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Abstract

The Poisson regression model remains an important tool in the econo-
metric analysis of count data. In a pioneering contribution to the econo-
metric analysis of such models, Lee (1986) presented a specification test
for a Poisson model against a broad class of discrete distributions some-
times called the Katz family. Two members of this alternative class are
the binomial and negative binomial distributions, which are commonly
used with count data to allow for under- and over-dispersion, respectively.
In this paper we explore the structure of other distributions within the
class and their suitability as alternatives to the Poisson model. Poten-
tial difficulties with the Katz likelihood leads us to investigate a class of
point optimal tests of the Poisson assumption against the alternative of
over-dispersion in both the regression and intercept only cases. In a sim-
ulation study, we compare score tests of ‘Poisson-ness’ with various point
optimal tests, based on the Katz family, and conclude that it is possi-
ble to choose a point optimal test which is better in the intercept only
case, although the nuisance parameters arising in the regression case are
problematic. One possible cause is poor choice of the point at which to op-
timize. Consequently, we explore the use of Hellinger distance to aid this
choice. Ultimately we conclude that score tests remain the most practical
approach to testing for over-dispersion in this context.
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1 Introduction

The well-known Pearson family of continuous distributions, originally explored
by Pearson (1895), is comprised of any solution to a particular differential equa-
tion. In his PhD thesis, Katz (1945) explored a family of discrete distributions
that are solutions to a difference equation analogous to the Pearson differential
equation.! The Pearson family is a collection of four-parameter distributions
and specializations thereof. Katz (1965, p.175) observes that certain special-
izations ‘produce simpler and more manageable classes’ and restricts attention
to a set of one- and two-parameter distributions. In particular, his restrictions
result in a family of distributions that nest the two-parameter binomial and nega-
tive binomial (or Pascal) distributions, together with the one-parameter Poisson
distribution.? A defining characteristic of these distributions is that they arise
when certain parameters, or parameter ratios, take integer values and so repre-
sent a set of measure zero in respect of the set of family members, which are
defined in terms of real-valued parameters. The Katz family of distributions has
proved important in the analysis of count data. It provides a framework within
which practitioners can extend simple Poisson models to models that allow for
individual heterogeneity, using the Poisson regression model (PRM). The PRM
can, in turn, be extended to models that allow for either over-dispersion, using
the negative binomial regression model (NBRM), or under-dispersion, using the
binomial regression model. We shall, for the most part, defer consideration of
under-dispersion to another time.

The problems of modelling and testing for over-dispersion have proved impor-
tant in the count data literature. Essentially concurrently, papers by Cameron
and Trivedi (1986), Lee (1986) and Lawless (1987a,b) made substantial contri-
butions to the literature on inference in the PRM, the NBRM, and testing for
over-dispersion, with both Cameron and Trivedi (1986) and Lee (1986), in par-
ticular, couching substantial parts of their analysis within the context of the
Katz family of distributions. This class of distributions is interesting because
the binomial and negative binomial distributions are alternative specifications
to the Poisson that allow under- and over-dispersion, respectively. Subsequent
contributions to this literature include Dean and Lawless (1989), Qu, Beck, and
Williams (1990), Dean (1992) and Fang (2003). Collectively they have explored
LR, LM, GMM, and Wald tests for over-dispersion in the PRM. Fang (2003) con-
cludes that his preferred GMM test is that based on the fewest over-identifying
assumptions offering essentially the same power as tests based on more over-

LAn abstract to this thesis appeared in Katz (1946).

2This family of distributions, and extensions to it, have proved important in the actuarial
modelling of claims; see, for example, Panjer (1981), Sundt and Jewell (1981), Willmot (1988),
Hess, Liewald, and Schmidt (2002), and Pestana and Velosa (2004). Johnson, Kotz, and Kemp
(1993, Chapter 2) provides an extensive discussion of both the Katz family and various other,
often related, families of discrete distributions. Although, in respect of the Katz family of
distributions alone, the treatment in Johnson and Kotz (1969, Chapter 2.4) is more complete;
see also Gurland (2006) for a more recent treatment.



identifying restrictions but having the greatest ease of calculation.® Interestingly,
this preferred test is that originally proposed by Katz (1965), on an ad hoc basis.

In this paper we investigate a new family of tests for over-dispersion in the
PRM by exploring point optimal tests where the alternative hypothesis lies in
the Katz family of distributions. An analysis of the Katz likelihood reveals that
maximum likelihood estimation may be problematic in the over-dispersed case,
suggesting that the use of point optimal tests may have value. For overviews
of the use of point optimal tests in econometrics see King (1987) and King and
Sriananthakumar (2015). To the best of our knowledge they have not previously
been used in the context of testing for over-dispersion.

This paper can be thought of as being comprised of three main parts. The first
part provides a very brief description of the family of distributions introduced
by Katz (1965), the second explores the role that these distributions can play
in extending the PRM to allow for over-dispersion and, finally, we introduce a
new class of point-optimal tests for over-dispersion. Specifically, in Section 2
we explore the Katz family of distributions, although most of the analysis is
relegated to the Appendix while Section 3 explores the PRM and NBRM. In
particular, we highlight that the typical treatments of the NBRM really have
little to do with what might be thought of as the canonical negative binomial
distribution. Section 4 then focuses on the problem of testing for over-dispersion
and the structure of the Katz likelihood. It is here that we introduce our family
of point optimal tests and explore their small sample characteristics relative to
some existing tests via a simulation study. We find that it is possible to choose
a point optimal test which is better in the intercept only case, although the
regression case proves problematic. One possible source of weakness in our point
optimal tests is the choice of ‘point’ at which to optimize. In Section 5 we explore
the use of Hellinger distance as a device to assist in choice of point. Although
exact calculation of the Hellinger distance in this context is not tractable, it is
straight-forward to obtain bounds on the distance. Using the upper bound, we
find that the implied optimal points are extremely close to zero, implying that
use of the score test is close to the optimal strategy in this context and so our
advice to practitioners is to continue to use score tests to test for over-dispersion
in this context. Section 6 concludes.

2 The Katz Family of Distributions

Among his many and varied interests, Karl Pearson was concerned with the prob-
lem of modelling (possibly) asymmetric empirical distributions. To this end, he
developed a four-parameter family of skewed continuous distributions as solu-
tions to a particular differential equation (Pearson, 1895). The idea being that
the distributions might be fitted to any data set using the method of moments ap-

3The one caveat to this observation is that the use of higher order moments may provide
some power against models which share low order moments, thereby creating a class of implicit
null hypotheses (Davidson and MacKinnon, 1987).



proach that he had developed earlier (Pearson, 1894). Perhaps surprisingly, the
motivation for the choice of differential equation came from a difference equation
that could be used to generate the hypergeometric distribution (Pearson, 1895,
pp.360-361); that is, from a discrete distribution. If we let p(y) = P[Y = 3]
denote the probability that the discrete random variable Y takes a value y € Y,
where Y denotes the support of the distribution of Y, then the form of this
difference equation was

ply—1)  by+biy+boy?’

ply) —ply—1) a—y )

with a, by, by, and by denoting the various parameters of the distribution. We
note that this expression is of the form

p(y)/ply —1) = P(y)/Qy),

where P and () are polynomials in y, and remark in passing that the sequence
of probabilities so-defined are hypergeometric in that the ratio of adjacent terms
in the sequence can be expressed as a ratio of polynomials in the index .

Pearson didn’t pursue a discrete analogue to his family of distributions. In-
deed, apart from some incidental investigations along these lines, Katz (1945)
provided the first detailed analysis of the family of distributions arising from (1)
although, apart from some abstracts (Katz, 1946, 1948), it was not until Katz
(1965) that this material was published. In the event, Katz (1965) focussed on
a two-parameter special case of (1),* which he expressed in the form

ply+1) _ A+yy
p(y) y+1°

AEACR, yeT CR, (2)

with y € Y C Zg, where Zg denotes the set of non-negative integers and subject
to the usual axiomatic properties of probability:

0<ply) <1 (3)
> ply) = 1. (4)

As we demonstrate in the appendix, there are circumstances where both A and
I' may include values that are positive, negative, or zero.

Although Katz himself included zero in ), subsequent literature has not
always done so, choosing instead to focus on the difference equation (2), whilst
still referring to the resulting distributions as members of the Katz family; see,
for example, Sundt and Jewell (1981), Willmot (1988) and Miller (1998). We too

4Numerous extensions soon followed; see, for example, Bardwell and Crow (1964), Staff
(1964), Crow and Bardwell (1965), Staff (1967), Ord (1967a,b) and Kemp (1968). Here we only
briefly sketch some key ideas. For a more complete treatment of such families of distributions
see, for example, any of Johnson et al. (1993, Chapter 2.3), Ord (1972, Chapter 5), or Dacey
(1972).



shall proceed in this latter manner, focussing on the what we call left-truncated
Katz distributions, that include the original definition of Katz (1965) as the
special case of no left-truncation. We relegate the technical analysis of these
distributions to the appendix, which also gathers a number of other properties
of this family of distributions.

Two members of this family that will be of particular interest to us are the
Poisson and negative binomial distributions, which are commonly encountered
in the modelling of counts and the possibility of over-dispersion. The probability
mass functions (pmfs) of these distributions are the form:

e
y' ) 7 = 07

p(Z/) = (1 _,Y>A/7,yy (%)y . 1 Y € {0,1,2,...}, (5)
9 < f)/ < Y

y!
respectively.” Evidently, when v = 0, p(y) is the pmf of the Poisson distribution.
When ~v > 0, if \/v = r is integer then p(y) yields a standard representation of
the negative binomial pmf, where the probability of success in any given trial is
m =1—+. Even if A\/y = 7 is not integer, p(y) is still the pmf of a negative
binomial distribution — see, for example, (9) — although the interpretation
of A/~ differs between the two cases.® We shall, hereafter, denote the Poisson
distribution with parameter A, P(\), and the negative binomial with parameters
7 and 7w, NB(7, 7).

Before moving on, let us consider the well-known Poisson approximation to
the negative binomial. A common statement of this result is NB(7,7) — P(A)
as 7 — oo provided A = 7(1 — 7) remains fixed. That is, 7 — 1 at the same
rate as 7 diverges. One advantage of the parameterization adopted in (5) is
that the somewhat convoluted requirement on how the parameters evolve in the
approximation readily reduces to v — 0% for fixed \.”

3 The Poisson, Negative Binomial, and Katz
Regression Models

3.1 The Poisson Regression Model

The PRM extends the Poisson distribution to allow for individual heterogeneity.
It has played an important role in the analysis of count data in both econometrics

®Observe that the Pochhammer symbol (r), = I(y +r)/I(r), where y is a non-negative
integer. Note that r can be negative. If r is a negative integer then (r), =0 forally > r. If r
is a positive integer then (r), = (y +r —1)!/(r — 1)!.

6When A/ is integer the resulting pmfs are sometimes referred to as those of Pascal dis-
tributions, with the term negative binomial reserved for the more general case of \/vy not
necessarily integer.

"Similarly, the Poisson approximation to the Binomial reduces to v — 0~ for fixed \, which
is also a more intuitive statement of how parameters must evolve for the approximation to
work than is typically encountered.



and statistics — early references include Jorgenson (1961), Gart (1964), and
Haight (1967, Chapter 5) — and is readily available in standard software such as
MATLAB, Stata, and R. The use of the PRM in econometrics became increasingly
widespread following the significant contributions of Gilbert (1979, 1982) and
Hausman, Hall, and Griliches (1984). Recent summaries can be found in Greene
(2007), Winkelmann (2008) and Cameron and Trivedi (2013).

The PRM is obtained from the Poisson distribution by replacing the fixed
parameter A with a function, denoted \; say, of the k-vector of characteristics
x; that can vary across individuals. Specifically, in the language of generalized
linear models (GLIMs), we have the link function

In )\ =, B, (6)

with regression coefficients 5. The work of Nelder and Wedderburn (1972) and
Frome, Kutner, and Beauchamp (1973) shows how iterated least squares methods
can be used to obtain maximum likelihood estimates of 3; see also McCullagh
and Nelder (1989).

One shortcoming of the PRM is the implied equality of mean and variance
that is characteristic of the Poisson distribution. Specifically, on replacing A with
A; in (A.8), we obtain®

E[Y; [ N] = V[V [ Al = A (7)

This is at odds with the observation that variability typically exceeds location
in real world data, a feature known as over-dispersion. A common response to
concerns about over-dispersion has been to explore extensions to the Poisson
model that allow for different means and variances. To the extent that the
Poisson regression model can be nested in such generalizations, this approach
provides a framework within which one might test for either over-dispersion or
underdispersion, although we will not explore this latter case here.

The fundamental characteristic of the PRM is that it is a function of the
linear index, z,; 3, only through the ‘parameter’ \;, as per (7). In the next two
sub-sections we will consider different extensions to this model, the first being the
classical NBRM and the second being what we dub the Katz regression model
(KRM). Both models extend the PRM by nesting it within a richer model with
an additional ‘parameter’. An important distinction between the NBRM and the
KRM is the role of ;. In the case of the NBRM, ); remains the conditional mean
of the count Y;, whereas this is not the case in the KRM. A second distinction
between the models is that the additional ‘parameter’ is typically treated as
being a function of the linear index in the NBRM whereas in our treatment of
the KRM it is not, it is a genuine parameter, although it is easy to envisage
extensions where that requirement is relaxed.

8We shall persist with the abuse of notation inherent in expressions like E[Y; | \;] rather
than, say, a more complete notation along the lines of E[Y; | 8; z;], for the sake of the notational
economy it affords.



3.2 The Classical Negative Binomial Regression Model

There are numerous paths leading to what might reasonably be called a negative
binomial regression model.” This is due, at least in part, to the variety of ways in
which one might generate a negative binomial distribution. For example, Boswell
and Patil (1970) provide 15 different derivations and, of course, there is a variety
of parameterizations of the negative binomial distribution that can also lead to
differences. Below we explore a fairly commonly adopted approach and consider
some of its implications.

Our starting point is the following observation, originally due to Greenwood
and Yule (1920). Suppose that Y | 6 ~ P(), where 6 is a random variable
whose distribution is gamma with shape (7) and rate (1) parameters, written
6 ~ G(n,7), so that the corresponding density function is,"’

g(0;n,7) = n o™ exp{—0n}/I'(t), 7>0,7>0,0>0, (8)

with E[0] = 7/n and V [0] = 7/n?."! Then, we obtain an unconditional distribu-
tion for Y on averaging with respect to # > 0, so that

Prob(Y =y |n7)= [ [f(y|0)g(®;nT)d0

- Fy(!ij(LTT)) (141r?7>y <#)T ©)

If one imposes the restriction 7 = r € Nt where N* denotes the set of positive
integers (or the natural numbers), then this is simply a form of the negative
binomial (Pascal) pmf, with 7 = /(1 + n), see (A.5). Note that

E[Y]=7/n= X (say),

the same as for the gamma distribution (8), and that

VY] = % + % —EY]+r B[] = A+7N

One posible path to a NBRM is to extend the analysis of Greenwood and Yule
(1920) to allow for individual heterogeneity; we follow the treatment of Cameron
and Trivedi (1986, p.32). Specifically, we replace 6 by 6;, where

9The NBRM was explored in Lawless (1987a,b), Adamidis (1999), Greene (2008), and
Raschke and Greene (2010). Hilbe (2011) and Hilbe (2014) provide useful recent surveys
of the NBRM.

Common variants of this argument include: (i) Lee (1986), who specifies the gamma
distribution in terms of the shape and scale (or inverse rate) (¢ = 1/n) parameters, i.e.,
0 ~ G(1/¢,7), and (ii) Cameron and Trivedi (1986), who use the so-called index form of the
gamma distribution, which is specified in terms of the shape and mean (¢ = 7/n) parameters,
ie, 8 ~ G(r/p,7). Cameron and Trivedi (1986) call the shape parameter (1) the index or
precision parameter.

1'Moments for the gamma distribution specifications given in Footnote 10 follow immediately
on making the appropriate substitution for 7.




with ¢; a disturbance term reflecting unobservables. Cameron and Trivedi (1986)
then assume that either ¢;, or ‘equivalently’ 6;, have a gamma distribution, con-
ditional on the regressors. Their analysis then proceeds under the latter assump-
tion, which is completely analogous to the developments of Greenwood and Yule
(1920). Specifically, letting 6; | x; ~ G(n;, ;) yields

F(y+7i)( 1 )y( 7 )Ti
Prob (Y; = is iy Ti) = . 11
vob (¥i =y | 73, 73) y!'T(m) \1+mn L+ (1)

Moreover,

E [YQ ’ xiﬂh’;ﬂ‘] =2 Ai (say), (12)
and
Ti

T —

VY |zimi,m]l = —+ = =XN+7, A (13)
Up i

It is immediately obvious that, in the final analysis, the functional form of (10)

is a complete irrelevance, with only the parameters of the mixing Gamma distri-

bution of any importance and we have made no assumptions about them beyond

allowing the possibility of varying at the individual level. From here, Cameron

and Trivedi (1986) argue that a variety of models are available on defining
7 =a "(EY; | z];n,m)k (14)
for « > 0 and arbitrary constant k, so that
VIYi | @il = BY; | 2 n, 7] + B[V | 2 m,m])* "

Special cases of importance are then the Negbin I model (obtained when k = 1)
and the Negbin IT model (k = 0),'* of which the latter is probably the more
popular in the literature. This model nests the PRM as a limiting case where
a — 0 from above, a testable proposition, which is equivalent to 7; diverging to
oo for all .

The specification (10) becomes more relevant if, instead, we assume that
h; = e | &; ~ G(n;, 7;) rather than 6;. Define §; = exp{z, 3}, so that 0; = §;h;.
Thus, conditional on z;, 6; is a scaled Gamma random variate which is, itself, a
Gamma random variate. From the properties of the Gamma distribution we have
immediately that 6;|z; ~ G(n;/d;, ;). Moreover, analogs of results (11)—(13) are
immediately available in this case on replacing n; by 1;/6;. In short, the differing
distributional assumptions are ‘equivalent’ in that the structure of the results is
the same in both cases, however, it is only in this latter case that (10) has any
relevance, through the presence of §; in the various expressions.

The attraction of the formulation (11)—(13) of Cameron and Trivedi (1986) is
its close resemblance to a GLIM, which simplifies estimation.'® As noted above,

120ther values of k yield the Negbin P, or NBP, model. (Greene, 2008)

13Strictly, it is not a generalized linear model as it stands but, conditioning on one of the
parameters allows it to be treated so. This parameter can then be estimated conditional on
the remaining parameters, which yields a two-step iterative estimation procedure. See, for
example, either Hilbe (2011) or Hilbe (2014) for a discussion of the steps involved.



the null of a PRM obtains as 7; — 0o, however, results in a relatively odd PRM
with a potentially unbounded mean, unless 7; is diverging to infinity at the same
rate as is 7;. Moreover, there is a Davies-type problem relating to the separate
identification of both 7 and 7 when the null is true. Greene (2008) camouflages
this difference by imposing the restriction n = 7.'* He refers to this restriction as
being mean preserving, by which is meant that when n =7, E[Y; | z;;n, 7] = §;,
as would be the case in the PRM. We should note that, in order to generate
the same class of models as do Cameron and Trivedi (1986), Greene (2008) also
allows 7 to be replaced by 7;, as defined by (14), but this means that n must
be replaced by 7; too.'” Of course, the restriction that 7; = 7; reduces the two
parameter mixing gamma distribution to a single parameter distribution with
the loss of modelling flexibility that implies. However, without this restriction,
the conditional mean of Y; is other than d,.

3.3 The Katz Regression Model

The fundamental difference between the NBRM, as described in the above, and
what we refer to as the Katz regression model (KRM) lies in the generation of the
underlying distribution. Specifically, the Katz family of distributions is not gen-
erated via a mixing argument and so, in contrast to the NBRM, the probabilistic
quantities of interest (pmfs and moments) are not functions of the parameters of
the mixing distribution; see (11)—(13). In this sense, the parameterization of the
Katz family is more natural than that of the NBRM. Directly analogously with
the PRM, the KRM can be generated from (A.6) simply by replacing A by \;,

14This latter model, of course, corresponds to the Negbin II model of Cameron and Trivedi
(1986), and so provides a somewhat stronger theoretical basis for that model, which may
explain some of its popularity in the literature.

15Specifically, Greene (2008) discusses the broader class of models obtained when k is allowed
to take values other than 0 or 1 in (14). He dubs this broad model the NBP model, seemingly
because his notation uses p rather than the k& used by Cameron and Trivedi (1986) (and here).



as per (6), which is analogous to our earlier development of the PRM.'® Equally,
one might explore models that see v replaced by functions of regressors, v; say,
although we won’t. Note that the conditional mean and variance of this distri-
bution are given by (A.8), with A replaced by A;. Contrast this structure with
that for the NBRM described above. There we saw that the conditional mean
of the dependent variable was not varying with v, being a function of the linear
index z; 3 alone. Similarly, by construction, the variance exceeded the mean of
the dependent variable, but the reduction to a Poisson model requires the shape
parameter 7 of the mixing gamma distribution to be unbounded, which yields a
degenerate distribution for given rate parameter 7.

It is clear that it is not necessarily desirable to preserve the mean, in Greene’s
sense of equating 7; and 7; (Greene, 2008), because, as «y increases, the mean for
both the NBRM and the KRM should be decreasing relative to that of the PRM.

We note in passing that this is the model that underlies the generalized
event count (GEC) model of King (1989); this model was also considered by
Ghahfarokhi, Travani, and Sepehri (2008). That they obtained more complicated
models than that proposed here, resulting in the models being less popular than
the NBRM in practice, stems from the fact that they didn’t have (A.6) as the
pmf implied by (2), which in part is due to working with (2) rather than (A.1).

4 Testing for Over-dispersion in Poisson Re-
gression model

There is a vast literature addressing the problem of over-dispersion and how
to test for it. We will not attempt to provide a comprehensive survey of this

16 Alternatively, using similar averaging arguments to those seen previously for the NBRM,

[
S 1—m0

a more common form of the negative binomial pmf.

if we average P(6) with respect to G (0 n), where m = 1—+ and n = A/, then we obtain

1—~v A

Prob(Y:y|)\,7):/ ?(G)g(G;W,,y)dG, A>0,0<y<1

6>0
A
— 4(1 — DM Ut/ 1=1,-0/7 49
y!IMIT(N ) Joso
(1 =NM7¥ (A/7),

= m

Note that the mean and variance of this distribution are given by (A.8). In contrast with the
developments of (11), there is nothing in this model that requires that both the parameters
of the mixing gamma distribution vary with the index i¢. Nor need they be linked in any
restrictive way. Specifically, if we were to follow the developments of Greene (2008) who
equates the parameters of the mixing distribution, we find that

1—v A

—l =2 = A=1-9,
!

which constrains 0 < A < 1 and, as A = exp{z, 8}, this implies that =] 3 < 0. As a general
statement, this would appear to be a very odd restriction to want to impose.
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literature, focussing instead on a few key contributions, although it should be
noted that most of the references cited so far will have some discussion of the
problem. We shall break our discussion into two parts. First, we shall restrict
attention to the case where the only regressor in the model is an intercept, so that
A; = A is a constant. Then we will extend the analysis to allow for additional
regressors. In each case, the null hypothesis will be that the data have been
generated by the PRM. We investigate the performance of tests whose preferred
alternative is, variously, that the data have come from one of the Negbin I,
Negbin II, or Katz regression models.'”

4.1 The Katz Likelihood

For any positive real number n = A/, with A > 0 and 0 < v < 1, the Katz pmf
is given by

Prob(Y:k:)=n(n+1)(n+2)...(n+k—1)M

k!
and hence
N
P =9)"
L(yl,~-->yN|/\77):H[n Dn+2)...(n+y —1) (yl )}
=1 v
N y;—1 N N -1
= [HH nts)| (1=y)Nrqzmy Hyi!] , (19)
i=1 s=0 i=1

35”;01 =1 for y; = 0. In textbook cases, where n is

where products of the form
known, the first and last terms in (15) are functions of the data only and Y21, v,
is sufficient by the factorization theorem. But in the current context, when n is
not known, there is no reduction to a fixed dimensional sufficient statistic. Even
if \ is known there is no sufficiency reduction; the ratio n is required. Only the
entire sample (or the order statistics) are sufficient but even they are are not
complete so that different parameter configurations may give rise to the same
data. We may surmise this from the likelihood (15) since any combination of A
and ~ that preserves n gives the same likelihood. Adopting the convention that

Ui Mog(n + s) = 0 when y; = 0, the log likelihood is

N ’ K3
log L = ZyZ:log (n+s) +Zlog<7y)+210g (1 —~

i=1 s=0
N y;—1

—ZZlog (A+sy)+ Nlog (1 —~ W—Zlog (yi!) (16)

i=1 s=0

1"We note that Yang, Hardin, Addy, and Vuong (2007) and Yang, Hardin, and Addy (2009)
pursue a similar exercise against variants of the generalized Poisson distribution, see the dis-
cussions in Consul (1989) and Joe and Zhu (2005), although we shall not pursue these models
further.
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where the second line follows by substituting for n and simplifying.

In fact, (nonlinear) maximum likelihood estimators for n do not exist when
the sample variance is less than the mean, i.e., s; < 7 (see Al-Khasawneh (2010)
and the references therein). Note that, even when drawing from a negative
binomial, which by definition is over-dispersed, many individual samples will
exhibit under-dispersion. We can see the difficulty explicitly by looking at simple
moment estimates for A and 7, i.e. solve (A.8) to get

A=75(1-7)
F=1-(y/s;) -

Hence, problems arise when 312/ < gy since then 4 < 0, which is illegtimate when
investigating over-dispersion. Even if sf/ > 1y, convergence issues arise if the
difference is not great. This suggests that test procedures that use maximum
likelihood estimates, such as Wald or Likelihood Ratio tests, can be problematic
and that there may be a role for point optimal approaches.

4.2 Point Optimal Tests

Point optimal tests have had a long and varied career in econometrics; see King
(1987) and King and Sriananthakumar (2015) for an overview. These tests opti-
mize power at a particular parameter value under the alternative, the idea being
to have good power at a point where incorrectly accepting the null really mat-
ters. This is in contrast to, say, a score test that is locally best, in that it has the
steepest power function local to the null hypothesis. Although not an undesire-
able property in any way, the practical difference between a null model and some
other model local to the null is often, although not always, vanishingly small. So,
optimizing the ability to distiguish between such null model and another local
to it is not necessarily all that desireable a property. Moreover, there is implicit
in such an approach the notion that the power function will be monotonically
increasing, which ideally it should be, and that it will remain near the power
envelope as the data generating process diverges from the null. In many cases
this is indeed what happens, although we know that power functions are likely
to cross, as otherwise the test would be uniformly most powerful, which is a very
rare property indeed. The divergence between the power function of a score test
and the power envelope is then something that requires exploration on a case by
case basis and we will explore this below.

The log likelihood ratio of the Katz — N B alternative to the Poisson (P) null
is written

N y;—1 \

LLR (A, 20,7) = 3 > log (A +57) + Nlog (1 — 7)™

=1 s=0

N

i=1
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Assuming that both distributions are fully specified (with A = Ay = A;), the
Neyman-Pearson Lemma states that the UM P test of v = 0 versus v = v; is
given by LLR (A, A,71). Hence assuming A known, the so-called power envelope
is determined by computing LLR (A, \,7y) over a range of values of v € (0, 1).
A PO test is constructed by choosing a fixed v = ypp to be a ‘representative”
value under the alternative Katz — N B distribution, giving LLR (A, \, vpo). It
is desirable that ypo be chosen so that the power of the test LLR (A, A\, ypo) is
as close as possible to the power of the family of tests LLR (A A7), v € (0, 1).
That is, ideally, vpo is chosen so that the power function of the resulting test is
as close to the power envelope as possible.

4.3 Score Test

A common alternative to likelihood ratio approaches, which does not require
maximum likelihood estimation of the parameter of interest, is to construct op-
timal tests local to the null v = 0. The so-called eficient score tests, or simply
score test, are derived by differentiating the log likelihood with respect to v and
then setting v = 0. Such score tests are easily found for the Katz family using
(16); see, for example, Katz (1965) and Lee (1986). Specifically, the score test is

S(\) = % Z [yi (yi = 1) = A?]. (17)

This test was originally proposed by Katz (1965) on heuristic grounds and by
Lee (1986) as a formal score test.'®:1?

4.4 Simulation Experiments
4.4.1 The Unconditional Model

In this section we simulate the powers of the point optimal and score tests and
compare them to the benchmark power envelope. First we give details for the
power envelope and this is followed by a description of the operational tests. We
present results for a sample size of N = 50 throughout.

In Figures 1 to 3 below, we consider a range of values for A € (0,8) and
v € (0,1) and look at the relative performance of the PO and S tests and the
power envelope. For each (), ) pair we generate samples from the Katz family,

K (A, 7). This is efficiently accomplished using p (0) = (1 — 7)% along with the

18Strictly, Katz (1965) adopted an approach more in keeping with a method of moments
test. Specifically, he looked at the difference between estimators for the mean and variance,
which should be equal under the null and then scaled this difference appropriately to obtain
a distribution under the null. In any event, the statistic so obtained is the same as the one
proposed by Lee (1986) that we consider here.

9Tee (1986) proposed other tests than the one considered here, although he did not compare
them numerically The results recorded in Miller (1998) suggests that those involving third order
moments may have better power properties. For now we are primarily concerned with proof
of concept and do not explore these other tests in light of the simplicity of (17).
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defining recurrence p(y+1) = (A+y)/(y+ 1) p(y) and then sampling from
the inverse cumulative distribution function. Setting v = ¢, for some very small
positive ¢, effectively simulates from the Poisson null. The null critical values are
computed by simulation to avoid asymptotic approximations. This means that
the sizes of tests are accurate (up to simulation error) and hence that the power
comparisons are meaningful in smaller sample sizes.

For the power envelope, we simulate from the null P (\) = K (A, ¢) distribu-
tion, compute 10,000 values of LLR (A, A7) and extract the 95% quantile as a
critical value, cv. The DGP is the Katz family K (\,7) and we simulate 10, 000
replicates from the DGP and count the percentage of times the PO statistic,
LLR (A X, ), exceeded the cv to calculate the power envelope.

The operational PO test estimates A\g, A\; and fixes v at ypp. To do this,
we use simple moment based estimators, i.e., compute S\NB = S\P (1 —AnB),
where Ap = ¢ and Ayp = 1 — (gj/sf/) using the mean and variance of the data
at hand. Should Ayp stray negative, we truncate and set yyp = €. The PO

test is computed as LLR (5\13,;\]\/37’}/}30) while the score test, using (17), is
S <5\p>. The null is Poisson P (\) = K (A, €) and we simulate from the null,

computing LLR <5\p, S\NB, ’}/PO) and S (5\1:) for each realization, to get 5% cv’s.

We calculate the power by simulating from the DGP K (), 7).

It is helpful to view Figures 1 to 3 in the light of the cross sections displayed
in Figure 4. It is clear that, for small values of 7, no test can be expected to
perform well close to the null. Equally, for large values of v, with high degrees
of over-dispersion, all reasonable tests can be expected to be powerful. Thus,
for small and large degrees of over-dispersion we expect to see little difference in
the performance of the envelope and the PO test as the left panel of Figure 1
attests. For moderate values of «, the power of the PO test can be significantly
smaller than the envelope as the coloured scale suggests. In the left panel the
difference in power between the PO and score tests is plotted for vpo = 0.1.
The differences are not large but the PO test uniformly dominates as the scale
indicates.

Figure 2 plots the same surfaces for vpo = 0.3 and the interesting feature
is that both tests perform similarly but none dominates the other. In Figure
3, vpo = 0.5 and the score test dominates by a small margin except where the
DGP corresponds to vpo.

Since the shapes of the surfaces are quite smooth over A\, we plot a cross-
section at A = 5 to look at absolute performance. There are three panels in
Figure 4 each corresponding to a value of vpo = 0.1, 0.3, 0.5. The power
envelope is shown in Red, with those of the PO test in Blue and the Score test
in Orange. Also shown (vertically) is the PO point vpg.

The power envelope reaches unity at around v = 0.2. This corresponds to a
degree of over-dispersion, in the Katz — N B distribution, of 0%/ =1/ (1 —v) =
1.25. For the tests to reach equivalent power requires v = 0.6 with o2/ = 2.5,
roughly, and v = 0.9 is required at ¢*/u = 10. So, neither test can match the
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envelope unless the degree of over-dispersion is quite large. For vpo less than
0.3 the PO test performs better uniformly, at 0.3 they perform equally well and
for vpo > 0.3 the score test is better. Thus, a choice of vpo which is small will
uniformly dominate.

4.4.2 The Katz Regression

In practice, the analysis of over-dispersion often takes place when covariates need
to be taken into account. As explained in Section 3 there are many ways in which
this may be approached. We work directly from the definition of the Katz family
rather than mix over a kernel Poisson distribution. The log of the likelihood
takes the form

N y;—1

LL = ZZlog (A + s7) +Zlog (1—~ 71

i=1 s=0

with A\; = exp (f12;) varying and v fixed. This gives E [Y;|x;] = p; = Ni/ (1 —7)
and V [Vi|z;] = A/ (1 — ).
The PO test, using vpo, is based on the log likelihood ratio,

N y;—1
LLR (M, M, vp0) = DY log(Aui+ syp0) + Z 71; log (1 = yro)
i=1 s=0 P

and the PO test needs to estimate the parameters \g and \;. Estimating \,; =
exp (f1x;) may be problematic as trying to fit a N B regression when the data
is Poisson can lead to identification/convergence problems, exacerbated by the
fact that fitting these types of regressions requires nonlinear maximum likelihood
estimation. We avoided this issue in the last sub-section by using Katz moment
estimators. Here, we use a regression version of the same idea. First, estimate a
Poisson regression P (1} (x;)) (including a constant) which will return the mean
estimate exp (by + byz;). Noting that we can write p; = exp (f12;) /(1 —7) =
exp (Bo + Bu;), where By = —log (1 — ), we can set 3; = by and hence A; =

exp (Blmz) to give the vector 5\1. To get 5\0,1- we fit the Poisson without the

constant term which returns the estimate exp (bex;), which gives S\OJ = exp (byz;),
and hence LLR (5\0, 5\1, "}’po).

As a comparator to the PO statistic, in the regression setting, we use the
score test of Dean and Lawless (1989), which avoids the potential difficulties
associated with maximum likelihood estimation. Thus, we estimate the Poisson
regression P (u (x;)) (with a constant) to get the vector of predictors fi; and, using
zi = (y; — fis)> — yi, the test S (fi) is computed as the t-statistic in the regression
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of z; on 1,7 Again critical values are computed by simulation. The null is

generated as P ();), with \; = exp (512;) used to keep the means of the counts
low. We used z; ~* log (P (2) + 1) and the x; are kept fixed under replication. We
generate simulated critical values, based on 10, 000 replications, for the tests S ()

and LLR <5\0, 5\1,’ypo>. To compute powers, the DGP K (\;,y) = NB(n;,p) is

used, where n; = \;/v and v takes a selection of values in (0,1). As usual,
m =1 — . The results are presented in Figure 5.

The PO test performs badly for very high degrees of over-dispersion when
vpo is less than 0.5 approximately and is dominated by the score test for ypo
greater than 0.5. However, the choice 7po = 0.5 does lead to superior PO
performance albeit by not a great margin.

4.4.3 Summary

Our experimental results are mixed. In the unconditional model, the point op-
timal tests appeared to work best when v was small, with their performance
deteriorating relative to the score test as v increased. In the regression model,
the score test outperformed the point optimal tests suggesting that the null distri-
bution of the score tests was more robust to the presence of nuisance parameters
than was that of the point optimal tests, with none of the test statistics being
pivotal. However, these rankings were also sensitive to the choice of point. This
begs the question as to whether or not we are choosing the ‘point’ for the point
optimal tests in a sensible way. It is to this question that we turn in the next
section.

5 Hellinger Distance

The reasoning behind the use of point optimal tests is to put power where it is
of greatest practical use. The immediate problem facing the use of point optimal
tests is where to place the ‘point’. Sometimes the testing problem suggests a
solution. Other times the choice is less clear and is often based an the outcome
from a simulation study ‘run-off’, making the results somewhat ad hoc. The
attraction of point optimal test in the context of testing for over-dispersion is
that the parameter space of interest, namely that of -, is bounded and so there
is some hope of finding an appropriate point. One way of defining appropriate
in this context is where the distribution under the alternative starts to depart
from that under the null in some substantial way. The questions then reduces to
one of how we might measure such a departure. In this section we explore the
use of Hellinger distance () for this purpose. We think that this is a novel use
of such a distance measure and is of independent interest. We do not, however,

20We also considered an alternative test based on the t-statistic in the regression of z; on a
constant but there was little difference in performance. These tests correspond to the Negbin
I and II cases above.

20



1899 rewryd() JUI0 PUR 9I00G UOISSAISIY o1} JO SIOMOJ :G oINSJI ]

g< HOIH ——= A U0|SJadsI]Q ——— MO >>55> 2< HOIH ~——- 4 U0IS28dS|Q - MO >>55> < HO|H —— A uoisiadsig - MO >>>5>

80 90 #0 <20
1 1 1 1

@NRAOd —
Bel aog .
180] Od ——

O-
0-0-97°

1amod uojssaibay

00

<0

¥o

90

80

0l

18Mod

g0 90 +¢¥0 <20
| 1 1 1

MEAQd —
180) W00S -
1891 0d —

/

7
mJ°u°s°

Jlamod uojssaibay

00

[AY

vo

90

80

oL

JOMOd

g0 90 ¥0 <20
| | | |

aneA Od —
180 M008 .
#910d ——i

~00

0-0-0°°

lamod uojssaibay

00

0

o

9'0

80

0L

18Mod

21



assert that Hellinger distance is the only choice or even the best choice in this
context, but it does yield some interesting results.

To begin, various definitions of Hellinger distance are available.?’ Originally
proposed in an integral form by Hellinger (1909), we will work with the following
discrete variant:

Definition (Hellinger Distance for Discrete Random Variables). The squared
Hellinger distance between these two discrete distributions P and @) is

k k
1 2
W=3 2 (Vhi— V&) =1 Vit (18)
j=1 j=1
where P = (p1,...,pr) and @ = (q1, - .., Q). ]

We note in passing that the Hellinger distance is bounded, 0 < H <1 —
0 < H?<1. H =1iff P assigns zero probability to anywhere that ) assigns
positive probability and H = 0 iff P = Q.

5.1 The Poisson Distribution

By way of example, to illustrate the basic idea and to help calibrate the proce-
dure, suppose that we choose as our base case a Poisson distribution with parame-
ter Ao so that the implied standard deviation is v/Ag. Writing Prob (X =z | \) =
P(A), we are going to explore the behaviour of H as we compare P(\g) with
P(A1) for various (Mg, A1). When comparing Poisson distributions, the squared
Hellinger distance is readily shown to

17{2:1—exp{—% <\/)\_1—\/>\_0>2}. (19)

Figure 6 provides some insight into the sensitivity of Poisson pmfs to changes
in parameter values when the parameters are small and includes examples that
are variously skewed to the right, (roughly) symmetric, and skewed to the left.
Observe that, here we have used A = 1 as the base case and that, as A\ increases,
it is by one standard deviation each time and so these changes are quite dramatic.

In Figure 7 we present values for H for various A\g and A;. The dashed and
dotted lines correspond to Hellinger distances of 0.1 and 0.05, respectively.
We observe that H is asymmetric in A for all \g considered, which reflects the
skewed nature of Poisson distributions. Note that, as Ay increases, so too does
standard deviation of the base distribution. As this happens a given value of
H will admit great differences between Ay and \;. For example, when \g =1 a
Hellinger distance of 0.1 or greater is achieved for any 0.8 =~ L < \; < U =~ 1.3.
In contrast, when \g = 9, H < 0.1 for all 82 ~ L < A\ < U = 9.9, which
is a much wider interval than the previous case. Given that we are seeking to
construct point optimal tests that compete with locally best tests, these results
suggest that we need to be looking at points for which the Hellinger distance is
quite small.

21Gee, for example, https://en.wikipedia.org/wiki/Hellinger_distance.
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Table 1: Values for 7, Obtained From (21) For Given h; and A
(scaled by a factor of 1012)

hr \ A 1 2 3 4 5

0.02 0.0348 0.0493 0.1261 0.1556 0.0147
0.04 0.0019 0.0121 0.0131 0.0250 0.0148
0.06 0.0032 0.0014 0.0115 0.0109 0.0136
0.08 0.0008 0.0033 0.0018 0.0061 0.0140
0.1 0.0027 0.0006 0.0022 0.0057 0.0072

5.2 The Katz Distribution

We will take the Poisson (7 = 0) as our base model. Moreover, as Poisson-
ness, or otherwise, is completely determined by the value of v, we will hold A
fixed across models. Here the support under both null (equi-dispersion) and
alternative (over-dispersion) is y € Y = {0,1,2,...} and so

| oo (%)yvy(l )

H=1-)

=\ Y y!
B _1 M2 a1 A
1= - S (2) oo
y=0 7’ Y
Although not amenable to direct solution we notice that
A y—1 y—1
(—) vyzvyH($+j>:H(/\+jv)>x\y, for all 0 < v < 1. (20)
Ty §=0 5=0
Therefore,

H>1—[e'(1-

=1—e (1 =)V = hi, (say). (21)

We can solve this non-linear equation for v, numerically for given A and hp.
Some results are reported in Table 1. We see that all values of v are positive,
albeit extremely to zero. Alternatively, from (20) we also have the result
_ A2 o= N

I < 1= [0 =) PN =1 = M)V = b (say). (22
y=0
Solutions to (22) for various A and hy are given in Table 2. We see that vy is
monotonically increasing in hy; but monotonically decreasing in A\. That is, once
A becomes sufficiently large, even small departures of the hellinger distance from
zero are consistent with v > 0.
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Table 2: Values for 7y Obtained From (22) For Given hy and A
ho\A 1 2 3 4 5
0.02 0.0016 0.0008 0.0005 0.0004 0.0003
0.04 0.0064 0.0032 0.0021 0.0016 0.0013
0.06 0.0143 0.0072 0.0048 0.0036 0.0029
0.08 0.0252 0.0127 0.0085 0.0064 0.0051
0.1 0.0391 0.0198 0.0133 0.0100 0.0080

All of the above said, however, the over-riding conclusion is that the optimal
‘points’ are going to be sufficiently close to zero that it is not clear that there
is much benefit over just using the the score test, which is essentially point
optimal at v = 0. The main reason for such a conclusion is our earlier results
indicating that, in the regression context, the score test is much less subject to
the influence of the regression coefficients, which are nuisance parameters in this
testing problem.

6 Conclusion

At a fundamental level, this paper explores the use of point optimal tests in the
problem of testing for over dispersion. Our basis of comparison is the score test
of Lee (1986), which is the same as the earlier method of moments test proposed
by Katz (1965). Our findings are somewhat disappointing and we are unable to
recommend that practitioners change their current practices as the performance
of the point optimal tests is, at best, mixed. It may be possible to improve
the performance of the point optimal tests by a more refined analysis of (i) the
problem of nuisance parameters and (ii) the construction of p-values, along the
lines suggested by King and Sriananthakumar (2015). This we leave for further
work.

Along the way, the paper has made two other contributions. First, in the
appendix we have provided a reasonably exhaustive treatment of the family of
distributions consistent with the difference equation of Katz (1965). To the best
of our knowledge this treatment extends all known earlier results by allowing
for arbitrary points of left truncation. This expands the class of distributions
originally considered by Katz (1965), which can be characterized as including zero
in the support of the count variable. The treatment is closest to that of Willmot
(1988), although there are differences in the mode of analysis and he restricts
attention to extensions where only zero is omitted from the support of the count
variable. We note in passing that right truncation is a much easier problem to
deal with as it neither expands nor contracts the members in the family, in the
way that left-truncation does. Its only consequence is the introduction of a scale
factor equal to 1 — R, where R denotes the upper tail probability that has been
truncated.

The other contribution that we have made is to introduce the use of Hellinger
distance as a metric by which one might settle on the ‘points’ characterizing point
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optimal tests. This is novel and allows a more systematic treatment than the
grid searches that have characterized such choices in the past.
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A  On Left-Truncated Katz Distributions

Certain properties of the family of distributions defined by (2)-(4) are avail-
able on inspection. In particular, the support of Y is, in certain circumstances,
parameter dependent. Here we characterize those circumstances.

To begin, let us establish some notation. Our count variable is Y € Y, =
{L,L+1,L+2,...,n} C Zy, where n may be either infinitely large or some finite
integer and L is a non-negative integer integer. We will restrict L < n because
the case where L = n yields a probability mass function degenerate at L, which
is statistically uninteresting and shall, hereafter, be ignored. Next, write (2) as

(A4 y7) p(y)
(y+1)

This latter formulation has the advantage of being untroubled by the prospect
of p(y) = 0. It will also prove convenient to be able to express all probabilities
in terms of p(L), which we can do via back substitution in (A.1). Thus, for all
ye{lL+1,...,n},

ply+1)= ., yeY. (A1)

pty) = DL 2O TG (A2)

Yy
k=L-+1 k y| j=L

Moving forward we shall break up our observations into three categories: (i)
those relating to the support of the random variable and the parameter space
of the associated distributions, (ii) statements of the probability mass functions
belonging to the family, and (iii) certain properties of the various distributions.
The results are ultimately the same as those of Willmot (1988) in the special
case where L = 1, although our mode of analysis is different and we extend his
results by allowing for arbitrary L > 0.2

A.1 Support and Parameter Spaces

From (A.2), we see that the sequence of probabilities generated by the difference
equation (A.1) is governed by p(L) and by the terms (A+jv), j = L, L+1,...,y,
as the ratio of factorials L!/(y + 1)! is a scale factor in the interval (0,1]. Our
subsequent analysis revolves around the behaviour of these quantities and the
implications for p(y + 1) of these behaviours. With the exception of [1], we shall
hereafter assume that p(y) > 0.

1] 0<p(L) <1
From (A.1) we see that if p(y) = 0 for any y € Y, then p(y +r) = 0 for

221n their extensions to this class of distributions, Panjer (1981), Sundt and Jewell (1981) and
Willmot (1988) adopt a slightly different parameterization, specifically p, — (¢ +b/y)py—1 =0,
y €{2,3,4,...}. Equivalence with (A.1) is seemingly established on setting a = v and b = A—,
although there are differences in the support of the resulting variables. In particular, Y =0
is specifically excluded from this definition and hence many of the probability distributions
claimed to satisfy the recursion in this form are not completely defined by it.
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all 7 € N. In particular, if p(L) = 0 then p(y) = 0 for all y € Y. But
this leads to violation of (4), i.e. probabilities don’t sum to unity, and so
we exclude p(L) = 0 from further consideration. Equally, if p(L) = 1, so
that the pmf of Y is degenerate at L, which is a case that we have already
excluded from further analysis. Hereafter, we assume that 0 < p(L) < 1.

2] y=0 = A >0andn =00
If p(y) > 0 and v = 0 then we have a pmf degenerate at L unless A > 0,
which will be assumed hereafter. In this case there is no implied restric-
tion on the upper bound of Y, i.e., n = oo. Of course, the concern when
generating an infinite sequence of probabilities is to ensure that the asso-
ciated series, > -y p(y), converges. This can be examined by considering
the quantity
ply+1) _A+yy v+ Ay
1) = =2

p(y) y+1  1+1/y

and noting that
R(0) = lim r,(0) = 0.

Y—00
From the limit version of d’Alembert’s ratio test we see that the series
converges because R(0) < 1.

B] L=0 = A>0
Similar in effect to the previous case, if L = 0 then A + Ly = A. Given
p(L) > 0, as assumed above, p(L + 1) > 0 if and only if A > 0 which will
be assumed, hereafter, for all cases where L = 0.

4 A>0,vy>0 — 0<vy<landn =
Because y > L > 0, if A > 0 and v > 0 we see that A + yy > 0 for all
y € {L,L+1,...} and so here the support of the pmf of Y is unbounded
from above and independent of the values taken by A and ~. Again, we
can establish convergence of the corresponding series. Here

R(v) = lim r,(y) = lim Y+ My =

> 0.
Y—00 Y—r00 1—|—1/y

Appealing again to the limit version of d’Alembert’s ratio test we see that
the series converges if v < 1, diverges if v > 1, but the test is inconclusive
if v = 1. Expanding the denominator of r,(1) in power series yields

w0 =T -0 S () <= A vow

Applying Gauss’s test,”® we see that the series will converge absolutely if
and only if 1 — A > 1 but will otherwise diverge. Here we have assumed
that A > 0 and so 1 — A < 1. Hence, the series is divergent for v > 1.

2Gee, for example, Weisstein (2019).
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5] A< 0,v<0
In this case there is no value of y that satisfies A + yy > 0 and so y + 1
cannot belong to Y. Moreover, this statement remains true even if y = L.
Consequently, in this case, the pmf of Y is degenerate at L, a situation
that we have chosen to exclude from further consideration.

[6] A and ~ of different sign
In this case we see that A\ + yvy can change sign as y increases, unlike the
situation of the previous two cases. Let n denote the smallest value of
y such that A\ + yy < 0. Then n is the largest value in Y;. There are
only two cases to consider here (having treated that of v = 0 above): (i)
A>0,7<0,and (ii) A < 0,7 > 0.

(a) A >0,y <0 = n=[-A/7]

If A < —Lv then the pmf of Y will be degenerate at L which, as
explained above, is statistically uninteresting and a situation that we
will assume away. That is, if v < 0 then we will assume that A > —L~.
In particular, if L = 0 then this requirement reduces to A > 0. As y
increases, A + yy will approach zero from above. That value of y for
which A + yv is first less than or equal to zero is the largest value of
y in Y, and shall be denoted by n, so that p(n) is well-defined but
p(n + 1) is not.>* That is, n is the smallest integer greater than or
equal to —\/~. This is the definition of the so-called ceiling function,
written n = [—A/7]. In summary, if v < 0 then we see that the upper
bound on the support of the pmf of Y is a function of the parameters
A and v, with the space of A\ subject to the constraint A > —L-~.

(b)y AL0,y>0 = A>—-Lvy,L>0,n=00, and 0 <y <1
Here A\ + y~v is an increasing function of y but the pmf of Y is non-
degenerate at L if and only if A > —L~. As we have already excluded
from further consideration pmfs degenerate at L we here assume this
to be the case. In particular, when L = 0 we have a contradiction as
we are assuming both A > 0, which is required when L = 0 (see [3]),
and A < 0; we conclude that A < 0 and v > 0 can only arise when
L>1. AsA+¢y>0forally €Y, Y, will be unbounded from above
provided that the series of probabilities so formed is convergent. Using

24In essence, this is the same as adopting the convention that any negative probabilities are
set to zero. It might be argued that this is at odds with Katz’s original assumptions and should
be excluded. Our justification for the inclusion in our analysis of these distributions where A/~
is non-integer, is that Katz himself included them.

The class of distributions so defined includes the Poisson distributions, the two-
parameter binomial (Bernoulli) distributions, and the two-parameter negative bi-
nomial (Pascal) distributions. Aside from these, the class contains only the mild
generalizations obtained for the latter two of these types by permitting the parame-
ter n (number of “trials” in direct sampling) and the parameter r (number of failures
in inverse sampling) to take any positive real values. (Katz, 1965, p.175)
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Table 3: Parameter Configurations When L > 0*

v <0 vy=0 0<vy<l ~y=1

—Ly<A<0 n/a n/a n=00 n=00
A=0 n/a n/a n =00 n/a
A>0 n=[=A~v] n=00 n=ox n/a

“The row A\ > 0 is applicable when L = 0.

the analysis outlined in [4], applying the ratio test we find convergence
for all —Ly < A < 0 provided that 0 < v < 1. Moreover, if v = 1,
Gauss’s test gives convergence provided that A is strictly negative,
ie, —Ly < A<O.

We summarize these findings in Table 3

A.2 Probability Mass Functions and Their Properties

Having established the various restrictions on the parameter space and the sup-
port for the family of distributions generated by (A.1), we now turn attention to
the resulting pmfs and their properties. To begin, we will distinguish between
two classes of distributions: (i) L = 0, the class originally explored by Katz
(1965), and (ii) L > 0, which has subsequently been explored by others. In order
to explore these pmfs, our first task is to evaluate p(L) which forms part of the
normalizing constant in (A.2).

A21 L=0

In the previous section we established that, when L = 0, we require A > 0.
Moreover, we also required that v < 1, with Y, unbounded from above if 0 <
v < 1 but that an upper bound of n = [—A/v] exists if v < 0. Summing the
right-most side of (A.2) over all y € Y, and adding p(0) yields

y—1
+Zp O'HA+7 1+Z H)\+]7
7=0

Ziﬂmm

where we have adopted the convention of

[[=z6)=1 b<a (A.3)
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Recall that if v >

v > 0 then n = oo, otherwise n = [—\/~]. Thus, p(0)S(n) =
1 = p(0) = [S(n)]7"!, where

( OO
\Y
Z_' = 6)\7 720,
y=0 Y-
= (A7), 7 _
Sy =Y P =0-n o<y <L,

y=0 y:
Z( /7)'y7 7 v <0,

\ ¥=0 v

where we have used the Pochhammer symbol (a), to denote the rising factorial
function

(a), =ala+1)(a+2)...(a+n—-1)=T(a+n)/I(a),

a polynomial of order n (n a non-negative integer) in a, with (a), = 1 (including
(0), = 1), and where I'(a) denotes the usual Gamma function.”” Note that the
argument of the Pochhammer symbol can be negative and is in certain cases
considered below. In the event that ‘a’ is a negative integer, the Pochhammer
symbol will equal zero for all n > a. The resulting pmfs are

(o~ \Y
¢ ')\ , v=0 (Poisson),
y!
A Y(1 — ~)M7
p(y) = /), fyy(' V) , 0<y<1 (Negative Binomial), (A4)
(A7), 7" /Y ~0
\Z?:O ()‘/7)]‘ v /5" ’

There are two simplifications that arise when A/~ is integer. First, if one restricts
attention to the case where A/~ is integer, r say, and 0 < v < 1 then

(T)y:(r—l—y—l)!: r+y—1
y! (r—1)!y! Yy '
On setting m = 1 — v, the pmf reduces to

s = (" e (A5)
This form of the negative binomial distribution, also known as the Pascal dis-
tribution, admits an inverse sampling interpretation is available. Specifically, Y
can be interpreted as a count of the number of failures in a sequence of indepen-
dent Bernoulli trials, each with probability of success 7, before the rth success
is observed. Interestingly, we note that

lim(1 — 7)’\/7 = e,
~—0

25 A useful collection of results on Pochhammer symbols can be found in Slater (1966, Ap-
pendix I).
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uninteresting

[Y: [0,1,...,n},n = f—A/ﬂ} {\y: {0,1,2,3,...,00}}

Figure 8: Restrictions on Parameters and Support Implied by (A.1)

and so the negative binomial representation in (A.4) can be thought of as valid
for all cases v > 0, recognizing that the case v = 0 must be thought of as a limit.
Finally, when A/v is non-integer, the pmf in (A.4) still gives the probability
that Y = y given the parameters A\ and -y, it just no longer admits the inverse
sampling interpretation usually ascribed to a count variable with a negative
binomial distribution.

Second, if v < 0 and n = \/v is a negative integer, so that [—\/y] = —\/~,
then

(A7), 7Y _ (=n), 7" _ nl(—=v)

y! y! (n—y)ly!

so that
—~ nl(—=)
S(n) = =(1—~)"

() = (n—y)ly! ( )

and
n y Y

ply) = y (=)’ =)

On setting # = —v/(1 — 7), so that v = —x/(1 — 7), we can recognize the

resulting pmf

s = (1)1 = my

Y

as that of a binomial random variable where, again, = denotes the success of a
single Bernoulli trial and p(y) gives the probability of y successes in a sequence
of n independent Bernoulli trials. That is, ¥ ~ Binomial(n, 7). These findings
are summarized in Figure 8. The Poisson, Pascal, and Binomial distributions,
being those cases where /7 is integer, were the cases originally explored in Katz
(1965). Figure 9, which is a variant of Katz (1965, Figure 1), provides a graphical
representation of these distributions.
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A .
Binomial Negative
Binomial
(Pascal)

Impossible Parameter Configurations

Impossible Parameter Configurations

The set of permissible parameter combinations is represented by rays
radiating from the origin, a subset of which are depicted, all other
possibilities are ignored. The dashed lines are not included within this
set. The area shaded light grey represents the boundary of the set of
impossible parameter configurations.

Figure 9: Parameter Space for the Katz Family in Special Cases

Kemp (1968) observed that the family of distributions depicted in Figure 9
could all be expressed in terms of hypergeometric functions on noting that

_ A
(1= = 1Fo (;57)

and that, specifically,

. A A
PIYIL%IFO (;,7) =c,

(A) Y
5

Yl Fy (;3 7)
subject to the requirement that A/« is integer if v < 0. This characterization of
the probability function makes two things clear. First, the restriction that v < 1
follows immediately from the standard convergence criteria for hypergeometric
functions; see, inter alios, Abadir (1999, p.292). Second, it is clear that, for v > 0,
the restriction that A/ be integer is completely unnecessary as the probability
function is perfectly well defined for non-integer values of this ratio.?S

so that

26We note that Katz (1965) was perfectly well aware of the possibility of non-integer values
of A/, see the quote in Footnote 24.
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It is straight-forward to show that the probability generating function for this
family of distributions is of the form

Z?:o T

In the special cases where either v > 0 or where —\/~ is a positive integer, G(t)

reduces to \ \
G(t)=,F, | —;t Fol—; )
( ) 1£0 (7 7) /1 0 (’Y 7)

Moments for all members of the family can be calculated directly from (A.1),
without reference to the exact form of the pmf. A slight re-arrangement of (A.1)
allows us to sum over Y, the support of Y, thus

D+ Dply+1) =D (A +y1)p(y). (A7)

yeyY yeY
The left-hand side of (A.7) can be written
D+ Dply+1)=0xp0)+> (y+ p(y+1)

yeyY yeyY

= uply) =E[Y] = u (say).

yeyY

The right-hand side becomes

A pw) +Y uply) = A+ yu.

yey yey
Solving for p yields
BIY) = 12 = (sa) (A3a)
and similar arguments lead to
VY] = ﬁ — o2 (say). (A.8b)

From Katz (1965, p.176) we have the following inverse parametric relationships

2
)\:% and 7:1—%,

which yields a potentially useful alternative parameterization of the distributions

in terms of mean and variance rather than the somewhat more nebulous A and ~.

Observe that if v = 0 then E [Y] = V [Y], a situation termed equi-dispersion. If

0 < <1, then V[Y] > E[Y], which is called over-dispersion and, if v < 0 then

V[Y] < E[Y], which is called under-dispersion. Importantly, if we consider the
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ratio VY] /E[Y] = 1/(1—+) then we see that under-dispersion, equi-dispersion,
and over-dispersion are determined by the value of v alone, and so A is a nuisance
parameter for the testing problems of interest in this paper. Finally, observe that
E [Y] is an increasing function of 7. Specifically,

<\, ify <0,
EY]<d=) ify=0, and
>\ if0<y <.

A22 L>0

This case differs from that of L = 0 in two key ways: (i) there are three more
cases to consider, all related to A < 0 and, obviously, (ii) zero is no longer in Y.
To begin the analysis, let us first determine p(L) by summing over (A.2). Noting
that n may be infinite (depending on parameter configuration) and adopting the
convention (A.3), we see that

1=> ply)=pL)+ > p(L!)L! H(A +57),

y=L+1 Y

so that

-1
n

p(L)L = [Z CTIo+ )

The exact definition of p(L), as noted above, is parameter dependent. Hence,

=7 say.

(i) if v =0, A > 0 then

> \v-L+1 oA _A L=l yj
1 (¥l
= Y pri
(ii) if 0 < < 1,A > 0 then, on noting that (A\/y + L), ;= (A/7),/ (A\/7)L,
A Y A J
L= (G o et (),
I — Z i Y — ( r}/) 1 _ (1 _ 7))\/72 i “7 ’
ORE B OX
v)p YT ) I=

(iii) if v < 0, A > 0 then

]Q/\:/Oﬂ (3) vF k! Zf:_ol (%) /5!
Tk 1 — J
N Al (2 om

(2), SRA(E) ymym

m
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These first three results correspond to those examined in the L = 0 case and they
have the same simplifications for A/v integer as mentioned in that case.?’” The
structure of the result is clear, with the normalizing constant scaled by a factor
of 1 —Prob (Y < L), so that the resulting probabilities are simply left-truncated
versions of those encountered previously. In particular, we see that, for L > 0
and A > 0,

( e AN

y! (1 —e? Y0 i—f)
A Y(1 — ~)M
(A7), 77 (1 =) | 0<n<l,

p(y) =L V! {1 — (1= <%)jvj/ﬂ} (A.9)

A7), /Y! Yo | ¥ <0,n=[A/7].

zﬁf(é '
\ m:O(,y)mA/ /m

Before moving it is worth reminding ourselves of cases that we need not consider
further. If L > 0 and v < 0 then the only case leading to valid, non-degenerate
distributions are those where A > 0. The next three cases have no corresponding
result when L = 0.

(iv) If 0 <y < 1,A =0 then

7= i y=1) 7y ’
Z;’;(—l)y“(—v)y/y . S (=1 (=) G
>y

v =0,

YE(L = 1)! e (ZDVH (=) /y
_ In(1 — ) 1 Zj:l (=17 (=)/j
T = 1) In(1— ) |
where the final equality follows on recognising the Mercator series and
AY
ply) = — T (A.10)
yln(l —7) {1 + mZ—V)}
In the special case L = 1, the quantity in the square brackets reduces to
unity and
(v ki
Y) = =7
Y yIn(1—7)

which is the pmf of a logarithmic distribution. If L > 1 then (A.10) is
recognizable as a left-truncated logarithmic distribution.

2TThe condition \/v integer obviously requires y # 0.
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(v) If 0 <y <1,—Ly < A <0 then
0 L—-1 P
NN O K1 OREL) N> O
= L = -
D 4T @ | S

L

L-1

o= R MO

and
(%)yvy(l — M /y!

T (1= s (%)jvj/j!'

A comparison of this expression with that at (A.9) reveals a remarkable
similarity to the case where v < 0 and A > 0. As in the earlier case we see
that (i) the ratio A/ is negative, (ii) there is a scale factor reflecting left-
truncation, with the only substantial difference being that whereas here we
have a series reducing to the term (1 —~)~*, in the earlier case we had a
sum that only offers a similar simplification when A/~ is integer.

p(y)

(vi) The final case to consider is that where v =1 and —L < A < 0. Here

where the third equality is valid because A < 0, and
(), /v!
PW) = - V= L2380
ijo (M) j /3!
This somewhat surprising result reduces to that of Willmot (1988) when
L =1, in which case the denominator reduces to unity.

We won’t go through all the properties considered in the case L = 0, although
we note in passing that y = 0 contributes nothing to any of the expectations used
to calculate either the mean or variance of Y and so the expressions provided
remain valid, except in the special case of ¥ = 1 where finite moments do not
appear to exist. We can, however, update Figure 9 to reflect what we have learned
in these cases where {0} € ), see Figure 10.*® In essence, the major change is
that the parameter space now admits non positive values of A, provided that
they exceed —Lvy and 0 < v < 1, but only when {0} ¢ ).

28Note that Sundt and Jewell (1981, Figure 1) provide a similar diagram although, as noted
by Willmot (1988), they miss the possibility of v = 1.
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The set of permissible parameter combinations is represented by rays
radiating from the origin, a subset of which are depicted, all other
possibilities are ignored. The dashed lines are not included within
this set and rays ending in a circle do not include the point depicted
by the circle, specifically, if ¥ = 1 then A > —L. The area shaded
light grey represents the boundary of the set of impossible parameter
configurations.

Figure 10: Parameter Space for the Extended Katz Family For L > 0
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