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Abstract 

 

The use of Unmanned Aerial Systems (UAS) or ‘drones’ as they are more commonly 

known, has increased dramatically in recent years. Innovations in electrical power 

systems as well as improvements in aircraft autonomy technologies have driven a 

significant consumer surge in the use of small UAS. At the same time, there has been 

a simultaneous large increase in commercial and military use of UAS across a range 

of sizes and missions.  

There is significant evidence that unmanned aircraft experience accidents at a much 

greater rate than is observed in human-crewed aviation. A number of surveys 

investigating the general public’s perception of drones have also reported a general 

distrust of the emerging technology, in part due to negative media coverage and 

high-profile mishaps. Though inadequate reporting of UAS accidents seems to mask 

the scale of the problem somewhat, analysis of accident rates for military UAS reveals 

unacceptably high failure rates for their platforms. Common problems include an 

inability to sense and avoid hazards, unstable communication links, and failures 

during landing.   

New technology solutions are required to overcome the problems outlined above. 

The application of Tau theory to the guidance function of unmanned aircraft offers 

one such possibility.  At the University of Liverpool, ecological Tau theory has been 

established as the basis to understand and model pilot behaviour, based on the 

optical parameter ‘Tau’, or time-to-contact. Tau guidance is inherently reactive to 

external obstacles and hazards, does not require any external signals or 

infrastructure to function, and is well suited to soft landing manoeuvres, which have 

all been identified as problematic functions for UAS. This thesis describes work 

carried out to implement and analyse Tau-guided UAS in the context of simulated 

landing manoeuvres. Landing in difficult or dynamic environments are examined in 

detail to illustrate that the inherent reactivity of Tau guidance is useful in these 

demanding situations. Two main scenarios are considered:  rotary-wing maritime 

landings, and fixed-wing landings on uneven ground.  
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Existing computer vision techniques to measure time-to-contact were identified and 

analysed. Three previously established techniques for estimating Tau with monocular 

video cameras were compared: a dimension-tracking method; an optical flow 

divergence method, and a direct gradient-based method. The direct gradient method 

was selected as the most reliable and widely applicable of the three approaches and 

was thoroughly investigated to find the limits of its operation. It was found that, for 

the camera used in testing, the method is most effective at measuring time-to-

contact when the ground truth value is between 10 and 1 seconds. Above 10 seconds 

time-to-contact, measurements became too noisy to be usefully applied, and close 

to the contact point high optical flow causes divergence of the estimate. The accuracy 

of the method is closely linked to the magnitude of optical flow perceived by the 

camera, and it was found that manipulating camera frame rate and resolution 

through subsampling is useful to maintain accuracy throughout the manoeuvres. 

High resolution cameras can be used to extend the accurate measurement interval 

above 10 seconds, and high frame-rate cameras can be used to extend the range 

closer to the contact point.   

One of the key limitations of the gradient method is that constant image brightness 

is assumed across video frames. This leads to reduced accuracy of the Tau sensor if 

the illumination of the visual scene changes, such as when artificial lights are turned 

on or off, or when shadows cast by a vehicle or cloud encroach on the scene. This 

thesis reports upon the development of a new extension to the direct gradient 

method that removes this limitation/assumption. This innovation expands the 

operational envelope of Tau sensors that use gradient methods by increasing their 

accuracy when compared to existing methods under changing light conditions.    

The enhanced Tau perception algorithm was tested in simulation using rotary- and 

fixed-wing UAS platforms in a number of different scenarios. The algorithm was 

implemented to use one simulated monocular camera to measure time-to-contact 

with an approaching object or surface.  

The rotary-wing platforms were tested in a frigate deck landing scenario, where the 

targeted landing point is the ship deck. Landings were analysed in a range of sea state 

conditions that develop different amounts of deck motion for the aircraft to contend 
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with during landing. Tau estimates from the enhanced direct gradient method were 

used as a feedback control variable to the aircraft autopilot to perform successful 

landings. Using only the time-to-contact as a control variable, the tau guidance 

system allowed the simulated aircraft to perform smooth landings with lower 

touchdown velocities when compared to the more commonly used constant descent 

rate guidance strategy. For a sea state 4 deck landing, the Tau guidance system 

delivered an average touchdown velocity of 0.2 m/s over 20 different landings, while 

the softest landing the constant descent rate controller delivered was 0.5 m/s, with 

an average of 1.3 m/s over 20 landings. However, it was found that poor Tau 

estimation performance close to the deck increased touchdown velocity, especially 

in high sea-state conditions. It was therefore recommended that the optical Tau 

estimation method be augmented with an ultrasonic sensor for increased time-to-

contact measurement accuracy during the last 1 – 2 seconds of the manoeuvre.  

The algorithm was sufficiently robust to allow deck landings to be performed in any 

sea state, so long as the aircraft had sufficient heave control power to deal with the 

heave demands of the moving deck. A heave dynamics model was combined with 

analytic expressions for the Tau guide spatial parameters to produce a new tool to 

predict whether an aircraft would be able to perform a Tau guided landing in a 

specific sea state. The tool was tested using an SH60B Seahawk helicopter, and 

correctly predicted that the aircraft would be unable to make a successful deck 

landing in sea-state 6 or above.  

Tau guidance systems were also implemented on a simulation model of a small fixed-

wing aircraft, the 3DR Aero, with a virtual optical Tau sensor integrated into the 

system. Use of optical Tau to control a fixed-wing aircraft has not previously been 

demonstrated in operation. Conventional landings were performed on both a 

standard runway and unprepared sites with changing terrain elevation. Again, it was 

found that the aircraft was able to consistently make smooth landings using only Tau 

as a control variable while using a ‘perfect’ tau measurement, regardless of landing 

surface. However, when using tau estimates from the virtual tau sensor, tracking 

performance was too poor for the Tau controller to reliably deliver a safe landing. 
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Further investigation of fixed-wing implementation of optical Tau systems is 

required.  

Overall, the research showed that Tau guidance can be usefully and practically 

applied to address some of the problems identified for UAS operations, chiefly the 

ability to react to dynamic obstacles and hazards in the environment. This was 

demonstrated by the landing manoeuvres of a rotary-wing UAS onto a moving ship 

deck. The system also delivered reduced touchdown velocity in comparison to a 

common alternative guidance system, reducing the risk of aircraft damage. Similar 

benefits were exhibited for fixed-wing landings on unknown terrain. The key enabler 

for these benefits was the development of a new variant of the direct gradient 

method for Tau perception which expanded the operational envelope of the 

algorithm.   
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Nomenclature 

 

Upper Case 

 

𝐴 X direction velocity 

parameter group for 

gradient method 

 𝐵 Y direction velocity 

parameter group for 

gradient method 

𝐶 Inverse of time-to-contact 

(1/s) 

 𝐷 Velocity parameter group 

for gradient method 

𝐷𝜏 Constant of integration  𝐹 Slope parameter group 

for gradient method 

𝐺 Radial gradient  𝐼 Image matrix 

𝐼𝜔 Rotational velocity 

parameter group for 

gradient method 

 𝐼𝑥 Image gradient w.r.t the x 

direction 

𝐼𝑦 Image gradient w.r.t the y 

direction 

 𝐼𝑡 Image gradient w.r.t the 

time direction 

𝐽 Rotational velocity 

components in x direction 

for gradient method 

 𝐾 Rotational velocity 

components in y direction 

for gradient method 

𝐾𝐶  Crossfeed control gain  𝐾𝐷 Differential control gain 

𝐾𝐼 Integral control gain  𝐾𝑝 Proportional control gain 

𝑀 Multiplicative brightness 

change matrix 

 𝑀𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 Camera intrinsic 

parameters matrix 

𝑀𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 Camera extrinsic 

parameters matrix 

 𝑃 [x, y, z] co-ordinates of a 

point in the world (m) 

𝑃𝑠 X direction slope 

parameter group for 

direct gradient method 

 𝑄𝑠 Y direction slope 

parameter group for 

direct gradient method 

𝑅 Rotation matrix  𝑇 Rotor thrust (N) 
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𝑇𝑓 Time period of video 

frame (s) 

 𝑇𝑔 Manoeuvre duration (s) 

𝑇∞ Rotor thrust at an infinite 

distance from the ground 

plane (N) 

 𝑈 Camera or aircraft body 

velocity in the X direction 

(m/s) 

𝑉 Camera or aircraft body 

velocity in the Y direction 

(m/s) 

 𝑊 Camera or aircraft body 

velocity in the Z direction 

(m/s) 

𝑋 Displacement in the 

inertial frame x direction 

(m) 

 𝑋0 Initial displacement in the 

X axis (m) 

𝑋𝑀 Displacement along a 

generic motion gap (m) 

 𝑌 Displacement in the 

inertial frame y direction 

(m) 

𝑌0 Initial displacement in the 

Y axis (m) 

 𝑍 Displacement in the 

inertial frame z direction 

(m) 

𝑍𝑤 Heave force stability 

derivative w.r.t vertical 

speed 

 𝑍𝛿𝐶  Heave force stability 

derivative w.r.t collective 

deflection 

 

Lower Case 

 

𝑐𝑡 Image brightness offset field  𝑓 Camera focal length (m) 

𝑘 Coupling constant  𝑚𝑡 Image brightness 

multiplicative field 

𝑜𝑥 Image origin x coordinate  𝑜𝑦 Image origin y coordinate 

𝑝 [x, y, z] coordinates of a 

point projected onto the 

image plane 

 𝑝𝑠 Surface slope in x direction 

𝑞𝐺 Electrical charge  𝑞𝑠 Surface slope in y direction 
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𝑠𝑥 Camera sensor cell size in 

x direction (m) 

 𝑠𝑦 Camera sensor cell size in y 

direction (m) 

𝑡 Time (s)  𝑢 Optical flow in the x 

direction (m/s) 

𝑣 Optical flow in the y 

direction (m/s) 

 𝑤 Aircraft heave velocity (ft/s) 

𝑤𝑑 Ship deck heave velocity 

(ft/s) 

 𝑤𝑔 Wind gust velocity in the z 

direction (ft/s) 

𝑥 Position in the image 

frame in x direction (m) 

 𝑥𝑐𝑎𝑚𝑒𝑟𝑎 Position in the camera 

frame in x direction (m) 

𝑥𝑖𝑚𝑎𝑔𝑒 Position in the image 

frame in x direction (m) 

 𝑥𝑝𝑥 Image pixel size in the x 

direction (m) 

𝑥𝑟𝑒𝑠 Image resolution in the x 

direction (pixels) 

 𝑦 Position in the image frame 

in y direction (m) 

𝑦𝑐𝑎𝑚𝑒𝑟𝑎 Position in the camera 

frame in y direction (m) 

 𝑦𝑖𝑚𝑎𝑔𝑒 Position in the image frame 

in y direction (m) 

𝑦𝑝𝑥 Image pixel size in the y 

direction (m) 

 𝑦𝑟𝑒𝑠 Image resolution in the y 

direction (pixels) 

 

Symbols 

 

𝜏 Time-to-contact (s)  𝜏0 Initial time-to-contact (s) 

𝜏𝑋 Time-to-contact in X 

direction motion gap (s) 

 𝜏𝑌 Time-to-contact in Y 

direction motion gap (s) 

𝜏𝑚 Time-to-contact in generic 

motion gap (s) 

 𝜏𝑟𝑒𝑓 Reference time-to-contact 

(s) 

𝜏𝑒𝑅𝑀𝑆 Root Mean Square time-

to-contact error 

 ∇ Divergence of vector field 

𝜔𝑥 Rotational velocity about x 

axis (rad/s) 

 𝜔𝑦 Rotational velocity about 

y axis (rad/s) 
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𝜔𝑧 Rotational velocity about z 

axis (rad/s) 

 𝛿𝑐 Collective deflection 

 

Miscellaneous 

 

𝑎̇ =
𝑑𝑎

𝑑𝑡
 

First derivative w.r.t time  
𝑎̈ =

𝑑2𝑎

𝑑𝑡2
 

Second derivative w.r.t 

time 

𝑎 =
𝑑3𝑎

𝑑𝑡3
 

Third Derivative w.r.t time  ∑𝑀  
∑  ∑𝑀𝑖,𝑗

𝑦𝑟𝑒𝑠

𝑗=1

𝑥𝑟𝑒𝑠

𝑖=1

 

Where 𝑀𝑖,𝑗  is any matrix 
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Acronyms 

 

AFCS Automatic Flight Control System 

ALFURS Autonomy Levels For Unmanned Rotorcraft Systems 

ALFUS Autonomy Levels For Unmanned Systems 

CAA Civil Aviation Authority 

CAD Computer Aided Design 

CAT Commercial Air Transportation 

CCD Charge-Coupled Device 

CFD Computational Fluid Dynamics 

CMOS Complimentary Metal-Oxide-Semiconductor 

CORSE Centre Only Relative State Estimation 

CPU Central Processing Unit 

CRM Crew Resource Management 

CV Computer Vision 

DERA Defence Evaluation and Research Agency 

DfT Department for Transport 

DMPC Decentralized Model predictive Control 

DSTG Defence Science and Technology Group 

DVE Degraded Visual Environment 

EASA European Union Aviation Safety Agency 

EC Environmental Complexity 

ES External System  
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ESI External System Independence 

EU European Union 

FAA Federal Aviation Authority 

FGR FLIGHTLAB Generic Rotorcraft 

FoV Field of View 

GA General Atomics 

GCS Ground Control Station 

GNC Guidance, Navigation and Control 

GPS Global Positioning System 

GPU Graphics Processing Unit 

GVE Good Visual Environment 

HALE High Altitude Long Endurance 

HD High Definition 

HVGA Half Video Graphics Array 

INS Inertial Navigational System 

MALE Medium Altitude Long Endurance 

MAV Micro Aerial Vehicle 

MC Mission Complexity 

MoD Ministry of Defence 

MTE Mission Task Element 

MTOW Maximum Take-Off Weight 

NASA National Aeronautics and Space Administration 

NATO North Atlantic Treaty Organisation 
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PID Proportional Integral Derivative 

RAF Royal Air Force 

RAM Random Access Memory 

RGB Red Green Blue 

RMS Root Mean Square 

RPA Remotely Piloted Aircraft 

RPAS Remotely Piloted Aircraft System 

RT Real Time 

RUAS Rotorcraft Unmanned Aerial System 

SA Situational Awareness 

SARSE Subtended Angle Relative State Estimation 

SFM Structure From Motion 

SLAD Safe Landing Area Detection 

SLAM Simultaneous Localisation and Mapping 

SUAS Small Unmanned Aerial System 

SURF Speeded Up Robust Features 

TALS Tactical Automatic Landing System 

TRC Translational Rate Command 

TRN Terrain Relative Navigation 

UA Unmanned Aircraft 

UAS Unmanned Aerial System 

UAV Unmanned Aerial Vehicle 

UCARS UAS Common Automatic Recovery System 



xiii 
 

UCAV Unmanned Combat Aerial Vehicle 

UK United Kingdom 

US United States 

USAF United States Air Force 

USPS United States Postal Service 

USS United States Ship 

VGA Video Graphics Array 

VR Virtual Reality 

XML eXtensible Markup Language 
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1 Chapter 1 – Introduction 

 

1.1 Current and Future Usage of Unmanned Aerial Systems  

There are increasing signs that the aviation industry is on the brink of a significant 

upheaval. Innovations in electrical power systems have driven a surge in the use of 

Small Unmanned Aerial Systems (SUAS) that has democratised aviation in an 

unprecedented way. This rapid increase in unmanned aircraft use seems set to 

continue. On December 14th, 2015, the Federal Aviation Administration of the United 

States issued a new rule requiring all Unmanned Aerial Systems (UAS) weighing 

between 250 grams and 25 kilograms to be registered using a new online system and 

registration became a legal requirement one week later.  

By the end of December 2016, a year later, 626,245 aircraft owner-hobbyists in the 

US had registered one or more aircraft with the FAA, with an estimated 1.1 million 

hobbyist aircraft units in the country [1]. By the end of 2018, that number of 

registered hobbyists had grown to over 900,000 [2]. For comparison, the FAA 

reported that there were 633,317 certificated civil pilots in the US in 2018, split across 

various license types [3]. Evidently, the number of unmanned ‘pilots’ has already 

outstripped the sum of their manned equivalents in the United States. This is perhaps 

unsurprising given that there are no certification requirements for hobbyist UAS 

pilots, but it is indicative of this paradigm shift in the aviation community. 

A similar online registration system for commercial UAS operators was introduced in 

April 2016 and is also reported on in reference [1]. By early 2017, 44,000 businesses 

had registered unmanned aircraft with the FAA. The organisation forecast huge 

growth in this sector, with over 400,000 commercial operators predicted to register 

by 2021. The FAA report also categorised the various sectors these commercial users 

occupy, shown in Figure 1-1. Aerial photography accounts for over a third of the 

market but applications are clearly varied, speaking to the versatility of UAS 

platforms. 
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Figure 1-1: Usage of commercial UAS platforms in the US in 2016 [1] 

Unmanned aircraft are set to fill yet more commercial roles with their well-publicised 

integration into logistics and distribution networks, likely the most public-facing 

application for them to date. Amazon first announced their Prime Air service in 2013 

and with it their intention to begin delivering packages within 30 minutes of ordering 

[4]. The service delivered its first package to an address in Cambridge via quadcopter 

in 2016, but the service is still yet to see an official rollout [5]. Post offices and parcel 

services around the world have stated their intentions to offer similar services [6], 

along with food delivery companies such as Domino’s Pizza [7]. Google Wing became 

the first company to obtain an air operator’s certificate from the FAA in April 2019 to 

deliver takeaway food and beverages by air, and are conducting a pilot program in 

Queensland, Australia [8]. However, years of development by even these most 

powerful of corporations have thus far failed to materialise into usable services.  

The use of UAS platforms by military services also continues to grow. The United 

Kingdom armed forces reported to operate 585 unmanned aircraft in 2015, 

comprised of five different platforms, shown in Figure 1-2. Reference [9] describes 

the aircraft and their roles. They include full-sized aircraft like the General Atomics 

MQ-9 Reaper (a) and Thales Watchkeeper (b) operated by the Royal Air Force (RAF), 

as well as smaller man-portable aircraft like the Desert Hawk III (c), Boeing Scan Eagle 

(d) and Black Hornet Nano (e) used by other services.  
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Figure 1-2: Current and future UAS operated by the British Armed Forces: (a) GA MQ-9 Reaper [10] 

(b) Thales Watchkeeper [11] (c) Lockheed Martin Desert Hawk III [12] (d) Boeing ScanEagle [13] (e) 

Prox Dynamics Black Hornet Nano [14] (f) BAE Taranis [15] 

All operate in surveillance and reconnaissance roles except the Reaper, which is the 

only Unmanned Combat Aerial Vehicle (UCAV) among them. Watchkeeper and 

Reaper are both full-scale, runway-launched aircraft, while the Desert Hawk and 

Black Hornet can both be hand-launched and recovered in the field from unprepared 

sites. The Scan Eagle is the only UA operated by the Royal Navy and is launched from 

a ship-borne catapult. It is also recovered using a ship-borne net system. 

Procurement of further unmanned aircraft is also planned, with the purchase of 20 

Protector UAVs announced in the 2015 Strategic Defence and Security Review [16]. 

A program to acquire a derivative of the BAE Systems Taranis UCAV (f) has also been 

announced, set to enter service in the 2030s [17]. The US Department of Defence 

(DoD) outlines its approach to unmanned systems use and development in reference 

[18]. Their spending on UAS has increased year on year, and over $4.2 billion was 

spent on UAS in 2017 across various branches of military.  

Clearly there is a large market for UA in both the civil and military domains, and many 

planned applications require flight in urban, dynamic or cluttered environments. 

However, public desire for these kinds of operations remains an open question. 

Public perception of unmanned aircraft, or ‘drones’ as they are commonly known in 

the press, is generally negative. Reference [19] details a public dialogue conducted 



4 
 

by the UK Department for Transport (DfT) through a series of workshops. It was found 

that participants generally had low awareness and knowledge of drones, with the 

knowledge they did have focussed on military hardware and small consumer 

quadcopters. They raised concerns about the safe use of drones in public spaces, the 

quality of the aircraft themselves and potential for technological failures. However, 

as the workshops progressed and participants learned more about the commercial 

uses of drones, current legislation and safety procedures, they became more positive 

and engaged with potential benefits for citizens.   

Similar opinions were also found to be prevalent in a survey by the United States 

Postal Service (USPS) on the public perception of drone delivery services [20]. Though 

75% of respondents expected drone delivery to be a reality by 2021, 46% said that 

potential malfunction was their primary concern about such services, and only 32% 

believed that the system would be safe. These statistics raise the obvious question: 

how safe are unmanned aircraft in reality? 

1.2 Unmanned Aircraft Safety 

Air travel is often referred to as one of the safest modes of transport available, and 

this is borne out by the literature. Reference [21] presents an analysis of fatal 

accident statistics for various modes of transport for the year 2000, demonstrating 

that by the measure of fatalities per distance travelled, air travel was ten times safer 

than rail transport, and over 2000 times safer than road travel. However, the safety 

of unmanned aircraft is a more open question; slow development of legislative 

frameworks has resulted in lower reporting of incidents and accidents involving UAS. 

Accidents in manned aviation will always carry a greater risk to life by virtue of 

carrying human cargo; the potential for fatal accidents involving UAS is limited to 

mid-air-collision or ground injury. As a result, a smaller portion of accidents involving 

UAS lead to any human injury, and as such are often not examined or documented 

in the same exhaustive detail of traditional air accident investigations.  

Though accident data relating to consumer and hobbyist drone use is scarce, recent 

high-profile incidents have damaged the public perception of UAS. A prospective 

parcel delivery service, operated by Swiss Post, was forced to suspend its services 
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indefinitely in early 2019 after two of its vehicles crashed [22]. Swiss Post operate 

quadcopters produced by Matternet that can carry a 2 kg payload up to 10 km, with 

a total aircraft weight of up to 10 kg. The system is designed to deploy a parachute if 

a failure occurs in flight to slow the fall of the vehicle and avoid injury to anyone on 

the ground. The first crash occurred after a GPS failure. The backup parachute 

deployed and the vehicle landed in a body of water safely. However, after a second 

failure due to an unidentified fault, the tether that connected the backup parachute 

to the vehicle broke, and the aircraft suffered an uncontrolled crash. It crashed within 

50 m of a group of children playing, though no one was hurt.  

Accidents involving UAS in use by military forces have generally been better 

documented. One of the earliest investigations of UAS accident statistics was 

published by the Washington Post in reference [23]. After manually searching 

through thousands of declassified documents, they found evidence of over 400 major 

accidents involving large US military drones between 2001 and 2014. Of the 269 MQ-

1 Predator aircraft the United States Air Force (USAF) acquired during this period, 

48% had been involved in a major accident. Between 2009 and 2014, the mishap rate 

per 100,000 hours of flight for the Predator dropped by two thirds, from 13.7 to 4.79, 

but this still represents an alarming failure rate. Similar aircraft, like the MQ-9 Reaper 

and RQ-2 Pioneer (Figure 1-3), suffered similar accident rates. The Washington Post’s 

analysis identified several fundamental problems that contributed to the high failure 

rate in USAFs remotely piloted aircraft: 

1. Persistent mechanical and electrical defects due to insufficient testing before 

being brought into service  

2. Unreliable communication links 

3. Pilot errors, particularly during landings 

4. Limited ability to detect and avoid obstacles  
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Figure 1-3: The aftermath of a collision between an RQ-2 Pioneer aircraft and a C-130 Hercules [24] 

This poor safety record for military UAS is supported by an FAA report analysing 

similar military drone accidents that suggested that the mishap rate for UAVs was 

100 times higher than for manned aircraft [25]. It also highlighted the landing phase 

as especially problematic for UAS due to lower situational awareness caused by the 

removal of the pilot. The FAA report further emphasised that approximately 50% of 

these were attributed to aircraft failures associated with relaxed design methods and 

system reliability. 

Evidently, there are still significant hurdles related to UAS capability and reliability 

that must be overcome to earn the trust of the general public and drive higher 

adoption of UAS. There is a clear gap between accident rates in manned and 

unmanned aviation, so technologies must be developed to close this gap. Since 

humans still seem to be better suited to flight control than machines (at least in some 

situations), it is useful to examine the mechanisms they employ for control and 

guidance. 

1.3 Biological Guidance Mechanisms as Autonomous Solutions 

The natural world has often been used as inspiration for the development of 

technology, and autonomous guidance is no exception. After all, animals, including 

humans, can successfully guide themselves through their environments 

autonomously in a seemingly effortless manner, so it stands to reason that emulation 

of these behaviours would be effective for autonomous systems. 
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One nature-inspired avenue of investigation for guiding motion has used Tau Theory 

as its basis. Tau Theory, proposed by David Lee in 1976 [26], offers an ecological 

mechanism for the guidance of purposeful motion through the cluttered 

environment of the Earth’s surface. By examining motorist’s control strategies during 

braking manoeuvres, Lee found that drivers modulated their brake inputs to keep a 

constant rate of change of instantaneous time-to-contact with their desired stopping 

point. This strategy allowed for smooth deceleration to a stop so that relative 

position and velocity both closed to zero simultaneously. Tau was posited to be 

perceived directly through the driver’s visual system, i.e. its perception did not 

require any cognitive processing. Existing research suggests that τ is indeed a 

fundamental control variable responsible for the guidance of many actions, including 

for flight control [27]. For example, ongoing work at the University of Liverpool has 

established the strong role that τ plays in manned flight: in the landing flare 

manoeuvre for fixed-wing aircraft [28], rotorcraft decelerations and low-level flying 

[29].  

Tau theory offers a simple and widely applicable mechanism for both obstacle 

avoidance and interception, actions that UAS struggle to perform according to 

presented evidence. Perception of Tau seems an intuitive way of increasing 

situational awareness in autonomous systems and allows for manoeuvres to be 

performed without the need for external command or reference, reducing the 

communication link reliance also cited as a problem area for UAS. The work 

presented in this thesis will explore the use of Tau-based control as a tool for 

increasing autonomy in UAS.  

1.4 Tau Theory in Autonomous Systems 

The use of Tau Theory for flight control has also gained some traction in the 

unmanned aviation arena already. Reference [30] presents a hardware-based study 

into the use of Tau for the control of a SUAS for various ‘docking’ manoeuvres, which 

includes landing, where the ‘docking’ is, in that case, with the ground. The study 

shows the utility of Tau for such flight manoeuvres but relies upon the use of the 

onboard Inertial Navigation Systems (INS) and Global Positioning Systems (GPS). 

While this is a valid approach (such positioning systems are likely to be present on all 
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forthcoming new air vehicles), these systems are prone to errors and can be spoofed: 

false signals can be used to trick GPS units into providing erroneous position 

estimates [31]. In the case of GPS, it simply may not be available in some urban or 

indoor environments. Reference [32] reports on a simulation study of the vision-

based detection and tracking of a moving ground-based rover by a quadrotor UAV 

followed by a landing of the latter on the former using tau-based guidance. Again, 

good results are reported, but the study is limited in the sense that the vision-based 

element of the experiments rely on AprilTags, a template detection system [33], to 

provide the required visual information. 

While it cannot be claimed that vision-based systems in the natural world cannot be 

spoofed or fooled – if this were the case, optical illusions would not exist – it is argued 

that the evolutionary process has resulted in a robust and yet simple means to 

provide reliable guidance in cluttered environments. Similarly, whilst it is recognized 

that some texture/structure is required to make sense of a visual scene (a white-out 

in a snowy landscape might be an example of where these are not present), it is clear 

that observers in the natural world do not require specific markers in their visual field 

to be able to perceive their motion. As such, the work reported in this thesis builds 

on these prior works by showing how Tau Theory can be used to guide aerial vehicle 

motion using vision-based sensors without the need for any special or ‘abnormal’ 

elements in the visual scene.  

Time-to-contact can be easily estimated using active ranging sensors such as radar, 

Lidar or sonar. However, the hardware required can be expensive, heavy, or possess 

limited accuracy at range. Passive imaging sensors are preferable in this application 

due to their availability and obvious analogue to the natural vision mechanisms used 

by humans and animals. Several image processing methods exist that yield time-to-

contact estimates using only monocular vision, but no comprehensive review of their 

individual benefits and drawbacks has been found in the literature. This thesis will 

analyse Tau perception mechanisms for aerial sensor platforms. 

Work on Tau-guided autonomous systems has also been exclusively limited to rotary-

wing platforms such as quadcopters thus far. These vehicles are prevalent in the 

consumer-hobbyist UAS arena, but military UAS usage tends to be concentrated on 
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fixed-wing platforms. No data has been found to analyse the platform composition 

of the commercial drone market, but several prospective drone delivery services 

have presented fixed-wing or hybrid systems, such as Amazon Prime Air [5] and 

Google Wing [8]. As a result, investigation of Tau guidance of fixed-wing UAS is 

required to facilitate the use of Tau as a control mechanism throughout the 

unmanned aviation arena. 

1.5 Research Aims and Objectives 

The application of Tau theory-based control to both manned and unmanned aircraft 

is not a new concept, but implementations found in literature leave a number of 

research questions unanswered. The work presented in this thesis aims to address 

some of those questions, which are detailed below: 

1. Can optical Tau-based navigation guidance, navigation and control systems 

be used to address the common problems identified for UAS? Current Tau 

implementations have failed to formalise their benefits in the context of the 

problems faced in the wider UAS community, identified through accident 

reporting. 

2. What is the most effective method for perceiving time-to-contact for Tau 

control? The vast majority of Tau-controlled systems detailed in literature 

either leverage spatial state information from GPS-INS systems, or rely on 

visual template-matching systems to localise themselves relative to a target 

to estimate time-to-contact, neutralising some of the benefits of Tau control. 

3. Is optical-Tau guidance equally useful for fixed- and rotary-wing unmanned 

aircraft? No examples of fixed-wing implementation of Tau-control have been 

found in hardware, though research suggests that Tau is applied by pilots 

across both platforms.  

A number of associated project objectives were established to explore the above 

research questions: 

1. To identify and analyse currently available techniques for time-to-contact 

perception and explore the limits of their effectiveness. There are already 
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several techniques for perceiving Tau, but no comparison of them has been 

found.  

2. To create a set of virtual tools to be used for the analysis of Tau perception 

techniques in simulation.  

3. To implement Tau guidance systems on various rotorcraft in simulation, and 

analyse their performance in landing manoeuvres, with a focus on difficult 

and dynamic environments. 

4. To implement Tau guidance systems on fixed-wing aircraft in simulation and 

investigate their performance in landing manoeuvres.  

1.6 Thesis Scope, Structure and Content 

At the outset of this thesis, it is useful to describe what will be included within its 

pages and how it will be structured, as well as what is considered beyond the scope 

of this document and will not be discussed. 

1.6.1 Thesis Scope 

Ecological Tau theory has been written about extensively since its inception in the 

1970s, both in support and opposition of its fundamental hypotheses. Many 

examples can be found in the literature of human and animal actions that seem to 

adhere to the temporal and spatial trajectories predicted by Tau theory, as well some 

that do not. It is not the aim of this thesis to present any evidence for or against the 

validity of Tau theory, though some of the existing data will be reviewed in due 

course. Instead, for the purposes of this thesis, Tau theory is viewed as a paradigm 

of biological guidance that can be usefully applied to unmanned systems to effect 

particular behaviours; the veracity of the theory is irrelevant to whether or not its 

methods can be usefully applied to autonomous systems.  

Tau-guided behaviours can be attributed to a multitude of actions, which include 

both evasive and interceptive actions. This thesis will focus on applying Tau theory in 

the context of interceptive action to achieve safe landings of UAS. This phase of flight 

has been chosen as a focus in response to the evidence in literature that emphasises 

approach and landing manoeuvres as problematic for UAS. Many of the techniques 
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described can be equally applied for obstacle avoidance by actuating different 

controls based on Tau perception.  

While this thesis details several problems that have been identified in UAS 

operations, the work presented is not intended as a comprehensive solution to all of 

these problems. Instead, this thesis provides analysis and novel implementations of 

one technique that may be helpful in solving some of these problems. The application 

of Tau guidance systems is also restricted to single axis heave control throughout. 

Control of the other aircraft axes is accomplished using PID feedback control.  

1.6.2 Thesis Structure and Content 

This document is divided into six chapters, each with a different and specific focus. 

Chapter 2 reviews the relevant technical material that forms the basis of the work 

described in later chapters. First, a short review of the terminology applied to 

unmanned systems is presented, as well as some established measures of vehicle 

autonomy, and the current state-of-the-art guidance, navigation and control 

techniques that can be found on modern unmanned aircraft. A thorough review of 

ecological Tau theory and the work that led to its inception is given next. Particular 

focus is given to the various guidance laws that have been proposed as elements of 

the theory, as these form the basis for the proposed UAS operations. Next, Tau 

behaviours in manned aviation are explored in both rotary- and fixed-wing contexts. 

Technologies for the perception of Tau are examined with a focus on computer 

vision. Appendix A gives more detail on some of these techniques, including 

derivations for their mathematical equations. Finally, operational examples of Tau-

controlled systems are surveyed.  

Chapter 3 describes work carried out to create the tools and experimental setups 

used during the subsequent chapters. A major component of this work was creating 

simulation models that could be used to test Tau control systems. The development 

of a SUAS model is described, as well as details of a number of existing models used 

during the work. Since computer vision techniques for Tau perception were to be 

investigated, a number of tools were developed to create custom virtual visual 

scenes for testing image processing techniques. The tools and visual scenes 
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developed are described here.  Finally, several Mission Task Elements (MTEs) are 

described that were used for the clinical and repeatable testing of Tau guidance and 

control systems. 

Chapter 4 details a comprehensive analysis of several computer vision techniques for 

Tau perception: dimension tracking, optical flow divergence analysis and direct 

gradient analysis. They are tested against the virtual visual scenes described in 

Chapter 3 in both rotary- and fixed-wing contexts. The limitations of each are 

assessed and a recommendation made for which is the most useful. Techniques for 

mitigating weaknesses of the technique are also presented and tested. A 

modification of the direct gradient method for Tau perception is also proposed with 

results from initial testing. 

Chapter 5 provides an analysis of Tau guidance applied to the rotary-wing MTEs 

detailed in Chapter 3 using simulation. The implementation of the Tau guidance 

system is detailed with analysis of several control laws. Tau guided landings on ship 

decks are examined in detail with investigation of various sea states and aircraft. 

Simulations of Tau landings using optical Tau are presented. Tau guidance is also 

applied to the fixed-wing MTEs detailed in chapter 3. Fixed wing landings using 

optical Tau are presented.  

Chapter 6 presents the conclusions of the work described in the preceding chapters 

and some recommendations for how optical-Tau-based control can be applied and 

further investigated.  

1.7 Original Contribution to Learning 

A PhD thesis must make an original contribution to learning to satisfy the 

requirements of that degree. An original contribution to learning is defined in 

reference [34] as any of the following acts: 

1. Discovering new knowledge; 

2. Explanation or connection of previously established facts; 

3. Developing new theories; 

4. Revising established views. 
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The original contributions of the work described in this thesis are described in the 

points below for the sake of clarity: 

1. An investigation and comparison of optical Tau perception techniques is 

presented in chapter 4 that sheds new light on the limiting factors of a Tau 

perception technique known as the direct gradient method. Specifically, new 

information about where estimates provided by the method start to diverge 

and how this divergence relates to the parameters of the camera used for Tau 

perception are presented.  

2.  A new extension to the direct gradient method for Tau perception is 

presented in chapter 4. It extends the capability of the already established 

method to allow for changing brightness in the visual scene, a problem which 

would previously have reduced the accuracy of the Tau estimate. This new 

method mitigates the error introduced by changing scene brightness and is 

demonstrated to be effective with virtual reality tools.   

3. An implementation of optical Tau perception and guidance on a fixed-wing 

aircraft platform is described and tested in simulation in chapters 4 and 6. The 

system uses a downward looking camera to measure time-to-contact while 

descending towards a runway, and controls the pitch attitude of the 

aeroplane to effect a smooth flare and touchdown manoeuvre, which has not 

previously been demonstrated with optical Tau perception. 

4. An analytic prediction of whether a rotorcraft will be able to perform Tau 

guided landings on a frigate deck in high sea states is presented in chapter 5, 

which is a novel technique. The approach uses an existing heave dynamics 

model to relate the demands of a defined Tau manoeuvre over a heaving ship 

deck to the stability derivatives from a linear aircraft model.  

These original contributions aim to address some of the UAS issues which have been 

briefly discussed in chapter 1.2 and further examined in section 2.1.4. Primarily, 

these contributions establish that optical time-to-contact is a viable control variable 

for UAS landings in difficult and dynamic environments and provide a mechanism for 

expanding the range of environments that an optical Tau sensor can operate in 

effectively. These Tau guidance methods can increase autonomy levels of UAS by 
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providing a mechanism to improve reactivity of the system to its external 

environment; time-to-contact is inherently reactive to surrounding terrain and 

dynamic entities.  This capability can be used to improve the reliability of UAS landing 

manoeuvres, and also be applied in obstacle avoidance, with was identified as one of 

the problems contributing to high UAS failure rates. Tau guidance does not require 

any external signals, so can also improve reliability of these functions in the absence 

of communication links or external navigation systems, which has also been 

identified as a problem for UAS reliability. 
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2 Chapter 2 – Technical Review 

 

The work presented in this thesis is based on a range of technical fields where much 

work has already been carried out, including contemporary UAS technology, the 

techniques currently used for their guidance, navigation and control, and theories of 

biological guidance and their applications to the aerospace domain. This chapter will 

examine technical information relevant to these areas to expose the gaps in 

knowledge that have led to the research described in the rest of this thesis.  

2.1 Overview of UAS Technology 

2.1.1 UAS Terminology 

The terms used to classify unmanned aircraft are wide-ranging and often differ 

between operators, manufacturers and governing bodies. For the purposes of this 

thesis, it is useful to clarify the meanings of the terminology typically used to describe 

various aircraft types. It is important to clearly define what is meant by various terms 

to avoid ambiguity between remotely piloted vehicles and vehicles which are, to 

some degree, autonomous, as the systems have different legal and operational 

implications. 

Terms such as ‘Unmanned Aerial Vehicle’ or ‘Drone’ are often used in relation to 

unmanned systems, but these terms are often used non-specifically and can refer to 

any number of platforms with or without the presence of a remote pilot. The UK 

Ministry of Defence (MoD) has defined its terms as shown in Table 2-1. 

Table 2-1: UK MoD UA, UAS, RPA, RPAS definitions [35] 

Unmanned 

Aircraft (UA) 

An unmanned aircraft is defined as an aircraft that does not 

carry a human operator, is operated remotely using varying 

levels of automated functions, and is normally recoverable. 

Unmanned 

Aircraft System 

(UAS) 

An Unmanned Aircraft System is defined as a system, 

whose components include the Unmanned Aircraft and all 



16 
 

equipment, network and personnel necessary to control 

the Unmanned Aircraft. 

Remotely 

Piloted Aircraft 

(RPA) 

A Remotely Piloted Aircraft is defined as an aircraft that, 

whilst it does not carry a human operator, is flown by a 

pilot and is normally recoverable. 

Remotely 

Piloted Aircraft 

System (RPAS) 

A Remotely Piloted Aircraft System is the sum of the 

components required to deliver the overall capability and 

includes the pilot, sensor operators (if applicable), 

Remotely Piloted Aircraft, ground control station, 

associated manpower and support systems, satellite 

communications links and data links. 

The MoD assigns a class to unmanned aircraft according to their Maximum Take-Off 

Weight (MTOW), based on a NATO classification system [36]. The different classes 

are described in Table 2-2, and aircraft will be referred to by their class throughout 

this thesis.  

Table 2-2: MoD & NATO UAS Classification System [36] [37] 

Class Category MTOW Operating Altitude 

Class I 

Nano < 0.2 kg < 100 feet 

Micro 0.2 – 2 kg < 200 feet 

Mini 2 – 20 kg < 3,000 feet 

Small 20 – 150 kg < 5,000 feet 

Class II Tactical 150 – 600 kg < 10,000 feet 

Class III 

Medium Altitude Long 

Endurance (MALE) 
> 600 kg < 45,000 feet 

High Altitude Long 

Endurance (HALE) 
> 600 kg < 65,000 feet 
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2.1.2 UAS Autonomy 

The MoD also draws a distinction between automated and autonomous systems; an 

automated system can be described as one programmed to logically follow a pre-

defined set of rules to provide an outcome in response one or more sensor inputs 

[35]. In this way, the response of an automated system can always be predicted as 

long as the input is known. On the other hand, autonomous systems are capable of 

higher-level understanding and can take appropriate action to bring about a desired 

state on their own. Without human oversight, they can decide on a course of action 

from a number of alternatives; therefore, individual actions performed by an 

autonomous system may not always be predictable [35]. This is a relatively simplistic 

definition that is general to all automated or autonomous systems. 

A more detailed approach to autonomy definition for RUAS is described by Kendoul 

[38] in the form of an eleven-point scale named the Autonomy Levels For Unmanned 

Rotorcraft Systems (ALFURS) framework. It is an extension of the ALFUS framework 

for rotorcraft systems specifically, first proposed by Huang [39]. The different levels 

of this scale are defined by increasing levels of Guidance, Navigation and Control 

capability. Before discussing the ALFURS framework it is important to define what is 

meant by these three terms.  

Control in the context of UAS can be defined as the process of manipulating the 

inputs to a dynamical system to obtain a desired effect on the system outputs, with 

or without a human operator in the loop. In real terms, this translates to an algorithm 

or control law computing commands for vehicle actuators to affect a change in the 

vehicles 3D motion. This function is performed by an Automatic Flight Control System 

(AFCS), sometimes also termed an autopilot [39].  

Navigation is described as the process of monitoring and controlling the movement 

of a vehicle from one place to another through the processes of data acquisition, data 

analysis and extraction and inference of information about the vehicle and the 

surrounding environments states. Huang further breaks down the task of navigation 

into four subcategories: sensing, state estimation, perception and situational 
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awareness. A sensing system is one that uses one or more devices that respond to a 

physical stimulus and generate signals that reflect some information about an object 

or physical phenomenon. Typical sensing systems include gyroscopes, 

accelerometers, pressure sensors and cameras. State estimation is the processing of 

raw signals provided by a sensing system to estimate variables related to the vehicle 

or environment state. State estimation systems are often used to approximate a 

vehicles attitude, position or velocity from sensor data. Perception is the ability to 

use inputs from sensors or state estimation systems to build an internal model of a 

surrounding environment and recognise entities, events or situations using a priori 

knowledge. Typical UAS perception functions include environment mapping, 

obstacle or target detection and recognition. Situational awareness is the 

comprehension of perceived objects or events and the projection of their status into 

the near future. In other words, a system that exhibits situational awareness is able 

to understand objects or events perceived by a perceptual system, and with this 

understanding can make inferences about their behaviour in the future [39].  

A Guidance system exercises planning and decision-making functions to drive a 

system toward an assigned mission or goal. In the context of a UAS, a guidance 

system replaces the cognitive process of a human operator, using inputs from a 

navigation system to make high-level decisions and generate reference trajectories 

and commands for a control system. Huang defines five typical tasks of a guidance 

system: trajectory generation, path planning, mission planning, decision making and 

reasoning [39]. A trajectory generator has the role of computing the different motion 

functions that are physically possible for a RUAS to complete and providing these as 

reference trajectories for a flight control system to follow. These trajectories can be 

pre-programmed, sent to the RUAS in real-time or dynamically generated when 

required. Path planning is the process of using accumulated navigation data and a 

priori information to find the best or safest way to reach a goal state. Mission 

planning is the process of generating tactical goals, a route, command structure, co-

ordination and timing for a UAS. Planning can be performed in advance of a mission 

or in real-time. Decision making is the ability of a UAS to select a course of action 

from several alternative scenarios based on available information and analysis. The 
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decisions made are relevant to achieving mission goals efficiently and safely. 

Reasoning is the UAS’s ability to analyse and reason using contextual associations 

between different entities. These functions are the highest level of autonomy 

possible and are equivalent to fully replacing the human cognitive process [39].  

The ALFURS scale spans the whole range of possible autonomy levels, from RPAS that 

are completed controlled by a remote operator to fully autonomous systems that are 

capable of human-level decision making and planning without external input. The 

stages in between define notable guidance, navigation and control milestones that 

increase autonomy level. The scale can be seen in full in Figure 2-1. The MoD 

definitions of automation and autonomy are most directly comparable to levels 1 and 

6, respectively, demonstrating the deficiencies in this approach to autonomy 

classification. 



20 
 

 

Figure 2-1: Autonomy Levels for Unmanned Rotorcraft Systems (ALFURS) Framework [35]. Acronyms: 

ESI (External System Independence), EC (Environmental Complexity), MC (Mission Complexity), ES 

(External System), SA (Situational Awareness), RT (Real-Time). 

2.1.3 State of the Art UAS Guidance, Navigation and Control 

It is also necessary to examine what technologies are currently in use on state-of-

the-art UAS to contextualise these autonomy levels in today’s UAS market. In the 

consumer SUAS market, many aircraft are controlled by propriety GNC systems, and 

the techniques in use are not advertised. However, there are also a huge number of 

consumer aircraft that use open source autopilot software, such as PX4.  
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PX4 is a deeply embedded robotics middleware and programming environment 

designed specifically for use on Micro Aerial Vehicles (MAVs) [40]. The software 

allows for multiple operation modes, including remote control and autonomous 

flight due to its modular nature. PX4 consists of three main tiers: low-level sensor 

and actuator drivers, a mid-level Object Request Broker, and a high-level Flight Stack. 

The system is centred on the Object Request Broker that manages all data used in 

the firmware with a ‘publish and subscribe’ model, allowing any module in the 

firmware to access any variable it requires. The flight stack performs all guidance, 

navigation and control functions using data published by sensor drivers, then 

publishes control inputs for use by actuator drivers. The default PX4 flight stack 

contains attitude and position state estimators, attitude and position rate 

controllers, and attitude and position controllers for autonomous operations.  

The modular nature of the PX4 firmware also allows new guidance, navigation and 

control functions to be easily added to the system by registering new modules in the 

firmware configuration file. This architecture allows for new controllers or guidance 

routines to be tested with no need to modify system architecture and is commonly 

used in research to do so. It is also the firmware used on a number of unmanned 

aircraft owned by the University of Liverpool, which are detailed in section 3.1. PX4 

is also the intended platform for hardware implementation of any technologies 

developed during this research, though that implementation is not a component of 

this thesis. As a result, it was just used as an example autopilot throughout the work 

described in this thesis as an (open) source of inspiration.  

2.1.3.1 Visual Guidance Technologies 

According to the ALFURS scale introduced in section 2.1.2, some form of sensor 

beyond GPS and inertial navigation sensors is necessary for any autonomy level 

above 2, to reduce reliance on external signals. These sensors are necessary to allow 

for continued operation in environments where GPS is inadequate or denied and can 

be either active or passive. Active sensors such as radar or Lidar are valuable for 

increasing autonomy but can be expensive and limited in range or resolution. Passive 

sensors such as video cameras are inexpensive and are an intuitive option, since 

vision forms the basis of natural human and animal state estimation. Visual state 
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estimation can be divided into 6 distinct types: on ground vision, visual odometry, 

target relative navigation, terrain relative navigation, concurrent estimate of motion 

and structure, and bio-inspired optic flow navigation [38].  

On ground vision systems use video cameras to track UAS from a third person 

perspective and estimate aircraft position and attitude in a local or image frame of 

reference. This removes the need for heavy, power consuming cameras onboard, and 

reduces the computational requirements on the UAS processor. However, aircraft 

are greatly restricted in operating area with on ground vision systems. As a result, 

they are often used as supplemental systems when greater positional accuracy is 

required, such as for landing or docking manoeuvres.  

Visual odometry estimates an aircraft’s attitude and relative position by analysing 

successive images captured by a video camera. This process is performed in three 

steps: detection of features to be tracked, feature correspondence between images 

and motion parameter estimation. This has been accomplished using a fusion of 

stereo visual odometry and inertial navigation data on aircraft such as a CMU 

autonomous helicopter [41] and the AVATAR helicopter [42]. Visual guidance 

problems are more complex when using a monocular vision base since depth cannot 

be a recovered from a single image. However, monocular visual odometry has been 

achieved in 2009 using a mathematical homography based technique to associate 

and track point features [43]. Researchers at MIT have developed a monocular vision-

based method of estimating position and velocity when GPS signals are unavailable 

by establishing absolute reference points before GPS signal is lost [44].  Another 

visual odometry system proposed by Kendoul calculates the position of a rotorcraft 

by computing optic flow, tracking visual features and integrating image displacement 

to find distance travelled [45]. 

Target relative navigation uses similar methods to visual odometry but is predicated 

on the existence of a target. It can be separated into four categories: vision-based 

landing on a known target, vision-based landing on an unknown target, vision-based 

static target tracking and vision-based mobile target tracking. Vision-based landing 

on a known target uses a-priori knowledge of the target landing zone to identify and 

track the objective. A common example is a helipad consisting of a large ‘H’ symbol 
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or other defined shape. These known shapes can be identified within an image and 

their attitude and size can be used to infer the position and attitude of the aircraft to 

be landed relative to those shapes. This approach has been performed with 

monocular vision systems, as the known size of the object to be tracked removes 

scale factor ambiguity in the image. Reference [46] reports on an example of this type 

of system. Vision based landing on an unknown target can use similar techniques, 

but a target point to be tracked must first be identified by through Safe Landing Area 

Detection (SLAD). SLAD has been accomplished by the NASA/US Army Autonomous 

Rotorcraft Project with the Palace experiment [47]. Static target tracking shares 

many features with landing approaches with a modified objective of flying toward, 

or hovering near, a target. This target can be on the ground but is not necessarily so. 

An example of static target tracking was given by Proctor and Johnson in 2005, in 

which an R-MAX helicopter was made to calculate its position and attitude relative 

to a dark square with known composition, computed from images and inertial data 

using an extended Kalman filter [48]. Mobile target tracking presents a greater 

challenge since only relative motion can be estimated and recovering the velocities 

of target and rotorcraft becomes more difficult without an exterior reference. Mobile 

target tracking requires a robust image tracking algorithm to track dynamic and 

unpredictable target behaviour in successive images. A Georgia Tech experiment in 

2007 used an active contour method to calculate the location of the target using two 

distinct strategies [49]: Centre Only Relative State Estimation (CORSE) tracks the 

target centre position from monocular images using an extended Kalman filter to 

estimate relative position and velocity. To maximise range accuracy, optimal control 

was used to generate a sinusoidal trajectory, mimicking stereo vision by moving the 

viewpoint around the target to give more information. The second approach, 

Subtended angle relative state estimation (SARSE) built on this approach by also 

tracking the wing tips of an aircraft as well as the centre to allow for future inference 

of the targets flight path.  

Terrain or landmark relative navigation infers an aircraft’s position by comparing 

terrain measurements from an onboard sensor with an a-priori terrain map. The 

reference map can be a digital elevation map, satellite images or topographical maps 
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with landmarks. Terrain Relative Navigation (TRN) systems were originally created 

for cruise missile guidance before the advent of satellite navigation systems but have 

also been used for accurate landing of spacecraft on the moon and Mars. Though 

more uncommon, there are isolated examples of TRN systems implemented on 

RUAS. In 2010 a system that used probabilistic template matching to compare flight 

images with a georeferenced map was successfully implemented on a Yamaha R-

MAX helicopter [50]. Shortly afterward, a similar system was demonstrated on a 

small quadcopter, which generated a visual route through an environment database 

and organised them as ordered target images, then navigated through the area by 

comparing the target images with onboard sensor output [51].  

Concurrent estimation of motion and structure techniques both estimate the pose 

of a UAS and map the local environment. They are commonly split into two variants: 

Structure From Motion (SFM) and Simultaneous Localisation and Mapping (SLAM). 

Both approaches present significant challenges due to issues with robust feature 

tracking, unknown scale factors in monocular vision, estimate drift and high 

computational requirements. An example of an SFM method was presented by 

Kendoul in 2009 which used three nested Kalman filters to compute optic flow, fuse 

optical and inertial data and recover motion parameters [45]. SLAM methods create 

a map of an unknown environment while localising the vehicle on that map. The first 

successful monocular implementation of SLAM, a system named MonoSLAM, was 

presented in 2010. It used a sparse, persistent map of natural landmarks within a 

probabilistic framework to localise the camera in real time, citing an active approach 

to mapping and measurement, the use of a general motion model for smooth camera 

movement and new solutions for monocular feature initialisation orientation 

estimation as significant elements of the system. However, this system has only been 

demonstrated on a desktop computer and not onboard an aircraft due to the high 

computational requirements [52].  

The final category of visual state estimation technologies is bio-inspired optic flow 

navigation systems. These take cues from natural systems to infer information about 

motion and environment. These technologies were originally derived from the way 

flying insects appear to use cues from optical flow for navigation, without explicitly 
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estimating motion or environmental structure. Optical flow can be defined as the 

pattern of apparent motion of objects, surfaces or edges in a visual scene caused by 

relative motion between the observer and scene and was pioneered by James Gibson 

in the 1940s [53]. Calculation of optic flow centres around estimating the motion 

between two image frames at every pixel position, with differential methods, phase 

correlation and block based methods all successfully applied for optical flow 

calculation. The principles of optical flow can be applied to accomplish many tasks; 

altitude control or terrain following has been achieved by regulating vertical optical 

flow to a constant zero value in the Octave autopilot using a small optic flow sensor 

and simple PID controllers [54]. Another system maintains vertical optical flow 

constant at a non-zero value, forcing an aircraft to slow down as it descends to 

maintain the optical flow, allowing for smooth landings based on the behaviour of 

honey bees. Optical flow has also been used for the purpose of obstacle avoidance, 

as areas of high optic flow in an image can be interpreted as imminent collisions and 

so can be avoided without explicitly mapping the environment.  

The maritime environment is a challenging even for human pilots, especially during 

launch and recovery [55]. As a result, use of UAS in the maritime environment is 

currently limited to only a handful of platforms. The Boeing ScanEagle entered 

service with the US Navy in 2005 and was also trialled for use by the Royal Navy at 

the same time, though it did not enter service with the UK forces. The ScanEagle is a 

small, long-endurance, fixed wing unmanned aircraft used for autonomous 

battlefield surveillance. At sea it is launched with a catapult and recovered with a 

‘skyhook’ retrieval system [46]. The Northrop Grumman X-47B is a demonstration 

unmanned combat air vehicle (UCAV) that has been flown by the US Navy since 2011. 

The aircraft has been successfully integrated into aircraft carrier operations with 

automated take-off and landings demonstrated [18]. The only RUAS platform 

currently in active service in a maritime role is the Northrop Grumman MQ-8 Fire 

Scout, shown in Figure 2-2. The Fire Scout first landed autonomously on an 

amphibious transport ship in 2006, with no pilot controlling the aircraft and has since 

flown for over 12,000 hours. For autonomous landings the Fire Scout uses a UAS 

Common Automatic Recovery System (UCARS) that requires a ground tracking 
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station and aircraft transponder to find the aircrafts relative position to the deck. This 

information is then relayed to the aircraft by a secure uplink and used to land the 

aircraft [56].  

 

Figure 2-2: MQ-8B Fire Scout RUAS landing onboard the USS McInerney in 2009 [57] 
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2.1.4 UAS Accident Statistics 

2.1.4.1 Civil UAS Accidents 

The European Union Aviation Safety Agency (EASA), and by extension, the UK Civil 

Aviation Authority (CAA), established mandatory occurrence reporting for UAS in 

Regulation No. 376/2014, published in May 2014. The CAA defines a reportable 

occurrence as ‘Any incident which endangers or which, if not corrected, would 

endanger an aircraft, its occupants or any other person’ [58]. Specific to SUAS, 

reportable occurrences may include: 

• Loss of control/datalink – where that loss resulted in an event that was 

potentially prejudicial to the safety of other airspace users of third parties; 

• Navigation failures; 

• Pilot station configuration changes/errors: 

o Between pilot stations; 

o Transfer to/from launch control/mission control stations; 

o Display failures. 

• Crew Resource Management (CRM) failures/confusion; 

• Structural damage/heavy landings; 

• Flight programming errors; 

• Any incident that injures a third party.  

All commercial operators of UAS must comply with these incident reporting rules, 

but hobbyist pilots are likely not even aware of them since there is no certification or 

registration procedure for amateur pilots in the UK or the wider EU aviation 

authority. The FAA’s small unmanned aircraft rule (part 107) also establishes 

mandatory accident reporting requirements, but only in cases where serious injury 

to a person occurs, or the cost of repair or replacement of any property damage 

exceeds $500. Rule 107 only came into force in June 2016 [59]. As a result, many civil 

SUAS accidents still likely go unreported. Note, all references to legislation are 

correct at the time of writing, but the rapid regulatory change associated with the 

UAS may render some statements obsolete in the near future. 
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Reference [60] reports on a study of 152 civil drone accidents and incidents and 

incidents between 2006 and 2015, with data collected from 19 different sources in 

the wake of an alleged collision between a drone and a British Airways Airbus A320 

at Heathrow Airport. Statistical analysis was used to determine how distribution of 

occurrence type, phase of flight and safety issues compare to Commercial Air 

Transportation (CAT). While the sample size was too small to say whether civil UAS 

accidents were more likely than CAT accidents, it was shown that technology issues, 

rather than human factors, were the key contributor in UAS events. This contrasts 

with CAT accidents where human factors problems are the primary driver behind 

accidents. 

2.1.4.2 Military UAS Accidents 

The most documented UAS accidents are those that occur on US military aircraft 

since they generally operate the most UA platforms of any single operator. Reference 

[25] reports on RPAS accidents in the US army between 1986 and 2004. The data was 

sourced from the Army Risk Management Information System, and a total of 74 

accidents were identified. Additional data from the US Naval Safety Centre reported 

239 UA mishaps between 1986 and 2002, and a further 15 mishaps were reported by 

USAF. All these accidents were classified in a two-step process by initial cause (human 

factors, maintenance, aircraft or unknown), and any human factors causes were 

further classified into alerts/alarms, display design, procedural error, skill-based 

error, and other. Extra categories were added in response to airframe specific 

concerns. Five aircraft were examined in the analysis: the RQ-2 Pioneer, RQ-5 Hunter, 

RQ-7 Shadow, MQ-1 and MQ-9 Predator and Global Hawk. The number of accidents 

in each category per airframe is shown in Figure 2-3. 
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Figure 2-3: US military RPAS accident causes between 1986 and 2004 for the five airframes 

operational in this period [25] 

 The RQ-2 Pioneer suffered the highest accident rate by far with 239 total major 

accidents. The Pioneer was the first RPAS to enter service with any US military force 

and was in service for the whole 18-year period examined in the report. All of the 

other aircraft entered service between 1986 and 2004. Lessons were clearly learnt 

from the Pioneer, and subsequent platforms experienced fewer problems. Aircraft 

faults make up a large proportion of accident causes, and this is attributed to the 

more relaxed design processes and standards applied to unmanned aircraft since 

there is no pilot to protect. Human factors are the second biggest cause of accidents 

in all aircraft. The identified human factors issues are further categorised in Table 

2-3. Some accidents had multiple human factors causes attributed to them. 
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Table 2-3: Human factors issues causing US military RPAS accidents between 1986 and 2004 [25] 

 Hunter Shadow Pioneer Predator 
Global 
Hawk 

Pilot-In-Command 1 2    

Alerts and Alarms 2 2  1  

Display Design 1 2  2  

External Pilot Landing Error 7  46   

External Pilot Take-off Error 3  7   

Landing Error  6  1  

Procedural Error 3 2  6 1 

Aircrew Coordination   9   

Weather   6   

The Hunter and Pioneer are both operated from Ground Control Stations (GCS) while 

in the air, but during take-off and landing are operated by an external pilot stood at 

the edge of the runway. This system caused a large portion of the accidents, 

especially on Pioneer. These issues are at least partially explained by the cross-

control problem faced by external pilots; when the aircraft is moving towards the 

pilot, control inputs appear reversed when looking at the aircraft. The Pioneer faced 

even greater challenges since it used arresting cables for runway landings that 

required very accurate positioning for capture. It also operated from ships where 

recovery was performed using a net.  

Landing was also a problematic flight phase for the Shadow, which used a Tactical 

Automated Landing System (TALS) to eliminate the external pilot problems faced by 

its predecessors, though to limited success. The Predator encountered fewer issues 

during landing, but the newer system was much more vulnerable to procedural 

errors; one accident occurred when a checklist was not completed and the stability 

augmentation system was turned off mid-flight, initiating an uncontrolled dive. The 

most advanced system, the Global Hawk, suffered relatively few accidents, with 

procedural error the lone culprit in human factors incidents. In this case, the taxi-

speed of the aircraft was erroneously inputted into the GCS as 155 knots. The aircraft 

ran off the runway, collapsing the nose gear and extensively damaging the airframe. 
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While the falling accident rates suggest that many faults were identified and fixed on 

the newer airframes, autonomy levels of the vehicles were still low enough that they 

could not protect from relatively basic operator errors.  

The Washington Post article discussed in section 1.2 built on this survey, unveiling 

that 400 large US military RPAS crashed in major accidents between 2001 and June 

2005 [23]. 102 of these aircraft were Predator MQ-1 or -9s, 40% of the total fleet. 

This suggests that either 87 Predator aircraft crashed in 2004 and mid-2005, or the 

statistics reported in reference [25] were incomplete. Either way, the mishap rate for 

this aircraft is high, and this further supports the notion that UAS accident reporting 

practices may be inadequate.  The article listed four fundamental safety gaps that 

the author viewed as essential improvements for drone manufacturers: 

1. Persistent mechanical and electrical defects due to insufficient testing before 

being brought into service. This included a large number of electrical 

malfunctions caused by bad weather.  

2. Unreliable communication links. Inconsistent wireless links caused 

navigational information and commands to be missed. Many connections 

were carried via satellite link that could be disrupted by large bank angles and 

rapid altitude changes. 

3. Pilot errors, particularly during landings. 

4. Limited ability to detect and avoid obstacles. For example, the camera used 

for the pilot’s eye view on Predator drones was limited to 30-degrees field of 

view, which severely limited the remote pilot’s awareness of their 

surroundings.   

Data on RUAS accidents is particularly scarce, since there a few operational examples 

of rotary-wing UAS in the military. However, the US Navy’s MQ-8B Fire Scout RUAS, 

described in more detail in section 2.1.1, has also faced problems. Fire Scout 

operations were suspended in 2012, after two major accidents in the space of a week 

[61]. One aircraft was intentionally ditched in the ocean off the coast of West Africa 

after failing to lock on to the automated recovery beacon on the USS Simpson. 

Multiple approaches were attempted amid exhaustive troubleshooting, but 
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operators were forced to perform a water landing as fuel ran out. The aircraft was 

later recovered with only minor damage incurred. A second Fire Scout was destroyed 

after crashing in Afghanistan a week later, prompting the Navy to ground all the 

remaining aircraft. Details on this second incident are scarce, but the circumstances 

of the first incident support the hypothesis that unreliable communication links are 

a major problem for UAS. This link is even more critical for maritime operations due 

to the need for accurate localisation relative to the moving ship deck, and the 

apparent lack of backup systems. 

Reference [37] contains further information about military drone crashes across the 

world between 2009 and 2018. The data set included 254 accidents across 21 

international operators, though 69% of the aircraft were operated by the US. Again, 

the MQ-1 and MQ-9 accounted for a majority of these problems with 164 mishaps 

on these platforms over the 9-year period. This was significantly more than the 

number of accidents on manned US military attack aircraft over the same period, 

with only 88 mishaps in this category. The UK armed forces had the second most UAS 

accidents, with 14 aircraft damaged or destroyed. Analysis of the dataset yielded that 

64% of accidents occurred mid-flight, 20% at the point of landing, 8% during take-off, 

and the remaining 8% occurring at unknown points. This more recent dataset 

suggests that the rate of drone accidents is declining but is still significantly higher 

than that of manned aircraft in similar roles. The landing phase is also highlighted as 

problematic again.  
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2.2 Tau Theory  

Tau theory is a key underlying element of all the work presented in this thesis, so it 

is useful to have some appreciation of its origin, as well as the details of the theory 

itself. The following sections will outline its genesis and examine the key elements of 

the theory.  

2.2.1 Visual Perception 

Tau theory has its roots in the ecological approach to psychology and visual 

perception that was pioneered by J.J. Gibson in the mid-20th century. This was largely 

brought about through his work developing technology for military pilot training in 

the wake of the Second World War, detailed in reference [53]. Gibson considered 

how humans perceive the world around them, with the view that perception was 

inextricable from action; information that humans gained from the world around 

them was vital in all actions they performed in that world. Gibson theorised that a 

human was not a detached observer from their environment, simply gathering 

information in a retinal image to feed into some cognitive process later. Instead, they 

were immersed in a rich visual environment from which much information could be 

directly perceived.  

 

Figure 2-4: Optical flow field vectors as would be seen from an aircraft flying over an airfield [62] 
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Perhaps the most enduring concept of his work is optical flow, defined as “the pattern 

of apparent motion of objects, surfaces, and edges in a visual scene caused by the 

relative motion between an observer and the scene” [53]. The concept of optical flow 

is diagrammed in Figure 2-4, where the arrows represent the speed and direction of 

the visual field motion. It was hypothesised that this perception of motion occurred 

directly through the light rays entering the observer’s eye, rather than being later 

constructed from some cognitive process on the retinal images stored in the brain. 

Gibson also stressed that optical flow was important for his concept of affordance 

perception, which he defined as the ability to evaluate opportunities for action within 

an environment.  

2.2.2 Tau Theory Guidance 

Tau theory was first formally proposed by Lee in reference [26] in 1976, where he 

considered the complex behaviours required by motorists to successfully manoeuvre 

a vehicle through traffic while avoiding collisions with both moving vehicles and 

stationary objects. It built on Gibson’s work by again considering information that 

could be directly perceived from a visual scene. To avoid hitting a stationary object, 

the driver must be aware of their own position and velocity, and able to extrapolate 

that motion to register whether or not they are on a collision course. If so, they must 

then initiate braking in a timely manner, and modulate their braking to an 

appropriate level throughout the manoeuvre. If following another moving vehicle 

then they must also monitor their relative motion and maintain a safe distance 

margin between the two to for allow for the possibility that the other brakes.  This 

process raises questions about both what the driver is visually perceiving, and how 

whatever visual information gained is applied in his control methodology.  

 

Figure 2-5: A car braking as it approaches another stationary car ahead of it, with the spatial 

variables labelled 
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When, or how much, braking should be applied to avoid a collision does not depend 

simply on either spatial proximity, relative velocity or acceleration, but some 

combination of these variables, as illustrated in Figure 2-5. From simple kinematics, 

the instantaneous distance to stop at any point will be: 

 𝑋 =
𝑋̇2

2𝑋̈
 (2-1) 

Where 𝑋 is the distance to be closed, 𝑋̇ is the speed of the car and 𝑋̈ is its 

acceleration. Hence it follows that to avoid a collision with an object a distance 𝑋 

away, the driver must modulate their acceleration such that: 

 
𝑋𝑋̈

𝑋2
>
1

2
 (2-2) 

However, distances, speeds and accelerations are hard to judge intuitively, and it is 

unlikely that all motorists are constantly judging these spatial parameters and 

performing fast unconscious mental mathematics to avoid a collision. Lee proposed 

that a simple relationship that could account for all these factors was temporal 

proximity, otherwise referred to as time-to-collision. He assigned the symbol Tau, 𝜏, 

to represent this variable.  

In spatial terms, instantaneous time-to-collision is simple to compute as the ratio 

between the distance to the obstacle, and the closure rate of that gap. However, it 

would again seem difficult for a person to constantly estimate these parameters and 

divide one by the other. Lee instead considered the apparent motion of the image of 

the approaching obstacle on the motorist’s retina; the driver could estimate their 

time-to-collision from the inverse of the apparent rate of expansion of the object in 

their eye. These relationships are expressed in equation (2-3). 

 𝜏(𝑡) =
𝑥

𝑥̇
=

1

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑡𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛
 (2-3) 

This parameter gave simple mechanisms for both initiation of braking, and control of 

the deceleration. Lee presented experimental evidence that motorists initiated 
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braking when time-to-collision reached a certain threshold value. This temporal 

margin varied slightly between drivers with an average of 5.0 seconds but did not 

change with the speed the vehicle was travelling.  

2.2.3 Constant Rate of Change of Tau Strategy 

The rate of change of time-to-collision can be found by differentiating equation (2-3) 

using the quotient rule, and the result is given in equation (2-4). It bears obvious 

similarity to that stopping distance defined in equation (2-2) and formed the basis of 

Lee’s hypothesis on how the motorists he studied modulated their decelerative 

braking inputs; the drivers maintained a constant rate of change of time-to-collision 

throughout braking manoeuvres less than 0.5 to avoid collision with a looming 

obstacle. 

 
𝑑(𝜏)

𝑑𝑡
= 1 −

𝑋𝑋̈

𝑋2
 (2-4) 

It is useful to derive equations that give the vehicle position, velocity and acceleration 

throughout one of these ‘constant 𝜏̇’ approaches. For a constant rate of change of 

Tau, ‘k’: 

 
𝑑

𝑑𝑡
(
𝑋

𝑋̇
) = 𝑘 (2-5) 

Both sides can be integrated with respect to time, as in equation (2-6). By convention, 

at 𝑡 = 0, 𝜏 = 𝜏0 so the constant of integration is also 𝜏0. 

 
𝑋 𝑑𝑡

𝑑𝑋
= 𝑘𝑡 + 𝜏0  (2-6) 

Rearranging to separate spatial and temporal variables gives: 

 
1

𝑋
𝑑𝑋 =

1

𝑘𝑡 + 𝜏0
𝑑𝑡 (2-7) 

After evaluating integrals and rearranging: 
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 ln(𝐶𝑥) = ln(𝑘𝑡 + 𝜏0)
1
𝑘 (2-8) 

To find the constant of integration at 𝑡 = 0,  𝑥 = 𝑥0, so 𝐶 =
1

𝑥0
. Therefore: 

 𝑋 = 𝑋0 (1 +
𝑘𝑡

𝜏0
)

1
𝑘

 (2-9) 

To find expressions for velocity and acceleration, equation (2-9) can be differentiated 

with respect to time once and twice respectively. The velocity during a constant 𝜏̇ 

manoeuvre is: 

 𝑋̇ = 𝑋̇0 (1 +
𝑘𝑡

𝜏0
)

1
𝑘
−1

 (2-10) 

And the acceleration is: 

 𝑋̈ = 𝑋̈0 (1 +
𝑘𝑡

𝜏0
)

1
𝑘
−2

 (2-11) 

The initial acceleration required for the manoeuvre is unknown, but rearranging 

equation (2-4) and substituting in that and equation (2-5) yields: 

 𝑋̈ =  
𝑋̇0
2

𝑋0
(1 − 𝑘) (1 +

𝑘𝑡

𝜏0
)

1
𝑘
−2

 (2-12) 

From equation (2-6) it is also possible to derive an equation for the total manoeuvre 

duration by setting 𝜏 = 0 to find the manoeuvre duration, 𝑇: 

 𝜏 = 0 = 𝑘𝑇 + 𝜏0 (2-13) 

 𝑇 = −
𝜏0
𝑘

 (2-14) 

An example of a constant rate of change of Tau deceleration manoeuvre is shown in 

Figure 2-6 for a range of coupling constants. Note that for 𝑘 = 1, 𝜏̇ = 1, so time-to-

contact changes at the same rate as time. Therefore, there is no deceleration and 

collision will occur at initial speed. For 1 > 𝑘 > 0.5, an infinite deceleration is 
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required at the moment of contact to close velocity to 0 at the same time. Any real 

system will be incapable of this infinite deceleration and therefore collide with the 

obstacle at some speed above 0. For 𝑘 = 0.5 deceleration is constant, and velocity 

will close to 0 at the same time as distance. For coupling constants of 0.5 > 𝑘 > 0 

initial deceleration will be greater and lead to stopping at the endpoint with a velocity 

of 0. 

 

Figure 2-6: A constant rate of change of Tau deceleration manoeuvre: (a) Tau trajectory (b) Motion 

gap closure (c) Motion gap closure rate (d) Motion gap acceleration profile 

Over the next two decades, Lee published a large number of papers demonstrating 

Tau theory in action, generalising it in the process to more often refer to ‘time-to-

contact’, rather than the ‘time-to-collision’ referenced in his first paper. In humans, 

he demonstrated the use of Tau in many athletic motions including somersaulting 

[63], regulation of gait in the approach to a long jump [64], control of step length 

while running over irregular terrain [65] and catching a ball [66].  

Tau guided movements were also demonstrated in a range of birds performing 

various actions.  Gannets, a British seabird, search for fish from heights of up to 30m. 
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They dive toward their prey at high speed and flare their wings just before hitting the 

water to slow their descent. Analysing the flare manoeuvre with high-speed video 

cameras through the lens of Tau theory allowed prediction of the flare time when 

the height of the dive was varied [67]. Similar behaviours were also observed in 

pigeons landing on a perch; approach velocity appeared to be regulated with the rate 

of change of Tau, and the extension of their feet to grasp the perch occurred at a 

certain threshold value of time-to-contact [68]. Hummingbirds also exhibited this 

behaviour when ‘docking’ with flowers to feed [69]. Several papers also focussed on 

bats, examining whether they also exhibited Tau guided movements using a different 

sensory mode: echolocation. In one of these experiments, bats flew through an 

aperture with their eyes covered to force reliance on acoustic sensing [70]. Strong 

evidence for them following a constant 𝜏̇ approach during the manoeuvre was found. 

This result is interesting as it suggests that time-to-contact is not reliant on vision, 

and as such can be considered sensor agnostic.  

2.2.4 Tau Coupling 

Lee built on this work in reference [71] that proposed that the coupling of Taus of 

multiple action gaps was a key element of Tau guidance. An action gap is a separation 

between the current state of a system and a goal state to be achieved through some 

action. Action gaps are usually a spatial dimension, like the distance between a car 

and a desired stopping point, but the term can cover a range of variables. This work 

recognised that gaps often need to be closed synchronously and this can be achieved 

by coupling the time-to-contacts of multiple action gaps together in some ratio with 

a coupling constant, as in equation (2-15). 

 𝜏𝑋 = 𝑘 𝜏𝑌 (2-15) 

The constant 𝜏̇ approach strategy can also be seen as an example of coupling a 

distance gap to a velocity gap; as the distance to the target reaches zero, so must the 

velocity. This is illustrated in equation (2-16), the spatial parameters of which can be 

easily rearranged to the form of equation (2-4). The coupling constant is therefore 

linked as shown in equation (2-17) for constant 𝜏̇ manoeuvres. 
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𝑋

𝑋̇
= 𝑘

𝑋̇

𝑋̈
 (2-16) 

 𝑘 = 1 − 𝜏̇ (2-17) 

Multiple distance gaps can be coupled together to create different approach 

strategies by varying the coupling constant. This methodology allows for control of 

both approach velocity and approach direction by varying two different coupling 

constants. From equation (2-15): 

 
𝑋

𝑋̇
 = 𝑘

𝑌

𝑌̇
 (2-18) 

Inverting and integrating with respect to each variable: 

 ln(𝑌) =
1

𝑘
ln(𝑋) + ln(𝐶) (2-19) 

 Which can be reduced to: 

 𝑌 = 𝐶 𝑋
1
𝑘 (2-20) 

The constant 𝐶 can be found by considering the 𝑡 = 0 boundary condition, where 

𝑋 = 𝑋0 and 𝑌 = 𝑌0: 

 𝐶 =
𝑌0

𝑋0

1
𝑘

 (2-21) 

The velocity and acceleration equations for the 𝑦 direction can also be obtained by 

differentiating with respect to time once and twice respectively: 

 𝑌̇ = 𝐶
1

𝑘
 𝑋

1
𝑘
−1𝑋̇ (2-22) 

 𝑌̈ = 𝐶
1

𝑘
 𝑋

1
𝑘
−2 [(

1

𝑘
− 1) 𝑋̇2 + 𝑋 𝑋̈] (2-23) 

An example of a multiple-axis, coupled, constant rate of change of Tau manoeuvre is 

shown in Figure 2-7. A constant 𝜏̇ deceleration is performed in the 𝑋 direction with a 

coupling constant set at 𝑘 = 0.25, while 𝜏𝑌 is coupled to 𝜏𝑋 with varying coupling 

constants between 0.25 and 1. Note that for 𝑘 = 1 the traces will be identical for 
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both axes. Plot (b) shows that changing the coupling constant between the Tau of 

each gap can create different approach angles to the target point. Meanwhile, the 

other plots illustrate that contact with the target occurs in both axes at a velocity of 

0 as in a single axis constant rate of change of Tau manoeuvre; the gap closure is 

synchronised across the coupled gaps. 

 

Figure 2-7: A coupled-Tau multi-axis Tau manoeuvre: : (a) Tau trajectory (b) Motion gap closure (c) 

Motion gap closure rate (d) Motion gap acceleration profile 

2.2.5 Intrinsic Tau Guidance 

Thus far, motion gaps have only been coupled to other physical motion gaps, but this 

is not always an adequate mechanism to explain certain behaviours. Lee considered 
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a musician in a band, waiting for the right moment in a piece of music to play a chord. 

They must play the right notes at exactly the right time to fit in with the beat of the 

music, with the right amount of force to create the appropriate dynamics from their 

instrument. In this case, there is no motion gap that the player can couple their action 

to, so Lee hypothesised that the action of playing the chord was being coupled to 

some intrinsic Tau guide generated by their nervous system. The framework for 

coupling would be the same; the information about the extrinsic Tau gap would come 

through the senses, while the intrinsic Tau guide information would be entirely 

generated within the nervous system. It is assumed that simple control processes 

evolve over unnecessarily complex ones, so it is reasonable to also assume that any 

intrinsic Tau guide would have the simplest form possible. 

2.2.5.1 Second-Order Intrinsic Tau Guides  

Lee conceived a general intrinsic Tau guide as a time-varying value generated by 

some bodily process. As it was theorised to be some function of the nervous system, 

he proposed that this value would be generated by a flow of electric charge from one 

area of the brain to another, from a full ‘reservoir’ to an empty one. The rate would 

be such that the second-order time derivative of the flow was constant. At 𝑡 = 0, the 

reservoir will be full of electrical charge, here termed 𝑞𝐺, and the flow rate will be 0. 

After some time, 𝑇𝐺, the reservoir will be empty. From simple kinematics equation 

(2-24) can be constructed to give the amount of charge remaining in the reservoir at 

some time before emptying. 

 𝑞𝐺 =
1

2
𝑞̈𝐺(𝑇𝐺

2 − 𝑡2) (2-24) 

Again, the value of the Tau guide will be the ratio of distance to close the gap, and 

gap closure rate. The rate of emptying at a time 𝑡 will be −𝑞̈𝐺𝑡, therefore the value 

of the Tau guide will be: 

 𝜏𝐺 = 

1
2 𝑞̈𝐺

(𝑇𝐺
2 − 𝑡2)

−𝑞̈𝐺𝑡
=
1

2

𝑡2 − 𝑇𝐺
2

𝑡
  (2-25) 

This expression for the Tau guide can then be coupled to an extrinsic motion gap: 
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 𝜏𝑀 = 𝑘 𝜏𝐺 =
𝑘

2

𝑡2 − 𝑇𝐺
2

𝑡
 (2-26) 

Instead of considering the flow of charge in the nervous system, the same result 

could also be achieved by analysing an object falling in earth’s constant gravitational 

field. It is again useful to derive equations to define the position, velocity and 

acceleration trajectories of a coupled intrinsic Tau guide. From equation (2-26), a 

coupling intrinsic Tau guide can be expressed as: 

 
𝑋𝑀

𝑋̇𝑀
= 𝑘

𝑞𝐺
𝑞̇𝐺

 (2-27) 

Rearranging and integrating with respect to each motion gap yields: 

 ln(𝑋𝑀) = ln(𝑞𝐺)
1
𝑘 + ln(𝐶) (2-28) 

Raising to the power 𝑒 and substituting in equation (2-24): 

 𝑋𝑀 = 𝐶 [
1

2
𝑞̈𝐺(𝑇𝐺

2 − 𝑡2)]

1
𝑘
= 𝐷𝜏(𝑇𝐺

2 − 𝑡2)
1
𝑘 

(2-29) 

Differentiating with respect to time once and twice produces equations for velocity 

and acceleration respectively: 

 𝑋̇𝑀 = −2𝐷𝜏
1

𝑘
 𝑡 (𝑇𝐺

2 − 𝑡2)
1
𝑘
−1 (2-30) 

 𝑋̈𝑀 = 2𝐷𝜏
1

𝑘
 [(
2

𝑘
− 1) 𝑡2 − 𝑇2] (𝑇𝐺

2 − 𝑡2)
1
𝑘
−2 (2-31) 

The value of 𝐷𝜏 can be found by assessing the boundary condition at 𝑡 = 0 with 

equation (2-29): 

 𝑋0 = 𝐷𝜏(𝑇
2 − 02)

1
𝑘 (2-32) 

Therefore: 

 𝐷𝜏 =
𝑋0

𝑇
2
𝑘

 (2-33) 

An example of a second-order intrinsic Tau guide coupled to a motion gap is shown 

in Figure 2-8. The main difference between a second-order intrinsic Tau guide and a 
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first-order constant 𝜏̇ guides lies in the initial conditions: for a constant 𝜏̇ guide, the 

entity must have some initial velocity. An intrinsic Tau guide allows for the entity to 

accelerate from rest and then decelerate to a stop as evidenced by the velocity trace. 

Varying the coupling constant will again affect how acceleration is distributed 

through the manoeuvre. For 𝑘 = 1, the entity will accelerate at a constant rate 

throughout the manoeuvre and collide with the target at speed. For 1 > 𝑘 > 0.5, it 

will accelerate toward the target for a greater proportion of the manoeuvre and then 

decelerate hard at the end to attempt to contact with a velocity of 0. However, this 

will again require an infinite deceleration that any real system will be unable to 

provide, so will make contact with the target at some speed above 0. For 0.5 > 𝑘 >

0 the entity will accelerate quickly in the first half of the manoeuvre and begin its 

deceleration early to shed most of its velocity before the terminal phase. It will, 

therefore, make contact with the target with 0 velocity. 

 

Figure 2-8: A coupled second-order intrinsic Tau guide manoeuvre: (a) Tau trajectory (b) Motion gap 

closure (c) Motion gap closure rate (d) Motion gap acceleration profile 
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2.2.5.2 Zero-Second-Order Intrinsic Tau Guides 

The constant rate of change of Tau strategy can also be explained through intrinsic 

Tau guides if a zero-second-order (first-order) version of equation (2-24) is 

constructed. Since 𝑞̈𝐺 = 0, the amount of charge left must instead be 𝑞̇𝐺𝑡: 

 𝜏𝐺 = 
𝑞̇𝐺(𝑇𝐺 − 𝑡)

−𝑞̇𝐺
= 𝑡 − 𝑇𝑔 (2-34) 

This guide can then be coupled to an extrinsic motion gap: 

 𝜏𝑀 = 𝑘(𝑡 − 𝑇𝐺) (2-35) 

Substituting in equation (2-14) for manoeuvre duration, equation (2-35) can be easily 

rearranged to the form of equation (2-6), proving that a constant 𝜏̇ approach can also 

be attributed to an intrinsic Tau guide. 

2.2.5.3 Third-Order Intrinsic Tau Guides 

Though third-order intrinsic Tau guides have not been explicitly folded into the Tau 

theory framework, motions that follow their expected movement pattern have been 

observed in various arm movements. In 1984 Hogan theorised that primates would 

attempt to minimise jerk (the 3rd order derivative of displacement) during certain 

voluntary movements to avoid large accelerative transients [72]. He presented a 

solution to the optimal control problem of forearm motion using a jerk cost function, 

but this approach required symmetric velocity profiles that were not always present 

when performing faster movements. A later study by Nagasaki examined arm 

movements over a wide range of speeds and used Hogan’s minimum jerk model to 

analyse the trajectories observed, including an ‘asymmetry index’ to explain 

asymmetric velocity profiles that were observed during more aggressive motions 

[73]. This bears immediate similarity to the coupling constants of Tau theory. There 

is no literature definitively comparing any natural movement to a defined third-order 

intrinsic Tau guide but the equations that such a guide would necessitate are defined 

in reference [74]. These third-order guides were derived using the same process as 

second-order guides, modelling the flow of charge from one area of the brain to 
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another. However, a third-order guide assumes that both 𝑥̇ =  0 and 𝑥̈ = 0 at 𝑡 = 0, 

so from simple kinematics the amount of charge left to flow is: 

 𝑞𝐺 =
1

6
𝑞𝐺⃛(𝑇𝐺

3 − 𝑡3) (2-36) 

And the flow rate at a given time: 

 𝑞̇𝐺 = −
1

2
𝑞𝐺⃛𝑡

2 (2-37) 

Therefore, the reservoir of charge’s time-to-empty is: 

 𝜏𝐺 =
𝑞𝐺
𝑞𝐺̇
=
1

3

𝑡3 − 𝑇𝐺
3

𝑡2
 (2-38) 

The guide can then be coupled to an external action gap as usual: 

 𝜏𝑀 = 𝑘𝜏𝐺 =
𝑘

3

𝑡3 − 𝑇𝐺
3

𝑡2
 (2-39) 

The equations for position, velocity and acceleration can be found in the same 

manner as for second-order tau guides, using the variant equation for electrical 

charge instead (equation (2-36)). This results in: 

 𝑋𝑀 = 𝐷𝜏(𝑇𝐺
3 − 𝑡3)

1
𝑘 (2-40) 

 𝑋𝑀 = −𝐷𝜏
3

𝑘
 𝑡2 (𝑇𝐺

3 − 𝑡3)
1
𝑘
−1 (2-41) 

 𝑋̈𝑀 = 𝐷𝜏
3

𝑘
 𝑡 [(

3

𝑘
− 1) 𝑡3 − 2𝑇𝐺

3] (𝑇𝐺
3 − 𝑡3)

1
𝑘
−2 (2-42) 

Where: 

 𝐷𝜏 =
𝑋0

𝑇𝐺

3
𝑘

 (2-43) 

Third-order intrinsic guides can be useful because they allow for movements with 

zero acceleration at the start and end of the manoeuvre. First and second-order 

intrinsic Tau guides necessarily require an instantaneous non-zero acceleration at the 

start of the manoeuvre, which the controlled system may not be capable of 
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developing, leading to tracking errors. An example of the temporal and spatial 

trajectories generated by a third-order intrinsic Tau guide are shown in Figure 2-9. 

 

Figure 2-9: A coupled third-order intrinsic Tau guide manoeuvre: (a) Tau trajectory (b) Motion gap 

closure (c) Motion gap closure rate (d) Motion gap acceleration profile 

2.2.5.4 Summary of Intrinsic Tau Guides 

Intrinsic Tau guides are a powerful tool that can be used to effect a range of different 

guidance strategies by changing the order of the Tau guide equation and a few 

intuitive parameters. If generating trajectories to guide a system, the most 

appropriate Tau guide to follow seems to depend on the initial conditions of the 

system that will be coupled to the Tau guide. However, all offer the same key 

benefits: control of manoeuvre duration, and synchronised deceleration to a stop at 

a desired point in space. These two factors allow for generation of guidance 

trajectories in four dimensions (three spatial and one temporal).  The different order 

Tau guides are summarised in Table 2-4, with the velocity and acceleration conditions 

that are associated with the use of each one.  
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Table 2-4: Summary of different order Tau guides and the initial conditions that necessitate their use 

Initial Conditions Tau Guide 
Order 

Tau Guide Equation 
Velocity Acceleration 

𝑋̇ ≠ 0 𝑋̈  ≠ 0 1st 𝜏𝐺 = 𝑡 − 𝑇𝐺 

𝑋̇ = 0 𝑋̈  ≠ 0 2nd 𝜏𝐺 =
1

2

𝑡2 − 𝑇𝐺
2

𝑡
 

𝑋̇ = 0 𝑋̈ = 0 3rd 𝜏𝐺 =
1

3

𝑡3 − 𝑇𝐺
3

𝑡2
 

 

2.2.6 Alternatives to Tau Theory 

Much has been written in support of Tau theory since its inception, but it is not 

universally accepted as a mechanism of ecological guidance. Reference [75] presents 

an alternative perspective on Tau theory with a critique of the body evidence that 

has been used in favour of Lee’s theory. This study raised concerns about a number 

of experiments that were used as evidence for Tau theory, which used visual scenes 

presented through flat-screen monitors to investigate motion control. The author 

argued that this method of presenting a visual scene removed depth perception cues 

that are of importance in reality. The study also presented an alternative theory for 

explaining the interceptive behaviours attributed to Tau theory, instead proposing 

that a relative distance ratio could provide an equally viable explanation for the 

acrobatic actions investigated.  

As mentioned in section 1.6.1, the focus of this thesis is not to provide any evidence 

in support, or opposition, of Tau theory. Significant evidence has been presented 

above that certain actions seem to follow the trajectories that result from the Tau 

theory hypothesis, and that these approaches are useful in some situations. This 

information is solely used as a basis for assessing the utility of these guidance 

strategies on UAS.   
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2.3 Tau in Aviation 

Since the use of Tau has been inferred in both the activities of humans and birds, it 

is reasonable to assume that humans may use Tau as a prospective control strategy 

while operating aircraft. Since the origin of Tau theory lies in the analysis of motorists 

it is evident that humans can extend their natural control mechanisms to the 

operation of machines, but it was not clear how the extra degrees of freedom in an 

aircraft might play into this paradigm.  

This question was first addressed by Padfield in reference [29], co-authored by Lee. 

They examined common manoeuvres performed by helicopter pilots, such as 

approaching a hover point, climbing to avoid rising terrain and turning along a line 

feature. Several flight test experiments at the University of Liverpool and the Defence 

Evaluation and Research Agency (DERA) were carried out to assess whether pilots 

were following Tau guides during an acceleration-deceleration manoeuvre. The 

resulting trajectories correlated strongly with constant 𝜏̇ acceleration and 

deceleration guides in each phase, even when task aggression was varied, suggesting 

that Tau was a key element in safe rotorcraft flight.  

Padfield also examined a hill climb manoeuvre in a 2007 paper, in which he analysed 

the behaviour of helicopter pilots approaching rising terrain using Tau theory [76]. 

Flight simulation experiments showed that pilots used their time-to-contact with the 

slope as a measure of when to initiate a pull-up manoeuvre, with look-ahead times 

of 6-8 seconds regardless of velocity. The experiments were performed in both a 

Good Visual Environment (GVE) and a Degraded Visual Environment (DVE) to assess 

whether the quality of visual cues available would affect Tau behaviour. Results 

showed that in DVE pilots maintained a similar look-ahead margin but were more 

likely to adopt lower coupling constants in the manoeuvres they performed with low 

visibility. The pilots followed second-order intrinsic Tau guides when performing the 

pull-up manoeuvre in both GVE and DVE. This perspective was reinforced by further 

flight simulation experiments performed by Lockett in reference [77]. In these 

experiments, an approach to hover manoeuvre was performed in both GVE and DVE, 

instead of Padfield’s hill climb pull-up. The results showed that the pilot effected 
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constant 𝜏̇ deceleration approaches in both GVE and DVE with similar Tau margins as 

before.  

The presence of Tau in the piloting of fixed-wing aircraft was demonstrated by Jump 

in reference [78] in both the take-off and landing phases of a civil airliner flight. 

During the rotation phase of take-off, it was found that the pilot increased pitch angle 

to a desired value for a climb by following an intrinsic Tau guide. While interesting, 

this was not the focus of the research. Instead, the more safety-critical flight phase 

of flare during landing was examined. More simulation results gave evidence that the 

flare manoeuvre was conducted via a constant 𝜏̇ deceleration strategy to arrest the 

descent and land safely [28]. Jump further suggested that insufficient visual 

information to perform the flare manoeuvre was a primary cause of some aviation 

accidents. In response he developed guidelines for the design of novel display 

technology to provide Tau cues to the pilot when visual information was insufficient 

in reference [79]. 

2.4 Tau Perception 

Although theories have been presented, the exact ecological mechanism for sensing 

time-to-contact remains unclear. A range of approaches have been proposed for 

electronically estimating time-to-contact. These methods can broadly be divided into 

two categories: spatial and optical.  

2.4.1 Spatial Tau Perception Methods 

A common approach is to calculate time-to-contact from spatial information 

provided by GPS-INS systems, an example of which is reported in reference [30]. This 

approach operates by using estimates of the aircraft position and velocity to calculate 

Tau. For example, one can find a simple estimate of a descending aircraft’s time-to-

contact with a ground plane by leveraging the altitude and descent rate: 

 𝜏 =
𝑍

𝑍̇
 (2-44) 

However, these approaches neutralise some of the advantages of Tau-based 

guidance, chiefly their ability to react to changes in the surrounding environment. It 
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is impossible to always provide accurate values for spatially computed time-to-

contact estimates without comprehensive prior knowledge of the environment and 

its dynamics, which is usually not feasible, or even possible, to collect, store or use. 

Depending on the source of altitude estimates it is likely that the given value is not 

the true height above terrain, as this would either require some variety of active 

ranging altimeter, or a database of terrain altitudes in the local area. The resolution 

of either is finite, so vulnerable to error.  

Another common method of generating spatially computed time-to-contact 

estimates is to use machine vision to localise the aircraft with respect to some known 

visual feature or template. This approach was used in reference [32], where April 

Tags were placed around a desired landing area for a quadcopter. The April tags were 

used to localise the aircraft with respect to the target, and the distance and velocity 

of the aircraft used to calculate Tau. This method allows precise control and reactivity 

to dynamic environments but requires templates or known features to be placed 

within the area before operations. 

2.4.1.1 Active Tau Perception Methods 

There is strong natural precedent for using active sensors in Tau perception, i.e. 

sensors that emit a signal in order to estimate the range to an obstacle or target and 

hence calculate Tau. Section 2.2 discussed experiments involving bats, who use 

active sonar signals to sense obstacles, and reference [70] presented evidence for 

the use of Tau guidance using Tau from echolocation. This suggests that active 

sensors could be a useful tool for Tau perception. 

Reference [80] details an early implementation of an active Tau perception system 

implemented on two different wheeled robots. One robot carried a light bulb of 

known luminance, and the second was equipped with a light sensor that was used to 

produce an estimate of the distance between the two robots based on the amount 

of light received from the first robot. The measured distance and its rate of change 

were used to produce a Tau estimate.  

Reference [81] provides analysis of Radar, Lidar and ultrasound systems as 

prospective tools for next generation driver assistance functions, all of which could 
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function as prospective Tau sensors. As already established in the discussion of Tau 

theory, motorists must maintain high situational awareness while driving, so 

accurate, reliable sensors for gaining knowledge of the environment and other 

motorists are essential if elements of driving are to be made autonomous in future. 

The study assessed Radar, Lidar and Ultrasound sensors effectiveness within defined 

range bands and angular resolutions, taking into additional capabilities. The findings 

are summarised in Table 2-5. 

Table 2-5: Typical strengths and weakness of Radar, Lidar and Ultrasound automotive sensors. Key: 

++: ideally suited, +: good performance, 0: possible but drawbacks expected, -: only possible with 

large additional effort, --: impossible, n.a.: not applicable [81] 

 

Sh
o

rt
 R

an
ge

 

R
ad

ar
 

Lo
n

g 
R

an
ge

 

R
ad

ar
 

Li
d

ar
 

U
lt

ra
so

u
n

d
 

Range Measurement (< 2 m) 0 0 0 ++ 

Range Measurement (2 – 30 m) + ++ ++ - 

Range Measurement (30 – 150 m) n.a. ++ + -- 

Angular Resolution 0 0 ++ - 

Direct Velocity Information ++ ++ -- 0 

Operation in Rain ++ + 0 0 

Operation in Fog or Snow ++ ++ - + 

Operation if Dirt on Sensor ++ ++ ++ ++ 

In summary: 

1. Radar sensors are useful for medium and long range but have poorer 

performance at short ranges. They do have the useful capability of being able 

to measure velocity information directly through Doppler Radar. 

2. Lidar is most effective at medium range, but performance is heavily degraded 

by environmental factors. The short wavelength of laser radiation also 

prevents use of the Doppler effect to measure velocity information. 

3. Ultrasound sensors perform well at short range but very poorly at long 

ranges. The report does remark that ultrasonic sensors are currently the 
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most used of the three sensor types in the automotive industry; they are 

used for parking sensors due to their relatively low cost. 

The report concludes that Radar and Lidar are both useful prospective sensors for 

the Automotive industry, but the weight and cost of high-quality units is currently 

prohibitive in their implementation. 

2.4.2 Optical Tau Perception 

Optical methods estimate time-to-contact directly from sequences of images without 

recovering spatial parameters. Passive imaging provides a more obvious analogue to 

the mechanism used by humans and animals, and sensors are low cost and readily 

available. They also have a wide range of applications so can be used by multiple 

systems. 

Computer vision with a monocular camera is typically unable to recover motion 

parameters due to scale ambiguity; with only one viewpoint it is impossible to tell 

the difference between a small object close to the camera, and a larger one further 

away [82]. However, it is not necessary to recover spatial parameters to compute 

temporal ones. Monocular computer vision methods examined here can be sub-

divided into three further common categories for Tau perception: dimension 

tracking, optical flow divergence, and direct gradient-based. 

2.4.2.1 Dimension Tracking Methods 

The simplest method for Tau perception uses size and rate information obtained 

from a sequence of images to find time-to-contact [82]. While it isn’t possible to 

estimate the true size of an object from only an image of it, the ratio of its apparent 

size and the rate of change of that size can be used to estimate temporal parameters. 

Dimension-tracking methods leverage this concept simply and intuitively using a 

simple pinhole camera model as diagrammed in Figure 2-10. 
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Figure 2-10: Diagram of a camera descending toward an object on the ground plane, with a point on 

the object represented by a point, P, with the relevant distances labelled in the X and Z axes. 

In a pinhole camera model, all light rays entering the camera are assumed to pass 

through the same point. Therefore, the following equations can be derived using the 

geometric similarity between the two triangles formed by the light ray: 

 
𝑥

𝑓
=
𝑋

𝑍
 (2-45) 

In this way, the position of a point in the visual scene can be related to the focal 

length of the camera and its position in the image [82]. If the camera is allowed to 

move in the Z-axis, an expression for the movement of the point on the image plane 

can be derived by differentiating the perspective projection equations above with 

respect to time: 

 
𝑑𝑥

𝑑𝑡
= 𝑓

𝑋̇𝑍 − 𝑋𝑍̇

𝑍2
 (2-46) 

Since the size of the object does not change, the rate of change of X will be zero, and 

therefore some terms can be eliminated from the equations. This also assumes that 

the point of interest is not moving on the ground plane. By setting 𝑋̇ = 0: 
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𝑑𝑥

𝑑𝑡
= −𝑓

𝑋𝑍̇

𝑍2
 (2-47) 

Rearranging equations (2-45) for the image coordinates, then dividing by equation 

(2-47) produces an expression for time-to-contact: 

 
𝑥

𝑥̇
=

𝑓
𝑋
𝑍

−𝑓
𝑋𝑍̇
𝑍2

= −
𝑍

𝑍̇
= 𝜏 (2-48) 

Using this result, a system can be designed to track some dimension in an image and 

use it to produce an estimate of time-to-contact. This dimension might be a 

characteristic length of an object in the image, or a distance between some defined 

features. This method has been widely implemented, but reference [83] details a 

patent for a time-to-contact sensor that uses this approach.  

2.4.2.2 Optical Flow Divergence Methods 

A second option for Tau estimation using monocular images stems from analysis of 

the optical flow field that develops with camera motion. In a computer vision context, 

optical flow can be considered the apparent velocity of pixels on the image plane. 

2.4.2.2.1 Optical Flow Field Estimation 

Any calculation of optical flow is based on an underlying assumption of constant 

image brightness as originally proposed by Horn and Schunck in reference [84]. Any 

image can be regarded as an intensity or brightness pattern, and expressed as a 

function in these terms: 

 𝐼(𝑥, 𝑦, 𝑡) (2-49) 

This image brightness or intensity, 𝐼, is a function of position on the image plane, 

[𝑥, 𝑦], and time, 𝑡. The constant brightness assumption states that the intensity of a 

particular point in the brightness pattern does not change significantly with time; in 

other words, the information contained within the images of a video sequence does 

not change between video frames: 

 
𝑑

𝑑𝑡
𝐼(𝑥, 𝑦, 𝑡) = 0 (2-50) 
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The customary constant brightness equation is derived by applying the chain rule for 

differentiation: 

 
𝑑𝐼

𝑑𝑥

𝑑𝑥

𝑑𝑡
+
𝑑𝐼

𝑑𝑦

𝑑𝑦

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
= 𝐼𝑥 𝑢 + 𝐼𝑦 𝑣 + 𝐼𝑡 = 0 (2-51) 

Where 𝑢 and 𝑣 are the optical flow components in the 𝑥 and 𝑦 directions, and the 𝐼𝑥, 

𝐼𝑦 and 𝐼𝑡 terms are the image gradients with respect to 𝑥, 𝑦 and time directions. A 

single equation is insufficient for calculating the two optical flow components, so a 

further constraint equation must be introduced for a solution. This second equation 

is typically where optical flow methods differ most. 

2.4.2.2.2 Horn and Schunck Optical Flow 

Horn and Schunck’s second constraint equation assumes that optical flow varies 

smoothly across the image. The constant brightness assumption states that the 

brightness of a point remains constant between frames but allows for its motion 

within the image. If all points in an image moved independently, it would be nearly 

impossible to recover the optical flow velocities. However, in the majority of cases, a 

video will depict rigid objects undergoing motion so that neighbouring points will 

move with similar velocities; the optic flow field will have some degree of 

smoothness. This inference can be used to derive a second constraint equation to 

use in the optical flow calculations by using the Laplacian of the vector flow fields as 

a measure of smoothness. The full derivation of the method can be found in 

Appendix B.1.1, but reduces to a set of equations that must be solved iteratively for 

the optical flow field. 

2.4.2.2.3 Lucas-Kanade Optical Flow 

Lucas-Kanade optical flow is a widely used alternative to Horn and Schunck’s method 

and is detailed in reference [85]. It is based on an assumption that optical flow is 

constant in a local region surrounding a feature or pixel of interest. The constant 

brightness equation is solved in the local neighbourhood of the pixel through a least 

squares criterion, so the extra constraint equations used in this case are actually 

more versions of the constant brightness equation, specific to certain pixels. The 
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derivation of the equations for the Lucas-Kanade method can be found in Appendix 

B.1.2. 

To implement this method, a feature detection method is first applied to the image 

to find points of interest, and then the image gradients are determined at the pixel 

locations in a window of predetermined size around the feature. The image gradients 

can be estimated used the same methods as described for the Horn and Schunck 

estimator in Appendix B.1.1. The Lucas-Kanade estimator can estimate flow 

efficiently but can only operate where features are detected. It also relies on the 

extra assumption that flow is constant in the region around the feature. This is in 

direct opposition to the requirements of the Tau estimation method for optical flow 

fields that uses the divergence of the flow field. L-K flow estimators are widely 

implemented in image processing packages. 

2.4.2.2.4 Brightness Variance in Optical Flow Fields  

All of these optical flow estimation methods rely on the base constant brightness 

assumption. As with all assumptions, it will break down in certain situations. In this 

case, the assumption fails with changes in image illumination; brightness is not 

constant. Changes in illumination can be misinterpreted as motion field change and 

influence optical flow estimates. These changes are difficult to exclude in scenarios 

with looming objects because shadows cast by the observer can encroach on the 

visual scene. A solution to this issue is to acknowledge that there will be a brightness 

change in the image and account for this in the equation. An alternative equation 

proposed in reference [86] models this brightness change through a multiplicative 

field, 𝑀 and an offset, 𝐶. With this methodology, the brightness of each pixel can 

vary up and down and be moved around the image. This concept can be used to re-

formulate the constant brightness equation as: 

 
𝑑

𝑑𝑡
𝐼(𝑥, 𝑦, 𝑡) = 𝑀(𝑥, 𝑦, 𝑡)𝐼(𝑥, 𝑦, 𝑡) + 𝐶(𝑥, 𝑦, 𝑡) (2-52) 

Which can be expanded by differentiating the image brightness with the chain rule, 

and using 𝑚𝑡 and 𝑐𝑡 as the multiplicative and offset field as 𝑡 tends toward 0: 
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 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 − 𝐼𝑚𝑡 − 𝑐𝑡 = 0 (2-53) 

The same assumption that was proposed by Lucas-Kanade is then used to produce a 

solution to this variable brightness equation; optical flow is assumed constant in a 

region about a point or feature in the image. Since Lucas-Kanade solutions are 

overdetermined, there are enough equations to cover the increased number of 

unknowns in the variable brightness equation. The method was shown to produce 

coherent optical flow fields for situations with scene brightness change, where other 

methods produced no meaningful results. 

2.4.2.2.5 Tau from Optical Flow Divergence 

Once the flow field has been estimated, time-to-contact can be estimated from that 

field. It is not possible to recover spatial parameters of the visual scene from optical 

flow methods, but temporal parameters can be obtained by analysing the vector flow 

field. Specifically, the divergence of the optical flow field can be manipulated to yield 

time-to-contact estimates. Again, there are many examples of this method being 

implemented, but reference [87] provides details of a patent for a Tau sensor based 

on this method. It used an actuated camera to centre the focus of expansion within 

the image and then compute the optical flow field and find the divergence.  

2.4.2.3 Direct Gradient Methods 

The third class of methods examined are known as direct gradient methods and can 

be seen as an amalgam of dimension tracking and optical flow-based methods. This 

approach was first proposed by Horn in 2007 [88]. A gradient method combines the 

perspective projection equations and constant brightness equation to simplify the 

Tau estimation procedure using physical insights to the situation. The initial proposal 

of this method by Horn presents three different algorithms for estimating Tau in 

scenarios of varying complexity, including simple one-dimensional motion, 

translational motion in three dimensions, and time-to-contact with sloped planar 

surfaces. A further extension proposed a hierarchical framework for three-

dimensional motion relative to sloped planar surfaces in reference [88]. A third 

extension was proposed in reference [89] that incorporates corrections for rotational 

motion in three dimensions into the method. The derivations for these methods are 
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of interest for this thesis since they are heavily analysed, so the derivations for the 

five variants of the direct gradient method are included in Appendix B.2. 

2.4.2.4 Comparison of Spatial and Optical Tau Perception Methods 

Several methods for computing time-to-contact from sequences of images have been 

presented, but not analysed in great detail here. A full comparison of the three 

optical methods for Tau perception with their benefits and drawbacks is presented 

in chapter 4. However, it is useful at this point to compare the utility of an optical Tau 

sensor against the sensors that have been identified as viable for Tau perception in 

section 2.4.1. Table 2-6 is an updated version Table 2-5 with an optical Tau sensor 

included for comparison. It is important to note that while an optical Tau sensor is 

not actually recovering range or velocity, Tau is considered as a combination of these 

variables, so the ‘Range Measurement’ fields can be considered as ‘accurate Tau 

measurements at this range’ for the Tau sensor.  

Table 2-6: Typical strengths and weakness of Radar, Lidar and Ultrasound automotive sensors, with 

Optical Tau sensor also included for comparison. Key: ++: ideally suited, +: good performance, 0: 

possible but drawbacks expected, -: only possible with large additional effort, --: impossible, n.a.: not 

applicable [81] 
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Range Measurement (< 2 m) 0 0 0 ++ - 

Range Measurement (2 – 30 m) + ++ ++ - ++ 

Range Measurement (30 – 150 m) n.a. ++ + -- + 

Angular Resolution 0 0 ++ - ++ 

Direct Velocity Information ++ ++ -- 0 ++ 

Operation in Rain ++ + 0 0 0 

Operation in Fog or Snow ++ ++ - + 0 

Operation if Dirt on Sensor ++ ++ ++ ++ 0 

It is clear that no single one of these sensors is suitable for all situations and the 

different options all have different benefits and drawbacks. Optical Tau sensors can 
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be very effective at mid- to long-range, and have excellent field of view in comparison 

to other technologies, though performance in adverse conditions may be poorer. 

They also exhibit poorer performance at very short ranges. It is unlikely that a single 

sensor would ever be deployed as a sole source of navigational information for any 

unmanned aircraft, and UAS will always much more likely use a suite of sensors, 

which an optical Tau sensor could be part of.  

2.5 Tau in Guidance and Control 

Implementations of control systems using time-to-contact as an input exist as far 

back as 2008, such as the mobile robot system developed by Kai, Shimada and Ito in 

reference [80]. This system used two robots: one manually controlled ‘leading’ robot 

and one ‘follower’ robot. A system of light bulbs and light sensors was used as to 

actively estimate time-to-contact between the two robots. The inverse of this Tau 

value was then used as the error signal in a proportional feedback system that 

controlled the speed of the follower robot. They also tested the robots in a ‘fleeing’ 

task, where the follower robot attempted to maintain a Tau margin in front of the 

manually controlled robot, instead of behind it. The system performed well in both 

scenarios but had to be used in a dark room to prevent light pollution from disrupting 

Tau measurements.  

An early example of Tau guidance in an aerospace context was presented by Voskuijl, 

Walker, Manimala and Gubbels in 2010, described in reference [90]. They created an 

automatic system to land a nonlinear simulation model of a Bell 412 helicopter onto 

a static frigate deck. The deck was placed at a known height, and time-to-contact was 

calculated from spatial variables. An intrinsic Tau guidance system was integrated 

into the height rate controller of the Bell 412 to effect the landing. The landing was 

a standard NATO approach and landing as described in reference [91]; the helicopter 

hovered alongside the deck, laterally repositioned above the deck, then descended 

straight down to land. Both the lateral reposition and descent to land manoeuvres 

followed Tau guides. The manoeuvres were assessed against Mission Task Element 

(MTE) specifications developed in previous piloted flight simulation trials, and the 

system performed within in desired limits. A test pilot observing the manoeuvres also 
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commented that the motion seemed natural to him, indicating it provided a good 

analogue to human pilot behaviour.  

Ridgway developed two Tau-based pilot models in his PhD thesis in 2012 and applied 

them to a light, fixed-wing training aircraft. Similar to [90], he generated reference 

Tau trajectories and used them to drive a Translational Rate Command (TRC) control 

system using error minimisation [21].  The aircraft flew a circuit of an airfield, so a 

range of manoeuvres were performed including a take-off, climb, banked turns, 

descent and landing flare. A perfect control prediction method was also 

implemented for roll manoeuvres that computed the perfect control input to follow 

a Tau guide exactly taking into account atmospheric conditions and the variation of 

aerodynamic derivatives with aircraft state.  

One of the first operational Tau control systems on aerospace hardware was 

developed by Kendoul and is described in reference [30]. His ‘TauPilot’ system was 

implemented on a quadrotor UAV to perform various complex manoeuvres including 

braking, docking and landing. The system is split into three separate parts: 

1. Tau-Navigation system: responsible for computing the Taus of the different 

gaps required for a desired manoeuvre 

2. Tau-Guidance system: generates target or reference Tau trajectories to be 

tracked by the Tau-Control component 

3. Tau-Control system: computes the control inputs that will force the measured 

Tau values from the Tau-Navigation system to track the reference ones 

generated by the Tau Guidance System 

The Tau-Navigation system estimates time-to-contact from a desired target point 

and fused GPS and INS data for Tau values in the horizontal plane. In the vertical axis 

fused barometric altimeter and INS data is used, so all Tau values are computed 

spatially. The Tau-Guidance system can produce Tau trajectories for constant 𝜏̇ 

manoeuvres, intrinsic Tau manoeuvres, and coupled manoeuvres in multiple axes. 

Kendoul examined a series of control laws for the Tau-Control system to deal with 

the singularity problem inherent to Tau controlled systems. A simple proportional 

feedback controller was found to be ineffective for intrinsic Tau guide manoeuvres 
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due to the singularity in Tau at 𝑡 = 0. An inverse proportional feedback controller 

can perform intrinsic Tau guide manoeuvres but performs poorly in the terminal 

phase of any Tau manoeuvre when 𝜏 → 0, and hence control input tends toward 

infinite. To solve this problem, two options were examined: a combination of the 

inverse and proportional control laws switched at a threshold value of time-to-

contact, or a non-linear ratio control law, shown in equation (2-54). 

 𝑢𝐶 = {
𝐾𝑝 [1 −

𝜏𝑟𝑒𝑓(𝑡)

𝜏(𝑡)
]    𝑖𝑓 𝜏(𝑡)  ≠ 0

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2-54) 

The non-linear ratio control law was found to perform well in simulations and 

hardware testing but was still unpredictable very near the target point when 

distance, velocity and Tau are all close to zero. A saturation function was therefore 

added to avoid aggressive control inputs and oscillations in this terminal phase. The 

saturation function used is displayed in equation (2-55). 

 𝑢𝐶 = 

{
 
 

 
 𝐾𝑝 [1 −

𝜏𝑟𝑒𝑓(𝑡)

𝜏(𝑡)
]                                 𝑖𝑓 𝑡 <

9.5

10
𝑇𝐺

𝐾𝑝 𝑐1 atan [𝑐2  (1 −
𝜏𝑟𝑒𝑓(𝑡)

𝜏(𝑡)
)]          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2-55) 

Where 𝑐1 and 𝑐2 are positive constants used to tune behaviour in different axes. 

Kendoul also reported problems with manoeuvre initiation due to the singularity in 

Tau at 𝑡 = 0 for second-order intrinsic Tau guides; the singularity caused large error 

signals in the controller that had to be saturated out to prevent loss of control of the 

aircraft. The TauPilot system was implemented on a custom-built quadrotor and the 

paper reports thousands of successful test flights using Tau manoeuvres to stationary 

target points. The system also performed docking manoeuvres with a moving target, 

though it is unclear how the position of this moving target was ascertained by the 

system. Kendoul also implemented a constant optical flow divergence guidance 

system on the quadrotor for the sake of performing comparative flight tests. The 

paper reports this alternative performed worse than the TauPilot system at the start 

and end phases of equivalent manoeuvres and led to fewer successful flights.  
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A different approach to generating Tau trajectories was proposed in a 2014 paper by 

Zhang, Zhang, Xie and Ma, based on the idea of the third-order intrinsic Tau guides 

discussed in section 2.2.5.3 [74]. These Tau guides mitigated the manoeuvre 

initiation problems faced by Kendoul since a third-order guide specifies there is no 

acceleration at the start of the Tau guide. This approach was applied to a simulation 

model of a quadrotor designed to perch on a tree branch like a bird. Time-to-contact 

was spatially computed, but no details about the controller were given.  

A 2016 paper by Yang, Fang and Li applied Tau trajectories to unmanned aircraft in 

swarms, as a tool to prevent collisions between participants in the swarm [92]. The 

system generated and followed Tau guidance trajectories locally on each aircraft, 

rather than on a central control station as is common with swarms. They assessed 

various Tau strategies for their purposes, including constant 𝜏̇ approaches, Tau 

coupling, second-order intrinsic guides, and third-order intrinsic guides. They also 

assessed a harmonic intrinsic Tau guide which leveraged sine functions to allow for 

better shape adjustment in the velocity profile of the coupled motion. They settled 

on using a modified second-order intrinsic guide to allow for non-zero initial and final 

velocities in manoeuvres. The Tau guide was only used to generate spatial 

trajectories to be followed by a position controller and did not use time-to-contact 

as a control variable. They compared their system against a Decentralized Model 

Predictive Control (DMPC) system in simulation and found their Tau based 

trajectories provided safer flights at a lower computational cost to each swarm 

member. 

A recent example of robot control using optically sensed time-to-contact was 

presented by Zhang in 2016 [89]. A wheeled robot with a camera was used to 

measure time-to-contact with an object on the ground ahead of it and dock with that 

object. Time-to-contact was estimated using the gradient method detailed in section 

2.4.2.2.1, with rotational rate corrections. The robot did not follow a trajectory 

generated by any Tau theory guidance law. Instead, it attempted to track to a 

constant time-to-contact near zero.  

Zhang developed this system further in 2017 to use a constant 𝜏̇ approach that he 

modified slightly for a two-phase manoeuvre. The first phase decelerated with 𝜏̇ 
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constant to a non-zero Tau value, the second phase maintained a constant velocity 

to make positive contact with the target object [93].  Zhang applied a similar system 

to a quadcopter in 2017, creating one of the first examples of an aircraft using 

optically sensed time-to-contact to follow Tau trajectories. To reduce noise in the Tau 

estimation process, he added a Kalman filter to the system [94].  

Two other complete systems implementing Tau guidance on unmanned aircraft are 

presented in references [95] (simulation) and [96] (hardware). Both implement Tau 

guidance on quadrotor aircraft using April Tags [33] to localise the aircraft with 

respect to a target and follow spatial reference trajectories to that target.  

It is clear that Tau theory can be usefully implemented to guide unmanned aircraft 

and more generally to vehicles in the wider field of robotics. However, examples that 

sense time-to-contact optically and use it directly in the nature-inspired guidance 

laws are rare. It is much more common for systems to produce spatial estimates of 

Tau, or generate Tau-inspired spatial trajectories to follow with classical position 

control methods. It is possible to gain some of the benefits of Tau guidance with 

these approaches, the foremost of these being four-dimensional control, the ability 

to make soft contact with targets and to control acceleration strategy with a single 

intuitive parameter.  

However, they do neutralise one of its greatest benefits; Tau guidance in its natural 

form is inherently reactive to dynamic situations. Braking motorists, the original 

inspiration for Tau theory, exhibit this behaviour constantly as they react to other 

vehicles on the road. This was clearly considered in Lee’s original paper discussed in 

section 2.2. Consider two cars approaching a traffic light at a constant speed, one 

following the other.  If the light changes to red the lead car will initiate a constant 𝜏̇ 

deceleration manoeuvre to stop at the light. As long as they stop without crossing 

the light they may vary the manoeuvre duration and coupling constant to whatever 

values suit the driver and vehicle, but the following driver is limited to some degree 

by what the lead vehicle does if they want to avoid a collision. This is not a problem 

if the driver of the following car can freely observe the lead car and effect their own 

Tau based deceleration relative to the first car to avoid a collision.  
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Consider now the same scenario taking place in heavy fog, with all the leading cars 

lights broken. The follower can still spot the traffic light turning red through the fog 

and effect a Tau manoeuvre to stop at it, but without being able to sense time-to-

contact with the leading car, they cannot guarantee they won’t hit the other car. This 

is analogous to sensing time-to-contact using only spatial means; only using the 

position and velocity of the following car to compute time-to-contact will not 

necessarily provide a collision-free course. The same is true for the common method 

of following spatially computed trajectories in an inertial frame of reference since 

they will not move if the target does. To gain all the benefits of Tau-based guidance 

time-to-contact must be sensed in real-time and applied to a Tau controller.  

Reaction to environmental dynamics may be considered less important for aircraft 

than ground-based vehicles, but there are still many situations where this capability 

is important. It is vital in both fixed-wing and rotary-wing landings to have accurate 

information about any potential landing location to ensure safe landing.  Reference 

[90] describes a ship deck landing system gives, illustrating one such scenario where 

knowledge of the landing target is important; the helicopter must be able to react to 

the heaving, rolling and pitching motion of the deck to land without excessive relative 

velocity between the two. Smaller UAS often land at unprepared sites, so even if 

static the altitude or slope of the landing site needs to be known accurately for a safe 

landing. Sensing Tau in real-time is one method of gaining this information in an 

intuitive and simple to use way. Referring back to the ALFURS scale in Figure 2-1, 

obstacle and collision detection and avoidance is vital for increasing autonomy and 

External System Independence (ESI). Tau guidance provides a framework for 

performing those functions.  

Notably, operational examples in the aerospace domain are exclusively limited to 

rotary-wing aircraft, despite the evidence of Tau usage in fixed-wing piloting 

presented by Jump in reference [79]. The only example of Tau control on a fixed-wing 

airframe is Ridgway’s pilot-modelling system used to control a simulated light 

training aircraft in reference [21]. This is perhaps because of the relatively low 

adoption of small fixed-wing airframes by the general public when compared to 

multi-rotors, but military platforms are largely fixed-wing. 
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2.6 Technical Review Summary 

In section 2.1 some basic terminology has been established and a number of issues 

related to the reliability of UAS operations have been identified. In section 2.2 the 

basics of Tau theory have been established as a guidance mechanism used by humans 

and animals, and section 2.3 discusses evidence that this mechanism is also applied 

by humans when piloting aircraft. Section 2.4 discusses a number of computer vision 

techniques that can be used to measure Tau. Section 2.5 explores existing examples 

of Tau guidance systems in the literature. The work described in the remainder of 

this thesis seeks to address some of the issues described in section 2.1.4. Specifically, 

optical Tau guidance is applied to UAS landing manoeuvres in an effort to: 

1. Improve reactivity to external obstacles and hazards, especially dynamic 

objects 

2. Provide a mechanism for reliably delivering soft landings for both rotary- and 

fixed-wing UAS platforms 

3. Be able to execute both the above functions without the need for external 

signals, thus reducing reliance on sometimes unstable communication links 

In the course of demonstrating these capabilities novel improvements to Tau 

perception methods will also be presented that expand the operational envelope of 

Tau sensors based on direct gradient algorithms. Techniques for predicting the 

performance of aircraft following Tau guided manoeuvres will also be developed that 

allow for better prediction of how effective Tau guidance can be.  
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3 Chapter 3 – Experimental Setup  

 

This chapter describes the various tools and simulation techniques used during the 

research reported in this thesis. Investigation of Tau guidance was carried out using 

aircraft simulation models from several sources. Tau perception techniques were 

tested against virtual visual scenes generated using computer graphics techniques. 

The development of these tools is described. Finally, some Mission Task Elements are 

defined for testing of Tau perception techniques and Tau guidance systems. 

3.1 Simulation Software and Hardware 

Flight simulation is a key technology for the work described in this thesis as it allows 

for detailed testing of Tau guidance systems without risking any real hardware. 

Several tools for flight simulation were considered, including FLIGHTLAB, a flight 

vehicle modelling and analysis tool developed by Advanced Rotorcraft Technologies 

which is used as the basis for the University of Liverpool’s Heliflight simulators [97]. 

FLIGHTLAB is often used when real-time simulation capability is required, but since 

this functionality is unnecessary for UAS simulation, Matlab Simulink was chosen as 

the modelling environment for all of the aircraft models used during the course of 

this thesis.  

Simulink is a graphical programming environment for modelling, simulating and 

analysing dynamic systems [98]. It allows for fast generation and testing of flight 

models, control systems and image processing methods, so is ideally suited for the 

work to be carried out. However, Simulink is often not the most efficient tool for 

execution of simulation models and image processing methods due to large 

overheads associated with the user experience. This is particularly relevant when 

examining the image processing components of this thesis related to Tau perception, 

where algorithms must be capable of running many times a second for the system to 

be viable for hardware implementation. The Simulink versions of various Tau 

perception tools in this thesis often run much slower than desired and this will be 

become apparent during the course of chapter 4. The author does not consider this 

to be a problem that would stop the use of any of these Tau perception mechanisms 
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in future because Simulink is well known to be an inefficient tool in this regard, and 

the computer used is not well optimised for the specific tasks required. To 

contextualise the execution rate of the programs that will be presented in chapter 4, 

the hardware specifications of the computer all of the simulation work was 

performed on are given in Table 3-1. The computer is a mid-range desktop computer 

designed for computer gaming and was built approximately 5 years ago. 

Table 3-1: Hardware specification for main computer used for simulation work detailed throughout 

chapters 4 and 5. Machine is a mid-range desktop computer approximately 5 years old. 

CPU Model Intel Core i7-4771 

CPU Cores 4 Cores 

CPU Clock Speed  3.50 GHz 

RAM Memory 8.00 GB DDR3 

RAM Speed 1600 MHz 

GPU Model AMD Radeon R9 280X 

GPU Clock Speed  1100 MHz 

GPU Memory 3.00 GB GDDR5 

GPU Memory Clock Speed 1500 MHz 

Operating System Windows 10 

To evaluate the performance of Matlab Simulink for this hardware configuration the 

speed of image gradient calculation, a foundational operation to the Tau perception 

methods that will be explored in chapter 4, was tested. The gradient computation 

time was recorded for four, 5 second videos of different resolutions using both the 

Matlab image processing toolbox and the OpenCV image processing toolbox in 

Python. OpenCV is an open source library of programming functions for computer 

vision that is available in a range of programming languages [99]. Python is a high-

level interpreted programming language that is similar to Matlab but runs with lower 

overheads [100]. A second computer was also used a comparison point to the first. 

The second computer is a mid-range laptop, 6 months old at the time of writing and 

its specifications are given in Table 3-2. 
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Table 3-2: Hardware specification for 2nd computer used for comparison of gradient analysis 

computation time. Machine is a mid-range laptop, 6 months old at the time of writing. 

CPU Model Intel Core i7-10510U 

CPU Cores 4 Cores 

CPU Base Clock Speed  1.80 GHz 

CPU Boost Clock Speed 4.90 GHz 

RAM Memory 8.00 GB DDR3 

RAM Speed 1600 MHz 

GPU Model Intel UHD Integrated Graphics 

Operating System Windows 10 

 The average time to compute the image gradients of each frame for each language 

and each computer are shown in Figure 3-1. 

 

Figure 3-1: Mean frame processing time for image gradient analysis test at four different video 

resolutions. Results for two computers running two different programming languages are shown to 

provide points for comparison. 

Two main conclusions can be drawn from the data: the gradients are computed 

slightly faster in Python than they are in Matlab; and the computer with a more 
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modern processor is also able to compute the gradients faster. As a result, it is safe 

to conclude that faster execution of image processing routines is possible with up to 

date hardware and more efficient programming languages. Both Matlab and Python 

are interpreted languages, so even faster performance should be easily possible with 

a compiled language like C. However, computation time may be a limiting factor for 

high resolution images if high frame rates are required. 

3.2 Aircraft Simulation Models 

A number of simulation models of different aircraft were used through the work 

described in this thesis and all of them will be detailed in this section. 

3.2.1 3DR X8 

The University of Liverpool operates 3DR X8 UAS platforms for the purpose of testing 

guidance, navigation and control systems. The X8 is a small-scale, commercially 

available, co-axial octocopter which can be seen in Figure 3-2. The platform is based 

around the Pixhawk flight controller running the open-source autopilot software PX4. 

 

Figure 3-2: 3DR X8 co-axial quadcopter RUAS platform operated by the University of Liverpool [101] 

The specifications of the X8 are summarised in Table 3-3. 

Table 3-3: Specifications of 3DR X8 RUAS platform [101] 

Total Mass 2.85 kg 

Rotor Diameter 8 x 0.254 m 
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Endurance 12 minutes 

Aircraft Category 0-7kg Multi-Rotor SUSA 

Flight Controller 3DR Pixhawk Autopilot 

The Pixhawk controller was specifically designed for efficient operation with PX4 

firmware to allow high speed, low latency onboard image processing [40]. The 

lightweight system design is suited toward MAV applications and allows for the use 

of up to four cameras for localisation, pattern recognition and obstacle avoidance.  

A simulation model of the University of Liverpool’s 3DR X8 UAS platform has been 

developed for use in this project. The Mathworks SimMechanics toolbox was used to 

extend the functionality of Simulink for multi-body dynamics simulation in order to 

create a physics-based model of the aircraft [102]. This approach was chosen to 

create a representation of the aircraft that was able to physically interact with other 

objects such as landing decks. Since SimMechanics can be integrated into the 

Simulink 3D Animation toolbox [103], 3D animations of the simulation models can be 

generated and actuated.  

A 3D model of the X8 platform was generated using CAD package ProEngineer 

Wildfire 4.0 from physical measurements of individual aircraft components. This 

model was then exported from ProEngineer using the SimMechanics export utility to 

an XML file format containing mass, inertia and dimension information. Mobile joints 

were also defined in the CAD model to allow for motion of motors.  

The resulting XML definition file was then imported to SimMechanics to create the 

basis of the flight dynamics model. This approach accurately depicts the mass and 

inertia characteristics of the airframe and allows for easy integration of aerodynamic 

forces into the model. The main body of the aircraft is treated as one entity as it 

contains no moving parts, though it is comprised of multiple components. Each arm 

of the multirotor is grouped separately for ease of navigation through the model, 

with two motors per limb. The camera gimbal and battery were also grouped 

separated to allow for easy interchange, since these components may be removed 

or changed for different scenarios. All component positions are referenced from a 
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point on the main body lower assembly plate, as this was the starting point for 

construction of the aircraft. The reference point is situated on the plate centreline, 

at the nose of the aircraft and on the underside of the plate.  

The solid components are linked by physical connections, while throttle inputs are 

provided to each motor as standard Simulink signals. Finally, the height of the aircraft 

above the terrain is provided to each rotor. Revolute joints with one rotational 

degree of freedom are actuated by a torque scaled according to a throttle signal. The 

rotational rate of the joint is measured and fed into a lookup table to determine the 

amount of thrust produced by the rotor. The thrust lookup table is populated by 

experimental data obtained from testing of the motor and rotor in a wind tunnel. The 

thrust signal is multiplied by a gain to ensure correct directionality and then further 

multiplied by a scaling factor to account for ground effect. Ground effect was 

modelled by relating a thrust ratio to the size of the rotor and its distance from the 

ground using the following approximation [104]: 

𝑇

𝑇∞
=

1

1 − (
𝑅
 4𝑍)

2 

After this correction has been applied, the resultant thrust signal is applied to the 

rotor as a force normal to the rotor disk. A ground contact modelling system was 

added to allow for physical landing simulations. This system tracks a reference point 

on the aircraft and compares it to the height of the ground or deck at each simulation 

time step. If the reference point passes below the threshold ground value, forces are 

applied. Vertical force on the aircraft is modelled as a spring and damper with 

stiffness and damping coefficients selected to give a critically damped response when 

the aircraft impacts the ground plane with only the minimum amount of deflection 

possible. Frictional forces are also applied in the horizontal plane to arrest motion. A 

collision box, shown in Figure 3-3, was defined around the aircraft to better model 

the effect of different contact points. Forces and moments are calculated based on 

the position of the collision box vertices. This was important as the unpredictable 

nature of ship deck motion may lead to certain legs of the aircraft making contact 

with the deck before others during pitch and roll motion. 



73 
 

 

Figure 3-3: Collision box generated around the 3DR X8 model airframe. Vertices of the box represent 

the legs of the aircraft and the extremes of the rotor positions 

A simple control system inspired by the flight stack of the PX4 firmware has been 

constructed to perform initial testing on the flight dynamics model. This will be used 

for comparison with flight test data of the real-world airframe for validation. The first 

component of this was a control mixer, used to read conventional control inputs of 

throttle, pitch, roll and yaw commands, and translate them to motor speed control 

outputs. For the X8 platform the four control inputs alter motor speeds by adding or 

subtracting control inputs according to the methodology in Table 3-4 and multiplying 

by a scaling factor. An idle throttle value is also added to every channel and saturation 

is applied to limit the upper and lower bounds of each signal. The motors are 

numbered clockwise from the front right arm of the aircraft, with the first motor 

above and the second below the arm. 

Table 3-4: 3DR X8 Control Mixing Matrix 

 
Motor Speed Command 

M1 M2 M3 M4 M5 M6 M7 M8 

Throttle + + + + + + + + 

Pitch - - + + + + - - 

Roll - - - - + + + + 

Yaw + - - + + - - + 
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The PX4 flight stack consists of an attitude controller and a position controller. The 

attitude controller is made up of pitch, roll and yaw rate PID controllers, which are 

given reference pitch and roll rates by pitch and roll angle PID controllers. Yaw rate 

is provided directly as a control input. A basic position controller has been added 

consisting of a translational speed PID and controllers and x, y and z position 

controllers, fed by a signal building utility to set up basic manoeuvres. 

3.2.2 3DR Aero 

The 3DR Aero is a small fixed-wing UAS platform operated by the University of 

Liverpool for research purposes. The aircraft is based on the popular Skywalker V6 

airframe with a 3DR Pixhawk autopilot system, which runs the PX4 flight controller. 

An example of the aircraft is shown in Figure 3-4. 

 

Figure 3-4: 3DR Aero fixed-wing UAS platform operated by the University of Liverpool [105] 

The specifications of the Aero are summarised in Table 3-5. 

Table 3-5: Specifications of 3DR Aero fixed-wing UAS platform 

Total Mass 2.20 kg 

Wing Span 1.88 m 

Length 1.29 m 

Endurance 40 minutes 

Aircraft Category 0-7kg Multi-Rotor SUSA 

Flight Controller 3DR Pixhawk Autopilot 
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A simulation model of the Aero was produced by Liverpool’s Virtual Engineering 

Centre using FLIGHTLAB modelling software. A 3D scanner was used to create a 

model of the aerodynamic surfaces and fuselage section. Computational Fluid 

Dynamics (CFD) was used to populate lookup tables with aerodynamic data. Since 

the FLIGHTLAB component library does not include an electrical engine component, 

one was created using experimental data. The detailed development of this model is 

described in reference [106]. This FLIGHTLAB model was linearised to produce state-

space models of the Aero at a range of speeds for use in Matlab Simulink. 

The author created a model of the PX4 fixed-wing flight controller software in Matlab 

Simulink to link with the FLIGHTLAB model. The autopilot model is split into two 

subsystems, a stabilisation module and a navigation module. The stabilisation system 

consists of attitude control loops for each rotational axis and a control mixer to map 

control inputs to servo outputs. The navigation system implements waypoint 

following and calculates pitch, roll, yaw and throttle demands to pass to the 

stabilisation system. Multiple flight control modes are implemented for different 

levels of autonomy, including automatic waypoint following, airspeed and heading 

hold, attitude command and manual pass through.  
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3.2.3 RUAS Linear Models 

In order to investigate the implementation of Tau control systems on a range of 

aircraft, four rotorcraft flight dynamics models of different aircraft were used. They 

were all developed in FLIGHTLAB by other researchers in the course of previous 

projects. The four rotorcraft models were based upon:  

(i) Sikorsky SH-60B ‘Seahawk’ 

(ii) Northrop Grumman MQ-8B ‘Fire Scout’ 

(iii) Yamaha R-MAX 

(iv) Align T-Rex 700 

Each helicopter model makes use of a blade-element model for the main rotor with 

a Peters-He inflow model, a Bailey rotor for the tail rotor, and fuselage and 

empennage aerodynamic look-up tables. The R-MAX and T-Rex models, in addition, 

have stability bars which are modelled as rate feedback gain in the roll and pitch 

channels. 

 

Figure 3-5: The aircraft that the four RUAS models were based on: (a) Sikorsky SH60B [107] (b) 

Northrop Grumman MQ-8B Fire Scout [108] (c) Yamaha R-MAX [109] (d) Align T-Rex 700 [110] 

The Seahawk model, though not typically an unmanned aircraft, is used to represent 

a full-scale aircraft in the analysis. It was derived from the FLIGHTLAB Generic 
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Rotorcraft Model (FGR), which, in turn, is based on a UH-60A model and is well 

documented in the literature [111]. The MQ-8B Fire Scout is an unmanned air and 

sea support platform based on the Schweizer 333.  The FLIGHTLAB model was 

estimated as a scaled version of the FGR helicopter model to give the same disc-

loading as the real aircraft using the main rotor as the scale reference length.  The R-

MAX is a remotely piloted unmanned helicopter often used in agriculture for crop 

spraying and as a research platform.  The FLIGHTLAB model was developed by DSTG 

Australia and has had limited internal validation against the on-axis response to 

controls [55]. The T-Rex 700 is a remotely piloted aerobatic ‘3D’ helicopter.  The 

FLIGHTLAB model was estimated as a scaled version of the R-MAX model and has had 

limited validation against flight test data provided by the NRC [55]. The salient 

parameters of these aircraft are displayed in Table 3-6.  

Table 3-6: RUAS simulation model base parameters 

Aircraft NATO Class Rotor Diameter (m) 
MTOW 

(kg) 
Length (m) 

SH60B Class III 16.35 10,400 19.75 

MQ-8B Class III 8.4 1,430 7.3 

R-MAX Class I 3.115 94 3.63 

T-REX Class I 1.582 5.1 1.32 

The full non-linear FLIGHTLAB models were linearised to create nine state linear 

state-space models of each aircraft for use in Matlab Simulink. All four aircraft were 

trimmed in a hover condition at an altitude of 100 feet before being linearised, with 

no incident wind. These models were then interfaced with virtual visual 

environments and Tau guidance and control systems.  

As with the 3DR Aero: only the linear models were used for the work described in 

this thesis, not the full nonlinear models. This decision was made to ease 

implementation into a Matlab Simulink testing environment and allow for fast 

simulation times. As a result, some physical phenomena, such as ground effect, are 

not adequately modelled. Testing with full non-linear simulation models should be 

carried out in future to discover any potential problems and inform implementation 
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and testing. All of the information needed to reconstruct the SH-60B, MQ-8B and 3DR 

Aero linear state-space models are given included in Appendix A, including a brief 

description of their implementation. The source of the R-MAX and T-REX models is 

considered sensitive so those models cannot be released at this time. 

3.3 Camera Modelling 

All the tools used to virtually model video sequences are underpinned by a simple 

camera model. Cameras collect light rays that have reflected off objects in the 

outside world and record the information contained in those rays on to some form 

of media. A typical digital camera can be broken down into several components: an 

aperture, an optical system and a sensor array, arranged linearly along the optical 

axis as diagrammed in Figure 3-6. 

 

Figure 3-6: Simple model of essential camera elements: aperture, optical system and sensor array, 

arranged along the optical axis 

The aperture controls the amount of light being collected by the camera to prevent 

overexposure of the image. If the aperture is too large, then multiple rays of light 

from a single point in the visual scene may enter the camera and cause the image to 

blur. A common assumption is to treat the aperture as a pinhole, allowing only a 

single light ray from each point in the visual scene into the camera. The optical system 

is comprised of one or more lens and serves to focus light rays onto the sensor array. 

The simplest optical system is a single thin lens. Any light rays entering a thin lens 

parallel to the optical axis will converge on a single point when leaving the lens, 

known as the focal point. The opposite is also true; any light rays entering the lens 

Sensor array 

Optical system 

Aperture 

Focal length 
Optical Axis 
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from the focal point will exit parallel to the optical axis. The distance between the 

centre of the lens and its focal point is known as the focal length. As a result, the 

aperture will usually be positioned one focal length from the lens. The sensor array 

records the intensity of the incoming light with a grid of photoreceptors. Most 

commercially available cameras use either a Charge-Coupled Device (CCD) or a 

Complementary Metal-Oxide-Semiconductor (CMOS) sensor array [82]. Both can be 

regarded as a box that generates a voltage from incident light energy. The voltage 

produced by each cell in the sensor array is scanned line by line, and the values are 

quantised on to an integer scale and arranged into a matrix that forms the digital 

image. For colour images each element the sensor array outputs a vector of three 

values instead of one; one corresponding to the intensity of the Red, Green & Blue 

(RGB) light components on the sensor. In video capture, multiple images, known as 

frames, are captured sequentially many times a second to build the video.  

3.3.1 Camera Modelling 

The fundamental equations of geometric image formation relate the position of a 

point in the visual scene, 𝑃 = [𝑋, 𝑌, 𝑍], to a corresponding point in the image, 𝑝 =

[𝑥, 𝑦, 𝑧] and are detailed in [82]. Using the pinhole camera model, these points can 

be related to each other in the camera reference frame using similar triangles. It is 

important to note that in the camera reference frame, the 𝑍 axis is defined along the 

optical axis and 𝑧 = 𝑓, the focal length of the camera. Therefore, the fundamental 

equation of the camera frame is: 

 
𝑃

𝑍
= [

𝑋

𝑍
,
𝑌

𝑍
, 1] =

𝑝

𝑧
= [

𝑥

𝑓
,
𝑦

𝑓
, 1] (3-1) 

However, the camera frame is of limited usefulness because objects in a scene are 

much more likely to be defined by an exterior inertial frame of reference.  Therefore, 

it is necessary to define a transformation between the world and camera frames: 

 𝑃𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑅(𝑃𝑤𝑜𝑟𝑙𝑑 − 𝑇) (3-2) 

𝑅 and 𝑇 in equation (3-2) are arrays describing the rotation and translation of the 

camera relative to the world frame of reference. These are known as the extrinsic 
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parameters of the camera. A further transformation from the camera frame to the 

image frame is required to get the position of the image point in pixel coordinates: 

 𝑥𝑐𝑎𝑚𝑒𝑟𝑎 = −(𝑥𝑖𝑚𝑎𝑔𝑒 − 𝑜𝑥)𝑠𝑥 (3-3) 

 𝑦𝑐𝑎𝑚𝑒𝑟𝑎 = −(𝑦𝑖𝑚𝑎𝑔𝑒 − 𝑜𝑦)𝑠𝑦 (3-4) 

Where (𝑜𝑥, 𝑜𝑦) are the coordinates of the image centre in the image frame, and 

(𝑠𝑥, 𝑠𝑦) are the effective size of each pixel on the sensor array, usually measured in 

millimetres. These parameters, along with the focal length 𝑓, are the intrinsic 

parameters of the camera. Further intrinsic parameters can be integrated into the 

model that account for distortion introduced by optical systems, but those will be 

omitted here. Combining the extrinsic and intrinsic parameters of the camera into a 

single equation defines the image frame location of an observed point in the world 

frame:  

 −(𝑥𝑖𝑚𝑎𝑔𝑒 − 𝑜𝑥)𝑠𝑥 = 𝑓
𝑅1
𝑇(𝑃𝑤𝑜𝑟𝑙𝑑 − 𝑇)

𝑅3
𝑇(𝑃𝑤𝑜𝑟𝑙𝑑 − 𝑇)

 (3-5) 

 −(𝑦𝑖𝑚𝑎𝑔𝑒 − 𝑜𝑦)𝑠𝑦 = 𝑓
𝑅2
𝑇(𝑃𝑤𝑜𝑟𝑙𝑑 − 𝑇)

𝑅3
𝑇(𝑃𝑤𝑜𝑟𝑙𝑑 − 𝑇)

 (3-6) 

Where each 𝑅𝑖 term refers to the 𝑖th row of the rotation matrix 𝑅. Equations (3-5) 

and (3-6) can be expressed as a linear matrix equation, splitting the intrinsic and 

extrinsic parameters into two separate terms: 

 

[

𝑥1
𝑥2
𝑥3
] =  

[
 
 
 
 
 −

𝑓

𝑠𝑥
0 𝑜𝑥

0 −
𝑓

𝑠𝑦
𝑜𝑦

0 0 1 ]
 
 
 
 
 

 [
𝑅11 𝑅21
𝑅21 𝑅22
𝑅31 𝑅23

𝑅31 −𝑅1
𝑇𝑇

𝑅32 −𝑅2
𝑇𝑇

𝑅33 −𝑅3
𝑇𝑇

] [

𝑋𝑤𝑜𝑟𝑙𝑑
𝑌𝑤𝑜𝑟𝑙𝑑
𝑍𝑤𝑜𝑟𝑙𝑑
1

]

= 𝑀𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐  [

𝑋𝑤𝑜𝑟𝑙𝑑
𝑌𝑤𝑜𝑟𝑙𝑑
𝑍𝑤𝑜𝑟𝑙𝑑
1

] 

(3-7) 

Where the image coordinates in the 𝑥 and 𝑦 directions are the ratios of 𝑥1and 𝑥2 to 

𝑥3 respectively. This method also separates the transformations between the 

different frames of reference neatly, with 𝑀𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 converting from the world frame 
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to camera frame, and 𝑀𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 converting from camera frame to image frame. This 

equation can be used to create a simple computer graphics engine to produce virtual 

images of imagined scenes, which is very useful for analysing image processing 

techniques.  

3.3.2 Camera Model Parameters 

It is convenient to define the parameters of a particular camera for use throughout 

the research described in this thesis for the sake of consistency. A Raspberry Pi 

camera module, version 2 was chosen for this purpose, shown in Figure 3-7. 

 

Figure 3-7: Raspberry Pi camera module version 2 used as the source for camera modelling 

parameters [112] 

This camera is designed for use with the Raspberry Pi microcomputer, which is 

commonly used for image processing. The specifications of the camera are 

summarised in Table 3-7.  

Table 3-7: Specifications for Raspberry Pi camera module v2 [113] 

Still Resolution: 8 Megapixels 

Video Modes: 1080p30, 720p60, 640x480p90 

Sensor Image Area: 3.68 x 2.76 mm (4.7 mm diagonal) 

Cell Size: 1.12 μm x 1.12 μm 

Focal Length: 3.04 mm 

Maximum Horizontal Field of View: 62.2 degrees 
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Maximum Vertical Field of View: 48.8 degrees 

 

3.3.3 Virtual Helipad Landing Scene  

Since rotary-wing landings are of interest in this research, a simple depiction of a 

helipad for use in analysing different Tau estimation techniques was created using 

the mathematics described in section 3.3.1. The imagined helipad is a square of flat 

colour five metres square on a black background, with an ‘H’ in the centre. A three-

dimensional diagram of the scenario is shown in Figure 3-8.  

Of course, for any point to be imaged by the camera, it must be within the field of 

view of the camera. In 3D computer graphics the field of view of the camera is usually 

represented by a viewing frustum. This is the region of space in the virtual world that 

will actually be captured by the camera. The boundaries of the frustum are 

superimposed over the helipad image in Figure 3-8. 

 

Figure 3-8: 3D diagram of a camera descending towards a  helipad, with the camera frustum 

superimposed to illustrate how much of the scene is captured by the camera 

A visual scene can be generated for any camera position or rotation in the world 

frame using this method, so it is simple to produce sequences of images that depict 

the camera moving relative to the helipad once the points that are visible to the 

camera have been identified. This can be accomplished by interrogating a database 

of the terrain to determine which points of the virtual world lie within the volume 

defined by the viewing frustum by using inequality statements. Once the position of 



83 
 

the helipad vertices is found on the image plane, the interior of the shape can be 

filled using two-dimensional interpolation over the pixel grid. This model was 

implemented as a Matlab program that produces video files after defining the 

camera properties, trajectory and helipad dimensions. The camera resolution used 

to generate helipad videos can be easily changed, but a 720p resolution with a 

framerate of 30 frames per second was used for all videos in initial testing. 

The dimensions of the helipad can be easily altered, and it is also possible to incline 

the plane the helipad lies on about both the horizontal axes. This can create complex 

relative slope situations between the observer and target. Several frames from a 

video depicting the camera descending straight toward a helipad on flat ground are 

shown in Figure 3-9 as an example.  

 

Figure 3-9: Sample frames from a video of a virtual camera descending towards a 5x5 m helipad. All 

motion is along the optical axis, and the helipad lies on a flat plane. Each frame is recorded at a 

defined distance above the helipad: (a) 20 m (b) 15 m (c) 10 m (d) 5 m 

 

3.3.4 Virtual Runway Landing Scene 

To assess fixed-wing aircraft landings, a virtual runway scene was also developed in 

a similar manner to the helipad described above. The runway provides some 
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additional utility over the helipad as it can generate images for videos where the 

camera is displaced parallel to the ground plane by large amounts. The imagined 

runway is 1000m long and 26m wide, with typical runway markings included as 

described in [114]. The runway is imagined to run south to north, and this is reflected 

in the designation markings. Figure 3-10 shows a plan view of the first 200m of this 

runway. 

 

Figure 3-10: Plan view of first 200m of a simple virtual runway markings used for the virtual runway 

landing scene  

Again, the dimensions of the runway and its markings can be easily altered to suit 

different situations. The inclination of the plane the runway lies on can also be 

changed about the X and Y axes. Figure 3-11 shows some frames from a video 

depicting the camera descending towards the runway while also moving down it as 

an example. Image (a) shows the runway threshold markings, with the designation 

markings visible in images (b) and (c).  
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Figure 3-11: Sample frames from a video of a virtual camera descending towards a runway. Motion is 

downward along the optical axis and forward along the length of the runway. The runway lies on a 

flat plane. Each frame is recorded at a defined distance above the runway: (a) 100 m (b) 80 m (c) 60 

m (d) 40 m 

The virtual scenes described in section 3.2.3 are only simple representations of some 

of the MTEs that will be examined during the course of this thesis. They contain very 

little information in terms of visual texture, so they are inadequate for some analysis. 

Improving this simple graphics engine to the point of detailed texturing on three-

dimensional objects is far beyond the scope of this thesis. Other tools have been 

employed to fill this role, primarily the Matlab Simulink 3D Animation toolbox. 

However, these simple virtual scenes still hold value in the precise control that can 

be exerted over them, especially in terms of modelling of intrinsic camera properties. 

3.4 Matlab Simulink Virtual Reality Worlds 

The Matlab Simulink 3D Animation toolbox provides tools for linking Matlab 

programs and Simulink models to 3D graphics objects and scenes. Objects defined in 

standard modelling languages can be positioned within 3D worlds and viewed using 

virtual cameras. This toolbox provides an easy to use set of methods for interfacing 

simulation models with a 3D graphics engine. It can be used to generate video for 
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defined camera trajectories or can be integrated into real-time simulations to 

produce video streams for cameras that move dynamically within a 3D world. These 

video feeds can then be directly processed Matlab and Simulink. A program for 

creating Virtual Reality (VR) worlds is included with the toolbox called 3D World 

Editor. Two different VR words were created in 3D World Editor for use in this 

research project: a frigate deck for rotary-wing landings, and a desert runway for 

fixed-wing landings.  

3.4.1 Frigate Deck Landing Scene 

A frigate deck landing virtual world was created for use in simulation experiments. A 

deck was created using Google Sketchup 3D modelling software and textured with 

generic deck markings inspired by those found on the common frigates. Only the 

landing deck is modelled as the rest of the ship serves no purpose in any of the 

experiments described in this thesis. The deck is situated in a flat, blue sea. The 

position of the deck can be controlled with inputs to the VR simulation, so deck 

motion in varying sea states can be easily simulated by coupling the world to a 

Simulink model. A generic helicopter model from the object library in 3D World Editor 

was used as a platform for a virtual camera. The helicopter visual model is not related 

to the dynamics of any aircraft simulation attached to the virtual world and serves 

only to represent the position and orientation of the vehicle, and serve as a reference 

for the virtual camera pose. It is not visible in the feed provided by the virtual camera. 

A view of the frigate deck landing scene is shown in Figure 3-12. 
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Figure 3-12: A view of the frigate deck landing scene created in 3D World Editor for the virtual ship 

deck landing experiments 

Sensors were attached to the landing gear of the helicopter model to indicate when 

they made contact with the deck model. This contact flag can be fed back to an 

attached Simulink model for use in a ground contact modelling. 

3.4.2 Desert Runway Landing Scene 

A second virtual world was used for fixed-wing landing analysis. The desert runway 

scene was based on a standard example provided with the 3D World Editor with a 

generic fixed-wing aircraft model from the object library added as a platform for a 

virtual camera. This VR world was set up in the same manner as the frigate deck 

landing scene for coupling with a Simulink aircraft model. A view from a chase camera 

in the VR world is shown in Figure 3-13. 
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Figure 3-13: A view of the desert runway scene created in 3D World Editor for the virtual runway 

landing experiments 

3.5 Mission Task Elements 

Two MTEs were defined for use during the research. They define short repeatable 

tasks that represent common operational tasks for UAS. Here, they are a frigate deck 

landing manoeuvre, and a runway landing.  

3.5.1 Frigate Deck Landing 

A common approach to helicopter ship deck landings is the fore/aft landing 

procedure defined in reference [91], diagrammed in Figure 3-14. The procedure is as 

follows: 

1. Approach the port side of the ship and hover alongside in a station keep 

position. The helicopter’s longitudinal axis should be parallel to the 

longitudinal axis of the ship. 

2. Laterally reposition the helicopter over the landing spot on the deck 

3. Descend vertically and land 
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Figure 3-14: Standard helicopter take-off and landing procedures for NATO frigate deck landings [91] 

Landings are always performed from the port side of the ship so that the pilot sitting 

in the right-hand seat has a good view of the ship deck. Take-offs can be performed 

either way depending on wind conditions. For this research only the third phase of 

this manoeuvre will be examined. For all of the deck landings examined, the aircraft 

begins in a hover 10 m above the deck. Deck motion can be varied for different sea 

states. 

3.5.1.1 Deck Motion 

A physical ground plane was added to all of the rotorcraft simulation models and 

actuated in order to emulate ship deck motion. Sensors were added to measure its 

position in relation to the aircraft. Initially, only a single degree of freedom, heave 

motion in the z-axis, was actuated, but all six degrees of freedom can be actuated for 

realistic deck motion.  Ship motion was generated in ShipMo3D [115] for a generic 

Type23-like frigate in a variety of sea states use in actuating the ship deck. The heave 

motion of the landing deck was found by summing the heave motion of the ship as a 

whole, and the displacement of the landing deck due to pitch motion. Since the 

temporal resolution of the data was low when compared to that of the simulation 

model, the data was interpolated using a spline curve to provide smoother data. The 

vertical displacement of the landing deck over thirty seconds for sea states one to 

nine is plotted in Figure 3-15. 
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Figure 3-15: Deck landing spot heave displacement of a Type 23-like ship for varying sea state 

3.5.2 Runway Landing 

The runway landing MTE begins with the aircraft 50 m above the runway threshold, 

with the aircraft flying on a northerly heading down the runway. The aircraft begins 

flying straight and level and must descend towards the runway and land. The 

manoeuvre can be performed at any forward airspeed, but was primarily tested at 

15 m/s, the approach speed of the 3DR Aero aircraft.  
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4 Chapter 4 – Tau Perception through Computer Vision 

 

The University of Liverpool’s Flight Science and Technology research group has a long 

history of research into the applications of Tau theory to manned flight, as many of 

the references mentioned in chapter 2 will attest. However, none of this work has 

covered systems that sense Tau directly. In section 2.4, it was established that various 

methods exist for estimating time-to-contact, but it is not immediately clear which 

of them are viable for use on aerial platforms, or how effective they are. As a result, 

work was required at the outset of this research project to: 

a) Establish which of the presented methods are most effective for estimating 

time-to-contact experimentally from aerial platforms 

b) Find the limits of these established methodologies for sensing time-to-

contact 

Although it has been established that time-to-contact sensing in nature is not always 

a visual process, the bulk of the literature discussed in section 2.2 posits it as such. 

Since most animals do not have active ranging senses like echolocation, passive 

sensing of Tau is of vital importance if it is indeed used as a tool in guidance. The 

same can be said for the aerospace domain, since UAS are more likely to possess 

passive sensors like video cameras than active ones like radar, Lidar, or sonar. The 

methods for sensing time-to-contact with active sensors are also simple without 

much need for further examination. Though this makes them an obvious choice for 

the task, they are often expensive, heavy or only useful at limited ranges. Monocular 

video cameras are an attractive option for any sensor task due to their low cost and 

wide availability; the absence of a pilot necessitates that the vast majority of UA 

possess a video camera for basic situational awareness. As a result, this thesis will 

primarily focus on estimating Tau from sequences of images captured by monocular 

cameras.  

This chapter will primarily analyse the already available techniques for estimating 

time-to-contact, then demonstrate some techniques for mitigating problems 

identified during the analysis. All Tau perception techniques will be analysed in the 
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generalised scenario of a camera descending toward a ground plane, with varying 

visual scenes projected onto that surface. Fixed-wing platforms introduce an extra 

layer of complexity to Tau perception due to their high flight speed compared to 

rotary-wing platforms. This high level of motion parallel to the ground plan conflicts 

with some of the assumptions required by the Tau estimation techniques, and this 

will also be explored.  

These methods rely on many common image processing techniques, the details of 

which are beyond the scope of this thesis. Reference [82] provides a good source for 

this information. The visual modelling tools detailed in sections 3.2.3 and 3.4 are used 

throughout this chapter to assess the various Tau estimation techniques.  

4.1 Tau Perception through Dimension Tracking 

The dimension tracking method for Tau perception is well-established, as discussed 

in section 2.4. This section will present the mechanism in greater detail and evaluate 

its performance and limitations. 

4.1.1 Overview 

The dimension-tracking method for time-to-contact estimation leverages equation 

(3-1), known as the weak perspective projection equation, to relate a particular 

dimension in the visual scene to its apparent size in an image of that visual scene. 

That dimension may be a distance between some point features, or the size of a 

detected object or shape. Figure 4-1 shows a diagram of a camera looking down 

toward an object of length 𝑋 lying on a ground plane, at a distance 𝑍 along the optical 

axis.   
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Figure 4-1: Geometry of a camera descending towards a flat plane with parameters required for Tau 

estimation through dimension tracking labelled 

The size of the object projected on to the image plane 𝑥 can be found using the focal 

length of the camera 𝑓: 

 𝑥 = 𝑓
𝑋

𝑍
 (4-1) 

This diagram shows only 𝑥 and 𝑧 dimensions, but the third image dimension 𝑦 

extends into the page, and the size of the object on the image plane in this dimension 

will be: 

 𝑦 = 𝑓
𝑌

𝑍
 (4-2) 

If the camera moves along the optical axis, then clearly the size of the projection of 

the object on the image plane will change. It is assumed that the focal length of the 

camera is constant; the camera performs no automatic focusing. Differentiating 

equations (4-1) and (4-2) yields expressions for this change in size in each image axis: 

 
𝑑𝑥

𝑑𝑡
= 𝑓

𝑋̇𝑍 − 𝑋𝑍̇

𝑍2
 (4-3) 

 𝑑𝑦

𝑑𝑡
= 𝑓

𝑌̇𝑍 − 𝑌𝑍̇

𝑍2
 (4-4) 
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Assuming that the object being imaged does not change size and the camera only 

moves in the 𝑍 axis, 𝑋̇ = 𝑌̇ = 0 and hence: 

 
𝑑𝑥

𝑑𝑡
= −𝑓

𝑋𝑍̇

𝑍2
 (4-5) 

 𝑑𝑦

𝑑𝑡
=  −𝑓

𝑌𝑍̇

𝑍2
 (4-6) 

Dividing equations (4-1) and (4-2) by equations (4-5) and (4-6) respectively: 

 
𝑥

𝑥̇
=

𝑓
𝑋
𝑍

−𝑓
𝑋𝑍̇
𝑍2

= −
𝑍

𝑍̇
= 𝜏 (4-7) 

 
𝑦

𝑦̇
=

𝑓
𝑌
𝑍

−𝑓
𝑌𝑍̇
𝑍2

= −
𝑍

𝑍̇
= 𝜏 (4-8) 

Thus, it is possible to compute time-to-contact only from the apparent size and rate 

of change of the size of an object in an image. This calculation can be performed with 

either the size of a detected object or some characteristic dimension between 

detected features. For accurate estimates, the dimension detection must be 

sufficiently robust to persist between image frames with minimal noise. Common 

methods for detecting the size of an object in an image are through feature detection 

techniques such as corner or blob detection [82]. 

4.1.1.1 Dimension Tracking 

In computer vision, feature detection is the process of automatically identifying 

points of interest in a digital image [82]. It is difficult to assign a definition to the fairly 

amorphous concept of a point of interest since interest can vary wildly between 

observers. Generally, it is aimed at detecting edges or corners of objects in the image 

in a repeatable fashion. There are a huge variety of algorithms available, but most 

rely on some analysis of brightness gradients in the image to evaluate where the 

parameters of the image vary most. A widely implemented example is the Speeded-

Up-Robust-Features (SURF) detector, described in reference [116]. It uses an integer 

approximation of the determinant of the Hessian operator to detect points of 
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interest. Feature descriptors are generated by analysing the Haar wavelet response 

of the area around the point of interest. Feature descriptors can be used to correlate 

features between multiple images, such as the frames of a video, by matching the 

descriptors even if the feature has moved in the image between frames. Feature 

detection tools like SURF are widely implemented in common image processing 

libraries, such as OpenCV [117] and the Matlab image processing toolbox. 

Blob detection is a subset of feature detection that examines regions of an image, 

rather than singular points. It identifies areas of a digital image that differ significantly 

from their surroundings in some property, usually brightness or colour. All points 

within a blob are similar and will have some approximately constant property across 

the area of the blob that is distinct from the background. This identifying 

characteristic is what allows blobs to be distinguished from the rest of an image. The 

most common method for blob detection is to convolve an image with a Gaussian 

kernel and then apply a Laplacian operator. The dimensions of the blob can then be 

obtained for further use. Reference [118] describes the development of blob 

detection algorithms in detail. Blob detection methods are also widely implemented 

in common image processing libraries. 

4.1.2 Helipad Landing Scene – Tau Analysis with Dimension Tracking 

Figure 4-2 shows a set of results for the size method applied to a helipad landing 

video as described in section 3.3.3. The descent is one dimensional, with the camera 

descending from 50 m altitude at 5 m/s straight towards the centre of the helipad. 

The dimension used for Tau estimation is the width of the helipad, estimated from 

blob detection and shown in plot (a). Plot (b) shows the rate of change of that 

dimension, estimated as the difference between each successive frame divided by 

the frame length. 
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Figure 4-2: Tau estimation plots for a vertical helipad descent using the size method with blob 

detection: (a) the width of the detected blob (b) the rate of change of the width of the detected blob 

(c) the estimated time-to-contact as the ratio of (a) and (b)   

This rate is noisy and is clearly quantised to a limited number of values, which is in 

contrast to the measured width of the helipad that seems to change smoothly. 

Although the size of the helipad will change smoothly as the camera approaches in 

reality, the accuracy of the measurement is ultimately restricted by the resolution of 

the camera and the measured size can only change by an integer amount of pixels. 

This issue is amplified in the rate and is especially problematic early in the descent 

where the size of the object does not change at all between some frames. The 

quantisation error results in no time-to-contact estimate through the first 4 seconds 

of the video using the raw measured values (plot (c)).  

There are several ways to mitigate this problem. The simplest is to increase the 

resolution of the video so that there a greater range of values for the width and 

therefore, rate. Another solution is to vary the framerate of the video through the 

manoeuvre, so there is a longer period between measurements and a smaller chance 
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there is no pixel movement between frames. However, it is difficult to schedule the 

framerate without already having an accurate estimate of Tau to scale the framerate 

on. A third option is to apply a filter to smooth the results. In this case, a moving 

average filter with a window length of 7 frames was applied to the rate to smooth 

the signal. This filter was also applied to the width of the blob to ensure the width 

and rate measurements were consistent in time. However, the time-to-contact 

estimate is still noisy through the first half of the descent. Another identical moving 

average filter was also applied to the Tau estimate to smooth it further. The estimate 

tracks the true value well but with a constant offset of approximately 0.5 seconds. 

This seems to be caused by the effective time delay introduced by the moving 

average filters; the two nested filters cover 14 frames in total, which correlates to 

offset since the video frame rate is 30 frames per second. 

The computational load of blob detection, filtering and Tau calculation is low enough 

that this process can be performed in real-time at high frame rates and camera 

resolutions. The computation time per frame for this example was approximately 

0.03 seconds. It was implemented through a Matlab function reading frames from a 

pre-recorded video with a resolution of 720p. The method can produce relatively 

accurate results throughout the majority of the manoeuvre; however there is no 

estimate for the final second of the descent since the edges of the helipad move 

beyond the camera field of view. No blob can be detected in this phase, so no Tau 

estimate can be made. This issue highlights the main drawback of the size method; 

for it to work there must be a characteristic dimension that can be accurately tracked 

between frames. That dimension can be found through blob detection or feature 

tracking, but if either fails at any point during a manoeuvre then no accurate Tau 

estimation can be made. 

Another drawback of this approach is that accuracy will be impacted by increased 

situational complexity. A common factor that adds complexity is the presence of an 

angle between camera and plane of interest.  
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Figure 4-3: Diagram of camera descending towards an inclined plane with parameters required for 

Tau estimation with size method labelled 

For a simple case where the ground plane is inclined to the horizontal by an angle, as 

illustrated in Figure 4-3, the apparent size of an object on the ground plane will be 

different. Every point on the object is a different distance along the optical axis in this 

scenario, so the ‘uphill’ half of the object will appear larger on the image than the 

‘downhill’ half. The size of the object can still be found by using the perspective 

projection equations, but is complicated to now become: 

 𝑥 = 𝑓 [
4𝑋𝑍𝑐𝑜𝑠(𝜃)

4𝑍2 − 𝑋2 sin(𝜃)2
] (4-9) 

Differentiating this with respect to time, and dividing 𝑥 by 𝑥̇ yields: 

 
𝑥

𝑥̇
= 𝜏 [

4𝑍2 − 𝑋2 sin(𝜃)2

−4𝑍2 − 𝑋2 sin(𝜃)2
] (4-10) 

It is still possible to extract Tau from the equation, but it now requires a correction 

factor that requires knowledge of altitude of the camera, object size and surface 

inclination. This level of knowledge is not feasible for an operational system on a 

vehicle that must operate in many different environments.  

Another complication arises if the apparent size of the object in the visual scene 

changes and hence, the lateral rates are non-zero. This may commonly occur if the 
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object undergoes rotational motion. In this case, it is again no longer simple to extra 

time-to-contact from the equation and spatial parameters of the scenario will be 

required as demonstrated in equation (4-11):  

 
𝑥

𝑥̇
=

𝑋𝑍

𝑋̇𝑍 − 𝑋𝑍̇
 (4-11) 

4.1.3 Runway Landing Scene – Tau Analysis with Size Method 

To investigate the size tracking method further, it was implemented on the virtual 

runway landing scene described in section 3.3.4 to ascertain whether the 

translational motion affects the accuracy of the estimate. The camera descends from 

a height of 100 m at a rate 5 m/s, while moving down the runway at 15 m/s. Tau is 

estimated using the size method through blob detection. The results are shown in 

Figure 4-4. 

 

Figure 4-4: Tau estimation plots for a runway landing using the size method with blob detection: (a) 

the width of the detected blob (b) the rate of change of the width of the detected blob (c) the 

estimated time-to-contact as the ratio of (a) and (b) 
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Plot (a) displays the width of the largest detected blob, the width of which is used as 

the tracked dimension. The width of the blob changes smoothly in some sections but 

there are significant steps in the data as objects being tracked as blobs move out of 

frame, and new ones are detected. There are extended periods after the 16 and 18 

second marks where no blob is being detected. As a result, there is no Tau estimate 

in these regions. Where blobs are detected and the rate is consistent, Tau estimates 

are found and they track the true value well, with a similar offset as seen in the 

helipad landing analysis. Evidently, the method is still accurate even with large 

translational motion, but the movement of features out of the camera frame makes 

it very susceptible to periods where no estimate is possible. Any effective Tau 

estimator must find a way round this problem.   
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4.2 Tau Perception through Optical Flow Divergence 

Another class of time-to-contact estimation methods are based on optical flow 

analysis of image sequences, discussed earlier in section 2.4.2.2. The optical flow field 

can be regarded as the velocity field of the features in the image.  

4.2.1 Overview 

The optical flow field can be related to time-to-contact by examining the physical 

origin of the flow field. Referring back to the weak perspective projection rate 

equations in section 4.1.1 (equation (4-3) and (4-4)), it is evident that the terms 

equate to the optical flow components in the 𝑥 and 𝑦 directions. By substituting the 

weak perspective projection equations ((4-1) and (4-2)) back in for the 𝑋 and 𝑌 terms 

the following is obtained: 

 𝑢 = 𝑓 ( 
𝑈

𝑍
− 
𝑥

𝑓

𝑊

𝑍
 ) (4-12) 

 
𝑣 = 𝑓 ( 

𝑉

𝑍
−
𝑦

𝑓

𝑊

𝑍
 ) (4-13) 

These components of the optical flow field can be used to find time-to-contact by 

computing the divergence of that vector field across the image. The divergence, ∇, 

of a two-dimensional vector field is defined as: 

 ∇ ∙  [
𝑢
𝑣
] =

𝛿𝑢

𝛿𝑥
+

𝛿𝑣

𝛿𝑦
  (4-14) 

Substituting in the optical flow components and evaluating the partial derivatives: 

 ∇ ∙  [
𝑓 (

𝑈

𝑍
−
𝑥

𝑓

𝑊

𝑍
)

𝑓 (
𝑉

𝑍
−
𝑦

𝑓

𝑊

𝑍
)
] = −2

𝑊

𝑍
  (4-15) 

As a result, time-to-contact can be found by evaluating the partial derivatives of the 

flow field and applying: 

 𝜏 =
2

𝛿𝑢

𝛿𝑥
+
𝛿𝑣

𝛿𝑦

  (4-16) 
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If the flow field is known perfectly, then time-to-contact can also be perfectly 

recovered. Robust and accurate methods of optical flow field estimation are required 

to facilitate this. 

4.2.2 Helipad Landing Scene – Tau Analysis with Optical Flow Divergence 

Method 

To illustrate the results possible using divergence analysis, the ‘perfect’ optical flow 

field can be calculated using equations (4-12) and (4-13) for the helipad landing 

scene. The camera state is known at all frames of the video, so the true flow at every 

pixel position can be found easily. The resulting optical flow vectors are displayed in 

Figure 4-5, superimposed on the corresponding frames from the helipad landing 

video. The flow vectors were calculated at every pixel position but are only plotted 

at a subset of them for the sake of the clarity. 

 

Figure 4-5: Helipad landing scene with perfect optical flow field vectors superimposed calculated on a 

coarse grid. The helipad lies on a flat plane and in each image, the camera is a different height above 

the ground: (a) 20m (b) 15m (c) 10m (d) 5m. 

By calculating the inverse of the divergence of this flow field at each frame, the time-

to-contact of the camera with the helipad can be perfectly reconstructed so that the 

measured value is exactly equal to the true value. However, this is only possible if the 

recovered optical flow field itself is also perfect. Hence, an accurate Tau estimate 
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relies on an accurate optical flow field estimate. Figure 4-6 shows a measured flow 

field for the helipad scene estimated with a Lucas-Kanade method implemented 

using the Matlab computer vision toolbox.  

 

Figure 4-6: Helipad landing scene with a superimposed optical flow field recovered using Lucas-

Kanade estimator. Flow is calculated at detected feature locations. 

Evidently, the optical flow vectors are very different from the perfect flow fields 

shown in Figure 4-5. Mostly, the flow vectors only have a single component normal 

to the edges of the helipad boundaries. Since these flow vectors are parallel, there is 

no divergence across these regions. At the corners of the shapes there are vectors 

with components in both the horizontal and vertical directions that match the 

expected pattern, but without neighbouring flow vectors that are also correct, there 

can be no accurate estimate of the field divergence. This is not necessarily due to a 

fault in the optical flow estimator but may be an artefact of the simplicity of this 

visual scene; it is very difficult to track the motion of a pixel along an edge when the 

neighbouring pixels are exactly the same colour. A more complex visual scene was 

also used for flow field estimation to assess whether scene complexity was affecting 

the accuracy of the results. 

4.2.2.1 Frigate Deck Landing Scene – Optical Flow Divergence Analysis 

To better assess optical flow field estimation techniques, the frigate deck landing 

scene was used. This virtual environment includes more elements in the scene, 

orientated in more different directions. There is also richer background texture and 

greater colour variance. These elements convey more information for linking points 
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between frames, as required in optical flow estimation. Figure 4-7 shows a frame 

from a frigate deck landing video with measured optical flow vectors superimposed. 

In this particular scenario, the camera descends toward the deck at 2 m/s from an 

initial height of 20 m above the deck. 

 

Figure 4-7: Matlab VR helipad landing scene with superimposed optical flow field from Lucas-Kanade 

flow estimator 

The flow vectors are distributed over a wider range of directions but are clearly still 

concentrated parallel to the two main axes. This is especially clear on the two 

horizontal lines in the top corner of the image. However, the ring around the central 

grid gives a more even distribution of flow directions. Calculating time-to-contact 

using the mean divergence of this field does provide estimates of Tau close to the 

true value through some of the manoeuvre, as shown in Figure 4-8. 
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Figure 4-8: Time-to-contact from optical flow divergence for a VR frigate deck landing from a 10m 

altitude at a constant velocity. Optical flow field estimated using the Lucas-Kanade method. Tau 

calculated from mean divergence of that field. 

Through the first 5 or 6 seconds of this manoeuvre, the estimate of time-to-contact 

does follow a linear trend of equal gradient to the true value, albeit with a slight 

offset and some noise. After 6 s the Tau estimate diverges from the true value and 

towards infinity. The time of this divergence correlates with the time that the ring 

feature on the deck begins to move out of the camera field of view. The ring seems 

to be an important feature for accurate flow field estimates, so it is possible that the 

dominance of perpendicular features at certain scales contributes to the large errors. 

Another possible contributor is the true amount of optical flow as the camera 

approaches the deck. Figure 4-9 shows the mean optical flow magnitude in the 𝑥 

direction during this manoeuvre. The amount of flow will be greater near the edges 

of the image and smaller near the focus of expansion. Since motion, in this case, is 

one dimensional, the focus of expansion will be at the centre of the image and the 

mean flow value corresponds to a point a quarter of the way across the image.   
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Figure 4-9: Mean optical flow magnitude in x-direction through a frigate deck landing manoeuvre 

from a 10m altitude at a constant descent velocity 

The mean flow begins at about 2 pixels per frame and increases steadily to around 5 

pixels per frame by the 5-second mark. From this point, the flow increases 

exponentially. This result is unsurprising when examining the perspective projection 

equations; the position of any point in the image varies with the inverse of distance 

along the optical axis, so flow becomes singular as the distance approaches zero. 

While this is not a problem in the divergence phase of the time-to-contact 

estimation, it will cause a problem with optical flow field estimation. All optical flow 

estimations rely on the constant brightness assumption, which states that the 

brightness information contained in an image does not change with time. In practice 

this can never be true when motion occurs along the optical axis, but as long as the 

change is minimal the assumption is serviceable. The exponential increase in optical 

flow seems to violate this assumption as the manoeuvre progresses, and optical flow 

field estimates suffer as a result. 

The flow divergence method can also be computationally expensive at high video 

resolutions.  The 720p resolution video analysed above took an average of 0.12 s to 

process each frame, nearly four times the real time period of the frame since it was 

recorded at 30 frames per second.  
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4.2.3 Runway Landing Scene – Tau Analysis with Optical Flow Divergence 

Method 

The flow divergence problem is compounded in fixed-wing cases, where large 

translational motion is present due to the high forward speed of the aircraft. The high 

base level of optical flow caused by this translational motion between scene and 

camera reduces the effectiveness of optical flow estimators further. The unreliability 

of feature detection observed in the dimension tracking method is also a problem 

when using a Lucas-Kanade flow estimator, which relies on consistent feature 

detection. Figure 4-10 shows a Tau estimate from the optical flow divergence 

method for the VR runway landing scene described in section 3.4.2.  

 

Figure 4-10: Tau from optical flow divergence for a fixed-wing runway landing of the 3DR Aero from 

100m altitude, descending at 5m/s while travelling down the runway at 30 knots. The optical flow 

based Tau estimates is noisy and converges to discrete values of Tau that do not track the true value 

well/ 

The estimate does not track the true value well at any point in the manoeuvre and 

suffers from the same divergence towards the end observed in the deck landing 

analysis. There is a notable step up in the estimate between 20% and 30% through 

the manoeuvre, which correlates with the time that the end of the runway (and end 
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of the threshold markings) disappear from view of the camera. This change in feature 

content seems to heavily impact the estimate as in the dimension tracking method.  
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4.3 Tau Perception through Direct Gradient Method 

The third class of methods that will be examined here, direct gradient methods, 

borrow elements from both optical flow analysis and dimension tracking. They use 

the weak perspective projection equations to divine a shortcut to calculating time-

to-contact from the constant brightness equation of optical flow.  

4.3.1 Overview 

The direct gradient method uses the expressions for the optical flow components 

derived from the weak perspective projection equations, and substitutes them into 

the constant brightness equation directly to yield: 

 𝐼𝑥𝑓 ( 
𝑈

𝑍
− 
𝑥

𝑓

𝑊

𝑍
 ) + 𝐼𝑦𝑓 ( 

𝑉

𝑍
−
𝑦

𝑓

𝑊

𝑍
 ) + 𝐼𝑡 = 0 (4-17) 

This equation is the fundamental equation of the base direct gradient method. The 

equation can then be formulated as least squares minimisation to yield estimates of 

time-to-contact. This approach can be simplified and extended in various ways to 

cover a range of different relative motions between camera and visual scene. The 

derivations of these methods are given in Appendix B.2. These equations allow for 

time-to-contact to be estimated for a camera moving in six degrees of freedom 

relative to a target inclined to the camera in two dimensions, which covers most 

possible scenarios. This 6 DoF with slope and rotational corrections method will be 

used throughout the analysis in this section unless otherwise stated. This particular 

extension results in two linear matrix equations that can be solved iteratively to 

produce estimates of Tau, which is the inverse of 𝐶 in the below equations. The 

system of equations in the 𝐴𝑥 = 𝐵 format used is: 

 [

𝛴𝐹2𝐼𝑥
2 𝛴𝐹2𝐼𝑥𝐼𝑦 𝛴𝐹2𝐺𝐼𝑥

𝛴𝐹2𝐼𝑥𝐼𝑦 𝛴𝐹2𝐼𝑦
2 𝛴𝐹2𝐺𝐼𝑦

𝛴𝐹2𝐺𝐼𝑥 𝛴𝐹2𝐺𝐼𝑦 𝛴𝐹2𝐺

] ⌈
𝐴
𝐵
𝐶
⌉ = −[

𝛴𝐹2𝐼𝑥𝐼𝜔
𝛴𝐹2𝐼𝑦𝐼𝜔

𝛴𝐹2𝐺𝐼𝜔

] (4-18) 

 [

𝛴𝐷2𝑥2 𝛴𝐷2𝑥𝑦 𝛴𝐷2𝑥

𝛴𝐷2𝑥𝑦 𝛴𝐷2𝑦2 𝛴𝐷2𝑦

𝛴𝐷2𝑥 𝛴𝐷2𝑦 𝛴𝐷2
] ⌈
𝑃𝑠
𝑄𝑠
𝐶
⌉ = − [

𝛴𝐷𝑥𝐼𝜔
𝛴𝐷𝑦𝐼𝜔
𝛴𝐷𝐼𝜔

] (4-19) 
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𝐴 and 𝐵 are functions of the horizontal velocities 𝑈 and 𝑉, altitude of the camera, 𝑍0 

and camera focal length, 𝑓. 𝐶 is the inverse of time-to-contact, the ratio of vertical 

velocity, 𝑊, and altitude. 𝑃𝑠 and 𝑄𝑠 are functions of the slope of the target plane, 𝑝𝑠 

and 𝑞𝑠, 𝐶, and focal length. 𝐽 and 𝐾 are functions of the rotational velocities of the 

camera, 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧, the camera focal length, and the camera pixel positions, 𝑥 

and 𝑦. These seven parameters are defined as: 

 𝐴 =  𝑓
𝑈

𝑍0
 (4-20) 

 𝐵 =  𝑓
𝑉

𝑍0
 (4-21) 

 𝐶 =  −
𝑊

𝑍0
=
1

τ
 (4-22) 

 𝑃𝑠 =
𝑝𝑠
𝑓

𝑊

𝑍0
  (4-23) 

 𝑄𝑠 =
𝑞𝑠
𝑓

𝑊

𝑍0
 (4-24) 

 𝐽 =   
𝑥𝑦

𝑓
𝜔𝑥 −

𝑥2 + 𝑓2

𝑓
𝜔𝑦 + 𝑦𝜔𝑧 (4-25) 

 𝐾 =  
𝑦2 + 𝑓2

𝑓
𝜔𝑥 −

𝑥𝑦

𝑓
𝜔𝑦 − 𝑥𝜔𝑧 (4-26) 

These parameters are grouped in four further parameters for simplicity. The radial 

gradient, 𝐺 is a combination of the spatial image gradients and pixel positions. 𝐼𝜔 

combines the two rotational motion parameters and the image temporal gradient. 𝐷 

and 𝐹 group the unknowns in the equation into a translational motion group, and a 

surface slope group respectively. These four parameters are defined as: 

 𝐺 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦 (4-27) 

 𝐼𝜔 = 𝐼𝑥𝐽 + 𝐼𝑦𝐾 + 𝐼𝑡  (4-28) 

 𝐷 = 𝐺 + 𝐼𝑥
𝐴

𝐶
+ 𝐼𝑦

𝐵

𝐶
 (4-29) 
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 𝐹 = 1 +
𝑃𝑠
𝐶
+
𝑄𝑠
𝐶

 (4-30) 

 

 

It is strongly recommended that the reader examines the derivations of the method 

given in Appendix B.2 to fully understand how it works, because it is difficult to fully 

conceptualise the process without understanding the underlying mathematics. As a 

high-level overview: the method uses ratios of spatial gradients in a video frame to 

temporal gradients between consecutive video frames to estimate time-to-contact 

with an approaching surface. This is analogous to using the ratio of distance (spatial 

variable) and velocity (temporal variable) to calculate Tau, as discussed in section 

2.2.2. Attempting to avoid the mathematics, a more detailed account of the process 

can be given as follows: 

1. Capture a video frame  

1.1. Store the video frame in a frame buffer 

2. Calculate the image gradients in the X & Y directions of the captured video 

frame,  

2.1. Store the X & Y gradients in a 2nd buffer 

3. Calculate the image gradient in the time direction (between frames) using the 

current frame and previous frame in the frame buffer 

3.1. Store the temporal gradient in a 3rd buffer 

4. Calculate the radial gradient of the frame using the X & Y gradients and the 

pixel positions in the image frame of reference (equation (4-28)) 

4.1. Store the radial gradient in a 4th buffer  

5. Average the spatial, temporal and radial gradients over the length of the 4 

respective buffers 

6. Assemble parameter groups (equations (4-27) to (4-30)) 

7. Calculate the expected movement between the current video frame and 

previous frame caused by rotational motion of the camera; rotational rates 

from a gyroscope are combined with the pixel positions in the image frame 

of reference (equations (4-25) and (4-26)) 
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8. Combine the expected movement from rotational motion of the camera with 

the averaged image temporal gradient to find a corrected temporal gradient 

9. Estimate translational motion of the camera from ratios of the spatial and 

radial gradients to the corrected temporal gradient, as well as an initial guess 

of relative slope between camera and target (equation (4-18)) 

10. Use the estimated translational motion of the camera from step 8 and the 

ratios of spatial, radial and temporal gradients to estimate relative slope 

between camera and target (equation (4-19))  

11. Iterate through steps 9 and 10 multiple times using updated estimates of 

translational motion and relative slope to sequentially improve estimate 

accuracy of each quantity 

12.  Calculate time-to-contact from the estimated translational motion 

parameters (equation (4-22)) 

A flow diagram of this process with some example image and gradient frames is 

provided in Appendix B.3.1 for further clarity.  

The method was implemented using a custom class of objects defined by the author 

in Matlab that can be used to easily store and operate on image matrices in an 

efficient method using a frame buffer. The class includes methods to leverage multi-

threaded processors to run tasks in parallel, as well as offload computations to a 

Graphics Processing Unit (GPU) to speed up calculations. 

The direct gradient method faces some of the same issues as those described for the 

size tracking and optical flow methods. Primarily, it is difficult to determine accurate 

temporal gradients due to the quantization error in the image pixel structure. To 

mitigate these issues, the frame buffer object stores the image gradients for a user-

defined number of frames so time averaging can be applied over all of them.  

As for the other Tau estimation approaches, this implementation of the direct 

gradient method was tested for scenarios more applicable to rotary-wing platforms, 

and others to fixed-wing platforms. 
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4.3.2 Rotary-Wing Platform Analysis 

The direct gradient method for Tau estimation was used to analyse the various visual 

scenes described in section 3.3.3 and 3.4.1, based around helipad and frigate deck 

landings. Figure 4-11 shows the results of the Matlab implementation of the gradient 

method applied to a helipad landing video. This example was computed using a 10-

frame long buffer, so the Tau estimate should lag the true value by five frames 

(~0.16 𝑠). 

 

Figure 4-11: Time-to-contact measured using the direct gradient method from the Helipad landing 

scene, and true Tau value during the manoeuvre. Camera descends from 50 m at 5 m/s and uses a 

720p resolution 

The uncertainty in the temporal gradients early in the manoeuvre cause large 

amounts of noise in the Tau estimate but this effect begins to dissipate in the middle 

of the manoeuvre, between 2 and 7 seconds. The estimate diverges completely after 

7 seconds, in a similar manner to the optical flow divergence Tau estimate method 

in section 4.2.2.1. To verify that the extensions to the gradient method described in 

section 4.3.1 function as expected, a Tau estimate for a helipad landing video with 

sinusoidal motion in multiple degrees of freedom is shown in Figure 4-12.  
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Figure 4-12: Time-to-contact measured using the direct gradient method from the Helipad landing 

scene. Camera descends from 50 m at 5 m/s with sinusoidal motion in lateral position, pitch and roll 

angle: (a) camera position in X & Y axes, (b) camera orientation in roll and pitch axes, (c) Tau 

estimates with 1DoF and 6DoF w/ rotational corrections methods 

Interestingly, the amount of noise in the Tau estimate is lower in this 6 degree of 

freedom case than in the 1 degree of freedom case above. A good Tau estimate is 

obtained for the first 5 seconds of the manoeuvre before the value starts to diverge. 

The one degree of freedom method applied to the same video is also shown in plot 

(c) in red. In comparison to the 6 degree of freedom result also plotted in yellow, this 

method clearly fails to provide any useful estimate and as such proves that the 

extensions to the method are valid and useful. However, the 6 DoF estimate begins 

to diverge at 5 seconds, slightly earlier than the simple 1 DoF approach in Figure 4-11.  

4.3.2.1 Motion Parameter Estimates 

The direct gradient method also yields estimates of other quantities in addition to 

time-to-contact. 𝐴 and 𝐵 contain information about the translational velocities of the 

camera, and 𝑃𝑠 and 𝑄𝑠 relate to the relative slope between the camera and surface 

it is approaching. It is not clear how useful the information from these other products 
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is, so this section will examine these variables in the context of the simple helipad 

landing. By rearranging equations (4-20) and (4-21), expressions for the translational 

velocities of the camera can be found: 

 𝑈 =
𝑊

𝑓

𝐴

𝐶
 (4-31) 

 𝑉 =
𝑊

𝑓

𝐵

𝐶
 (4-32) 

These expressions are based on the ratio of outputs of the gradient method, but also 

require knowledge of the camera focal length, and vertical velocity of the camera, 

𝑊. This velocity parameter could be estimated from an INS, but would not be 

reactive to environmental dynamics. As a result, it doesn’t provide much utility over 

the translational velocity estimates from an INS. Figure 4-13 shows a velocity 

estimate from the direct gradient method. This result was obtained from analysis of 

a helipad landing video where the camera descended from 50 m altitude at 5 m/s, 

and moved sinusoidally in the X axis at a maximum speed of 2 m/s. This result 

assumes perfect knowledge of the vertical velocity 𝑊. 

 

Figure 4-13: Camera velocity estimate in X direction from direct gradient method, plotted with true 

velocity. Video depicts vertical descent with sinusoidal motion in the horizontal X axis. 
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The velocity estimate tracks the true value well with a small amount of noise, similar 

to that seen in the Tau estimate. The estimate lags slightly due to the delay 

introduced by the five frame delay.  

The relative slope between the camera and surface being approaching can also be 

estimated using the 𝑃𝑠 and 𝑄𝑠 parameters. Rearranging equations (4-23) and (4-24) 

and taking the inverse tangent allows recovery of these relative angles: 

 𝑝𝑠 = arctan (𝑓
𝑃𝑠
𝐶
) (4-33) 

 𝑞𝑠 = arctan (𝑓
𝑄𝑠
𝐶
) (4-34) 

These quantities only require outputs of the gradient method and the camera focal 

length, so no spatial parameters are needed as with the translational velocities. 

Figure 4-14 shows the slope estimate in the X direction for another helipad landing 

video. The camera descends along the Z axis, but the surface is inclined at 20 degrees 

to the horizontal plane about the Y axis. 

 

Figure 4-14: Estimate of relative slope between camera and approaching surface from direct 

gradient method. Video depicts vertical descent towards surface inclined 20 degrees from the 

horizontal plane. 
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The estimate is highly noisy and varies between -90 and 90 degrees rapidly. Taking 

the mean of the estimate over the full manoeuvre yields a result of -19.5 degrees, 

close to the magnitude of the true value, 20 degrees, which is constant throughout. 

A further case where the camera descends vertically while rotating about the Y axis 

was examined to examine the slope estimate further, the results of which are shown 

in Figure 4-15.  

 

Figure 4-15: Estimate of translational velocity and relative slope between camera and approaching 

surface from direct gradient method. Video depicts vertical descent towards surface while 

sinusoidally rotating about the Y axis.  

Despite there being no translational motion of the camera, the direct gradient 

method erroneously measures velocity in the X axis. This is due to the apparent 

motion of the surface features caused by the rotational motion. It may be possible 
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to correct for this using rotational measurements, but this would also require 

knowledge of the distance between surface and camera along the optical axis. A 

velocity estimate along the optical axis was already required to generate this signal, 

so if a reliable distance estimate was also available then Tau could be computed 

directly with no need for the gradient method in the first place. The slope estimate 

is again very noisy, and varies between -90 and 90 again, since relative angle is 

varying in this scenario, taking a mean value is not useful to improve the estimate.  

All four of these parameters differ from time-to-contact in one key respect; they are 

used to recover spatial parameters from the scene, whereas Tau is purely temporal. 

The difficulty of recovering spatial parameters from monocular videos was discussed 

in section 2.4.2, and the same concepts apply here; the single viewpoint makes scale 

and distance ambiguous. Since Tau is defined as a ratio that eliminates spatial 

variables, the estimates from the direct gradient method are more reliable. However, 

the velocity and angle information produced is clearly unreliable, as evidenced by the 

above figures. As a result, it is not recommended to use any of the extra motion 

parameters from the direct gradient method as control system variables.  

4.3.3 Factors Affecting Tau Estimate Accuracy  

It is clearly possible to gain accurate Tau estimates in certain conditions, but it is not 

evident what those conditions are, or whether they can be manipulated for improved 

accuracy in all situations. If they are extrinsic parameters of the camera then it 

implies operational restrictions on the user of a sensor using these methods. Intrinsic 

parameters may be easier to control. The next sections will describe a number of 

experiments performed to further investigate how estimates can be improved. 

4.3.3.1 Approach Speed Variation 

To investigate further, the Tau measurements and optical flow fields of a number of 

helipad landing videos were analysed. Four different helipad landing videos were 

generated with varying descent speeds of 2.5 m/s, 5 m/s, 7.5 m/s and 10 m/s. All four 

began from a height of 50 m above the helipad. Figure 4-16 (a) shows the measured 

Tau values for each video using the 6 DoF gradient method.  
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Figure 4-16: Tau estimation analysis for varying descent speeds in the helipad landing scene: (a) 

measured and true Tau values for the 4 different descent speeds, (b) Tau errors against altitude, (c) 

Tau error against mean optical flow magnitude, (d) Tau error against optical flow divergence 

At higher descent rates, the measurement is less noisy during the first phase of the 

manoeuvre but diverges away from the true value earlier. At lower descent speeds, 

the measured value is not accurate initially but has an effective phase further into 

the manoeuvre and diverges later. To shed light on what may be driving this 

behaviour, plot (b) shows the error in the Tau estimate against camera height above 

the helipad. The divergence in measured Tau occurs at a different height for each 

approach speed, so the divergence does not appear to be related to altitude, or 

hence what is visible in the scene. Likewise, plotting Tau error against mean 

magnitude of the optical flow field (c) or optical flow field divergence (d), also does 

not exhibit an obvious link between either of these quantities and the rapid decrease 

in measurement accuracy.  

The two main assumptions made for the direct gradient method are (1) the camera 

aperture behaves as a pinhole, and (2), image brightness is constant between frames. 
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The first assumption is necessarily true in this case since the visual scene was also 

generated using a pinhole camera model. The second, the constant brightness 

assumption referenced in section 4.2.1, is more difficult to assess. The constant 

brightness equation is generally regarded as a subject for minimisation rather than a 

strict equality, but it is not clear what level of brightness change constitutes a 

violation of the assumption. To assess whether this is indeed a factor, it’s useful to 

examine the residual of the constant brightness equation at each frame, as well as 

the above quantities. The mean of the constant brightness equation residuals for the 

same scenario as above are shown in Figure 4-17 (b). Comparing against the time-to-

contact error in (a), it is clear that they both diverge at the same point in the 

manoeuvre for each speed. Hence, the deviation from the constant brightness 

assumption is likely the driving factor in the large accuracy decrease.  

 

Figure 4-17: Tau estimation analysis for varying descent speeds in the helipad landing scene: (a) Tau 

measurement error, (b) mean of constant brightness residuals across each frame 

Interestingly, the constant brightness violation does not appear to be a factor in the 

early Tau measurement noise, since the residuals are all low at this point. Instead, 

this is still likely to be due to the pixel quantization error. This is reinforced by the 

fact that this noise is amplified in the slower descents, where the flow of pixels per 

frame is consistently lower than one for the first 40% of the manoeuvre, as shown in 

Figure 4-18. This corresponds to the bulk of the noise in Figure 4-16 (a). 
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Figure 4-18: Mean optical flow magnitude for varying descent speeds in the helipad landing scene 

with camera descending from 50m in each case 

Plotting the error in Tau measurements against the constant brightness equation 

residuals yields an approximately linear relationship between the two while the 

mean residuals are below a value of 50, regardless of the speed of descent. This is 

shown in Figure 4-19. The noise in the lower left corner of the plot is again likely due 

to the pixel quantization error, so has been neglected.  

 

Figure 4-19: Error in Tau measurement using direct gradient method against the residuals of the 

constant brightness equation for varying descent speeds in the helipad landing scene. Note, the data 

plotted is not time progressing in any way and only expresses the relationship between Tau and the 

residual of the constant brightness equation 
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As a result, it is possible to predict how accurate the Tau measurement is by finding 

the residual of the constant brightness equation. However, part of the reason for 

using this gradient method is not having to recover the optical flow field at all. A 

simple estimation of the flow field based on spatial parameters may suffice to 

indicate the effective Tau measurement range for a particular manoeuvre and 

camera. Nevertheless, it is rarely practical to fit the dynamics of a vehicle manoeuvre 

around the effective operating constraints of a sensor, so the obvious question is: 

what parameters can be manipulated to keep the residuals of the constant 

brightness equation low, regardless of the camera dynamics?  

There are five variables in the constant brightness equation that contribute to this 

residual: the three image gradients and the two optical flow components. The spatial 

image gradients are solely properties of the image and cannot be altered. The 

temporal gradient is again heavily dependent on the image but can be affected 

slightly by changing the frame rate of the camera. The values of the optical flow 

components are also dependent on the camera dynamics and visual scene. However, 

it has already been illustrated that the quantization of the image over a pixel grid can 

affect Tau measurements. The optical flow in the X and Y directions for 6 degree of 

freedom motion in the units of pixels per frame can be defined as: 

 𝑢𝑝𝑥 =
𝑇𝑓

𝑥𝑝𝑥
[𝑓 (−

𝑈

𝑍
+
𝑥

𝑓

𝑊

𝑍
) + 𝐽] (4-35) 

 𝑣𝑝𝑥 =
𝑇𝑓

𝑦𝑝𝑥
[𝑓 (−

𝑉

𝑍
+
𝑦

𝑓

𝑊

𝑍
) + 𝐾] (4-36) 

All parameters in the square brackets (with the exception of the focal length) are 

extrinsic parameters of the camera so require movement of the camera to alter. That 

leaves the dimensions of each pixel and the period of time covered by each video 

frame as possible avenues of exploration.  

4.3.3.2 Frame Rate Variation 

Four videos of varying frame rate were generated depicting the same helipad landing 

scene. The manoeuvre is again performed from a starting height of 50 m, with a 

descent speed of 5 m/s for all four videos. The only difference between the four 
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sequences is the number of frames per second rendered, with a separate from 10, 

20, 30 and 40 frames per second produced. The Tau measurement Root-Mean-

Square (RMS) error for each video is shown in Figure 4-20. The RMS error was 

computed with a window length of 15 frames. 

 

Figure 4-20: Tau measurement error using the direct gradient method for a constant velocity descent 

in the helipad landing scene with varying camera framerates: (a) 10 fps (b) 20 fps (c) 30 fps (d) 40 fps 

Similar to the results of approach speed variation experiment, the differences lie in 

the amount of early phase noise, and late phase divergence. The lower frame rate 

videos exhibit less measurement noise because the increased time between 

sampling allows for greater change in the image. This is important when movement 

of image features is small (near a speed of one pixel per frame) and allows for better 

estimates of the image temporal gradients. However, optical flow increases later in 

the manoeuvre are amplified by the slow sample rate and lead to violations of the 
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constant brightness assumption earlier on. The opposite is true for high frame rates; 

noise is high early in the manoeuvre, but accuracy diverges more slowly. It is also 

important to note that high frame rates necessarily require more computing 

resources to perform the required Tau estimation processes in real time. A similar 

experiment can be performed to assess image resolution changes. 

4.3.3.3 Image Resolution Variation 

To change the dimensions of each pixel is to either change the field of view the 

camera, or the resolution of the camera. It is generally undesirable to alter the field 

of view dramatically, but almost all cameras offer simple ways to change the 

resolution. To assess the effect of varying camera resolution on Tau measurements, 

four different helipad landing scenes were generated with different camera 

properties. The resolutions and properties of each are summarised in Table 4-1. All 

four are resolutions in widespread use, covering several different aspect ratios. Field 

of view is approximately maintained by varying pixel size. The focal length is the same 

for all four resolutions but could be adjusted slightly to create a better field of view 

match if desired. 

Table 4-1: Summary of video resolutions 

 
Resolution Number 

of Pixels 

Aspect 

Ratio 
Pixel Size (μm) Field of View (⁰) 

1080p 1920 x 1080 2,073,600 16:9 [1.12, 1.12] [38.9, 22.5] 

720p 1280 x 720 921,600 16:9 [2.24, 2.24] [50.5, 29.7] 

VGA 640 x 480 307,200 4:3 [3.36, 3.36] [38.9, 29.7] 

HVGA 480 x 320 153,600 3:2 [4.48, 4.48] [38.9, 26.5] 

Again, all videos depict a camera descending from 50 m at 5 m/s. The only change is 

the resolution of each video. The Tau measurement moving RMS error is displayed 

in Figure 4-21. The RMS error was computed with a window length of 15 frames. 
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Figure 4-21: Tau measurement error using the direct gradient method for a constant velocity descent 

in the helipad landing scene with varying camera resolutions: (a) 1080p (b) 720p (c) VGA (d) HVGA 

The higher HD resolutions exhibit less measurement noise early in the manoeuvre 

but experience a divergence in accuracy towards in the latter half. Conversely, low 

resolutions have high noise early but maintain accuracy for longer. These results 

mirror those of the approach speed variation and frame rate experiments closely. 

Higher resolution images also dramatically increase the computing resources 

required to perform the Tau calculations in real time. Figure 4-22 shows the mean 

computation for one time step at each of the resolutions above. The computation 

time is broken down into the three main phase of the process: acquiring the frame 

from the video source and computing the image gradients, averaging the gradients 

across the frame buffer, and performing the Tau computation. 
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Figure 4-22: Mean frame processing time for varying resolution in direct gradient method Tau 

estimation, broken down by the three main operations performed during the calculation 

For this implementation, computation time at 1080p resolution is over 1.3 seconds 

per frame, clearly not practical for real-time use. Frame processing time reduces in 

proportion to the number of elements in the image matrix. At HVGA resolution the 

processing time was approximately 0.065 seconds, which would allow for a frame 

rate of 15 frames per second. However, low resolution and low frame rate is likely to 

cause very large amounts of noise early when time-to-contact is still high. The Matlab 

programming language is useful for prototyping and analysis but not well optimised 

for high execution speed, so faster implementations will be possible.  

Several conclusions can be drawn from these three investigations:  

1. Tau estimates from the direct gradient method will be noisy where optical 

flow components are consistently below 1 pixel per frame 

2. Tau estimates from the direct gradient method become unusable once the 

residual of the constant brightness equation become non-trivial. Initial 

indications suggest that Tau measurement error will exceed 0.5 s if the mean 

value of the residual across the image exceeds 10. 

3. Varying camera frame rate and pixel sizing allows some control over these 

issues. Manipulating the two parameters throughout a manoeuvre should 

allow for increased accuracy in Tau measurements.  
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Though the effects of varying pixel size and frame rate are now clearer, in reality, 

both are relatively difficult to alter in real time during a live video stream. Altering 

frame rate would require very careful scheduling to allow all necessary operations to 

be performed in a timely and efficient manner. Changing the camera resolution may 

cause the field of view of the camera to change unexpectedly and introduce new 

sources of error. It may be possible to record multiple video streams at once, but this 

would multiply both required memory use and processing requirement for each 

video stream, as well increasing sensor weight for the multiple camera units. The 

simplest solution to exert control over the Tau measurement accuracy is to maintain 

a constant frame rate and use image processing to change the effective resolution of 

captured images. This type of image processing is known as subsampling. 

4.3.3.4 Image Subsampling 

Image subsampling is the process of reducing the effective resolution of an image by 

averaging pixels across the frame in blocks. Subsampling an image once will combine 

4 pixels (a 2 by 2 block) into 1, with a value that is the mean of the original 4 values. 

Subsampling again will combine 4 of the new pixels into 1, equal to 16 pixels of the 

original image pixels in a 4x4 block. This concept is illustrated in Figure 4-23. 

 

Figure 4-23: A numeric representation of an image plotted over a pixel grid, where the numbers 

represent the intensity of the image at each pixel location. The base image is shown on the left with 

corresponding 1- and 2-times subsampled equivalents in the middle on the right respectively  

Subsampling was implemented using the virtual helipad scene by creating multiple 

instances of the frame buffer object used to hold and process frames and gradients. 

A block-processing method was added to the object class to average regions of input 

frames and populate a frame of reduced size with the corresponding values. The 
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block-processing method divides the image matrix into rectangular blocks and 

applies a custom function to each block. The results of that function in each block are 

then assembled into a new, smaller matrix. The block processing method used in this 

case is available in the Matlab image processing toolbox. The results of varying the 

level of subsampling on a 720p resolution video on the RMS error of the Tau 

measurement are shown in Figure 4-24. The effect is similar to that of changing the 

resolution of the camera but does not require any change in camera settings. 

Subsampling the image three times produces very accurate results within 0.2 

seconds of the true value through the final third of the manoeuvre, and almost 

eliminates the large error divergence; it does begin to increase in the final moments 

of the descent but the magnitude is small compared to other levels of subsampling.  
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Figure 4-24: Tau measurement error using the direct gradient method for a constant velocity descent 

for the helipad landing scene with varying levels of subsampling: (a) no subsampling (b) 1 x 

subsampling (c) 2 x subsampling (d) 3 x subsampling 

This subsampling method provides the ability to maintain an accurate Tau estimate 

across a manoeuvre if it can be implemented and scheduled efficiently for real-time 

use. 

4.3.3.5 Iteration Count 

The more complex extensions to the direct gradient methods (those detailed in 

Appendix B.2.4 and Appendix B.2.5) require multiple systems of equations to be 

solved iteratively. The number of iterations does not affect simple cases with motion 

in one-dimension, but more iterations will be required for complex scenarios. Figure 

4-25 shows the RMS error in the Tau measurement using the direct gradient method 
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for varying numbers of iterations on that method. The visual scene is the helicopter 

landing with motion in six degrees-of-freedom, captured at a 720p resolution at 30 

frames per second. 

 

Figure 4-25: Tau RMS error of direct gradient method estimation for varying iteration number in 

method. 

More iterations on the direct gradient method do decrease the error in Tau a small 

amount, but this improvement is only seen in a short phase of the manoeuvre after 

the Tau estimate has already begun to diverge. Figure 4-26 shows the corresponding 

frame processing times for the varying number of iterations in the direct gradient 

method. Varying the iteration count does not affect the frame acquisition and 

averaging processes, but multiplies the time taken for the Tau estimation process as 

one might expect. Greater numbers of iterations were tested but showed diminishing 

returns. As a result, it is best to minimise the number of iterations used in the direct 

gradient method. Spare processing overhead can be directed to this task to improve 

accuracy slightly.  
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Figure 4-26: Mean frame processing time for varying number of iteration in direct gradient method 

Tau estimation, broken down by the three main operations performed during the calculation 

The length of time to process a frame using this configuration is clearly far too long 

to allow for useful implementation in real time as discussed in section 4.3.3.3, but 

the effect of iteration count is still clear. 

4.3.4 Simulink Implementation 

It was necessary to create an implementation of the direct gradient Tau estimation 

method in Matlab Simulink to enable integration of the flight simulation models 

described in section 3.1. Memory for every variable must be pre-allocated for any 

Simulink simulation, and their size cannot change during the run. As a result, if 

multiple levels of subsampling are desired for Tau estimation then each must be 

implemented separately; the size of the image changes when subsampled so 

different instances are required for each level. It would be inefficient to perform the 

Tau calculation for every level of subsampling at every time step, so the system is set 

up to enable different subsystems for different levels of subsampling when desired. 

The basic structure and flow of the Tau estimator is shown in Figure 4-27. 
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Figure 4-27: Subsampling switching logic for the Simulink implementation of the direct gradient 

method with multiple levels of subsampling 

The enabling of different subsystems is complicated by the temporal averaging 

required for accurate image gradients. All image parameters are averaged over a 

buffer, so the full length of the frame buffer must be filled before the Tau estimate 

will be accurate. Therefore, each system must be enabled 𝑛 frames before it can be 

used, where 𝑛 is the length of the frame buffer. Hence, two signals are needed to 

enable and switch to the different subsampling systems independently.  

All four systems can also be enabled for the whole simulation to assess where the 

best switching points are. Figure 4-28 shows the Tau estimates for four different 

subsampling conditions, all constantly enabled through the manoeuvre. The video 

source is the helipad landing scene with only vertical motion, using an HVGA 

resolution camera with a frame rate of 30. The point of minimum Tau RMS error is 

marked with a vertical dotted line.  
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Figure 4-28: Tau RMS measurement error for the Simulink implementation of the direct gradient 

method for a constant velocity descent in the helipad landing scenario with varying levels of 

subsampling: (a) no subsampling, (b) 1x subsampling, (c) 2x subsampling, (d) 3x subsampling. The 

point of minimum error for each configuration is shown by a vertical red dotted line. 

The points of minimum error can then be used to define the switching logic, by 

switching at the midpoint between each minimum. Since the resolution is low to 

enable a faster execution rate, accuracy is low through the first third of the 

manoeuvre and the minimum points are clustered quite closely. The resulting 

switching logic is shown in Figure 4-29. This example of switching logic will give the 

best results for this camera setup and manoeuvre but may not optimal for all 

scenarios.  
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Figure 4-29: Switching (bottom) and enabling (top) logic signals for Simulink implementation of direct 

gradient method. Subsystems configured to run different subsampling configurations are turned on 

and off by the enabling signals, and selection of the subsystem that connects to the Tau output of the 

whole system is selected by the switching signal. 

To prevent any step changes in estimate, a length of time equal to half the buffer 

length was used before and after the switch time to average the two estimates into 

one. The resulting time-to-contact estimate from this subsampling switching logic is 

shown in Figure 4-30. 

 

Figure 4-30: Measured time-to-contact and true time-to-contact for the Simulink implementation of 

direct gradient method. Virtual camera used an HVGA resolution and frame rate of 30, descending 

towards helipad in one dimension. 
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The estimate through the second half of the manoeuvre tracks the true value very 

well, but the signal is very noisy in the first half. This is due to the low camera 

resolution used to reduce frame processing time. For comparison, the same scene 

was analysed with a virtual camera using a 720p resolution. The same process for 

defining subsampling logic was used, which produced a wider spread of switching 

points. The resulting time-to-contact estimate is shown in Figure 4-31. There is still a 

significant amount of noise in the first third of the manoeuvre, but it is lower than 

for the HVGA resolution above. Correspondingly, the accuracy is slightly lower as Tau 

approaches zero.  

 

Figure 4-31: Measured time-to-contact and true time-to-contact for the Simulink implementation of 

direct gradient method. Virtual camera used a 720p resolution and frame rate of 30, descending 

towards helipad in one dimension. 

A higher level of subsampling could potentially be used for the terminal phase to 

address this problem. It is also worth noting that these results are for a one-

dimensional descent; scenarios with multi-axis motion tend to reduce measurement 

noise slightly. This is evidenced by the Tau estimate in Figure 4-32, where an HVGA 

camera descends towards the helipad with multi-axis linear and rotational motion. 

There is still some early noise, but both the amplitude and frequency are lower. 
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Figure 4-32: Measured time-to-contact and true time-to-contact for the Simulink implementation of 

direct gradient method. Virtual camera used an HVGA resolution and frame rate of 30, descending 

towards helipad with multi-axis motion. 

From the results in the above figures it is clear that accurate Tau measurements are 

reliably attainable with this camera configuration through the time interval 

investigated. However, estimates can be become too noisy to be usefully applied 

above 8 – 10 seconds time-to-contact, and diverge away from the true value below 

1 – 2 seconds time-to-contact. Using high resolutions cameras should increase this 

range above 10 seconds, and using high frame rate cameras could extend the range 

closer to the point of contact.  

4.3.5 Fixed-Wing Platform Analysis 

The gradient method was also used to analyse videos that represent fixed-wing 

landing scenarios. These differ from the rotary-wing scenarios examined due to the 

high speed translational motion that the camera undergoes while descending toward 

the landing plane; fixed-wing landings are very definitely two-dimensional 

movements, while the examined rotary-wing landings are mainly one-dimensional. 

Both the simple runway visual scene described in section 3.3.4 and the VR runway of 

section 3.4.2 were examined. 

4.3.5.1 Simple Runway 

Analysis of the simple runway scene was performed first, using two virtual camera 

recording at 30 frames per second, one at HVGA resolution and one at 720p 

resolution. Both videos depict a camera descending towards the virtual runway at 5 
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m/s from an initial height of 50 m, while moving along the runway at 15 m/s. This 

speed is approximately equivalent to 30 knots, the approach speed of the 3DR Aero 

UAS platform. The videos were processed using the Simulink implementation of the 

direct gradient method with multiple levels of subsampling applied. The resulting 

time-to-contact estimates are shown in Figure 4-33. 

 

Figure 4-33: Tau estimates for the simple runway landing scene for two different camera resolutions 

and varying levels of subsampling: (a) no subsampling (b) 1 x subsampling (c) 2 x subsampling (d) 3 x 

subsampling 

The Tau estimate tracks the true value well through the first third of the manoeuvre 

but begins to diverge heavily from this point. This is caused by the same problem 
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manifested in the dimension tracking and optical flow methods, where features 

disappear from the visual scene; shortly before 4 seconds into the manoeuvre the 

runway threshold markings disappear from view and the amount of information in 

the image is greatly decreased. As new line features appear in shot, the estimate 

improves again for short phases, between 0.6 and 0.75, and for a brief period at 0.9 

of the total time duration.  

As analysis of rotary-wing descents suggested translational motion does seem to 

decrease noise in the Tau estimate, especially at the start of the manoeuvre and at 

higher resolutions. As before, estimates from video at higher resolutions and low 

subsampling levels diverge away from the true value as the manoeuvre progresses. 

A similar relationship seems to hold true for subsampling; the performance of 

subsampled estimates is poor early but improves as time-to-contact decreases. It 

differs slightly here for the fixed-wing case in that the early error for heavily 

subsampled cases is not due to noise but seems to be a constant offset, though the 

reason for this behaviour is unclear. 
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Figure 4-34: Mean of constant brightness assumption residuals for the simple runway landing scene 

for two different camera resolutions and varying levels of subsampling: (a) no subsampling (b) 1 x 

subsampling (c) 2 x subsampling (d) 3 x subsampling 

It is again useful to analyse the residuals of the constant brightness equation to see 

where divergences occur again which are shown in Figure 4-34. Interestingly, the 

mean residual of the constant brightness residual does not seem to be proportional 

to the error in this situation; the residual in plot (a) is much higher than it is in (d) 

through the first 20% of the descent, but the Tau estimate in Figure 4-33 is much 

better for the no subsampling condition (a). Additionally, the residual reduces to zero 

through the video sections where there are no features in view, and the magnitudes 

are completely different that those seen in the rotary wing case. These factors 
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effectively eliminate the possibility of using the constant brightness residual as a 

metric for prediction of Tau estimate accuracy in cases with translational motion.   

4.3.5.2 VR Runway 

Since lack of image content is clearly an issue in analysis of the simple runway videos, 

the VR runway scene was also used for analysis of fixed-wing landings. An issue with 

the camera view clipping into the terrain is present in the VR runway videos, which 

was unavoidable. As a result, no time-to-contact estimate is possible through the last 

two to three seconds of the descent. This demonstrates the necessity of the simple 

runway analysis tool where greater camera control is possible. There is still a section 

of the VR videos where no runway markings are visible, and the image information is 

insufficient for a Tau estimate between 0.35 and 0.45 of the manoeuvre length.  The 

aircraft is identical to the previous case, with the camera descending from 50 m at 

m/s, moving down the runway at 15 m/s. An HVGA resolution camera was used and 

varying levels of subsampling were applied. 

The Tau estimate for this VR video scene is shown in Figure 4-35 for four different 

levels of subsampling. The extra visual content of the VR scene seems to improve the 

Tau estimate significantly throughout the manoeuvre, as error is generally much 

lower, and estimates for all subsampling levels are less noisy. As before, estimates 

from low subsampling levels are closer to the true value early in the manoeuvre, 

while higher subsampling is more effective as time-to-contact approaches zero. 
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Figure 4-35: Tau estimates from the direct gradient method for the VR runway landing scene for 

varying levels of subsampling: (a) no subsampling (b) 1 x subsampling (c) 2 x subsampling (d) 3 x 

subsampling 

Combining the four levels of subsampling into a single signal through the Simulink 

switching logic, a single Tau estimate was obtained and is shown in Figure 4-36. In 

contrast to the results of the rotary-wing analysis, the estimate contains more noise 

close to the ground, rather than far away. The magnitude of optical flow in each 

scenario (early in a two-dimensional decent, versus late in a one-dimensional 

descent) seems to be similar, though rotary-wing analysis suggested that flow 

magnitude was not the driving factor in estimate error. However, higher subsampling 

close to the ground does still provide superior performance. It does appear a good 

Tau estimate is feasible through most of the fixed-wing landing if sufficient visual 
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information is available throughout the descent, but performance is poorer close to 

the ground. 

 

Figure 4-36: Combined Tau estimate from the direct gradient method for the VR runway landing 

scene. Aircraft descends from 50m at 5 m/s, while travelling down the runway at 15 m/s. Scene was 

imaged at HVGA resolution. 

The approach speed of the 3DR Aero is very low, and the majority of fixed-wing 

aircraft will have a much higher stall speed. Consequently, tests were also carried 

with a camera moving down the runway at higher speeds. Figure 4-37 shows a 

camera moving down the runway at 40 m/s while descending, more similar to the 

approach of a larger, general aviation aircraft. 
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Figure 4-37: Combined Tau estimate from the direct gradient method for the VR runway landing 

scene. Aircraft descends from 50m at 5 m/s, while travelling down the runway at 40 m/s. Scene was 

imaged at HVGA resolution. 

The Tau estimate from this higher speed landing supports the idea that higher optical 

flow magnitude increases the noise in the Tau estimate; it is higher than the slower 

equivalent in Figure 4-36, and increases as the camera descends and flow increases 

further.  A possible solution to this problem is to increase the frame capture rate of 

the camera to effectively reduce the optical flow per frame magnitude. Figure 4-38 

shows the RMS error in the Tau estimate for both a 30 and 60 frame-per-second 

video of the above scenario.  



144 
 

 

Figure 4-38: Tau RMS measurement error from the direct gradient method for the VR fixed wing 

landing at 40 m/s, for two different cameras capturing at 30 fps and 60 fps respectively 

As predicted, the Tau RMS error is reduced for the higher frame rate video, 

suggesting that this is a helpful approach for fixed-wing cases at high speed. 

However, using a frame rate of 60 instead of 30 obviously doubles the computational 

load, with twice as many estimates required per second. As a result, extra 

computational resources maybe required for fixed-wing implementations of Tau that 

must run in real time.   
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4.4 Direct Gradient Method Extension for Brightness Changes  

It has been demonstrated in the previous subsection that motion by a camera can 

violate the constant brightness assumption that forms the basis of both optical flow 

and direct gradient methods for Tau estimation, and that these violations can lead to 

reduced estimate accuracy. However, there are other factors that can also break this 

fundamental principle. The most obvious is changing image brightness; the 

illumination conditions in the visual scene can change captured images significantly. 

The visual scenes used for analysis so far have all used constant global illumination 

so this has not been a problem, but in reality, illumination of the visual scene can be 

variable. The amount of light entering the camera may change as clouds move or 

shadows develop from vehicle movement.  

Modifications to the constant brightness assumption have been previously proposed 

to extend optical flow field estimation methods. Section 2.4.2.2.4 discussed one 

approach to dealing with changing illumination conditions by modelling brightness 

changes as a multiplicative field and two-dimensional offset to the image, originally 

detailed in reference [86]. This approach has not been previously applied to the 

direct gradient method for Tau estimation, but the concept is theoretically applicable 

in a similar way. An extension of the direct gradient method to account for global 

illumination changes is proposed in this section.  

4.4.1 Overview 

The proposed extension is based on a modification of the constant brightness 

equation, which for clarity is given again in equation (4-38): 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0 (4-37) 

The modified version, here termed the variable brightness equation, is the sum of 

the image gradients and optical flow components equalled to the raw image, 𝐼, 

multiplied by a scalar multiplier, 𝑚, instead of set equal to zero as in the constant 

brightness equation: 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 𝐼𝑚 (4-38) 
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This approach is slightly different from the similar extensions for optical flow 

methods, as it is restricted to using a single scalar multiplier, rather than a 

multiplicative field and offset. Optical flow is by definition a vector field, so 

computing extra fields in that process is achievable. The central motive of the direct 

gradient method is to estimate Tau without recovering the optical flow field, so it 

would be counterproductive to introduce more fields that need to be recovered. To 

use a scalar field of brightness change in the gradient method, some physical model 

of how brightness changes across the image would have to be implemented. This is 

analogous to how the pinhole camera model is used to create expressions for the 

optical flow vectors in the gradient method. It would necessitate knowledge of the 

environmental geometry, vehicle geometry and dynamics, and parameters of the 

illumination sources. Therefore, a single brightness change multiplier is used to 

account for illumination changes instead. Since all parameters are summed across 

the image in the direct gradient method, this single multiplier can be considered an 

average of a field of multipliers. 

4.4.2 Derivation 

The same approach to expanding the constant brightness equation for the gradient 

method is applied to the variable brightness equation, by substituting in expressions 

for the optical flow components. The expressions for the optical flow components 

are the same as those used for the direct gradient method described in Appendix 

B.2.5: 

𝑢 = (𝑓
𝑈

𝑍0
− 𝑥

𝑊

𝑍0
) (1 − 𝑥

𝑝𝑠
𝑓
− 𝑦

𝑞𝑠
𝑓
) + 

𝑥𝑦

𝑓
𝜔𝑥 −

𝑥2 + 𝑓2

𝑓
𝜔𝑦 + 𝑦𝜔𝑧 (4-39) 

𝑣 = (𝑓
𝑉

𝑍0
− 𝑦

𝑊

𝑍0
) (1 − 𝑥

𝑝𝑠
𝑓
− 𝑦

𝑞𝑠
𝑓
) + 

𝑦2 + 𝑓2

𝑓
𝜔𝑥 −

𝑥𝑦

𝑓
𝜔𝑦 − 𝑥𝜔𝑧 (4-40) 

To simplify these expressions, seven parameters are defined as combinations of the 

variables in equations (4-39) and (4-40), which are all detailed in section 4.3.1. 

Equations (4-39) and (4-40) are substituted into (4-38) to create the fundamental 

equation of the extension. Equations (4-20) through (4-26) are used to simplify this 

expression to: 
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(𝐼𝑥𝐴 + 𝐼𝑦𝐵 + 𝐶(𝐼𝑥𝑥 + 𝐼𝑦𝑦)) (1 + 𝑥
𝑃𝑠
𝐶
+ 𝑦

𝑄𝑠
𝐶
) + 𝐼𝑥𝐽 + 𝐼𝑦𝐾 + 𝐼𝑡 = 𝐼𝑚 (4-41) 

This expression only contains six unknown variables, while the rest are all parameters 

of the camera or image. Several more parameters are then used to reduce the 

equation further, detailed in section 4.3.1. Substituting equations (4-27) through 

(4-30) into equation (4-41) yields the much simpler expression: 

 𝐶𝐹𝐷 + 𝐼𝜔 = 𝐼𝑚 (4-42) 

To find the unknowns in equation (4-42) it is best to formulate it as a least squares 

minimisation in the form: 

 ∑(𝐶𝐹𝐷 + 𝐼𝜔 − 𝐼𝑚)
2 (4-43) 

Equation (4-43) can then be differentiated with respect to each of the six unknown 

quantities to find the minimum points. However, the resulting equations are 

nonlinear, so to find a solution the hierarchical solution proposed by Horn in 

reference [119] must be used. This approach sets the terms of 𝐷 and 𝐹 as constants 

in turn and solving for the other in an iterative process. Assuming 
𝑃𝑠
𝐶⁄  and 

𝑄𝑠
𝐶⁄  are 

constant and therefore 𝐹 is constant, then substituting back in the expression for 𝐷 

gives the equation: 

 ∑(𝐶𝐹 (𝐺 + 𝐼𝑥
𝐴

𝐶
 + 𝐼𝑦

𝐵

𝐶
) + 𝐼𝜔 − 𝐼𝑚)

2

 (4-44) 

Differentiating equation (4-44) with respect to 𝐴, 𝐵, 𝐶 and 𝑚 respectively: 

 ∑(𝐹(𝐶𝐺 + 𝐼𝑥𝐴 + 𝐼𝑦𝐵) + 𝐼𝜔 − 𝐼𝑚)𝐹𝐼𝑥 = 0  (4-45) 

 ∑(𝐹(𝐶𝐺 + 𝐼𝑥𝐴 + 𝐼𝑦𝐵) + 𝐼𝜔 − 𝐼𝑚)𝐹𝐼𝑦 = 0  (4-46) 

 ∑(𝐹(𝐶𝐺 + 𝐼𝑥𝐴 + 𝐼𝑦𝐵) + 𝐼𝜔 − 𝐼𝑚)𝐹𝐺 = 0  (4-47) 

 ∑−(𝐹(𝐶𝐺 + 𝐼𝑥𝐴 + 𝐼𝑦𝐵) + 𝐼𝜔 − 𝐼𝑚)𝐼 = 0  (4-48) 
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Then, assuming 𝐴 and 𝐵 are constants and therefore 𝐷 is constant, substituting back 

in the expression for 𝐹 gives the equation: 

 ∑(𝐶𝐷 (1 + 𝑥
𝑃𝑠
𝐶
+ 𝑦

𝑄𝑠
𝐶
) + 𝐼𝜔 − 𝐼𝑚)

2

 (4-49) 

Differentiating equation (4-52) with respect to 𝑃𝑠, 𝑄𝑠, 𝐶 and 𝑚: 

 ∑(𝐷(𝐶 + 𝑥𝑃𝑠 + 𝑦𝑄𝑠) + 𝐼𝜔 − 𝐼𝑚)𝐷𝑥 = 0 (4-50) 

 ∑(𝐷(𝐶 + 𝑥𝑃𝑠 + 𝑦𝑄𝑠) + 𝐼𝜔 − 𝐼𝑚)𝐷𝑦 = 0 (4-51) 

 ∑(𝐷(𝐶 + 𝑥𝑃𝑠 + 𝑦𝑄𝑠) + 𝐼𝜔 − 𝐼𝑚)𝐷 = 0 (4-52) 

 ∑−(𝐷(𝐶 + 𝑥𝑃𝑠 + 𝑦𝑄𝑠) + 𝐼𝜔 − 𝐼𝑚)𝐼 = 0 (4-53) 

If you multiply out equations (4-45) through (4-53) and re-arrange them then they 

can then be formulated into two linear matrix equations of the form 𝐴𝑥 = 𝑏, that 

can be solved iteratively to yield estimates of the six unknown parameters, including 

time-to-contact: 

It is important that the only parameter needed to solve these equations (above those 

needed for the base direct gradient method) is the image itself. Therefore, only an 

image, its derivatives, and a couple of base camera parameters are needed in total 

to produce a Tau estimate, and this is still possible with changes of illumination 

between video frames with the proposed changes.   

 

[
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Although it does not seem immediately clear that the small initial change to the 

constant brightness assumption of adding the 𝐼𝑚 term in equation (4-38) will have 

this effect; the extra image term effectively provides a multiplier for the temporal 

gradient that modulates it if there is a global change in image brightness. This is best 

illustrated in the 4th element of the vector on the right-hand side of equations (4-54) 

and (4-55), −∑𝐼𝐼𝜔. If the global image brightness, 𝐼, decreases, then the change will 

register in the temporal gradient, 𝐼𝜔, and increase the magnitude of the gradient. 

Without this correction, this change in temporal gradient would register as camera 

motion and disrupt the time-to-contact estimate. However, because the gradient is 

multiplied by the image frame itself, the decrease in brightness (captured as a 

reduced magnitude of the elements in 𝐼) will effectively reduce the value of the 

gradient to cancel out the erroneous initial measurement. The full process of the 

implemented corrected gradient method is as follows, with the extra conceptual step 

highlighted in bold italic text: 

1. Capture a video frame  

1.1. Store the video frame in a frame buffer 

2. Calculate the image gradients in the X & Y directions of the captured video 

frame,  

2.1. Store the X & Y gradients in a 2nd buffer 

3. Calculate the image gradient in the time direction (between frames) using the 

current frame and previous frame in the frame buffer 

3.1. Store the temporal gradient in a 3rd buffer 

4. Calculate the radial gradient of the frame using the X & Y gradients and the 

pixel positions in the image frame of reference (equation (4-28)) 

4.1. Store the radial gradient in a 4th buffer  

5. Average the spatial, temporal and radial gradients over the length of the 4 

respective buffers 

6. Assemble parameter groups (equations (4-27) to (4-30)) 

7. Calculate the expected movement between the current video frame and 

previous frame caused by rotational motion of the camera; rotational rates 
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from a gyroscope are combined with the pixel positions in the image frame 

of reference (equations  

8. Combine the expected movement from rotational motion of the camera with 

the averaged image temporal gradient to find a corrected temporal gradient 

9. Use the raw video frame to modulate the corrected temporal gradient, 

which corrects for changes in the image caused by illumination changes, 

rather than relative camera motion 

10. Estimate translational motion of the camera from ratios of the spatial and 

radial gradients to the corrected temporal gradient, as well as an initial guess 

of relative slope between camera and target (equation (4-54)) 

11. Use the estimated translational motion of the camera from step 8 and the 

ratios of spatial, radial and temporal gradients to estimate relative slope 

between camera and target (equation (4-55)) 

12. Iterate through steps 10 and 11 multiple times using updated estimates of 

translational motion and relative slope to sequentially improve estimate 

accuracy of each quantity 

13.  Calculate time-to-contact from the estimated translational motion 

parameters  

A flow diagram of this process with some example image and gradient frames is 

provided in Appendix B.3.2 for further clarity.  

4.4.3 Testing 

This brightness change direct gradient method was implemented using the same 

frame buffer Matlab class of objects described in section 4.3.1. A small amendment 

was made to the Matlab class and associated Simulink implementation to also log 

and average the actual image frames themselves over the length of the buffer. This 

was necessary to maintain temporal alignment with the image gradients used in the 

process; the time averaging must be applied to all variables used in the calculation 

or they will represent different points in time. 

The virtual helipad landing scene was used to test the extension to the direct gradient 

method. The basic video generator only produces grayscale images on an unsigned 
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8-bit integer scale; the colour of the helipad can vary between 0 (black) and 255 

(white). To simulate changes in global illumination, a simple multiplier was applied 

to each video frame that could be varied with time.  

Three test scenarios are shown below, with three different brightness change 

profiles, all plotted in Figure 4-39. The three scenarios are: 

1. The first scenario is a gradual decrease of brightness to 40% of the initial over 

two seconds.  

2. The second test is another gradual decrease of brightness over two seconds, 

but brightness reduces to 20% of its initial value.  

3. The third test examines a step change in brightness to 40% of initial value. 

These brightness profiles are intended to demonstrate the effectiveness of the 

method and are not necessarily representative of any particular physical scenario. 

The camera trajectory is identical for each of the three scenarios; the camera 

descends from 50m at a constant speed of 5m/s in the vertical axis. 

 

Figure 4-39: Global image brightness level change over time for the three scenarios used to test the 

brightness change extension to the direct gradient method 

All three videos are captured at 30 frames per second at an HVGA resolution, and all 

depict the same descent towards the helipad. The camera descends from a height of 
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50 m at a vertical speed of 5 m/s. Small amplitude sinusoidal translational motion 

occurs in the X axis, in addition to small sinusoidal rotations in the roll and yaw axes. 

Four example frames from the test two video are shown in Figure 4-40 to illustrate 

how the brightness changes over time.  

 

Figure 4-40: Example frames from the helipad scene with global brightness changes from brightness 

change test scenario two at varying altitudes: (a) 27.5 m (b) 22.5 m (c) 17.5 m (d) 12.5 m  

Tau estimates for test scenario one are plotted in Figure 4-41. Results from both the 

standard direct gradient method assessed in section 4.3, and the proposed 

brightness change extension are shown, in addition to the true value of time-to-

contact.  
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Figure 4-41: Tau estimate from the direct gradient method for test scenario one with and without 

correction from brightness change extension 

The Tau estimates are identical while global image brightness is constant, but as the 

brightness change begins halfway through the manoeuvre, the error of the 

uncorrected estimate increases. This increased error occurs due to the violation of 

the constant brightness assumption that underpins the method. The estimate using 

the brightness change correction continues to track the true time-to-contact value 

well through the brightness change phase, before the two estimates converge again 

when brightness becomes constant again. This result is encouraging and suggests 

that the proposed extension to account for brightness change works as intended. 

Figure 4-42 shows the Tau estimates produced from test scenario two, where 

brightness changes gradually but by a larger amount.   
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Figure 4-42: Tau estimate from the direct gradient method for test scenario two with and without 

correction from brightness change extension 

The error of the uncorrected estimate increases dramatically during the brightness 

change in the test two scenario. However, the estimate corrected for brightness 

change still tracks the true value of Tau well throughout the event, with minimal 

performance degradation. The results from the final test scenario are shown in Figure 

4-43. 

 

Figure 4-43: Tau estimate from the direct gradient method for test scenario three with and without 

correction from brightness change extension 
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Test three assesses a step change in the brightness of the image. This is an extreme 

case that is unlikely to be encountered in the real world. The movement of a shadow 

over the visual scene could produce a similar effect. This step changes produces a 

spike in the error of both corrected and uncorrected estimates of Tau, but the 

amplitude is approximately 25% of the uncorrected value with the brightness change 

correction applied. Interestingly, the correction produces a doublet pattern in the 

estimate, with error switching from positive to negative just after the step change, 

before returning to track the true value. The reason for this behaviour is unclear, but 

the errors are still smaller than for the uncorrected method.  

These results support the hypothesis that the proposed extension to the direct 

gradient method can indeed mitigate the effects of brightness change in the visual 

scene while perceiving Tau.  
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5 Chapter 5 –Tau Guided UAS Landings 

 

5.1 Rotary Wing Tau Guidance System Implementation 

A Tau guidance system has been implemented in Simulink and connected to a 

framework for simulating linear aircraft models. The architecture is independent of 

any particular aircraft model so that multiple models can be simulated by loading 

different configuration parameters via a number of setup scripts. Configurations for 

all of the linearised aircraft models described in section 3.2.3 were created. A 

separate model was used to integrate the SimMechanics-based 3DR X8 model 

described in section 3.2.1.  

The Simulink Virtual Reality toolbox was also integrated into this architecture to allow 

generation of virtual camera images for changing aircraft position and orientation in 

the simulation loop. A simple block diagram of the system architecture is shown in 

Figure 5-1.  

 

Figure 5-1: High-level block diagram of simulation architecture that is implemented in Simulink for 

testing of Tau guidance systems 

A Tau trajectory generator passes reference values of time-to-contact to the Tau 

controller. The trajectory generator can generate first, second or third order intrinsic 

Tau guides, each selected by a simple switch. The Tau controller only has control 

authority over the collective control channel of the simulation model. The other 

channels are controlled by an inner attitude feedback control loop, and an outer 

position control loop. These systems use PID controllers to keep the aircraft hovering 
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over the centre of the ship deck, while holding a constant heading. Tau estimates can 

be generated from spatial parameters of the aircraft state, or estimated from the VR 

video stream using the direct gradient method with brightness gradient extension 

detailed in section 4.4. Whichever Tau estimate is desired can be selected with a 

switch and is then fed back to the Tau controller.  

A detailed block diagram of the full flight controller architecture used for the 

following testing is given in Appendix C-1. The same controller architecture was used 

for all four aircraft models that were tested, but the control gains used were adjusted 

between models. A table containing all of the relevant control gains for all four 

rotorcraft is also given in Appendix C-2 to allow for full reconstruction of the system 

when combined with the linear models in Appendix A. The control gains were 

coarsely tuned manually, first for basic stability, and then to eliminate any 

undesirable oscillations. The gains should be tuned more rigorously in any future 

work to further reduce any oscillations present, reduce settling time of the flight 

control system when changes are commanded, and improve disturbance rejection 

capabilities, which will be vital for real operations in a maritime environment where 

atmospheric conditions can be turbulent. Simulink does include tools for automatic 

gain tuning which could be used for this task, but it may be more effective to redesign 

the controllers using Bode diagram, root locus, or Nichols plot design methods [120].  

5.1.1 Tau Control Law Analysis 

Several control laws have been previously proposed for implementing Tau guidance 

systems, as discussed in section 2.5 and detailed in reference [30], but it is not clear 

which is most effective and how the control laws interact with the various Tau 

guidance laws. This section gives a brief analysis of three candidate control laws and 

how perform when applied to the first-, second- and third-order intrinsic Tau 

guidance laws detailed in section 2.2.5.4. The Tau guidance laws will necessarily 

generate singularities and zeros at various points, so any guidance law must deal with 

these problems. The simplest is a proportional feedback control law, where the 

control input is just the difference between the reference Tau guide value and the 

measured value, multiplied by a gain, 𝐾𝑝:  
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 𝑢𝐶 = 𝐾𝑝 [𝜏(𝑡) − 𝜏𝑟𝑒𝑓(𝑡)] (5-1) 

This law is simple but will pass any infinite values of Tau straight on as a control input 

unless some saturation functions are applied. The second candidate control law is an 

inverse proportional feedback law. The inverse of measured Tau and the reference 

guide are used instead of the raw values, so that large values of Tau cause the error 

signal to tend towards zero, instead of infinite: 

 𝑢𝐶 = 𝐾𝑝 [
1

𝜏(𝑡)
−

1

𝜏𝑟𝑒𝑓(𝑡)
] (5-2) 

The third and final law assessed is a nonlinear ratio control, where the ratio of 

reference and measured Tau is used as the error signal: 

 𝑢𝐶 = 𝐾𝑝 [1 −
𝜏𝑟𝑒𝑓(𝑡)

𝜏(𝑡)
] (5-3) 

These three control laws have been implemented separately to drive the collective 

signal of the 3DR X8 simulation model and applied to reference Tau trajectories 

generated by each of the three Tau guidance laws defined. Since values of infinity 

can cause errors in the Simulink solver, a saturation function has been applied to limit 

the maximum value of both the measured and reference Tau values to a magnitude 

of 100 s. In this case, the quadcopter is landing on a flat, static surface. Tau is 

calculated from measurements of the aircrafts position and velocity for these tests 

so that Tau is ‘perfectly’ known, and therefore no problems are encountered due to 

Tau measurement accuracy. 

5.1.1.1 First-Order Intrinsic Tau Guidance Law 

The tracking performance of the three control laws are shown for a first-order 

intrinsic Tau guide manoeuvre in Figure 5-2. All laws are able to track the reference 

Tau trajectory well, but the proportional guidance law encounters issues at landing, 

when it commands an upward acceleration. This leads to the aircraft touching down 

on the runway and then lifting back off and accelerating away. This is caused by the 

infinite value of Tau measured as the velocity of the aircraft reaches zero as it touches 

the ground, leading to unpredictable control inputs.  
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Figure 5-2: Trajectory and Tau tracking RMS error of three candidate control laws applied a first 

order intrinsic Tau guide 

This divergence and subsequent take-off is also a risk for the inverse controller as the 

error signal will become infinite as 𝜏𝑟𝑒𝑓 tends to 0. The acceleration should be 

towards the deck, keeping it grounded, but singularities can behave unpredictably in 

software. 

5.1.1.2 Second-Order Intrinsic Tau Guidance Law 

For a second order Tau guide, plotted in Figure 5-3, the inverse control law showed 

poor tracking performance through the first two seconds of the manoeuvre, and the 

proportional control law also exhibited some noise at the start and end of the 

manoeuvre. Having already observed the divergence at the end of the manoeuvre 

for the proportional control law, the proportional controller was disabled at the end 

of the Tau manoeuvre to prevent the undesired take-off. The nonlinear ratio 

controller had the lowest tracking error of the three control laws throughout the 

manoeuvre. 
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Figure 5-3: Trajectory and Tau tracking RMS error of three candidate control laws applied a second 

order intrinsic Tau guide 

5.1.1.3 Third-Order Intrinsic Tau Guidance Law 

A third-order guide was also assessed for the three control laws and the results are 

shown in Figure 5-4. Similar to the second-order guide, the inverse controller shows 

poor performance during manoeuvre initiation, this time extending to almost 4 

seconds. The proportional control law also creates a noisy error signal for the first 2 

seconds of the manoeuvre. Again, the nonlinear ratio controller exhibits the best 

tracking performance, so this law was chosen as the method for implementing a Tau 

controller. 
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Figure 5-4:  Trajectory and Tau tracking RMS error of three candidate control laws applied a third 

order intrinsic Tau guide 

 

 

5.2 Frigate Deck Tau Guided Landings 

The Tau guidance system was evaluated in the context of the ship deck landing MTE 

detailed in section 3.5.1. Since the Fire Scout is used for operational maritime 

landings, the MQ-8B linear model was used for the majority of analysis. The frigate 

deck VR world was used as the visual scene, and the deck was actuated with motion 

from varying sea states. A simple model for collision mechanics was implemented to 

detect when the landing gear of the aircraft contacted the deck of the frigate, which 

triggered a switch to update the position of the aircraft in relation to the motion of 

the ship deck, rather than with the output of the linear model.  
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Figure 5-5 shows the position of the aircraft, and relative velocity between aircraft 

and ship deck, for two landing manoeuvres performed by the MQ-8B. The aircraft 

begins in a hover 10 m above the deck and descends vertically, following an intrinsic 

Tau guide reference trajectory using spatially computed Tau estimates. Both second- 

and third-order intrinsic Tau guides have been tested here with coupling constants 

of 𝑘 = 0.4, but a first-order guide is omitted since the rotorcraft begins at rest, 

contrary to the assumed initial conditions of a first-order guide. The deck is actuated 

with motion calculated for sea state 4. Note the heave velocity of the deck has some 

low amplitude noise that also manifests in any relative velocity measurements, 

though this does not seem to significantly affect overall performance of the system.  

 

Figure 5-5: MQ-8B Fire Scout heave dynamics through a sea state 4 ship deck landing manoeuvre 

using both second- and third-order intrinsic Tau guides 

The descents are noticeably different to those on a static helipad examined 

previously, since the aircraft seems to track the motion of the ship deck throughout 

the manoeuvre. The relative velocity profiles are of the expected form given by the 
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intrinsic Tau guide equations defined in sections 2.2.5.1 and 2.2.5.3, demonstrating 

that Tau guidance is reactive to its targeted end point, in this case the ship deck. This 

is evident when examining the terminal phase of the second-order guide Tau guide 

flight; the aircraft descends for the first 9 seconds of the manoeuvre but begins to 

climb again as the deck of the ship passes through a trough and begins to rise. The 

distance between the aircraft and deck is still closing, but the aircraft is climbing in 

the inertial frame to attempt to track reference value of time-to-contact provided to 

the controller. It is also clear in the k = 0.5 Tau guide that the aircraft decelerates as 

the deck reaches its peak between 5 and 6 seconds, and then accelerates again to 

catch up as the deck drops. This behaviour can be made more or less obvious by 

tuning the coupling constant, 𝑘, as illustrated in Figure 5-6.  

 

Figure 5-6: MQ-8B Fire Scout heave displacement through a sea state 4 ship deck landing manoeuvre 

using a second-order intrinsic Tau guide with varying coupling constants 

For lower values of coupling constant, the aircraft will descend quickly in the first half 

of the manoeuvre and decelerate in relation to its target early, descending more 

slowly when close to the deck. This leads to the aircraft tracking the motion of the 

deck a short distance above it, and in this case nearly 2 full seconds where the 

rotorcraft is climbing to maintain separation with the deck, but still only makes 

contact as relative velocity closes to zero. This may present a problem in higher sea 

states where the amplitude of deck motion is higher, and the aircraft may not be able 
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to meet the demands required to track the deck. A higher value of 𝑘, such as the 0.5 

case illustrated, will decelerate more slowly in relation to the deck at first, then brake 

more aggressively as distance closes. This will apply to a greater extent for cases 

where 𝑘 > 0.5, and will lead to positive contact with the deck at a speed above 0. As 

a result, it is recommended that for autonomous deck landings using Tau guidance a 

coupling constant of 0.4 ≤ 𝑘 ≤ 0.5 should be used.  

5.2.1 Benefits of Tau Guidance for Deck Landings 

The inherent ability of Tau guided systems to react to changing environmental 

dynamics is extremely useful, especially for situations such as ship-deck landings. 

Figure 5-7 shows this ability in comparison to a common alternative approach, where 

the aircraft descends at a constant rate. This rate reduces by half as the aircraft 

approaches the deck to reduce touchdown velocity.  

 

Figure 5-7: MQ-8B Fire Scout heave dynamics through a sea state 4 ship deck landing manoeuvre 

using both second-order intrinsic Tau guide, and a constant descent rate manoeuvre 
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The descent rate is measured in the inertial frame and fed back into a PID controller 

along with the reference descent rate. The resulting error signal is used to drive the 

collective channel of the helicopter. In hardware the descent rate of the aircraft 

would be found from fused GPS-INS data and would not be reactive to any 

environmental dynamics. This is clear from the relative velocity trace for the constant 

rate descent, as it varies with the velocity of the deck itself, with an offset equal to 

the reference descent rate. Since this method does not take into account the motion 

of the deck, soft contact with the deck cannot be assured and the aircraft hits the 

ship at a velocity of 1.8 m/s.  

 

Figure 5-8: MQ-8B Fire Scout heave dynamics through a sea state 4 ship deck landing manoeuvre 

using both second-order intrinsic Tau guide, and a constant relative descent rate manoeuvre 

A variant of this system was also used for comparison, shown in Figure 5-8, where 

the aircraft descends at a constant rate relative to the deck. This is similar to the 

UCARS system used for the maritime recovery of the MQ-8B Fire Scout by the US 

Navy and mentioned in section 2.1.1; a beacon on the landing deck measures ship 
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motion and relays it to the aircraft so it may account for the motion in its approach. 

In this case, it is possible to attain lower and more predictable touchdown velocities 

but relies heavily on the measure of relative position and velocity. This reliance was 

illustrated by the Fire Scout accident reported in reference [61], where 

communications issues with the beacon used to measure the relative velocity were 

disrupted.  

This behaviour is also present while following a Tau guide that is not reactive to the 

motion of the deck. For example, if using spatial parameter estimates that do not 

include measurement of the deck motion. Instead, Tau is measured relative to a fixed 

datum, such as the expected height of the deck in sea state 1, instead of relative to 

the actual position of the deck. Figure 5-9 shows that this approach yields a similar 

result to the constant rate example and the aircraft hits the deck at 1.7 m/s. These 

results support the idea that Tau should be directly measured to properly utilise the 

benefits of Tau guidance.  



167 
 

 

Figure 5-9: MQ-8B Fire Scout heave dynamics through a sea state 4 ship deck landing manoeuvre 

using a second-order intrinsic Tau guide, measured relative to the deck and a fixed datum 

5.2.2 Start Point Variation 

It is conceivable that the Tau guide used in the examples so far is taking advantage 

of some quiescent period during the deck motion and will not be as effective in 

slightly different scenarios. To address this, a further experiment was conducted that 

varied the start point of the manoeuvre in time relative to the 30 second period of 

recorded ship motion data. To achieve this, the start and end points of the ship 

motion were matched and smoothed to allow the data to be looped, and 20 equally 

spaced points in time were used as start points for the Tau landing manoeuvre. For 

the sake of comparison, the process was repeated with a Tau manoeuvre where Tau 

was measured relative to a fixed datum, i.e. not reactive to the deck.  
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Figure 5-10: MQ-8B Fire Scout touchdown velocity for sea state 4 deck landings using a second-order 

intrinsic Tau guide. Touchdown velocity plotted for Tau manoeuvres reactive to the deck motion, and 

without reactivity to the deck motion are shown.  

Figure 5-10 shows the results of this experiment, with the touchdown velocity of both 

Tau guides reactive and not reactive to the deck shown. Also plotted is the heave 

displacement of the deck at the expected time of contact. Manoeuvre duration was 

set to ten seconds for all of these test simulations, and all use a coupling constant of 

0.4. The touchdown velocity for a Tau guide not reactive to the deck varies between 

0.5 and 2 m/s with the motion of the deck, and a number of points did not record 

any result, since the aircraft did not make contact with the deck during the expected 

manoeuvre duration. The average touchdown velocity of the constant descent rate 

controller was 1.3 m/s Conversely, following the Tau guide relative to the deck the 

aircraft consistently touched down with a velocity lower than 0.5 m/s, with many 

results between 0.1 and 0.2 m/s and an average of 0.2 m/s. The quiescent period of 

ship motion between 15 and 25 seconds naturally produces lower touchdown 

velocities as one might expect. Since another advantage of Tau guidance is that the 

manoeuvre duration is a defined parameter, it is possible to schedule the touchdown 

point to coincide with this quiescent period if it can be predicted. The points of higher 
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touchdown velocity clearly coincide with the points of highest positive heave velocity 

for the deck. This is likely due to the reversal in heave required by the aircraft to 

match the deck motion in these situations seen previously. If this is indeed an issue, 

then it raises the question about how higher sea states may affect performance. 

5.2.3 Sea State Variation 

To examine how sea state affected performance of the Tau guidance system the 

same start point variation experiment was performed using higher sea state deck 

motion. Heave motion of the deck is significantly amplified above sea state 4, with 

maximum displacement increasing from 1 m to nearly 3 m for sea state 5. Figure 5-11 

shows the touchdown velocity for twenty test points dispersed through a 30 second 

sample of sea state 5 deck motion. Again, a Tau descent relative to a fixed datum 

with no reactivity is also plotted for the sake of comparison.  

The non-reactive descents exhibit substantially higher touchdown velocities, above 

3 m/s over at least half the points, but are reduced during the quiescent period. The 

reactive Tau descents touch down result in substantially reduced velocities 

throughout the deck motion. Velocity is consistently below 1 m/s, though it just 

passes this mark when the touchdown point coincides with a large heave of the deck. 

However, contact velocity does not seem to increase significantly during phases 

where the deck is descending, or at a peak or trough; it only causes issue when the 

velocity is at a positive maximum. This suggests that the heave control power of the 

aircraft is the limiting factor in the effectiveness of the Tau guidance system.  
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Figure 5-11: MQ-8B Fire Scout touchdown velocity for sea state 5 deck landings using a second-order 

intrinsic Tau guide. Touchdown velocity plotted for Tau manoeuvres reactive to the deck motion, and 

without reactivity to the deck motion are shown. 

This perspective is reinforced by the results from the same experiment repeated at 

sea state 6, shown in Figure 5-12. Maximum deck displacement is 5 m for this 

condition, and this leads to contact velocities of between 4 and 7 m/s without 

reactivity to the deck. This high velocity would likely cause damage to the aircraft. 

Using the reactive Tau guidance system, the aircraft is still able to achieve touchdown 

velocities of less than 1 m/s for 16 of the 20 points. On upswings of the deck the 

contact velocity increases to 2 m/s, again suggesting that the aircraft has reached the 

limit of its ability to track the deck motion.  
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Figure 5-12: MQ-8B Fire Scout touchdown velocity for sea state 6 deck landings using a second-order 

intrinsic Tau guide. Touchdown velocity for Tau manoeuvres reactive to the deck motion, and without 

reactivity to the deck motion are shown. 

To test the hypothesis that the regions of increased touchdown velocity were caused 

by limitations in the handling qualities of the aircraft, the control power of the MQ-

8B was augmented and the same experiment was performed. The control power was 

artificially increased by doubling the stability derivative for heave force due to 

collective control, 𝑍𝛿𝐶 , in the state-space models input matrix. Figure 5-13 shows the 

results of this experiment. The peaks in touchdown velocity are reduced significantly 

for the aircraft with augmented control power. It can therefore be concluded that 

the manoeuvre should be performable for any sea state if the aircraft has sufficient 

heave control power.  



172 
 

 

Figure 5-13: MQ-8B Fire Scout touchdown velocity for sea state 6 deck landings using a second-order 

intrinsic Tau guide, with and without augmented control power. 

Another useful characteristic is the defined temporal trajectory of Tau guides. This 

guarantees the manoeuvre will take place within a defined duration if tracking 

performance of the Tau controller is adequate. Figure 5-14 shows the average 

manoeuvre lengths for all of the simulations covered in Figure 5-10, Figure 5-11 and 

Figure 5-12, with error bars signifying the range of recorded values. Both data series 

occur at integer sea states but are separated slightly along the x axis to show the data 

more clearly. The manoeuvre duration specified to the Tau trajectory generator was 

10 seconds for all simulations. For sea state 4, the majority of durations fell within a 

second of the specified 10 second duration with an average of 9.5 seconds, while the 

duration for a Tau descent not reactive to the deck took between 10 and 7.5 seconds, 

with a mean value of 9 seconds. Both mean value and range increase with sea state 

number. Although a Tau manoeuvre should deliver an exact manoeuvre duration of 

10 seconds that will never be the case in reality, due to the physical configuration of 

the aircraft. Tau is measured from the downward looking camera that measures Tau, 

so the time-to-contact of the landing gear that will actually hit the deck is actually 

slightly smaller than the measured value. As a result, true time-to-contact of the 

landing gear will always slightly lead the measured value, and touchdown will occur 
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slightly earlier than the specified manoeuvre duration suggests. Similar to 

touchdown velocity, this manoeuvre duration is influenced by the ability of the 

aircraft to follow the Tau guide, so mean value will be closer to specified duration for 

aircraft with greater control power.  

 

Figure 5-14: Manoeuvre durations for 60 simulated MQ-8B deck Tau guided landings across sea 

states four to six. Note that results are discrete to sea state 4, 5 and 6: lateral displacement of the 

two data sets is purely for clarity of results. 

These degradations in performance due to lack of control power beg the question, is 

it possible to predict how much control is actually need for a specific manoeuvre? 

5.3 Tau Manoeuvre Limitations 

It is possible to provide some insight on where an aircraft will be unable to perform 

a particular manoeuvre by leveraging a simple model of rotorcraft heave dynamics 

from reference [121]. This model relates the acceleration of the aircraft to the heave 

force stability derivatives from a state-space model of a rotorcraft: 

 𝑤̇ − 𝑍𝑤𝑤 = 𝑍𝛿𝐶𝛿𝐶 + 𝑍𝑤𝑤𝑔 (5-4) 

Where 𝑤 and 𝑤̇ are the heave velocity of the aircraft and its time derivative, 𝑍𝑤 is 

the heave damping stability derivative, 𝑍𝛿𝐶  is the heave force due to collective 

deflection, 𝛿𝐶  is collective deflection and 𝑤𝑔 is vertical wing gust velocity. In this case 

the wind gust can be neglected for simplicity but would be useful to include in further 

analysis that includes the effect of ship airwake. 



174 
 

The heave velocity, 𝑤, and acceleration, 𝑤̇, required at any time, 𝑡, in a Tau guided 

manoeuvre can be found analytically using the equations presented in section 2.2.5. 

For a second order intrinsic Tau guide applied to the heave axis, they are: 

 𝑤 = −𝐷𝜏
3

𝑘
 𝑡2 (𝑇𝐺

3 − 𝑡3)
1
𝑘
−1 (5-5) 

 𝑤̇ = 𝐷𝜏
3

𝑘
 𝑡 [(

3

𝑘
− 1) 𝑡3 − 2𝑇𝐺

3] (𝑇𝐺
3 − 𝑡3)

1
𝑘
−2 (5-6) 

Where: 

 
𝐷𝜏 =

𝑥0

𝑇𝐺

2
𝑘

 
(5-7) 

Therefore, for the aircraft to be able to follow the guide, the control power must 

exceed the demands of the manoeuvre: 

 
𝐷𝜏
3

𝑘
((𝑡 [(

3

𝑘
− 1) 𝑡3 − 2𝑇𝐺

3] (𝑇𝐺
3 − 𝑡3)

1
𝑘
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+ 𝑍𝑊(𝑡
2(𝑇𝐺

3 − 𝑡3)
1
𝑘
−1  ≤ 𝑍𝛿𝐶𝛿𝐶𝑚𝑎𝑥 

(5-8) 

For this investigation, the SH60B Seahawk state-space model described in section 

3.2.3 was examined. The model was generated from the nonlinear FLIGHTLAB model 

trimmed in a hover, so the stability derivatives are only strictly valid for this condition. 

The stability derivatives will change with heave velocity in reality but for this 

investigation the assumption was made that this change is small, so the heave 

stability derivatives are considered to remain constant throughout. The relevant 

stability derivatives for the SH60B heave model are 𝑍𝑤 = −0.0816,  𝑍𝛿𝐶 =  2.2193 

and the maximum collective deflection from the trim in the hover is 𝛿𝐶𝑚𝑎𝑥 = 5.515. 

Only positive acceleration is examined here, since for negative decelerations the 

ultimate limiting factor is acceleration due to gravity. For the standard Tau guide used 

throughout this chapter, 𝑇𝐺 = 10, 𝑘 = 0.4 and 𝑥0 = 10 𝑚, and these values are used 

again here. For this Tau manoeuvre the left and right sides of equation (5-8) are 

evaluated separately, with the collective control power terms on the right-hand side 

treated as a threshold that, if breached, will lead to tracking failure during the 
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manoeuvre. This threshold and accelerative demands of the Tau guide are plotted in 

Figure 5-15. 

 

Figure 5-15: Heave acceleration required for an aircraft to perform an ideal second-order Tau guide 

vertical landing, and the maximum available heave acceleration for the SH60B Seahawk in a hover 

condition. 

Clearly for this manoeuvre, the aircraft does not approach the limits of its capability 

at any point and should easily be able to complete it. However, if the same 

manoeuvre is performed over a heaving ship deck, the motion of the ship must also 

be taken into account in the model as follows: 

 (𝑤̇ + 𝑤̇𝐷) − 𝑍𝑤(𝑤 + 𝑤𝐷) ≤ 𝑍𝛿𝐶𝛿𝐶 (5-9) 

Using the ship deck motion profiles detailed in section 3.5.1.1, the velocity and 

acceleration profiles were found by taking the first- and second-order gradients of 

the heave displacement, and added to the Tau guide acceleration demands for 

several sea states. Since it isn’t immediately clear where the maximums of this 

function lie, they were calculated across the Tau manoeuvre duration and the whole 

envelope of the ship deck motion profile. The accelerative demands for a sea state 

four landing are plotted in Figure 5-16. 
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Figure 5-16: Heave acceleration required for an aircraft to perform an ideal second-order Tau guide 

vertical landing on heaving ship deck in sea state 4, and the maximum available heave acceleration 

for the SH60B Seahawk in a hover condition. 

The acceleration still does not approach the available control power and there is a 

significant margin in this sea state 4 example, but the motion of the deck is clearly 

reflected in the acceleration required throughout the manoeuvre.  
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Figure 5-17: Heave acceleration required for an aircraft to perform an ideal second-order Tau guide 

vertical landing on heaving ship deck in sea state 5, and the maximum available heave acceleration 

for the SH60B Seahawk in a hover condition 

However, for a sea state 5 landing as shown in Figure 5-17, the accelerative demand 

reaches 11 ft/s2, very close to breaking the threshold of maximum available control 

power of 12.2 ft/s2. One step further to sea state 6 and this barrier is broken, as 

shown in Figure 5-18.  
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Figure 5-18: Heave acceleration required for an aircraft to perform an ideal second-order Tau guide 

vertical landing on heaving ship deck in sea state 6, and the maximum available heave acceleration 

for the SH60B Seahawk in a hover condition 

In this scenario, the Seahawk helicopter is not able to produce enough heave 

acceleration to match the demand of the Tau guide and deck motion combined in 

certain regions. Therefore, the aircraft is not be able to track the Tau guide at these 

points. If these regions occur during the terminal phase of the manoeuvre as the 

aircraft nears the deck, it will likely hit the deck with a higher velocity than desired 

and potentially damage the aircraft. On the other hand, if the aircraft can touch down 

between these points, there is still a large enough margin to complete the 

manoeuvre with a low touchdown velocity. These findings correlate well with the 

results of the sea state variation experiments performed in the previous section, 

where touchdown velocity was increased above the expected value when the 

touchdown point coincided with the deck heaving upwards in high sea state.  

To test the hypothesis that this rotorcraft dynamic models can be used to predict the 

performance limits of an aircraft, the SH60B was investigated using the same start 

point variation experiment applied to the MQ-8B earlier. The two other aircraft 

models, the R-Max and T-Rex, were also used to demonstrate a range of aircraft using 
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Tau guidance. The Fire Scout is included again for the sake of comparison.  Figure 

5-19 shows each of the four aircraft undertaking the same second-order Tau guide 

landing on a ship deck in sea state 4, with ten different start points evaluated. The 

deck motion at the expected end point is also plotted. 

 

Figure 5-19: Touchdown velocity for sea state 4 deck landings using a second-order intrinsic Tau 

guide for four different aircraft 

All four aircraft are able to follow the Tau guide and land with a touchdown velocity 

of less than 1 m/s at all points through the deck motion profile. No parameters were 

changed in the Tau controller, which demonstrates that this control method is 

essentially platform independent; it is equally applicable to all four aircraft and can 

deliver similar performance if the handling qualities of the aircraft are sufficient. 

The R-Max, the aircraft with the worst heave control power, exhibits slightly higher 

touchdown velocities throughout the deck motion profile, even at this relatively low 

sea state. On the other hand, the SH60B exhibits low touchdown velocities 

throughout, but it does increase slightly through points of deck upswing. Figure 5-21 

shows the same analysis for sea state 6 deck motion.  
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Figure 5-20: Touchdown velocity for sea state 6 deck landings using a second-order intrinsic Tau 

guide for four different aircraft 

Again, the R-Max experienced high touchdown velocities due to its low vertical 

control power. As predicted during the previous analysis, the SH60B is also not able 

to track the deck motion through areas of high deck upswing, and lands heavily. As a 

result, it can be concluded that the modelling technique proposed above can be used 

for indication of the performance limits of rotorcraft performing Tau deck landings. 

The order of the aircraft from highest to lowest touchdown velocity is not consistent 

at all test points, especially when the point of touchdown does not coincide with a 

deck upswing in the time history. For example, the best performer out of the MQ8 

and T-Rex switches at each of the first 4 test points, depending on how the deck is 

moving. This suggests that there are more factors in the determination of Tau landing 

performance than purely heave control power. This variability may be due to a range 

of handling qualities considerations or control system tuning problems and warrants 

further investigation. However, since the touchdown velocities are low at these 

points, these factors do not seem to be affecting touchdown velocity performance 

significantly, and as a result are not further investigated in this thesis. 
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5.4 Optical Tau Guided Frigate Deck Landings Results 

The Simulink 3D Animation toolbox was used to implement the VR frigate deck 

landing scene detailed in section 3.4.1 into the Simulink aircraft model, and the 

resulting video stream was processed using the direct gradient method for Tau 

estimation. The brightness change extension proposed in section 4.4 was used. The 

resulting Tau estimate was fed back into the Tau guidance system to evaluate how 

well this Tau estimate can be utilised for the landing manoeuvre. 

5.4.1 Sea State 1 

The system was initially evaluated in sea state 1, which corresponds to a flat, calm 

ocean where no heave displacement of the deck occurs at all. The Tau reference 

trajectory, measured Tau value, and the ground truth value are shown in Figure 5-21 

for the MQ-8B model following a second-order intrinsic Tau guide.  
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Figure 5-21: Tau quantities through an optical Tau guided ship deck landing by the MQ-8B in sea 

state 1. Time-to-contact with the deck measured by the direct gradient method, along with the 

ground truth time history of Tau and the reference trajectory that the controller is attempting to 

track are shown in the top plot. The RMS tracking error of the controller between the ground truth 

and reference trajectory, and measurement error between the measured and ground truth values of 

Tau. 

The measured value of Tau is the one used by the controller to generate the error 

signal for control inputs, equivalent to the tracking error plotted above. The tracking 

performance is very good between 4 and 9 seconds, with error below 0.5 seconds 

consistently, excepting small discontinuities at the points where the subsampling 

level switches just before the 5 and 8 second marks. There are larger errors in the 

first 3 seconds of the manoeuvre, but this is unsurprising since the value of the 
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reference trajectory is high and changes quickly at this point. It is also not 

problematic since the aircraft is a long way from the deck at this point.  The error 

between the measured value of Tau and the ground true value is also low between 

4 and 8 seconds but begins to increase rapidly after 8 seconds as the estimated value 

becomes larger than the true value. This should result in an acceleration toward the 

deck, and this is observed by the heave displacement and relative velocity plotted in 

Figure 5-22; instead of decelerating at the end of the manoeuvre, the measurement 

error causes the aircraft to remain at a high velocity and hit the deck at 1.3 m/s. The 

high error at the beginning of the manoeuvre also seems to cause a large spike in 

velocity as the aircraft begins to descend.  

 

Figure 5-22: Heave dynamics for MQ-8B for a sea state 1, second-order intrinsic Tau guide landing 

using optical Tau estimates 

Analysis in chapter 4 suggested that there would be small errors as the camera 

approached the deck, it was not clear that it would have this great an effect, and it 

does not seem possible to mitigate for these problems simply with the available 
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techniques. As a result, it must be concluded that optical Tau perception is not 

suitable for the terminal phase of this deck landing manoeuvre. The author proposes 

that in this section, performance could be augmented with an active ranging sensor 

for improved performance. Since this divergence in measurement occurs in the last 

2 m of descent, an ultrasonic sensor could be used effectively for this situation. This 

solution was implemented in simulation, with Tau measured from the optical camera 

feed through the first 7 seconds of the Tau manoeuvre, and then switched to a spatial 

estimate calculated using the aircraft height above the deck and relative velocity. 

Figure 5-23 shows the same descent carried out with this switch to a spatial Tau 

estimate for the final 3 seconds of the descent. 

 

Figure 5-23: Heave dynamics for MQ-8B for a sea state 1, second-order intrinsic Tau guide landing 

using optical Tau estimates with spatial augmentation. The point where spatial augmentation of the 

Tau estimate is activated is marked with a red dotted line at 8 seconds 
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This approach prevents the divergence in Tau measurement error from commanding 

a high velocity toward the deck in the terminal phase and allows for smooth 

touchdown at low velocity.  

5.4.2 Higher Sea States 

Optical Tau guided landings were also performed with higher sea state motion. Figure 

5-24 shows the same second-order Tau guided descent by the Fire Scout onto a deck 

moving with sea state 3 motion. Again, the augmentation with spatial data is used 

for the final 3 seconds of the manoeuvre. The aircraft is again able to make a soft 

landing on the deck with minimal relative velocity.  

 

Figure 5-24: Heave dynamics for MQ-8B for a sea state 3, second-order intrinsic Tau guide landing 

using optical Tau estimates with spatial augmentation 

The deck motion for sea state 3 is still relatively benign, so the results for the same 

experiment performed in sea state 5 are plotted in Figure 5-25. This descent gives a 

much better of how optically perceived Tau can still be a powerful tool in this 

scenario, as the aircraft clearly slows its descent to avoid the peak in deck position 5 
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seconds into the manoeuvre. This is accomplished using only optical Tau as a control 

variable, and occurs at a range where an ultrasonic ranging sensor would not be 

accurate, though it is still necessary to augment the optical Tau estimate with a 

spatial one through the final moments of the landing.  

 

Figure 5-25: Heave dynamics for MQ-8B for a sea state 5, second-order intrinsic Tau guide landing 

using optical Tau estimates with spatial augmentation 

This descent again exhibits the large transient velocity after manoeuvre initiation, 

which is undesirable.  Since third-order intrinsic Tau guides should start with zero 

acceleration and develop velocity more slowly, they may offer a mechanism for 

reducing this velocity spike. Figure 5-26 shows the heave dynamics for an optically 

guided third-order Tau descent in sea state 5. Spatial Tau augmentation is again used 

over the final 3 seconds of the manoeuvre. Unfortunately, following a third-order 

intrinsic Tau guide does not reduce the velocity spike that occurs during manoeuvre 

initiation. This seems to be because the reference Tau trajectory is similar to a 

second-order guide in that they both produce a reference Tau of negative infinity at 

the start of the reference trajectory, which despite saturation functions being 
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included, is still partially transmitted to the controller. If the deck was stationary then 

the measured value of Tau would also be infinite and this would not be a problem, 

but since the deck heaves relative to the aircraft constantly, a non-infinite value of 

Tau is measured and this leads to a large error signal passed to the controller. The 

velocity spike does not result in a large displacement, so should not pose a large risk 

to the safety of the aircraft. 

 

Figure 5-26: Heave dynamics for MQ-8B for a sea state 5, third-order intrinsic Tau guide landing 

using optical Tau estimates with spatial augmentation 
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5.5 Fixed-Wing Tau Guided Landings 

 

5.5.1 Tau Guidance System Implementation 

The Tau guidance system detailed in chapter 5 has also been applied to the 

simulation model of the 3DR Aero, detailed in section 3.2.2.  The technical review in 

chapter 2 only yielded one example of Tau guidance used for the autonomous control 

of fixed-wing aircraft, which was Ridgeway’s Tau pilot model applied to a simulation 

of a Grob Tutor aircraft in reference [21]. This example calculated Tau from spatial 

variable to complete a range of manoeuvres. No examples at all have been found of 

fixed-wing aircraft using optical Tau as a guidance variable. It was demonstrated in 

chapter 4 that it is possible to generate Tau estimates for a camera attached to a 

fixed-wing aircraft, so it should be possible to implement this. 

A Tau guidance system using the nonlinear ratio control law was implemented on the 

linear state-space model of the 3DR Aero in Matlab Simulink for testing purposes. 

The control loops differ from the ones applied to the rotorcraft models described in 

section 5.1, since translational rate command is not a suitable command type for a 

fixed-wing aircraft. Instead, control loops were added for heading- and airspeed-hold 

functions. The full flight controller architecture is given in Appendix C-3, and the 

matrix of control gains used in the flight controller is also given in Appendix C-4. The 

gain values were tuned manually for simplicity and allowed the aircraft to complete 

the manoeuvre without significant excursions from the desired trajectory. As for the 

rotorcraft flight controller, the system should be better tuned using more formal 

methods in future to improve performance.  

As before, a constant heave rate controller was added in parallel to the Tau guidance 

system so the user can switch between the two systems. In this case, the output of 

the Tau controller is connected directly to the elevator control channel to allow direct 

alteration of the flight path. Both a first- and second-order Tau guide reference 

trajectory were included. The first-order system is set up to descend at a constant 

rate while monitoring time-to-contact and activate a constant rate of change of Tau 

deceleration when 𝜏 < 5 𝑠. The desert runway VR world detailed in section 3.4.2 was 
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also integrated into the simulation model to provide a video stream to generate 

optical Tau estimates. 

5.5.2 Flat Runway Tau Landings 

The results for a first-order Tau guided landing are shown in Figure 5-27. The Aero 

descends at a constant rate of 2.5 m/s from a starting altitude of 50 m. Tau is 

measured spatially in this case. When time-to-contact with the ground plane breaks 

the 5 s threshold, the Tau controller is activated, and the aircraft decelerates to touch 

down with low heave velocity.  

 

Figure 5-27: Fixed-wing runway landing of the 3DR Aero following first-order intrinsic Tau guidance 

using spatially computed time-to-contact estimates. Aircraft descends from 50m at a constant rate 

and initiates a Tau flare manoeuvre when time-to-contact passes a threshold value of 5 seconds 
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For this landing Tau was estimated using the direct gradient method applied to the 

video stream of the VR runway, though the estimate was not used in the guidance 

system. The estimate through the manoeuvre is plotted in Figure 5-28. Clearly the 

measurement is highly noisy and tracking error is poor. No estimate at all is available 

during the actual deceleration phase of the manoeuvre because the virtual camera 

begins to clip through the terrain and displays no image, despite the camera is still 

being 5 to 10 m above the ground plane. It is not clear why this problem occurred 

and unfortunately troubleshooting failed to identify the problem. New tools for 

modelling visual scenes may need to be integrated into the system to provide a 

better environment for testing of optical Tau guided fixed-wing aircraft. However, 

the benefits of Tau guidance in this context can still be evaluated using spatial 

estimates of time-to-contact. 

 

Figure 5-28: Time-to-contact estimate from the 3DR Aero runway landing described above, where the 

aircraft follows a first-order Tau guide triggered at a threshold time-to-contact of 5 seconds. Tau is 

calculated using the extended direct gradient method. 

5.5.3 Landings at Unprepared Sites 

The benefits of Tau guidance for fixed-wing aircraft landings are similar to those 

discussed for the ship deck landings in chapter 5; the aircraft is able to respond to 
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changing environmental dynamics with ease, but it is admittedly far less likely that a 

fixed-wing UAS will be required to land on a moving object. However, the high 

forward speed of the aircraft can produce the effect of a moving ground plane. If the 

elevation of the terrain changes as the aircraft moves over it, this appears as if the 

ground is moving towards or away from a downward looking camera. Such terrain 

variations may be present if an aircraft must operate from an unprepared runway, as 

is the case with many SUAS. Several experiments have been performed to assess how 

a Tau guided fixed-wing aircraft with perform landing on uneven terrain. Figure 5-29 

shows the 3DR Aero descending towards a runway that constantly slopes upward 

toward the aircraft at a 5-degree angle.  

 

Figure 5-29: Fixed-wing landing of the 3DR Aero following first-order intrinsic Tau guidance using 

spatially computed time-to-contact estimates. Aircraft descends over terrain that slopes upward at 5 
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degrees in the direction of travel. Aircraft descends from 50m at a constant rate and initiates a Tau 

flare manoeuvre when time-to-contact passes a threshold value of 5 seconds 

As observed in the ship deck landing analysis, the aircraft is able to respond to the 

changing demands of the environment and still perform a soft landing with no 

modifications to the time-to-contact trajectory necessary. The same is true if the 

terrain does not vary linearly. Figure 5-30 shows a 3DR Aero descent towards terrain 

that varies over a 10 m range in a sinusoidal pattern. Variations in the spatial estimate 

of time-to-contact are visible while the aircraft descends at a constant rate, but the 

controller tracks the reference trajectory well once it is activated.  

 

 

Figure 5-30: Fixed-wing landing of the 3DR Aero following first-order intrinsic Tau guidance using 

spatially computed time-to-contact estimates. Aircraft descends over unprepared ground where 

terrain elevation varies sinusoidally. Aircraft descends from 50m at a constant rate and initiates a 

Tau flare manoeuvre when time-to-contact passes a threshold value of 5 seconds  
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These simple experiments demonstrate that optical Tau guidance is also useful when 

applied to fixed-wing landings, especially for landings at unprepared sites with 

potential terrain variations. However, further work is still required to successfully 

implement Tau perception methods on fixed-wing platforms. 
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6 Chapter 6 – Conclusions 

 

The research presented in this thesis has sought to better illuminate how the 

guidance methods that stem from ecological Tau theory can be applied to unmanned 

aerial systems. Tau theory provides powerful mechanisms to explain the natural 

behaviour of animals and humans, both when controlling their own bodies and 

machines, by leveraging the time-to-contact of an observer with an obstacle or 

target. Tau has been shown to follow defined patterns during many natural actions 

and is theorised to be directly perceived from an observer’s environment.  

As the market for UAS continues to grow, technological solutions must be found to 

answer the many problems this fast-growing industry faces. Analysis of accident data 

has shown that unreliable communication links, pilot errors and a limited ability to 

detect and avoid hazards are primary causes of many UAS accidents. The author 

proposes that the application of Tau theory to guide UAS may aid in tackling some of 

these problems. In an effort to establish how useful Tau guidance can be, and what 

obstacles must be overcome for its successful use, several distinct areas have been 

examined. This chapter will summarise the findings of each element of this thesis. 

6.1 Conclusions of the Research 

6.1.1 Tau Perception 

The perception of time-to-contact is not a new problem, and many solutions already 

exist for this task, but it is still a fundamental problem to the application of Tau 

guidance with no universally accepted answer. Many systems that have 

implemented Tau guidance thus far have used spatial information from GPS-INS 

systems to do so, which compromises the key benefit of Tau theory, namely the 

implicit situational awareness gained from optical sensing of Tau. Active ranging 

techniques can be simply applied for Tau perception, but literature shows that the 

effective ranges and characteristics of available sensors are not currently adequate 

in a great enough range of conditions to be useful. Reliable ranging sensors also tend 

to be expensive and heavy for use on small unmanned aircraft. Optical sensors are 

cheap, viable at many ranges, and offer an obvious analogue to the natural 
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mechanism for Tau perception. Chapter 4 of this thesis examined several optical 

techniques for Tau perception to ascertain which best suit the needs of UAS.  

Dimension tracking methods are simple, intuitive and offer accurate estimates of Tau 

at varied ranges. However, it relies heavily on the ability to detect and track features 

within an image. Feature content can be poor in some images, and translational 

motion parallel to the ground plane leads to loss of features very quickly. Without 

sufficient robust feature content, no Tau estimate can be made at all, which heavily 

limits the usefulness of dimension tracking methods. They also do not deal well with 

some of the expected complexities of an aerial observer, namely six degree of 

freedom motion, and landing on inclined planes, since both distort the relationship 

between apparent size of an object on the image plane and its true size.  

Optical flow divergence methods should in theory be able to provide highly accurate 

estimates of Tau, since the optical flow field characterises relative motion very well. 

However, the obstacles involved in estimating the optical flow field itself make Tau 

perception through this method very difficult. The most popular methods of flow 

field estimation again depend on robust feature detection. Though widely 

implemented in common image processing packages, optical flow implementations 

are somewhat less than intuitive, and all experiments have produced heavily flawed 

optical flow fields even with simple camera dynamics. 

As a result, direct gradient methods have been identified as the most effective 

method for optically sensing time-to-contact at current. Gradient methods leverage 

elements of both dimension tracking and optical flow to calculate Tau directly. The 

method has been implemented through both a custom Matlab class of objects, and 

a Simulink system. This method only requires knowledge of some intrinsic camera 

parameters, and the gradients of the frames in a video sequence. However, due to 

the reliance of the method on the constant brightness assumption, the effectiveness 

of the method is heavily dictated by the relationship between the parameters of the 

camera, and the dynamics of the camera.  

The frame rate, resolution (and hence effective pixel size) of a video camera used for 

gradient method estimation of Tau will affect the accuracy of results heavily. It has 
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been found that for cases where translational motion parallel to the ground plane is 

small, the residual of the constant brightness assumption when populated with a 

simple approximation of an optical flow field is a good indicator of how accurate a 

Tau measurement will be. The error in Tau measurement was found to increase 

linearly with the mean of the constant brightness equation residuals, with 1 s of error 

in Tau corresponding to a residual of 30.  To maintain residuals below this threshold, 

the properties of the camera can be manipulated using subsampling, a method of 

reducing effective resolution through block processing each video frame. However, 

for cases with high translational motion (such as a camera attached to a fixed-wing 

aircraft), this relationship seems to break down, and the residuals of the constant 

brightness assumption did not provide an indicative measure of Tau measurement 

accuracy. Subsampling is still useful for maintaining effectiveness and scheduling 

increased levels of subsampling with a reliable scaler can produce accurate results.  

Another drawback of the gradient method is the relatively large computational loads 

for processing each frame. This factor can be mitigated by using lower resolution 

images or frame rates, though this must also be balanced with the most effective 

image sizing for Tau perception as well. It was found that an HVGA (320x480 pixels) 

camera resolution recording at 30 frames per second presented a good compromise 

between all factors, and through subsampling could be effective throughout a range 

of manoeuvres with low translational motion. For cases with high relative motion, 

increasing frame capture rate to 60 fps was found to significantly improve Tau 

perception performance.  

The most powerful element of the direct gradient method is its extensibility. Several 

extensions to the method have already been proposed for the method, that allow it 

to account for observer motion in 6 degrees of freedom, with relative slope between 

observer and target. A further extension is proposed by the author that augments 

the underlying constant brightness assumption with the ability to account for global 

brightness changes in the image and maintain accurate Tau estimates. This new 

method for Tau perception was tested using several image brightness profiles that 

change over time, and was found to mitigate deviations caused by the brightness 

change in the base gradient method well.  
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6.1.2 Tau Guidance of Rotary UAS 

Tau guidance of rotary UAS was tested extensively in the context of frigate deck 

landings in various sea states. It was found that the nonlinear ratio control law 

originally proposed by Kendoul is most effective for Tau control when tested against 

proportional and inverse control laws. The frigate deck landing illustrates the 

benefits of optical Tau guidance in an obvious way. Measurement of Tau naturally 

captures the motion of the deck and the aircraft adapts to it seamlessly due to the 

temporal nature of the reference Tau trajectory. The ability to fit manoeuvres into 

temporal gaps that Tau guidance allows is also very useful, as it allows manoeuvres 

to be scheduled for quiescent periods in deck motion if they can be predicted. In 

comparison to other commonly implemented techniques for UAS landings, the Tau 

guidance system consistently delivered very low touchdown velocities across the 

whole envelope of deck motion in multiple sea states. 

Performance of the Tau guidance system was found to only be limited by the control 

power of the aircraft when Tau estimates are sufficiently accurate. A simple model 

for prediction of the performance limits with respect to sea state and Tau manoeuvre 

aggressiveness was developed to predict when aircraft would hit the deck with a 

higher than expected velocity. The model was applied to the SH60B Seahawk, and it 

correctly predicted that the touchdown velocity of the aircraft would increase above 

nominal in sea state 6 for the Tau trajectory defined by the MTE. Several other 

aircraft were also tested with the same Tau guidance system to demonstrate that it 

was equally applicable to any platform.  

Optical measurements of Tau were then used in the loop with the simulation model 

to control the aircraft solely with optical Tau. Tracking performance through the first 

4 seconds of the manoeuvre was poor due to a large velocity spike brought about the 

singularity in a second-order intrinsic Tau guide at 𝑡 = 0. Between 4 and 8 seconds 

the aircraft tracked the desired profile closely, with an RMS error of less than 0.5 s. 

However, in the last two seconds, the measured value of Tau diverged from the true 

value and caused the aircraft to accelerate toward the deck and make contact at 1.3 

m/s. While this is not excessive, it would be amplified in higher sea states and is 

substantially larger than the results obtained with better Tau estimates. It may be 
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possible to improve optical Tau measurements in the last 2 m above the deck where 

this issue occurred, but it is recommended that Tau measures are augmented with 

an ultrasonic sensor in this area. Ultrasonic sensors are effective at this range, are 

lightweight and cheap, so would not negatively impact a UAS in this situation.  

6.1.3 Tau Guidance of Fixed-Wing UAS 

A similar Tau guidance system was applied to a simulation of a small fixed-wing UAS, 

the 3DR Aero. Tau guidance provides similar benefits to fixed wing aircraft as it does 

to RUAS; it enables reactivity to environmental dynamics and guarantees soft landing 

if Tau measurements are reasonably accurate. The level of analysis of fixed-wing 

aircraft fell short of the detail applied to rotary aircraft, due in part to technical 

failings of the analysis tools. However, it was demonstrated that fixed wing aircraft 

following Tau guides are able to react to changing terrain at unprepared landing sites. 

It was also demonstrated that it is possible to estimate Tau from fixed-wing 

platforms, but accuracy was not sufficient to enable control of the UAS from it. Since 

fixed-wing aircraft are more likely to land in static environments, spatial GPS-INS 

state information could potentially be used to implement Tau guidance without 

much performance degradation. Further work will be required to tune and improve 

optical Tau perception from fixed-wing platform. 

6.1.4 Overall Conclusions 

Referring back to the aims and objectives set out in section 1.5, the above conclusions 

can be assessed against them. Project objectives 1, 2 and 3 have been completed, 

though implementation of optical Tau guidance on fixed-wing platforms remains 

elusive, preventing true completion of objective 4. Addressing the three project aims: 

1. It has been demonstrated that Tau has the potential to address some of the 

problems facing UAS: Tau guidance improves reactivity to external obstacles 

and hazards, reduces reliance on external signals such as GPS, and improves 

performance in landing manoeuvres, even challenging ship deck landings.  

2. The direct gradient method has been identified as an effective method for 

Tau perception, and an improvement to it has been proposed that further 

expands capability.  
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3. Optical Tau guidance extends the same benefits to fixed-wing flight as it does 

to rotary-wing flight, but the implementation of the former has proved more 

difficult and warrants further investigation.  

6.2 Potential Further Work 

1. Further investigation into the effects that camera properties and camera 

motion have on Tau estimate accuracy is needed to allow the direct gradient 

method to run at maximum accuracy consistently. Currently it is not always 

clear whether the algorithm is providing the best possible measurement in all 

situations, so better characterisation of how all factors affect the output is 

needed. This is especially true for the fixed-wing implementation of the Tau 

sensor where performance is still poor.  

2. More rigorous testing of the Tau sensor in a wider range of environments is 

also needed to build confidence in its effectiveness. Further testing of the 

new extension to the direct gradient method that accounts for brightness 

change is also needed with a great variety of brightness change models, such 

as partial occlusion of the image. 

3. More simulation testing of the Tau guidance system is needed with higher 

fidelity simulation models to identify potential problems ahead of hardware 

testing. Several of the linear state-space models used for the majority of 

testing were produced from nonlinear FLIGHTLAB models which could be 

used for higher fidelity testing. These models would capture more physics 

that may impact the effectiveness of the Tau guidance system, especially 

close to the ground. More detailed simulations of the maritime environment 

that include the atmospheric disturbances caused by the air wake of the ship 

superstructure should also be investigated for progression of deck landing 

operations. 

4. Better tuning of control systems is required to improve both on-axis Tau 

control and other off-axis controllers, since all control gains were tuned 

simply through trial and error to this point. In future all gains should be tuned 

more rigorously using more formal techniques to reduce unwanted 

oscillations, reduce settling time, and improve disturbance rejection ability. 
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5. Hardware testing of the Tau sensor and Tau guidance systems are needed to 

confirm both systems are viable for full implementation. Optimisation of the 

extended direct gradient method is required for this step to reduce 

computation time and allow for a faster execution rate. 
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Appendix A – Aircraft Linear State-Space Models 

This appendix details the state and control matrices for the linear state-space models 

described in section 3.2. All of the models are time-invariant state-space models of 

the form in equations A-1 and A-2 , where 𝑥 is the state vector, 𝐴 is the state matrix, 

𝐵 is the control matrix, 𝑢 is the control vector, 𝑦 is the output vector, 𝐶 is the output 

matrix which is a 9-by-9 identity matrix, 𝐷 is the feedforward matrix which is a 9-by-

4 zero matrix and 𝑥𝑖𝑛𝑖𝑡 is the initial state of the aircraft. 

 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (A-1) 

 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑥𝑖𝑛𝑖𝑡 (A-2) 

This model is shown as a block diagram in Figure 6-1 and was implemented in 

Simulink in this way. A saturation is applied to the control input that limits its range, 

𝑢𝑟𝑎𝑛𝑔𝑒, to the one specified by the original FLIGHTLAB model each state-space model 

was derived from. The initial control positions, 𝑢𝑖𝑛𝑖𝑡, are also included here by 

altering the saturation range accordingly. 

 

Figure 6-1: Block diagram of state-space model implementation 
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Appendix A.1 – Sikorsky SH-60B Seahawk Model 

The FLIGHTLAB model that the state-space model was derived from was trimmed in 

a hover at 100 feet altitude with no ambient wind. The state matrix, state vector, 

control matrix, control vector, initial state vector, control range matrix and initial 

control vector for the Sikorsky SH-60B Seahawk model are: 

𝐴 =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 1 −0.0024 0.0504
0 0 0 0 0 0 0 0.9989 0.0467
0 0 0 0 0 0 0 −0.0467 1.0002
0 −28.6125 0 −0.0170 0.0054 0.0033 −1.5513 3.0874 −0.0771
32.2 −0.3086 0 0.0011 −0.0301 0.0020 −1.9423 −1.7114 0.3063
1.501 −1.3408 0 0.0052 −0.1004 −0.0816 −1.3164 2.2791 −0.9121
0 −0.4390 0 0.0010 −0.0239 0.0009 −4.5792 −1.5790 −0.0513
0 −0.6856 0 0.0028 0.0024 0.0005 0.1961 −0.9972 −0.0262
0 −0.0229 0 0 0.0037 −0.0010 −0.1963 −0.1387 −0.1726]

 
 
 
 
 
 
 
 

  (A-3) 

 𝑥 = [ 𝜙 𝜃 𝜓 𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 ]𝑇 (A-4) 

 𝐵 =  

[
 
 
 
 
 
 
 
 

 

0 0 0 0
0 0 0 0
0 0 0 0

0.0067 −0.1651 −0.0937 0.0943
0.0918 0.0179 0.0292 −0.0723
0.0044 −0.0130 2.2193 −0.7718
0.1155 0.0204 −0.0030 −0.0319
0.0005 0.0319 −0.0263 0.0048
0.0060 0.0011 −0.0032 0.0228 ]

 
 
 
 
 
 
 
 

 (A-5) 

 𝑢 =  

[
 
 
 
𝛿𝑙𝑎𝑡
𝛿𝑙𝑜𝑛
𝛿𝑐𝑜𝑙
𝛿𝑝𝑒𝑑]

 
 
 
 (A-6) 

 𝑥𝑖𝑛𝑖𝑡 = [ −0.0466 0.0503 0 0 0 0 0 0 0 ]𝑇 (A-7) 

 𝑢𝑟𝑎𝑛𝑔𝑒 = [

0 10
0 10
0 10
0 5.38

] (A-8) 

 𝑢𝑖𝑛𝑖𝑡 = [

5.0886
5.6640
4.4850
1.5693

] (A-9) 

All angles are measured in radians, angular rates are measured in radians per second 

and linear rates are measured in feet per second. 
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Appendix A.2 – Northrop Grumman MQ-8B Fire Scout Model 

The FLIGHTLAB model that the state-space model was derived from was trimmed in 

a hover at 100 feet altitude with no ambient wind. The state matrix, state vector, 

control matrix, control vector, initial state vector, control range matrix and initial 

control vector for the Northrop Grumman MQ-8B Fire Scout are: 

𝐴 =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 −32.2 0 −0.0200 0.0037 0.0089 0.0516 2.3968 −0.0629
32.2 0 0 −0.0014 −0.0377 0.0066 −2.2261 −0.3187 0.2369
0 0.0024 0 0.0160 0.0031 −0.3982 −0.0327 0.2366 1.4921
0 0 0 −0.0150 −0.0999 0.0040 −23.8176 2.2019 −0.2229
0 −0.0001 0 0.0102 0.0006 0.0065 −0.8831 −3.2247 −0.0934
0 0 0 −0.0006 0.0118 −0.0016 −0.1714 −0.1178 −0.2659]

 
 
 
 
 
 
 
 

  (A-10) 

 𝑥 = [ 𝜙 𝜃 𝜓 𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 ]𝑇 (A-11) 

 𝐵 =  

[
 
 
 
 
 
 
 
 

 

0 0 0 0
0 0 0 0
0 0 0 0

−0.0335 −2.0765 0.4312 0.0503
1.0939 0.1288 −0.0400 −1.8699
−0.0050 −0.0679 −14.3644 0.6881
5.4903 −0.2828 −0.1798 −1.9850
0.1627 1.3543 0.2273 0.4957
0.0543 −0.0334 0.7158 1.2408 ]

 
 
 
 
 
 
 
 

 (A-12) 

 𝑢 =  

[
 
 
 
𝛿𝑙𝑎𝑡
𝛿𝑙𝑜𝑛
𝛿𝑐𝑜𝑙
𝛿𝑝𝑒𝑑]

 
 
 
 (A-13) 

 𝑥𝑖𝑛𝑖𝑡 = [ −0.0496 0.0071 0 0 0 0 0 0 0 ]𝑇 (A-14) 

 𝑢𝑟𝑎𝑛𝑔𝑒 = [

−5 5
−5 5
0 10

−2.5 2.5

] (A-15) 

 𝑢𝑖𝑛𝑖𝑡 = [

−0.3790
0.4960
5.1910
0.5660

] (A-16) 

All angles are measured in radians, angular rates are measured in radians per second 

and linear rates are measured in feet per second. 
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Appendix A.3 – 3DR Aero Model 

The FLIGHTLAB model that the state-space model was derived from was trimmed in 

straight and level flight at 30 knots airspeed at 100 feet altitude with no ambient 

wind. The state matrix, state vector, control matrix, control vector, initial state 

vector, control range matrix and initial control vector for the 3DR Aero are: 

𝐴 =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 1 0 −0.0053
0 0 0 0 0 0 0 1 0.001
0 0 0 0 0 0 0 0.001 1
0 −32.2 0 −0.2533 −0.1386 0.3835 0.0025 0.2301 0.0081
32.2 −0.0002 0 0.0014 −1.4159 0.0015 −2.2714 −0.0088 −47.017
0.032 0.1695 0 −1.2111 0.0028 −16.831 0.1066 44.5761 −0.0187
0 0 0 0.0220 −1.7098 0.0937 −34.234 −0.0024 3.7364
0 0 0 0.0201 −0.0091 −1.8986 −0.0057 −3.5441 0.0035
0 0 0 0 0.7385 0.0045 −0.0118 0.0014 −2.0435]

 
 
 
 
 
 
 
 

  (A-17) 

 𝑥 = [ 𝜙 𝜃 𝜓 𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 ]𝑇 (A-18) 

 𝐵 =  

[
 
 
 
 
 
 
 
 

 

0 0 0 0
0 0 0 0
0 0 0 0

0.0017 0.0057 0.0503 0.0023
0 0.0260 0 −0.3862

0.4259 −1.0662 0 0
0 0.4238 −0.0022 −0.0723

0.3144 −0.0521 −0.0053 0.0004
0 0.0040 0 0.2500 ]

 
 
 
 
 
 
 
 

 (A-19) 

 𝑢 =  

[
 
 
 
𝛿𝑙𝑜𝑛
𝛿𝑙𝑎𝑡
𝛿𝑡ℎ𝑟
𝛿𝑝𝑒𝑑]

 
 
 
 (A-20) 

 𝑥𝑖𝑛𝑖𝑡 = [ −0.001 −0.0053 0 0 0 0 0 0 0 ]𝑇 (A-21) 

 𝑢𝑟𝑎𝑛𝑔𝑒 = [

0 100
0 100
0 100
0 100

] (A-22) 

 𝑢𝑖𝑛𝑖𝑡 = [

57.1586
50.9737
39.0769
49.9805

] (A-23) 

All angles are measured in radians, angular rates are measured in radians per second 

and linear rates are measured in feet per second.  
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Appendix B – Tau Perception Derivations 

This appendix details the derivations for the optical flow field estimation techniques 

and direct gradient method variations discussed in section 4. 

Appendix B.1 – Optical Flow Field Estimation 

 

Appendix B.1.1 – Horn and Schunck Optical Flow Estimation 

Any image can be regarded as an intensity or brightness pattern, and expressed as a 

function in these terms: 

 𝐼(𝑥, 𝑦, 𝑡) (B-1) 

This image brightness or intensity, 𝐼 is a function of position on the image plane and 

time. The constant brightness assumption states that the intensity of a particular 

point in the brightness pattern does not change significantly with time; in other 

words, the information contained within the images of a video sequence does not 

change between video frames: 

 
𝑑

𝑑𝑡
𝐼(𝑥, 𝑦, 𝑡) = 0 (B-2) 

The customary constant brightness equation is derived by applying the chain rule for 

differentiation: 

 
𝑑𝐼

𝑑𝑥

𝑑𝑥

𝑑𝑡
+
𝑑𝐼

𝑑𝑦

𝑑𝑦

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
= 𝐼𝑥 𝑢 + 𝐼𝑦 𝑣 + 𝐼𝑡 = 0 (B-3) 

Where 𝑢 and 𝑣 are the optical flow components in the 𝑥 and 𝑦 directions, and the 𝐼𝑥, 

𝐼𝑦 and 𝐼𝑡 terms are the image gradients with respect to 𝑥, 𝑦 and time directions. A 

single equation is insufficient for calculating the two optical flow components, so a 

further constraint equation must be introduced for a solution. This second equation 

is typically where optical flow methods differ most. 

Horn and Schunck’s second constraint equation assumes that optical flow varies 

smoothly across the image. The constant brightness assumption states that the 

brightness of a point remains constant between frames but allows for its motion 

within the image. If all points in an image moved independently, it would be nearly 
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impossible to recover the optical flow velocities. However, in the majority of cases, a 

video will depict rigid objects undergoing motion so that neighbouring points will 

move with similar velocities; the optic flow field will have some degree of 

smoothness. This inference can be used to derive a second constraint equation to 

use in the optical flow calculations by using the Laplacian of the vector flow fields as 

a measure of smoothness: 

 
∇2𝑢 =

𝛿2𝑢

𝛿𝑥2
+
𝛿2𝑢

𝛿𝑦2
 (B-4) 

 
∇2𝑣 =

𝛿2𝑣

𝛿𝑥2
+
𝛿2𝑣

𝛿𝑦2
 (B-5) 

For a case where the observers move parallel to the scene, all flow vectors will be 

aligned and therefore perfectly smooth so the above quantities will be equal to zero. 

Since it is unlikely that motion is exclusively parallel, it is beneficial to formulate the 

problem as a minimisation for a solution.  

For the solution, it is necessary to calculate image derivatives for each frame in the 

sequence. However, it is important that the derivatives with respect to each 

dimension are consistent; they should all be calculated for the same point in time 

and space. This is straightforward for the spatial dimensions as a simple gradient 

calculation method can be applied using convolution. A central difference method is 

typically used for this purpose: 

 𝑑𝑓

𝑑𝑥
=
𝑓 (𝑥 +

1
2ℎ) − 𝑓 (𝑥 −

1
2ℎ)

ℎ
 

(B-6) 

However, this becomes more complex in the time dimension, as a central difference 

method can be applied in two ways: across three frames or across two. Both will 

introduce a time lag to the system. If the time gradient is calculated across three 

frames it introduces a full frame lag to the system, as an extra image at frame 𝑛 + 1 

is required to compute the gradient for frame 𝑛. Calculating the frame across two 

frames reduces the size of this frame lag by half, but means the gradient is assessed 

at a point between frames. Since it is only possible to assess the spatial image 

gradients at times when frames are captured, these gradients are no longer 



207 
 

consistent with the time gradient. One solution to this problem is to interpolate the 

gradients between frames using multiple measurements to ensure consistency. Horn 

and Schunk used this method, illustrated in Figure 6-2 below, where a formation of 

cubes represents pixels position in time and space: 

 

Figure 6-2: Pixel structure in x, y and time directions used for averaging 

By using the indices 𝑖, 𝑗 and 𝑘 to represent values on the 𝑥, 𝑦 and 𝑡 axes, an 

estimation for the gradient values at the centre of the cube can be formulated: 

 
𝐼𝑥 ≈

1

4𝑥
( 𝐼𝑖,𝑗+1,𝑘 − 𝐼𝑖,𝑗,𝑘 + 𝐼𝑖+1,𝑗+1,𝑘 − 𝐼𝑖+1,𝑗,𝑘 + 𝐼𝑖,𝑗+1,𝑘+1

− 𝐼𝑖,𝑗,𝑘+1 + 𝐼𝑖+1,𝑗+1,𝑘+1 − 𝐼𝑖+1,𝑗,𝑘+1) 

(B-7) 

 
𝐼𝑦 ≈

1

4𝑦
( 𝐼𝑖+1,𝑗,𝑘 − 𝐼𝑖,𝑗,𝑘 + 𝐼𝑖+1,𝑗+1,𝑘 − 𝐼𝑖,𝑗+1,𝑘 + 𝐼𝑖+1,𝑗,𝑘+1

− 𝐼𝑖,𝑗,𝑘+1 + 𝐼𝑖+1,𝑗+1,𝑘+1 − 𝐼𝑖,𝑗+1,𝑘+1) 

(B-8) 

 
𝐼𝑡 ≈

1

4𝑡
( 𝐼𝑖,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘 + 𝐼𝑖+1,𝑗,𝑘+1 − 𝐼𝑖+1,𝑗,𝑘 + 𝐼𝑖,𝑗+1,𝑘+1

− 𝐼𝑖,𝑗+1,𝑘 + 𝐼𝑖+1,𝑗+1,𝑘+1 − 𝐼𝑖+1,𝑗+1,𝑘) 

(B-9) 

These equations can be applied over a whole image simply by convolving the image 

with simple masks for each direction in every frame, summing with a consecutive 

frame and dividing by the relevant interval: 
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𝐼𝑥 = (𝐼(𝑥, 𝑦, 𝑡 − 1)  ∗  [
−
1

4

1

4

−
1

4

1

4

] + 𝐼(𝑥, 𝑦, 𝑡) ∗  [
−
1

4

1

4

−
1

4

1

4

]) 
1

𝑥𝑝𝑥
 (B-10) 

 

𝐼𝑦 = (𝐼(𝑥, 𝑦, 𝑡 − 1)  ∗  [

1

4

1

4

−
1

4
−
1

4

] + 𝐼(𝑥, 𝑦, 𝑡) ∗  [

1

4

1

4

−
1

4
−
1

4

]) 
1

𝑦𝑝𝑥
 (B-11) 

 

𝐼𝑡 = (𝐼(𝑥, 𝑦, 𝑡 − 1)  ∗  [
−
1

4
−
1

4

−
1

4
−
1

4

] + 𝐼(𝑥, 𝑦, 𝑡)  ∗  [

1

4

1

4
1

4

1

4

]) 
1

𝑑𝑡
 (B-12) 

Where 𝑥𝑝𝑥 and 𝑦𝑝𝑥 represent the size of each pixel in the 𝑥 and 𝑦 directions, and 𝑑𝑡 

represents the time period between each frame.  

The Laplacians of the flow field to apply the smoothness constraint must also be 

found. A convenient approximation is: 

 ∇2𝑢 ≈ 𝐾(𝑢̅𝑖,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘) (B-13) 

 𝛻2𝑣 ≈ 𝐾(𝑣 𝑖,𝑗,𝑘 − 𝑣𝑖,𝑗,𝑘) (B-14) 

The local average velocities 𝑢̅𝑖,𝑗,𝑘 and 𝑣 𝑖,𝑗,𝑘 are defined by a weighted average of the 

neighbouring points. The problem is then to minimise the sum of the errors of the 

two constraint equations. A minimisation can be constructed using the above 

approximations and a weighting factor 𝛼 through the calculus of variations to define 

the two following equations: 

 (𝑢 − 𝑢̅) =  −𝐼𝑥
(𝐼𝑥𝑢̅ + 𝐼𝑦𝑣 + 𝐼𝑡)

𝛼2 + 𝐼𝑥2 + 𝐼𝑦2
 (B-15) 

 (𝑣 − 𝑣 ) =  −𝐼𝑦
(𝐼𝑥𝑢̅ + 𝐼𝑦𝑣 + 𝐼𝑡)

𝛼2 + 𝐼𝑥2 + 𝐼𝑦2
 (B-16) 

These equations can then be solved iteratively to produce estimates for the flow field 

across successive frames.  
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Appendix B.1.2 – Lucas-Kanade Optical Flow Estimation  

For this method the constant brightness equation is defined for the 𝑛 pixels in a 

window around the point of interest, each represented by 𝑝𝑖. The constant 

brightness equations for each pixel can be represented as linear matrix equation: 

 

[
 
 
 
𝐼𝑥(𝑝1) 𝐼𝑦(𝑝1)

𝐼𝑥(𝑝2) 𝐼𝑦(𝑝2)

⋮ ⋮
𝐼𝑥(𝑝𝑛) 𝐼𝑦(𝑝𝑛)]

 
 
 

 [
𝑢
𝑣
] =  [

−𝐼𝑡(𝑝1)

−𝐼𝑡(𝑝2)
⋮

−𝐼𝑡(𝑝𝑛)

] = 𝐴𝑥𝑦𝑣 = 𝑏 (B-17) 

The Lucas-Kanade method assumes that optical flow is constant in this region, so 

there are more equations than unknowns and is therefore over-determined, so is 

best solved with a least squares method. The matrix constant brightness equation 

can be expressed in a more useful form by multiplying by the transverse of 𝐴𝑥𝑦 and 

rearranging for the flow vector: 

 𝐴𝑥𝑦
𝑇 𝐴𝑥𝑦𝑣 = 𝐴𝑥𝑦

𝑇 𝑏 (B-18) 

 𝑣 = (𝐴𝑥𝑦
𝑇 𝐴𝑥𝑦)

−1
𝐴𝑥𝑦
𝑇 𝑏 (B-19) 

Which expands to: 

 

[
𝑢
𝑣
]

=  [

∑ 𝐼𝑥(𝑝𝑖)
2

𝑖
∑ 𝐼𝑥(𝑝𝑖)𝐼𝑦(𝑝𝑖)

𝑖

∑ 𝐼𝑦(𝑝𝑖)𝐼𝑥(𝑝𝑖)
𝑖

∑ 𝐼𝑦(𝑝𝑖)
2

𝑖

]

−1

[

−∑ 𝐼𝑥(𝑝𝑖)𝐼𝑡(𝑝𝑖)
𝑖

−∑ 𝐼𝑦(𝑝𝑖)𝐼𝑡(𝑝𝑖)
𝑖

] 

(B-20) 
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Appendix B.2 – Derivations for Direct Gradient Method for Tau Perception  

The direct gradient method relies on the constant brightness equation (B-3) and the 

two expressions for optical flow components derived from the weak perspective 

projection equations: 

 
𝑢 = 𝑓 ( 

𝑈

𝑍
− 
𝑥

𝑓

𝑊

𝑍
 ) (B-21) 

 
𝑣 = 𝑓 ( 

𝑉

𝑍
−
𝑦

𝑓

𝑊

𝑍
 ) (B-22) 

Appendix B.2.1 – One Degree of Freedom Translational Motion 

The direct gradient method uses the expressions for the optical flow components 

derived from the weak perspective projection equations, and substitutes them into 

the constant brightness equation directly: 

 𝐼𝑥𝑓 ( 
𝑈

𝑍
− 
𝑥

𝑓

𝑊

𝑍
 ) + 𝐼𝑦𝑓 ( 

𝑉

𝑍
−
𝑦

𝑓

𝑊

𝑍
 ) + 𝐼𝑡 = 0 (B-23) 

Examining a simple case where motion is perpendicular to an approaching planar 

surface, 𝑈 = 𝑉 = 0, therefore: 

 
−
𝑊

𝑍
(𝑥 𝐼𝑥 + 𝑦 𝐼𝑦) + 𝐼𝑡 = 0 (B-24) 

This equation is commonly simplified to: 

 𝐶𝐺 + 𝐼𝑡 = 0 (B-25) 

Where 𝐺 is the radial gradient, defined as: 

 𝐺 =  𝑥 𝐼𝑥 + 𝑦 𝐼𝑦 (B-26) 

And 𝐶 is the inverse of time-to-contact: 

 𝐶 = −
𝑊

𝑍
=
1

𝜏
 (B-27) 

Since the constant brightness equation will never be exactly equal to zero due to 

quantization errors and noise in the image capture process, it is best to formulate 

the problem as a minimisation. Using a least-squares method the problem can be 

stated as a minimisation of the quantity: 
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 ∑(𝐶𝐺 + 𝐼𝑡)
2 (B-28) 

To find the minimum value of this expression it is simple to differentiate with respect 

to 𝐶 and equate to zero to find the stationary point, yielding: 

 ∑(𝐶𝐺 + 𝐼𝑡)  𝐺 = 0 (B-29) 

 
𝐶 = −

∑𝐺𝐼𝑡
∑𝐺2

 (B-30) 

Time-to-contact is then simply obtained by finding the inverse of 𝐶. This method only 

requires the three image gradients to function and is very computationally 

inexpensive once those gradients are found. The gradients can be summed over the 

whole image or a subset of it. The power of this method becomes clear when 

considering scenarios with increased complexity.  

Appendix B.2.2 – Three Degree of Freedom Translational Motion 

Horn also allowed for cases where translational motion occurs in all three axes 

instead of purely perpendicular to the ground plane. In this case, 𝑈 and 𝑉 are non-

zero, so equation (4-17) can be used in its entirety. It is useful to separate the inverse 

of Tau out again, so the equation can be rearranged as: 

 
𝑓
𝑈

𝑍
𝐼𝑥 + 𝑓

𝑉

𝑍
𝐼𝑦 −

𝑊

𝑍
(𝑥 𝐼𝑥 + 𝑦 𝐼𝑦) + 𝐼𝑡 = 0 (B-31) 

Again, using 𝐶 and 𝐺 and setting: 

 
𝐴 = 𝑓

𝑈

𝑍
 (B-32) 

 
𝐵 = 𝑓

𝑉

𝑍
 (B-33) 

The expression can be simplified to: 

 𝐴𝐼𝑥 + 𝐵𝐼𝑦 + 𝐶𝐺 + 𝐼𝑡 = 0 (B-34) 

There are three unknown variables in equation (B-34), but the problem can still be 

formulated as a least-squares problem: 
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 ∑(𝐴𝐼𝑥 + 𝐵𝐼𝑦 + 𝐶𝐺 + 𝐼𝑡)
2

 (B-35) 

Taking the partial derivatives of equation (B-35) with respect to 𝐴, 𝐵 and 𝐶 yields 

three equations to match the three unknowns: 

 ∑(𝐴𝐼𝑥 + 𝐵𝐼𝑦 + 𝐶𝐺 + 𝐼𝑡)𝐼𝑥 = 0 (B-36) 

 ∑(𝐴𝐼𝑥 + 𝐵𝐼𝑦 + 𝐶𝐺 + 𝐼𝑡)𝐼𝑦 = 0 (B-37) 

 ∑(𝐴𝐼𝑥 + 𝐵𝐼𝑦 + 𝐶𝐺 + 𝐼𝑡)𝐺 = 0 (B-38) 

By expanding equations (B-36), (B-37), and (B-38) formulating them as a linear matrix 

equation: 

 [

Σ𝐼𝑥
2 Σ𝐼𝑥𝐼𝑦 Σ𝐺𝐼𝑥

Σ𝐼𝑥𝐼𝑦 Σ𝐼𝑦
2 Σ𝐺𝐼𝑦

Σ𝐺𝐼𝑥 Σ𝐺𝐼𝑦 Σ𝐺2
] [
𝐴
𝐵
𝐶
] =  − [

Σ𝐼𝑥𝐼𝑡
Σ𝐼𝑦𝐼𝑡
Σ𝐺𝐼𝑡

] (B-39) 

Again, all of the required terms are products of the three image gradients which can 

be used to solve for time-to-contact, in addition to the 𝐴 and 𝐵 parameters. Solving 

for 𝐶 is the primary focus, but these extra quantities allow for estimation of the image 

focus of expansion (𝑥0, 𝑦0), which can be useful for translational control:  

 
𝐴

𝐶
=
𝑓
𝑈
𝑍

−
𝑊
𝑍

=  −𝑓
𝑈

𝑊
 (B-40) 

 
𝐵

𝐶
=
𝑓
𝑉
𝑍

−
𝑊
𝑍

=  −𝑓
𝑉

𝑊
 (B-41) 

Appendix B.2.3 – One Degree of Freedom Translational Motion with Relative Slope 

A further level of complexity can be added by considering a camera approaching an 

inclined plane with one degree of translational freedom along the optical axis.  The 

slope of the plane can be defined by two parameters, 𝑝𝑠 and 𝑞𝑠, to represent the 

amount of slope in the 𝑋 and 𝑌 directions above a height reference, 𝑍0: 
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 𝑍 = 𝑍0 + 𝑝𝑠𝑋 + 𝑞𝑠𝑌 (B-42) 

The weak perspective projection equations can be substituted into equation (B-42) 

and rearranged to: 

 
𝑍 =

𝑍0

(1 − 𝑝𝑠
𝑥
𝑓
− 𝑞𝑠

𝑦
𝑓
)

 (B-43) 

Equation (B-43) can be then substituted into the image rate equations ((B-29) and 

(B-30)) to obtain expression for the optical flow components when approaching an 

inclined surface. The horizontal translational rates are again set to zero, so 𝑈 = 𝑉 =

0 and: 

 
𝑢 =  −𝑥

𝑊

𝑍0
(1 − 𝑝𝑠

𝑥

𝑓
− 𝑞𝑠

𝑦

𝑓
) (B-44) 

 
𝑣 =  −𝑦

𝑊

𝑍0
(1 − 𝑝𝑠

𝑥

𝑓
− 𝑞𝑠

𝑦

𝑓
) (B-45) 

Substituting equations (B-44) and (B-45) into the constant brightness equation and 

rearranging: 

 
−(𝑥 𝐼𝑥 + 𝑦 𝐼𝑦)

𝑊

𝑍0
 (1 − 𝑝𝑠

𝑥

𝑓
− 𝑞𝑠

𝑦

𝑓
) + 𝐼𝑡 = 0 (B-46) 

Setting: 

 
𝑃𝑠 =

𝑝𝑠
𝑓

𝑊

𝑍0
 (B-47) 

 
𝑄𝑠 =

𝑞𝑠
𝑓

𝑊

𝑍0
 (B-48) 

Then substituting in to equation (B-46) results in: 

 𝐺(𝐶 + 𝑃𝑠𝑥 + 𝑄𝑠𝑦) + 𝐼𝑡 = 0 (B-49) 

Since motion is along the optical axis the contact point with the plane will be at 

(0, 0, 𝑍0), hence 𝐶 will still be the inverse of time-to-contact with the ground plane. 

The problem can again be formulated as a least square minimisation in the same 

manner to produce the linear matrix equation: 
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 [

Σ𝐺2𝑥2 Σ𝐺2𝑥𝑦 Σ𝐺2𝑥

ΣG2𝑥𝑦 ΣG2𝑦2 Σ𝐺2𝑦

Σ𝐺2𝑥 Σ𝐺2𝑦 Σ𝐺2
] [
𝑃𝑠
𝑄𝑠
𝐶
] =  − [

Σ𝐺𝑥𝐼𝑡
Σ𝐺𝑦𝐼𝑡
Σ𝐺𝐼𝑡

] (B-50) 

Appendix B.2.4 – Three Degree of Freedom Translational Motion with Relative Slope 

It is possible to account for both three degree of freedom translational motion and 

relative slope between camera and ground plane. This can be achieved by 

substituting the full equations for the optical flow components (equation (B-21) and 

(B-22)) and the expression for altitude from slope (equation (B-43)) into the constant 

brightness assumption: 

 (1 − 𝑝𝑠
𝑥

𝑓
− 𝑞𝑠

𝑦

𝑓
) (𝑓 ( 

𝑈

𝑍0
−
𝑥

𝑓

𝑊

𝑍0
 ) 𝐼𝑥 +  𝑓 ( 

𝑉

𝑍0
−
𝑦

𝑓

𝑊

𝑍0
 ) 𝐼𝑦) + 𝐼𝑡 = 0 (B-51) 

Using the previous variable groupings, this can be simplified to: 

 𝐶 (1 + 𝑥
𝑃𝑠
𝐶
+ 𝑦

𝑄𝑠
𝐶
) (𝐺 + 𝐼𝑥

𝐴

𝐶
+ 𝐼𝑦

𝐵

𝐶
) + 𝐼𝑡 = 0 (B-52) 

Setting: 

 
𝐹 = 1 + 𝑥

𝑃𝑠
𝐶
+ 𝑦

𝑄𝑠
𝐶

 (B-53) 

 
𝐷 = 𝐺 + 𝐼𝑥

𝐴

𝐶
+ 𝐼𝑦

𝐵

𝐶
 (B-54) 

The problem can again be posed as a least-squares minimisation f the form: 

 ∑(𝐶𝐹𝐷 + 𝐼𝑡)
2 (B-55) 

Differentiating equation (B-55) with respect to the five variables 𝐴, 𝐵, 𝐶, 𝑃𝑠 and 𝑄𝑠 

to find the minimum point yields five equations with five unknowns, but the 

equations are nonlinear so must be solved numerically. Horn proposed a hierarchical 

scheme to achieve this by sequentially assuming two of the variables are known and 

iteratively solving two sets of linear equations. By assuming that 
𝑃𝑠
𝐶⁄  and 

𝑄𝑠
𝐶⁄  are 

constant and known, equation (B-55) can be differentiated with respect to 𝐴, 𝐵 and 

𝐶 to give the following equations: 
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 ∑(𝐹(𝐶𝐺 + 𝐼𝑥𝐴 + 𝐼𝑦𝐵) + 𝐼𝑡)𝐹𝐼𝑥 = 0  (B-56) 

 ∑(𝐹(𝐶𝐺 + 𝐼𝑥𝐴 + 𝐼𝑦𝐵) + 𝐼𝑡)𝐹𝐼𝑦 = 0  (B-57) 

 ∑(𝐹(𝐶𝐺 + 𝐼𝑥𝐴 + 𝐼𝑦𝐵) + 𝐼𝑡)𝐹𝐺 = 0  (B-58) 

Assuming 𝐴 and 𝐵 are constants and differentiating with respect to 𝑃, 𝑄 and 𝐶: 

 ∑(𝐷(𝐶 + 𝑥𝑃𝑠 + 𝑦𝑄𝑠) + 𝐼𝑡)𝐷𝑥 = 0 (B-59) 

 ∑(𝐷(𝐶 + 𝑥𝑃𝑠 + 𝑦𝑄𝑠) + 𝐼𝑡)𝐷𝑦 = 0 (B-60) 

 ∑(𝐷(𝐶 + 𝑥𝑃𝑠 + 𝑦𝑄𝑠) + 𝐼𝑡)𝐷 = 0 (B-61) 

These equations can be arranged into two sets of linear matrix equations: 

 

[

𝛴𝐹2𝐼𝑥
2 𝛴𝐹2𝐼𝑥𝐼𝑦 𝛴𝐹2𝐺𝐼𝑥

𝛴𝐹2𝐼𝑥𝐼𝑦 𝛴𝐹2𝐼𝑦
2 𝛴𝐹2𝐺𝐼𝑦

𝛴𝐹2𝐺𝐼𝑥 𝛴𝐹2𝐺𝐼𝑦 𝛴𝐹2𝐺2
] ⌈
𝐴
𝐵
𝐶
⌉ = −[

𝛴𝐹𝐼𝑥𝐼𝑡
𝛴𝐹𝐼𝑦𝐼𝑡
𝛴𝐹𝐺𝐼𝑡

] (B-62) 

 

[

𝛴𝐷2𝑥2 𝛴𝐷2𝑥𝑦 𝛴𝐷2𝑥

𝛴𝐷2𝑥𝑦 𝛴𝐷2𝑦2 𝛴𝐷2𝑦

𝛴𝐷2𝑥 𝛴𝐷2𝑦 𝛴𝐷2
] ⌈

𝑃𝑠
𝑄𝑠
𝐶𝑠

⌉ = − [
𝛴𝐷𝑥𝐼𝑡
𝛴𝐷𝑦𝐼𝑡
𝛴𝐷𝐼𝑡

] (B-63) 

Equation (B-62) and (B-63) can be solved iteratively to produce estimates for all five 

variables using only image gradients, camera properties and some initial estimates 

for 
𝑃𝑠
𝐶⁄  and 

𝑄𝑠
𝐶⁄  . 

Appendix B.2.5 – Six Degree of Freedom Translational and Rotational Motion with 

Relative Slope 

To account for rotational motion, the fundamental weak perspective projection 

equations must be re-examined as per Horn in Ref. [122]. A point in the visual scene 

𝑃 creates an image 𝑝 on a camera. The coordinates of these two points are: 

 𝑃 = [𝑋, 𝑌, 𝑍] (B-64) 

 𝑝 = [𝑥, 𝑦, 𝑓] (B-65) 
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And they are related to each other through the weak perspective projection 

equations: 

 𝑝 = [𝑥, 𝑦, 𝑓] = 𝑓 [
𝑋

𝑍
,
𝑌

𝑍
,
𝑍

𝑍
] =

𝑓𝑃

𝑃 ∙ 𝑧̂
 (B-66) 

Where 𝑧̂ is a unit vector in the 𝑍 direction. The velocity of point 𝑃 relative to the 

camera frame will be: 

 
𝑑𝑃

𝑑𝑡
=  −𝑉̅ − 𝜔̅ 𝑃 (B-67) 

Where the 𝑉̅ and 𝜔̅ are the translational and rotational velocities respectively, and 

their components are: 

 𝑉̅ = [𝑈, 𝑉,𝑊] (B-68) 

 𝜔̅ = [𝜔𝑥 . 𝜔𝑦, 𝜔𝑧] (B-69) 

The corresponding motion of the image point 𝑝 will be: 

 𝑑𝑝

𝑑𝑡
=
𝑑

𝑑𝑡
(
𝑓𝑃

𝑃 ∙ 𝑧̂
) (B-70) 

 𝑑𝑝

𝑑𝑡
=
𝑓𝑃̇ (𝑃 ∙ 𝑧̂) − (𝑃 ∙ 𝑧̂)𝑓𝑃

(𝑃 ∙ 𝑧̂)2
 (B-71) 

Using the vector triple product this can be rearranged to: 

 𝑎 × (𝑏 × 𝑐) = (𝑐 ∙ 𝑎)𝑏 − (𝑎 ∙ 𝑏)𝑐 (B-72) 

 𝑑𝑝

𝑑𝑡
= 𝑓 

𝑧̂ × (𝑃̇ × 𝑃)

(𝑃 ∙ 𝑧̂)2
 (B-73) 

Substituting in equation (B-67): 

 
𝑑𝑝

𝑑𝑡
=

𝑓

(𝑃 ∙ 𝑧̂)2
 [ 𝑧̂ × ((−𝜔̅ × 𝑃 − 𝑉̅) × 𝑃)] (B-74) 

Rearranging equation (B-66) and substituting in: 

 𝑑𝑝

𝑑𝑡
=

𝑓

(𝑃 ∙ 𝑧̂)2
 [𝑧̂ × ((−

𝑃 ∙ 𝑧̂

𝑓
𝜔̅ × 𝑝 − 𝑉̅) ×

𝑃 ∙ 𝑧̂

𝑓
 𝑟) (B-75) 
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Since 𝑎 × 𝑏 = −(𝑏 × 𝑎) equation (B-75) can be re-ordered and terms cancelled to 

yield: 

 
𝑑𝑝

𝑑𝑡
= −𝑧̂ × [𝑝 × (𝑝 ×

𝜔̅

𝑓
−

𝑉̅

𝑃 ∙ 𝑧̂
)] (B-76) 

Substituting in the relevant vectors for 𝑝, 𝑃, 𝑉̅ and 𝜔̅: 

 
𝑑𝑝

𝑑𝑡
=  − [

0
0
1
] ×

[
 
 
 
 
 

[

𝑥
𝑦
𝑓
] ×

(

 
 
[

𝑥
𝑦
𝑓
] × 

[
 
 
 
 
𝜔𝑥

𝑓⁄

𝜔𝑦
𝑓⁄

𝜔𝑧
𝑓⁄ ]
 
 
 
 

−

[
 
 
 
𝑈
𝑍⁄

𝑉
𝑍⁄

𝑊
𝑍⁄ ]
 
 
 

)

 
 

]
 
 
 
 
 

 (B-77) 

Solving equation (B-77) yields: 

 
𝑑𝑝

𝑑𝑡
=  

[
 
 
 
 
 
−𝑓𝑈 + 𝑥𝑊

𝑍
+
𝑥𝑦

𝑓
𝜔𝑥 −

𝑥2 + 𝑓2

𝑓
𝜔𝑦 + 𝑦𝜔𝑧

−𝑓𝑉 + 𝑦𝑊

𝑍
+
𝑦2 + 𝑓2

𝑓
𝜔𝑥 −

𝑥𝑦

𝑓
𝜔𝑦 − 𝑥𝜔𝑧

0 ]
 
 
 
 
 

 (B-78) 

Since the elements of 𝑝 are the 𝑥 and 𝑦 position in the image, the components of the 

time derivative of 𝑝 will be the optical flow velocity components 𝑢 and 𝑣. Therefore: 

 
𝑢 =  −𝑓

𝑈

𝑍
+ 𝑥

𝑊

𝑍
+ 
𝑥𝑦

𝑓
𝜔𝑥 −

𝑥2 + 𝑓2

𝑓
𝜔𝑦 + 𝑦𝜔𝑧 (B-79) 

 
𝑣 =  −𝑓

𝑉

𝑍
+ 𝑦

𝑊

𝑍
 +
𝑦2 + 𝑓2

𝑓
𝜔𝑥 −

𝑥𝑦

𝑓
𝜔𝑦 − 𝑥𝜔𝑧 (B-80) 

These expressions for the flow components can then be substituted into the constant 

brightness equation and the gradient methodology applied to produce time-to-

contact estimates for cases with the observer in rotational motion if the angular 

velocities are known. These angular velocities can be measured with a gyroscopic 

inertial navigation system. Using the above expressions for surface slope and 

translational velocity, and the new rotational motion quantities: 

 
𝐽 =  

𝑥𝑦

𝑓
𝜔𝑥 −

𝑥2 + 𝑓2

𝑓
𝜔𝑦 + 𝑦𝜔𝑧 (B-81) 



218 
 

 
𝐾 =  

𝑦2 + 𝑓2

𝑓
𝜔𝑥 −

𝑥𝑦

𝑓
𝜔𝑦 − 𝑥𝜔𝑧 (B-82) 

The following equation can be constructed: 

 𝐶 (1 + 𝑥
𝑃𝑠
𝐶
+ 𝑦

𝑄𝑠
𝐶
) (𝐺 + 𝐼𝑥

𝐴

𝐶
+ 𝐼𝑦

𝐵

𝐶
) + 𝐽𝐼𝑥 + 𝐾𝐼𝑦 + 𝐼𝑡 = 0 (B-83) 

Constructing a least-squares minimisation and further simplifying with 𝐹 and 𝐷 

variable groupings: 

 ∑[𝐶𝐹𝐷 + 𝐽𝐼𝑥 + 𝐾𝐼𝑦 + 𝐼𝑡]
2

 (B-84) 

Creating another variable grouping: 

 𝐼𝜔 = 𝐽𝐼𝑥 + 𝐾𝐼𝑦 + 𝐼𝑡  (B-85) 

Allows the construction of two systems of equations which can again be solved 

iteratively to estimate time-to-contact given the image gradients, camera properties 

and rotational velocities: 

 

[

𝛴𝐹2𝐼𝑥
2 𝛴𝐹2𝐼𝑥𝐼𝑦 𝛴𝐹2𝐺𝐼𝑥

𝛴𝐹2𝐼𝑥𝐼𝑦 𝛴𝐹2𝐼𝑦
2 𝛴𝐹2𝐺𝐼𝑦

𝛴𝐹2𝐺𝐼𝑥 𝛴𝐹2𝐺𝐼𝑦 𝛴𝐹2𝐺

] ⌈
𝐴
𝐵
𝐶
⌉ = −[

𝛴𝐹2𝐼𝑥𝐼𝜔
𝛴𝐹2𝐼𝑦𝐼𝜔

𝛴𝐹2𝐺𝐼𝜔

] (B-86) 

 

[

𝛴𝐷2𝑥2 𝛴𝐷2𝑥𝑦 𝛴𝐷2𝑥

𝛴𝐷2𝑥𝑦 𝛴𝐷2𝑦2 𝛴𝐷2𝑦

𝛴𝐷2𝑥 𝛴𝐷2𝑦 𝛴𝐷2
] ⌈
𝑃𝑠
𝑄𝑠
𝐶
⌉ = − [

𝛴𝐷𝑥𝐼𝜔
𝛴𝐷𝑦𝐼𝜔
𝛴𝐷𝐼𝜔

] (B-87) 

These equations allow for time-to-contact to be estimated for a camera moving in six 

degrees of freedom relative to a target inclined to the camera in two dimensions, 

which covers most possible scenarios. 
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Appendix B.3 – Direct Gradient Method Block Diagrams 

This appendix contains block diagrams that detail the implementation of the direct 

gradient method in its base form, described in section 4.3, and with the extension 

proposed in section 4.4. The numbers by each block correspond to the numbered 

lists in these two respective sections that outline the process in words.  
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Appendix B.3.1 – Six Degree of Freedom Translational and Rotational Motion with 

Relative Slope Block Diagram 
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Appendix B.3.2 – Six Degree of Freedom Translational and Rotational Motion with 

Relative Slope with Brightness Change Correction Block Diagram 

 



222 
 

Appendix C – Simulation Model Flight Controller Systems 

Appendix C.1 – Rotary-Wing Flight Controller Structure 
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Appendix C.2 – Rotary-Wing Flight Controller Gains 

 

Parameter SH-60B MQ-8B R-Max T-Rex 

Tau Controller 

𝐾𝑃 -10 -2 -100 -10 

𝐾𝐼 0 -0.2 0 -0.2 

𝐾𝐷 0 0 0 0 

Roll Rate Controller 

𝐾𝑃 -1 -1 -1 -1 

𝐾𝐼 0 0 0 0 

𝐾𝐷 0 0 0 0 

Pitch Rate 

Controller  

𝐾𝑃 -2 -2 -2 -2 

𝐾𝐼 0 0 0 0 

𝐾𝐷 0 0 0 0 

Yaw Rate 

Controller 

𝐾𝑃 -0.5 -0.5 -1 -0.5 

𝐾𝐼 0 0 0 0 

𝐾𝐷 0 0 0 0 

X Direction 

Translation Rate 

Controller 

𝐾𝑃 -0.2 -0.2 -0.5 -0.2 

𝐾𝐼 0 0 0 0 

𝐾𝐷 0 0 0 0 

Y Direction 

Translation Rate 

Controller 

𝐾𝑃 -0.2 -0.2 -0.5 -0.2 

𝐾𝐼 0 0 0 0 

𝐾𝐷 0 0 0 0 

Heading Hold 

Controller 

𝐾𝑃 -2 -2 -2 -2 

𝐾𝐼 0 0 0 0 

𝐾𝐷 0 0 0 0 

Heave Velocity 

Controller 

𝐾𝑃 -1 -1 -1 -1 

𝐾𝐼 0 0 0 0 

𝐾𝐷 0 0 0 0 

Height Hold 

Controller 

𝐾𝑃 -10 -10 -10 -10 

𝐾𝐼 0 0 0 0 

𝐾𝐷 0 0 0 0 

Crossfeed 𝐾𝐶  0.5 0.5 0.5 0.5 
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Appendix C.3 – Fixed-Wing Flight Controller Structure 
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Appendix C.4 – Fixed-Wing Flight Controller Gains 

 

Parameter 3DR Aero 

Tau Controller 

𝐾𝑃 -100 

𝐾𝐼 0 

𝐾𝐷 0 

Roll Rate Controller 

𝐾𝑃 -10 

𝐾𝐼 0 

𝐾𝐷 0 

Roll Angle 

Controller 

𝐾𝑃 -10 

𝐾𝐼 -10 

𝐾𝐷 0 

Airspeed Hold 

Controller 

𝐾𝑃 -50 

𝐾𝐼 0 

𝐾𝐷 0 

Sideslip Controller 

𝐾𝑃 -1 

𝐾𝐼 0 

𝐾𝐷 0 

Climb Rate 

Controller 

𝐾𝑃 -10 

𝐾𝐼 0 

𝐾𝐷 0 

Height Hold 

Controller 

𝐾𝑃 -10 

𝐾𝐼 0 

𝐾𝐷 0 
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