and the output
layer, is derived using a learning (training) process. The adopted learning process varies
the weights and biases associated with an activation function so as to maximise query
classification effectiveness. The most commonly encountered learning process is the Back
Propagation (BP) algorithm [197], and this was therefore the learning process adopted
with respect to the SecureNN process described in more detail later in this chapter. BP
is a supervised learning method that varies the weights and biases to minimise the error
according to the difference between NN prediction (the output of the last layer) and
the target output. Gradient decent is used to propagate the prediction error back from
the output layer of the NN model, through the different neurons which were involved in
generating that output, back to the input. During this process the original weights and
biases associated with each neuron are adjusted. The BP learning may proceed in one of
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Figure 9.1: Popular activation functions

two basic ways: pattern mode or batch mode. In pattern mode BP weight updating is
performed after the presentation of each training example. In the batch mode of the BP
weight updating is performed after the presentation of all the training examples (thus
after a whole “epoch”). With respect to the proposed SecureNN process, described
in detail later in this chapter, pattern mode was used. Note that the gradient decent
requires the activation function to be differentiable (inconstant). Of the four example
activation functions listed earlier Binary Step activation is not differentiable. Of the
remainder, the Sigmoid activation is the most frequently adopted and was therefore the
activation function adopted with respect to the proposed SecureNN process presented
in this chapter. On completion of the training the NN can be used to assign class labels
to previously unseen examples. The derived activation functions collectively determine
the output of the ANN model as indicated by Equation 9.2.

9.4 Approximation of Sigmoid Activation Function

The Sigmoid activation function, given in Equation 9.3 and plotted in Figure 9.1, is a
non-linear function that cannot be directly calculated using the mathematical properties
of FHE schemes [198]. The reader may find it useful to refer back to Sub-section 3.2.4
of Chapter 3 where the HE limitations were discussed. The operation of the Sigmoid
activation function can be approximated, up to a certain accuracy, using a polynomial ap-
proximation method that uses Taylor series expansions [195] or Chebyshev polynomials
[159]. Essentially, the idea of approximating the Sigmoid activation function, as argued
in the literature [195], was to improve the efficiency of training NNs. This polynomial
approximation can be theoretically implemented using the HE properties. In practice,
this approximation needs to be done using a high degree polynomial for accurate results
to be obtained, which in turn increases the extensive amount of HE multiplication that
in turn increases the amount of noise and the size of cyphertexts.

f(x) = Sigmoid(x) =
1

1 + e−x
(9.3)

In the following sub-sections two Sigmoid approximations are discussed. The first
is the TaylorLinear ; the privacy preserving approximation of the Sigmoid activation
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function using Taylor series expansion. The second is the FriendlyFunction, introduced
in [196], that uses piecewise-linear approximation. With respect to the proposed Se-
cureNN, TaylorLinear approximation was used for training the SecureNN, with limited
data owner participation, and the FriendlyFunction to provide query classification (pre-
diction) services once the NN had been trained.

9.4.1 Sigmoid Approximation Using Taylor Series Expansion (Taylor-
Linear)

The Taylor series expansion is used to linearly approximate the e−x term, which is a
part of the Sigmoid activation function given in Equation 9.3. The e−x term can be
approximated as per Equation 9.4 where d is the degree of polynomial selected by the
data owner according to the required accuracy set against execution time.

e−x = 1− x+
x2

2!
− x3

3!
+ · · ·+ (−1)dxd

d!
(9.4)

Using these parameters the TaylorLinear approximates Sigmoid(x′), where x′ is en-
crypted using MLS, as follows:

1. Using the MLS homomorphic properties, the TPDM calculates the approximation
of 1 + e|x

′| using the Taylor polynomial given in Equation 9.5 where d represents
the maximum degree of the function. A range of d values were experimented with
d = 3, 5, and 7, the results are presented later in this chapter.

2. The data owner performs the “inversion” of the 1 + e|x
′| value to arrive at the

approximated value 1
1+e|x′|

.

3. If x′ > 0 the TPDM will calculate the activation function 1
1+e−x′ as 1 − 1

1+e|x′|
.

Otherwise the activation function is as approximated in step 2.

1+ex
′

= 1⊕(1⊕x′⊕ 1

2!
~(x′

⊗
x′)⊕ 1

3!
~(x′

⊗
x′
⊗

x′)⊕· · ·⊕ 1

d!
~(x′

⊗
. . . . . .

⊗
x′))

(9.5)
The absolute value of x′, |x′|, used in step 1 is calculated by multiplying x′ with −1,
using ~, when cypher x′ is less than the MLS cypher of zero. The comparison of x′ with
zero (in step 3) is conducted, using the MLS properties, by comparing the qth cypher
of x′ with qth sub-cypher of zero encrypted. Step 3 also relies on a mathematical rule
associated with the S function that allows the calculation of Sigmoid(x) and Sigmoid(-x)
as per Equation 9.6.

Sigmoid(−x) = 1− Sigmoid(x) (9.6)

From the above, TaylorLinear requires some data owner participation (step 2) but this
participation is minimal compared with alternative approaches used to approximating
Sigmoid, such as those given in [112] and [99], or approximating the ReLU as given
in [199]. The accuracy of using the TaylorLinear was evaluated by calculating the
error associated with the estimations, calculated as the difference between the Sigmoid
function and the estimated functions; this is reported on later in the chapter. Figure
9.2 shows a comparison of Sigmoid activation and its approximation using TaylorLinear
with a range of values for d, d = {3, 5, 7}, and different value function input x; from the
figure the magnitude of error can be observed in each case. The symbol ϕd is used to
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refer to the TaylorLinear approximation function where d is the degree of polynomial.
The figure also shows the error (δ) associated with the estimations. The experiments
show that the error of TaylorLinear when d = 3 is δ ∈ [−0.024, 0.024], greater than
when d = 5 and d = 7, δ ∈ [−0.0048, 0.0048] and δ ∈ [−0.0010, 0.0010] respectively.

9.4.2 Friendly Activation Functions (FriendlyFunction)

A secure activation function is also required in the context of the provision of query
classification/prediction services. TaylorLinear can again be used for this purpose. Al-
ternatively, the FriendlyFunction piecewise-linear approximation [196] may be used,
which will return 0 when x < −0.5, 1 when x > 0.5 and x + 0.5 when −0.5 6 x 6 0.5.
This offers the advantage, using the proposed MLS, that it can operate over encrypted
data without any data owner participation. However, it is not as accurate as TaylorLin-
ear. This is illustrated in Figure 9.3 which provides a comparison of different values of
the activation function input x, using the FriendlyFunction and the standard Sigmoid
activation function, and also shows the amount of error, δ, calculated as the difference
between the Sigmoid function and the FriendlyFunction estimation. The experiments
demonstrated that the FriendlyFunction provides the worst case; δ ∈ [−0.40, 0.40].

From the foregoing it can therefore be concluded that TaylorLinear approximation
provides a better fit with the Sigmoid function than FriendlyFunction approximation,
but requires some undesirable data owner participation; whilst the FriendlyFunction
does not provide as good an approximation, but requires no data owner participation.

9.5 Privacy Preserving Back-Propagation NN

The proposed SecureNN approach comprises a multi-layer feed-forward network with BP
learning which is both trained and used over encrypted data. The scenario considered
with respect to this chapter is the single data owner scenario where the data that used
to develop SecureNN belongs to a single data owner and only the data owner is allowed
to use (query) the model. In feed-forward neural networks, as noted earlier in Section
9.3, each neuron has a weighted connection to all neurons in the next layer. Neurons
in different layers are of different types. For example, neurons in the input layer are
distinguished by one input and one output (which is the same value). Neurons in the
hidden layers are more complex; they receive multiple inputs, compute the weighted
summation of these inputs, operate an activation function on the summation and then
output the value of the function. For the proposed SecureNN this function is a Tay-
lorLinear function. The proposed privacy preserving BP training mechanism is given
in Algorithm 33; the notation used is presented in Table 9.1. Recall that the operators⊗

, ⊗, ~, ⊕ and 	 indicate cyphertexts multiplication coupled with dimensionality re-
duction, cyphertexts multiplication without dimensionality reduction, multiplication of
a cyphertext with a plaintext value, cyphertext addition and cyphertext subtraction,
respectively. The inputs are:

(i) a set of n training examples (records), D′ = {r′1, . . . , r′n}, where each record r′i
features a set of a attributes {r′i,1, . . . , r′i,a};

(ii) a maximum number of epochs, maxEpoch;

(iii) a learning rate η;

(iv) a momentum µ;
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Figure 9.2: Comparison of the TaylorLinear (ϕ) approximations, and their error of
estimation, with the Sigmoid activation function
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Figure 9.3: Comparison of the FriendlyFunction approximations, and their error of
estimation, with the Sigmoid activation function

(v) a set of n records that represent the target class labels for the training examples,
T ′ = {t′1, . . . , t′n}, each featuring c attributes t′i = {t′i,1, . . . , t′i,c} where c is the
number of classes, in such a way that only one element in t′i is 1 which represents
the target class label;

(vi) an input-hidden-output network topology, L = {l1, . . . , lb}, defined by the data
owner, where |L| = b indicates the number of layers,

∑i=b
i=1 li indicates the total

number of neurons, and li indicates the number of neurons in the ith layer;

(vii) an error threshold ε′; and

(viii) the d value for the TaylorLinear approximation (ϕd).

The training data D′, set of class labels T ′ and the error threshold ε′ are all encrypted
using the proposed MLS. The output is a set of weights W ′ and a set of biases Θ′, for
the network described by L, encrypted using MLS.

As in the case of standard BP learning [197], the proposed privacy preserving BP
learning is comprised of two stages: (i) feed-forward (lines 8 to 15 of Algorithm 33) and
(ii) error BP (lines 16 to 34). The algorithm commences, line 2, by defining the sets
W ′ and Θ′ and initialising them with random values encrypted using MLS; and then,
line 3, defining the sets ∆W ′ and ∆Θ′ and initialising them with the value 0 encrypted
using MLS. The overall error value so far (the overall loss function), overallError′,
is initialised with the MLS encrypted equivalent of 0 (line 4). The variable oneE′ is
assigned the MLS encrypted equivalent of 1 (line 5). The training is then commenced
(line 6), the algorithm iterates until the specified maximum number of epochs is reached
(maxEpoch), or the overallError′ value becomes less than ε′. On each iteration each
sample (record) in D′ is processed in turn.
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Table 9.1: Notation used in Algorithm 33

Symbol Definition

r′i,j The encrypted values of the jth attribute in the ith record of the en-
crypted training set D′.

t′i,j The encrypted target class value of the jth neuron in the output layer
for the ith encrypted data sample r′i ∈ D′.

y′ ji The encrypted output of the ith neuron in the jth layer.

Θ′ The set of encrypted bias values {θ′ 11 , θ′ 12 , . . . }.
θ′ ji The encrypted bias value of the ith neuron in the jth layer.

W ′ The set of encrypted weight values {w′ 11 , w′ 12 . . . }.
w′ ix y The encrypted weight connecting the xth neuron in the ith layer with

the yth neuron in the following layer (i+ 1th layer).

δ′ ji The encrypted error value corresponding to the ith neuron in the jth
layer.

∆W ′ The set of encrypted weight differences in the network, one to one cor-
respondence with W ′.

∆w′ ix y The encrypted value of change in weight that connects the xth neuron
in the ith layer with the yth neuron in the following layer (the i + 1th
layer).

∆Θ′ The set of encrypted bias differences in the network, one to one corre-
spondence with Θ′.

∆θ
′ j
i The encrypted value of change in bias for the ith neuron in the jth layer.

During the feed forward stage the output for the input layer neurons are matched
to the attribute values in r′sample (lines 8 to 10 of Algorithm 33); a is the number of
attributes in the attribute set (the number of values in each record/sample and thus
the number of neurons in input layer). The remaining layers, the hidden layers and
the output layer, are then processed in lines 11 to 15 and outputs assigned to the
neurons; b is the number of layers in the topology as specified by the data owner. The
outputs of the neurons in the hidden layers are calculated by multiplying the output of
neurons in the previous layer with the weights connecting the two layer neurons and then
adding the value of the neuron bias. The results are used as input for the TaylorLinear
approximation of the Sigmoid function with degree d, ϕd, line 13.

Once the feed forward stage is completed the BP is commenced. In the BP stage, the
network weights and biases are adjusted to minimise the error function. With respect to
the proposed SecureNN the BP used pattern mode, or what is also sometimes referred
to as the online method, where the weights and bias updates are applied after the pre-
sentation of each training sample. The gradient descent (∂Error∂y ), the derivation of the
error with respect to the NN output (prediction), for each neuron in each layer is calcu-
lated starting with the output layer and moving backwards to the input layer following
a process similar to the BP process presented in [197]. However, the mathematical op-
erations are replaced with homomorphic equivalent operation using the properties of
the proposed MLS. The calculated gradient is then used to update weights and biases.
The process is commenced with the output layer in lines 16 to 19 of Algorithm 33, by
calculating the gradients δ; c is the number of classes featured in the input data that also
matches the number of neurons in the output layer. Next, lines 20 to 24, the gradient of
the intermediate neurons are calculated, starting with the layer immediately preceding
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the output layer; lj is the number of neurons in the jth layer as specified by the data
owner in network topology L. The gradients are then used to update the weights and
biases as per the equations in lines 27 and 28 for updating biases, and the equations
in lines 30 and 31 for updating the weights. For SecureNN, the momentum µ is used
to accelerate the learning process. As the iterative process of incremental adjustment
continues the weights and biases will gradually converge to the a locally optimal set of
values that minimises the loss function (error); in the best case scenario globally optimal
values will be reached.

Once a single record/sample has been processed the associated error is determined
(line 35) which is then included in the overall error so far (line 36). The difference
between the NN predictions and target labels T , the loss or error function, for each
training sample is calculated using Equation 9.7; where n is the number of data samples
in D′. Once an epoch has been completed an end of epoch overall error is calculated
(line 38) which is compared to the threshold ε′, if this is less than the threshold the
algorithm completes with the current set of weights and biases. Otherwise the process
repeats.

overallError =
1

2× n

s=n∑
s=1

i=c∑
i=1

(yi − ti)2 (9.7)

As noted in the introduction of this chapter the SecureNN is directed to a single data
owner scenario where one data owner outsources their data. In the proposed SecureNN
the query prediction/classification service is provided to the same data owner who owns
the MLS encryption key and thus the QO in this case is also the data owner. As a
consequence, there is no need for QO authorisation or query control. Algorithm 34
shows the Query prediction service process. The inputs are the query record (QRec)
belonging to the data owner, the approximation function to be used and the degree
of polynomial d used to approximate the TaylorLinear. The algorithm commences
with the data owner pre-processing and encrypting the QRec using the MLS key used
to encrypt the data to give QRec′ (lines 2 and 3). The TPDM is then fed-forward
through the NN using the encrypted QRec′ as specified in lines 8 to 15 of Algorithm
33. The activation function to be adopted is as specified by the data owner in the
ApproximationFunction (lines 4 and 5). The TPDM then determines the class label of
the Query record from the output layer neurons and sends the result back to the data
owner (lines 6 and 7).

9.6 Experimental Results

This section reports on the analysis and evaluation of the proposed MLS encryption
and the SecureNN process. For the evaluation, two categories of datasets were used;
synthetic datasets and benchmark datasets taken from the UCI data repository [50].
The synthetic datasets were used to evaluate the performance of the proposed MLS
while the UCI datasets were used to evaluate the SecureNN process. The UCI dataset
were selected so that a variety of sizes (number of records and number of attributes) and
number of classes could be considered. Both MLS and SecureNN were implemented in
the Java programming language. All experiments were run on an iMac (3.8 GHz Intel
Core i5) running under the macOS High Sierra operating system with 8GB of RAM, and
conducted using TCV; the results presented in the following sub-sections are therefore
average values. Table 9.2 listed the UCI datasets used, the number of samples (records)
in each dataset, the network (input-hidden-output layer) topology, the learning rate η
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Algorithm 33 Secure NN Training

1: procedure SecureTraining(D′,maxEpoch,η,µ,T ′,L,ε′,d)
2: Initialise W ′ and Θ′ randomly and encrypt values using MLS

3: Initialise ∆W ′= Encrypt(0) and ∆Θ′=Encrypt(0)
4: overallError′= Encrypt(0) . Algorithm 30
5: oneE′= Encrypt(1)
6: for epoch = 1 to epoch = maxEpoch do
7: for sample = 1 to sample = n do
8: for i = 1 to i = a do
9: y′ 1i = r′sample,i (where r′sample ∈ D′)

10: end for
11: for j = 2 to j = b do
12: for i = 1 to i = lj do

13: y′ ji = ϕd((w′ j−11 i

⊗
y′ j−11 ⊕ · · · ⊕ w′ j−1lj−1 i

⊗
y′ j−1lj−1

)⊕ θ′ ji )
14: end for
15: end for
16: for att = 1 to att = c do
17: e′ = (y′ batt 	 t′sample,att) where t′sample ∈ T ′

18: δ
′ b
att = e′

⊗
(y′ batt

⊗
(oneE′ 	 y′ batt))

19: end for
20: for j = b− 1 to j = 2 do
21: for i = 1 to i = lj do

22: δ′ ji = y′ ji
⊗

(oneE′ 	 y′ ji )
⊗

[(w′ ji 1

⊗
δ′ j+1

1 ) ⊕ · · · ⊕
(w′ ji lj+1

⊗
δ′ j+1
lj+1

)]
23: end for
24: end for
25: for j = b to j = 2 do
26: for i = 1 to i = lj do

27: ∆θ′ ji = (η ~ δ′ ji )⊕ (µ~ ∆θ′ ji )

28: θ′ ji = θ′ ji ⊕∆θ′ ji
29: for k = 1 to k = lj−1 do

30: ∆w′ ji k = (η ~ δ′ ji
⊗
y′ j−1k )⊕ (µ~ ∆w′ ji k)

31: w′ ji k = w′ ji k ⊕∆w′ ji k
32: end for
33: end for
34: end for
35: Error′ = [(y′ b1 	 t′sample,1)

⊗
(y′ b1 	 t′sample,1)]⊕ · · · ⊕

[(y′ bc 	 t′sample,c)
⊗

(y′ bc 	 t′sample,c)]
36: overallError′ = overallError′ ⊕ Error′
37: end for

38: overallError′ =
1

2× n
~ overallError′

39: if overallError′ < ε′ then
40: Exit with W ′ and Θ′

41: end if
42: end for
43: Exit with W ′ and Θ′

44: end procedure
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Algorithm 34 Secure query classification process using SecureNN

1: procedure QueryPrediction(QRec, ApproximationFunction, d)
2: Data owner: pre-process QRec
3: Data owner: QRec′= Encrypt (QRec) . Algorithm 30
4: TPDM: The activation function ← as specified in ApproximationFunction.
5: TPDM: Feed-forward trained NN using QRec′. . Algorithm 33
6: TPDM: PredictedLabel= Determine the predicted class label by comparing

cyphertexts output of the output layer.
7: Exit with PredictedLabel
8: end procedure

and the momentum µ parameter settings that were used for the experimentations. The
number of epochs was fixed at MaxEpoch = 100 in all cases, and the NN weights and
biases were initialised randomly from the range [−0.4, 0.4] which were then encrypted
using MLS. In practice these parameter settings would be pre-defined by the data owner.
The datasets were normalised using Minmax data normalisation. The SecureNN was
trained using the TaylorLinear d = 3 and ϕ3, because this was the poorest approximation
as depicted in Figure 9.2. In the prediction stage the ϕ3 and FriendlyFunction were used.

In the following sub-sections the results of the experimental evaluation are presented.
The objectives of the evaluation were as follows:

1. MLS performance: To evaluate the performance of MLS encryption by measur-
ing the runtimes required for: (i) MLS key generation; (ii) MLS data encryption;
(iii) MLS data decryption; (iv) MLS homomorphic addition (⊕); multiplication
with plaintext (~) and multiplication with cyphertext (

⊗
); and (v) MLS data

comparison. The results are presented and discussed in Sub-section 9.6.1.

2. SecureNN evaluation: To evaluate the operation of SecureNN in terms of: (i)
data owner participation, (ii) the computational overhead of SecureNN in compar-
ison with standard NN (SecureNN efficiency), (iii) effectiveness (query classifica-
tion/prediction accuracy) and (iv) security. Each is discussed in further detail in
Sub-sections 9.6.2 to 9.6.5.

Table 9.2: Experiment datasets and neural network parameters

No. UCI Dataset
Num. of Topology

η µ
Sample {input, hidden, output}

1. Banknote Auth. 1372 {4, 5, 2} 0.01 0.7
2. Blood Trans. 748 {4, 5, 2} 0.02 0.8
3. Breast Cancer 198 {33, 10, 2} 0.20 0.9
4. Breast Tissue 106 {9, 6, 6} 0.20 0.9
5. Chronic Kidney 400 {24, 5, 2} 0.20 0.9
6. Dermatology 366 {34, 5, 6} 0.20 0.8
7. Ecoli 336 {8, 5, 8} 0.30 0.8
8. Iris 150 {4, 5, 3} 0.20 0.7
9. Libras Mov. 360 {90, 10, 15} 0.30 0.5
10. Parkinsons 195 {22, 5, 2} 0.30 0.9
11. Pima Disease 768 {8, 5, 2} 0.20 0.9
12. Seeds 210 {7, 5, 3} 0.20 0.9
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9.6.1 MLS Performance Evaluation

In this sub-section the evaluation of the proposed MLS is presented. MLS was evaluated
by analysing the performance of the various supported MLS operations and, where ap-
propriate, comparing this performance with the performance using Liu’s original FHE
scheme presented in Sub-section 3.3.1. Performance was measured in terms of the run-
time required to: (i) generate the MLS key, (ii) encrypt data, (iii) decrypt data, (iv)
utilise the FHE mathematical properties (⊕,

⊗
,~) and (v) secure comparison. In the

experiments the number of sub-cyphertexts (m) considered was m = {3, 9, 15}. The
recorded runtimes to generate the MLS key were 1.16ms, 1.37ms and 1.44ms form = 3, 9
and 15 respectively. These results demonstrated that the runtimes for generating the
MLS keys increased with number of sub-cyphertexts m, the number of elements in the
secret key list SK(m), this was to be expected.

The performance associated with: MLS encryption and decryption, the HE math-
ematical properties (⊕,

⊗
and ~) and order preserving properties were also measured

in terms of runtimes to perform the operations in the context of different sizes of data
records and the different numbers of sub-cyphertexts featured in MLS. The results were
shown in Figure 9.4. As in the case of Liu’s original FHE scheme, data encryption,
decryption and the homomorphic operations feature “linear” processing time in rela-
tion to the size of the data and number of sub-cyphertexts m. However, the runtimes
were negligible; using MLS a record with 1, 000 attributes can be encrypted in 0.85ms
when m = 15, and decrypted in 0.52ms. The HE mathematical properties (⊕,

⊗
and

~) were more expensive, in terms of runtime, than encryption and decryption although
the multiplication runtime was much higher than the addition because of dimensional-
ity reduction. The runtime associated with the HE mathematical operations increased
with number of attribute featured in the data and the number of sub-cyphertexts in
the MLS. However, the times reported, as shown in Figure 9.4, were again negligible.
The secure comparison of two MLS cyphertexts can be achieved by comparing the qth
sub-cyphertexts, therefore, regardless of the number of sub-cyphertexts (the value of m)
the recorded data comparison runtime was steady at 0.2ms.

The performance of MLS was also compared to the Liu’s original FHE scheme. The
comparison considered the runtime required for the two schemes to: (i) generate the
key, (ii) perform encryption and decryption considering datasets that featured different
numbers of attributes and different numbers of sub-cyphertext and (iii) perform the HE
mathematical properties supported by both schemes. The results for the Liu’s original
FHE scheme were presented in Sub-section 3.3.1.4. The performance for key generation,
encryption, decryption and additions were comparable to that reported for MLS. How-
ever, the runtimes for MLS multiplication that included dimensionality reduction (

⊗
)

were much higher than the original Liu’s FHE scheme multiplication ⊗. The difference
is the cost of the MLS feature to reduce the number of Sub-cyphertexts from m2 to m.

9.6.2 Data Owner Participation

This sub-section considers the amount of data owner participation required to: (i) pre-
pare the data prior to network generation and (ii) train the network using the proposed
SecureNN framework. The results for data owner preparation are presented in Table
9.3. The data preparation comprised: Minmax data normalisation (column 2); data
encryption, excluding MLS key generation and trapdoors calculation (column 3); and
preparation of the training and testing samples to facilitate stratified TCV (column
4). Inspection of the table shows that the data owner participation in preparing data
for network generation was negligible and did not introduce any overhead on behalf of
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Figure 9.4: The MLS performance evaluation for different value of m and different
numbers of attributes in a record, [top left] Encrypt(v); [top right] Decrypt(E);
[middle left] addition: E1 ⊕ E2; [middle right] multiplication: E1

⊗
E2; [bottom

left] multiplication c ~ E1 and [bottom right] cyphertexts comparison. The values
correspond to runtime is averaged over 10 iterations

the data owner. The largest dataset “Libras Mov” only required, on average, 3.86ms
for data normalisation, 3.84ms for data encryption and 6.98ms for stratified CV data
preparation.

The data owner participation with respect to network training is given in column
4 of Table 9.4 measured in terms of the average runtime over all TCV. Recall that
data owner involvement in the model training is limited to division (inversion) opera-
tions with respect to the TaylorLinear approximation of the Sigmoid activation function
(whenever it is encountered). Query prediction services, provided by a TPDM using the
constructed SecureNN model, can be conducted using two different methods differing in
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Table 9.3: Runtime for data owner data preparation and standard NN

No. UCI Dataset
Preparation Data CV Standard NN

(ms) Encryption time Exe. time
(ms) (ms) (ms)

1. Banknote Auth. 1.08 1.59 5.63 632.64
2. Blood Trans. 1.10 1.08 1.95 365.82
3. Breast Cancer 2.21 2.80 1.96 268.58
4. Breast Tissue 1.20 0.47 0.64 124.32
5. Chronic Kidney 1.51 2.17 3.95 275.72
6. Dermatology 1.75 2.58 3.92 375.04
7. Ecoli 0.74 0.95 1.84 313.13
8. Iris 0.52 0.28 0.64 101.71
9. Libras Mov. 3.86 3.84 6.98 1202.13
10. Parkinsons 1.93 0.84 1.35 159.41
11. Pima Disease 1.79 3.00 3.04 410.20
12. Seeds 0.75 0.96 1.02 141.08

Table 9.4: Runtime for a SecureNN machine learning operating statistics

No. UCI Dataset
SecureNN

Total Exe. time Data Miner Data owner
(Sec.) proc. (Sec.) partic. (Sec.)

1. Banknote Auth. 487.13 249.49 237.64
2. Blood Trans. 283.69 155.21 128.49
3. Breast Cancer 195.32 132.67 62.65
4. Breast Tissue 67.25 36.41 30.84
5. Chronic Kidney 189.05 118.36 70.69
6. Dermatology 263.81 172.58 91.23
7. Ecoli 240.77 141.09 99.69
8. Iris 065.69 34.45 31.24
9. Libras Mov. 873.85 656.75 217.11
10. Parkinsons 91.50 58.73 32.77
11. Pima Disease 312.84 178.40 134.44
12. Seeds 094.69 53.22 41.47

the way the activation function is approximated and the amount of data owner involve-
ment, TaylorLinear and Friendly Function. TaylorLinear approximation requires data
owner participation. As in the case of training the model; the time complexity for data
owner participation using TaylorLinear will be in the order of O(|neurons|). The data
owner will decrypt approximated values for the activation function, inverse the value,
encrypt the results and then return it to the TPDM. The data owner participation for
predicting one query record label in the “Libras Mov” dataset, using a network topology
of {90, 10, 15} (see Table 9.2) was 0.14ms. FriendlyFunction approximation can be en-
tirely conducted using the homomorphic operations facilitated by the MLS properties,
therefore no data owner participation was required.
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9.6.3 SecureNN Efficiency

The total runtime for training each network using SecureNN is given in column 2 of
Table 9.4. Column 5 of Table 9.3 gives the runtime to train the same network without
using any encryption. Note that the runtimes given in column 2 are in seconds (Sec.),
whilst those given in column 5 are in milli-seconds (ms). As expected, training a NN
over encrypted data introduces a computational overhead. The difference is due to com-
putation complexity of the FHE mathematical properties and the linear approximation
of the Sigmoid function using TaylorLinear. However, it is argued here, that this is not
an unacceptable overhead, even for the largest dataset, the “Libras Mov” dataset, the
network was trained in 873.85Sec.

With respect to the computational overhead of using a trained SecureNN when it
goes into usage, compared to standard NN (over plaintext neural parameters), further
experiments were conducted using a single machine, which indicated that the runtime
was negligible. The “Libras Mov” dataset was considered in this respect as it had
the largest number of neurons in the NN topology and the largest number of class
labels (see Table 9.2). Using TaylorLinear approximation where d = 3, 1, 641, 256
predictions could be made per hour, whilst when using FriendlyFunction approximation
4, 143, 012 predictions could be made per hour. Using standard NN, coupled with the
standard using Sigmoid function, 655, 463, 103 predictions can be made per hour. It can
therefore be concluded that the standard NN is more efficient than the SecureNN using
TaylorLinear and FriendlyFunction, although the FriendlyFunction is more efficient
than the linear estimation using TaylorLinear.

9.6.4 Accuracy

The classification accuracy obtained using standard NN was compared with the accu-
racy of the proposed SecureNN approach using both TaylorLinear and FriendlyFunction
approximation using the same network topology and parameters in all cases. The in-
tuition was that the SecureNN should produce comparable results to those obtained
using the standard NN; if so the SecureNN could be said to be operating correctly. The
effectiveness evaluation metrics used were: (i) Precision (P), Recall (R) and the F1
measures [194] and (ii) a comparison of the value of the loss function calculated for
different numbers of epochs. To provide a precise and fair comparison, the performance
measures were calculated over the same test set for all activation functions (Sigmoid,
TaylorLinear and FriendlyFunction). This approach was previously used in [159, 200]
for comparing performances of different activation functions.

Table 9.5 shows the P, R and F1 values obtained when using the standard and
SecureNN frameworks. From the table it can be seen that:

Precision: For ten of the datasets considered the precision (P) values obtained for
all three approaches was more-or-less equal. For the remaining two cases, “Blood
Trans” and “Libras Mov”, the values obtained using TaylorLinear were comparable
with the standard approach; whilst using FriendlyFunction the precision values
obtained were slightly lower.

Recall: In terms of recall (R), the values obtained were similar in nine cases. In the
remaining three cases, two cases, “Breast Tissue” and “Libras Mov”, the Taylor-
Linear produced comparable results to Sigmoid, whilst FriendlyFunction produced
slightly lower values. In the case of the “Blood Trans” dataset, the recall values
obtained using TaylorLinear and the Sigmoid function were equal, however the
value obtained using FriendlyFunction was slightly higher.
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F1: With respect to the F1 values obtained, these were comparable in ten cases; while
in one case,“Breast Tissue”, TaylorLinear and FriendlyFunction produced identi-
cal values slightly lower than the Sigmoid function. In the remaining case, “Libras
Mov”, the TaylorLinear was comparable to the Sigmoid function and Friendly-
Function was slightly lower.

The overall average values for precision were 0.82, 0.82 and 0.79 for Standard NN
using the Sigmoid function, SecureNN using TaylorLinear and SecureNN using Friend-
lyFunction, respectively. The overall average values for recall were 0.80, 0.80 and 0.79,
respectively; and the average F1 values were 0.80, 0.80 and 0.78. Thus it can be con-
cluded that the SecureNN approach, coupled with TaylorLinear approximation, pro-
duced comparable results to Standard NN (without encryption). The results produced
using FriendlyFunction approximation were not as good, because the approximation was
coarser than the values produced using TaylorLinear approximation (as show in Figures
9.2 and 9.3).

The loss function values obtained using SecureNN coupled with TaylorLinear and
FriendlyFunction were compared with those produced using standard NN with respect
to different numbers of epochs. Figure 9.5 shows the average loss function for the UCI
datasets for standard and SecureNNs for different epochs from 10 to 190 increasing
in steps of 20. From the figure it can be seen that in all cases the FriendlyFunction
produced the worst performance. The operation of the proposed SecureNN framework
coupled with TaylorLinear approximation and Standard NN was comparable. Thus it
can be concluded that TaylorLinear approximation can approximate the value of the
Sigmoid function while at the same time maintaining the overall accuracy of the trained
models.

Table 9.5: Prediction accuracies using: (i) standard NN with Sigmoid activation, (ii)
SecureNN with TaylorLinear approximation and (iii) SecureNN with FriendlyFunction

approximation.

DataSet
Standard NN Secure NN

P R F1
TaylorLinear FriendlyFunction
P R F1 P R F1

1. Banknote Auth. 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
2. Blood Trans. 0.73 0.54 0.51 0.71 0.54 0.51 0.61 0.65 0.55
3. Breast Cancer 0.65 0.65 0.66 0.65 0.65 0.66 0.66 0.67 0.67
4. Breast Tissue 0.66 0.64 0.64 0.61 0.61 0.57 0.60 0.57 0.57
5. Chronic Kidney 0.97 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.98
6. Dermatology 0.94 0.94 0.94 0.96 0.96 0.97 0.95 0.94 0.95
7. Ecoli 0.62 0.59 0.61 0.62 0.62 0.62 0.58 0.59 0.59
8. Iris 0.97 0.97 0.97 0.98 0.98 0.98 0.97 0.97 0.97
9. Libras Mov. 0.78 0.76 0.76 0.77 0.77 0.77 0.70 0.67 0.68
10. Parkinsons 0.85 0.82 0.84 0.85 0.83 0.85 0.82 0.83 0.83
11. Pima Disease 0.75 0.72 0.74 0.75 0.70 0.72 0.75 0.71 0.72
12. Seeds 0.94 0.94 0.95 0.94 0.94 0.95 0.91 0.91 0.91

Average 0.82 0.80 0.80 0.82 0.80 0.80 0.79 0.79 0.78
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Figure 9.5: Loss function for three NN for different number of epochs

9.6.5 Security

Using the proposed SecureNN framework the TPDM is considered to be a “Honest but
Curious” party; thus the semi-honest security model where the TPDM executes the
stated algorithm without deviation and does not fail to provide the required service is
again applicable. At the same time the TPDM is curious, in the sense that it would
“look” at the available data and calculated results. The security of the proposed Se-
cureNN framework was thus evaluated in terms of the semi-honest model by identifying
potential attacks that can be instigated during model training and provision of the
query prediction service. Model training was performed on encrypted data, encrypted
data labels and encrypted NN parameters, thus the only two potential forms of attack
are: a Cyphertext Only Attack (COAs) available whenever adversaries have access to
such cyphertexts or a Model Inversion Attack (MIA); as in the case of earlier proposed
encryption schemes.

The proposed MLS, as in the case of Liu’s original FHE scheme, is a probabilistic
scheme that produces different cyphertexts for the same plaintext value each time it is
applied, even when using the same secret key. This feature means that MLS cyphers are
semantically secure, hence accessing cyphertexts does not provide any useful information
with respect to the associated plaintext values from the perspective of an adversary.
COAs are more likely to succeed when attackers have background knowledge of the
data frequency of the original data values. Knowledge associated with the ordering
feature of some order preserving encryption schemes might allow an adversary to infer
the ranges containing dense data. Alternatively, frequency analysis could allow attackers
to highlight cyphertexts with the same frequency as plaintexts (if such plaintexts were
available) and then identify cyphertexts that have the same frequency. However, this
will not be possible in the case of MLS, because different cyphertexts are produced for
the same plaintext values that makes such inference hard. The entire model training
was conducted over MLS cyphers and no decryption took place at the TPDM side which
implies even more security. Hence it is argued that the proposed SecureNN framework,
founded on MLS, is secure with respect to COAs.

With respect to the query classification/prediction services provided by a TPDM,
in the context of the SecureNN framework, there were two issues of concern: (i) the
presence of sensitive information in prediction requests (query), and (ii) the protection
of the knowledge embedded in the trained model to avoid an MIA. In the context of
the first concern, prediction requests are sent in encrypted form by the data owner, the
TPDM performs the requested inference over the encrypted data and then produces an
encrypted prediction that can only be decrypted by the data owner who is also the query
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owner. In the context of the second concern, all weights and biases are encrypted using
MLS which, as noted above, is encrypted and has semantic security features; therefore
MIAs cannot be instigated without access to the required encryption key.

9.7 Summary

This chapter has presented the Modified Liu’s Scheme (MLS), a novel FHE scheme
that addresses the cyphertexts inflation problem and supports secure data comparison.
In Liu’s original FHE scheme, the number of sub-cyphertexts increased exponentially
with each homomorphic multiplication from the initial m sub-cyphertexts to m2 for
one multiplication. In MLS, the number of sub-cyphertexts is reduced back to m using
a dimensionality reduction algorithm that allows the re-encryption of the cyphertexts
resulting from homomorphic multiplication, without decryption, using the concept of
trapdoors. The ordering of data is also preserved using MLS. The idea relies on in-
troducing conditions over the key generation process and usage of the ω-concept; the
adding of a “gap” between generated cyphers in order to allow the inclusion of some
noise without compromising the data ordering. Mathematical proofs are presented in
Appendix A for correctness of the data encryption/decryption, dimensionality reduction
and order preservation processes.

The chapter also presented the SecureNN framework that utilised the MLS to allow
for privacy preserving multi-layer Neural Network (NN) learning with back-propagation.
Using SecureNN, coupled with MLS a NN model was training and the activation function
approximated with little or no data owner participation. The model is trained using
encrypted data and encrypted network parameters; similarly the model can be used
to provide secure query prediction services for the same data owner. The evaluation
demonstrated that the training of networks and their usage does not entail any significant
computational overhead over the data owner while maintaining a comparable accuracy
to that obtained using standard NN with Sigmoid activation. This makes the framework
ideally suited to PPDM whereby model training and prediction services are delegated
to a TPDM (with limited data owner participation).

In the following chapter, the thesis is concluded with a summary and an overview
of the main finding in terms of the original research question and subsidiary research
questions postulated in Chapter 1. The chapter also presents some potential directions
whereby the work presented in this thesis can be extended in the future.





Chapter 10

Conclusion and Future Work

10.1 Introduction

This concluding chapter presents an overall summary of work presented in this thesis
together with the main findings and some suggested directions for future work. The
chapter commences, Section 10.2, with a summary of the material presented. Section
10.3 presents the main findings and contributions of the work in the context of the re-
search question, and subsidiary research questions, presented in Chapter 1. The chapter
is then concluded, in Section 10.4, with a review of potential areas for future research
that build upon, and extend, the work presented in the thesis.

10.2 Summary of Thesis

This section gives a summary of the work presented in this thesis. The thesis commenced
with an introductory chapter, Chapter 1, that establish: the motivations for the research,
the research question and subsidiary research questions, the main contributions of the
research and the research methodology. The central idea presented in this thesis is that
Privacy Preserving Data Mining (PPDM), using a third party, can be implemented using
a proxy for the data that has been encrypted in such a manner so that order preservation
is maintained and/or simple arithmetic operations are supported.

The main motivation for the idea of cryptography-based PPDM using a TPDM
(Third Party Data Miner) was the rise in the usage of cloud storage and the associated
computing services, together with the increased demand, on behalf of data owners, to
securely apply the techniques of machine learning and data mining to their data. The
challenge of involving a TPDM was that it imposed a data privacy preserving require-
ment. The proposed solution was to use a data proxy coupled with cryptography as
a means for providing privacy preservation and preventing unauthorised use of confi-
dential data. The focus throughout the thesis was on Homomorphic Encryption (HE)
and Property Preserving Encryption (PPE) schemes that allow some operations to be
applied over cyphertexts, without decryption, in such a way that the results obtained
will match the results obtained as if the operations were applied over plaintext equiv-
alents. The main objective was to conduct the PPDM in such a way that data owner
participation was minimised (in comparison with previously proposed systems).

Two categories of data owner scenario were considered throughout the thesis: (i)
the single data owner scenario where the data to be outsourced belongs to a single
data owner and (ii) the multiple data owners scenario where the data to be outsourced
belongs to more than one data owner and which then leads to the idea of collaborative
data mining over the union of the datasets. Any number of machine learning algorithms

177
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could have been considered in the context of PPDM, however the research focus was on
data clustering using established approaches such as the k-Means, NNC and DBSCAN
algorithms and data classification using kNN, a natural progression from NNC, and
finally neural networks that utilise back-propagation.

Chapter 2 then presented a number of preliminaries concerning the notation used
throughout the thesis. The chapter also provided a compressive review of PPDM tech-
niques, including: data modification, Secure Multi-Party Computation(SMPC), secret
sharing and Homomorphic Encryption (HE). In Chapter 3 a literature review concerning
cryptography, with emphasis on HE schemes, was presented. The material presented
encompassed: HE scheme properties, categories of HE scheme, the important limitations
of HE schemes with respect to PPDM and examples of two encryption schemes adopted
with respect to the work presented later in the thesis, Liu’s Fully HE (FHE) scheme and
the Paillier scheme.

The following six chapters, presented different approaches for achieving PPDM using
data proxies coupled with cryptographic approaches, that did not require data proxy
decryption by the TPDM. The chapters considered both the single data owner and
the multiple data sources scenarios. The proposed solutions were directed at, or illus-
trated with, different data mining algorithms from established data clustering algorithms
to more sophisticated neural network classification models. Each of the chapters was
structured in the similar manner comprising: an introduction of the proposed solution,
a review of the adopted encryption schemes, one or more illustrative secure data min-
ing algorithms founded on the proposed approach and an evaluation of the proposed
approach.

The first proposed approach was presented in Chapter 4 and was founded on the
idea of Updateable Distance Matrices (UDMs). The approach was directed at the single
data owner scenario and illustrated using a secure k-Means clustering, the Sk-Means
algorithm was proposed. The reported evaluation demonstrated that Sk-Means, founded
on the use of UDMs, dramatically reduced the data owner participation compared to
other comparable approaches from the literature. Data owner participation was limited
to updating the UDM. It was observed that the need to update the UDM was consequent
on the nature of k-Means clustering algorithm used to illustrate the use of UDMs, that
necessitated repeated recalculation of cluster centroids. However, more importantly, it
was noted that the UDM concept had a significant security concern associated with,
given that the UDM elements were exchanged in plaintexts and that a UDM was simply
a large collection of linear equations that might permit reverse engineering of aspects of
the original dataset.

Chapter 5 therefore sought to address the security concerns associated with UDMs
by proposing the concept of Encrypted Updatable Distance Matrices (EUDMs) and
Encrypted Distance Matrices (EDMs) coupled with the idea of Cryptographic Ensem-
bles whereby more than one encryption scheme was used to maintain security. More
specifically Liu’s FHE scheme and the proposed Frequency and Distribution Hiding Or-
der Preserving Encryption (FDH-OPE). Liu’s FHE scheme was used to encrypt the
dataset while the FDH-OPE scheme was used to encrypt the distance matrix to arrive
at encrypted version. As a result the TPDM had access to the order of the distances
instead of the real distances values as in the case of unencrypted UDMs. Any algorithm
that utilised the proposed approach would therefore be a “double blind” algorithm be-
cause the Cryptographic Ensemble comprised two encryption schemes. The distinction
between an EUDM and an EDM was that, as the name suggests, the first could be
updated while the second could not. The first could therefore support clustering algo-
rithms, such as k-Means that required the recalculation of cluster centroids. The second
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required less memory resource than the first. The application of EUDMs and EDMs
was presented in the context of a number of different data clustering algorithms; Double
Blind Secure k-Means (DBSk-Means) and Double Blind Secure NNC (DBSNNC). The
evaluations indicated that the Cryptographic Ensemble and EUDM/EDM collectively
provided a solution for both reducing the data owner participation while preserving the
data privacy without compromising the accuracy of final clustering configuration.

The next chapter, Chapter 6, was the first to consider the multiple data owners
scenario; collaborative data clustering whereby the clustering process was entirely del-
egated to the TPDM. The work presented in the chapter was founded on the EDM
concept presented in the previous chapter, Chapter 5, and introduced a process that
allowed multiple EDMs, generated by individual data owners, to be “pooled” to form
a single Global EDM (a GEDM). The pooling process was presented with respect to
horizontally partitioned data only. For collaborative clustering to operate correctly an
alternative Cryptographic Ensemble was required to allow multiple data sources and
hence the FDH-OPE scheme from the previous chapter was replaced with a proposed
Multi-Users Order Preserving Encryption (MUOPE) scheme that preserved the ordering
of data distributed across multiple sources. Extensive evaluations were conducted using
different UCI datasets and synthetic datasets of various size. The evaluations demon-
strated that: (i) the usage of GEDMs did not introduce a significant overhead on behalf
of data owners, (ii) the clustering configurations obtained using the GEDM matched
configurations obtained using standard algorithms and (iii) the GEDM provided the
potential for large scale collaborative data clustering involving many data owners. How-
ever, the GEDM approach featured a significant memory resource requirement as the
dimensions of the GEDM were correlated with the number of data records in the global
dataset in question; the union of the datasets belonging to the participating data owners.

In Chapter 7, the Secure Chain Distance Matrices (SCDM) concept was presented.
The central idea underpinning SCDMs was to reduce the memory resources required
to conduct secure data clustering while maintaining the minimum data owner partic-
ipation. The memory resource was measured in terms of the number of elements in
the adopted distance matrix representation. The SCDM reduced the memory resource
requirements compared to other approaches presented in Chapters 4 and 5. Data pri-
vacy was preserved using a Cryptographic Ensemble comprised of Liu’s FHE scheme
and the proposed FDH-OPE scheme. The significance of the proposed SCDM concept
was that it was applicable with respect to a range of data mining algorithms that re-
quired distance comparison. Usage of the SCDM concept was illustrated with respect
to a number of well-established data clustering algorithms, namely k-Means, NNC and
DBSCAN. The utility of the SCDM concept was further illustrated using kNN data clas-
sification and collaborative querying (class labelling). The reported evaluation indicted
a slight increase in runtime required to cluster and classify encrypted data records using
the SCDM compared to earlier distance matrix-based approaches. The reason was the
“chain feature” used to calculate the similarity between data records. The reported
evaluation comparing the usage of the SCDMs and the EUDMs in the context of secure
data clustering demonstrated that: (i) the complexity of the data preparation process
was lower for SCDMs compared to EUDMs, (ii) the clustering algorithms that utilised
the EUDM were more efficient than the algorithms that utilised the SCDM concept and
(iii) the SCDMs and EUDMs produced comparable results. The main issue of adopting
the SCDM in the context of collaborative data classification was how to process queries
that belonged to authorised Query Owners (QOs) whilst: (i) preserving data owner key
confidentiality when encrypting a QO’s query and (ii) determining the similarity between
the outsourced datasets and the new query records without involving the data owner
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or QO in the process. To this end the chapter presented the Secure Query Cyphering
(SQC) protocol, and a secure binding algorithm. The SQC protocol operated between
the data owner and QOs and was designed to allow QOs to encrypt their query without
accessing the data owner’s secret key. The binding process allowed the use of SCDMs to
derive the similarity between outsourced data records and query records in the context
of k Nearest Neighbour (kNN) classification. The evaluation of the kNN coupled with
the SCDM concept demonstrated that the accuracy of the resulting classification was
comparable to the accuracy produced using standard kNN.

Chapter 8 extended the SCDM concept presented in Chapter 7 by considering the
multiple data owners scenario and the potential for collaborative data mining. This was
achieved by “binding” multiple SCDMs to form a single Super SCDM (SSCDM). In
the chapter it was noted that SSCDMs could be constructed with respect to different
data partitionings, horizontal, vertical and arbitrary. The chapter also considered the
possibility of updating SSCDMs by allowing record deletion and/or addition whenever
corresponding datasets were modified. The application of the SSCDM concept was again
illustrated with respect to secure data clustering. Two implementations were considered:
Secure DBSCAN and Secure NNC. Extensive experimentation was conducted to evaluate
the usage of SSCDMs and to compare the operation of SSCDMs with GEDMs (as
presented in Chapter 6). The evaluation indicted that SSCDMs provided a scalable and
efficient approach for collaborative data clustering without resorting to a well-established
SMPCs. In terms of accuracy, the SSCDM approaches produced comparable results to
those produced using standard algorithms, while producing comparable results to those
produced using GEDMs.

Chapter 9 investigated the idea of using a single encryption scheme, rather than the
Cryptographic Ensembles from earlier chapters. A novel FHE scheme, Modified Liu’s
Scheme (MLS), was presented; a modification of Liu’s FHE scheme that also addressed
the issues of the increasing number of sub-cyphertexts that results when performing
multiplications using Liu’s original scheme. The proposed MLS addressed this issue
while maintaining the same homomorphic properties as Liu’s original scheme. Instead
of illustrating MLS in terms of clustering or kNN, as in the case of earlier chapters,
a more ambitious machine learning algorithm was considered; namely a Secure Neural
Network (SecureNN) that allowed model training and prediction over encrypted data.
The proposed SecureNN framework required only minimal data owner participation dur-
ing training and usage that was limited to performing a division required to estimate the
activation function. Extensive evaluations of MLS, in terms of the proposed SecureNN
framework, indicted that the networks generated achieve a classification accuracy com-
parable with that of identical networks generated without encryption.

10.3 Main Findings and Contributions

The main findings and contributions of the work presented in this thesis are given in
this section. The discussion is firstly presented in the light of the subsidiary research
questions and then in terms of the overriding research question that this thesis seeks
to address, as presented in Chapter 1 (Section 1.3). Each of the subsidiary research
question is considered in turn as follows:

1. “What is the most appropriate HE scheme that satisfies the requirements for out-
sourcing data mining activities to a TPDM in the context of PPDM and the single
data owner scenario?”
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The most appropriate HE schemes are those that efficiently support most of
the required operations over cyphertexts without decryption so as to reduce the
data owner participations, and thus the outsourcing of the entire data analysis
activities. HE schemes, as presented in Chapter 3, can be divided into three
categories: (i) Partial HE (PHE) schemes that support limited homomorphic ad-
dition or homomorphic multiplication but not both, (ii) SomeWhat HE (SWHE)
schemes that support unlimited homomorphic addition and a limited number of
multiplication and (iii) Fully HE (FHE) schemes that support both unlimited
addition and multiplication. The FHE schemes can be categorised further in
to: schemes that incorporate noise management techniques and schemes that are
noise-free. The noise management techniques were considered in Chapter 3, and
feature high computational cost associated with the re-encryption of cyphertexts
whenever the noise reaches a certain threshold. Many data mining algorithms
require distance calculations, similarity determination (data comparison) and the
evaluation of linear and non-linear functions. This imposes a requirement for
schemes that support both addition and multiplication. Therefore the most
appropriate HE scheme that satisfies the requirements for outsourcing
data mining activities is one that supports addition and multiplication
over encrypted data with appropriate noise reduction where necessary.
The intuition underpinning the use of FHE schemes was supported by the effec-
tive implementation of a wide range of data mining algorithms that made use of
such schemes. Noise free FHE schemes allow the secure operation of sophisticated
data mining algorithms that comprises extensive homomorphic multiplications as
demonstrated through the implementation of a neural network algorithm.

2. “Is HE the best form of cryptography to provide an effective solution to the PPDM
problem?”

HE schemes, including FHE schemes, do not provide an entire solution to PPDM
problem. There are limitations associated with FHE scheme (as discussed in
Chapter 3). The most significant of which is the need for data comparison opera-
tions which are frequently required with respect to many data mining algorithms.
Comparison between data records and comparison with a threshold value cannot
be directly performed over HE cyphertexts. Therefore, HE schemes provide
only a partial solution and need to be coupled with additional secure
mechanisms to allow comparison. Note that any proposed mechanism needs
to satisfy the security requirements for the considered data owner scenario, while
at the same time maintaining the accuracy of the final data mining results.

3. “Following on from 2, if HE is not the most appropriate form of cryptography,
what is the most appropriate form of encryption required to provide a better so-
lution?”

The mathematical properties associated with current HE schemes do not provide
a comprehensive solution to the PPDM problem given that, as noted above,
there is no HE scheme that supports comparison over cyphertexts. One proposed
solution is to incorporate periodic recourse to data owners, during the data mining
process, so that the data owners can perform the data operations (on unencrypted
data) that the adopted HE scheme does not support. However, in this approach
the amount of data owner participation is significant, calling in to question the
advantages that DMaaS has to offer for single data owner scenario. Therefore,
HE schemes need either: (i) to be coupled with an Order Preserving
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Encryption scheme, a Cryptographic Ensemble, that supports data
ordering and thus comparison between cyphertexts; or (ii) be modified
so that the idea of order preservation over generated cyphertexts, to
allow direct comparison, is maintained. The thesis explored both solutions.
The proposed MLS is argued to be the most appropriate form of encryption for
PPDM.

4. “What is the most effective way of supporting the required operations not supported
by an encryption scheme (without decrypting the data) so as to, where necessary,
minimise the number of data owner interactions?”

The proposed answer to this question was to provide a proxy for data; a proxy that
supported efficient updating of the proxy whenever new data records were required
to be added or deleted. The particular form of data proxy proposed in
this thesis was the idea of distance matrices of various forms. These
matrices held the distance between every record to every other record
in outsourced data and acted as a proxy for the real data. A range of
different forms of distance matrices were considered, including: UDMs,
EUDMs, EDM and SCDMs. The distances held in a distance matrix are
calculated, on start-up, by the data owner and, in the case of the later forms of
distance matrix considered, encrypted in such a way that data comparison (by a
TPDM) was supported.

5. “Given potential solutions to above, what is the most appropriate mechanism, or
mechanisms, for evaluating these solutions?”

The mechanism for evaluating the proposed secure data mining algo-
rithms and encryption schemes was primarily by comparing the results
obtained with those obtained using equivalent standard algorithms.
The operation of the standard algorithms applied to unencrypted datasets was
compared with proposed secure algorithms using the same algorithm parameters.
Well-established evaluation measures were used to compare data clustering config-
urations, such as the Silhouette Coefficient or the number of produced clusters and
number of iterations (in the case of iterative data clustering). Classification algo-
rithms were compared using confusion matrix measures such as Precision, Recall
and F1. The intuition was that any proposed secure algorithms should produce
equivalent (or comparable) results to those produced using standard equivalent
algorithms; if so the secure algorithms could be said to be operating correctly.

6. “Can the proposed single data owner scenario solutions be extended to support
scalable collaborative data mining (the multiple data owners scenario) while keep-
ing the data owner participation at a minimum?”

As noted above, the mechanisms presented in this thesis to address single data
owner scenarios were founded on the idea of proxy data, namely the use of distance
matrices. It was found that by extended the distance matrix idea by al-
lowing the combining of multiple matrices and calculating a new super-
matrix that the multiple data owners scenario could be addressed. A
number of variation of this proposed solution were presented, of note were GEDMs
and SSCDMs generated by pooling a number of EDMs or binding different SC-
DMs respectively. The conducted experimental analysis demonstrated that the
binding and pooling methods could provide for secure scalable collaborative data
mining.
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7. “Is it possible to tailor (or modify) any proposed HE scheme so that it can support
the operations required by a range of data mining algorithms, as opposed to only
a small number of specific algorithms?”

The challenge of modifying HE schemes so as to address the issue of unsupported
operations was addressed towards the end of the thesis in Chapter 9. Secure com-
parison over cyphertexts and scalable multiplication were considered by focusing
on Liu’s FHE scheme. The central idea was to modify Liu’s FHE key genera-
tion process and encryption function so as to incorporate the idea of OPE while
maintaining the FHE properties of the original scheme. The proposed MLS
demonstrated that the key values, used to encrypt sub-cyphertexts,
could be generated in such a way that data ordering was maintained
while at the same time supporting the HE properties of the original
scheme. The proposed MLS uses what was referred to as the ω-concept; the
idea of creating a “gap” between generated cyphertexts and maintained the prob-
abilistic nature of the scheme while preserving the data ordering.

Returning to the central research question of the thesis:

“Using cryptography is it possible to securely, effectively and efficiently delegate data
analysis to a third party data miner while minimising any required interaction with

data owners?”

From the foregoing answers to the subsidiary questions it can be stated that it is possible
to “effectively and efficiently delegate the data analysis” to a TPDM with limited (or
no) data owner participation while maintaining an appropriate level of security.

For the completeness, the main contributions of the work presented in this thesis,
from Chapter 1, are restated here:

1. Improvement in data security by obviating the need for sending data in any form
to TPDMs and/or sharing it with other participating parties using the concept
of Super Secure Chain Distance Matrices (SSCDMs) and idea of virtual lists.

2. Reducing the amount of data owner participation when undertaking secure data
mining operations, and in some cases avoiding it entirely, when the data mining
is undertaken by a TPDM using the concept of distance matrices.

3. Introducing the idea of Cryptographic Ensembles that comprise an HE scheme
and a bespoken OPE scheme, therefore providing a solution to secure data clus-
tering involving distance comparison.

4. Six secure data clustering algorithms, in the context of the single data owner
scenario, that operated over encrypted data, without requiring decryption and
without delegating keys to non-colluding parties:

(a) Secure k-Means using an Updatable Distance Matrices (UDMs) (Sk-Means).

(b) Double Blind Secure k-Means using an Encrypted UDMs (EUDMs) (DBSk-
Means).

(c) Double Blind Secure Nearest Neighbour Clustering (DBSNNC) using En-
crypted Distance Matrices (EDMs).

(d) Sk-Means, SNNC and SDBSCAN using Secure Chain Distance Matrices
(SCDMs).
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5. Four Secure collaborative data clustering algorithms, addressing the multiple data
owners scenario, that operated over encrypted data without decryption and with-
out sharing data between participants or delegating keys to non-colluding parties:

(a) Secure DBSCAN (S-DBSCAN) and Secure NNC (S-NNC) using Global
EDMs (GEDMs).

(b) Secure DBSCAN (SDBSCAN) and Secure NNC (SNNC) using Super SC-
DMs (SSCDMs).

6. A Secure Neural Network algorithm (SecureNN) that facilitates model training
and query classification/prediction with only very limited data owner participa-
tion.

7. A novel Order Preserving Encryption scheme, the Multi-Users Order Preserving
Encryption (MUOPE) scheme, that supported collaborative data clustering and
facilitated preservation of the ordering of data distributed across multiple data
owners.

8. The Frequency and Distribution Hiding OPE (FDH-OPE) scheme, an amalgama-
tion of two order preserving encryption schemes, the nonlinear order preserving
scheme [51] and Zheli et al.’s scheme [52], each of which facilitates information
hiding and the reduction of information leakage.

9. A “dimensionality reduction” algorithm that addressed the scalability issue of the
exponentially increasing size of cyphertexts with the application of each multipli-
cation operation as in the case Liu’s FHE scheme.

10. The Modified Liu’s Scheme (MLS) that supported secure data comparison while
preserving the same HE mathematical properties as Liu’s original scheme [53].

11. Scalable collaborative data clustering that allowed a very large number of parties
(multiple data owners) to conduct data analysis over the union of their data with-
out sharing private data and without recourse to the expensive SMPC protocols.

12. The Secure Query Cyphering (SQC) protocol that preserved a query record’s
privacy, while at the same time preserving the data owner key confidentiality when
classifying the query record using a proposed Secure kNN (SkNN) algorithm.

10.4 Future Work

The work presented in this thesis has proposed a number of cryptographic mechanisms
to securely delegate data clustering and classification to a TPDM while reducing the
data owner participation. The work considered two scenarios, the single data owner
scenario where a data owner wants to delegate their data analysis to a TPDM who
provides DMaaS, and the multiple data owners scenario where a number of data owners
wish to collaboratively so as to develop (say) a data mining model over the union of
their datasets. In this section, a number of potential future directions of research are
suggested. The future work can be divided into the PPDM context and the alterna-
tive domains context. The former is concerned with aspects where the current work
directed at PPDM can be extended, improved or applied. The later is concerned with
potential application domains, other than PPDM, where the encryption schemes and
mechanisms proposed in this thesis may be applied. Each is discussed in further detail
in the following two sub-sections.
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10.4.1 Future Work In The Context of PPDM

In the context of PPDM, the work presented in this thesis can be further extended as
follows.

1. Improvement of the security of proposed SkNN data classification algo-
rithm: Data classification using the proposed SkNN algorithm operated over un-
encrypted data labels. Therefore, the determination of the major class label (the
SkNN stage 2) was not secure given that the TPDM would know the classes of the
outsourced encrypted data and the classes of the query records. Deterministic en-
cryption schemes, or other PPDM techniques, might provide a solution. It is thought
that adopting such methods to preserve the security of the data label would be better
than confiding the label values as plaintext.

2. Alternative evaluation: A limiting factor of the evaluations presented in this thesis
was that they involved implementations on a single machine, therefore no real con-
sideration was given to the real communication overhead when the TPDM is hosted
in the cloud. Evaluating the proposed solutions by implementing the TPDM as real
CSPs would demonstrate the expected communication overhead when outsourcing
the data analysis to CSPs.

3. Alternative data mining algorithms: A conjectured fruitful avenue for further
research is to consider a wider range of machine learning algorithms. For example
to consider the application of MLS, and the other proposed schemes, to implement
(say) Support Vector Machine (SVM) learning, deep neural network learning using
Convolutional Neural Networks (CNNs) and logistic regression.

4. Real application domains: The work presented in this thesis has focused on well-
establish benchmark datasets from the UCI data mining repository and simulated
datasets. There was good reason for this as it provided a ready mechanism for
comparison. However, what might be termed “real” datasets drawn from real life
applications should also be considered in the context of future work.

10.4.2 Future Work In The Context of Alternative Domain

The application domain considered in this thesis was PPDM. A number of encryption
schemes where proposed: the FDH-OPE scheme, MUOPE scheme and MLS. It is conjec-
tured that these schemes have application in other domains than PPDM. It is suggested
that an investigation of alternative application domains for the proposed schemes may
have merit. For example, the HE and OPE schemes introduced in this thesis could be
utilised to provide for secure searching and retrieval over encrypted data (an application
domain considered in [201, 202]). Alternatively, secure signal processing (see for example
[203, 204]), secure face matching (see for example [205]), secure database as a service
provision and private database processing (see for example [206–208]). Investigation of
these alternative domains would thus provide for a further opportunity to extend the
investigation presented in this thesis.

Similarly the range of secure clustering and classification mechanisms presented in
this thesis are likely to have alternative forms of application than PPDM. One specific
example is the preservation of location privacy in the context of spatial query systems.
Spatial queries pose a serious threat to user location privacy as the location of a query
may reveal sensitive information about (say) a mobile user (as discussed in [209]). A
mobile user can send a query request to a Location Based Service (LBS) requesting the k
nearest points of interest given their current location. It is suggested that such requests
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can be sent in a secure manner by adopting the proposed SkNN approach (presented in
Chapter 7). The idea can be extended to location privacy with respect to GeoFences1

as described in [209–212].

1GeoFence is a location-based service in which an App or other software uses GPS, RFID, Wi-Fi or
cellular data to trigger a pre-programmed action when a mobile device or RFID tag enters or exits a
virtual boundary set up around a geographical location, known as a geofence.
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[134] Yarkin Doröz and Berk Sunar. Flattening NTRU for evaluation key free homo-
morphic encryption. International Association for Cryptologic Research (IACR)
Cryptology ePrint Archive, 2016:315, 2016.

[135] Koji Nuida. Candidate constructions of fully homomorphic encryption on finite
simple groups without ciphertext noise. International Association for Cryptologic
Research (IACR) Cryptology ePrint Archive, 2014.

[136] Gustavus J Simmons. Symmetric and asymmetric encryption. ACM Computing
Surveys (CSUR), 11(4):305–330, 1979.

[137] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ci-
phertexts. In 2nd Theory of Cryptography Conference, pages 325–341. Springer,
2005.



Reference 197

[138] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. In 13th International Workshop on Public
Key Cryptography, pages 420–443. Springer, 2010.

[139] Masahiro Yagisawa. Fully homomorphic public-key encryption based on discrete
logarithm problem. International Association for Cryptologic Research (IACR)
Cryptology ePrint Archive, 2016:54, 2016.

[140] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM, 21
(2):120–126, 1978.

[141] Ernest F Brickell and Yacov Yacobi. On privacy homomorphisms. In 4th Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 117–125. Springer, 1987.

[142] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. International Association for Cryptologic Research (IACR) Cryptology
ePrint Archive, 2012:144, 2012.

[143] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In 33rd Annual Cryptology Conference, pages 75–92. Springer, 2013.

[144] Tan Soo Fun and Azman Samsudin. A survey of homomorphic encryption for
outsourced big data computation. KSII Transactions on Internet and Information
Systems, 10(8):3826–3851, 2016. ISSN 22881468.

[145] Riza Aditya, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Secure E-voting
for preferential elections. In 2nd International Conference on Electronic Govern-
ment, pages 246–249. Springer, 2003.

[146] Marta Gomez-Barrero, Julian Fierrez, and Javier Galbally. Variable-length tem-
plate protection based on homomorphic encryption with application to signature
biometrics. In 4th International Workshop on Biometrics and Forensics (IWBF),
pages 1–6. IEEE, 2016.
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Appendix A

Modified Liu’s Scheme: Proof of
Correctness

A.1 Overview

This appendix presents mathematical proofs of correctness for the MLS algorithms pre-
sented in Chapter 9. The appendix provides proofs for: (i) the scheme encryption and
decryption algorithms (Algorithm 30 and 31), (ii) the dimensionality reduction algorithm
(Algorithm 32) and (iii) the secure data comparison. In the interest of simplicity of the
mathematical proofs, the number of MLS sub-cyphertexts used in the proofs was set to 3
(m = 3) and the first sub-cypher was used to preserve the data order (q = 1). However,
the proofs can, of course, be generalise for different numbers of sub-cyphertexts.

The appendix is organised as follows. Sub-appendix A.2 presents the correctness
of the data encryption and decryption algorithms. This is followed by Sub-appendix
A.3 that presents mathematical proofs of the dimensionality reduction algorithm that
reduces the number of sub-cyphertexts after each HE multiplication using the concept
of trapdoors. Finally, Sub-section A.4 presents the proof of secure data comparison.

A.2 MLS Encryption and Decryption Algorithms

The proposed MLS FHE scheme was a modification of Liu’s scheme. This sub-appendix
presents proofs of the correctness of this modification in that it should be the case
that cyphertext generated using Algorithm 30 can be reversed to plaintext using the
decryption algorithm (Algorithm 31). As noted, the MLS examples presented in this
Appendix considers m = 3, therefore a plaintext value v is encrypted to cyphertext
E = {e1, e2, e3}. According to the prescribed criteria for key generation (Sub-section
9.2.1 given in Chapter 9) there exists only one element q (1 6 q < m) such that tq 6= 0.
In the MLS used in this Appendix q = 1, thus t1 6= 0 and t2 = t3 = 0. The values of
each sub-cyphertext is calculated as:

Encrypt(v, SK(3)) = {e1, e2, e3} where

e1 = k1×t1×v+s1+k1×(r1−r2)
s1

= k1×t1×v+s1+k1×r1−k1×r2
s1

e2 = k2×t2×v+s2+k2×(r2−r1)
s2

= s2+k2×r2−k2×r1
s2

e3 = (k3 + s3 + t3) = kst

203
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To decrypt this cyphertext, the steps outlined in Algorithm 31 are followed as shown
in Equation A.1. According to the prescribed criteria for key generation t1 6= 0 and
t2 = 0 thus t = t1.

t = t1
s = em

km+sm+tm
= kst

kst = 1

v =
(e1×s1)−(s×s1)

k1
+

(e2×s2)−(s×s2)
k2

t1

=
(e1×s1)−s1

k1
+

(e2×s2)−s2
k2

t1
where s = 1

= 1
t1
×
(

s1
k1

× (e1 − 1) + s2
k2

× (e2 − 1)
)

(A.1)

Note that the value of s is not equal to 1 when the cyphertexts are reduced, as the
last cyphertext (em) is changed when the dimensionality reduction algorithm is applied.
The values of s1

k1
× (e1 − 1) and s2

k2
× (e2 − 1) are as calculated as demonstrated by

Equations A.2 and A.3:

s1
k1
× (e1 − 1) = s1

k1
×
(
k1×t1×v+s1+k1×r1−k1×r2

s1
− 1
)

= s1
k1
×
(
k1×t1×v+s1+k1×r1−k1×r2−s1

s1

)
= k1×t1×v+k1×r1−k1×r2

k1

(A.2)

s2
k2
× (e2 − 1) = s2

k2
×
(
s2+k2×r2−k2×r1

s2
− 1
)

= s2
k2
×
(
s2+k2×r2−k2×r1−s2

s2

)
= k2×r2−k2×r1

k2

(A.3)

Equations A.2 and A.3 are then used to calculate the decryption in Equation A.1 as
follows:

v = 1
t1
×
(
k1×t1v+k1×r1−k1×r2

k1
+ k2×r2−k2×r1

k2

)
= k1×t1×v+k1×r1−k1×r2

k1×t1 + k2×r2−k2×r1
k2×t1

= v + r1
t1
− r2

t1
+ r2

t1
− r1

t1
= v

(A.4)

The result of decrypting the cyphertexts using Algorithm 31 is the value of plaintext v.

A.3 Dimensionality Reduction Algorithm

As in the case of Liu’s original FHE scheme, MLS performs cyphertext multiplication
by determining the outer product of the two cyphertexts to be multiplied. Therefore the
number of sub-cyphertexts is increased from m to m2 for one multiplication. Equation
A.5 shows the HE multiplication of two cyphertexts E1 (encrypt the value of v1) and
E2 (encrypt the value of v2), both encrypted using MLS to E1 = {e11 , . . . , e1m} and
E2 = {e21 , . . . , e2m}, respectively. In MLS, the number of sub-cyphertext of a generated
cyphertext can be “reduced” back to m using a trapdoor concept which re-encrypts the
cyphertext (without prior decryption). This process is referred to as “dimensionality
reduction”. This sub-appendix presents the correctness of the dimensionality reduc-
tion, Algorithm 32 called after each HE multiplication. The correctness is evaluated by
multiplying two cyphertext using the HE properties (⊗) and then applying dimension-
ality reduction (Algorithm 32) to reduce the number of sub-cyphertexts. The resulting
cyphertext, from Algorithm 32, when decrypted should match the standard (or basic)
multiplication to demonstrate that the dimensionality reduction is operating correctly.
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E1 ⊗ E2 = {e11 × e21 , . . . , e11 × e2m , . . . e1m × e21 , . . . , e1m × e2m} (A.5)

Assuming a MLS where m = 3 and q = 1. The sub-cyphertexts for encrypting v1
and v2, using Algorithm 30, are calculated as follows:

Encrypt(v1, SK(3)) = {e11 , e12 , e13} where

e11 = k1t1v1+s1+k1(r1−r2)
s1

= k1t1v1+s1+k1r1−k1r2
s1

e12 = k2t2v1+s2+k2(r2−r1)
s2

= s2+k2r2−k2r1
s2

e13 = (k3 + s3 + t3) = kst

(A.6)

Encrypt(v2, SK(3)) = {e21 , e22 , e23} where

e21 = k1t1v2+s1+k1(r1−r2)
s1

= k1t1v2+s1+k1r1−k1r2
s1

e22 = k2t2v2+s2+k2(r2−r1)
s2

= s2+k2r2−k2r1
s2

e23 = (k3 + s3 + t3) = kst

(A.7)

Multiplying Encrypt(v1, SK(3)) and Encrypt(v2, SK(3)) gives E1⊗E2 = E = {e11e21 ,
e11e22 , e11e23 , e12e21 , e12e22 , e12e23 , e13e21 , e13e22 , e13e23}. Using the proposed dimen-
sionality reduction algorithm (Algorithm 32) the resulting cypher E can be re-encrypted
without being first decrypted whilst reducing the number of sub-cyphertexts to only 3
sub-cyphertexts; when decrypted this should give v1 × v2. Following the steps outlined
in Algorithm 32, every consecutive three sub-cyphers in E will be associated with a
trapdoor in Trap which will be used to calculate one cypher in the reduced cypher
RE = {re1, re2, re3}. For example, re1 is calculated from {e11e21 , e11e22 , e11e23}.
Applying Algorithm 32, the reduced sub-cyphers will be as follows:

re1 = (((e11e21)− (
e11e23
kst ))× trap1) + (((e11e22)− (

e11e23
kst ))× trap2)

re2 = (((e12e21)− (
e12e23
kst ))× trap1) + (((e12e22)− (

e12e23
kst ))× trap2)

re3 = (((e13e21)− (
e13e23
kst ))× trap1) + (((e13e22)− (

e13e23
kst ))× trap2)

According to Trapdoor calculation algorithm (Algorithm 29) the values for trap1 and
trap2 are s1×secretK

secretS×k1 and s2×secretK
secretS×k2 ; and the value for kst will be k3 + s3 + t3. After

calling cypher reduction, the level of RE is one (RE.l = 1). The RE cypher can then be
decrypted using Algorithm 31 to give v1×v2. Following Algorithm 31, as the cyphertext
level value in RE is not equal to zero, a new sub-cyphertext value for each sub-cypher
rei in RE is calculated (lines 3 to 5) the new RE sub-cyphertexts are:

re1 =
re1× secretS

secretK
t = 1

t

[
s1
k1

(e11e21 −
e11e23
kst ) + s2

k2
(e11e22 −

e11e23
kst )

]
re2 =

re2× secretS
secretK
t = 1

t

[
s1
k1

(e12e21 −
e12e23
kst ) + s2

k2
(e12e22 −

e12e23
kst )

]
re3 =

re3× secretS
secretK
t = 1

t

[
s1
k1

(e13e21 −
e13e23
kst ) + s2

k2
(e13e22 −

e13e23
kst )

]
The resulting cyphers are then used, in lines 7 to 9 of Algorithm 31, and processed as
follows:
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t = t1 + t2 = t1 + 0 = t1

s = re3
(k3+s3+t3)

= re3
kst

v =
((re1×s1)−(

re3
kst
×s1))

k1
+

((re2×s2)−(
re3
kst
×s2))

k2
t

=
s1×(re1−

re3
kst

)

k1
+

s2×(re2−
re3
kst

)

k2
t

= 1
t [
s1
k1
× (re1 − re3

kst
) + s2

k2
× (re2 − re3

kst
)]

(A.8)

The values for re3
kst , re1 and re2 must then be calculated.

The values for re3
kst are given by:

re3
kst = 1

t [
s1

k1kst
(e13e21 −

e13e23
kst ) + s2

k2kst
(e13e22 −

e13e23
kst )]

= 1
t [
s1e13e21
k1kst

− s1e13e23
k1kst2

+
s2e13e22
k2kst

− s2e13e23
k2kst2

]

Where:

s1e13e21
k1kst

= s1
k1kst

(kst)(k1t1v2+s1+k1r1−k1r2s1
) Equations A.6 and A.7

= k1t1v2+s1+k1r1−k1r2
k1

= t1v2 + s1
k1

+ r1 − r2
s1e13e23
k1kst2

= s1
k1kst2

kst kst = s1
k1

s2e13e22
k2kst

= s2
k2kst

e13e22 = s2
k2kst

kst( s2+k2r2−k2r1s2
)

= s2+k2r2−k2r1
k2

= s2
k2

+ r2 − r1
s2e13e23
k2kst2

= s2
k2kst2

kst kst = s2
k2

In other words:

re3
kst = 1

t [t1v2 + s1
k1

+ r1 − r2 − s1
k1

+ s2
k2

+ r2 − r1 − s2
k2

] = 1
t t1v2

= v2 where t = t1

The values for re1 and re2 (in Equation A.8) are given by:

re1 = 1
t [
s1e11e21

k1
− s1e11e23

k1kst
+

s2e11e22
k2

− s2e11e23
k2kst

]

The operands in the above are calculated, retrospectively, as follows:

s1e11e21
k1

= s1
k1

[(k1t1v1+s1+k1r1−k1r2s1
)(k1t1v2+s1+k1r1−k1r2s1

)]

= s1
k1

[(k1t1v1s1
+ 1 + k1r1

s1
− k1r2

s1
)(k1t1v2s1

+ 1 + k1r1
s1
− k1r2

s1
)]

= s1
k1

[
k21t

2
1v1v2
s21

+ k1t1v1
s1

+
k21t1r1v1

s21
− k21t1r2v1

s21
+ k1t1v2

s1
+ 1 + k1r1

s1
− k1r2

s1

+
k21t1r1v2

s21
+ k1r1

s1
+

k21r
2
1

s21
− k21r1r2

s21
− k21t1r2v2

s21
− k1r2

s1
− k21r1r2

s21
+

k21r
2
2

s21
]

= s1
k1

[
k21t

2
1v1v2+k1t1s1v1+k

2
1t1r1v1−k21t1r2v1+k1t1s1v2+s21+k1r1s1−k1r2s1+k21t1r1v2

s21
+k1r1s1+k21r

2
1−k21r1r2−k21t1r2v2−k1r2s1−k21r1r2+k21r22

s21
]
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=
k21t

2
1v1v2+k1t1s1v1+k

2
1t1r1v1−k21t1r2v1+k1t1s1v2+s21+k1r1s1−k1r2s1+k21t1r1v2

s1k1
+k1r1s1+k21r

2
1−k21r1r2−k21t1r2v2−k1r2s1−k21r1r2+k21r22

s1k1

=
k1t21v1v2

s1
+ t1v1 + k1t1r1v1

s1
− k1t1r2v1

s1
+ t1v2 + s1

k1
+ r1 − r2 + k1t1r1v2

s1

+r1 +
k1r21
s1
− k1r1r2

s1
− k1t1r2v2

s1
− r2 − k1r1r2

s1
+

k1r22
s1

=
k1t21v1v2

s1
+ t1v1 + k1t1r1v1

s1
− k1t1r2v1

s1
+ t1v2 + s1

k1
+ 2r1 − 2r2 + k1t1r1v2

s1

+
k1r21
s1
− 2k1r1r2s1

− k1t1r2v2
s1

+
k1r22
s1

s1e11e23
k1kst

= s1
k1kst

(k1t1v1+s1+k1r1−k1r2s1
)(kst)

= 1
k1

(k1t1v1 + s1 + k1r1 − k1r2)
= t1v1 + s1

k1
+ r1 − r2

s2e11e22
k2

= s2
k2

(k1t1v1+s1+k1r1−k1r2s1
)( s2+k2r2−k2r1s2

)

= s2
k2

[(k1t1v1s1
+ 1 + k1r1

s1
− k1r2

s1
)(1 + k2r2

s2
− k2r1

s2
)]

= s2
k2

[k1t1v1s1
+ k1k2t1r2v1

s1s2
− k1k2t1r1v1

s1s2
+ 1 + k2r2

s2
− k2r1

s2
+ k1r1

s1
+ k1k2r1r2

s1s2

−k1k2r21
s1s2

− k1r2
s1
− k1k2r22

s1s2
+ k1k2r1r2

s1s2
]

= k1t1s2v1
s1k2

+ k1t1r2v1
s1

− k1t1r1v1
s1

+ s2
k2

+ r2 − r1 + k1r1s2
s1k2

+ 2k1r1r2s1

−k1r21
s1
− k1r2s2

s1k2
− k1r22

s1
s2e11e23
k2kst

= s2
k2kst

(k1t1v1+s1+k1r1−k1r2s1
)(kst)

= (k1t1s2v1+s1s2+k1s2r1−k1s2r2s1k2
)

= k1t1s2v1
s1k2

+ s2
k2

+ k1s2r1
s1k2

− k1s2r2
s1k2

In other words (recall t = t1):

re1 = 1
t [
k1t21v1v2

s1
+ t1v1 + k1t1r1v1

s1
− k1t1r2v1

s1
+ t1v2 + s1

k1
+ 2r1 − 2r2 + k1t1r1v2

s1

+
k1r21
s1
− 2k1r1r2s1

− k1t1r2v2
s1

+
k1r22
s1
− t1v1 − s1

k1
− r1 + r2 + k1t1s2v1

s1k2

+k1t1r2v1
s1

− k1t1r1v1
s1

+ s2
k2

+ r2 − r1 + k1r1s2
s1k2

+ 2k1r1r2s1
− k1r21

s1

−k1r2s2
s1k2

− k1r22
s1
− k1t1s2v1

s1k2
− s2

k2
− k1s2r1

s1k2
+ k1s2r2

s1k2
]

= k1t1v1v2
s1

+ v2 + k1r1v2
s1
− k1r2v2

s1

(A.9)

Recall that t = t1 + t2, however, as the key generation conditions require that there is
only one tq 6= 0 that is t1 thus t = t1. The value for re2 (in Equation A.8) is then given
by:

re2 = 1
t [t1v2 + s1

k1
+ r1 − r2 + t1k2r2v2

s2
+ s1k2r2

k1s2
+ 2k2r1r2s2

− k2r22
s2

−k2t1r1v2
s2

− s1k2r1
k1s2

− k2r21
s2
− s1

k1
− s1k2r2

k1s2
+ s1k2r1

k1s2
+ s2

k2

+2r2 − 2r1 +
k2r22
s2
− 2k2r1r2s2

+
k2r21
s2
− s2

k2
− r2 + r1]

= 1
t [t1v2 + t1k2r2v2

s2
− k2t1r1v2

s2
]

= v2 + k2r2v2
s2
− k2r1v2

s2

Where:



Appendix A. MLS: Proof of Correctness 208

s1e12e21
k1

= s1
k1

[( s2+k2r2−k2r1s2
)(k1t1v2+s1+k1r1−k1r2s1

)]

= s1
k1

[(1 + k2r2
s2
− k2r1

s2
)(k1t1v2s1

+ 1 + k1r1
s1
− k1r2

s1
)]

= s1
k1

[k1t1v2s1
+ 1 + k1r1

s1
− k1r2

s1
+ t1k1k2r2v2

s1s2
+ k2r2

s2
+ k1k2r1r2

s1s2
− k1k2r22

s1s2

−k1k2t1r1v2
s1s2

− k2r1
s2
− k1k2r21

s1s2
+ k1k2r1r2

s1s2
]

= t1v2 + s1
k1

+ r1 − r2 + t1k2r2v2
s2

+ s1k2r2
k1s2

+ 2k2r1r2s2
− k2r22

s2

−k2t1r1v2
s2

− s1k2r1
k1s2

− k2r21
s2

s1e12e23
k1kst

= s1
k1kst

( s2+k2r2−k2r1s2
)(kst) = s1s2+s1k2r2−s1k2r1

k1s2

= s1
k1

+ s1k2r2
k1s2

− s1k2r1
k1s2

s2e12e22
k2

= s2
k2

( s2+k2r2−k2r1s2
)( s2+k2r2−k2r1s2

)

= s2
k2

(1 + k2r2
s2
− k2r1

s2
)(1 + k2r2

s2
− k2r1

s2
)

= s2
k2

[1 + k2r2
s2
− k2r1

s2
+ k2r2

s2
+

k22r
2
2

s22
− k22r1r2

s22
− k2r1

s2
− k22r1r2

s22
+

k22r
2
1

s22
]

= [ s2k2 + r2 − r1 + r2 +
k2r22
s2
− k2r1r2

s2
− r1 − k2r1r2

s2
+

k2r21
s2

]

= [ s2k2 + 2r2 − 2r1 +
k2r22
s2
− 2k2r1r2s2

+
k2r21
s2

]
s2e12e23
k2kst

= s2
k2kst

( s2+k2r2−k2r1s2
)(kst) = s2

k2
+ r2 − r1

Finally:

v = 1
t [
s1
k1
× (k1t1v1v2s1

+ v2 + k1r1v2
s1
− k1r2v2

s1
− v2)

+ s2
k2
× (v2 + k2r2v2

s2
− k2r1v2

s2
− v2)]

= 1
t [t1v1v2 + r1v2 − r2v2 + r2v2 − r1v2]

= 1
t [t1v1v2]

= v1v2

A.4 Order Preserving Feature Correctness

In MLS, data ordering is preserved using the data encryption function associated with:
(i) the key generation conditions (Sub-section 9.2.1) and (ii) the ω-concept that, although
generating random values, retains the data ordering across the cyphertexts. The ω-
concept uses a simple mathematical rule to ensure a “gap” between cyphertexts so that
adding random offsets (sampled from a particular range) will not cause any overlap, and
hence guarantees data ordering. The value for ω can be determined using 10p, and the
random values ri can then be sampled from range 0 to ω. Random values are generated
each time the encryption function is called, a side-effect of this is that data equality
is not preserved. This feature facilitates precluding Cyphertext Only Attacks (COAs)
by generating different cyphertexts for the same plaintext value, even when the same
list of keys are used (the probabilistic feature of the MLS scheme). If we consider the
situation where q = 1 and m = 3, the encryptions of v1 and v2 are E1 = {e11 , e12 , e13}
and E2 = {e21 , e22 , e23} where:

e11 =
k1t1v1+s1+k1(r11−r12 )

s1

e21 =
k1t1v2+s1+k1(r21−r22 )

s1
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As already noted, the encryption function selects a different value for ri every time the
encryption function is invoked, thus r1i 6= r2i . If v1 > v2. Thus, applying the encryption
function, and since the k1, s1 and t1 values are all positive, the consistent values (private
keys) will be:

k1t1v1 + s1 > k1t1v2 + s1

Adding random numbers to the above might change the data ordering. The ω-concept
is used to create a “gap” between every consecutive plaintext value so as to allow the
addition of a random number while preserving the data ordering. The value of ω is
embedded in t1, when q = 1, in otherwords t1 = (s1 + k1)× ω. Recall the value of t1 is
multiplied with the v in MLS encryption function. The value of the random numbers r1i
and r2i are sampled from 0 to ω. Therefore, the maximum value of r11−r12 is ω and also
the maximum value of r21 − r22 is ω (less than the gap multiplied with v in encryption
function). Recall that ri1 when q = 1 is greater than the value of other random values.
Therefore, the encrypted values of v1 and v2 can be compared:

k1v1 > k1v2
k1v1ω � k1v2ω where ω = 10x

k1v1ω(s1 + k1)� k1v2ω(s1 + k1)
k1v1t1 � k1v2t1

k1v1t1 + s1 � k1v2t1 + s1

(A.10)

In mathematics if c is an integer number greater than 1, then c×num >> c+num;
the ω-concept uses this basic mathematical rule so that if a random value, sampled from
the range 0 to ω, is added to the two operand in Equation A.10 the data order will still
hold.

k1v1t1 + s1 + k1(r11 − r12) > k1v2t1 + s1 + k1(r21 − r22)
k1v1t1+s1+k1(r11−r12 )

s1
>

k1v2t1+s1+k1(r21−r22 )
s1

e11 > e21

(A.11)
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