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Abstract

Dynamic substructuring is a popular hybrid testing technique that mixes phys-

ical testing with numerical simulations. Research in this domain has mainly

focused so far on structures and decomposition strategies that result in asymp-

totically stable systems. However, several cases fall outside this family, with

either the physical or the numerical part being only marginally stable post-

decomposition. A typical example of such scenario is when a mass is split

between physical and numerical parts. For generic structures with marginally

stable subsystems, current techniques often fail to deliver satisfactory perfor-

mance or require modifications to the original structure. In this paper, analyt-

ical results - valid for generic structures - are derived to highlight the potential

shortcomings of current techniques and to motivate the proposal for a novel

control architecture to enable dynamic substructuring with marginally stable

subsystems. By selecting a suitable set of signals for control design and by

augmenting the control strategy via a local controller for the marginally stable

subsystem, the proposed method allows accurate hybrid testing without relying

on the modifications of the original structure that classical approaches requires.

This technique is suitable for all of the mass split structures, and indeed for all

marginally stable structures, which means that the results are applicable to a

wide range of hybrid testing problems. A simulated benchmark problem of hy-
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brid testing for vibrating structures is included to demonstrate the effectiveness

of the proposed technique.

Keywords: Dynamically Substructured Systems, Hybrid testing, Marginal

Stability, Mass split, Vibration.

1. Introduction

Hybrid testing and real-time hybrid simulation are popular approaches to anal-

yse the dynamics of complex structures without having to perform full scale

scale physical testing, and to explore vibration control strategies for such struc-

tures [1, 2]. These techniques can be applied to the verification of building5

structure design [3] and the verification of control effect on the rail vehicle [4],

just to cite a few examples. A comprehensive guidance for the application of

such techniques is also provided in [5]. In this paper, the focus is on dynamically

substructured systems (DSS), a family of hybrid testing approaches that com-

bines the advantages of physical experiments and of numerical simulations. The10

basic approach is illustrated in Figure 1, where an original structure is split into

a physical system coupled with a subsystem that is numerically simulated. In

order for the decomposed structure to behave as the original structure, kinetic

(displacement) and dynamic (force) balances should be satisfied at the interface.

However, only one of these constraints can be exactly satisfied and closed-loop15

control needs to be used to satisfy the other, see discussion below. An actuator

is then placed at the interface in the physical system with the aim of making

the decomposed structure exhibit the same dynamical response of the original

structure.

Two main approaches have been proposed in the literature to achieve this20

goal: force control and position control. In the force control setting, the dis-

placement of the physical part at the interface is measured and transmitted as

an input to the numerical part (indicated by synchronised signal Ss in Figure 1).

The simulator used in the numerical part then evaluates the force at the inter-

face (numerical signal Sn), which is then compared with the measured physical25
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Figure 1: Typical DSS testing approach: the original whole structure shown on the left is

split into a numerical part and a physical part. The external excitation applied to the original

structure can either be applied to either the numerical or the physical part, according to the

chosen DSS decomposition strategy. A synchronisation signal is measured on the physical part

and transmitted as input to the numerically simulated subsystem. The goal of the controller is

to minimise the error between the numerical and the physical signals, so that the decomposed

DSS system (enclosed in the dashed box) behaves as the original whole structure.

force generated by the actuator located at the interface in the physical part

(physical signal Sp). A feedback controller is designed to minimise the synchro-

nisation error e between the simulated force and the actuator force, so that the

interface becomes transparent and the decomposed system behaves as the orig-

inal system. In the position control setting, the role of force and displacement30

is swapped. A mix of force and position control has also been proposed recently

for some specific structures such as bearings [6]. The detailed description of

substructuring techniques can be found to [7], whereas some real-world applica-

tions of this technique are described in the papers by Yamaguchi [8], Tu [9] and

Stoten [10], just to cite a few examples. Similar substructuring techniques have35

also been recently proposed to understand vibration and uncertainty propaga-

tion in complex structures in presence of limited knowledge about the structures

themselves [11, 12]. The possibility of using model updating to complete hybrid

testing has also been proposed to improve accuracy in these cases [13, 14]. The

presence of the actuator at the interface introduces additional challenges due40
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to the delay and internal dynamics associated with such actuator, which need

to be compensated for to obtain good synchronisation performance, see for ex-

ample [15, 16, 17, 18, 19], as well as [20] where eigenvalue analysis is used to

understand the instability caused by delay.

In the vast majority of the literature, the interface separating the physical45

system from the numerical system is placed across elements such as springs

and dampers connecting different masses. Placing the interface across a mass

poses additional challenges. In fact, when a mass is split between physical and

numerical systems, the action-reaction principle imposes that the physical and

numerical forces must be equal [21]. The only way to achieve synchronisation50

is therefore to generate the physical force via the interface actuator and then

use its opposite value as the reaction force at the interface in the simulated

subsystem. The selection of the synchronisation error then fall among displace-

ment, velocity or acceleration at the interface. Currently most of the approaches

explored in the literature focus on decomposition strategies resulting in stable55

subsystems, see for example [22, 23, 24]. Wallace [25], Tu [26], Barton [27]

and Terkovics [28] discussed the effect of marginally stable decomposition and

proposed methods to eliminate the synchronisation error, but these approaches

require a very accurate knowledge of the system dynamics to carefully tune the

actuator and the synchronising controller, thus severely limiting their applica-60

bility in real-world applications. Other approaches have been considered as well.

For example, in [29] the original structure was modified to make all subsystems

asymptotically stable after the decomposition, with the goal of obtaining better

results when synchronising displacements, even at the cost of not representing

the original behaviour exactly.65

In this paper, a comprehensive analysis of the dynamics of DSS in presence

of marginally stable subsystems, resulting for example by placing the interface

across a mass, is performed. This analysis is then used to propose a novel con-

trol architecture that overcomes the drawbacks described above for current DSS

control approaches. The proposed methodology significantly broadens the ap-70

plication of DSS to structures that are either out of range for current techniques
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or that would require very accurate (and hence unreliable) tuning. At odd with

most of the available literature, the proposed control architecture is suitable for

all of the marginally stable structures and not linked to specific experimental

implementations.75

The paper is organised as follows. A benchmark problem representing a

generic vibrating structure is described in section 2 to motivate the need for

alternative control schemes in presence of marginally stable subsystems. The

challenges of DSS control design in presence of marginally stable subsystems

are discussed in section 3, together with the proposed methodology to over-80

come those challenges. Numerical results are discussed in section 4 to support

the analyses and to demonstrate the effectiveness of the proposed approach to

control design. Finally, some conclusions and opportunities for future work are

discussed in section 5.

2. DSS for vibrating structures with mass-split85

In this section, the generic mass, spring and damper structure shown in Figure 2

is used as a benchmark system to motivate the need for alternative DSS control

schemes. Note that, despite its simplicity, such system can represent a whole

class of vibration testing problem, see for example [30, 26, 25] where this and

similar models has been used. Here, a disturbance d(t) is applied as displacement90

of the support at one end of the structure, whereas an external force F (t) may

be applied to the other end (such force will represent, for example, the action of

the actuator used in DSS substructuring in the following sections of the paper).

Note that when the interface is placed across a mass - a case scarcely studied in

the literature - the subsystem on the right is marginally stable. Therefore, such95

system can be used as a benchmark case to introduce the proposed approach.
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Figure 2: Schematics for a generic lumped parameter vibration problem.

2.1. Original dynamics

The equations of motion describing the behaviour of the original system shown

in Figure 2 (sometimes referred to as whole system in the DSS literature [9])

can be obtained by imposing force balance at each mass100 

mnÿn = −kn(yn − yn−1)− cn(ẏn − ẏn−1)− F i = n

...

miÿi = −ki(yi − yi−1)− ci(ẏi − ẏi−1)

+ ki+1(yi+1 − yi) + ci+1(ẏi+1 − ẏi) 2 ≤ i ≤ n− 1

m1ÿ1 = −k1(y1 − d)− c1(ẏ1 − ḋ) + k2(y2 − y1) + c2(ẏ2 − ẏ1) i = 1

(1)

where mi is the i-th mass, ci the i-th damping coefficient, ki is the i-th spring

stiffness, yi is the displacement of the i-th mass and the dot indicates time

derivative. The displacement of the support is indicated by y0 = d.

The equivalent form in the frequency domain can then be simply obtained

by applying the Laplace transform to (1), thus obtaining105

yi =
Numi(s)

Deni(s)
yi−1 −

Num1i(s)

Den1i(s)
F, 1 ≤ i ≤ n (2)

where Numi(s) and Deni(s) represent, respectively, the numerator and the de-

nominator of the transfer function between the position of the i-th and (i− 1)-th

masses. Similarly Num1i(s) and Den1i(s) refer to the transfer function between

the position of the i-th mass and the applied force F .

The linearity of the system dynamics (1) allows studying the influence of

the disturbance d and the force F independently, thanks to the superposition

principle. By exploring the fact that the system of Figure 2 is composed of a
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series of elementary mass-spring-damper subsystems, recursive expressions for

the transfer functions in (2) are derived. Such a recursive representation will

play a key role in the discussion and control development below. To this end,

the transfer function between i-th mass displacement yi and the disturbance d

is written as

yi
d

=
y1
d

y2
y1
. . .

yi
yi−1

=
Numd

i

Den1
=


Deni+1

∏i
1 (cis+ ki)

Den1
i ≤ n− 1∏i

1(cis+ ki)

Den1
i = n

(3)

where110

Deni =



mns
2 + cns+ kn i = n

[mn−1s
2 + (cn−1 + cn)s+ kn−1 + kn](mns

2 + cns+ kn)

− (cns+ kn)2 i = n− 1

...

[mis
2 + (ci + ci+1)s+ ki + ki+1]Deni+1

− (ci+1s+ ki+1)2Deni+2 i ≤ n− 2

(4)

A similar procedure is used to derive the transfer function between the i-th

displacements yi and the external force F , thus obtaining

yi
F

=
yn
F

yn−1
yn

. . .
yi
yi+1

= −Num
F
i

Den1n

=


−
∏n

i=2(cis+ ki)

Den1n
i = 1

−
Den1i−1

∏n
i+1 (ci+1s+ ki+1)

Den1n
1 < i ≤ n

(5)
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where

Den1i =



m1s
2 + (c1 + c2)s+ k1 + k2 i = 1

[m1s
2 + (c1 + c2)s+ k1 + k2]

× [m2s
2 + (c2 + c3)s+ k2 + k3]− (c2s+ k2)2 i = 2

[mis
2 + (ci + ci+1)s+ ki + ki+1]Den1i−1

− (cis+ ki)
2Den1i−2 2 < i ≤ n− 1

(mns
2 + cns+ kn)Den1n−1 − (cns+ kn)2Den1n−2 i = n

(6)

with Den1n being equal to Den1.

2.2. Structural decomposition with mass-split

Let us then consider the case where the structure shown in Figure 2 needs to be

tested via DSS, with the substructuring interface being placed across the l-th

mass. The resultant decomposed structure is shown in Figure 3 where S1 and

S2 are the internal forces after the decomposition and the following conditions

hold ml1 +ml2 = ml

ml1ml2 6= 0
(7)
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Figure 3: Schematics for DSS decomposition for a generic lumped parameter vibration prob-

lem, where the interface is placed across mass l.

Note that subsystem A has the same structure of the original system and the

same approach of (2), (3) and (5) can be used to describe its dynamics. On the

other hand, subsystem B is structurally different from the original system, with

the main difference being that neither the left nor the right end is connected to
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any fixed support via springs and dampers. The generalised equation of motion

for subsystem B can be derived by imposing force balance at each mass, thus

obtaining

yi
F ′

=
yl2
F ′

yl+1

yl2
. . .

yi
yi−1

=
NumF ′

i

Den′l
=



Den′i+1

Den′l
i = l

Den′i+1

∏i
l+1 (cis+ ki)

Den′l
l < i ≤ n− 1∏i

l+1(cis+ ki)

Den′l
i = n

(8)

where115

Den′i =



mns
2 + cns+ kn i = n

[mn−1s
2 + (cn−1 + cn)s+ kn−1 + kn]

× (mns
2 + cns+ kn)− (cns+ kn)2 i = n− 1

...

[mis
2 + (ci + ci+1)s+ ki + ki+1]Den′i+1

− (ci+1s+ ki+1)2Den′i+2 l + 1 ≤ i ≤ n− 2

(ml2s
2 + cl+1s+ kl+1)Den′l+1

− (cl+1s+ kl+1)2Den′l+2 i = l

(9)

and F ′ is the internal force applied at the interface (F ′ = S1 = S2 in traditional

DSS). Note that the recursive equation (9) is identical to equation (4) except

for the last denominator.

2.3. Stability analysis

The main goal of this section is to prove that the decomposed structure contains

a marginally stable part (subsystem B) which makes DSS testing very challeng-

ing for existing control techniques. This is proved by showing that Den′l has

some roots at the origin and there are no roots with positive real parts. Sim-

ilarly, a proof of asymptotic stability of subsystem A and the original system
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will be derived. Let us then start from the original system. Note that equation

(4) implies

Deni =

n∏
q=i

(mqs
2 + cqs+ kq) + bi i ≤ n− 1 (10)

where the first term on the left hand side is an explicit recursion, whereas bi120

collects all the remaining terms (see also equation (13) below).

An induction procedure can then be used to prove that equation (10) holds,

that bi always contains a common factor s2 for each value of the index i, and

that all coefficients in bi are unconditionally positive as the system parameters

(mi, ci and ki) are always greater than zero. To this end, let us start from125

Denn−1, which can be rearranged as

Denn−1 = (mn−1s
2 + cn−1s+ kn−1)(mns

2 + cns+ kn) + (cns+ kn)mns
2

=

n∏
q=n−1

(mqs
2 + cqs+ kq) + bn−1

(11)

thanks to equation (4). In this case bn−1 = (cns+ kn)mns
2, therefore Denn−1

clearly has a common factor s2 and all coefficients are unconditionally positive.

A similar procedure can be used to prove that equation (10) is satisfied when

i = n − 2 and bn−2 has a common factor s2, as well as that all coefficients130

are unconditionally positive. Let us then assume that equation (10) holds and

bi has a common factor s2 and unconditionally positive coefficients for generic

i = j + 1 and i = j. Equation (4) implies

10



Denj−1 = [mj−1s
2 + (cj−1 + cj)s+ kj−1 + kj ]Denj − (cjs+ kj)

2Denj+1

= (mj−1s
2 + cj−1s+ kj−1)Denj + (cjs+ kj)Denj

− (cjs+ kj)
2Denj+1

= (mj−1s
2 + cj−1s+ kj−1)Denj

+ (cjs+ kj)(mjs
2 + cjs+ kj)

n∏
q=j+1

(mqs
2 + cqs+ kq) + (cjs+ kj)bj

− (cjs+ kj)
2

 n∏
q=j+1

(mqs
2 + cqs+ kq) + bj+1


= (mj−1s

2 + cj−1s+ kj−1)Denj

+ (cjs+ kj)mjs
2

n∏
q=j+1

(mqs
2 + cqs+ kq)

+ (cjs+ kj)[bj − (cjs+ kj)bj+1]

=

n∏
q=j−1

(mqs
2 + cqs+ kq) + (mj−1s

2 + cj−1s+ kj−1)bj

+ (cjs+ kj)mjs
2

n∏
q=j+1

(mqs
2 + cqs+ kq)

+ (cjs+ kj)[bj − (cjs+ kj)bj+1]

=

n∏
q=j−1

(mqs
2 + cqs+ kq) + bj−1

(12)

where

bj−1 = (mj−1s
2 + cj−1s+ kj−1)bj + (cjs+ kj)mjs

2
n∏

q=j+1

(mqs
2 + cqs+ kq)

+ (cjs+ kj)[bj − (cjs+ kj)bj+1] (13)

Therefore bj−1 also has the common factor s2, completing the the proof that

bi always contains the term s2 for each value of i. The proof provided in the

appendix shows that a polynomial with a even maximum degree and all uncondi-

tionally positive coefficients can only have negative real roots, purely imaginary
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roots or conjugated complex roots with negative real parts. Therefore, it is nec-

essary to prove that all coefficients in (cjs+kj)[bj− (cjs+kj)bj+1] are uncondi-

tionally positive. Note that this condition is already satisfied for bn−2 and bn−3.

To use induction, let us then assume that bj−1 and (cjs+kj)[bj−(cjs+kj)bj+1]

are unconditionally positive. Then bj−2 can be expressed as

bj−2 = (mj−2s
2 + cj−2s+ kj−2)bj−1

+ (cj−1s+ kj−1)mj−1s
2

n∏
q=j

(mqs
2 + cqs+ kq)

+ (cj−1s+ kj−1)[bj−1 − (cj−1s+ kj−1)bj ]

= (mj−2s
2 + cj−2s+ kj−2)bj−1

+ (cj−1s+ kj−1)mj−1s
2

n∏
q=j

(mqs
2 + cqs+ kq)

+ (cj−1s+ kj−1){(mj−1s
2 + cj−1s+ kj−1)bj

+ (cjs+ kj)mjs
2

n∏
q=j+1

(mqs
2 + cqs+ kq)

+ (cjs+ kj)[bj − (cjs+ kj)bj+1]− (cj−1s+ kj−1)bj}

= (mj−2s
2 + cj−2s+ kj−2)bj−1

+ (cj−1s+ kj−1)mj−1s
2

n∏
q=j

(mqs
2 + cqs+ kq)

+ (cj−1s+ kj−1){mj−1s
2bj + (cjs+ kj)mjs

2
n∏

q=j+1

(mqs
2 + cqs+ kq)

+ (cjs+ kj)[bj − (cjs+ kj)bj+1]}

(14)

where

(cj−1s+ kj−1)[bj−1 − (cj−1s+ kj−1)bj ]

= (cj−1s+ kj−1){mj−1s
2bj + (cjs+ kj)mjs

2
n∏

q=j+1

(mqs
2 + cqs+ kq)

+ (cjs+ kj)[bj − (cjs+ kj)bj+1]} (15)
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Therefore, all the coefficients of (cj−1s + kj−1)[bj−1 − (cj−1s + kj−1)bj ] are

unconditionally positive, and this implies that the coefficients of bj−2 are un-135

conditionally positive as well. Therefore, by induction, all coefficients in bj

are unconditionally positive for each index j, as well as all coefficients in each

Denj . It can also be observed that the maximum degree for Denj is 2j, while

the maximum degree for bj is 2j − 1. Moreover, in Denj the coefficients of odd

degree terms are functions of the damping coefficients ci only. Therefore, the140

proof provided in the appendix can be exploited to show that Denj can only

admit negative real roots, complex roots with negative real parts and purely

imaginary roots. However, for Denj to admit purely imaginary roots, at least

some of the odd degree terms should be zero, but this would imply that some

of the damping coefficients ci are equal to zero, which is in conflict with the145

condition that all system parameters are greater than zero. Therefore, Denj

can only have negative real roots or conjugated complex roots with negative real

parts, indicating that the original system and subsystem A are asymptotically

stable.

A similar procedure can be applied to Den′l and equation (9) can be rear-

ranged as

Den′l = ml2s
2

n∏
q=l+1

(mqs
2 + cqs+ kq) + b′l (16)

where b′l also includes the common factor s2 and its coefficient are uncondition-150

ally positive as well. Therefore, all the coefficients in Den′l include the common

factor s2. After collecting the common factor s2, a procedure similar to the

one used for the original system can be exploited to prove that only negative

real roots or conjugated complex roots with negative real parts are included,

indicating that subsystem B is only marginally stable.155
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3. Control: challenges and proposed control ar-

chitecture

In this section the control challenges introduced by the marginal stability of

subsystem B are discussed and then a control architecture to address these

challenges is proposed.160

3.1. Time domain analysis

As proven in the previous section, the original system and subsystem A are

both asymptotically stable, whereas subsystem B is only marginally stable with

two poles in the origin. By using simple fraction decomposition, the transfer

functions in subsystem A and subsystem B can then be written as

yl1(s) =

(
A1(1)

s+ a1(1)
+

A1(2)

s+ a1(2)
+ · · ·+

A1(2l)

s+ a1(2l)

)
d

−
(

A2(1)

s+ a1(1)
+

A2(2)

s+ a1(2)
+ · · ·+

A2(2l)

s+ a1(2l)

)
F ′ (17)

yl2(s) =

(
B1

s
+
B2

s2
+

B3

s+ a2(3)
+ · · ·+

B2(n−l+1)

s+ a2[2(n−1+1)]

)
F ′ (18)

where a1(i) and a2(i) have negative real parts.

Therefore yl1(s) always shows a bounded response for bounded inputs, whereas

the first two terms in (18) imply that unbounded responses can be exhibited by

subsystem B even in presence of bounded inputs when B1 and B2 are not zero.

In the time domain, this implies that the response of subsystem B can include

an offset and a drift even in presence of constant or null inputs, i.e.

yl1 = y∗1(t) (19)

yl2 = y∗2(t) + C1t+ C2 (20)

where y∗1(t) and y∗2(t) are the components of the time domain response due to

the external excitation, and C1 and C2 are obtained from terms B1 and B2 in

equation (18).165

Note that yl2 exhibits a linear drift and become unbounded
(
when F ′ is bounded
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and stable or marginally stable (poles at the imaginary axis but not at the

origin)
)
, while y∗2(t) is always bounded. Moreover, when F ′ has poles at the

origin or unstable, yl2 may also exhibit nonlinear drifts. It should also be noted

that if F ′ is unbounded then yl1 will be unbounded and nonlinearities may also170

be included. It is also worth noting that velocities in subsystem B may drift,

except when F ′ is stable or has poles on the imaginary axis but not at the origin.

Accelerations in both subsystems are always bounded if F ′ is bounded, as well

as displacements and velocities in subsystem A.

175

3.2. Challenges using traditional control framework with

displacements as synchronised signal

As demonstrated in section 3.1, all displacements in subsystem B can drift

and become unbounded even for bounded inputs, hence it is dangerous to physi-

cally test subsystem B in practice, although this is possible in theory. Therefore,180

it is beneficial to have subsystem B tested numerically, to avoid potential dam-

age to the physical subsystem, unless when subsystem B only has single degree

of freedom and a carefully tuned controller is used [21, 26, 27]. Let us then con-

sider the case of position control with subsystem B being the numerical system.

In this situation, yl2 and its derivatives are the numerical signals, whereas yl1185

and its derivatives are the physical signals. The goal of the DSS synchronising

controller is then to make yl2 and its time derivatives equal to yl1 and its time

derivatives. A typical DSS control structure for this situation is then the one

shown in Figure 4, where the controller K(s) controls the internal force so that

the synchronisation error e(t) is minimised.190
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Figure 4: Traditional DSS feedback (plus optional feedforward) control scheme for mass-split

models.

In traditional DSS position control design [26] the synchronisation error

refers to positions at the interface, i.e. e(t) = yl1(t) − yl2(t). However, the

presence of a marginally stable system (subsystem B in this case) implies that

the error e can be unbounded due to the terms C1 and C2 in (18) even when

F ′ is bounded, and two cases need to be considered. In the first case, the195

controller K(s) is unable to eliminate the divergence of error e - i.e. it does not

contain a term s2 at the numerator - and therefore the internal force F ′ will

become unbounded as well, inducing drifts or divergence in both yl1 and yl2.

Clearly, in this case the DSS closed-loop performance is very different from the

original asymptotically stable structure, which always shows bounded response200

to bounded disturbances d. Moreover, unbounded yl1 and F ′ will lead to damage

in the experimental apparatus used in subsystem A. Another option is to design

the controller K(s) so that it is able to eliminate the divergence of e - i.e. it

contains a term s2 at the numerator - and therefore the internal force F ′ is

bounded. However, due to the term C1 in equation (20), yl2 can still be drifting205

unbounded. The same procedure can be used to show that the same issues arise

whenever position-related signals are used as controller inputs. Therefore, the

strategy of synchronising positions that is at the root of the most of DSS position

control strategies is not suitable in presence of a marginally stable subsystem,

16



such as the mass-split case considered here. In this situation, no control strategy210

can make the DSS closed-loop response equal to the original system response for

every combination of initial conditions and disturbances. The conclusion of the

analysis above also applies when the optional feedforward controller is added.

3.3. Proposed control architecture

In this section a methodology to overcome these issues and enable DSS215

testing of marginally stable structures is presented. The basic idea can be

summarised into two main points: i) use of velocity-related signals to calculate

the synchronisation error e(t) and ii) introduction of a local controller for the

marginally stable subsystem (or, whenever possible, adequate management of

initial conditions of the marginally stable subsystem).220

Let us then start by considering the velocities of subsystems A and B at the

interface. According to equation (20), such velocities can can be written as

ẏl1 = ẏ∗1(t)

ẏl2 = ẏ∗2(t) + C1

(21)

Note that, at odd with equation (20), all the quantities in (21) are bounded when

F ′ is stable or marginally stable (poles on the imaginary axis but not at the

origin), therefore the controller only needs to eliminate the offset C1 and ensure225

that the forced responses ẏ∗1 and ẏ∗2 converge towards each other, something

that can be easily achieved by having a common factor s in the numerator of

the feedback controller transfer function, for example. This is a much simpler

control design task, as the controller does not have to deal with potentially

unbounded drifts in neither F ′(t) nor e(t). Note also that a similar principle can230

be applied to synchronise the error between accelerations given that ÿl2 is stable,

and therefore the acceleration-based synchronisation is similar to standard DSS

or hybrid testing. However, using acceleration as synchronised signal means

that all signals including accelerations, velocities and displacements should be

monitored compared with the proposed velocity synchronisation, which only235

requires to monitor velocities and displacements. Therefore, the first proposed

modification to the control strategy depicted in Figure 4 is the replacement
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of position with velocity when calculating the synchronisation error e(t), i.e.

setting e(t) = ẏ1(t)− ẏ2(t).

After having replaced positions with velocities and having designed a con-

troller based on this synchronisation error, the DSS behaviour can still differ

from the original system response if C1 is still present due to non-zero initial

conditions in subsystem B. Indeed, the control logic for generating the force F ′

can be written as

F ′(s) = K(s)e(s) = K(s) (ẏl1(s)− ẏl2(s)) (22)

with ẏl1 and ẏl2 as in (21). Standard DSS controller design strategies will then240

derive K(s) so that the forced responses ẏ∗1 and ẏ∗2 converge to each other. In-

deed, techniques such as Linear Substructuring Control (LSC, see [10]) are based

on basically inverting the dynamics of the system to be controlled, therefore the

controller will have a factor s at the numerator, indicating that the constant C1

would be neglected. This implies that, if C1 is not zero then a drift in yl2 would245

still occur. In fact, controller K(s) is aimed at eliminating the error between

velocities, and any minor offset in the cancellation of the error may translate to

position drift on a long timescale.

One way to solve this issue is to use other signals such as the feedback force

[31], or the combination of displacements and their derivatives, as well as the250

disturbance, instead of the error e as the input for the feedback controller. How-

ever, this would require a radical change in the control design approach used for

these systems. Therefore, the methodology proposed here is based on relaxing

the constraint S1 = S2, i.e. on allowing the numerical force to be different from

the physical force generated by the actuator in the physical subsystem. Relax-255

ing this constraint makes subsystem A and subsystem B partially decoupled,

allowing the control and absence of potential drifts, as will be shown for the

benchmark example considered in the next section. The resulting control archi-

tecture is shown in Figure 5, where an additional local controller K2(s) is added

in the numerical subsystem to make it asymptotically stable. The action of260

such controller is then simply added to the output of the original velocity-based
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DSS controller. The numerator of K2(s) should be set as small as possible to

ensure minimal effect on subsystem B when e is equal to zero. Note that this

architecture leaves complete freedom to the designer in terms of choosing the

preferred control design for both the local stabilising controller and the overall265

DSS synchronisation controller, and does not require any accurate tuning to

achieve synchronisation.

Physical 

Part

Numerical 

Part

+

-

Numerical  Signal

Synchronisation Error

Physical Signal

Sp

Sn

Disturbance d

e

K(s)

K2(s)+
+

S1

S2

(optional)d

Figure 5: General DSS feedback (plus optional feedforward) control scheme with extra sta-

biliser for mass split models

Another, even simpler, alternative for solving the problem of potential drifts

is based on the observation that the occurrence of the problematic case (C1, C2) 6=

(0, 0) is due to the initial conditions of the numerical system not being zero.270

However, very often, setting values for such initial conditions is under complete

control of the user performing hybrid testing. Therefore, whenever possible, the

initial conditions of subsystem B should be set to zero so that the additional

local stabilising controller may become superfluous.
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Table 1: Numerical values of parameters used for simulation examples

Index Mass mi Stiffness ki Damping ci

1 500kg 1200N/m 300Ns/m

2 470kg 1100N/m 290Ns/m

3 440kg 1000N/m 280Ns/m

4 410kg 900N/m 270Ns/m

5 380kg 800N/m 260Ns/m

4. Numerical results275

In this section a five mass-spring-damper system is used to both highlight the

challenges related to DSS control of marginally stable structures and to demon-

strate the effectiveness of the control architecture proposed in section 3. The

simple nature of the structure enables the whole system to be numerically mod-

elled accurately, eliminating the requirement for experimental validation. In-280

vestigation of the effects of experimental uncertainties and potential model mis-

matches is beyond the scope of this paper. For the purpose of simulation, the

numerical values of the parameters are as listed in Table 1, corresponding to

natural frequencies fn = (0.0730, 0.1965, 0.3073, 0.3941, 0.4514)Hz and damp-

ing ratios ζ = (0.0618, 0.1775, 0.2795, 0.3587, 0.4006). The disturbance d(t) ap-285

plied to the structure is a chirp signal whose frequency increases from 0Hz to

0.5Hz over 45s and then is maintained constant for the rest of the simulation.

The amplitude of the disturbance is fixed to 1mm.

To perform hybrid testing, the third mass is split into two parts, as shown

in Figure 3, with m31 = 0.6m3 = 264kg

m32 = 0.4m3 = 176kg
(23)

Finally, the initial conditions of the masses across the interface are set to non-

zero values to highlight the problem associated with drifts. In particular, the
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initial conditions read 

y31 = 1mm

ẏ31 = 0.7mm/s

y32 = 0.5mm

ẏ32 = 0.2mm/s

(24)

At first, a traditional DSS control design based on the linear substructuring

controller (LSC) technique [30] is used to synchronise position at the interface,

in accordance with the control architecture of Figure 4 with e = ẏ31− ẏ32. LSC

is a feedforward plus feedback control scheme, where the control input reads

u(s) = kd(s)d(s) + ke(s)e(s). To design the feedforward gain kd(s) and the

feedback gain ke(s), the error and the actuator dynamics are written as

e(s) = Gd(s)d(s)−G2F
′(s) = Gd(s)d(s)−Guu(s) (25)

F ′(s) = S1(s) =
b

s+ a
u(s) (26)

For the purpose of the numerical example considered here, the actuator dy-

namics parameters were set to a = b = 10. The feedforward gain then reads

[30]

kd(s) =
Gd(s)

Gu(s)

=
4.1464s2(s+ 10)(s+ 4)(s+ 3.793)

(s2 + 0.05669s+ 0.2106)(s2 + 0.4385s+ 1.525)(s2 + 1.081s+ 3.74)

× (s+ 3.571)(s2 + 0.9769s+ 3.052)(s2 + 2.534s+ 8.311)

(s2 + 1.781s+ 6.162)(s2 + 2.262s+ 7.969)
(27)

whereas the feedback gain ke = 10 was determined using root loci methods.

Figure 6 shows that such controller is able to almost synchronise velocities,290

but a constant offset is present in Figure 6a which translates to a drift in y32, as

shown in Figure 6b. Such control failure is in full agreement with the analysis

of section 3.
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Figure 6: Velocities (a) and displacements (b) at the interface obtained with the traditional

control architecture of Figure 4 with e = ẏ31 − ẏ32 and non-zero initial conditions.

The proposed control architecture, shown in Figure 5, is then used on the

same system, keeping the LSC to control S1 and adding a simple proportional295

integral (PI) controller to stabilise the numerical subsystem B by adding its

action to S2. In this case, the proportional gain was set to kp = 50, whereas the

integral gain was set to kI = 25. Note that this choice of parameters ensure that

the amplitude response of the controller K2 is much smaller than the amplitude

of the frequency response of subsystem B, therefore the dynamic response of300

this latter is minimally influenced by the controller. The results are shown

in Figure 7, indicating that now the closed-loop DSS response closely matches

the original response, demonstrating that the proposed control architecture can

be successfully used to perform DSS-based hybrid testing even in presence of

marginally stable subsystems. In addition, tuning of the PI gains is not required305

and any stabilising PI controller provides very similar results. It is also advised

to use small gains to minimise the effect of the PI controller on the response of

subsystem B in closed-loop, as demonstrated in the simulation.
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Figure 7: Velocities (a) and displacements (b) at the interface obtained with the proposed

control architecture of Figure 5 with e = ẏ31− ẏ32, non-zero initial conditions and a stabilising

PI local controller for subsystem B.

Finally, Figure 8 shows the performance achievable with the same controller

of Figure 6, when the user has the power of setting all the initial conditions in310

subsystem B to zero. Note that, in agreement with the analysis of section 3,

also in this case the problem of drifts does not occur and the DSS closed-loop

response tracks the original response as desired.
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Figure 8: Velocities (a) and displacements (b) at the interface obtained with the traditional

control architecture of Figure 4 with e = ẏ31− ẏ32, when the user can set the initial conditions

of subsystem B to zero.

These results highlight that, when a marginally stable subsystem B has non-
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zero initial conditions, a traditional DSS control design approach is not capable315

of eliminating the drift in subsystem B. The proposed control architecture ad-

dresses such issue by adding an extra stabilising local controller in subsystem

B only, which makes the overall closed-loop response close to the original sys-

tem response, with a minimal extra effort due to the tuning of the additional

controller. Note that, in all cases, non-zero initial conditions for subsystem A320

do not affect synchronisation performance, as subsystem A is asymptotically

stable. On the other hand, initial conditions for subsystem B play a key role.

In fact, if the users have the power of setting all such conditions to zero before

starting the hybrid tests, then the additional local controller K2(s) of Figure

5 is not needed, as the response of subsystem B can track the response of the325

original system using the DSS controller K(s) only.

5. Conclusions

In this paper a detailed analysis of issues created by the presence of marginally

stable subsystems in DSS-based hybrid testing has been conducted, with the

case of mass-split taken as a benchmark system. The results discussed in this pa-330

per shows that in this scenario traditional DSS control design approaches strug-

gle to provide satisfactory performance or even fail to stabilise the marginally

stable substructure. The novel control architecture shown in Figure 5 - based on

velocity feedback and on the introduction of an additional local controller - has

been proposed to solve this issue. The proposed analysis and control architec-335

ture is generic and can be applied to hybrid testing of any vibrating structure.

Analytical and numerical results show that the proposed architecture is capable

of making the DSS closed-loop response track the original system response, as

desired. The analysis has also shown that the introduction of the additional

local controller K2(s) can be avoided when the user has the power of setting all340

the initial conditions of the marginally stable subsystem to zero.

The results presented in this paper unlock the possibility of performing DSS-

based hybrid testing in presence of marginally stable subsystems, an area that
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has been scarcely explored so far. Potential future research directions include

an analysis of robustness of the proposed technique (e.g. with respect to noise,345

model mismatch and experimental uncertainty), extensions to testing of non-

linear structures and applications to finite element based models with more

complex boundary conditions.
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A. Distribution of roots for polynomials with even

maximum degree and positive coefficients

The aim of this appendix is to prove that polynomials with even degrees and

unconditionally positive coefficients only admit roots with negative real parts

and purely imaginary roots. This proof is used in Section 2.3 to show that

the original whole system and subsystem A are asymptotically stable and that

subsystem B is marginally stable.

Let us then consider a polynomial P (s) with a maximum even degree 2n and

positive coefficients

P (s) = a2ns
2n + a2n−1s

2n−1 + · · ·+ ais
i + · · ·+ a0 (A.1)

ai > 0, 0 ≤ i ≤ 2n

No positive or zero real roots for P (s) exist, as can be easily shown by direct

substitution. Therefore, the roots of P (s) can only include negative real roots,455

imaginary roots and complex roots. Moreover, a polynomial with a even max-

imum degree should have an even number of real roots, an even number of

conjugated imaginary roots, an even number of conjugated complex roots, or a

combination of these three possibilities.

The following proof is composed of two parts. In the first part it is demonstrated460

that: i) if P (s) admits complex roots with positive real parts then its coefficients

are not unconditionally positive, and ii) if P (s) does not admit complex roots

with positive real parts then its coefficients are unconditionally positive. These

implications are then used in the second part of the proof to prove, exploiting

the contraposition principle, that polynomials P (s) with even degree and un-465

conditionally positive coefficients only admit roots with negative real part and,

potentially, purely imaginary roots.

Let us then start the proof by considering the case where P (s) only admits
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conjugated imaginary roots only, i.e.

P (s) =

n∏
q=1

(a2(q)s
2 + a0(q)), a2(q) > 0, a0(q) > 0 (A.2)

Therefore, it is obvious that after the expansion the coefficients of odd degree470

terms s2j−1 are equal to zero and all the others are positive. This contradicts

the positivity of coefficients of P (s), therefore P (s) can not admit only purely

imaginary roots.

Another case is when P (s) only admits negative real roots and conjugated com-475

plex roots with negative real parts, i.e.

P (s) =

n∏
q=1

(a2(q)s
2 + a1(q)s+ a0(q)) (A.3)

where 
a2(q) > 0

a1(q) > 0

a0(q) > 0

(A.4)

Induction can be used to show that all coefficients in P (s) are unconditionally

positive. In fact, this condition is already satisfied when n = 1. Let us then

assume that this condition is also satisfied when n = j thus

P (s) = a2js
2j + a2j−1s

2j−1 + · · ·+ ais
i + · · ·+ a0 (A.5)

where480

ai > 0, 0 ≤ i ≤ 2j (A.6)

Then when n = j + 1 the following condition holds

P (s) = (a2(j+1)s
2 + a1(j+1)s+ a0(j+1))

× (a2js
2j + a2j−1s

2j−1 + · · ·+ ais
i + · · ·+ a0)

= a2j+2s
2j+2 + a2j+1s

2j+1 + a′2js
2j + · · ·+ a′is

i + · · ·+ a′0

(A.7)
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where

a2j+2 = a2(j+1)a2j > 0

a2j+1 = a2(j+1)a2j−1 + a1(j+1)a2j > 0

a′i = a2(j+1)ai−2 + a1(j+1)ai−1 + a0(j+1)ai > 0 2 ≤ i ≤ 2j

a′1 = a1(j+1)a0 + a0(j+1)a1 > 0

a′0 = a0(j+1)a0 > 0

(A.8)

Therefore, if P (s) only admits negative real roots and conjugated complex roots

with negative real parts, then all of its coefficients are unconditionally positive.

If P (s) only admits imaginary roots, conjugated complex roots with negative485

real parts and negative real roots, the following equation holds

P (s) =

j∏
q=1

(a2(q)s
2 + a0(q))

j1∏
q=1

(a′2(q)s
2 + a′1(q)s+ a′0(q))

= a2j+2j1s
2j+2j1 + a2j+2j1−1s

2j+2j1−1 + · · ·+ ais
i + · · ·+ a0

(A.9)



a2(q) > 0

a0(q) > 0

a′2(q) > 0

a′1(q) > 0

a′0(q) > 0

(A.10)

Then a similar induction procedure can be used to show that all the coefficients

ai are unconditionally positive.

Another case is that when P (s) only admits conjugated complex roots with490

positive real parts. In this situation the following equation holds

P (s) =

n∏
q=1

(a2(q)s
2 − a1(q)s+ a0(q)) (A.11)
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where 

a2(q) > 0

a1(q) > 0

a0(q) > 0

a21(q) − 4a2(q)a0(q) < 0

(A.12)

then the induction can be used to show that in the expanded form of P (s), the

coefficients for si are always negative when i is odd, and the coefficients for si

are always positive when i is even, thus

P (s) = a2ns
2n − a2n−1s2n−1 + · · ·+ (−1)iais

i + · · ·+ a0 (A.13)

where495

ai > 0, 0 ≤ i ≤ 2n (A.14)

In fact, this condition is already satisfied for n = 1 and n = 2. Let us then

assume that this condition is also satisfied when n = j, thus

P (s) = a2js
2j − a2j−1s2j−1 + · · ·+ (−1)iais

i + · · ·+ a0 (A.15)

where

ai > 0, 0 ≤ i ≤ 2j (A.16)

Then for n = j + 1 the following condition holds

P (s) = (a2(j+1)s
2 − a1(j+1)s+ a0(j+1))

× (a2js
2j − a2j−1s2j−1 + (−1)iais

i + · · ·+ a0)

= a2j+2s
2j+2 − a2j+1s

2j+1 + a′2j + · · ·+ a′is
i + · · ·+ a′0

(A.17)

where

a2j+2 = a2(j+1)a2j

a2j+1 = a2(j+1)a2j−1 + a1(j+1)a2j

a′i = (−1)i−2a2(j+1)ai−2 + (−1)ia1(j+1)ai−1 + (−1)ia0(j+1)ai 2 ≤ i ≤ 2j

a′1 = −(a1(j+1)a0 + a0(j+1)a1)

a′0 = a0(j+1)a0

(A.18)
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Therefore, a′i are always negative for odd values of i and a′i are always positive500

for even values of i. This contradicts the positivity of coefficients of P (s), there-

fore P (s) can not admit roots with positive real parts only.

Finally if P (s) admits negative real roots, conjugated complex roots with neg-

ative real parts and conjugated complex roots with positive real parts, then505

P (s) =

j∏
q=1

(a2(q)s
2 + a1(q)s+ a0(q))

j1∏
q=1

(a′2(q)s
2 − a′1(q)s+ a′0(q))

= (a2js
2j + a2j−1s

2j−1 + · · ·+ ais
i + · · ·+ a0)

× (a′2j1s
2j1 − a′2j1−1s

2j1−1 + · · ·+ (−1)ia′is
i + · · ·+ a′0)

= a′′2j+2j−1s
2(j+j1) + a′′2j+2j1−1s

2(j+j1)−1 + · · ·+ a′′i s
i + · · ·+ a′′0

(A.19)

where 

ai > 0, 0 ≤ i ≤ j

a′i > 0, 0 ≤ i ≤ j1

(a′1(q))
2 − 4a′2(q)a

′
0(q) < 0

a′′2j+2j1 = a2ja
′
2j1

a′′0 = a0a
′
0

(A.20)

and if j ≤ j1 
a′′i =

i−2j∑
q=0

(−1)qai−qa
′
q, 2j ≤ i ≤ 2j + 2j1 − 1

a′′i =

i∑
q=0

(−1)i−qaqa
′
i−q, 0 ≤ i ≤ 2j

(A.21)

if j > j1 
a′′i =

i−2j1∑
q=0

(−1)i−qaqa
′
i−q, 2j1 ≤ i ≤ 2j + 2j1 − 1

a′′i =

i∑
q=0

(−1)qai−qa
′
q, 0 ≤ i ≤ 2j1

(A.22)
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Therefore, apart from a′′2j+2j1
and a′′0 , other coefficients are not always posi-

tive. The same conclusion applies when P (s) includes purely imaginary roots,

negative real roots and complex roots with positive real parts and when P (s)

only includes purely imaginary roots and complex roots with positive real parts.510

In summary, two main conclusions can be drawn from the conditions above.

The first one is that if P (s) does not include complex roots with positive real

parts then its coefficients are unconditionally positive. The second conclusion is

that if P (s) does include complex roots with positive real parts then its coeffi-515

cients are not unconditionally positive. Then the law of contraposition - stating

that a conditional statement implies that its contrapositive holds as well - can

be used to show that two additional conditions hold. The first one is that if the

coefficients of P (s) are not unconditionally positive then P (s) admits complex

roots with positive real parts. The second condition is that if the coefficients of520

P (s) are unconditionally positive then P (s) does not include any complex root

with positive real part. All together, these conditions imply that a polynomial

P (s) with even degree and unconditionally positive coefficients only admits neg-

ative real roots, complex roots with negative real parts and purely imaginary

roots. The proof is therefore complete.525
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