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Abstract 

 

Light harvesting complexes are a type of biological complex found in photosynthetic bacteria 

and plants.  They perform a critical role in the photosynthetic pathway – transporting energy 

absorbed from sunlight to the reaction centre – and do so with exceptional efficiency. 

Understanding the root of this however has proved difficult due to the large size and the 

complexity of the systems. The wide structural variability of these complexes further 

complicates matters, raising the question of optimality of the complexes: is the exceptional 

efficiency by chance or design? This work aims to aid the description of the underlying 

principles of energy transport in these complexes and move towards answering the question 

of chance versus design. A force matching method to develop molecular mechanics 

forcefields for use in studies combining molecular dynamics with higher level methods (a 

strategy regularly employed in biophysical research) is outlined. This method reduces errors 

resulting from the methodology and lessens computational demand of developing forcefields, 

making the study of multiple complexes more feasible. Resulting forcefields lead to notable 

differences in subsequent spectral density computations. Structure-function relationships and 

the role of environment is investigated by examining spectral densities of rigid chromophores 

of several complexes with different functions. Analysis of the results reveals the environment 

to be unspecific in regard to function. Examining the exciton dynamics of several light 

harvesting complexes may uncover important characteristics of light harvesting. In order to 

study this the excitonic Hamiltonian of several complexes is computed and their dynamics 

propagated using a Lindblad master equation. The results indicate the protein likely plays 

little role in exciton dynamics with the most influential component being the solvent. The 

exciton dynamics are found to be determined solely by the static disorder of the system and 

the results suggest relative arrangement of LHCs is more important for efficiency than internal 

arrangement of chromophores.
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1 Introduction 

 

This chapter gives an overview of the research area of pigment protein complexes (PPCs) 

including a brief description of the complexes and their structure as well as the background 

on why these proteins have gained such research interest and a general account of where 

current research is now focused. Finally, the aims of this work are introduced with a brief 

outline of the chapters that follow. 

 

 

1.1 The PPCs and their structure 

The PPCs are a group of complexes found in plants and photosynthetic bacteria. The 

complexes consist of a protein scaffold containing multiple pigment molecules, typically 

chromophores and carotenoids. The light harvesting complexes (LHCs) are a specific subset 

of the PPCs; those involved in transporting energy from absorbed light to the reaction centre 

– a vital process in photosynthetic organisms. The photosynthetic reaction centre is a complex 

of several proteins in which charge separations occurs and is responsible for the primary 

energy conversion reactions in photosynthesis. Unlike other ubiquitous vital biological 

components, the structures of LHCs vary considerably. Firstly, there are the pigments 

themselves.  The chromophores directly involved in light-harvesting are classified into three 

groups: the chlorophylls (chls) – typically found in plant LHCs; the bacteriochlorophylls 

(bchls) – typically found in bacteria LHCs and the bilins – typically found in cryptophyte 

algae. Each group contains several different types of chromophore with slight structural 

variations. Representative structures detailing the differences between the chromophore 

groups are shown in Fig. 1.1. A LHC will contain light-harvesting chromophores from only 

one group but may contain several different types of chromophore from that group. In addition 

to the light-harvesting chromophores some LHCs also contain another type of chromophore, 

the carotenoid pigments. An example of a carotenoid molecule is shown in Fig. 1.1. Varying 

numbers of these pigments are arranged differently in the assorted LHCs. Next, there is the 

variability of the protein scaffold to consider. Generally, the main structure of the protein is 

formed of pairs of α helices which are associated with a pigment molecule.t1 These α helices 

pairs are arranged to form the overall quaternary structure which can be exceedingly varied. 
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For example, large numbers of these pairs can group together to form very dense disc-like 

structures, or they can stand next to one another to form cylindrical structure, or a small 

number of pairs may form a smaller, less symmetrical shape; such examples can be seen in 

Fig. 1.2. However, whilst many LHC protein scaffolds fit this description, there are also 

structures that do not follow it at all. For example, the Fenna-Matthews-Olson complex 

(FMO)2 – an LHC found in green sulphur bacteria – has a structure that is better described as 

a trimer of sandwich-like units, where the pigments are held between two layers of β sheets, 

also shown in Fig. 1.2. 

 

Figure 1.1 Chromophore types – depicted is the general structure with a table denoting the 

variations of the chromophores. Chlorophylls: chlorophyll-a (CLA) and chlorophyll-b (CLB); 

bacteriochlorophylls: bacteriochlorophyll-a (BCLA) and bacteriochlorophyll-b (BCLB); 

bilins: phycoerythrobilin (PEB), dihydrobiliverdin (DBV), phycourobilin (PUB) and 

phycocyanobilin (CYC).  Structure of a carotenoid (Rhodopin glucoside). 
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1.2 Quantum mechanical coherence in LHCs 

1.2.1 Initial experimental reports 

In 2007 Engel et. al. reported long-lived electronic quantum mechanical coherence at 77 K in 

FMO3 observed from two-dimensional electronic spectroscopy (2DES) experiments. Later 

experiments also reported long-lived coherence in FMO at ambient temperature4 as well as 

other observations of long-lived coherence.5,6 These findings generated an intense research 

interest as they contradicted the previously held assumption that energy transport in LHCs 

occurred incoherently due to the magnitude of the fluctuations of the protein environment 

being sufficient to destroy any coherence. Though more recent evidence contradicts these 

findings,7 LHCs remain an interesting topic for research. This is for a couple of reasons: 

 

Figure 1.2 Protein structures of different LHCs: phycoerythrin – disc like (top left), LH2 – 

cylindrical (top right), phycoerythrin 545 (bottom left) and FMO (bottom right) 
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firstly, they have exceptional quantum efficiency8,9 – in higher plants it has been reported that 

up to 90% of absorbed photons reach the reaction centre10 – and avoid concentration 

quenching despite the dense arrangement of the pigment molecules;11,12 secondly, the great 

structural variability of LHCs across light-harvesting organisms. The combination of these 

qualities of LHCs are interesting from two standpoints: materials design and scientific 

understanding. Elucidating the source of this high quantum efficiency potentially provides 

design principles for artificial light harvesters with practical applications, e.g. solar cells.11 

This structural variability combined with great quantum efficiency also poses interesting 

questions: are these structures by chance or design? What is the source of this high quantum 

efficiency? Do we understand the mechanism of energy transport occurring? Is there 

underlying commonality between the different complexes? Due to this combination LHCs 

present a very interesting field of research.  

1.2.2 Exciton transport models 

As it was the experimental reports of long-lived electronic coherence that generated interest 

into LHCs, it is unsurprising that initial research focused on coherence: how to model it and 

if, how and why it aids excitation energy transport (EET).11,13–17 A system evolves coherently 

if it can be described as a superposition of two or more states, i.e. at a given time there is a 

finite probability that the system is in any of the states, thus the full density matrix is required 

to describe the state. Conversely incoherent evolution of a system is when the system can be 

described by a single quantum mechanical state at any given time and so only the populations 

of the density matrix are required. Before discussing the descriptions of coherent EET, it is 

important to outline the incoherent description as detailed by Förster theory18 as this was 

initially assumed to be the correct description of EET and also to provide comparison. 

Qualitatively Förster theory describes EET as the ‘hopping’ of an excitation through the 

chromophore network, via the simultaneous de-excitation of a donor chromophore and 

excitation of an acceptor. The energy transfer rate k is given by: 

 2

D A
0

2
| | ( , , ),k V d I


   



=    (1.1) 

where V is the electronic coupling between the donor chromophore, D, and acceptor 

chromophore, A, and I(εD,εA,ε) = f(εD,ε)a(εA,ε), the spectral overlap defined as the product of 

the area-normalised fluorescence spectra of the donor f and absorption of acceptor a. 

Originally this theory was assumed to appropriately describe EET in LHCs but upon the 

discovery of long-lived coherences,3 other descriptions were proposed.  
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Redfield theory19 is a reduced density matrix approach where the interaction between the 

system and the environment (in the case of LHCs, the chromophore network and protein 

scaffold, respectively) is treated as a perturbation. As coherences are directly included in the 

density matrix description, Redfield theory was considered as a potential method to model 

and study coherence in EET. However, comparison of the Redfield and Förster theories when 

applied to two LHCs revealed Redfield strongly overestimated rates when the electronic 

coupling was weak, whilst Förster underestimated although gave more realistic results.20 

These results can be understood by considering the relative strengths of the electronic 

coupling V and the reorganisation energy (the energy dissipated due to the relaxation of an 

excitation causing nuclear reorganisation of the environment) λ and how these relate to the 

outcome of each model. When the electronic coupling is much smaller than the reorganisation 

energy (V  ) Förster theory performs well, conversely Redfield theory is best when the 

electronic coupling is much larger than the reorganisation energy (V  ) but, in LHCs the 

electronic coupling and reorganisation energy cover a range of relative magnitudes and 

typically have a similar relative magnitude ( ~V  ) and in this intermediate regime neither 

theory performs particularly well, as several studies have demonstrated.21,22  

Modelling the intermediate regime was then the aim to describe EET and so modified 

Redfield theory23,24 was considered. In modified Redfield theory the inclusion of the system-

bath interaction is split so that the diagonal elements of the system-bath Hamiltonian are 

included non-perturbatively and only the off-diagonals are treated perturbatively. 

Consequently, modified Redfield theory was proposed as being capable of describing the 

intermediate regime, as well as the limiting regimes and this was found to be true. Modified 

Redfield resulted in an appropriate rate for the intermediate regime and correctly collapsed to 

either Förster or Redfield under their respective conditions.24 But there are still some problems 

with modified Redfield theory. Firstly, in splitting the perturbation, direct examination of the 

off-diagonal elements (i.e. those relating to coherences) becomes impossible, so whilst the 

rate can be modelled with coherence directly included, no insight can be gained about it – 

which is ultimately the aim 

The Markov approximation is an important underlying assumption of many reduced 

density matrix approaches, like Redfield. LHCs are open quantum systems as the 

chromophore network (quantum system) interacts with the protein scaffold (environment) and 

so not only can information flow from the system to the environment, it can also flow from 

the environment into the system. Consequently, the environment may retain information from 

the system and then pass this information back to the system later in time – the results of 
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which are known as memory effects. To disregard these effects, the Markov approximation 

assumes that the timescale of the environment fluctuations and the timescale of the evolution 

of the quantum system, are clearly separable. In other words, if the timescale of the process 

is much longer than the timescale of the environment fluctuations, it can be interpreted as the 

environment ‘forgetting’ the information before it can be passed back. This is can be a good 

approximation, but it has been argued that it is not valid for EET in LHCs as exciton dynamics 

can take place between 0.1 and 10 ps which is of a similar timescale for environment motion. 

Thus it has been argued that the inclusion of non-Markovian effects is required to fully and 

correctly account for the generation and survival of coherence.25,26 

 There have been several proposed methods to go beyond the Markov approximation in 

the study of LHCs. The hierarchical equations of motion (HEOM),27 provide a formally exact 

solution which include the non-Markovian dynamics through a memory kernel. However, this 

is an extremely computationally expensive method and so is not considered routine. The 

reduced HEOM method was developed28 for use in studying EET as it was asserted that in 

order to fully understand the role of coherence and how the environment influences it, the 

environmental phonon dynamics must be described in more detail. Application to a dimer 

system under various conditions showed that the model was capable of replicating both wave-

like coherent and “hopping” incoherent energy transport mechanisms as well as reproducing 

Förster and Redfield theories under conditions of the Markov approximation. From the 

results, it was concluded that the long-lived coherence arose from sustaining of coherent 

oscillations by slow environmental fluctuations in a region with small reorganisation energy. 

In Redfield (and modified Redfield) the Markov approximation results in infinitely fast 

fluctuations which destroy the coherence. Another example of a non-Markovian method is 

the quantum master equation combined with the polaron transformation.28 Application of this 

method to an LHC found in cryptophyte algae highlighted the importance of quantized 

vibrations for efficient EET and concluded that near-resonance of vibrational frequencies with 

the energy levels of excitons was the main feature responsible for promotion of EET.29 

1.2.3 Debate on the functional role of coherence 

Alongside study into how to model coherence, the questions of how and to what extent 

coherence aids transport, have also been a topic of interest. There have been arguments for 

both opposing limits: that coherence is essential for efficient transport6,30 and that it is not 

essential and even reduces efficiency if it occurs at all,7,31 as well as more balanced views: 

that it perhaps is not essential for efficiency but is nonetheless important.4,13,17,32–35 The 
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arguments against the relevance of coherence predominantly relate to lab vs natural 

conditions. First, some argue that the ensemble averaging done in spectroscopy lab 

experiments is problematic as it washes out mechanistic detail of individual processes. 

Additionally, it has been proposed that vibrational coherences may have been misidentified 

as electronic in nature.36 And finally, the fact  that natural light is very different to the polarised 

excitation light sources used in lab experiments thus the experiments are not representative of 

real world conditions and therefore the observed results do not depict what occurs in natural 

light harvesting.30 The argument is that as the intensity of sunlight is constant across all 

relevant timescales, all points in time are equivalent due to this constant illumination which 

means the system is essentially in a steady state, therefore excitation by sunlight can never 

lead to wavelike motion.17 There has also been several studies that have shown there is no 

improvement in efficiency between the previously mentioned intermediate regime and Förster 

theory, indicating that coherence does not aid efficiency, for example HEOM calculation of 

the full 24-site FMO trimer dynamics found the timescale of transport was the same as that 

predicted by Förster theory.37  

 There have been several different explanations for how coherence may increase efficiency 

in EET. Once this intermediate coupling regime was identified, it was proposed that this led 

to competition between purely dissipative dynamics (as described by Förster theory) and 

unitary evolution (as described by Redfield) in which the delocalization of the excitation and 

superposition of molecular sites are robust to dissipation by the bath.35 An increased rate then 

occurs as a result of this site coherence being maintained during EET. In this case, coherence 

is deemed necessary for efficient transport as it is the sustained coherence that is said to be 

increasing rate. Another popular explanation of how coherence aids transport evolved from 

the idea that the environment may be fine-tuned in some way to promote coherence rather 

than destroy it.21 Dephasing can counteract destructive interference which would reduce 

trapping (where excitation energy is lost due to the exciton becoming localised on a site and 

eventually relaxing) which would in turn increase efficiency. From this idea of a fine-tuned 

environment arose the idea of a “promoting mode”.38 It was found that many LHCs contain 

high-energy, well-localised vibrations which were typically intramolecular and resonant with 

some electronic transitions.29 It was suggested that coupling with these modes promoted 

coherent, reversible, electronic transitions which result in the regeneration of coherence and 

so there was actually protection of coherence. Vibrations of this type were identified in the 

LHC phycoerythrin 545 (PE545) and their existence was found to improve efficiency.39  
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Another avenue of research focused on the source of coherence in order to elucidate how 

coherence increases efficiency. The spectral density contains information of the system-

environment interaction and as it was proposed that this interaction is key for coherence it 

became the focus of several studies.39–45 There are two methods for computing the spectral 

density, these are combining molecular dynamics (MD) with some quantum chemical (QC) 

calculation, typically combined quantum mechanics/molecular mechanics (QM/MM) or 

normal modes analysis (NMA). A study of the light harvesting PE545 protein combined both 

these methods using MD with QM/MMPol to compute the spectral densities and then an 

NMA to determine the origin of any important nodes.43 This found both protein and solvent 

played a role in modulating intramolecular vibrations and thus promoting or supressing 

certain interactions to enhance transport. However, another study combining MD and QC to 

compute spectral density compared the spectral densities of FMO and PE545 and found that 

the low frequency range (thought to be most responsible for influencing dynamics) of the two 

was very different.39 In the case of FMO the origin of this low frequency part was 

predominantly the environment whilst for PE545 it was from the pigment molecules, contrary 

to the findings of the previous study. Another study focused on the spectral densities of the 

individual pigments of FMO,42 in order to identify if there was any specificity to their 

environments but found very similar spectral densities for all pigments. 

1.3 Moving beyond coherence 

More recent research has diverged from a sole focus on coherence and is broadly covered by 

the following four categories: experimental spectroscopic studies – using spectroscopic 

techniques to gain insight into LHC properties; computational studies and method 

development – creating or improving methodology to study LHCs; phenomenological and 

protein specific models – developing models (with different levels of detail) to describe 

LHCs; feature investigation – investigating the importance of a particular quality of a LHC. 

These categories can be intersecting, for example one may perform experimental studies to 

inform a protein specific model or one may use feature investigation to determine what to 

include in a phenomenological model or one may develop a method to investigate a specific 

feature, etc.  

1.3.1 Recent experimental work 

The debate on the importance of electronic coherence 7,13,17,21,26,31,46 was initiated by reports 

of its existence from 2DES experiments and has evolved through the proposal of different 

possible interpretations of these experimental results. Therefore, it is useful to provide an 
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outline of 2DES experiment method. It is a third-order four-wave-mixing spectroscopic 

technique,47–49 where the first three pulses generate the signal whilst the fourth pulse is used 

for detection (and is called the local oscillator, LO). Pulses 1 and 2 excite the system and the 

delay time between them is the coherence time, τ. The system then evolves over the waiting 

time, T. Pulse 3 then creates another coherence. Finally, the time between pulse 3 and signal 

emission is the detection time t. This is represented in Fig 1.3. The 2D spectrum is then 

obtained from a Fourier transform (FT) of the signal across τ and t for a given waiting time T. 

The initial coherence (created by pulses 1 and 2) can be thought of as excitation-energy 

absorption and the final coherence (created by pulse 3) can be thought of as excitation-energy 

emission. Thus, the resulting spectrum represents a map of excitation and emission energies 

as a function of the waiting time, T, an example of this result is given in Fig. 1.4. Any off-

diagonal elements in this spectrum (known as cross peaks) indicate coupling between 

electronic states as if there were no coupling, the excited state absorption and emission would 

completely cancel one another out eliminating the presence of cross peaks. Oscillation of 

these cross-peaks over time indicates coherence and is called quantum beating. A more 

detailed explanation and details of the experimental set up can be found in ref. 50.  

In the first report of long-lived coherences in FMO, quantum beating of a cross-peak 

lasting for up to 660 fs at 77 K was observed.3 This cross-peak was assigned as the 1 – 3 

exciton cross-peak, named so due to its assignment to BCLs 1 and 3 in FMO. Further 2DES 

experiments then reported the presence of quantum beating for this cross peak for over 1500 fs 

at 77 K and up to 300 fs at 277 K.4 The conclusion drawn from these results was that electronic 

coherence existed long enough to be involved in exciton dynamics and therefore could be the 

potential source of high quantum efficiency in LHCs. However, in 2017, motivated by a lack 

of corroborating experimental evidence for long-lived coherence, further spectroscopic  

 

 

Figure 1.3: Representation of 2DES pulses and delay times. 
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Figure 1.4 Schematic example of cross peaks beating in time (top). Real example of 2DES 

results taken from ref. 4 (bottom). 

 

study of FMO was carried out under physiologically realistic conditions (296 K), in 

combination with theoretical modelling. The results of which concluded that electronic 

decoherence happened on a timescale of 60 fs, in line with a rapid decay of quantum 

coherence as opposed to long-lived. The authors also proposed that this result could be 

considered generalisable to other LHCs, due to the similarity in inter-pigment separation of 

FMO and other LHCs. Since this contradiction to long-lived coherence was reported, other 



11 

 

work has sought to corroborate or further contradict long-lived electronic coherence. 2DES 

study of the peridinin-chlorophyll complex also found short (< 100 fs) coherence times.50 

However, the research also found substitution of chlorophyll-a with chlorophyll-b in the 

complex led to slower energy transport. It was proposed that this was due to even faster 

decoherence owing to the formyl group of chlorophyll-b increasing the coupling to the bath 

motions due to an increased dipole moment resulting from the electron withdrawing nature of 

the moiety. Thus, it was concluded that even on these short-lived timescales coherence aids 

transport efficiency. Additionally, further studies have utilised a combination of experimental 

spectroscopy and theoretical modelling techniques and concluded that the observed quantum 

beating is in fact vibrational in origin as opposed to electronic.36,51 Such findings highlight the 

role of theoretical work in the understanding of such complexes processes by aiding analysis, 

assignment and interpretation of complicated experimental results.   

1.3.2 Computational chemistry studies 

Studying LHCs computationally is difficult due to the large and complex nature of the 

systems. Even studying the “closed” system can be tricky as it typically consists of multiple 

chromophores, which are relatively large molecules (> 100 atoms). To this already complex 

system even more detail is added, as the “open” system is of interest – where the 

chromophores are interacting with the protein environment. Consequently, it is impossible to 

simulate or model these systems completely quantum mechanically – for example recently an 

quantum mechanics/molecular mechanics molecular dynamics simulation (QM/MM-MD) 

was performed on the PC645 protein.52 In this QM/MM-MD simulations the dynamics of the 

system is run by propagating part of the system at a quantum level and part of the system at a 

classical level simultaneously. In this case the quantum part of the system consisted of 75 – 

80 atoms and 8 sets of 50 ps trajectories were run. These simulations took 9 months and cost 

2 million CPU hours to run, and whilst an impressive undertaking, the utility of the results is 

questionable due to the relatively short timeframe, which is too short for the system to be fully 

equilibrated. This study demonstrates the limits of what is currently possible for dynamics 

simulations of LHCs.  

However open quantum systems may still be examined through combining quantum 

mechanics (QM) with molecular mechanics (MM) – usually through taking a classical MM 

trajectory as input for a QC calculation. Despite the conceptual simplicity, this approach 

contains a large number of approximations as well as many methodological choices which 

can be difficult to validate. There is the choice of forcefield (FF) for the MM part, including 
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whether to include polarizability, as well as the level of theory for the QM part, e.g. 

semiempirical or density functional theory (DFT) based, and the number of states to include. 

The sampling also requires consideration; a ns timescale is required for protein 

conformational change whilst fast motions and EET processes occur on ps timescale. Even 

the fundamental decision of how to split the system requires consideration: the most obvious 

choice is to have the protein environment as the MM part and the chromophores as the QM 

part, but perhaps there is some amino acid side chain in close proximity to the chromophore 

that also warrants QM treatment. It is not always possible to foresee the consequences of these 

decisions. For example, a now well-known issue when combining QM and MM methods 

stems from the inconsistency of the methods was discovered only once many studies utilising 

this method has been performed – the result has been dubbed the “geometry mismatch 

problem”.41 It is the result of the inconsistency between the methods which leads to different 

equilibrium structures, an issue that will be addressed in chapter 3.  

1.3.3 Recent phenomenological studies and relation to atomistic 

description 

Protein specific and phenomenological studies have essentially the same goal: to understand 

EET in LHCs but they employ different methods. In phenomenological research the focus is 

on the underlying physical principles and using simplified model systems to investigate and 

demonstrate EET. In the study of LHCs, a typical phenomenological model consists of a 

simplified description of the chromophore network and some simplified description of its 

interaction with the bath. For example, the chromophore network can be described by it 

excitonic Hamiltonian matrix, where the diagonal elements are the excitation energies of the 

chromophores and the off-diagonal elements are the couplings between the chromophores. 

The interaction with environment can then be brought in in a number of ways, e.g. as Lindblad 

operators.53  

Several of the most recent phenomenological models have focused on the role of 

vibrations,54–56 considering the more recent experimental evidence suggesting quantum 

effects arise from vibrations. Comparison of inclusion of under-dampened vibrational modes 

in either the quantum sub system or the classical bath of a model 3 site system found no 

significant difference in result suggesting that if quasi-resonant vibrational modes aid EET, 

their inclusion in models can be achieved through inclusion in the quantum subsystem or as 

part of the classical bath.55 Another phenomenological study examined the effect of site 

specificity of vibrations on a two-site model system connected to a source and sink.54 It found 
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that when both sites coupled to a global bath, the coupling led to reduced coherences and 

lower transport rate whilst each site coupling to individual vibrational environments led to 

enhanced resonance and increased transport. Suggesting that inclusion of the specific 

environment in the study of LHCs is important.  

In the case of protein specific studies, typically atomistic detail of the LHC is included 

somehow or model inputs and parameters are tuned to represent the LHC in an attempt to gain 

more specific insights into that individual complex.57–60 The results are sometimes intended 

to be expanded or compared to other complexes or for application to materials design. There 

is much wider variety in the nature of these sorts of studies, due to the wider variance of 

systems that are available for investigation. For example, one protein specific study aimed to 

simulate the 2DES of the light harvesting II complex57 (LH II) whilst another used a 

generalised master equation to examine the robustness of transport between light harvesting 

2 (LH2, different to LH II) units to identify the robustness of transport to differing orientations 

and separations of the units.59 There is also a wider range of tools available to use in protein 

specific studies experimental methodology can be implemented for protein specific studies, 

for example hole burning spectroscopy experiments of FMO and a mutated FMO showed that 

the single point structural mutations resulted in more than single site energy shifts, indicating 

the effect of the system-environment interaction.58 Valuable insights can be gained from both 

phenomenological and protein specific studies to aid the understanding of EET and uncover 

principles for the fine tuning and improvement of efficiency in artificial materials. 

1.3.4 Investigating features influencing EET 

A number of studies have focussed on discovering the relationship between a particular 

feature (structural or electronic) and the efficiency of transport, to help understand the origin 

and to inform design principle for artificial light harvesters. If some important feature can be 

identified, it can elucidate the biological function or even provide means to improve artificial 

light harvesters. Additionally, such studies can clarify what details are necessary to include in 

LHC models – if some feature is found to be completely unimportant or conversely 

predominantly deterministic of dynamics, then the model can be simplified by excluding it 

(in the former case) or excluding many other components other than the feature (in the latter 

case). The role of vibrations in EET have been the subject of study,61,62 finding that 

intramolecular vibrations improve transport efficiency in some way. Other properties have 

also been investigated, for example to understand aspects of the absorption spectra of LH2, 

the effect of charge transfer (CT) states were studied by including the mixing of excitons and 
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CT states in the electronic Hamiltonian used to simulate the absorption spectrum.63 It was 

discovered that this led to the broadening of a particular peak at 850 nm in the spectrum, 

believed to be key for efficient transport. Another study focused on the macrostructure of a 

couple of LHCs with identical chromophore arrangements but different protein scaffolds, in 

order to uncover the source of a 30 nm blue shift in one of the spectra.64 The conclusion was 

that the curvature of the macrocycle ring of the protein was the most important factor. Such a 

discovery has the potential to inform design principle for the tuning of absorption spectra in 

artificial light harvesters. The extensive variability in structure and properties of LHCs creates 

a vast feature space for potential examination.  

1.4 Objectives of this work 

The research carried out on LHCs so far has undoubtedly provided insight into EET and 

properties of LHCs in general. However, a unified underlying description of transport 

mechanism remains elusive. Due to the size and complexity of these systems, studying them 

in detail is often computationally demanding, making it difficult to study more than one or 

two complexes at a time. Cross comparison of studies is not straight forward as there is such 

a range of methodologies in use when examining these systems. Resulting in challenges in 

identifying commonalities and adequately answering questions surrounding optimality of 

these complexes and what aids efficient transport.  

In order to move toward a more coherent description of transport in LHCs and to identify 

key principles in light harvesting, in this work the aim is to study a couple of crucial elements 

of EET for a range of LHCs in a unified way. The three research chapters of this work address 

different problems related to this goal: a computational chemistry problem, a biochemistry 

problem and a biophysics problem. Firstly, in chapter 3, a new solution is proposed for one 

of the predominant issues in combining QM and MM methods – the geometry mismatch 

problem. A method for molecular dynamics forcefield parameterisation is introduced which 

utilises gradient descent to produce a forcefield whose parameters give rise to consistent 

forces with a corresponding quantum chemical calculation. Next in chapter 4, motivated by 

the speculation that the protein environment of LHCs is optimised in some way to promote 

efficient EET, the interaction of the environment with the chromophores of several PPCs with 

different functions (one light harvesting and two chromophore transporters) are examined. By 

examining the role of environment for these different complexes with different functionalities, 

the existence of some specialised interaction or vibrational mode should be clear. To include 

atomistic detail of the protein environment QM/MM calculations were performed using 
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snapshots from an MD trajectory as input. Furthermore, to focus solely on the role of the 

environment the chromophores were kept rigid in the MD. Finally, in chapter 5, a 

homogeneous method is used to examine the exciton dynamics of five LHCs and use 

statistical analyses to examine underlying factors influencing dynamics. Through these works 

the aim is to gain an understanding of the underlying principles of EET in LHCs and identify 

any important feature, if they exist, through a direct comparison of results obtained.  
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2 Theoretical background 

 

 

In this chapter the details of the various computational and theoretical techniques utilised in 

the rest of this thesis will be outlined. The topics covered are: QM/MM, MD, TD-DFT, exciton 

dynamics and Lindblad master equation, spectral densities and excitonic couplings. Sections 

2.1-3 and 2.5 are relevant for chapters 3 and 4. For chapter 5, sections 2.1 and 2.4 are 

relevant. 

 

 

2.1 QM/MM 

In a perfect world there would exist unimaginably powerful computers, which could be used 

to quantum mechanically simulate any system regardless of its size. Sadly, it is not a perfect 

world and treating protein systems like the LHCs completely quantum mechanically is simply 

impossible. However, often it is only some smaller part of the total protein system that is of 

chemical interest and it is not necessary to model the rest at a quantum mechanical level. 

Simulating a system by treating part of it with an appropriate QM level and the rest using MM 

is much more feasible and this is the approach of hybrid QM/MM simulation methods. The 

method was first introduced in 1976 by Warshel and Levitt65 and has since become a very 

popular method of simulation of systems too large to be treated entirely at an ab initio level 

but involve some property that cannot be adequately described by simple MM methods. 

QM/MM is ideal for studying the electronic properties of chromophores embedded in their 

protein environment. 

 In QM/MM three types of interactions contribute to the potential energy: interaction 

between MM region atoms, interaction between QM region atoms and interaction between 

QM region and MM region atoms. The underlying method is simple: obtain the energy for 

the MM region utilising MM methods, the QM region with QM methods and calculate the 

QM/MM interaction somehow. However, the actual implementation of QM/MM can be very 

different from case to case. For the MM part there is many traditional FFs to choose from, as 

well as more complex polarisable FFs. Similarly, the QM part may be treated semi-
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empirically (e.g. ZINDO) or with DFT. Once the MM and QM methods have been chosen, 

their treatment is then straightforward, it is the QM/MM interaction that is most difficult to 

describe. The approaches for treating the cross-region interactions can be divided into two 

categories: subtractive coupling schemes and additive coupling schemes. 

 In the subtractive coupling scheme, the MM energy of the total system is calculated first, 

then the QM energy of the isolated QM system is added. Finally, to correct for the double 

inclusion of the QM system interactions, the MM energy of the QM system is subtracted 

(hence subtractive) to give the QM/MM energy of the total system 

 / .total total QM QM

QM MM MM QM MME E E E= + −   (2.1) 

The subscripts denote the level of treatment whilst the superscripts denote the section of the 

system. The ONIOM model66,67 is the most commonly used subtractive method. As the 

subtractive coupling scheme requires no direct communication between the QM and MM 

subsystems it is relatively simple to implement. However, this absence of direct 

communication also means that the MM environment cannot polarise the QM electron 

density, something that can play an important role in biological charge transfer processes. 

Additionally, to use the subtractive coupling scheme it is necessary to have a FF that 

sufficiently describes the QM subsystem which is not always trivial to obtain. 

 In additive schemes the total energy is a sum (hence additive) of MM energy, QM energy 

and a QM/MM coupling 

 / .total QM MM total

QM MM QM MM QM MME EE E −= + +   (2.2) 

Here the interaction of the subsystems is treated explicitly. There are several methods for 

describing these interactions: mechanical embedding, electrostatic embedding and polarisable 

embedding. In this work the only additive approach used is electrostatic embedding (chapters 

3 and 4), so only this approach will be outlined here. In electrostatic embedding, the 

electrostatic interactions between the QM and MM subsystems are treated during the 

computation of the electronic wavefunction through an electrostatic contribution to the Fock 

matrix. The MM environment is treated as classical point charges which enter the QM 

Hamiltonian as on-electron operators 
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where ri is position of electron i, RJ is the position of MM atom J, QM

ih  is the original one-

electron operator for electron i and M is the number of MM atoms that have a partial charge 

QJ. So, the electrons experience these MM atoms as special nuclei with non-integer charges. 

 The QM and MM subsystems may be connected by chemical bonds. In such cases simply 

cutting the bond would impact the QM wavefunction as it would add one or more unpaired 

electrons to the QM subsystem which do not actually exist. Again, there are several 

approaches to treat such instances; using link atoms is one such solution. Introducing a 

monovalent link atom at an appropriate position along the region crossing bond is the simplest 

solution. Typically, hydrogen is used, but there is no restriction on the atom type and 

fragments, such as methyl groups, are often used too. The link atoms appear only in the QM 

calculation and not the MM. A fixed position along the bond is given to the link atom at every 

step of the simulation in order to remove any additional degrees of freedom added by the 

insertion of the link atom. 

2.2 MD 

MD was formulated in the late 1950s as a way to model the dynamics of chemical systems.68 

It is based on the assumption that atoms behave according to classical mechanics and quantum 

mechanical features can be ignored. Thus, each atom is treated as a point particle with a 

corresponding mass. The classical Hamiltonian is 

 ( , ) ( ) ( ),H p q T p V q= +   (2.4) 

where p denotes momentum and q denotes position. And so, V(q) is the potential energy of 

the system and T(p) is then the classical kinetic energy of the system, given by: 
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where N is the total number of atoms in the system and mi is the mass of atom i. The time 

evolution of the positions and momenta of the atoms are then given by the following equations 

of motion: 
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Note that these equations simply correspond to Newton’s second law. Equation (2.6) 

corresponds to F = ma and equation (2.7) is simply the definition of velocity. Thus, in MD 

the goal is to solve Newton’s equations of motion.  

 There are two main methods for integrating Newton’s equations of motion, these are the 

Verlet algorithm69 (also referred to as the Leapfrog algorithm) and the Velocity-Verlet 

algorithm.70 The Verlet algorithm can be derived using Taylor expansions 
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Adding these together gives 
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The Verlet algorithm requires the position vector at t – δt and so is not self-starting. The 

Velocity-Verlet algorithm explicitly incorporates velocity in order to avoid the issue of not 

self-starting. The integration cycle is as follows, first the momenta are updated at a mid-step 
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the positions at the next step are then updated 
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the new forces are then computed at the new position 
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finally, the momenta are updated 
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Utilising either of these algorithms provides a trajectory of the atoms in the system. 

 Another important component of MD is the FF. A FF is an equation for the potential 

energy of the system and its parameters. Typically, it is given as a sum of intra- and inter- 

molecular terms 
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 .intra interV VV= +   (2.15) 

The intramolecular (or bonded) part of the potential energy is composed of terms relating to 

bond stretching, angle bending and torsional potentials 

 ,intra bond angle torsV VV V= + +     (2.16) 

and the intermolecular (or non-bonded) part is given by the sum of van der Waals interactions 

and electrostatics 

 .inter vdw elV V V= +   (2.17) 

The exact for of each of these terms depends upon the FF used. Some examples of the most 

popular FFs in MD are AMBER,71 OPLS,72 CHARMM.73 As the only FF utilised in the 

following chapters is the all-atom CHARMM FF,74 only the exact form for that particular FF 

is given here, which is 
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  (2.18) 

where b denotes bond length, θ denotes bond angle size, and φ and ω denote dihedral and 

improper dihedral size respectively, u denotes the 1-3 atom distance of the Urey-Bradley 

component of angle bending from non-bonded interactions. The kX parameters are force 

constants and X0 parameters are equilibrium length/angle size. For the dihedral term, n is the 

multiplicity of the dihedral function and δ is the phase shift. (Note the torsional terms are split 

into dihedrals and improper dihedrals). The non-bonded term uses a standard 12-6 Lennard 

Jones potential for the van der Waals, where Rmin corresponds to the point at which the 

potential crosses the x-axis and the electrostatic component is given by a Coulombic potential. 

2.3 Electronic structure theory 

The Schrödinger and time-dependent Schrödinger equations 

 ; ( ) ( )H E t i
t

H t


 =   = 


  (2.19) 

govern systems composed of electrons and nuclei, where H is the Hamiltonian of the system, 

E is the energy and Ψ is the many particle wavefunction. Thus, the energy (or time-dependent 

property) of a system can be found by solving the time-independent or time-dependent 
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Schrödinger equation. The general Hamiltonian (using atomic units) of such a system 

comprised of N nuclei and n electrons is given by 
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where m is mass, q is charge and r, R is coordinate. The T terms correspond to kinetic energies 

and the V terms correspond to interaction energies. In the Born-Oppenheimer approximation75 

the electronic and nuclear motions are decoupled as a result of approximating the nuclei as 

fixed. The basis of this approximation is the significant weight difference between electrons 

and nuclei; nuclei are much heavier and therefore move much slower and so the electrons 

respond instantaneously to any nuclear motion. The nuclei can therefore be treated as fixed 

and the system described in terms of the electrons only and the Hamiltonian then becomes the 

electronic Hamiltonian 

 ( ).e e Ne ee NNH V V VT + += +   (2.21) 

As the nuclei are fixed VNN is a constant and thus it does not affect the wavefunction. The 

electronic Schrödinger equation can be solved analytically for a few special cases but in 

general analytical solutions are precluded by the electron interaction term Vee. Therefore, the 

solution must be found via some suitable approximate method.  

2.3.1 Hartree-Fock theory 

Hartree-Fock theory is a wavefunction based method to approximately solve the Schrödinger 

equation. First, note that the sum over nuclei in the VNe term is identical for all atoms and so 

can be treated as an external field and therefore e NeT V+  is a sum over single-particle 

Hamiltonians  

 

( )

2

11 1

1

2

1
.

Nn

i

n
i

n
J

e

i i ji J i J i j

n n

i

i i j j

q
H

h

= = =




= − − +

− −

= +
−

  

 

r R r r

r
r r

  (2.22) 

The Hartree product wavefunction is then obtained by defining each electron spin orbital, 

( ), x  as an eigenstate of h  
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and treating the electrons as non-interacting, essentially ignoring the Vee term 
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1

.
n

HP

i

i

H h
=

= r   (2.24) 

Thus, the eigenfunction of HHP is simply the product of all the single-electron spin orbitals 
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However, ignoring electron interactions is a terrible approximation, so the Hartree product is 

substituted into the full electronic Hamiltonian to include electron interactions through a 

mean-field potential. 

There is another issue with the Hartree product wavefunction, it is not anti-symmetric 

with respect to interchange of electrons, i.e. it violates the anti-symmetry principle. As the 

sign of the wavefunction changes when two electrons exchange, this is known as the exchange 

interaction. In order to rectify this the wavefunction can instead described by a Slater 

determinant 
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Then the total Hartree-Fock energy is given by 
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Where the first term of EHF is the expectation value for the one electron operator. The first 

two-electron integral is the coulomb integral as it corresponds to the coulomb repulsion 

between electron densities 
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and the second is the exchange integral 
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which arises as a result of the anti-symmetry principle and has no classical analogue. 

Then following the variational principle 
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the wavefunction that best describes the system is found by minimising the energy. This is 

achieved by solving a set of one-electron Fock equations called Fock operators, 
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where j  is the coulomb operator and j  is the exchange operator and they are given by 
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  (2.32) 

To solve the Fock equations a basis set is introduced. It is assumed the molecular orbital of 

the system can be written as a linear combination of atomic orbitals 
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Substituting in to the Fock equation and formulating the expansion coefficients c in terms of 

matrices gives the Hartree-Fock-Roothaan equation 

 =Fc Sc   (2.34) 

where F is the Fock matrix, c is the expansion coefficient matrix and S is the overlap matrix 
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The Hartree-Fock-Roothaan equation must then be solved using the self-consistent method to 

find the values of the expansion coefficient matrix c which result in the lowest energy and 

therefore best wavefunction of the system. 
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 However, there is still some remaining error in the Hartree-Fock result arising from 

electron correlation. As Hartree-Fock is a mean-field approach each electron experiences an 

averaged interaction with all other electrons and any instantaneous interactions between 

individual electrons due to electron-electron repulsion are neglected. These instantaneous 

interactions are often referred to as dynamic correlations. Additionally, approximating the 

wavefunction as a single Slater determinant can lead to physically unrealistic behaviour 

especially if several electronic states of the system have very similar energies. For example, 

a H2 molecule dissociates into a pair of radicals but describing H2 with a single Slater 

determinant predicts some ionic character (i.e. H- 1s2, H+ 1s0) at all interatomic separation 

distances. This is often referred to as static correlation. 

2.3.2 Time-independent density functional theory 

In density functional theory, the electron density, ρ(r), is used to solve the electronic 

Schrödinger equation, rather than the many particle wavefunction. The density appears a 

preferable object to work with as it depends on only one variable, whilst the wavefunction is 

a function of 3N coordinates. In order to use the density to solve the Schrödinger equation, it 

must be true that the density uniquely determines the external potential, VNe, (and thus the 

properties) of the system. This is the first Hohenberg-Kohn theorem.76 The proof of the 

theorem proceeds by considering the opposite to be true: the same ground state density, ρ(r), 

belongs to two systems with two distinct external potentials, V1(r) and V2(r), and thus with 

distinct Hamiltonians, H1 and H2, and wavefunctions, 1 and 2. Then, according to the 

variation principle, 

 1 1 1 1 2 1 2| | | | .E H H=          (2.36) 

Also 

 ( ) ( ) ( )22 1 2 2 2 2 1 2 2 2 1 2| | | | | | dHH H H E V V  −   =    +    = +  −   r r r r  

 (2.37) 

And therefore 

 ( ) ( ) ( )1 2 1 2 d .E E V V +  −   r r r r   (2.38) 

Swapping the indexes in equations (2.36) and (2.37) produces the same relations and so 

 ( ) ( ) ( )2 1 2 1 d .E E V V +  −   r r r r   (2.39) 

Adding these inequalities produces 
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 1 2 1 2E E E E+  +   (2.40) 

which is nonsense. The assumption that the theorem is false is clearly invalid and therefore 

the theorem is true. Thus, we can write the energy as a functional of the density. The second 

Hohenberg-Kohn theorem76 is a consequence of the variation principle and states that for 

ground state density ρ(r) and any other density ( ), r  corresponding to a given external 

potential, the energy of the ground state will be lower 

    E E    (2.41) 

  

 So then, from the Hohenberg-Kohn theorems it follows that there is some functional of 

the density which gives all properties of the system. However, the exact form of this functional 

is not known. Considering the Hamiltonian in equation (2.21), the interaction VNe is the 

external potential and is thus 

 ( ) ( ) d ,Ne VV =  r r r   (2.42) 

and the coulombic repulsion in Vee is 
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But it is difficult to express the kinetic energy Te in terms of the density. Additionally, there 

is nothing to account for the exchange interaction, nor electron correlation which are crucial 

components of the electron-electron interactions (Vee). Thus, Kohn and Sham proposed77 that 

the ground state of a fictitious system of non-interacting particles can be formed which is 

identical to that of the ground state density of the true interacting system. As in Hartree-Fock 

theory this non-interacting system is composed of a Slater determinant of molecular orbitals 

 ( ) ( ) 2| |i

i

 =r x   (2.44) 

and so as before the kinetic energy is the sum of the individual kinetic energies 
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Note that this is not the exact kinetic energy of the true system as the electrons are non-

interacting. The Kohn-Sham energy is then 

       ( ) ( )  KS xcT J VE E    = + + + r r   (2.46) 
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where Exc[ρ] is the exchange-correlation functional, which by definition contains the 

difference between the kinetic energy of the true (interacting) system and that of the non-

interacting system as well as the difference between the full electron-electron interaction 

energy and the Coulomb interaction energy. Then similarly to Hartree-Fock theory, the Kohn-

Sham orbitals (and thus the energy) are found by self-consistently solving the Kohn-Sham 

equations 
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where Vxc is functional derivative of the exchange correlation potential. However, the exact 

form of exchange-correlation functional Exc[ρ] is not known and thus must be approximated. 

Many (many) approximate exchange-correlation functionals have been developed, some use 

reference fitting data and parameters, whilst others rely upon physical reasoning and 

constraints. In general, most functionals can be categorised by three main groups: local 

density functionals, generalised gradient functionals and hybrid functionals. 

 The exchange-correlation energy density, exc(ρ(r)), has a nonlocal dependence on the 

density; that is at a particular point r, exc(ρ(r)) is determined by the density at all other points, 

ρ(r′). The local density approximation allows the removal of this nonlocal dependence 

through the approximation that for inhomogeneous systems with slowly varying density, the 

system is similar to the homogeneous electron gas 

   ( ) ( )( ) .LDA

xc xcE e d  =  r r r   (2.48) 

The exchange-correlation energy density at a given point now depends only on the density at 

that point. Now the exchange-correlation energy density can be split into the exchange energy 

density and correlation energy density 

 ( )( ) ( )( ) ( )( )xc x ce e e  = +r r r   (2.49) 

 where the exchange energy density can be calculated exactly from Hartree-Fock theory 
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and thus, the local density approximation exchange potential is 
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A nice simple expression. Whilst the correlation energy density is not known exactly, 

quantum Monte Carlo calculations have provided very accurate numerical results which have 

been used to derive parameterisations78–80 for the correlation energy in the local density 

approximation. The local density approximation performs well for solid-state and materials 

applications, however it suffers from self-interaction (interaction energy contributions 

resulting from electrons interacting with themselves) which consequently leads to generally 

underestimated values for the Kohn-Sham energy eigenvalues. As a result, the local density 

approximation is not suitably for many chemical applications. 

 The local density approximation assumes a homogeneous density based upon the 

assumption that the density varies slowly, for atoms and molecules this is not an optimal 

assumption. To overcome this, the gradients of the electron density are included in Exc – this 

is the generalised gradient approximation 

 ( ) ( )( ) d .GGA

xcE f  =  r r r   (2.52) 

There is a wide variety of generalised gradient approximation functionals available as there 

is no unique formulation or parameterisation procedure. Popular examples of such functionals 

include PBE81 and BLYP82,83 (composed of the Becke exchange functional and Lee-Yang-Par 

correlation functional). The generalised gradient approximation has led to great 

improvements in practical application of DFT, owing to its accuracy and relative 

computational simplicity. 

 The search for even greater accuracy continues beyond the generalised gradient 

approximation. Recall the expression for J[ρ] equation (2.43) 
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thus, when i j=  there is a contribution to the energy from an electron interacting with itself. 

This is the source of the self-interaction error. In Hartree-Fock the self-interaction is exactly 

cancelled by the exchange energy. Additionally, it is known that Hartree-Fock exchange 

overestimates whilst the self-interaction error underestimates, and so hybrid functionals were 

conceived. In hybrid functionals a fraction of Hartree-Fock exchange is mixed with the DFT 

exchange 

 .(1 )hybrid HF DFT DFT

xc x x cE aE a E E= + − +   (2.54) 
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Perhaps the most famous of the DFT functionals, B3LYP is of this variety, consisting of the 

Lee-Yang-Par correlation functional mentioned previously and Becke’s three-parameter 

hybrid84 for exchange. This is just one example of a great many hybrid functionals that have 

been produced. There is some criticism that the level of empiricism introduced by the choice 

of functionals to be mixed and the weighting of the terms is too much and consequently, it is 

easy to produce a functional which perfectly reproduces some reference data set but is very 

poorly generalisable. Nonetheless, B3LYP and other hybrid functionals have proven to be 

successful in many practical applications of DFT. Another class of hybrid functionals are the 

long-range corrected (also known as range separated functionals) in which the Coulomb 

interaction is separated into short-range and long-range parts 

 .LRC DFT HF DFT

xc x x cE E E E= + +   (2.55) 

Where the short-range interaction is treated using a “standard” DFT functional (such as 

generalised gradient) and the long-range is treated using Hartree-Fock. The separation 

parameter can be determined using physical arguments or chosen empirically. The advantage 

of such hybrid functionals is that at long-range the local density and generalised gradient 

approximations are invalid but at short-range they are perfectly fine; thus, it can take 

advantage of the good short-range behaviour and account for the long-range asymptotic 

behaviour. And still ever more types of functional exist and continue to be developed, 

including meta-generalised gradient approximation, self-interaction correction, optimized 

effective potential and whatever other things can be though up by DFTers. 

2.3.3 Time-dependent density functional theory 

Since DFT for the stationary ground state is both accurate and computationally efficient, a 

similar formalism for time-dependent properties and electronic excited states would be ideal 

– a time-dependent density functional theory (TDDFT). However, there are two key 

differences between the time-independent ground state and the time-dependent case. Firstly, 

there is no variation principle in the time-dependent case and secondly, the time-dependent 

Schrödinger equation is an initial value problem. So then, it must be proven that two n-

electron systems, starting from the same initial state, will have time-dependent densities that 

differ by more than a time-dependent constant if they are subject to two different time-

dependent potentials. Runge and Gross85 proved that for potentials with Taylor-expandable 

time series this was true. The proof first establishes that at times infinitesimally later than the 

initial time, different potentials result in different currents densities. It then goes on to 
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demonstrate that different current densities must have different densities. And so, for the time-

dependent case the potential may be written as a functional of the density 

 ( )  ( )0, , , .V t V t= r r   (2.56) 

Since (from time-independent DFT) the ground state is a functional of the density, the formal 

dependence of the initial state can be removed by using the system’s ground state as the initial 

state; meaning the time dependent potential,  ( ), ,V tr  can be written as functional of the 

density only. 

 A time-dependent formalism of Kohn-Sham DFT exists with the same premise as its time-

independent counterpart; that the density may be calculated from a non-interacting system 

representative of the true system 

 ( ) ( )
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, , ,
i

n

it t =r r   (2.57) 

and the time-dependent Kohn-Sham equation is 
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The time-dependent effective potential is then 

  ( ) ( ) ( )  ( )0 0 0 0, , ,, ,, , , .H xcV t V t V t V t   = + +  r r r r   (2.59) 

Here the time-dependent exchange-correlation potential formally has a dependence on the 

density and the initial state of the exact interacting system, as well as the initial state of the 

non-interacting system. Though as previously mentioned, typically the system of interest is 

initially in the ground-state and so, the exchange-correlation potential becomes a functional 

of the density only  ( ), .xcV t r  However, the density-dependence of the exchange-

correlation potential is not straightforward moreover, as in the time-independent case it is 

nonlocal. This means that at some specific space-time point (r, t), the exchange-correlation 

potential depends on the densities at all other points in space at all previous times ρ(r′, t′) 

where .t t  Thus, in order to simplify the exchange-correlation potential, the adiabatic 

approximation is typically employed in TDDFT. The nonlocality is removed by replacing the 

ground-state density with the instantaneous time-dependent density in the exchange-

correlation potential 

  ( ) ( ) ( )0
0 ,
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xc xc t
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=

r r
r   (2.60) 



30 

 

 Whilst solving the time-dependent Kohn-Sham equations is a viable route for determining 

time-dependent properties of a system, it is not always necessary to seek a full solution. In 

many practical applications the system does not strongly deviate from its initial state as it is 

only subjected to a small perturbation. Consequently, in such situations, it is possible to 

compute the change of a variable/observable in the perturbation rather than calculating the 

change of the wavefunction directly. This is the aim of linear response theory. Consider a 

system initially in the ground state where at t0 a time-dependent potential, which causes some 

small time-dependent changes, is switched on, in turn causing the density to become time-

dependent. This time-dependent density can be expanded in terms of the changes induced by 

this perturbation 

 ( ) ( ) ( ) ( )0 1 2, , , ,t t t   = + + +r r r r   (2.61) 

where the first term is the ground state density, the second term is the first-order change (due 

to the perturbation) in the density (the linear response), the third term is the second-order 

change in the density and so on. The linear response dominates when the perturbation is small. 

Formally the linear density response is  

 ( ) ( ) ( )1 1, , , , , d dt t t V t t 


−
=       r r r r r   (2.62) 

where χ is the density-density response function. However, typically the frequency-dependent 

response is of more interest than that of the real-time response and so instead 

 ( ) ( ) ( )1 1, , , , dV    =   r r r r r   (2.63) 

and the FT of the density-density response can be written using the Lehmann representation86 
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 (2.64) 

where 

 0n nE E = −   (2.65) 

is the nth excitation of the many-electron system. From this it is clear the exact excitation 

energies of the system are poles of the response function. Thus, knowing the function χ would 

allow the exact computation of the density response and following that, the observables. As 

before, a non-interacting Kohn-Sham system can be used to compute the linear density 

response of the real system by measuring the response of the non-interacting system to an 
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effective perturbation.87 This effective perturbation is defined as the real external perturbation 

plus the Hartree potential and the exchange-correlation potential 

 ( ) ( ) ( ) ( )1 1 1
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, , , , , d ,eff

xcV V f    
  
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  (2.66) 

where fxc is the frequency-dependent exchange-correlation kernel. The response function of 

the non-interacting system to this effective perturbation is 
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fj and fk are occupation numbers of the ground state configuration of the non-interacting 

system and .jk j k = −  This means the response function of the non-interacting systems has 

poles at the excitation energies. 

 The excitation energies of a system are the energy differences between the ground-state, 

E0, and the higher states, En, 
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n

exc nEE E= −   (2.68) 

But it can also be described as the energy corresponding to a characteristic frequency which 

describes the rearrangement of the probability density when the system transitions from the 

ground state to a higher excited state. Thus, the excitation can be defined as an eigenmode. 

Linear response TDDFT can compute these eigenmodes and therefore the excitation energies 

of a system using the Casida equation88,89 
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where X and Y are the excitation and de-excitations and 
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where fHxc denotes the Hartree-exchange-correlation kernel and is 

 ( ) ( )
1

, , , ,Hxc xcff   = + 
− 

r r r r
r r

  (2.71) 

and i and a correspond to the occupied and unoccupied Kohn-Sham orbitals, respectively and 

σ denotes the spin-dependence. If the excitation frequencies are not close to zero (as is the 
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case for molecules) then Tamm-Dancoff approximation can be made. This decouples the 

excitations and de-excitations in eqn. (2.69) by setting K to zero.  

 In order to carry out linear-response TDDFT, there must be an approximation for the 

exchange-correlation kernel fxc. This can be formally achieved by calculating ( ), , , ,xcf t t r r  

from approximating the time-dependent exchange-correlation potential, and performing a FT 

of the time-dependent kernel fxc to obtain the frequency-dependent kernel ( ), , .xcf r r

Practically however it is rarely necessary to perform this explicitly. Recalling the adiabatic 

approximation of the time-dependent exchange-correlation potential, eqn. (2.60), the 

adiabatic approximation for the exchange-correlation kernel is  
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  (2.72) 

which is frequency independent. Adiabatic exchange-correlation kernels can be derived from 

their standard time-independent DFT exchange-correlation potential counterparts (e.g. LDA, 

GGA, hybrids etc.), for example the adiabatic LDA exchange-correlation kernel 
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  (2.73) 

Linear response TDDFT using the Tamm-Dancoff approximation with a suitable adiabatic 

exchange-correlation kernel may then be used to compute excitation energies of many-

electron systems (i.e. molecules). 

2.4 Dynamics of open quantum systems in the Markovian 

limit 

To begin with, the definition of the density matrix, ρ, must be introduced, for a pure state this 

is given as 

 | | .      (2.74) 

Typically, φ is expanded as a linear combination of basis states |n 

 | .| n

n

c n =    (2.75) 

Thus, ρ becomes 

 
*

,

| |,n m

n m

c c n m =    (2.76) 
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therefore, the matrix elements are 

 *| .|nm n mn m cc    =   (2.77) 

However, generally systems of interest are in a mixed state, i.e. a statistical ensemble, in such 

cases the density matrix is defined as 

 | |i i i

i

P  =    (2.78) 

in which a system comprises of a mix of pure states |φi each occurring with probability Pi, in 

which 0iP   and the values of Pi sum to one. The expectation value of some observable A of 

the system can then be computed according to 
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 (2.79) 

and ρ evolves in time according to the time dependent Schrödinger equation 

 [ , ]
d

i H
dt
 = −   (2.80) 

where ħ is set to 1 for convenience. As per equation (2.77) the matrix elements of the diagonal 

of the density matrix will be given by * 2| |n n ic c c=  and thus are referred to as populations (as 

|ci|2 is the probability of being in state i) and the off-diagonal elements are given by *

n mc c  and 

are known as coherences. Therefore ρ(t) gives the population and coherences of a system at 

the corresponding time t. 

When discussing open quantum systems, one may consider some system, S, in which all 

interesting processes are taking place and some bath or environment, B, that the system is 

interacting with. The combination of these subsystems S + B forms the total system which is 

considered closed and thus follows Hamiltonian dynamics. For clarity in the following the 

reduced system of interest, S, will be referred to as “the system”, the bath or environment, B, 

will be referred to as “the environment” and the combination of these two parts, S + B, will 

be referred to as “the total system”. If the system and environment are separable the total 

density matrix may be written as a tensor product of the system and environment density 

matrices 

 S B  =    (2.81) 

As only the observables occurring in the system are of interest, these operators are of the form 
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 S BA IA=    (2.82) 

the expectation value of which is determined by 

 tr { }.S SA A  =   (2.83) 

Thus, it is useful to introduce the definition of the system density matrix ρS 

 tr { }S B =   (2.84) 

where trB denotes a partial trace over the Hilbert space associated with the environment and ρ 

is the density matrix of the total system. ρS is known as the reduced density matrix.  

This reduced density matrix approach is valid if the system and environment are 

separable. This is true when the environmental correlation times of the total system are short 

i.e. the characteristic timescales of the environment correlations are smaller than the 

characteristic timescales of the evolution of the system. Physically this means that the bath is 

so much faster than the system that its effects are averaged out and information of where the 

bath is or was, at t < 0, is not required. In other words, it is assumed that the future of the 

system does not depend on the environment and its past – i.e. the Markovian approximation. 

Assuming this, as in equation (2.81), the total system density matrix ρ(0) may be written as a 

product tensor of the system and environment. And so, a linear, completely positive map from 

the density matrix of the system ρS into itself may be formulated. This is a dynamical map. 

The transformation from the initial system (at time t = 0) to the system at some other time (t 

> 0) can be written as 

 †(0) ( ) ( ) (0) tr { ( ,0)[ (0) ] ( ,0)}S S S B S Bt V t U t U t    =     (2.85) 

where U(t,0) is the unitary-time evolution operator. When the reference state ρB and final time 

t are fixed, this relation defines a map from the space of the system density matrices into itself 

 .( )) : ( ) (S SV t   (2.86) 

V(t) is the dynamical map for some fixed time (t ≥ 0) and represents a linear, completely 

positive and trace-preserving quantum operation. If t can vary then a one parameter family of 

dynamical maps {V(t)|t ≥ 0} can be obtained where V(0) is the identity map. This family of 

maps, known as a semigroup, describes the complete time evolution of the system. Thus from 

the quantity defined in equation (2.84) the total system dynamics may be evolved and as per 

equation (2.83) any observable may be computed from this system density matrix. As 

previously stated, this holds for Markovian behaviour which can be formalised with the help 

of the semigroup property 
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 1 2 1 2 1 2) ( ) ( ), , 0.(V V t V t V t tt = +    (2.87) 

For a quantum dynamical semigroup, there exists a generator of the semigroup, a linear map 

ℒ, which allows the semigroup to be represented in exponential form 

 exp( ).( )V t t=   (2.88) 

Which gives a first-order differential equation for the reduced density matrix of the system 

 ( ) ( ).S S

d
t t

dt
 =   (2.89) 

The generator ℒ of the semigroup is a super-operator and may be regarded as a generalisation 

of the Liouville super-operator of closed system dynamics. The diagonal form of the generator 

is: 
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(For derivation see ref. 90) This is the most general form for the generator of a quantum 

dynamical semigroup. The first term of the generator represents the unitary part of the 

dynamics generated by the Hamiltonian H, i.e. the system dynamics in the absence of any 

environment. The operators Lk are usually referred to as Lindblad operators and the 

corresponding density matrix in equation (2.89) is called the Lindblad equation. Note that the 

non-negative quantities γk have the dimension of an inverse time provided the Lk are taken to 

be dimensionless. 

 In exciton dynamics, the unitary part of the dynamics is generated by the excitonic 

Hamiltonian Hexc and the Lindblad operators will correspond to processes in which the exciton 

is lost. For travel through a chromophore network these are: capture of the exciton by the sink, 

dephasing in which there is local loss of the exciton due to the coupling of the chromophore 

site to its vibrational environment and dissipation where the exciton is lost due to decaying. 

So, for a system comprising N chromophores, the excitonic Hamiltonian Hexc is given by 

 
1

| | (| | | |),
N

exc

i mn

i m n

i i V m nH n m
= 

=  +  +     (2.91) 

where the diagonal εi represent the energy landscape and the off-diagonal Vmn represent 

coupling between the chromophore sites (e.g. Coulombic coupling). There is then a collapse 

operator for each of the processes described earlier, to be used in 

 
† †1
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L L LL   − . (2.92) 
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And so, overall  

 [ , ] ( ).exci H  = − +   (2.93) 

2.5 Spectral density 

Redfield theory is a reduced density matrix approach and the form of the Redfield equation19 

is similar to that of the Lindblad equation discussed in the previous section 

 ,[ , ]H Ri      
 

     

 

= − +   (2.94) 

where μ and ν are eigenstates of the system. The derivation of the Redfield equation also uses 

the Markovian approximation however, there are important differences between the Redfield 

and Lindblad derivations. In Redfield the exact time evolution is approximated by assuming 

a small system bath coupling. The important result of the differences in their derivations is 

that whilst Redfield is more clearly linked with the system Hamiltonian, the time evolution is 

no longer guaranteed to be unitary meaning the population can go negative. The first term of 

equation (2.94) describes the unitary evolution of the system, as previously discussed, and the 

second term is the Redfield tensor, R, which describes the relaxation of the system due to 

interaction with the bath. This can be expressed in terms of Γ, the dampening matrix 

 
* *

, , , , , .R              
 

            + −  −     (2.95) 

The dampening matrix is mainly determined by the bath correlation function,91,92 C(t), and for 

the system-bath interaction the dampening matrix can be written as 

 , /

,

1
| | | | [ ].ij

i j

e i i e e j j e C             =        (2.96) 

where the bath correlation function describes the correlation of the electronic Hamiltonian 

matrix elements due to the fluctuation of the bath, 

 ( ) (0) ( ) .ij ij ijt H HC t =     (2.97) 

The Fourier transform of Cij(t) gives Cij[ω] and is expressed in terms of the bath spectral 

density Jij(ω). So, the bath spectral density contains information about the relaxation of the 

system due to interaction with the bath. Phenomenological models often adopt an analytical 

form of the spectral density dependent on one or two parameters, e.g. Drude-Lorentz,93 

however it is also possible to compute (2.97) explicitly. 
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 One method to achieve this is by using normal modes analysis (NMA) of the system. 

NMA is based on the hypothesis that the vibrational modes of the protein with the lowest 

frequencies describe the greatest protein movements and are functionally relevant.94 In NMA 

the motions with a small amplitude in a potential well which cannot cross energy barriers are 

studied. When a system is in a well, i.e. in equilibrium, the potential energy yields a quadratic 

approximation 
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  (2.98) 

where qi are the generalised coordinates and η is the deviation from the equilibrium, 

0i i iqq = + . The kinetic energy T is similarly approximated as a quadratic function, then from 

the Lagrangian, ,L T V= −  comes the n linear differential equations of motion 

 0i i ij jVT + =   (2.99) 

Substituting an oscillatory solution cos( )i ik k ka t  = +  into the previous equation give the 

eigenvalue problem of the amplitudes aik matrix A and the matrix of the potential energy 

second derivatives 

 .T =A VA   (2.100) 

The eigenvectors Ak and their eigenvalues λk give the vibrational normal modes which fully 

describe the pattern of motions of the protein. The harmonic oscillators computed with NMA 

can then be used to describe the protein environment in a spectral density calculation for 

example as described in ref. 40. 

 Another method to compute the spectral density is to use the snapshots of an MD 

trajectory as input for QC calculations of the excitation energy of the pigments of the system. 

Performing a Fourier transform of the autocorrelation function of the fluctuation of the 

excitation energies along the MD trajectory. For example, assuming the effect of the 

environment predominantly causes fluctuations of the on-site energy, the spectral density of 

pigment i, Ji(ω), in a PPC is given by 

 
0

( ) ( ) ( ) di iJ C t cos t t


 




=    (2.101) 

where β is 1 / Bk T  and the autocorrelation function Ci is expressed in terms of the fluctuation 

of the excitation energy of pigment i, δεi 

 ( ) ( ) (0) .i i iC t t =     (2.102) 
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However, as briefly discussed in the introduction the combination of classical molecular 

dynamics and quantum chemistry calculations leads to errors in the resulting spectral density. 

This is because the forcefields used in MD produce different equilibrium structures to those 

of the quantum chemistry calculations, thus they will have different normal modes, with 

different frequencies which leads to an inaccurate description of the electronic-nuclear 

interaction. 
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3 Developing MDFFs for spectral density 

computations 

 

 

In order to examine LHCs with atomistic detail, classical mechanics methods must be utilised 

such as MM or MD due to the size of the complexes. In the study of LHCs, these low-level 

methods are often combined with higher-level methods. One example of this methodology is 

the computation of pigment spectral density by utilising MD trajectories as input for QCs. 

However, the combination of such methods results in errors. The aim of this chapter is to 

introduce a new method for developing molecular dynamics forcefields (MDFFs) which 

requires less manual input which will reduce these errors and also make it more feasible to 

compute the spectral densities of many pigments of LHCs. 

 

 

 

3.1 Introduction 

3.1.1 Spectral density and the geometry mismatch problem 

Spectral density is an important tool for examination of PPCs, as outlined in Chapter 2 this 

quantity contains information on the system-bath interaction which has been proposed as 

playing some important role in EET.4,21,26,30,34,54,95 As such, there are many examples in 

literature endeavouring to compute this quantity.29,40,52,93,96–100 However, it became apparent 

that when using methods combining MD and QC calculations, the result was sensitive to the 

choice of FF used in the MD portion of the computation.41,101 It was determined this was due 

to the so-called geometry mismatch problem which describes the inconsistency between the 

equilibrium geometries produced by the two-levels of theory. This difference leads to an 

inconsistency between the computed excitation energies and the corresponding ground state 

surface from the MD and thus produces inaccuracies in the system-bath interaction. Work by 

Lee and Coker41 outlines how the differences in the QM excited state, QM ground state and 

MD ground state potential energy surfaces affect the spectral density and introduce a method 
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to avoid this problem in which the quantum intramolecular vibrational modes are computed 

directly and the lower frequency intermolecular modes are incorporated through analytical 

electrostatic interactions. An alternative approach to compute an accurate spectral density of 

a PPC, would be to develop a method which produces FFs consistent with the QC part. 

3.1.2 Developing new FFs 

The need of FFs for new molecules is not a novel problem and much work has focused on the 

generation of FF parameters. A standard method to build a new FF is by analogy i.e. 

identifying analogous parameters from existing FFs based on the structure of the molecule. 

For CHARMM71 and AMBER73 automated by analogy procedures have already been 

developed, these are CGenFF102 and GAFF103, respectively. The methods work in a similar 

fashion, utilising look-up tables and empirical rules to generate the new parameters. The 

results of both methods typically require further manual parameterisation before they can be 

implemented.  

Further work has endeavoured to automate parameterisation in order to remove the need 

of manual adjustment and make the process easier and faster. For example, GAAMP104 utilises 

QM data as reference to automatically produce parameters compatible with the CHARMM 

and AMBER FFs. Other work focuses on automatically parameterising force constants for 

the AMBER forcefield especially for transition metal complexes through the use of ab initio 

frequency calculations.105 The JOYCE106 procedure parameterises the intramolecular part of 

FF, using an iterative approach to fit to QM energies, gradients and the Hessian matrix, 

similarly the PICKY107 procedure employs a least square fitting procedure to parameterise the 

intermolecular part, using QM energies. The QMDFF108 constructs FFs from solely QM input; 

utilising an equilibrium structure, the Hessian matrix, atomic partial charges and the bond 

orders to generate specific, non-transferable FFs of molecules. The fitting of parameters to a 

flexible combination of theoretical and experimental data is possible with the ForceBalance109 

method, which automatically generates parameters through an iterative approach which 

minimises the difference between the FF parameters and target data. This method was in fact 

employed to improve the AMBER protein FF.110 Other methods seek to simplify the 

parameterisation process, such as the FF Toolkit111 which creates CHARMM compatible 

parameters from target QM data and the QuickFF112 which employs a 3 step method to build 

parameters from ab initio data. 

However, these methods are general tools for developing new FFs and whilst they are 

useful, they are not specifically developed for use in spectral density calculations. But there 
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are examples of FFs which have been generated with the specific use for spectral density 

calculations in mind. Similar to the general methods, these methods predominantly utilise QM 

calculations to produce target data. For example FFs compatible with the popular AMBER 

FF for bacteriochlorophyll-a (bhcl) (as well as other cofactors: methyl bacteriopheophytin-a 

and a ubiquinone derivative) have been developed.113 Further work transformed these 

parameters to create a chlorophyll-a (CLA) FF,114 compatible with another commonly used 

FF,  CHARMM. Both these BCL and CLA FFs have been utilised in several spectral density 

studies.40,97,115 However, other work has criticised the development of these parameters for 

lacking detailed validation against experimental structure data and so more validated 

parameters for the AMBER FF of the chromophores (and other cofactors) of the photosystem 

II (PSII) complex were developed.116 The resulting FFs of this work have also been used in 

the calculation of pigment spectral density.100 However these FFs fall foul of the geometry 

mismatch problem.  

In order to specifically combat the geometry mismatch problem, several FFs of 

carotenoids117 and an apocarotenoid FF118 have been created with the aim of better 

reproducing the QC structural properties. Although these FFs were found to reduce the 

geometry mismatch error, the parameterisation requires time consuming QC calculations and 

manual input. If there was a small number of pigments (e.g. < 5) found in PPCs this would be 

less of limitation, after investing a fair amount of time one would obtain all the FFs needed 

and be able to accurately compute spectral densities. However as discussed in the first chapter, 

this is not the case for PPCs; there are many pigments. Furthermore, the protein scaffold is 

known to distort and influence the pigment structure and there are many protein environments 

in PPCs which may all distort identical pigments slightly differently, further increasing the 

number of FFs required. Thus, in order to study many PPCs, which is necessary to identify 

any underlying patterns or similarities between complexes, the amount of time and effort 

required to produce FFs in this way becomes unfeasible. A fast, less manually intensive 

method is necessary. 

3.1.3 Force matching 

Force matching is an ideal method to efficiently produce the desired consistency with 

significantly less manual input. The method was devised by Ercolessi and Adams for the 

development of interatomic potentials119 and has since been applied to a range of systems, 

including developing interatomic potentials for Zr-Cu120 and Mg,121 flexible water model 

potentials,122 creating FFs for semiconducting polymers,123  generating free energy surfaces 
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for chemical reactions124 and in the reparameterization of the single point charge water 

model.125 Force matching has also been combined with combined QM/MM methods to create 

FFs for moieties/molecular fragments.126 Force matching is particularly advantageous in this 

case as FFs can be obtained which take the environment into account, additionally it 

effectively constrains towards chemically sensible parameters as unphysical parameters will 

lead to a high force. In this case, the difference in the forces resulting from the FF and the 

forces resulting from electronic structure (ES), of each atom in a collection of equilibrium 

structures, generated in the protein environment, are minimised by changing the 

intramolecular parameter values composing the FF. The aim of this work is to enable the 

generation of many FFs of biological chromophores embedded in a protein environment for 

use in spectral density calculations of PPCs. 

3.2 Systems 

3.2.1 Chromophores 

FMO is one of the most popular systems studied so its chromophore bacteriochlorophyll-a 

(BCL) is chosen. In addition, FFs for the common chromophores chlorophyll-a (CLA) and 

chlorophyll-b (CLB) are developed, taken from the water soluble chlorophyll-binding protein 

(WSCP). The structures of all the chromophores are shown in Fig. 3.1. The FF is optimised 

for the bacteriochlorin/chlorin ring and immediate groups only (highlighted in red in Fig. 3.1), 

i.e. the phytyl chain and ester group are not included. This is because they are not involved in 

the conjugated system and so are often not included in the quantum calculation, thus it is not 

crucial that their geometry be consistent. This also reduces the computational demand. 

 

Figure 3.1: Structures of a) BCL b) CLA and c) CLB with portion of molecules for which FF 

is optimised highlighted in red. 

a) b) c) 
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3.2.2 Parameter Sets of Initial FFs 

The general functional form of any FF summarised in Chapter 2. Here the CHARMM FF is 

used, the functional form of which is given in equation (2.18). Only the parameters of the 

intramolecular terms (bonds, angles, dihedrals and improper dihedrals) are optimised, as these 

have the greatest effect on the internal structure which is the part desired to be consistent. The 

multiplicity and phase shift of the dihedral term are pre-set as is equilibrium improper dihedral 

angle, and so these parameters are not changed in the optimisation. Meaning the overall 

parameter set to be optimised consists of: the bond; angle; dihedral angle; and improper 

dihedral angle force constants (kb, kθ, kφ and kω, respectively) and the equilibrium bong length 

and equilibrium bond angle (b0 and θ0, respectively), for each atom type. 

The initial FF of BCL is taken from the by analogy FF created by CGenFF, whilst the 

CLA and CLB FFs are taken from literature ref. 147 and 148. The atom types assigned by 

these FFs are overly degenerate for the desired purpose, i.e. atoms are given the same atom 

type and so treated as ‘structurally similar’ when their internal electronic structure is different. 

This could be rectified by assigning each atom an individual type. However, a greater number 

of atom types means a greater number of parameters to be optimised which increases the 

optimisation time. Additionally, due to the near symmetric nature of the molecules many of 

the parameters would be near degenerate, making the optimisation procedure inefficient. The 

best solution is then to assign new atom types. To achieve this, first ‘structural similarity’ 

must be quantitatively defined. The base framework of the chromophores consists of carbon, 

as with all organic molecules, and so comparing the lengths of standard C – C single bonds 

(~ 1.54 Å), double bonds (~ 1.35 Å) and conjugated bonds (~ 1.40 Å) shows significant 

differences in bonding structure are those of 0.05 Å and greater. Using this as a guide, an 

estimate of ‘structurally similar’ bond lengths can be defined as those within 0.01 Å of one 

another, whilst bond lengths with a difference of 0.03 Å or more are ‘structurally different’ 

and those lying between 0.01 Å and 0.03 Å must be considered further. Additionally, the 

chemistry of the atom can be considered, i.e. what bond type is it involved in e.g. C – O, C – 

N, C – C, and so on. Finally, any matching bond types within the 0.01 Å – 0.03 Å region can 

be categorised based on their bond angles. An example of this assignment, for BCL, is shown 

in Fig. 3.2. After this assignment was done, the total number of parameters to be optimised 

for each chromophore were: BCL – 399 parameters; CLA – 446 parameters; CLB – 455 

parameters. The atom type definition of each chromophore is included in the appendix in Figs. 

A3.1-3.3. 
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Finally, it is important that the electrostatics are consistent with the rest of the FF. The 

partial charges for the CHARMM FF are determined using minimum HF water interaction 

energies and distances as target data as described in the supporting information of ref. 72. The 

charges for the chromophores were taken from literature.36 It should be noted that whilst in 

this work the parameters of a CHARMM FF are optimised, the method can be applied to any 

molecular mechanics FF.  

3.3 Force Matching Procedure 

The FF is optimised by minimising an objective function. For the FF of a molecule comprised 

of a set of parameters, [p], the objective function is the root mean squared (RMS) 

displacement of the ES forces and MD forces, given by 
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Where N is the number of atoms in the molecule, M is the number of reference structures and 

ijf denotes the forces on atom i of structure j from DFT or MD.  

Gradient descent minimisation is based on the observation that from a point, r, of a 

function, f(r), the function will decrease fastest moving from r in the direction of the negative 

gradient of the function, ∇f(r). In other words, to minimise a function, one follows 

 ,( )r r f r= −    (3.2) 

 

Figure 3.2: Colour coded illustration of assignment of atom type based on structure depicting 

the bond lengths (taken from optimisation BCL geometry) and the resulting atom type. 
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where α is a scaling factor to determine the step size of the descent. Previous work utilising 

force matching with a Monte Carlo optimisation showed that the objective function is convex 

without secondary minima123 thus a gradient descent method is appropriate. 

To calculate the descent direction of the FF parameter set, the gradient, Gi, of the objective 

function for each parameter, pi, must be obtained numerically 

 1 1( ,..., ,..., ) ( ,..., ,..., )i i n i n
i

i
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O p p p p O p p p

p

+  −



  (3.3) 

Then each parameter is changed using the negative of its gradient 

 new

i i Gp p −=   (3.4) 

to create a new parameter set. The process continues until the objective function is minimised 

and the FF is considered optimised. In principle, one could use this new FF to generate new 

structures and iterate the process, however previous work49 has shown the majority of 

improvement (93 – 96 %) is achieved in the first iteration and so no iteration is implemented 

here. 

3.4 Computational details 

3.4.1 Initial geometries 

Structures of the chromophores were obtained from MD simulations of the chromophore in 

its protein environment, solvated by water. Utilising structures from the chromophores 

embedded in their environment constrains the geometries to those accessible in the protein 

environment. The proteins used were FMO, the water-soluble chlorophyll-a binding (WSCP-

a) protein and water-soluble chlorophyll-b binding (WSCP-b) protein for BCL, CLA and 

CLB, respectively. Exploring geometries in the protein environment as opposed to in vacuum 

is important for FFs to be used in the study of PPCs, as the environment distorts the 

chromophore geometry. All MD was carried out using GROMACS 5.0.5 software.127  

The initial structures for FMO, WSCP-a and WSCP-b were taken from the Protein Data 

Bank, PDB: 3BSD and 5HPZ (used for both WSCPs), respectively. The missing residues of 

WSCP were built with the CHARMM-GUI website.128 In FMO there are 4 BCL molecules 

for which the Mg atom coordinates to a histidine residue (HIS). These were assigned a 

protonation state to allow this coordination, all other HIS residues were assigned protonation 

in position ε. The FF description of Mg coordination is well known to be difficult to 

determine. As axial coordination to the Mg atom of chromophores affects their spectroscopic 
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properties129,130. In this case it is assumed their treatment in the initial FF is valid. The rest of 

the residues in all the proteins were assigned their standard protonation state. For all proteins, 

the CHARMM3674 FF and TIP3P131 water model were used. The systems were solvated with 

water in a cubic box with edge length of 120 Å and 110 Å for FMO and the WSCPs, 

respectively. After a steepest-descent energy minimisation, a 200 ps NVT equilibration (300 

K; Berendsen thermostat132; τT = 0.1 ps) was run, followed by 200 ps NPT equilibration (1 

bar; Berendsen barostat132; τP = 0.1 ps), using a 2 fs integration step. A subsequent 10 ns of 

dynamics was run. The structures for the chromophores were then taken every 500 fs from a 

final 80 ps run (NVT ensemble). Each protein contains multiple chromophores; so the 

structures were taken cycling through each chromophore, i.e. the first BCL structure was 

taken as BCL 1, the second as BCL 2, etc. for each structure. 

3.4.2 Reference force calculation 

The reference forces were calculated with density function theory (DFT) using the B3LYP 

functional and 6-311G* basis set with Gaussian 03. The forces (both DFT and MD) were 

computed in vacuum in order to preserve separation between the intramolecular and 

intermolecular part of the FF. As noted before for the type of FF used, the reference force 

calculation can be computed with any functional or basis set desired. 

3.4.3 Minimisation Procedure 

The procedure is as follows: the initial objective function, O([pinitial]), is calculated as given 

in equation (3.1), then for each parameter, pi, of the set, the corresponding gradient, Gi, is 

computed as in equation (3.3), where the value of Δpi is taken as 0.001% of the parameter. A 

new parameter set, [pnew], is then generated, by updating each parameter as described in 

equation (3.4), and its objective function computed, O([pnew]). The minimisation is considered 

complete once the decrease in the objective function, ΔO([p]), is consistently less than 0.01 

kcal mol-1 Å-1. 

As each parameter set consists of 100s of parameters, calculating each gradient numerically 

is time consuming. To circumvent this bottleneck, in the implementation of the algorithm the 

gradients are only recalculated if the objective function increases, i.e. if ]) ([ ])([ newO O pp  , 

otherwise the minimisation continues using the same set of gradients. In addition, the five 

parameter types: b0, θ0, kφ, kb kθ; each affect the forces to a different magnitude, leading to 

gradients of differing magnitudes. The order of their affect, in the case of chromophores, is: 

 0 0 .bb k k k       (3.5) 
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The b0 parameters have a significantly greater effect on the forces and thus a much greater 

gradient. For a multi-variable function where one variable has a significantly greater gradient, 

the gradient descent method will rapidly minimise the function with respect to that variable 

and then the minimisation will progress exceedingly slowly. Thus, to avoid this slow down, 

the b0 parameters are optimised separately first. Once decrease in the objective function is 

less than 0.0024 kcal mol-1 Å-1 this is considered complete. For the same reason, once the θ0 

parameters are optimised α is increased; once all their gradients are less than 0.5 degrees-1 α 

is increased by a factor of 250. Furthermore, to reduce the objective function before the 

minimisation procedure, the b0 and θ0 parameters were set to those of the DFT optimised 

structure performed at the same level as the reference structure calculations.  An alternative 

solution to this issue of differing gradients problem would to be use an algorithm that 

automatically adjust α for example the momentum optimisation133 or Nesterov134.  

3.4.4 Spectral Densities 

The correlation functions were calculated according to equations (2.102) and (2.101)

(implemented as detailed in ref. 135). A subsequent Fourier transforms in the 0 ≤ t ≤ 16 ps 

range was used to obtain the spectral densities. For each protein system, MD trajectories were 

obtained utilising the original FF and the optimised FF of the chromophore. The initial protein 

setup, energy minimisation and equilibration steps were performed as outlined in 3.4.1. A 

further 25 ns of dynamics (NVT) was run. The excitation energies for the spectral densities 

were computed from snapshots taken every 2 fs from the last 16 ps of this MD trajectory, 

using a QM/MM scheme within TDDFT linear response theory,136 performed using the 

QChem 4.2 software.137 The MM part comprised all residues within a 35 Å radius of the 

pigment; included additively as point charges that affect the QM system. B3LYP84/3-21G* 

was used for the QM part, which was reduced through the insertion of a link atom between 

carbon atoms 1 and 2 of the phytyl chain. The 3-21G* basis set was used to reduce 

computational time as it has been found (Fig. S2 in ref. 138) that there is good correlation 

between 6-31G* and 3-21G* for these systems. Four roots were computed but only the lowest 

was considered. This is a standard approach similar to those used in refs. 39 and 101. As each 

of the proteins contains multiple pigments one pigment was arbitrarily selected from each, for 

the computation of the spectral density; these were: BCL 4, CLA 2 and CLB 2.  



48 

 

3.5 Results 

3.5.1 The final forces 

The FFs were considered optimised to a local minimum once the change in objective function 

was less than 0.01 kcal mol-1 Å-1 for 50 steps or more. The initial and resultant values of the 

objective functions are shown in Table 3.1 along with the overall change and the total number 

of steps of the algorithm. Interestingly, the parameters of the CLs, taken from literature have 

greater initial objective functions than the BCL generated by analogy using CGenFF. This is 

surprising as even for traditional uses of MD, the automatically generated by-analogy FFs 

require further parameterisation before use and thus the literature values would be expected 

to be superior. The average of the final objective functions is 21.84 kcal mol-1 Å-1 indicating 

a minimum of a roughly similar value for all. In comparison to similar methods the final 

values are slightly worse (larger by a factor of 3-4) however they are within the same range 

as the mismatch observed between forces of different electronic structure calculations.123   

Visualising the average error in force on each atom before and after optimisation, 

illustrates the improvement of the FF. The average error in force on each atom, Δfi, is defined 

as: 
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This is depicted in Fig. 3.3 for each of the pigments. This visualisation provides further 

information than the final objective function alone; considering BCL and CLA, it is clear the 

remaining error measured by the objective function is caused by a few atoms which still have 

a large error whilst the rest are well optimised. In contrast, for CLB the remaining error is 

spread more evenly over the total molecule, indicating some further optimisation may be 

 

Table 3.1: Initial and final objective function, total decrease and the number of steps of the 

optimisation, for each pigment. 

Chromophore 
Initial O([p])  

/kcal mol-1 Å-1 

Final O([p])  

/kcal mol-1 Å-1 

Number of 

steps 

BCL 33.01 22.31 6919 

CLA 40.49 21.49 5289 
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Figure 3.3: The atomic force error (in kcal mol-1 Å-1) before (left) and after (right) optimisation 

for (top to bottom) BCL, CLA and CLB. 

CLB 41.13 21.73 6694 
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required. Thus, visualisation of the average force error per atom is recommended to ensure 

full optimisation. For BCL and CLA, the atoms where the force error remains large is likely 

the result of a poor atom type assignment. If an atom is assigned unsuitably, i.e. equivalent to 

another atom when it is in fact different, assigning parameter values that describe both atoms 

in the structure well is problematic. The result is either parameters describing one atom well 

and the other poorly or describing both poorly, and thus the error in the force(s) on the atom(s) 

will be greater. This observation provides potential routes of improvement for the algorithm. 

A process periodically calculating the average error per atom could be added to identify when 

the overall error is being caused by only a few atoms and then reassign these atom types. 

Additionally, a procedure could be developed to automatically assign atom types based on 

bond and angle types and sizes from the optimised structure to prevent any human error in 

atom type assignment.  

Examining the final average error in force for each atom of BCL, it is evident there is one 

atom with a notably large error and three to four others also with a smaller but still significant 

error. In Fig. 3.4 the values of the average error in forces are shown and those with Δfi > 50 

kcal mol-1 Å-1 are highlighted (atom numbers 56, 57, 62, 64); it can be seen these are the same 

atoms with notably high force after optimisation as in Fig. 3.3. Further optimisation after 

reassigning the atom types of these atoms lead to a decrease of 1.5 kcal mol-1 Å-1 of the 

objective function. This example also clarifies that the main origin of the residual mismatch 

between empirical and ab initio force is the functional form of the empirical potential, unable 

to capture all the details of the electronic structure calculations. 

 

Figure 3.4: Δfi values for atoms in BCL (left). BCL structure with atoms with Δfi > 50 kcal-1 

Å-1 highlighted in red (right). 
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3.5.2 FF structural change 

To understand the structural change between the original and optimised FFs the change in the 

b0 parameter can be examined. Furthermore, as the electronic properties of a molecule are 

highly dependent on its internal structure, such changes will give an indication of how 

deficient the original FF is in describing the molecular structure. Firstly, considering the bond 

length change defined as ‘structurally different’ previously in this chapter (> 0.03 Å), the 

equilibrium bond parameters with a change of greater than 0.03 Å were identified. Next, 

changes in the bonding structure were determined by considering the typical bond lengths for 

C – C and C – N bonding structures (noted in Table 3.2). These results are summarised in Fig. 

3.5, which contains tables for each pigment of the initial by-analogy value (i.e. before they 

were set equal to those of the optimised structure), bi, final value, bf, and the overall change, 

bchange, of the equilibrium bond length, as well as a depiction of all the bonds in the pigment 

these atom types correspond to. The bonds with a change greater than 0.03 Å are highlighted 

in orange and those with a change in bonding structure are highlighted in red. In majority of 

the b0 changes in the BCL FF are decreases, conversely the CLB optimised FF predominantly 

results in increases in bond lengths and CLA has a more balanced combination of increases 

and decreases. This indicates there is no pattern of over- or under- estimation of bond lengths 

by the original FFs in comparison to the ES. The greatest number of changes, as well as the 

changes with greatest magnitude occur in the BCL FF. 

 

Table 3.2: The typical bond lengths of different bonding structures for C – C and C – N bonds. 

Bond Single /Å Conjugated /Å Double /Å 

C – C 1.54 1.40 1.35 

C – N 1.47 1.34 1.25 
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Figure 3.5: Tables of b0 details for each pigment containing: the atom types of the bond; initial 

by-analogy value, bi; final value, bf; and the overall change, bchange, for bond types with bchange 

≥ 0.03 Å. The corresponding bonds are highlighted in the pigment structure, change in 

bonding structure (red) and structural change (orange). Note as some atoms have degenerate 

types, multiple bonds may be described by the same parameter hence the number of bonds in 

the tables and number of bonds highlighted is not necessarily equivalent. 
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3.5.3 Spectral densities with new FFs 

To briefly illustrate the possible effects of this revised forcefield on the exciton physics, the 

spectral densities of each pigment were computed with the original and optimised FFs as 

outlined in section 3.4.4. The results are depicted in Fig. 3.6. It has previously been suggested 

that the existence of an intramolecular vibrational mode that is quasi-resonant with transition 

energy increases transport efficiency in PPCs, through vibronic coupling.139 As these 

optimised FFs generate more consistent structures, the differences in the high frequency part 

of the spectral density become especially important as they may correspond to intramolecular 

vibrations potentially capable of improving transport efficiency through vibronic coupling. 

Whilst other work has shown that no such vibrations are present in FMO,140 a quasi-resonant 

vibration has been found in the phycoerythrin PPC: PE545.29 Thus, for PPCs for which it is 

unknown if an intramolecular vibration capable of vibronic enhancement exists, the 

differences due to the optimised FF, particularly in the high frequency (> 500 cm-1) region, 

are especially important. From the spectral density the reorganisation energy, λ, can be 

calculated via 
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For each pigment these are reported in Table 3.3, for the original FF, λoriginal, and optimised 

FF, λoptimised. The reorganisation energy is often used as a measure of the ‘total strength’ of the 

pigment-protein interaction; the reorganisation energies of all 3 pigments are lower with the 

optimised FF, suggesting the original FFs may systematically overestimate the value of λ and 

thus the strength of the pigment-protein interaction, further supporting the need to develop 

consistent FFs.  

Table 3.3: Reorganisation energy computed from the spectral density with the original FF, 

λoriginal, and optimised FF, λoptimised. 

Chromophore λoriginal /cm-1 λoptimised /cm-1 

BCL 4 9 5 

CLA 2 59 44 

CLB 2 262 86 
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As the variance of the excitation energy is related to the integral of the spectral density, the 

difference between the original and optimised FFs is illustrated by computing the average of 

the excitation energy, Eavg, of a chromophore from each system (the same chromophore as 

used in the spectral density computation) and the fluctuation of the excitation energy, σexc, 

along a long MD trajectory (100 ns). The initial set up of the MD was as outlined in 3.4.1. 

The excitation energy was then computed along the trajectory every 500 ps, using the same 

method and functional/basis set combination as outlined for the excited state calculations of 

the spectral density. The results are summarised in Table 3.4. BCL and CLB both have notable 

changes in the average energy, with BCL 4 having a smaller average excitation energy by 

0.07 eV and CLB having a greater average excitation energy by 0.08 eV. The difference 

between the averages resulting from the 2 FFs of CLA is much less, only 0.02 eV but the 

variance is notably reduced. The energy distributions of the excitation energies of each 

chromophore over the 100 ns are depicted in Fig. 3.7. As one would expect the energy 

distributions to fit a normal distribution, Gaussian distributions have been fit to each (using 

Eavg and σexc from Table 3.4 as μ and σ respectively). This data demonstrates the magnitude of 

the affect that the FF has on the resultant spectral density. 

Table 3.4: Average excitation energy, Eavg, and its fluctuation, σexc, for each BCL 4, CLA 2 

and CLB 2, computed over 100 ns using the original FF and optimised FF. 

Chromophore FF Eavg /eV σexc 

BCL 4 

Original 1.94 0.02 

Optimised 1.87 0.05 

CLA 2 

Original 2.08 0.07 

Optimised 2.06 0.04 

CLB 2 

Original 1.96 0.08 

Optimised 2.04 0.06 
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Figure 3.6: Spectral densities computed using the original FF (red line) and optimised FF 

(blue line) for the three chromophores: BCL 4 (top panel), CLA 2 (middle panel), CLB 2 

(bottom panel). 
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Figure 3.7: Excitation energy distributions of the original (red bars) and optimised (blue bars) 

FF over 100 ns run with their fitted normal distribution (black lines) for BCL 4 of FMO (top), 

CLA 2 of WSCP-a (middle) and CLB 2 of WSCP-b (bottom). 
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3.6 Conclusions 

A method ensuring the consistency of the empirical FF with the quantum chemical method of 

choice for spectral density calculations of LHCs has been introduced and applied to the 

calculation of the spectral densities of three pigments: BCL, CLA and CLB. This force 

matching method benefits from its automatic nature: once the initial FF is generated and both 

sets of forces are computed it requires no further manual input unlike other parameterisation 

methods, allowing the efficient generation of multiple FFs and therefore the study of multiple 

PPCs. However, the implementation of the algorithm could be improved by utilising a central 

difference in the gradient calculation to reduce errors and using a quadratically convergent 

second order optimisation method such as a Newton-CG method to reduce the required 

number of iterations. The method is tuneable, applicable to both different molecular 

mechanics FFs and QC functionals, enabling the study of a range of PPCs with any desired 

MD and QC combination which is required to compare and contrast different systems in order 

to understand underlying mechanisms. It is shown that it is possible, within the methodology, 

to verify whether the parametrization of the forcefield is sufficiently accurate or new atom 

types ought to be defined. 

The spectral densities obtained from the optimised FF have been compared with those 

obtained from the original FF demonstrating the important changes introduced by improving 

the FF aligning it as much as possible with the quantum chemical component of the 

calculation. A step forward could be considered the calculation of the spectral density entirely 

from an ab initio QM/MM trajectory, an attempt that has been made very recently, however 

was exceptionally resource intensive and time consuming52. Thus, such a method is still too 

expensive for efficient computation of multiple spectral densities, with additional concerns 

on the lack of proper equilibration in such short simulation time.  The most statistically 

meaningful comparisons are performed on very long trajectories, showing that the 

reorganisation energies computed from the optimised FF are consistently lower than the 

original FFs. The observed differences in the high frequency region of the spectral density are 

potentially important to correctly identify the presence (or lack of) intramolecular vibrational 

modes capable of vibronic enhancement.  
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4 Specificity of local protein environment in 

LHCs 

 

 

The role of the LHC environment in EET is a topic of much interest, particularly whether the 

environment is somehow optimised to promote efficient transfer. If this were the case, it would 

be expected that the system-environment interaction would be markedly different for LHCs 

than for PPCs not involved in light-harvesting. In this chapter, the aim is to uncover the 

existence or non-existence of such specialised interactions by examining the spectral densities 

of a few PPCs with different functions (light-harvesting and non-light-harvesting). To 

separate out the environmental effects the spectral density of the rigid chromophore is 

examined, to eliminate contributions from the internal modes. 

 

 

 

4.1 Introduction 

4.1.1 Spectral density studies of LHCs 

As previously outlined, it has been proposed that the environment of LHCs is specialised to 

promote or protect coherence in some way,13–15,45 and the spectral density is the ideal quantity 

for  studying system-bath interactions. As noted in the last chapter there is much work on 

computing this quantity. Previous examination of the spectral densities of individual pigments 

in FMO found they are relatively similar.97 Other PPCs have also been the focus of such 

studies. Examination of the spectral density of the PE545 complex identified the origin of 

relevant peaks and differences between pigments, concluding both protein and solvent play 

an important role in influencing coherence.43 However much of this work utilises the 

combined MD and QC method which suffers from the geometry mismatch problem 

(previously discussed in 3.1.1) as it was carried out prior to this issue being highlighted. 

Additionally, whilst there are some studies that compare spectral densities of different 

complexes,39 it is still unclear whether any environment modulation is optimised for 
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promoting coherence and how fine-tuned this may be. A first step toward addressing such a 

question would be to compare the environments of light-harvesting and non-light harvesting 

PPCs. The presence of regions in the light-harvesting PPC which amplify or reduce the 

exciton-nuclear coupling, would indicate the environment is adjusting the decoherence to 

some beneficial level, furthermore the absence of similar regions in non-light-harvesting 

PPCs would suggest some optimisation. Conversely identifying such interactions do not exist 

would signify there is no specific adjustment and thus the environment behaves as a glassy 

low dielectric medium as commonly assumed by biophysicists.141,142  

4.1.2 Rigid chromophores 

Here the environmental effects on a rigid chromophore are examined in order to focus solely 

on the role of environment. Freezing the intramolecular modes is the ideal method to do this 

and is advantageous for several reasons: firstly, it removes the contribution of the 

intramolecular vibrations of the chromophore which obscure those contributed by the 

environment, so modes in the spectral density arising from environment become clear. Next, 

higher frequency motions are predominantly due to the intramolecular motions and research 

has shown that for FMO this high frequency part (> 500 cm-1) of the spectral density plays a 

small role in the exciton dynamics,140,143–145 as these modes have much larger vibrational 

energy than the excitonic transition energy. Furthermore, the intramolecular modes are a main 

source of inaccuracy in computed spectral densities due to the problematic treatment of 

quantum vibrations in a classical framework41,140 and the geometry mismatch.16,146 The RMS 

of the heavy atoms oscillations at room temperature around their equilibrium positions are 

lower than 0.20 Å from QM/MM computation of normal modes and the intramolecular modes 

have larger characteristic frequencies25 making this frozen chromophore system an acceptable 

method. Additionally, in the study of electron transfer isolating the environmental effect 

through freezing the chromophore is common, it is considered equivalent to assuming 

additivity of internal and external reorganization energy.   

In contrast to other detailed studies of the effect of the environment on the absolute 

(average) position of energy levels, here the aim is to study the effect of the environment 

exclusively on the fluctuations of the excitation energies with the aim to identify specific 

interactions that affect the low-frequency part of the spectral density. Furthermore, through 

the examination of several PPCs with different functionality in order to identify any 

specialisation of the environment. In total three PPCs are examined, these are FMO, which is 

involved in light harvesting, and two variants of the water-soluble chlorophyll binding 
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protein, which are involved in transporting chromophores in the organism: WSCP-a and 

WSCP-b, in other words, the protein scaffold is identical, but the chromophore contained is 

different. Additionally, the analysis of a range of systems is advantageous because it helps 

ruling out accidental correlations that might be identified by analysing only a more modest 

amount of data, or to highlight patterns that were not arising frequently in other cases. 

4.2 Systems  

The three systems examined in this work are summarised in Table 4.1. FMO seemed a good 

candidate to represent the light-harvesting proteins as it is one of the most studied proteins in 

this field, due to its crystal structure being available for many years2 and (as previously 

mentioned) it being the system for which long-lived coherence was initially observed.3 Whilst 

the WSCPs are chromophore transporters and are not actively involved in light-harvesting. 

FMO is a trimer containing a total of 24 chromophores; 8 per monomer unit. Each unit 

has 7 chromophores inside the monomer protein scaffold, with the eighth chromophore 

sandwiched between two adjacent monomer units. The WSCPs each contain 4 chromophores, 

organised as two adjacent parallel displaced pairs. 

Table 4.1: Proteins and chromophores analysed in this work 

Protein Chromophores Abbreviation # of Chromophores 

FMO Bacteriochlorophyll-a BCL 8 

WSCP-a Chlorophyll-a CLA 4 

WSCP-b Chlorophyll-b CLB 4 

 

4.3 Computational Details 

4.3.1 Protein MD 

The crystal structures of FMO and WSCP are from the Protein Data Bank (PDB: 3BSD and 

5HPZ, respectively). Any missing residues at the edges of the protein chain have been 

ignored, while any missing atoms were added using the CHARMM-GUI website.147 

Preparation and MD simulations were performed with the GROMACS 5.0.5 software.148 The 

proteins were embedded in cubic boxes with side 120 Å and 110 Å for FMO and WSCP, 

respectively. Histidine residues have been assigned the appropriate protonation state to allow 

coordinating Mg atoms of chromophores, otherwise they have been assigned the proton in 
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position ε. Water molecules were added, and the ionic strength of the starting box was set to 

150 mM by adding potassium and chloride ions.149,150 The system has been described using 

the TIP3P model for water molecules, the CHARMM36 forcefield for the protein,74 and 

literature parameters for the chromophores. Initial minimisation of the system was performed 

keeping all chromophores frozen, with 2000 steps of Steepest Descent. For all the following 

steps, a 2 fs integration step was used and constrained all the bonds with the LINCS algorithm 

implemented in GROMACS. Equilibration of the system was done in two steps of 500 ps 

each, first NVT (heating up to 300K) and then NPT conditions (Berendsen barostat), 

respectively. Finally, a separate equilibration of several nanoseconds was carried out for each 

frozen chromophore. 

4.3.2 Spectral Density Computations 

The last 16 ps of the several nanosecond trajectories were used to compute the excitation 

energies every 20 fs, using a QM/MM scheme within TDDFT linear response theory.136 An 

MM radius of 30 Å around the chromophore was included in the calculation as this is needed 

to neglect the uncertainty arising from the fluctuation of excitation energy as a function of 

MM boundary, which is consistent with similar considerations in the literature.44 

Additionally, there is a high correlation between 6-31G* and 3-21G* data, with a slope close 

to 1 (R2 ≈ 0.98, see Fig. A4.1), thus the standard deviations at the two levels of theory are 

comparable and so the 3-21G* basis set is used as it is a good compromise between accuracy 

and computational cost. Comparison of 4 different functionals (B3LYP, CAM-B3LYP, M06-

2X, ωB97X-D), showed consistent behaviour (R2 > 0.90) among CAM-B3LYP, M06-2X, 

ωB97X-D (see Fig. A4.2). So the ωB97X-D/3-21G* combination, including all the residues 

within a 35 Å radius around the QM chromophore, was used for the QM/MM calculations an 

approach similar to the ones used, for example, in refs. 39 and 101. Also, the number of atoms 

of the chromophores in the QM region was reduced by inserting a link atom between the first 

and second carbon atoms of the phytyl chain. The QChem 4.2 software was used for the 

QM/MM calculations.151 Fourier transforms (FTs) have been computed over 800 points, 

obtained on a 16 ps time window at regular intervals of 0.02 ps. 

4.4 Results 

4.4.1 Spectral Density Results 

The spectral density is obtained from an FT of the autocorrelation function (ACF) of the 

fluctuation of the excitation energy of the first excited state of the chromophore along the MD 
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trajectory. Table 4.2 reports the statistics of the QM/MM calculations and Figs. 4.1-2 show 

the data processing in terms of the ACF calculation and their FTs. 

Identifying patterns in the FTs and ACFs leads to two classification groups: a group 

showing tails in the ACFs with only one peak at low frequency (ω < 10 cm-1) in the FT (Group 

1) and a group with clearly identifiable periodicities in the ACF leading to one or more strong 

peaks in the FT with frequencies on a significant time scale (ω > 10 cm-1)  in exciton lifetime 

terms (Group 2). Group 1 contains half the FMO chromophores: BCLs 367, 371, 372 and 373  

Table 4.2: QM/MM average excitation energies and their fluctuations along the MD trajectory 

for the chromophores belonging to proteins reported in Table 4.1. 

Chromophore Avg. (eV) σ (eV) Group 

BCL367 1.7581 0.0119 1 

BCL368 1.7908 0.0123 2 

BCL369 1.7839 0.0088 2 

BCL370 1.7613 0.0072 2 

BCL371 1.7735 0.0073 1 

BCL372 1.7972 0.0054 1 

BCL373 1.7920 0.0089 1 

BCL400 1.7710 0.0105 2 

CLA1 2.0938 0.0067 2 

CLA2 2.1316 0.0072 1 

CLA3 2.0270 0.0071 2 

CLA4 2.1145 0.0151 2 

CLB1 2.1398 0.0070 2 

CLB2 2.1130 0.0082 2 

CLB3 2.0631 0.0126 1 

CLB4 2.0901 0.0150 1 
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and three chromophores of the WSCP variants: CLA 2, CLBs 3, 4. Tails in ACFs can indicate 

non-convergence of the ACF due to long-time protein dynamics. In order to determine if this 

was the case here, the ACF was recomputed over a longer timescale however this resulted in 

no significant improvement. Thus, it was decided that repeating the calculation on the other 

chromophores on a longer timescale would not be of benefit. The motions characterising 

Group 1 are significantly slower than the exciton dynamics and act as inhomogeneous 

broadening: in a sample there will be different conformations of the protein, and to a good 

approximation the experiment can be modelled as static along these degrees of freedom. 

Considering the symmetry of the WSCP systems, it is surprising to note the discrepancy of 

CLA 2 in regard to the other CLA chromophores. This is assigned to the symmetry breaking 

effect of the solvent which will be discussed in more detail later, as will the importance of the 

solvent. Group 2 contains the remaining chromophores: BCLs 368, 369, 370, 400, and CLAs  

 

Figure 4.1: Autocorrelation functions (black lines for Group 1, green lines for Group 2) and 

their FTs (insets, blue lines for Group 1, red lines for Group 2) for FMO chromophores. 
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1, 3, 4, and CLBs 1, 2. The spectral densities for these chromophores show the motions are 

coupled in a complex way with the exciton dynamics. 

 To determine if belonging to Group 1 or 2 was correlated with fluctuation of the excitation 

energy (i.e. the overall exciton-vibration coupling strength) a Kruskal-Wallis statistical test 

was performed.152 A Kruskal-Wallis test determines whether samples originate from the same 

distribution. The result (Kruskal-Wallis-p = 0.60) indicates that the σ values of the two groups 

are from the same distribution and therefore there is no correlation between magnitude of 

excitation energy fluctuation and belonging to a certain group. The same test was used for 

fluctuations arising from protein type to determine if the magnitude of fluctuations of 

excitation energy are protein specific, and therefore related to biological function or if similar 

fluctuations occur due to a generic protein environment. First it was confirmed that the 

fluctuations of the two WSCP variants belong to the same distribution (Kruskal-Wallis-p = 

 

Figure 4.2: Autocorrelation functions (black lines for Group 1, green lines for Group 2) and 

their FTs (insets, blue lines for Group 1, red lines for Group 2) for WSCP chromophores. 
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0.56) as would be expected due to the identical nature of the protein scaffold. Then in order 

to determine if there was significant difference between the WSCPs and FMO, the Kruskal-

Wallis test of the fluctuations of all three proteins was performed. Resulting in the conclusion 

that the fluctuations are not specific to FMO (Kruskal-Wallis-p = 0.81) and so are not related 

to the biological function of the proteins. 

4.4.2 Correlations between environmental motion and excitation energy 

Next, to gain chemical insight possible of aiding materials design and to detect any special 

function of the environment, identification of motions correlated with fluctuations of excited 

energy was attempted. Pearson’s correlation coefficient (r) was computed between the 

TDDFT excitation energies and the coulombic interaction energies with each of the residues 

within 10 Å of the chromophore along the MD trajectory. The coulombic interaction energy 

was computed by representing the chromophore as a set of point charges from the difference 

between ground and excited state atomic charges within a Merz-Kollman scheme.153,154 The 

results of BCL 368 and CLA 3 are reported in Table 4.3 as an example. Reported in the table 

for each residue with a correlation r > 0.30 is: the fluctuations of the coulombic interaction 

energy (σE), the distance (d) of interacting atoms and its fluctuation (σd), the atom names of 

the interacting atoms, and assignment of the interaction to a particular component of the 

environment (solvent, S, protein, P, or chromophore, C). The complete series of tables (Tables 

A4.1-3) containing the results of this analysis for all chromophores are reported in the 

appendix for this chapter. Note solvent residues are formally identical and can exchange. 

However, here the order number of the simulation is used to refer to them. 

Table 4.3: Correlation analysis for residues surrounding chromophores. 

Residue r σE (eV) d (Å) σd (Å) Interaction Class 

BCL 368 

SOL20272 0.373 2.89E-04 1.95 0.05 OW-MG S 

S 

P 

SOL16680 0.335 3.21E-04 2.19 0.28 HW1-ND 

SER73 0.318 2.17E-04 1.77 0.19 HG-OBB 

CLA 3 

ALA34     0.612 2.06E-04 1.93 0.17 O-HE1 P 

P ALA33     0.516 1.15E-04 1.91 0.15 O-HN 
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  In Fig. 4.3 is shown the scatter plots of two correlations representative of moderate (0.3 < 

r < 0.5) and good (r > 0.5) correlations, to highlight the significant difference between them. 

The summary of interaction classification data reported in Table 4.3 (and Tables A4.1-3 in 

the appendix) is shown in Fig. 4.4 (see also Fig. A4.3 in the appendix). It demonstrates that 

the solvent predominantly influences the excitation energies. Also, the residue with the largest 

fluctuation of coulombic interaction energy is typically the most correlated, confirmed by 

Tables A4.1-3. Visual analysis of the MD trajectory confirms proximity and interaction (e.g.  

 

Figure 4.4: Distribution of the correlation coefficients for chromophore/environment 

interactions.  

 

Figure 4.3 Coulombic interaction energy – excitation energy correlation for SOL20272 and 

BCL 368 (r = 0.373, blue) and ALA34 and CLA 3 (r = 0.612, green). 
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hydrogen bonds or coordination) of the residues with chromophores, exemplified in Figs. 4.5 

and 4.6. 

To identify specific motions of the residues identified as most responsible for excitation 

energy fluctuations, the FT of the coulombic interaction energies (used to calculate r) were 

computed and compared to those of the TDDFT data. This analysis was performed on CLA 

4 and BCL 370 due to their well-defined peak in the frequency domain in their spectral 

densities (Figs. 4.1-2). In theory this well-defined peak may be assigned to a specific motion. 

However, this comparison scarcely useful for analysing specific motions, as the frequency 

resolved signal also contains the components of many protein motions when a small residue 

or solvent molecule is considered. The results are shown in the appendix in Fig. A4.4. 

 The most correlated residue for BCL 370 is a solvent molecule (r = 0.48, SOL 26496) 

which is not coordinated to the chromophore directly but is involved in a H-bonded solvent 

network, holding it in place in proximity of the chromophore but still allowing it to rotate. 

This motion modulates the excitation energy. Similarly, for CLA 4 a solvent molecule is one 

of the most correlated residues (r = 0.36, SOL 23254), which again is free to rotate and 

modulate the chromophore excitation energy whilst being held nearby by a solvent network. 

This is demonstrated for both cases in Fig. 4.6. This freedom to rotate suggests a dipole-dipole 

interaction mechanism as the dipole is free to change orientations.  

 

 

Figure 4.5: location of the most correlated residues reported in Table 4.3 BCL 368 (left) and 

CLA 3 (right). 
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4.4.3 Average environmental composition of chromophores 

Finally, the radial distribution function between the centre of mass of the chromophore and 

centres of mass of surrounding residues of certain types was computed and integrated along 

the MD trajectory to obtain the average number of that residue. This was to analyse the 

average composition of the surrounding environment of the chromophores, to understand if 

there are any hydrophobic/hydrophilic pockets and if these are important. The results are 

reported in Table 4.4 and are uniform amongst the chromophores, with the only exception 

being BCL 400. However, this is expected as the BCL 400 chromophore is located at the edge 

of the protein scaffold and is much more exposed to solvent. The environment component 

that is most variable is the solvent but there is not strong correlation between the average 

fraction of solvent in the 10 Å sphere around the chromophore and the fluctuation of the 

excitation energy along the trajectory (Fig. A4.5 in the appendix). This is backed up by 

additional statistical tests (Pearson’s r = 0.22, Spearman’s ρ = 0.30).  

 

 

 

 

 

 

  

Figure 4.6: Solvent chain and SOL 26496 motions modulating the excitation energy of BCL 

370 (left). Solvent chain, containing highly correlated solvent SOL 23254, mediating the 

interaction of the phytyl chains of CLA 3 (orange) and CLA 4 (right). 
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Table 4.4: Average number and type of residues in a 10 Å shell from the chromophore. 

 σ (eV) Chrom Prot Solv Tot 

BCL367 0.0119 1.00 16.56 5.82 23.38 

BCL368 0.0123 0.00 12.88 11.31 24.18 

BCL369 0.0088 1.00 15.14 8.19 24.33 

BCL370 0.0072 0.00 15.30 13.97 29.27 

BCL371 0.0073 0.00 13.06 13.65 26.71 

BCL372 0.0054 0.00 15.22 3.26 18.49 

BCL373 0.0089 1.00 14.78 9.11 24.89 

BCL400 0.0105 0.00 18.15 32.73 50.88 

CLA1 0.0067 1.00 14.96 9.91 25.86 

CLA2 0.0072 1.00 15.96 11.71 28.68 

CLA3 0.0071 1.00 15.43 9.62 26.06 

CLA4 0.0151 1.00 16.11 12.41 29.53 

CLB1 0.0070 1.00 17.20 7.19 25.39 

CLB2 0.0082 1.00 17.72 12.45 31.17 

CLB3 0.0126 1.00 16.65 8.28 25.94 

CLB4 0.0150 1.00 16.98 14.59 32.57 

   

4.5 Conclusions  

In this work the fluctuations of the excitation energy of a set of similar chromophores (BCL, 

CLA and CLB) embedded in different protein environments (FMO, WSCP) were studied 

using an approach combining MD with subsequent QM/MM calculation on a number of the 

snapshots from the trajectories. To isolate the role of environment the chromophore whose 

spectral density was to be computed was kept frozen during the MD simulation. This also 

circumvents inaccuracies arising from the geometry mismatch problem. ACFs of the QM/MM 

excitation energies and their FTs were computed, analysis of which led to the identification 

of two groups of chromophores. A group showing only very low frequency (ω < 10 cm-1) 

contributions (Group 1) and a group showing frequencies that can couple with the exciton 

dynamics in a complex way (Group 2). It has previously been shown that evolution of the 

spectral density occurs slowly over a nanosecond timescale as the protein samples different 

environments140 and this timeframe is well beyond what is computable as time series of 

excitation energy. These motions do not influence the exciton dynamics as they are essentially 
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stationary in comparison. The exciton dynamics are dictated by a specific spectral density 

from within a limited time interval as opposed to one averaged over long times.155 It would 

be expected that any interactions and/or environmental fluctuations specifically optimised to 

enhance exciton dynamics would be present in any sampled trajectory interval on a timescale 

of exciton dynamics. Hence the spectral densities examined here are not averages over several 

trajectories. Additionally, it is noted that due to the time window used, the reliability of the ω 

< 5 cm-1 vibrations is questionable as their oscillation occurs over a time window greater than 

that of those involved in the FT computation. However, as previously discussed, these very 

low frequency vibrations act as inhomogeneous broadening and have a negligible role in the 

reorganisation energy 

Some authors have proposed that the specific frequency of environmental motions can 

be important if they become resonant with specific energy level differences, although there is 

still no consensus on this issue.25 The fluctuations of excitation energies due to environment 

reported here are around half that of the fluctuations due to the intra-chromophore modes of 

FMO  which have been reported as around 0.02 eV.140 The magnitude of fluctuations reported 

are comparable to the energy differences among localised excitons, highlighting how 

fluctuations may determine energy level order, thus improving (or impairing) the level 

alignment. However, statistical tests revealed no significant difference between the magnitude 

of fluctuations of the excitation energy of the two groups, nor a significant difference for the 

different proteins. This lack of distinct difference between the environment fluctuations of 

proteins with different functions indicates a lack of specific tuning of environmental noise for 

the promotion of energy transfer. The results observed here suggesting a general value could 

be obtained from any protein and do can help to rule out hypotheses stating that local 

environment has naturally evolved to be fine-tuned to promote energy transport. 

Analysis of residues whose coulombic interaction energy with the chromophore is most 

correlated with the fluctuation of the excitation energy has highlighted the importance of 

solvent in these systems, with proximal rotating solvent molecules being able to modulate 

excitation energy through rotation of their dipole. These solvent molecules are held in place 

by strong interaction networks involving hydrogen bonding but are free to rotate, allowing 

them to continuously modify the extent of the interaction. A final analysis of the 

environmental composition of each chromophore ruled out any correlation between the 

number of a certain type of residue in the proximity of the chromophore and its excitation 

energy fluctuation. 
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 The analysis of three PPCs appears to indicate an “unspecific” nature of protein 

environment that is independent of biological function. Further extension of these findings to 

more complexes could be useful in ruling out hypotheses involving the target of natural 

evolution. Overall the only obvious tunability would be to decrease exciton-environment 

coupling through reducing pockets accessible by solvent in the vicinity of the chromophore. 

The findings of complimentary studies focusing on the role of relative arrangement of 

chromophores indicate that there is some optimisation of this property in naturally occurring 

LHCs.53,156 Additionally, the exciton is more strongly coupled with the motions of the 

chromophore itself140 than that of environment motions, it is reasonable to argue that the 

exciton dynamics is likely not substantially affected by the chemical detail of surrounding 

environment. In summary, these results indicate that the most effective way to control the 

energy transfer process (either in artificial systems or by natural evolution) is by controlling 

the chromophore-chromophore interaction rather than the chromophore-environment 

interaction. 
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5 Exciton dynamics of multiple LHCs 

 

 

In order to gain an understanding of the underlying principles of EET in LHCs it is necessary 

to compare multiple complexes in a consistent way as this will reveal factors important for 

efficiency. That is the aim of this chapter; to study the exciton dynamics of multiple LHCs 

using the same method. 

 

 

 

5.1  Introduction 

5.1.1 Atomistic models vs phenomenological models 

When examining the underlying details of biophysical processes for many cases there are two 

contrasting methods of modelling: highly detailed models which include as much accurate 

system information as possible and phenomenological modelling which describe fundamental 

processes in a more simplified manner. The study of the underlying biophysical processes of 

LHCs is the same. As discussed in the first chapter, due to the system size of LHCs the only 

feasible way to include atomistic detail is the use of classical MM methods (typically then 

combined with some higher-level method), whilst phenomenological model examples are 

things like Förster, Redfield and phonon-mediated models.  

Whilst such studies have provided insight into LHCs, both methods suffer their own 

drawbacks. When using highly detailed system specific models, the conclusions are not 

necessarily applicable to other systems therefore making it difficult to derive general 

principles and also increasing the risk of overestimating the importance of some 

feature/observation. In the case of phenomenological models, they can be difficult to validate 

if the parameters can simply be tuned to match experiment or highlight some feature. 

Moreover, these errors may compound one another as the direction of research is influenced 

by previous findings. A detailed atomistic study may uncover some interesting feature and 

thus (possibly incorrectly) deem it important and this feature may then be used as the focal 

point of phenomenological studies. For example, vibronic coupling was identified in an 
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LHC157 this feature has then been included in several phenomenological studies.52,139,157,158 

However, as investigated in the previous chapter, vibronic coupling to environment is unlikely 

to be important. In order to avoid incorrectly assigning importance to some feature or 

property, there has been research which compares real LHCs to artificial analogues.53,159–161 

The results of such studies have indicated evidence of optimisation toward pigment density160 

and orientation.53 However, results also suggested that symmetry is important for efficient 

EET as symmetry breaking of LH2 structures leads to decreased efficiency,64 but FMO is low 

symmetry and still highly efficient.  

The variability of the structure of LHCs makes comparison of atomistic studies difficult 

when the aim is to identify important characteristics. There is already a broad range of 

characteristics to consider within a single complex, e.g. specific interactions, chromophore 

orientations, inter- or intramolecular vibrations and more. Comparing all these things across 

several structurally different complexes is too complicated. In phenomenological models the 

underlying description of the different models is the same, making identification of 

fundamental components easier. These underlying principles can then be used as a basis to 

develop a more complex atomistic understanding of the process.  

5.1.2 Examining exciton dynamics 

Defining key components of exciton dynamics in LHCs is desirable for two main reasons. 

Firstly, the result may provide insight for materials design to improve efficiency in artificial 

light harvesters. Also, understanding the fundamentals of exciton dynamics could determine 

the source of efficiency. In other words, it may be possible to differentiate specialised 

functions of the complexes and intrinsic properties of molecular aggregates. 

To understand the underlying biophysical principles of LHCs important for efficient 

EET, a uniform examination of the exciton dynamics of several complexes must be 

undertaken. Utilising the same phenomenological model allows direct comparison of the 

complexes, clarifying any fundamental commonalities. In this chapter, five PPCs will be 

examined by computing their excitonic Hamiltonian and their exciton dynamics approximated 

using a Lindblad master equation. Analysis of the Hamiltonians and resulting dynamics will 

identify any relationships between simple properties. Understanding the relationship between 

these simple properties, for example static disorder and relative coupling strengths of the 

chromophores and the exciton dynamics, is key in determining underlying mechanisms.  
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5.2  Systems  

There are two criteria that must be met for PPCs to be included in this study: they must be 

involved in light and their structure must be available. In addition to these criteria, as the role 

of carotenoids is not fully clear – they may be actively involved in light-harvesting162–164 or 

may be for photoprotection165,166 – it was decided to exclude carotenoid containing LHCs. 

Also, irreversible energy transfer from high to low energy excited states may occur in 

complexes with more than one chromophore type and whilst this is biologically relevant, it 

obscures the ultrafast energy transfer that is the focus here. Thus, the final criterion for LHC 

selection was that the complex contained only one type of chromophore. Applying these 

criteria to proteins available from the RCSB PDB and removing low resolution, degenerate 

and non-natural light-harvesters gives roughly ten LHCs to be considered, from which the 

following 5 were selected: APC, B-APC, CPC, FMO and PE. Table 5.1 summarises their 

names, chromophore types and number and PDB code. The structures of the complexes are 

depicted in Fig. 5.1. The set is fairly representative of LHCs with only one chromophore type. 

It includes two (bacteriochlorophylls and bilins) of the three chromophore types (for the third 

type complexes are either too large or too low resolution for the purpose here) as well as 

complexes with a variety of symmetries.   

Table 5.1 Summary of systems investigated, and abbreviations used. 

 

LHC name 
LHC 

abbr. 
Chrom. 

Chrom. 

abbr. 

n 

chrom. 

PDB 

code 

Allophycocyanin APC Phycocyanobilin CYC 12 1KN1 

B-Allophycocyanin B-APC Phycocyanobilin CYC 6 4PO5 

C-Phycocyanin CPC Phycocyanobilin CYC 18 3L0F 

Fenna-Matthews-

Olson 
FMO Bacteriochlorophyll-a BCL 8 3ENI 

Phycoerythrin PE Phycoerythrobilin PEB 30 3V57 
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5.3 Computational Details 

5.3.1 Structure optimisation 

The structure of each LHC was obtained from the RCSB Protein Data Bank and then set up 

by placing the protein in the centre of a cubic box with 10 Å to the edge, using GROMACS 

5.0.5 software.148 The system was solvated with water molecules and the ionic strength set to 

150 mM by adding potassium and chloride ions. The CHARMM3674 forcefield was used for 

 

Figure 5.1 Structures of proteins: APC (top left), B-APC (top right), CPC (middle left), FMO 

(middle right), PE (bottom). 
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the protein, TIP3P for the water, literature parameters for bcla167 and CGenFF168,169 parameters 

for PEB and CYC.  The energy of the system was minimised using steepest decent followed 

by NVT (300 K) then NPT (1 Bar) equilibrations for 200 ps. The result was then used for 

input into a two-layer ONIOM model (as outlined is section 2.1) implemented with Q-Chem 

4.2151 for geometry optimisation of each chromophore of the protein. The total system was 

taken as the chromophore surrounded by 5 Å of its environment, with the chromophore as the 

QM part and the environment (all protein, solvent and ions) as the MM part. The QM part 

was treated with the B3LYP functional and 6-31G* basis set and the MM part using the same 

forcefield parameters as the MD setup. 

5.3.2 Excited states and coulombic couplings 

The excitonic coupling is conventionally separated into a long-range contribution described 

by the Coulombic coupling and short-range contributions. The Coulombic coupling170–173 is 

given by 

 
,
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  (5.1) 

where ρa(b)(r) is the transition density of localised exciton a (b). The integral in equation (5.1) 

is numerically evaluated as a sum over a grid of points {ri}, known as the transition density 

cube (TDC) where ( ) ( ) ( ).a b a b

i i = r  The results of the geometry optimisations were used as 

input into TD-DFT to compute the first four excited states at the B3LYP/6-31G* level and 

the transition density cube (TDC) of the first excited state (also implemented using Q-Chem 

4.2). The resulting TDCs were the used to compute the coulombic couplings between each 

pair of chromophores in the complex as detailed in refs. 174 and 175.  

5.3.3 Exciton dynamics 

The dynamics of a single exciton through the chromophore network of each protein were 

modelled. This was performed using a Lindblad master equation: 

 
† †1

{ , }
2

L L L L  = −   (5.2) 

which gives (as outlined in section 2.3): 

 [ , ] .i H  = − +   (5.3) 

The first term is given by the electronic Hamiltonian: 
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where N is the number of chromophores, εi is the first excited state energy of chromophore i 

and Vij is the coupling between chromophore i and chromophore j and overall H describes the 

closed system dynamics. The second term contains Γ, the dephasing rate 

 2 | |i iL =    (5.5) 

where Γ is set to be 2.1 ps-1 to be in the correct range to be consistent with experimental 

observations,53 though its value it is not critical in this study. 

 This approach assumes the coupling between chromophores and their local environment 

is roughly similar across chromophores and LHCs, as determined in the previous chapter. 

Additionally the coupling with high frequency modes is neglected due to its effect on 

simulated exciton dynamics of FMO being found to be negligible.140 It can be expected that 

such modes are important in complexes containing multiple chromophores by being acceptors 

of electronic energy during irreversible energy transfer toward lower energy excitations, 

however this situation is not present in the systems considered here.   

5.4 Results 

5.4.1 Structure of excitonic Hamiltonian  

Statistical descriptors of the Hamiltonian matrix are summarised in Table 5.2 and the 

distribution of the absolute values of the Hamiltonian are illustrated in Fig. 5.2. The disorder 

of the excitation energy is comparable with the excitonic coupling for all the complexes; thus, 

the important descriptors are the range of excitation energies and the standard deviation of 

excitation energies. Comparing the value of the standard deviations in Table 5.2 it is evident 

that the standard deviation is reasonably similar for all complexes, with those of APC, B-APC 

and CPC being slightly smaller. Additionally, their value is very close to the thermal energy 

at room temperature and in-site energy fluctuation due to intramolecular modes140 (~20 – 25 

meV for both). In the previous chapter it was shown the intermolecular motions modulate the 

on-site energy to a lesser degree (standard deviation of ~ 10 meV) and that this modulation 

was similar for chromophores not involved in light harvesting. The combination of these 

observations suggests the static and dynamic disorder experienced by chromophores in LHCs 

is fairly similar and unspecific. 
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Table 5.2 Statistical descriptors of the excitonic Hamiltonian of each LHC: minimum 

excitation energy,  ( )min iiH , maximum excitation energy,  ( )max iiH , excitation energy 

standard deviation,  ( )iiH , the largest absolute excitonic coupling,  ( )max | |ij i j
H


 and 

the smallest of the largest absolute coupling for each chromophore  ( )( )|min max |i j ij i j
H


. 

LHC  ( )min iiH    ( )max iiH   ( )iiH   ( )max | |ij i j
H


  ( )max( )

min
i

i ij i j
H


  

APC 2.2620 2.3934 0.0316 0.0269 0.0233 

B-APC 2.2923 2.3782 0.0277 0.0228 0.0174 

CPC 2.4314 2.5338 0.0265 0.0201 0.0009 

FMO 1.7177 1.8736 0.0558 0.0996 0.0066 

PE 2.2197 2.4891 0.0623 0.0191 0.0060 

 

 To compare the strength of the excitonic couplings (off-diagonal elements of the matrix), 

the largest absolute excitonic coupling may be examined. From these couplings it is evident 

that they are similar for all complexes except FMO, which is 4 – 5 times larger. This is 

explained by the interchromophore separation i.e. the compactness of the LHCs as it is well 

known that coupling scales inversely with distance as illustrated in Fig. 5.3. Examining the 

smallest absolute coupling, however, is not worthwhile as there are many distant 

chromophores whose coupling will be close to zero. Instead the largest coupling for each 

chromophore i is identified, 

    ( )max( )

max
i

ij j ijj i ji
H H

 
=   (5.6) 

and the smallest of the largest couplings is reported 

  ( )  ( )max( )

min min max .
i

i ij i jj ji ij
i

H H
 

 =  
 

  (5.7) 

This gives an indication of the chromophore most poorly coupled with the others.  

 Examining the most poorly coupled chromophore, it is clear there is a notable difference 

between the pair APC and B-APC and the other complexes (CPC, FMO and PE). In the case 

of APC and B-APC, there are no chromophores isolated from the others whilst for the others 

there is one or more chromophore completely decoupled from the rest. These chromophores  
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Figure 5.2 Colour scale (different for diagonal and off-diagonal) representation of magnitude 

of matrix elements of the five complexes. The range of values for each complex can be 

inferred from the parameters in Table 5.2. 
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can be identified from the complex structures. For example, in FMO there is a chromophore 

at the edge of the protein, outside of the scaffolding. However, it is not necessarily astute to 

ascribe substantial significance to these findings as LHCs form larger aggregates and these 

peripheral chromophores likely couple to chromophores of neighbouring proteins in the 

aggregate. It is sufficient to bear in mind that such chromophores are a minority and thus 

should not influence the description of the global dynamics. 

5.4.2 A global view of exciton dynamics in LHCs 

Even considering the major simplifications of the treatment of the system-bath interaction, 

the exciton dynamics of the five LHCs is highly complex. The generation of the exciton may 

come from radiation from the ground state or by transfer from other chromophores or 

relaxation from higher excited states. There is also the matter of determining when the exciton 

has reached its “destination” – it is either transferred to the reaction centre complex or onto 

another LHC towards the reaction centre. In some cases (e.g. FMO) it is possible to determine 

a site for the “source” and “sink” of the energy transfer however in general this is not known. 

 

Figure 5.3 Excitonic coupling versus chromophore separation. 
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For example, Fig. 5.4(a) depicts the difference in the evolution of the diagonal elements of 

the density matrix for B-APC when the population is initially on chromophore 1 compared to 

chromophore 5. So, to describe the exciton dynamics in a global fashion, a measure of exciton 

diffusion independent of final destination is introduced, which is able to quantify the ability 

to explore more sites from the initial generation of exciton. The time dependent inverse 

participation ratio176 (IPR) is defined from the literature of disordered systems by 

 
2
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IPR .

(
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t
t


=


  (5.8) 

When the density matrix is expressed in the basis of the localised excitation, the IPR is a 

number between 1 (where the state is fully localised on a single chromophore) and the number 

of chromophores, N, (where the state is fully delocalised over all chromophores). In Fig. 

5.4(b) it can be seen how examining IPR with a log scale for time can be used to monitor the 

exciton spread with better consideration of the short- and long-term dynamics. To examine 

the exciton diffusion in a given LHC regardless of the initial excitation site, an average IPR(t) 

is defined as the average over all dynamics where the initial population is one on a single 

chromophore and all other matrix elements are null. It is then possible to compare all LHCs 

consistently by examining their average IPR(t) which is depicted in Fig. 5.5. Note the 

dynamics does not include thermal relaxation effects and so is representative of the exciton 

diffusion before thermal relaxation occurs and assumes broadband excitation, i.e. initial 

exciton generation is non-specific. IPR(0) 1= following the definition of initial state given; 

at long times the average IPR(t) oscillates around the average of the IPR of the eigenstates, 

which depends on the (diagonal and off-diagonal) disorder of the system. The average IPR of 

the eigenstates is reported in Table 5.3. 

Table 5.3 IPR values of the LHCs. 

LHC IPR 

APC 3.21 

B-APC 2.04 

CPC 1.78 

FMO 1.85 

PE 2.33 
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 Their appears to be a slim difference in the dynamics of APC, B-APC, CPC and PE; on a 

similar timescale the exciton spreads over a similar number of chromophores. FMO deviates 

from this trend marginally – the larger coupling (shown in Fig. 5.3 and Table 5.2) results in 

an initial increase in IPR that is about five times faster and the IPR is generally higher at long 

times due to more delocalised eigenstates.  

 

Figure 5.4 a) Time evolution of populations for B-APC with different initial conditions: 

population on chromophore 1 (left) and population on chromophore 5 (right). b) IPR(t) for 

initial conditions of the corresponding top panels and average IPR(t) over the six initial 

conditions. 
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5.4.3 Attempting to define a “generic” LHC 

The modest difference in the resulting dynamics of this group of LHCs suggest it may be 

possible to define a generic model which describes these chromophore aggregates. This 

generic model can be used to capture the essence of LHCs and to differentiate between 

intrinsic features of aggregates which are geometrically similar and specialised functions. 

Such a model can take the form of the excitonic Hamiltonian: equation (5.4). For different 

LHCs the on-site disorder range is less varied than that of the observed excitonic coupling. 

Thus, the on-site energy disorder is set to a fixed value and the excitonic coupling strength is 

allowed to vary. The diagonal matrix elements εi are considered a random variable normally 

distributed with a variance of 50 meV. 

 As there appears to be no significant differences resulting from the number of 

chromophores in the aggregate, a “generic” LHC can be defined with a fixed intermediate 

size. The excitonic coupling must be generated with a plausible distribution, i.e. coupling 

decreases with distance increase, and a physically motivated relative sign. If each 

 

Figure 5.5 Average IPR(t) versus log(t) for the five LHCs. 
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chromophore(/site) in the aggregate is assigned a randomly oriented unit vector ui, the 

excitonic coupling between site i and site j is 

 
i j

ij

ijR
V w=

u u
  (5.9) 

where Rij is the distance between sites and w is a parameter to be varied to match the range of 

observed dynamics. The dipole – dipole approximation is qualitatively valid for 

chromophores separated by sufficient distance,174 and so is the basis of the distance – 

orientation dependence of the excitonic coupling. 

 A 13-site aggregate can be arranged in two different clusters: a 3D cluster based on the 

face-centred cubic lattice and a 2D cluster based on a hexagonal lattice, where distance 

between the unit vectors of the lattices are set to unity.  Comparison of the resulting IPR(t) of 

the clusters as w is varied177 showed IPR reaches larger values in the 3D cluster than in the 

2D cluster with similar values of w. This result is expected as it mirrors 2 and 3 dimensional 

Anderson localisation theory178 in solid state. The results also found the IPR(t) for different w 

values were non-crossing meaning at long times the average dynamics are determined solely 

by the average IPR, which is dependent on the disorder of the system. A larger and faster 

spread of the wavefunction is caused by decreased disorder. At large values of w disorder and 

IPR saturate. When w is large the only relevant source of disorder is that of the coupling Vij 

(i.e. the off-diagonal matrix elements) resulting from the orientation of the unit vectors. 

 The results of this generic model indicate a possible explanation for the similarity in 

observed dynamics of APC, B-APC, CPC and PE: the structures are approximately planar 

with comparable levels of diagonal and off-diagonal disorder. The w parameter range of the 

2D model with similar the dynamics to the realistic systems results in very limited change in 

dynamics as result of 50% increase or decrease of excitonic coupling.177  In other words, the 

overall dynamics are insensitive to the detail of the coupling, as seen in these four LHCs. 

These results suggest the specific arrangement of chromophores in individual LHCs is not so 

important whilst indirectly highlighting the importance of the 3D arrangement. In nature, 

disk-shaped LHCs like PE surround the reaction centre in rods formed of stacked disks,179 

thus it is more likely that the special function is due to topology of interaction between LHCs 

as opposed to the relative coupling of chromophores within each LHC. 
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5.5  Conclusions 

A consistent QM/MM methodology has been employed to compute the excitonic Hamiltonian 

for five LHCs and their dynamics in an attempt to characterise common or distinctive features. 

From examination of the Hamiltonian and its statistics, no unique features or properties were 

apparent, but the results may be useful in provision of a parameter range for the development 

of reduced models. Analysis of the exciton dynamics of the five complexes, using the IPR, 

demonstrated very similar characteristics for four of the five complexes (APC, B-APC, CPC 

and PE) with slightly faster dynamics for the fifth (FMO). This observation may be explained 

by relative compactness of FMO and thus larger exciton couplings between its chromophores. 

 The results of this study suggest relatively similar dynamics are followed by LHCs 

containing only one chromophore type, despite the structural differences. The comparatively 

faster dynamics of FMO perhaps indicates some benefit of more compact systems. Building 

a “generic” model based on these observations indicated the dynamics are ultimately 

determined by a single parameter, the degree of localisation of the system eigenstates which 

itself is governed by the static disorder of the system. The realistic parameters for the model 

span a relatively small range thus it follows that the resulting dynamics of the real systems 

are similar. This proposed model may be used as the basis for future study of larger scale 

(multi-aggregate) systems to examine more general features in biological light-harvesting. 

Finally, it should be noted again that the selection of systems examined here limit the results 

to complexes containing a single chromophore type and containing no carotenoids. 
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6 Conclusions and Outlook 

 

This final chapter summarises the work covered in this thesis and the conclusions that can be 

drawn, as well as considering the outlook and potential further works. 

 

 

6.1 Summary 

The work presented in this thesis has examined three areas related to the endeavour of 

understanding the underlying principles of EET in LHCs. In chapter 3, a method for 

developing MDFFs was introduced which ensures consistency between MD computed forces 

and QC computed forces in order to address the computational chemistry problem of 

combining these two methods. The method was used to develop FFs for three chromophores, 

which were then used in spectral density calculations. Comparison of the spectral densities 

resulting from using the original and optimised FFs showed marked differences.  

 The biochemical question of the environmental role in EET was the subject of chapter 4. 

The spectral densities of rigid chromophores of PPCs with different functions were examined 

and the results identified two groups. One whose only contribution was from a very low 

frequency (ω < 10 cm-1) and one with contributing frequencies capable of coupling with 

exciton dynamics in a complex way. There was no difference found between the PPCs with 

different functions and the environment component most affecting excitation energy 

fluctuations appeared to be solvent. 

 Finally, the focus of chapter 5 was the biophysical examination of the exciton dynamics 

of five LHCs, propagated using a Lindblad master equation. Utilising the IPR to analyse the 

dynamics of the systems revealed extremely similar dynamics for four of the five systems (all 

but FMO) and slightly faster dynamics in the fifth system. The results were used to define a 

“generic” model which indicated the dynamics are determined by the static disorder of the 

system which falls within a relatively small range for realistic systems. Comparison of 2D 

and 3D aggregates described utilising the model also indirectly highlighted the potential 

importance of the arrangement of LHC complexes in relation to one another whilst 

demonstrating the unimportance of specific chromophore arrangement. 
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6.2 Conclusions 

The LHCs are an interesting area of study but their relatively large size and complexity result 

in computational challenges in their examination. The computational demands and sometimes 

the human time required to investigate these complexes often limits the number of complexes 

in a study to one or two. This is an issue if the goal is to understand underlying commonalities 

between complexes as it limits the number of comparable results and in turn their 

generalisability. Additionally, for the same reasons (system size and complexity) it is 

necessary to make approximations which then require validation. The force-matching method 

introduced in chapter 3 addressed the error resulting from using classical MM generated 

inputs for QC calculations (approximation problem) and the time usually required to produce 

a FF which prevents this error (computational demand problem). 

 After initial generation of the FF and the computation of the two levels of forces are 

complete, the method is automatic and so the parameterisation of the FF requires no human 

input. Additionally, the method is not limited to a specific FF or QC method, consequently it 

is possible to generate FFs for many chromophores for use in any sensible MD/QC 

combination. Spectral densities of three chromophores (BCL, CLA and CLB) in their protein 

environments computed with of non-optimised FFs and with FFs optimised with the force-

matching method were compared. There were notable differences in the high-frequency 

regions of the spectral densities which relate to the intramolecular modes.  

 Part of the complexity of the LHCs is due to the fact that they are open quantum systems. 

The chromophores transporting the excitation energy are not a closed system but in fact are 

surrounded by a protein scaffold which may influence the dynamics. The question of what 

role the environment plays was the subject of chapter 4. In order to examine only the 

contribution of the environment to the spectral density the chromophore was kept rigid and 

PPCs with two different functions were examined to uncover any specialisation of the 

environment. The spectral densities were not averaged over multiple trajectories as the exciton 

dynamics of the system will be dictated by the specific spectral density within a limited time 

interval as opposed to an averaged one. Furthermore, it would be expected that any 

environmental motions/interactions specifically optimised to influence EET would occur in 

any sampled trajectory. 

The two groups discovered from the analysis of the spectral densities of the chromophores 

contained chromophores from proteins of both function types. Additionally, no statistically 

significant difference was found between the excitation energy fluctuation of the two proteins, 
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nor for the two groups. Indicating there is no specific tuning of environment for the promotion 

of energy transfer, despite the potential influence of fluctuations on energy level order (for 

benefit or detriment) due to the comparability of magnitude of fluctuations and energy 

difference of excitons.  

 From analysing the coulombic interaction energies of the residues with the chromophore, 

the most strongly correlated residues were found to be predominantly solvent molecules. 

Thus, the main influence on the excitation energy was determined to be due to the dipole-

dipole interactions resulting from the rotation of these solvent molecules. The formation of 

solvent networks with strong interactions involving hydrogen bonds, keep the solvent 

molecule in the chromophore proximity whilst allowing it to rotate, allowing continuous 

modification of the extent of interaction.  

 Considering the results altogether – chromophores of all proteins belonging to both 

groups, the lack of distinct difference between excitation energy fluctuations of different 

proteins, solvent being the residue most influencing fluctuations – the protein environment 

can be deemed unspecific in nature and it may be possible to determine a general value for 

any protein. Overall controlling the chromophore-environment is likely to have little effect 

on the exciton dynamics. 

 In chapter 5 the excitonic Hamiltonian and resulting exciton dynamics were computed for 

five LHCs. The results revealed no specific features in the Hamiltonian and its statistics. 

However, analysing the dynamics using the IPR revealed four of the five complexes had 

exceptionally similarities and the final complex had only marginally faster dynamics. The 

complex with faster dynamics has a more compact structure, indicating this may be beneficial 

somehow. 

 Constructing a “generic” LHC based on the results showed the dynamics are determined 

by the degree of localisation of the eigenstates which is controlled by the sources of static 

disorder of the system. The four complexes with very similar dynamics have very similar 

levels of static disorder hence such similar dynamics despite relatively different chromophore 

arrangement. Therefore, the specific arrangement of chromophores within an LHC is likely 

not as critical as previously thought, whilst the arrangement of LHCs with respect to each 

other and the reaction centre is more likely to be important. 

 Ultimately, to understand the underlying principles of efficient EET in LHCs it is clear 

that firstly, it is important to reduce computational and time demands to more easily study 
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multiple systems, whilst being cognizant of the potential limitations of any approximations. 

Next, the local protein environment likely has little effect on exciton dynamics and therefore 

has no role in efficient EET. Most importantly, it is the static disorder that determine dynamics 

however as this property appears to be relatively consistent across LHCs regardless of internal 

chromophore arrangement, it is likely that EET efficiency in biological light-harvesting is 

influenced by the positions of the LHCs in relation to one another and the reaction centre. 

6.3  Outlook and future work 

There are a number of pursuable ideas for future work for the topics presented here. The 

implementation of the force matching procedure could be improved to be more efficient by 

utilising a central difference in the gradient calculation to reduce errors and using a 

quadratically convergent second order optimisation method such as a Newton-CG method to 

reduce the required number of iterations. The procedure could be further improved by 

introducing more automation. The algorithm for assigning atom-type based on structural 

similarity could be implemented automatically rather than being done by hand. Additionally, 

the procedure could also monitor the error in forces per atom and suggest reassignment or 

automatically reassign atom types in cases where there remains a large error. 

 In order to solidify the conclusion that the protein environment is not specialised in some 

way to promote efficient EET, it would be beneficial to examine the spectral densities of rigid 

chromophores of more PPCs. It could also be interesting to repeat the work employing a 

QM/MM scheme which includes polarizability of the protein environment, as this can have 

significant effects in processes like EET.  It would also be interesting to expand the sample 

size of the work undertaken in chapter 5; utilising a similar approach to investigate multi-

chromophore systems, i.e. those containing more than one type of chromophore or also 

containing carotenoids, to determine if they have a similar dependence on static disorder. The 

most important next step would be to examine dynamics of the LHC aggregates, possibly also 

including the reaction centre.   
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8 Appendices 

Chapter 3 Appendix 

 

Figure A3 Atom types for chromophores: a) BCL b) CLA c) CLB 

a) 

b) 

c) 
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Fig. A3 depicts the structures for the three chromophores examined in chapter 3 and their 

corresponding atom type assignments for definition of FF parameters. 
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Chapter 4 Appendix 

 

 

Figure A4.2 Correlation between excitation energies of different functionals  

 

Figure A4.1 Correlation between 3-21G* and 6-31G* excitation energies 
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Fig. A4.1 depicts the correlation (0.9773) between excitation energies of BCL computed using 

the 6-31G* basis set and 3-21G* basis set. Similarly, Fig. A4.2 depicts correlations for excited 

states computed with different functionals (all with the 6-31G* basis set). The following 

tables (A4.1-3) contain the results of the interaction analysis detailed in chapter 4, section 

4.4.2. For each protein (FMO, WSCP-a, WSCP-b) the table contains the residues top 10 r 

values for each chromophore. The σE is also reported, as well as the labels of the interacting 

atoms, the classification of the interacting residue (solvent, S, protein, P or chromophore, C) 

and where available the distance between the interacting atoms, d, and its fluctuation σd. 

Table A4.1 BCL interactions 

Residue r σE (eV) Interaction Class d (Å) σd (Å) 

BCL 367 

SOL19499    0.395 3.29E-04 HW2-O1A S 1.68 0.15 

THR162      0.328 1.10E-04 HG1-CMA P 3.66 0.41 

SOL10024    0.314 9.65E-05 HW-OG S 2.47 0.58 

SER221      0.291 1.37E-04 HG-OBB P 1.83 0.24 

HIS111      0.279 2.24E-04 NE2-MG P 2.09 0.08 

SOL49632    0.249 1.26E-05 HWs-OWs S - - 

SOL32676    0.243 4.39E-05 HW-OD1/O/OW S - - 

SOL25062    0.237 3.44E-05 HWs-OWs S - - 

ASN206      0.237 9.16E-06 OD1-HW+ND2H-OW P - - 

SOL38635    0.236 1.85E-05 OW-HN/HWs S - - 

BCL 368 

SOL20272 0.373 2.89E-04 OW-MG S 1.95 0.05 

SOL16680 0.335 3.21E-04 HW1-ND S 2.19 0.28 

SER73 0.318 2.17E-04 HG-OBB P 1.77 0.19 

BCL367 0.234 1.47E-04 - C - - 

SOL20275 0.221 2.36E-04 HWs-CHB S 1.62 0.16 

BCL372 0.218 1.46E-05 - C - - 

SOL37375 0.218 3.15E-05 HWs-OWs S - - 

MET103 0.212 2.00E-05 O-HN P 2.02 0.16 

SOL39517 0.206 1.45E-04 HWs-O1D/O1A S - - 

LYS81 0.202 8.97E-05 O-HWs P - - 
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BCL 369 

SOL19513 0.369 1.82E-04 HW-ND S 2.76 0.52 

SOL19542 0.353 4.84E-04 OW-MG S 2.19 0.14 

BCL370 0.248 9.24E-05 - C - - 

PHE307 0.236 4.55E-05 Phenyl-CMC P - - 

GLU101 0.227 2.18E-06 O-HWs P - - 

SOL19530 0.222 1.13E-04 HWs-OWs S - - 

SOL19558 0.220 2.38E-04 HWs-Os  S - - 

SOL51900 0.177 2.88E-05 HWs-ND S 2.63 0.55 

SOL14934 0.172 2.39E-05 OWs-HWs S - - 

HIS298 0.171 2.42E-04 NE2-MG P 2.12 0.09 

BCL 370 

SOL26496 0.485 4.18E-04 HW-NE2 S 2.75 0.51 

BCL371 0.410 1.84E-04 - C - - 

HIS290 0.243 2.32E-04 NE2-MG P 2.01 0.06 

PRO294 0.220 5.47E-05 HN-O  P 2.09 0.18 

TYR364 0.181 5.70E-06 HN-O + HH-OG   P - - 

ASP48 0.179 6.89E-06 ODs-HWs + HN-O P - - 

TYR16 0.172 1.37E-04 HH-OBB P 1.71 0.19 

VAL352 0.150 7.58E-05 O-HN P 2.09 0.16 

ASN289 0.146 2.44E-05 OWs-HWs P - - 

BCL373 0.141 3.27E-05 - C - - 

BCL 371 

SOL26411 0.306 1.87E-04 HW-OG S 2.30 0.50 

GLU255 0.288 2.46E-05 O-HN/HWs P - - 

PRO244 0.274 1.46E-04 O-HBB P 2.67 0.22 

LEU242 0.269 1.48E-04 O-MG P 1.99 0.09 

SER245 0.255 7.19E-05 O-HW P 1.95 0.18 

ARG96 0.250 1.23E-04 HHs-OWs P - - 

GLU85 0.237 3.85E-05 OEs -HWs P - - 

SOL49632 0.212 7.64E-05 HWs-OWs S - - 

LYS247 0.197 4.71E-05 O-HWs P - - 

BCL372 0.197 1.33E-04 -  C - - 

BCL 372 
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SOL26466 0.385 1.94E-04 HWs-OWs S - - 

HIS146 0.375 2.83E-04 NE2-MG P 2.06 0.08 

TRP184 0.278 1.27E-04 HE1-OBB P 1.97 0.21 

SOL24901 0.228 9.02E-06 HWs-OWs S - - 

LYS56 0.203 6.53E-06 HWs-OWs S - - 

SER201 0.197 2.97E-05 HN-Os + HG1-OWs P - - 

ARG199 0.186 2.18E-05 HHs-OWs/ODs P - - 

PHE225 0.185 5.60E-05 O-HN P 1.92 0.13 

LYS247 0.181 2.04E-05 HZ-OD1  P 1.82 0.25 

SER98 0.176 7.93E-05 HG1/HN-O P - - 

BCL 373 

SOL27138 0.398 2.66E-04 HW-OE1 S 1.82 0.14 

SOL27010 0.324 7.49E-05 HWs-OWs S - - 

BCL369 0.318 1.92E-04 - C - - 

SOL20275 0.311 5.82E-05 HWs-OWs S - - 

SOL19499 0.280 1.29E-04 HWs-OWs S - - 

ALA189 0.270 6.18E-05 O-NH  P - - 

SOL19526 0.249 1.83E-05 HWs-OWs S - - 

HIS297 0.238 1.36E-04 ND1-MG P 2.15 0.07 

SOL20286 0.236 4.12E-05 HWs-OWs S - - 

SOL26450 0.225 1.22E-04 HW-OBB S 1.84 0.24 

BCL 400 

SOL32299    0.424 3.28E-04 HW-CHB S 2.11 0.45 

SOL34010    0.301 1.61E-04 HW-HMB S 3.56 0.61 

SOL20922    0.286 3.84E-04 HWs-OWs S - - 

TYR124      0.217 1.33E-04 O-MG P 1.98 0.08 

SOL5540     0.212 1.13E-04 HWs-OWs S - - 

SOL39842    0.210 3.37E-05 HWs-OWs S - - 

SOL20307    0.194 3.34E-05 HWs-OD1/OWs S - - 

THR166      0.188 1.06E-04 HG1/HN-O  P - - 

SOL39022    0.187 4.16E-05 HWs-OWs S - - 

SOL8492     0.180 3.36E-05 HWs-OWs S - - 
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Table A4.2 CLA interactions 

Residue r σE (eV) Interaction Class d (Å) σd (Å) 

CLA 1 

ALA34     0.539 1.95E-04 O-HE1 P 1.84 0.13 

ALA33     0.459 1.17E-04 O-HN P 1.89 0.14 

SOL10184  0.340 1.46E-04 HWs-OWs S - - 

SOL17152  0.237 4.46E-05 HWs-OWs S - - 

TRP151    0.229 7.52E-05 O-HWs + HE1-O P - - 

GLY153    0.228 1.12E-06 O-HWs + HN-OWs P - - 

GLU85     0.184 3.47E-06 OEs-HWs + HN-OWs P - - 

SOL23264  0.178 2.97E-05 HWs-OWs S - - 

ASN91     0.177 1.21E-05 O/OD1-HWs + Hs-OWs P - - 

PHE40     0.168 4.03E-05 pi-stacking P - - 

CLA 2 

ALA33     0.452 9.99E-05 HN-O P 2.04 0.19 

SOL21499  0.434 6.29E-05 HWs-O S - - 

ASN36     0.425 2.75E-05 O -HWs + H-OWs P - - 

PRO39     0.424 1.68E-05 O-HW P 2.11 0.53 

SOL33283  0.420 1.63E-05 HWs-O S - - 

SOL28386  0.419 1.55E-05 HWs-OWs S - - 

PHE40     0.394 5.08E-05 O-HWs P - - 

SOL36758  0.390 1.25E-05 HWs-OWs S - - 

SOL23262  0.364 8.33E-05 HWs-OE1 S - - 

SOL35595  0.352 1.32E-05 HWs-OWs S - - 

CLA 3 

ALA34     0.612 2.06E-04 O-HE1 P 1.93 0.17 

ALA33     0.516 1.15E-04 O-HN P 1.91 0.15 

SOL20477  0.256 4.28E-06 HWs-OWs S - - 

TRP151    0.242 1.31E-06 HE1-O + HN-OWs P - - 

GLN53     0.242 1.43E-04 OBD-HE21 P 1.80 0.34 

SOL6708   0.219 1.29E-04 HWs-OWs S - - 

SOL21943  0.217 4.15E-05 HWs-OWs S - - 

SOL12421  0.208 9.50E-06 HWs-OWs S - - 

SOL22197  0.200 1.07E-04 HW-O1D S 1.79 0.19 



110 

 

PRO88     0.193 2.95E-05 O-HW P - - 

CLA 4 

THR48     0.447 1.28E-04 HG1-OBD P 2.25 0.42 

SOL23254  0.361 4.54E-04 HWs-OWs S - - 

GLN47     0.268 5.62E-05 O-HBA2 P 3.25 0.31 

SOL32487  0.211 1.35E-04 HWs-OWs S - - 

ALA33     0.208 1.07E-04 HN-OWs P - - 

SOL22243  0.199 5.34E-05 HWs-OE1/O S - - 

GLY28     0.192 1.32E-05 HN-OWs + O-HE21 P - - 

SOL16127  0.174 7.60E-06 HWs-OWs S - - 

SOL19783  0.158 1.71E-05 HWs-OWs S - - 

ALA34     0.156 1.79E-04 O-HE1 P 1.86 0.12 
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Table A4.2 CLB interactions 

Residue r σE (eV) Interaction Class d (Å) σd (Å) 

CLB 1 

ALA33     0.430 1.31E-04 HN-O P 2.04 0.16 

ALA34     0.403 2.06E-04 O-HE1 P 1.86 0.12 

SOL16413  0.359 2.29E-04 HW-CAB S 2.44 0.60 

GLY153    0.293 1.70E-05 O-HWs P - - 

LEU152    0.283 1.60E-05 O-HWs P - - 

PRO32     0.264 1.36E-04 O-Mg P 1.96 0.07 

SOL17261  0.236 8.35E-05 HWs-OBD S 2.12 0.50 

SOL23877  0.185 5.70E-06 HWs-OWs S - - 

THR48     0.172 9.37E-05 HN/HG1-O P - - 

SOL8351   0.170 5.62E-06 HWs-OWs S - - 

CLB 2 

SOL13389  0.369 2.04E-04 HW-C2D S 1.98 0.21 

SOL2821   0.304 4.56E-05 HWs-OWs S - - 

ALA33     0.296 1.21E-04 HN-O P 1.99 0.16 

ALA34     0.286 1.92E-04 O-HE1 P 1.96 0.16 

GLN53     0.286 1.12E-04 O-HG1 + OE1-HWs  P - - 

THR48     0.264 1.11E-04 HG1/HN-O + O-HWs  P - - 

SOL381    0.240 1.99E-05 HWs-OWs S - - 

CYS90     0.189 2.14E-05 O-HWs P - - 

LEU49     0.188 1.76E-05 HN-O1A P 1.78 0.16 

PRO32     0.183 1.27E-04 O-Mg P 1.91 0.07 

CLB 3 

GLU85     0.282 1.64E-05 O-HW P 5.89 0.97 

SOL6715   0.271 2.55E-05 HWs-O/OWs S - - 

SOL38322  0.270 4.97E-05 HW-OAC S 1.75 0.23 

LEU152    0.265 4.26E-05 O-HWs P - - 

GLU85     0.254 1.95E-05 OEs-HWs + HN-OWs  P - - 

ALA154    0.251 4.88E-05 O-HWs + HN-O P - - 

SOL31151  0.236 1.79E-05 HWs-OWs P - - 

CHL4      0.234 9.36E-05 - C - - 

CYS90     0.227 1.49E-06 HN-OWs + O-HWs P - - 
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SOL4743   0.225 5.52E-05 OWs-HWs  S - - 

CLB 4 

SOL1780   0.582 6.21E-04 HWs-OWs S - - 

SOL4246   0.347 3.46E-05 HWs-OWs S - - 

LEU152    0.336 1.57E-05 O-HWs P - - 

LEU152    0.336 1.57E-05 O-HWs + HN-O P - - 

ASN36     0.292 1.19E-05 Hs-OWs + OD1-HWs  P - - 

LEU93     0.288 1.14E-05 O-HWs P - - 

SOL6448   0.283 8.03E-06 HWs-OWs S - - 

SOL36798  0.242 9.27E-06 HWs-OWs  S - - 

SOL2002   0.242 1.34E-05 HWs-OWs S - - 

PRO155    0.241 2.67E-05 O-HG1 + O-HN P - - 

 

Fig. A4.3 depicts the distribution of the interaction types reported in Tables A4.1-3 and Fig. 

A4.4 demonstrates the results of the coulomb interaction energy FT analysis outlined in 

chapter 4, section 4.4.2. Finally, Fig. A4.5 summarises the environmental analysis described 

in section 4.4.3. 

 

 

Figure A4.3 Distribution of all the correlation coefficients (reported in Tables A4.1-3) for 

chromophore interactions with surroundings: chromophore-protein (blue), chromophore-

solvent (red) and chromophore-chromophore (purple). 
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Figure A4.4 FT of coulombic interaction energies of most correlated residues for BCL 370 

and CLA 4. 
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Figure A4.5 Correlation between the fraction of water volume in a 10 Å radius from the 

chromophore and the fluctuation of the excitation energy along the MD trajectory. 


