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Combining and coupling both magnetic and electric properties in one single phase multiferroic 

material has attracted high interest recently to enable a broad range of novel devices and 

applications. To evaluate one potential route towards new multiferroics, we have studied 0.5% 

Fe doped BaTiO3 single crystals and measured the ferroelectric, magnetic, and multiferroic 

properties. X-ray absorption spectroscopy shows the presence of Fe3+, and magnetic 

measurements confirmed that this has a significant impact on the magnetic properties. Doping of 

iron introduces paramagnetism from lone iron atoms as well as what appears to be a weak 

ferromagnetism. Multiferroicity and magnetoelectric (ME) coupling was observed in the 

polarization-electric field hysteresis loops with applied magnetic field, yet there was no direct 

evidence that ME coupling persists when the sample was in the defect dipole-aligned state.  

 

  

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
02

86
3



 2 

Introduction 

BaTiO3 is well known as one of prototypical examples of materials demonstrating 

ferroelectricity that has a high dielectric constant, low loss tangent and high piezoelectric 

coefficient (d33 ~ 420 pC/N) at room temperature. Interest in doped BaTiO3 (BTO) single 

crystals has increased in the past decade after seminal results showing that (001) cut and poled 

crystals doped at the Ti4+ site with either Fe3+ or Mn3+ were shown to have large and recoverable 

electrostrain of up to 0.8%, significantly higher than the approximately 0.05% which can be 

obtained reversibly from undoped BTO crystals.1,2 The improvement in strain is thought to be 

due to the alignment of defects (i.e. O2- vacancies) with the crystallographic symmetry in the 

ferroelectric state when the material is aged through application of thermal treatments. This 

results in the ferroelectric domains favoring alignment with the defect dipoles which provides a 

restoring force, where recovery of the original ferroelectric domain pattern after non-180o 

switching results allows for the high strains generated by this reversible domain motion.3–5  

There is also the possibility that the incorporation of a magnetic ion could give rise to 

magnetization in these samples and possibly be a new route to creating novel single phase 

multiferroic materials. Multiferroics demonstrate simultaneous ferroelectric and ferromagnetic 

properties with coupling between the magnetic and polar order parameters, paving the way for 

novel memory, sensor, and spintronics devices.6,7 The possibility of coupling the large strain in 

these dilutely doped crystals to any magnetic properties remains as yet unexplored. Previous 

studies of iron doped BTO were focused on very large concentrations, above which the range 

where the defect dipole behavior is typically observed (x < 2%).8–11 Room temperature 

ferromagnetism has previously only been observed for 5% Fe concentrations or higher in BaTiO3 

single crystals,8 but other studies on nanostructures or bulk materials have shown 

ferromagnetism in concentrations as low as 1% molar concentration of Fe9. In the ceramic 
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samples, oxygen vacancies were theorized to facilitate a superexchange interaction between 

nearest neighbor Fe3+ ions. But overall it is still controversial to attribute any ferromagnetic (FM) 

loops to the doped BTO and not secondary phases or other factors. Iron doping is also known to 

promote the formation of a hexagonal P63/mmc phase, and this may be the result of some 

discrepancies between paramagnetism and ferromagnetism observed for dilutely doped samples 

in the literature.12–14   

However, very few studies on the multiferroic properties of these materials are present in 

the literature, in part due to the decrease in polarization and subsequent disappearance of the 

ferroelectric ordering with increasing amounts of the transition metal dopant. The only work on 

Mn doped BTO with similar dopant concentrations (0.5 – 2%) to have looked at the 

multiferroicity have not looked at the coupling15 or have found the magnetism and 

ferroelectricity were decoupled16. It is therefore the goal of this work to both evaluate the 

magnetism that is present in 0.5% Fe doped BTO single crystals, as well as any potential of the 

material to be used as a single phase multiferroic.  

Experimental Techniques 

(001) oriented and poled BaTi0.995Fe0.005O3 (BTFO) and undoped BTO crystals were 

provided by Ceracomp Co. Ltd. using a solid-state single crystal growth (SSCG) method. This 

method is described in more detail in Ref. 17. The as-received samples were aged at 80oC in air 

for 24 hours to allow for diffusion and defect dipole formation. Ferroelectric and piezoelectric 

testing was done with a home-built Sawyer-Tower system. X-ray absorption spectroscopy was 

carried out on the XMaS beamline (BM28), at the European Synchrotron Radiation Facility, in 

Grenoble. Magnetic measurements as a function of temperature and magnetic field were 

performed using a vibrating sample magnetometer (VersaLab, Quantum Design) with operating 
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 4 

temperature 50 K – 400 K and magnetic fields up to 3 T (30,000 Oe). Using the VersaLab, 

connections were also made to a LCR meter for magnetocapacitance measurements. Sample 

crystallography was calculated using Rietveld refinement (GSAS II)18 from diffraction data 

generated from a crushed sample set spinning in the ID22, High Resolution Powder Diffraction 

beamline, ESRF. Ferroelectric polarization/electric field measurements (PE Loops) were carried 

out at the XMaS beamline, ESRF, using a capability recently developed for in situ and in 

operando x-ray diffraction measurements [see refs. 19,20]. The system can be used independently 

to acquire ferroelectric polarisation with electric field as a function of temperature and applied 

magnetic field, details of which may be found at www.xmas.ac.uk [ref. 21]. A static magnetic 

field of up to 3T was applied in the direction of polarization and counter to that direction and the 

resulting PE loop was measured to discern any differences in ferroelectric behavior as a function 

of applied external magnetic field.  

Results and Discussion 

After aging, the ferroelectric and piezoelectric properties of the sample were measured. A 

pinched hysteresis loop and recoverable large strain were observed, consistent with previous 

reports. However, it is important to note that after several electric field cycles, the pinching 

disappeared and the strain significantly decreased. Overall, with repeated application of the 

electric field, the ferroelectric properties moved towards those of an undoped BTO crystal. This 

suggests that the electric field allows for migration of the oxygen vacancies in the sample and 

therefore the defect dipole alignment to the ferroelectric dipole moments is not maintained. It 

was also found that the original behavior shown in Figure 1 can always be recovered through the 

completion of another aging process, so the material may be re-set. Further investigation into this 
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phenomenon is currently ongoing, but it is important to note when discussing the magnetic and 

multiferroic properties that the sample is expected to be very sensitive to the prehistory.  

The current samples were confirmed to be fully tetragonal (P4mm) by room temperature 

powder x-ray diffraction as shown in Supplemental Information Figure S1(a), with Rietveld 

refined parameters: Rw=20.0%, a=b= 3.99499Å, c=4.03634Å. No secondary phase of ferrite Fe 

(Imax=(110) at 2=10.023º) or austenite Fe (Imax=(111) at 2=9.866º) was observed at 

experimental detection levels of ~ about 0.5% based on the detection of lowest intensity BTO 

reflection (900).  No preferred orientation in the tetragonality was observed in the diffraction 

data, as expected from crushed material and set spinning in the x-ray beam.  The incorporation of 

0.5at% Fe on either the Ba site or the Ti site does not significantly affect or impact the Rietveld 

refinement of the x-ray diffraction data. X-ray absorption spectroscopy on the BTFO sample 

confirms the presence of iron as shown in Figure 2, and the position of the iron edge as 

compared to several reference samples suggests that the iron is in the 3+ oxidation state (Fe3+). 

This is as expected based on previous reports and is consistent with the charge deficiency that 

would allow for the formation of oxygen vacancies and defect dipoles. While the pre-edge 

feature is not as sharp as the references, it is strongly dependent on site symmetry and may 

actually indicate a non-centrosymmetric position which could suggest a local polar moment 

extends to the Fe3+ sites as well.22 

Zero field cooled (ZFC) and field cooled (FC) magnetization versus temperature data are 

plotted in Figure 3(a) and (b) for the BTO and BTFO crystals, respectively. The BTO sample 

shows predominantly diamagnetism, with the exception of a paramagnetic contribution that 

becomes dominant at low temperatures. This is consistent with what would be expected for a 

bulk BTO sample.23 However, with 1 T applied magnetic field, two distinct anomalies appear in 
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 6 

the nominally undoped BTO crystal at 111 K and 252 K which do not correspond to any of the 

structural phase transitions of BTO. Instead, these most likely correspond to very small amounts 

of iron oxide impurity phases, corresponding to the Verwey transition in Fe3O4 and the 

antiferromagnetic (AFM) to canted AFM transition in Fe2O3, respectively. In fact, processing of 

Fe2O3 at high temperatures can lead to the mixture of these phases and has also been shown to 

slightly decrease the Verwey transition temperature as observed here.24 The presence of these 

phases is also most likely what causes the split of the ZFC and FC curves for the 0.5 T data as 

well. Although iron impurities in nominally undoped samples have previously been reported,1 it 

should be noted that the present undoped crystal does not show any defect dipole behavior, 

which would also be consistent with the iron forming as a small amount of secondary phase. 

Beyond this, though, the diamagnetic response of BTO itself is the predominant contribution to 

the signal.   

In contrast to the curves for undoped BTO, the BTFO sample does not show any 

magnetic anomalies related to iron oxide impurity phases as shown in Figure 3(b). This is 

consistent with no detection of secondary phases in the powder diffraction data [Supplemental 

Fig. S1(b)], and in fact magnetic measurements are also highly sensitive to the presence of any 

magnetic impurity phases so the absence of the signatures observed in the undoped sample 

confirm that the iron is incorporated into the BTO lattice. Although there is a slight diamagnetic 

contribution seen in the negative magnetization values at higher temperatures with 1 T applied 

field, the dominating contribution to the magnetic signal is paramagnetic. The absence of any 

divergence of the ZFC and FC curves also disallows for superparamagnetic particle clusters in 

the sample, again suggesting the absence of any impurity phase in the BTFO crystal. The 

paramagnetism seems likely to arise from the interactions of distant iron ions dispersed in the 
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 7 

matrix in this dilutely doped sample. This is consistent with a previous report of BaTiO3 doped 

with Co, Fe, and Cr (between 1.5% and 3.5%) showing paramagnetism at all temperatures 

measured that was also thought to originate from the transition metal ions.25 No anomalies are 

present in the derivative of the M vs. T data that would otherwise suggest magnetic ordering 

within the range of temperatures measured.  

Magnetization versus magnetic field data were also recorded at multiple temperatures and 

selected curves are plotted in Figure 4(a). Here it is instructive to note that even though there is 

no evidence of ferromagnetism in the M vs. T data that all of the curves have an S-shape with 

some small opening of the hysteresis loop. This is the case for both the BTO and the BTFO 

sample, and could be consistent with other reports of surface oxygen or oxygen vacancies and 

other defects in the lattice.26,27 Yet once the paramagnetic or diamagnetic background is 

subtracted from these curves, we can see that there is no temperature dependence evident in the 

data for undoped BTO whereas there is a temperature evolution of the saturation magnetization 

(MS) that indicates a weak ferromagnetic ordering in the BTFO sample as shown in Figure 4(b). 

Extrapolating the change in MS with temperature to reach the temperature-independent value of 

undoped BTO, this would suggest a Curie temperature (TC) of 550 – 600  K assuming a power 

law dependence [𝑀 ∝ (𝑇𝐶 − 𝑇)𝛽] with the critical exponent β~0.5.28,29 This could explain why 

no evidence of this transition is observed in the magnetization versus temperature data, as we did 

not go up above TC during the measurements which would show the best evidence of this weak 

FM moment.  

The values of MS are extremely low (~0.01 B/Fe), suggesting any long-range order is 

very weak. In that respect the magnetism here is very different from the very high moments 

observed in the dilute magnetic semiconductors,30,31 so any FM interactions in the present sample 
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 8 

are most likely not due to the formation of impurity bands or magnetic polarons as have been 

proposed for those systems as well as a 0.5% Mn doped BTO that also showed orders of 

magnitude higher magnetization that was explained through bound polarons15. The magnetic 

polaron model accounts for the localization of the electron associated with a charged defect 

complex, in this present case the singly charged 𝐹𝑒𝑇𝑖
′ −  𝑉𝑂

∙∙ . The BTFO crystal would be 

expected to have defect concentrations below that allowing for double exchange mitigated 

through oxygen vacancies, and appears to be close to or below the critical doping level for 

significant overlap of hydrogenic orbitals that would result in percolation of strong long range 

ordering. It appears most likely that most of the Fe3+ are isolated and contribute Pauli 

paramagnetism, but there is the formation of some long range ordering potentially through the 

formation of magnetic polarons. Future work on samples with higher dopant concentration is 

currently planned to look for stronger ferromagnetic ordering while maintaining defect dipole 

behavior. 

Lastly, as there is some evidence of a weak FM ordering, it is important to evaluate the 

multiferroic coupling. Capacitance versus temperature measurements with and without applied 

magnetic fields were made directly after the sample was re-aged. It should be noted that the 

capacitance magnitude includes stray capacitance and is not the absolute value of the samples. In 

addition, ferroelectric hysteresis loops were measured with an applied magnetic field, and both 

these results are shown in Figure 5. In the magnetocapacitance measurements, even at fields of 

up to 3 T there is no difference in capacitance with temperature. However, there is a statistically 

significant change in the ferroelectric response with applied magnetic field, notably in the 

material’s electric coercive field EC which seems to contradict the capacitance measurements. It’s 

important to note that there is no pinching in the ferroelectric hysteresis loop though, suggesting 
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 9 

that this sample has been de-aged leaving no net defect dipole alignment and therefore no longer 

any enhanced piezoelectricity. However, for the magnetocapacitance measurement, the sample 

was aged immediately prior to measurement and hence left in a stable polarization state. The two 

measurements differ in another important way: the ferroelectric measurement is a large field 

measurement whilst the capacitance measurement is that for a minor loop (1 V applied over 1 

mm), and thus magnetocapacitance measurements without a bias electric field near EC is not 

likely to capture any evidence of multiferroicity. Near EC, the magnetoelectric (ME) coupling 

coefficient α = dP/dH (the derivative of polarization P with respect to applied magnetic field H) 

is within the range of other single phase multiferroic materials with a maximum value of ME = 

2.3 x 10-9 s/m. However, while non-zero, ME is considerably smaller at zero electric field. We 

must also consider the possibility that the presence of defect dipoles is incompatible with 

multiferroic behavior in this sample. To the best of our knowledge, there are no reports showing 

the coexistence of these phenomena and the only previous reports on multiferroicity do not 

measure or they explicitly state that there is zero magnetoelectric coupling.15,16 Further study of 

these crystals with defect dipole alignment are necessary to evaluate if we would be able to tune 

the extraordinarily high 0.8% strains with a remote magnetic field. 

Conclusion 

 In summary, undoped BaTiO3 and 0.5% Fe doped BaTiO3 single crystals were aged and 

the ferroelectric, magnetic, and multiferroic properties measured. After aging, pinched electric 

hysteresis loops were observed as well as large strains up to 0.8%. The introduction of Fe3+ as 

confirmed by x-ray absorption spectroscopy had a significant impact on the magnetic properties, 

introducing paramagnetism from lone iron spins as well as what appears to be a weak 

ferromagnetism. Although evidence of multiferroicity and magnetoelectric coupling was 
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 10 

observed in the PE loops with applied magnetic field, there is not yet direct evidence that the ME 

nature can coexist with the defect dipole-aligned aged state of the crystal.  

Supplementary Material 

See supplementary material for the powder x-ray diffraction and Rietveld refinement of a 

crushed iron doped BaTiO3 sample. 
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Figure Captions: 

Figure 1. (a) Polarization and (b) strain vs. electric field for the doped BTO crystal.  

Figure 2. X-ray absorption spectra showing the normalized absorbance of the Fe doped BTO 

crystal as compared to reference samples.  

Figure 3. Zero field cooled and field cooled magnetization vs. temperature curves for (a) 

undoped BTO crystal and (b) 0.5% Fe doped BTO crystal. The red and black curves are with 0.5 

T and 1 T applied field, respectively.  

Figure 4. Magnetization vs. magnetic field for doped and undoped BTO samples. (b) 

Temperature dependence of the corrected magnetization vs. magnetic field loops for the doped 

BTO sample (all paramagnetic or diamagnetic contributions subtracted). The inset shows the 

temperature dependence of the saturation magnetization, and the extrapolation to the Curie 

temperature.  

Figure 5. (a) Capacitance and tanδ vs. temperature and (b) polarization vs. electric field curves 

at 0 T and (±)3 T applied magnetic fields. The inset of part (b) shows the full hysteresis loop.  
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