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Abstract

This thesis aims to explore the evolution of multiple defences. Single defences have received

considerable attention due to their specific effects in protecting organisms, but the research

about multiple defences is relatively limited. Specifically, this thesis focuses on how the

connection between defences is related to evolution (not the specific effect of protection

in each defence). Chapters 2 and 3 focus on the connection between earlier and later

defences using mathematical models. Chapters 4 and 5 focus on the connection between

two synergistically acting defences, and their relationship with diversification rates using

phylogenetics.

In Chapter 2, I explore the evolutionary reason for multiple defences and the trade-off

between earlier and later defences. I find the conditions for multiple defences versus single

defences and also found that, typically, the investment is more in earlier than later defences.

In Chapter 3, I explore the defence phenotype variances in earlier and later defences in

mutation-selection balance. I find that, typically, the earlier defence variance evolves to be

less than the later defence variances, and I also find some factors that can influence the

equilibrium variances. Both Chapter 2 and 3 show the relative importance of earlier defence

to the later defences, due to their chances to use the defences. In Chapter 4, I study the

coevolution between two synergistically acting defences, aposematism and group-living,

and find that the root ancestor state is possibly group-living, which is slightly against

intuition, as most previous research thinks otherwise. I also find the possible evolutionary

dynamics of the four binary states from the ancestor till now and into the future, and the

probability equilibrium values of the four states. In Chapter 5, I have extended the study

of defences into a macroevolution point of view and study the association between defences

and diversification rates. Here I have obtained further evidence to “escape and radiate”
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hypothesis regarding the association between aposematism and faster diversification rates.

I also find that group-living is positively associated with diversification rates, which is new

in this area to my knowledge. The previous research about chemical defences in this topic

is not consistent, which might be because chemical defences are usually deployed later,

therefore, are less important for protection and can be more variable, as I have proposed

in Chapter 2 and 3.

In all, the findings here imply that the connection between defences plays an important

role in the evolution of multiple defences. This can help us to further understand the

evolutionary reasons and patterns of multiple defences and their application in certain

practical areas.
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Chapter 1

Introduction

1.1 General background

Biological organisms need defences to protect themselves from different enemies in nature,

such as predators, pathogens, and parasites. Many organisms are observed to have mul-

tiple defences (e.g. morphological, physical, chemical, behavioural, physiological defences)

rather than only one defence. For example, some organisms have both constitutive (always

present) and induced defences (produced in specific circumstances) [1]. Both constitutive

and induced defences can take multiple forms as well. Examples of constitutive defences

include cryptic appearance, thick epidermises, thorns, and toxins. Induced defences can

be secreted sap (when some tissues are broken), closure of parts of the body (e.g. plant’s

leaf stoma) or chemicals.

Research on multiple defences is mainly focused on the following areas:

(1) The evolutionary reasons for multiple defences [2, 3], the trade-off between defences for

multiple defences [2, 4, 5, 6].

(2) The different functions of multiple defences working against different enemies [7], or in

different circumstances [5, 6, 8, 9, 10].

(3) The sequential deployment of multiple defences [2, 11].

1
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(4) Synergistic effects between defences [3, 12, 13, 14].

(5) The applied use of multiple defences in non-biological areas [11].

In this introduction, I will first introduce (1)-(4) in order. I will also mention (1) in different

deployed ways in multiple defences (2)(3)(4).

In the thesis, the second chapter will explore the evolutionary reasons for sequentially de-

ployed defences and the trade-off between earlier and later defences(points 1 and 3 above).

The third chapter will analyse the evolution of variances in earlier and later defences (points

1 and 3). The fourth chapter focuses on the synergistic effects and evolutionary mecha-

nisms of two contrasting defences in the Macrolepidoptera Order (points 1 and 4). The fifth

chapter will test the effect of defences on diversification rates of species (which is usually

analysed in relation to one defence in the previous research [15, 16, 17, 18, 19, 20, 21], so I

will analyse the question with two defences in order to offer more evidence to the question

on this phenomenon).

1.2 The evolution of multiple defences

Nature usually selects the phenotypes that are most adaptive [22], and this principle ap-

plies to defence phenotypes as it does to other phenotypes. Through adaptive evolution,

defences are assumed to evolve to be well “designed” and perform efficiently. For exam-

ple, panther chameleons Furcifer pardalis can change their colour quickly and perfectly as

their background changes [23]; some animals can even be transparent (e.g. glass squid –

Bathothauma lyromma [24], glasswing butterfly – Greta oto [25]), and so appear invisible

to certain predators.

Since multiple defences are so commonly observed in nature, an important question is why

they are selected and preserved i.e. what are their benefits, compared to investing in a single

“super-defence”? The general reasons for the evolution of multiple, rather than single,

defences have been analysed in mathematical models [2, 3, 26, 27]. Two important aspects

are usually included in the analyses in these models, namely fitness-related investment and

damage costs.

(A) Fitness related investment: how effectively does the investment convert fitness re-

sources into defences.
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Investment in defences is regarded to have“allocation costs” that diminish the fitness re-

sources, which could otherwise be applied to other fitness-enhancing activities [28]. The

reason for investment in defences is that defences can protect organisms against enemy at-

tack (predators, parasites, etc) [28]. The effectiveness of investment in defences is usually

reflected in the probabilities that the invested defences can successfully hold to prevent

enemies (instead of being breached by enemies) [2, 3, 26]. When investing in multiple

defences, once one of the defences is breached, there is a chance that the other defences

will hold up and the organism will be able to survive, compared to investing in only one

defence. Therefore, the spread of investment in multiple, rather than single, defences might

help to increase the chance of survival.

(B) Damage costs: the damage costs to victims during or after enemy attack.

The exposure or the failure of each defence to the enemies is considered to have a cost

to the victims [28]. If there is only one defence, then the full damage costs will be to

the victim (e.g. death) when this single defence is breached. However, when there exist

several defences, the full damage cost can be spread into several parts, and there is a cost

on each part when the corresponding defence is breached, so the cost could be less when

only parts of the multiple defences are breached – the organism survives but some tissues

are destroyed.

The existing models in the current literature usually combine the effects of both “fitness-

related investment” and “damage costs”, so as to analyse both the benefits and costs of

defences. Different defence strategies can be compared using the models. For example, the

models can be used to compare the strategies of multiple defences vs one single defence

[2, 26, 27], or the trade-off between different defences [2, 3]. The use of“fitness-related

investment” and “damage costs” in the analysis of the evolutionary reason for multiple

defences will be mentioned in the later sections about the three ways in which multiple

defences are deployed.

1.3 The ways in which multiple defences act

Multiple defences can be deployed in different ways, and three ways are often observed.

First, multiple defences act individually in different circumstances (parallel-deployed). Sec-

ond, multiple defences act individually in an order (sequentially-deployed). Third, multiple
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defences act synergistically together (either parallel or sequentially). Here I will discuss

three different ways that multiple defences are deployed. The evolutionary reason for mul-

tiple defences in each of these three deployed ways will also be shown using “fitness-related

investment” and “damage costs”.

1.3.1 Defences acting individually in different circumstances

Individually deployed defences

Multiple defences are usually used in different circumstances [29], for example, (a) towards

different enemies [3, 30], (b) in different environments [8], or (c) in different stages in their

lives.

(a) Prey can be targeted by more than one species of predator. At the same time, they

might also suffer attacks from pathogens and parasites. Therefore, in the face of different

enemies, multiple defences can be useful in protecting the victims from different alternative

kinds of enemies.

(b) Some species use multiple defences in different environments (in different places they

live, or seasons of the year, etc). For example, animals need to protect themselves in the

environmental surroundings they inhabit, and their surroundings can be disparate in time

or place, so they might need corresponding camouflage defences as the environment sur-

rounding them changes. Countershading [10] is found in many animals (e.g. fish, birds,

reptiles and mammals). Darker-coloured backs but paler-coloured underside protect them

from observation by predators both under their body and above their body in the back-

ground of both the sky and the land respectively. Also, it can help to make them appear

less solid and conspicuous, as normal (i.e. uniformly coloured) three-dimensional objects

usually appear lighter on the top and darker on the bottom. The fur of the snowshoe hare

(Lepus americanus) can adapt to turn white in winter and brown in summer, so as to hide

against both the snowy background in winter and the soil brown background in summer [9].

Rana pirica tadpoles can develop predator-specific morphologies towards different types of

predators and the survival rates are higher when the tadpoles’ morphologies can adapt to

specific types of predators [31].

(c) Some species use multiple defences in different stages of their lives, especially for those
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metamorphosis species, or those species that change their living places in different life-

times. For example, Phigalia titea caterpillars mimic wood sticks; adults are cryptic in the

tree trunks or on the rocks and can fly away when discovered by predators [32]. Cicada

nymphs(e.g. Magicicada tredecassini) dig holes to hide underground, and their adults live

above grounds and have wings and camouflage colours as protection [33].

The evolution of individually deployed defences

Multiple defences evolve individually in their own respective circumstances and do not

necessarily function in circumstances when other defences may be required. Organisms

can, therefore, find themselves in danger when their defences are not specifically evolved

to defend against a different type of enemy attack. Speed et al. [27] have used a model

to explore the evolutionary reason for this type of multiple defences. The model, which

includes “fitness-related investment”, analyses the effect of coevolution between multiple

toxicity defence traits in plants and multiple corresponding resistance traits in insects. It

shows that plants are less likely to go extinct as the number of defence traits increases.

Moreover, it shows that there is a trade-off among defences, which is also found empirically

in direct defences (the release of hydrogen cyanide) and indirect defences (the emission of

volatile organic compounds), and the amounts of investment are negatively related with

each other [4].

1.3.2 Defences acting sequentially

Sequentially deployed defences

Sequential defences are also used independently, but they are carried out in order, one

after another. The earliest defence in the sequence is first initiated when the victims are

attacked by enemies, with the later defences inactive; however, when the earliest defences

are breached by the enemies, the subsequent defences start to get work one by one to defend

against further attacks. For example, constitutive defences usually function as the first line

of defence, and induced defences usually function later as the second line of defence after
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the constitutive defences have failed [1]. In the human immune system, physical defences

(e.g. skin, hair) usually function first to prevent pathogens (e.g. bacteria and viruses) from

entering the human body. Once these physical defences have been breached, the innate

immune defences will respond immediately and generally against the invading pathogens

[34]. If the innate immune defences cannot kill the pathogens, the subsequent adaptive

immune defences will then be activated, so the specific memory cells (B cell and T cell)

will respond and eliminate the specific kinds of pathogens [35, 36].

The evolution of sequentially deployed defences

One reason for the evolution of sequential defences is that attacks from predators can

be sequential [37]. For example, predators can show a series of predation behaviours —

detection, identification, approach, subjugation, consumption. Prey defences may have

separate evolutionary trajectories towards the corresponding attacks at each phase [38].

Since the overall resources for the organisms’ fitness and defences are limited, increasing

investment in one defence may cause decreasing investment in the other defences (trade-off

between defences) [22, 38]. For example, in the reed warbler Acrocephalus scirpaceus, the

egg-rejection defence is observed to block the later defence of chick-rejection against the

common cuckoo Cuculus canorus, but the same does not happen in the superb fairy-wren

Malurus cyaneus, which chooses the chick-rejection strategy rather than the egg-rejection

strategy [39].

Broom et al. [2] used a model to examine the evolutionary reason for sequential defences,

and the trade-off between the earlier and later defences. The model included the consider-

ation of both “fitness-related investment” and “damage costs”, and two levels of defences.

The model shows that, when the investment costs are very high, and the benefits in in-

vesting in both defences are very low (the defences have low efficacy for protection, attacks

are rare, and the exposure time of prey to predators is short), then the optimal choice is

not to invest in either of the two defences. When the cost/benefit ratio of the first defence

is much higher compared to the second defence, then the investment will be concentrated

in the second defence; and vice versa for the other defence. When the ratio cost/benefit is

similar and not very high for both defences, then the investment will be in both defences.

Therefore, there is a trade-off between the first and second defence, and the evolution will

choose the more effective defence over the less effective one. Also, if both defences are
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similarly effective and not very costly, then evolution will choose both defences.

The investment in earlier and later defences might also be influenced by the environments

that the victim inhabits. For example, the investment allocation of constitutive defences

and induced defence in pines is found to be different in different environments [1]. Con-

stitutive defences increase at higher latitudes and elevation, and colder temperature areas

where growth rate decreases, whereas induced defences increase in the opposite environ-

mental areas. Therefore, there is not only trade-off between the investment in earlier and

later defences, and the investment (“fitness-related investment”) in both defences are asso-

ciated with the growth rates, but also some external factors, e.g. the living environment.

In the second chapter, I will use a mathematical model to explore the investment defence

allocation strategy. I will answer the question of when organisms invest in multiple defences

rather than single defences. I will also find out whether more will be invested in earlier or

later defences. This model has two extensions, in comparison to Broom et al. [2]. First,

the model will include n levels of defences rather than only two because some organisms in

nature have more than two levels of sequential defences, so the model can also be applied to

explore the defences investment allocation strategies in those organisms. Second, a general

form rather than a linear form of “fitness-related investment” function will be used, since

the form of function might influence the results.

The variances of sequential defences

One defence can be variable among individuals in the population. Speed et al. [40] showed

that plants’ chemical defences can be variable both in quantities of toxins and in the

chemical constituents. Other non-chemical defences such as the length of thorns and

camouflage colours can also be variable in plants. Defence behaviours in animals can also

be variable. For example, the ability to run away from predators cannot be exactly the

same between individuals, since there might be some differences in the physical structures

in their bodies.

Although better defences are found to have better protective effects for victims, variations

in defence still persist. Higher concentrations of glucosinolates and larger density of tri-

chomes can reduce herbivore by beetles in Arabidopsis thaliana [41], but variations of both

glucosinolates and trichomes are still found to be a heritable trait [42]. The question is:
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why does variation persist and evolve across generations?

The term “mutation-selection balance” is sometimes used to describe the equilibrium when

the rate at which the deleterious alleles are initiated by mutation equals the rate at which

the deleterious alleles are eliminated by selection [43, 44, 45]. Similarly, the mutation-

selection balance can also be applied to mutation-selection competition in defence phe-

notypes. The variance of defence phenotypes in the population will decrease when the

selection force pushes the defence phenotypes towards the ideal phenotype for the organ-

isms. At the same time, all of the phenotypes in the population have some chance to mutate

to be different (more beneficial or more deleterious) in the offspring, so the variance in-

creases. Therefore, both the force of selection that accumulates the phenotypes, together

towards the ideal phenotype and the force of mutation that spreads the phenotypes away,

determine the variation of the phenotypes. The variance reaches an equilibrium when both

forces balance out.

In the third chapter of this thesis, the variance equilibria in the mutation-selection bal-

ance will be explored. Previous research about mutation-selection usually focuses on the

equilibrium of the ratio between beneficial and deleterious alleles [43, 44, 45] or on the

distribution in mutation-selection balance in discrete trait population (quasispecies model

[46]), but the distribution (variances) in mutation-selection balance in a continuous trait

population have rarely been explored. Using a mathematical model, I will explore the

evolution of variances across generations, and how the evolution of variance reaches the

mutation-selection balance (equilibrium).

In the sequential defence scenario, the mutation-selection balance may have different equi-

librium value according to the position of the defence in the sequence. Studies in plant

defences show that variations in earlier defences (physical, morphological defence) are

better at predicting the damage by herbivores than later defence (toxic secondary metabo-

lites, [47, 48]). It means that the earlier defences are less tolerant of the deviation from

the most adaptive defence than the later defences. It also shows the possible imbalance

in the variances in earlier and later defences. Using the same mathematical model, the

relation between the variances in the earlier and later defences during evolution and in the

equilibrium will also be explored in the third chapter.
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1.3.3 Defences acting synergistically

Synergistically-acting Defences

Some defences can work synergistically together to achieve a better effect than if each

worked independently. For example, the defence aposematism is usually considered to be

synergistically working with chemical defences [12, 13, 14, 49]. The aposematic colours

will attract the predators’ attention, thereby making the victims more conspicuous (and

possibly more dangerous) than cryptic colours. The chemical defences themselves have the

effect of defence, but the aposematic colours constitute further visual signals of the unseen

defences, that can help to warn predators to stay away without testing and damaging the

victims. Also, aposematic colours are found to assist learning to avoid the defences [50].

So predator attack is reduced when victims can show aposematic colours as signals of their

chemical defences.

The evolution of synergistically-acting defences

Synergistically-acting defences enhance the effect of each other. Gilman et al. [3] use a

model to explore the reason for the evolutionary reason for this kind of multiple defences.

The model explores the effect of both the number of defences and the correlation between

traits in evolution. The model also includes the consideration of both “fitness-related

investment” and “damage costs”. It shows that the increasing number of defences and the

strength of correlation between traits would both increase the probability that victims can

survive from enemy attack. The number of defences matters because there is an unequal

relationship between the victims and predator– the victims can survive only if one defence

holds, however, all of the defences need to be breached for the enemies to succeed [3]. The

synergistic act matters because it can strengthen the effect of each of the defences by the

interaction and therefore increase escape rates.

The evolutionary order of two synergistically-acting defences

Since the evolution of new defences is usually instantaneous compared to the persistence

of existing defences, the simultaneous evolution of two new defences is unlikely to happen.
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Therefore an interesting question is which of the two synergistic defences evolves first.

For example, the spikes on the shells of turtles (e.g. Macrochelys temminckii) are likely

to be a later evolved defence on turtles’ shell defence itself, because most turtles do not

have spikes. Aposematic defences usually function as signals of chemical defences [12, 49,

13, 14]. Since the aposematic organisms are usually found also to have toxins, but the

organisms with toxins can be cryptic, not aposematic species, it is usually assumed that

chemical defences evolve earlier than the corresponding aposematic defences [14]. Also, the

aposematic species without toxins are regarded to mimic some other aposematic organisms

with toxin [51].

In comparison to the order in which aposematic and chemical defences evolved, the order

in which aposematism and group-living evolved is less obvious. It could be the case either

that solitary aposematic species evolved to live in groups, or that species that live in

groups evolved aposematic colouration. This is a particularly interesting question as both

the evolution of group living and aposematism increase the conspicuous effect of the other.

Therefore, on the one hand, aposematism could evolve in the group-living species, due to

kin selection [52, 53, 54, 55, 56];on the other hand, it is also possible that living in groups

can enhance the effect of aposematism that shows the chemical defences in the organisms,

so group-living evolves later than aposematism [57, 58, 59, 60, 61]. In the fourth chapter,

this question is examined by exploring all of the possible pathways between combinations

of colour traits (aposematism vs crypsis) and group traits (group-living and solitary-living)

using phylogenetic comparative methods. The evolution from aposematism to crypsis and

the evolution from group-living to solitary-living are also included in consideration as these

possibilities cannot be excluded, although previous research assumes that evolution occurs

in the opposite direction.

The aposematism & group-living defences and diversification in caterpillars

Defences can not only influence the survival of that population or species (microevolution)

as mentioned above, they are also expected to have a positive influence on diversifica-

tion rates, which means anet increase in the number of species within a certain lineage

(macroevolution). The idea comes from Ehrlich and Raven’s “escape and radiate” theory

[62, 63]. The theory predicted that defences help the organisms enter into a new adaptive

zone, which increases the chances to characterise new families.
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Defences are predicted to increase the diversification rates in two ways. First, effective

defences can help to protect the population. On the one hand, they increase the population

size, so increasing the chances of mutation and recombination, which might help to generate

new species [64]. On the other hand, an increased population size decreases the chance

of the species’ extinction. Both of these can increase diversification rates. Second, with

an effective defence, the populations are able to live in either more variable ecological

environments or in a wider range of living areas. So more interactions with the new and

wider environment and the new capacity for populations’ living can increase the chance of

the formation of new species [65]. Finally, species diversity itself was found eventually to

form the basis for new species [66].

Some studies have tried to explore the relationship between defences and diversification

rates [15, 17, 18, 19, 20, 21, 67] but the evidence remains limited. Defences, such as apose-

matism, gained more consistent positive evidence [20, 21, 67] than some other defences,

such as chemical defences, which produced some ambiguous results regarding their influ-

ence on the diversification rates (e.g. chemical defence might increase diversification rates

[18, 62], decrease diversification rates [15, 67], or have no influence [21]). The fifth chapter

is designed to test whether aposematic defences and group-living defences can influence

the diversification rates in Macrolepidoptera caterpillars, which aims to bring some new

evidence to the “escape and radiate” theory.

1.4 The outline and aims of the following thesis

This thesis will focus mainly on the connections between defences. Multiple defences are

usually shown to respond towards the different circumstances (e.g. enemies, environments,

living stages), that the victims face (section 1.3.1). However, research about the connec-

tions between defences is relatively limited (section 1.3.2, 1.3.3). In this thesis, the connec-

tion between earlier and later defences deployed sequentially, and the connection between

two synergistically deployed defences will be mainly analysed. I will show the evolutionary

reason for multiple defences, the investment trade-off among defences, the evolution of

distribution variances across generations, the mutation-selection balance in multiple de-

fences, the coevolution between different defences, and the relationship between defences

and species diversification.
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The second chapter uses mathematical models to explore the evolution of sequential de-

fences. Compared to Broom et al [2], a general investment function rather than the linear

investment functions is used. Since the forms of investment functions can influence the

results (as it will be shown), the generalised function can let us get the results without

worrying about whether the investment function is the same as what happens in nature,

which we might never know. Also, I generalise the number of defences to n, compared to

only two in Broom et al [2], as more than two levels of defences are frequently observed

in reality. In the chapter, the evolutionary reason for multiple defences (why multiple de-

fences are selected compared to only one “super-defence”) and the trade-off between earlier

and later defences will be studied.

In the third chapter, the evolution of variances of the earlier and later defences will be

explored. Current literature about the variances of defences is quite limited, so the aim is

to help fill this gap in the research. A mathematical model that considers both selection

force and mutation force to show how the distribution of defence phenotypes in the earlier

and later defences evolves across time will be developed. This chapter also compares the

equilibrium variances of the distributions for earlier and later defences in the mutation-

selection balance, and also see how different factors influence the variances.

In the fourth chapter, the dynamic coevolution of colour defence traits (aposematism and

crypsis) and the group defence traits (group-living and solitary-living) in caterpillars are

explored. Compared to the previous research, that is only focused on the evolution from

crypsis to aposematism and from solitary-living to group-living, I also include the possi-

bility of the reverse being the case. The dynamics of the combination of the two traits

is a more comprehensive approach to studying the problem, and the results show a new

understanding of the coevolution of the two traits.

In the fifth chapter, whether both defences (aposematism and group-living defences) can

influence the diversification rates is explored. The results will add further evidence to the

currently limited research about Ehrlich and Raven’s “escape and radiate” theory [62, 63].
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Chapter 2

A theory for investment across

defences triggered at different

stages of a predator-prey

encounter

2.1 Introduction

All organisms face threats from enemies, be they predators attacking animal prey, herbi-

vores eating plant tissue, or pathogens and parasites feeding on host tissues. The coevo-

lution between such enemies is a major driving force in evolution, which has contributed

substantially to the diversification of defensive mechanisms deployed by organisms, and

indeed of life’s forms [1]. A major and important general biological question here is why

organisms often invest in several defensive mechanisms, rather than putting all their defen-

sive resources into one highly effective “superdefence”. Why, for example, do most animals

and plants not merely invest in toxins, but often invest additionally in physical and be-

havioural defences? One answer is that the components of multiple defence suites each

target alternative types of enemy, in which case we could expect a positive association

between the number of defences deployed and the number of different classes of enemy.

A second answer is that multiple defences act simultaneously and perhaps synergistically,
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so that a greater total level of protection is achieved per unit invested when an enemy

is assaulted by e.g. physical and chemical defences together. Alternatively defences may

act one after another, presenting predators with a sequence of barriers that enemies must

cross to gain the resources presented to them by the victim. Here we focus on this third

explanation, and consider the evolution of multiple, sequentially acting defences.

A good reason for assuming that many defences act sequentially - and hence the focus of

this chapter - is that interactions between victims and enemies can often be split into a

number of stages at which one or more defences can be deployed. Although a variety of

different descriptions of this process have been suggested (see ref. [2] for a review), the

most commonly used in the context of animal defence is that given by Endler [3] who splits

the process up into six sequential stages: (i) spatial and temporal proximity of predator

and prey, (ii) detection of prey by predator, (iii) identification of prey by predator, (iv)

chase or stalking by the predator to close the distance to the prey, (v) subjugation of the

prey, and (vi) final consumption. Attack by herbivores on plants can be similarly described

in a sequence of stages, though here without the behaviour of chase by the predator.

Defensive traits extend across all phases of attacks. For example, prey can reduce the risks:

of spatial and temporal proximity by avoiding habitats where predators are more common;

of detection, through lack of movement and cryptic appearance; of identification, through

mimicry or masquerade; of predators closing in, through fleeing; of subjugation, through

struggle, spines or production of slippery secretions; and finally, prey can prevent the risk

of consumption, through chemical toxins. Hence it is possible for prey to employ defences

at all stages of the predation sequence in order to curtail attack.

Defences are often thought costly [2, 4] and investment in defence acting at one stage in the

sequence might reduce the benefit of investment in defences that act at later stages. Hence,

it seems logical that investment should be biased towards earlier stages, as was argued by

Endler [3]. However, it is clear that in the natural world sometimes there is investment

in later-acting defences. Here we ask whether there could be a general framework for

understanding investment in defences that act in sequence (as highlighted by [2]). Our aim

in this chapter is to introduce a simple but general theoretical description of a combination

of defences acting at different stages in the predatory sequence in order to make predictions

about how prey should best allocate investment across different defensive stages. The model

can, in our view, provide a flexible and predictive framework for understanding strategies
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of investment in multiply defensive systems in many biological contexts, including animal

prey. We also explore its application to the evolution of sequentially acting plant defences,

proposing a new explanation for the otherwise puzzling lack of effects on herbivory for

variation in plant chemical defences [5].

2.2 The Sequential Defences Model

We assume that the prey can invest in at most n stages of defence, which the predator

experiences sequentially. We denote each defence stage by the order i (i = 1, . . . , n) in

which it is encountered (so i = 1 is the first defence encountered, and i = n the last).

We define si (0 ≤ si < 1) as the success probability of the prey’s i-th defence, i.e. the

probability that, if the predator reaches defence i, then it fails to overcome that defence.

The effectiveness of each defence depends upon the level of investment in it. We define Ii

as the (non-negative) investment made in defense i, so

Ii = Ii(si) (2.1)

is a non-decreasing function (I ′i(.) ≥ 0), so a defence with a higher probability of success

requires higher investment by the prey. We also assume that, if the prey invests nothing

in a defence, then the success probability of that defence will be 0: Ii(0) = 0. It would

arguably be more natural to consider the investments Ii as the fundamental variables of

the model, and survival si as being a function of Ii, but our approach is formally identical

(provided Ii(·) is monotonic, so there is a 1-to-1 relationship between Ii and si) and turns

out to be more convenient to analyse.

Note that while predation pressure does not explicitly appear in the model, it is present

implicitly because it affects the survival probabilities (or, more precisely, the relationship

between I and s). The optimal strategy might be quite different among different popu-

lations, facing different environments and predation pressures. We are interested in the

evolutionary defence strategy for a certain population. It is quite often observed that many

individuals in a certain colony have the similar kind of defence strategies (e.g. similar level

of aposematism or camouflage). We think of this as the optimised defence strategy aver-

aged across generations and across populations. The form of the model is consistent with

a single attack, but could also be though to represent a number of attacks. The latter

are particularly appropriate for plants mounting defences against herbivores, where there
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could be many attackers, each of which only does a small amount of damage. In that case

we still can still think of defences being “breached” with a certain probability, even though

there are many individual attack events. Here, predation pressure affects the probability

that a defence is breached as well as the “tested costs” (because it affects the average

number of times a defence is tested).

We assume that the prey has a total amount of resource, IT , available for all defences. We

define IA as the investment in all the defences, so

IA =
n∑
i=1

Ii(si) ≤ IT (2.2)

We define C(IA) as the fitness cost of making investments across the various defences, in

whatever division, so that this total investment amount is IA. We assume that C(0) = 0

(when there is no investment in defence, the investment cost is zero). The residual amount

of resources left after investment across all the defences, IT − IA, can effectively then

be used as additional investment in non-defensive fitness-enhancing activities. Thus we

assume C(.) is an increasing function of IA (i.e. C ′(.) > 0).

We further assume that, if defence i is tested by the predator, then (even if the defence

holds) there is a cost ci (≥ 0), henceforth referred to as ”tested cost”, that can be considered

as the injury risk of being exposed to the predators after defence i− 1 is breached. (Note

that ci can be 0, which means that the tested cost is zero; e.g the tested cost of crypsis in

a nocturnal moth might be zero.) In this assumption, since there is no defence before the

first defence, we think that the first defence is always exposed and tested by the predators

(although the tested cost for the first defence can be zero, c1 = 0). Alternatively, ci can be

thought of as the costs incurred when a predator triggers the defences at stage i. These

need not be solely risk of injury, but might additionally or alternatively be time, energy or

other resource spent in the deployment of the defence. Like the model from Wilkening [6]

discussing layered defences in military use, we calculate the probability that each defence

is tested and holds (i.e. is not breached); and we also calculate the corresponding fitness

when that defence is tested and holds. Multiplying them together, we get the expected

fitness contribution from the eventuality where that defence is tested and holds. The overall

fitness which we care about is the sum of all these terms. Here, fitness means the average

number of viable offspring that an individual produces, and by assuming that this number
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decreases as successive defences are tested and/or breached we are able to represent many

different possible reproductive life histories (continuous reproduction, semelparity, etc.).

We consider two particular scenarios: (A) the prey has positive residual fitness (e.g. still

alive and can reproduce) when all defences are breached; (B) the prey has zero residual

fitness (e.g. dies before reproducing) when all defences are breached. We wish to find the

defence strategy that maximises R.

For scenario (A), when the prey still has positive residual fitness when all the defences are

breached, the expression of the overall fitness R of the prey for a given investment strategy

S = (s1, s2, . . . , sn) is as follows.

R(s1, s2, . . . , sn)

= s1(1− C(IA)− c1)

(the fitness when the first defence is tested, but not breached)

+(1− s1)s2(1− C(IA)− c1 − c2)

(the fitness when the second defence is tested, but not breached)

+...

+(1− s1)(1− s2)...(1− sn−1)sn(1− C(IA)− c1 − c2 − ...− cn)

(the fitness when the (n− 1)th defence is tested, but not breached)

+(1− s1)(1− s2)...(1− sn) · (1− C(IA)− c1 − c2 − ...− cn)

(the fitness when all the defences are breached)

= 1− C(

n∑
i=1

Ii(si))− c1 −
n∑
j=2

cj

j−1∏
k=1

(1− sk) (2.3)

Note that we have assumed that the fitness when all the defences are breached is the same

as the fitness when the (n−1)th defence is tested, but not breached, since no further tested

costs are incurred after the nth defence is breached.
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In many cases in the real world, the prey dies or effectively dies with 0 fitness left to

reproduce when all the defences are breached. We therefore consider an alternative scenario

(B) where the fitness when all the defences are breached is 0 instead of (1− C(IA)− c1 −
c2 − ...− cn). Then the fitness function is as follows.

R(s1, s2, . . . , sn) = (1−
n∏
j=1

(1− sj))
(

1− C(
n∑
i=1

Ii(si))
)
− c1 −

n∑
j=2

cj

j−1∏
k=1

(1− sk) + (
n∑
j=1

cj)
n∏
j=1

(1− sj)

(2.4)

These two scenarios represent the two extreme possibilities for the fitness that ensues

when all defences are breached: fitness is not decreased further by the nth defence failing

in scenario (A), whereas all fitness is lost in scenario (B) if the nth defence fails. We expect

that the results for an intermediate scenario will lie between those for these two extreme

scenarios.

If the organism invests less than the maximum available resources in defences, then those

resources are available for reproduction and other fitness-enhancing activities. This is

represented in the model by the term −C(
∑n

i=1 Ii(si)) in both equations (2.3) and (2.4)),

which tends to increase fitness if IA =
∑n

i=1 Ii(si) is decreased. However, due to the other

terms in si it is not clear without analysis whether IA is less than or equal to IT in the

optimal strategy.

2.2.1 When testing defences are costly, later defences receive lower in-

vestment

If the investment function is the same for all defences, Ii(·) = I(·), we can show that

the optimal solution S = (s1, s2, ..., sn) maximising the fitness function R in (2.3) and

(2.4) always satisfies the following relation when the tested costs ci are strictly positive

(ci > 0 ∀i).

s1 ≥ s2 ≥ ... ≥ sn. (2.5)

This is because, for any i such that si < si+1, we can always make R larger by switching
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the value of si and si+1, which will only change the term −ci+1
∏i
k=1(1− sk) (in the term

−
∑n

j=2 cj
∏j−1
k=1(1−sk) in R) to −ci+1

∏i−1
k=1(1−sk)·(1−si+1) (larger than −ci+1

∏i
k=1(1−

sk)), with the other terms in R unchanged.

Since the investment function I(si) is increasing, the relation that s1 ≥ s2 ≥ ... ≥ sn means

that

I(s1) ≥ I(s2) ≥ ... ≥ I(sn). (2.6)

This shows that investment in earlier defences should never be less than than investment

in later defences.

Note that, if ci+1 = 0, the above argument does not show that si ≥ si+1, but rather than

the fitness R is unchanged by switching the values of si and si+1. This means that, when

one of the tested costs is zero, either (i) there is a unique optimal strategy, where si = si+1;

or (ii) the optimal strategy is not unique, but the optimal strategy in which sj ≥ sj+1, for

all j has equal fitness to the best strategy where sj+1 > sj for some j. In any biologically

realistic situation there will always be a cost — however small — to having a defence

tested, but this case is still interesting because it shows what might evolve when the tested

costs are very small.

2.2.2 Investing in multiple defences or in a single defence?

The best strategy for the organism might be to invest in multiple defences, with (according

to the above result) higher investment in earlier than later defences. On the other hand,

the best strategy might be to invest in a single defence, which the above argument shows

should be the first one. As we will see later, either of these outcomes can occur, depending

on the details of the investment function I. To show this, first we find conditions that the

optimal solution must satisfy. To find the maximised R constrained by variable boundaries

0 ≤ si < 1 , and resource boundary
∑n

i=1 I(si) ≤ IT , we write a Lagrange function for the

overall fitness function (2.3) and (2.4).

L(s1, s2, . . . , sn;λ1, λ2, . . . , λn) = R(s1, s2, . . . , sn) +

n∑
i=1

λi(1− si) + h(IT −
n∑
i=1

I(si))

(2.7)
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The necessary condition to get the maximised value R is given by the Karush-Kuhn-Tucker

(KKT) condition coming from the above Lagrange function,

∂L

∂si
=
∂R

∂si
− λi − hI ′(si) ≤ 0, si ≥ 0, si

∂L

∂si
= 0 i = 1, ..., n (2.8)

∂L

∂λi
= 1− si ≥ 0, λi ≥ 0, λi

∂L

∂λi
= 0 i = 1, ..., n (2.9)

∂L

∂h
= IT −

n∑
i=1

I(si) ≥ 0, h ≥ 0, h
∂L

∂h
= 0 i = 1, ..., n (2.10)

The second necessary condition (2.9) combined with 1− si > 0, is equivalent to

λi = 0 (2.11)

The first necessary condition (2.8) is equivalent to

∂L

∂si
=
∂R

∂si
− hI ′(si) ≤ 0, si ≥ 0, si

∂L

∂si
= 0 i = 1, ..., n (2.12)

(a)When si > 0: we have that ∂L
∂si

= ∂R
∂si
− hI ′(si) = 0.

(b)When si = 0: we have that ∂L
∂si

= ∂R
∂si
− hI ′(si) ≤ 0.

For the third necessary condition (2.10),

(a)When IT −
∑n

i=1 I(si) > 0: we have that ∂L
∂h = IT −

∑n
i=1 I(si) > 0, so h = 0 since

h∂L∂h = 0.

(b)When IT −
∑n

i=1 I(si) = 0: we have that ∂L
∂h = IT −

∑n
i=1 I(si) = 0; so we still have

h ≥ 0.

To put them together, the necessary condition is equivalent to the following:
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(I) When 0 < si < 1,

∂R

∂si
− hI ′(si) = 0, h ≥ 0, (2.13)

(and h = 0, when inside the resource boundary IT −
n∑
i=1

I(si) > 0)

(II) When si = 0,

∂R

∂si
− hI ′(si) ≤ 0, h ≥ 0 (2.14)

(h = 0, when inside the resource boundary IT −
n∑
i=1

I(si) > 0)

So far, the analysis has been the same whether we assume that the fitness after all defences

are breached is zero (Scenario (B), equation (2.4)) or not (Scenario (A), equation (2.3)).

For the following calculation, we assume scenario (B) only; the calculation for scenario

(A) follows along similar lines, and has the same conclusion, and is presented in Appendix

2.6.2. Given the fitness function R in (2.4), the necessary condition for R is as follows,

(I) When 0 < si < 1,

∂R

∂si
− hI ′(si)

=
1

1− si

n∏
j=1

(1− sj)
(
1− C(IA)−

n∑
j=1

cj
)
− (1−

n∏
j=1

(1− sj))
∂C(IA)

∂si
+

1

1− si

n∑
j=i+1

cj

j−1∏
k=1

(1− sk)

− hI ′(si)

= 0 ( with h ≥ 0) (2.15)
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(II) When si = 0,

∂R

∂si
− hI ′(si)

=
1

1− si

n∏
j=1

(1− sj)
(
1− C(IA)−

n∑
j=1

cj
)
− (1−

n∏
j=1

(1− sj))
∂C(IA)

∂si
+

1

1− si

n∑
j=i+1

cj

j−1∏
k=1

(1− sk)

− hI ′(si)

≤ 0 ( with h ≥ 0) (2.16)

Now we have the necessary condition to maximise R— (2.15) and (2.16). Next, we are

going to explore whether investment can happen in multiple defences or only in one defence.

Since the investment functions are the same for all the defences (Ii(·) = I(·)), we have that

investment in earlier defences is always larger than investment in later defences (equation

(2.5), (2.6)), so for some j(< n),

1 > s1 ≥ s2 ≥ . . . ≥ sj > sj+1 = . . . = sn = 0, (2.17)

or

1 > s1 ≥ s2 ≥ . . . ≥ sn−1 ≥ sn > 0. (2.18)

Note that when j = 1,

1 > s1 > s2 = . . . = sn = 0, (2.19)

then the investment is concentrated only in the first defence.

We will now find the conditions that determine whether investment is concentrated only

in the first defence, or in multiple defences.

Let us first assume that there are multiple defences (2 ≤ j ≤ n), then for some i ∈
{1, 2, ..., j− 1}, we will have si ≥ si+1 > 0. Then from equation (2.15), we have (2.20) and

(2.21).
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∂R

∂si
· (1− si)− h(1− si)I ′(si)

=
n∏
j=1

(1− sj)
(
1− C(IA)−

n∑
j=1

cj
)
− (1− si)(1−

n∏
j=1

(1− sj))
∂C(IA)

∂si
+

n∑
j=i+1

cj

j−1∏
k=1

(1− sk)

− h(1− si)I ′(si)

= 0, (2.20)

∂R

∂si+1
· (1− si+1)− h(1− si+1)I ′(si+1)

=
n∏
j=1

(1− sj)
(
1− C(IA)−

n∑
j=1

cj
)
− (1− si+1)(1−

n∏
j=1

(1− sj))
∂C(IA)

∂si+1
+

n∑
j=i+2

cj

j−1∏
k=1

(1− sk)

− h(1− si+1)I ′(si+1)

= 0 (2.21)

The term
∏n
j=1(1−sj)

(
1−C(IA)−

∑n
j=1 cj

)
in both (2.20) and (2.21) is the same, so that

we have

− (1− si+1)(1−
n∏
j=1

(1− sj))
∂C(IA)

∂si+1
+

n∑
j=i+2

cj

j−1∏
k=1

(1− sk)− h(1− si+1)I ′(si+1)

= −(1− si)(1−
n∏
j=1

(1− sj))
∂C(IA)

∂si
+

n∑
j=i+1

cj

j−1∏
k=1

(1− sk)− h(1− si)I ′(si). (2.22)

Since IA =
∑n

i=1 I(si), the above is equivalent to

− (1− si+1)(1−
n∏
j=1

(1− sj))C ′(IA)I ′(si+1)− h(1− si+1)I ′(si+1)

= −(1− si)(1−
n∏
j=1

(1− sj))C ′(IA)I ′(si) + ci+1

i∏
k=1

(1− sk)− h(1− si)I ′(si). (2.23)
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⇒

− (1− si+1)I ′(si+1)
(

(1−
n∏
j=1

(1− sj))C ′(IA) + h
)

= −(1− si)I ′(si)
(

(1−
n∏
j=1

(1− sj))C ′(IA) + h
)

+ ci+1

i∏
k=1

(1− sk). (2.24)

Since C ′(IA) > 0 and also 1−
∏n
j=1(1− sj) > 0 and h ≥ 0, we have that

(
(1−

∏n
j=1(1−

sj))C
′(IA) + h

)
> 0 , so that equation (2.24) is equivalent to

−(1− si+1)I ′(si+1) = −(1− si)I ′(si) + ci+1

∏i
k=1(1− sk)(

(1−
∏n
j=1(1− sj))C ′(IA) + h

) . (2.25)

The last term in the right-hand side ci+1

∏i
k=1(1−sk)(

(1−
∏n
j=1(1−sj))C′(IA)+h

) is positive when ci+1 > 0,

therefore

−(1− si+1)I ′(si+1) > −(1− si)I ′(si). (2.26)

which is the same to,

(1− si+1)I ′(si+1) < (1− si)I ′(si). (2.27)

The analyses for the fitness function (2.3) (in Appendix 2.6.2) are similar to the analysis

for the fitness function (2.4) (from equation 2.15 to 2.27). As the relation between si and

si+1 for the fitness function (2.3) (equation B.11) is the same as the relation (2.27) for the

fitness function (2.4), the following analyses hold for both (2.3) and (2.4).

If (1−s)I ′(s) is a monotonic decreasing function of s, (2.27) is inconsistent with si ≥ si+1 >

0, so we conclude that si+1 = 0. That is, investment can not be in multiple defences but

only in the first defence (example see in Figure 2.3),

1 > s1 > s2 = . . . = sn = 0. (2.28)
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However, multiple defence can occur when the function (1−s)I ′(s) is an increasing function,

at least for some range of values of s, in which case si ≥ si+1 > 0 (i ∈ {1, 2, ..., j − 1}) is

consistent with (2.27) (we give examples in Figure 2.1). Note that multiple defences are

impossible if (1− s)I ′(s) is a decreasing function, but that (1− s)I ′(s) being an increasing

function does not guarantee that the optimal solution has investment in multiple defences

(see Figure 2.1).

Note that, if ci+1 = 0, as mentioned before in the section ”When testing defences are costly,

later defences receive lower investment”, the optimal solution either (i) has the relation

si = si+1 or (ii) is not unique, with one optimal solution having si > si+1 and the other

being obtained by swapping the values of si and si+1. When the function (1 − s)I ′(s) is

an increasing function, we can prove that only si = si+1 occurs (Appendix 2.6.1 (i); for

an example see in Figure 2.2). Similarly, when ci+1 = ci+2 = 0, the optimal solution will

have the relation that si = si+1 = si+2. In biologically realistic situations, tested costs will

usually be nonzero, so since the fitness function R is continuous in ci+1, we will have si

being slightly larger than si+1.

When the function (1 − s)I ′(s) is a decreasing function, we can prove that only c2 = 0

changes the relation (2.28), and that si = si+1 is not possible in the optimal solution, and

that the same amount investment will be concentrated only in the first or only in the second

defence (1 > s1 > s2 = s3 = s4 = ... = sn = 0 or 1 > s2 > s1 = s3 = s4 = ... = sn = 0)

(Appendix 2.6.1 (ii)(iii)). Similarly, when c2 = c3 = 0, investment will only be in one of

the first three defences. However, a small tested cost will drive the investment to be only

in the first defence (For example see in Figure 2.3, 2.4).

2.3 Examples of investment in defences

We will give numerical examples for the cases when (1) investment happens in multiple

defences, (2) only in one defences, and also (3) the investment functions are different, so

that the investment in earlier defences can be either higher or lower than in later defences.

The investment functions for all the three cases are given in the examples below. To show

a numerical result of the optimal defence strategy, we further specify the expression for

the cost function C(IA) as follows,

C(IA) = IA
a, a ≥ 1 (2.29)
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We assume that a ≥ 1, since we expect that the marginal investment cost in defences is

non-decreasing in respect to the defence investment (no less additional investment cost for

additional amount of investment when the total amount of investment becomes larger). For

simplicity, we consider scenario (B) (where the fitness is zero if all defences are breached),

and assume that IT is large enough that, in the optimal strategy, the organism does not

need to invest all of its resources in defences (IA < IT ), so that we do not need to consider

IT when maximising the fitness function (2.4).

We use a heuristic search algorithm to find the optimal investment strategy. The search

starts at an initial point S0 = (s10, s20, s30, s40). First, we calculate the value of R at this

point, and then search whether there exists higher value of R in the positive direction of

the first axis, through calculating the value of R at (s10 +δ0, s20, s30, s40), where δ0 is initial

search step. If the value is higher, then we double the search step value and and do the

search again, and repeat it until we find the maximum value of R and the corresponding

value S1 = (s11, s20, s30, s40); If however the value is not higher, we do the same procedure

in the negative direction of the first axis to find the the maximum value of R and the

corresponding value (s11, s20, s30, s40). We then do the same process in all the axes, and

after that we get the corresponding value S1 = (s11, s21, s31, s41). Second, we do the same

as the first to find S2 = (s12, s22, s32, s42) except that we shorten the initial search step to

be δ
u (where u > 1). Third, we let the initial search step to be δ

u2 and do the same. We

repeat this process until (e.g. at the n-th time, we find Sn = (s1n, s2n, s3n, s4n)) the initial

search step is less than a threshold ε1 and the distance between the last two corresponding

points d(Sn−1, Sn) is less than a threshold ε2, then stop.

Note that the above process might only find a local, rather than global, maximum. To solve

this problem, we divide each of the interval (0, 1] (note that each probability si ∈ (0, 1]) in

each axis into m equal subintervals, and since we have four levels of defences, altogether,

we have m4 subareas. Then we do the same process as above to find all the m4 local

maxima. Theoretically, if m were large enough, we would have the global maximum in one

of our searched results, and the largest local maximum is the global maximum. Due to

computational limitations, we only devide into 34 = 81 subareas. However, in all cases we

found that, the 80 out of 81 subregions did not hold the largest local maximum, because

those local maxima were on the boundaries of the subregions. This suggests that R does

not have multiple stationary values, and that the largest local maximum we found is indeed

the global maximum.
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In our example specifically, the initial start point S0 is given by s1i = 0.3, 0.6, 0.9 in the

three subintervals respectively (i = 1, 2, 3, 4) (34 = 81 start points for the 81 subareas in

total), and δ0 = 0.35, u = 1.5, ε1 = ε2 = 0.0001.

2.3.1 Example of investment in multiple defences

As described above, when (1− s)I ′(s) is an increasing function, investment could happen

in multiple defences. As an example for this relation, we use the investment function of

the form

I(s) = k(
1

1− s
− 1)b, i = 1, ..., n, k > 0, b > 1. (2.30)

For this function, (1 − s)I ′(s) = kb( 1
1−s − 1)b−1 1

1−s , which can easily be shown to be an

increasing function, when k > 0, b > 1.

Specifically we let a = 2, b = 2, k = 0.2, and the total number of defences be four.

Figure 2.1 gives that the optimal investment is concentrated in the only the first defence/

the first two defences/ the first three defences/ in all the four defences.

Figure 2.2 gives that for a specific i (i = 1, 2..., N − 1), if ci+1 = 0, then the investments

in the i-th and (i+ 1)-th defence are the same (si = si+1).

2.3.2 Example of investment only in the first defence

As described above, if (1 − s)I ′(s) is a decreasing function, then investment only happen

in the first defence (when c2 > 0). As an example for this relation, we use the investment

function

I(s) = −k(ln(1− s) + ds k > 0, d > 0. (2.31)

For this function, (1 − s)I ′(s) = k + d(1 − s), which is a decreasing function. Then we

set the parameter values a = 2 to do the simulations as in the above example. Figure

2.3 shows that the optimal investment is concentrated only in the first defence. Figure

2.4 shows that, when c2 = 0, there are two optimal solutions with one optimal solution



34 Lingzi Wang

first defence second defence third defence fourth defence
0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a

b
ili

ty
 t

h
a

t 
a

 d
e

fe
n

c
e

 h
o

ld
s

Figure 2.1: For investment functions I where (1−s)I ′(s) is an increasing function, prey can
invest in multiple defences but always invest more in earlier defences. Here, the investment
function is given in (2.30) and the cost function is given in (2.29). The vertical axis is s,
the probability that a defence is not breached when tested, and is zero when investment
in that defence is zero. Depending on the tested costs, the prey can invest in: all defences
(ci = 0.2∀i, green rhombus); the first three defences only (ci = 0.3∀i, red cross); the first
two defences only (ci = 0.4∀i, yellow triangle); or only the first defence (ci = 0.5∀i, black
cross). Other parameter values: number of defences=4; a = 2, b = 2, k = 0.2.
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Figure 2.2: For investment functions I where (1 − s)I ′(s) is an increasing function, prey
can invest the same amount in two successive defences if the later defence has tested cost
zero. Here, the investment function is given in (2.30) and the cost function is given in
(2.29), and the tested costs are ci = 0.2 for all values of i except one. Optimal strategy is
to invest the same in: first and second defences when c2 = 0 (red circles); second and third
defences when c3 = 0 (orange triangles); third and fourth defences when c4 = 0 (green
diamonds). Other parameters: number of defences=4; a = 2, b = 2, k = 0.2.
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Figure 2.3: For investment functions I where (1 − s)I ′(s) is a decreasing function, the
optimal strategy is to invest in one defence only; this will be the first defence when the
second defence has nonzero tested cost, c2 6= 0. Here, the investment function is given in
(2.31), the cost function is given in (2.29), and the tested costs are ci = 0.2∀i. Different
symbols correspond to different values of parameters d and k: (d, k) = (0.1, 0.1) (green
rhombus); (d, k) = (0.2, 0.1) (red cross); (d, k) = (0.1, 0.2) (black cross); (d, k) = (0.2, 0.2)
(yellow triangle). Other parameters: number of defences=4; a = 2.

having s1 > s2 = s3 = s4 = 0 (investment concenrated only in the first defence), and the

other being the swapped values of s1 and s2 (investment concenrated only in the second

defence).

2.3.3 Example of different investment functions among defences

When the investment functions are different among defences (e.g. the value of k might be

different in the investment function (2.30), which correponding to the efficiency to make
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Figure 2.4: For investment functions I where (1 − s)I ′(s) is a decreasing function, the
optimal strategy is to invest in one defence only, but is degenerate when the second defence
has tested cost zero (c2 = 0): the fitness is the same whether the prey invests in the first
defence only, or invests the same resources in the second defence only. Here, the investment
function is given in (2.31), the cost function is given in (2.29), and tested costs are c2 = 0,
ci = 0.2 for i 6= 2. Different colours correspond to different different values of parameters
d and k: d = k = 0.1 (red); d = k = 0.2 (green). Different symbols distinguish the two
optimal solutions: investment in first defence (red circle and green diamond); investment
in second defence only (red cross and green cross). Other parameter values: number of
defences=4, a = 2.
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resources into defences might be different among defences),

Ii(s) = ki(
1

1− s
− 1)b, i = 1, ..., n, k > 0, b > 1, (2.32)

it is possible that investment in the later defences are higher than in the earlier defences.

When the investment is more efficient to make resources into defences, in the later defences

than in the earlier defences (ki > ki+1), the investment in later defences might or might

not be higher than in the earlier defences (see the black cross or the red cross in Figure

2.5). However, when the investment in earlier defences is more efficient or equally efficient

to make resources into defences than in the later defences (ki < ki+1), investment will be

higher in the earlier than in the later defences (see the yellow triangle or the green rhombus

in Figure 2.5).

2.4 Discussion

Endler [3] argued that prey should generally invest preferentially in defences that act early

in the predation sequence, in part because defences met earlier in a sequence will on average

be deployed more frequently and in part because he expects late acting defences to be less

efficient (higher ki values in (2.32)). We have shown however that the skew will occur when

the investment function is the same for all the defences (so the efficiency ki is equal across

defences) provided there is a risk-of-injury (ci) and other cost (C(IA)) associated with

implementing each in a set of sequentially organised defences. Also, we found that under

some conditions defence investment will concentrated only in the first defence, while, under

other conditions, investment can be distributed in several defences with more investment

in earlier than in later defences. We suspect such costs will be common. We also suspect

that Endler’s assumption [3] that later-acting defences will be inherently more expensive

for a given level of effectiveness (ki increases with i) might hold generally (though it needs

to be demonstrated), and this would more likely to further exaggerate the skew towards

earlier-acting defences (yellow triangle in Figure 2.5). However, if the effectiveness of

later defences is much higher, investment in later defences could be higher than in earlier

defences. Our general theory and predictions allow us to synthesize previous more system-

specific work on multi-component defences, and we now consider its application in specific

biological and theoretical contexts, starting with plant defence against insect herbivores.
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Figure 2.5: The optimum strategy might be to invest more in later defences, if the different
defences do not have the same investment functions. Here, the investment function is
given in (2.30) and the cost function is given in (2.29). The prey should invest more in
earlier defences when defences have the same cost functions (ki = 0.2∀i, green rhombus)
or when later defences are more costly ((k1, k2, k3, k4) = (0.2, 0.4, 0.6, 0.8), yellow triangle).
However, when later defences are less costly, the optimal strategy might be to invest more
in earlier defences ((k1, k2, k3, k4) = (1.6, 1.4, 1.2, 1.0), red cross) or more in later defences
((k1, k2, k3, k4) = (0.8, 0.6, 0.4, 0.2), black cross). Other parameters: number of defences=4;
a = 2, b = 2, ci = 0.2∀i.
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2.4.1 Application to Plant Defences

It is common, when a victim is an animal prey, that it is killed and eaten (so has zero

fitness, if it has not already reproduced) if the predator overcomes all of its defences

(scenario (B)). Our model can also apply to many plant-herbivore interactions in which a

small insect damages, but does not kill, the plant on which it is feeding (Speed et al. [7]

also described a related model for these). In scenario (A), breaching the final defence does

not cause further fitness cost on the prey, so the fitness keeps the same between when the

final defence is tested but not breached and when the final defence is breached. We have

done the analyses for both this extreme case and the the other extreme case –scenario (B),

when all the remaining fitness are gone when the final defence is breached. The results are

the same for these two extreme cases, so can be extended to the other intermediate cases

when the prey still can reproduce (positive remaining fitness) but the remaining fitness is

diminished when the final defence is breached.

If plant defences do offer sequential barriers to herbivores, what can our model tell us

about variation in investment in these defences? Some insight is possible here from the

notable meta-analysis of studies in herbivore damage reported by Carmona et al. [5].

They report that variation in concentrations of plant secondary metabolites is a poor

predictor of herbivore damage overall. In contrast, variation in physical defences, such

as hairs and spines, provided better overall prediction of damage. The most consistent

predictor of herbivore damage was however in life history traits, such as varied phenology

which allow growth and flowering at times that enemies are rare - effectively hiding in

time. One interpretation of these results is that it supports the sequential nature of plant

defences, with the earlier acting defences (hiding, then physical defences) having much

stronger influence on vulnerability than the last line of defence, of plant tissues by toxic

secondary metabolites. If this interpretation has general validity, then it suggests that our

framework can have widespread application in plant-animal interactions. Several items

need to be measured for parameterised evaluation of the model’s predictions including;

costs of generating and deploying defences, survival benefits of each defence. In principle

however, the model is open to empirical testing, and in the right systems may even be

open to testing through experimental evolution. Key predictions could then be tested, for

example that chemical defences never have more investment than earlier acting physical

defences. We note the complexity of ontogenetic choice by plants makes the area all the
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more interesting (see ref. [8]), and suggests developments of our approach to incorporate

developmental plasticity.

2.4.2 Relation to Other Theoretical Work on Sequential Defences

We present here a general model to predict the optimal investment in sequential defences.

We now consider our model’s relevance to other, often more specialised models of defence.

Our work here can be seen as a generalisation of the work of Broom et al. [9], who presented

a simple model of investment across two sequentially encountered anti-predatory defences.

A predator must overcome both defences to capture the prey, and probability of overcoming

a defence declines linearly with increasing investment in defences. However there are costs

every time a defence is used and these increase linearly with investment in a particular

defence. On top of that there is an initial outlay in the construction of a defence, with the

fecundity of the prey being a decreasing decelerating function of investment across both

defences.

Broom et al. [9] provide predictions for circumstances where there is investment in only

one defence or investment spread across both defences. When the ratio of the constitutive

costs to the effectiveness of defences is generally similar and low for both defences, then

investment across both defences can be optimal. Increasing rate of attack also increases the

likelihood of investment across both defences. However investment in both defences was

only predicted for relatively narrow combinations of circumstances, where investing heavily

to produce one very effective defence was prohibitively expensive and the best solution was

to offer two modestly effective defences that must be overcome. Our model further solves

the problem where there are more than two defences, and gives the conditions under which

investment are applied in multiple defences or only one defences, and the relation between

investment in the sequential defences.

Strategy Blocking

The host reed warbler Acrocephalus scirpaceus is often found to have an egg-rejection

defence strategy but not a chick-rejection defence strategy against the parasite cuckoo

Cuculus canorus. Britton et al. [10] uses a concept called “strategy blocking” to explain

this phenomenon. Strategy blocking describes the situation in which a strategy which

would be adaptive in isolation ceases to be adaptive in the presence of a second strategy.
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Strategy blocking explains this phenomenon in terms of the different pay-offs for each

defence, but it is not framed as a sequential defences scenario, so it does not explain the

effect of the sequence on defence strategy. Our sequential defences model provides an

alternative explanation for why the reed warblers are found more likely to have defences

in the earlier stage (rejecting the eggs) than in the later stage (rejecting the chicks). We

particularly consider the condition under which the investment will be concentrated only

in the first defence (egg-rejection). The rate that the warblers fail or succeed in rejecting

the cuckoos’ eggs (which corresponds to s1 in our model) is dependant on the investment

in the egg-rejection defence, which could explain why warblers are sometimes found not to

reject eggs.

Although the concept of strategy blocking is raised in a population dynamics model [10],

its idea that one defence will often reduce the benefits of a second defence can be explained

otherwise through probabilities. Let us assume that if a predator encounters a prey then it

is repelled with probability a if defence A only is expressed by the prey, with probability b

if defence B only is expressed and with probability 1− (1− a)(1− b) if both are expressed.

This implies that the two defences work independently and the predator must overcome all

defences expressed in order to be successful. The benefit of defence B is the increase in the

probability of an predator being repelled when defence B is expressed relative to when B is

not expressed. This is a function of a, the higher the value of a (the more predators would

have been repelled without B being expressed by defence A), the less often investing in B

makes a difference to the prey and so the less the benefit of investment in B. This was a

situation where the two defences worked independently, but it may also be the case that

expression of one defence reduces the effectiveness of another, in our case that increasing

a causes a decrease in b. As an example, if an animal invests in a heavy armoured shell,

then its ability to outrun predators is compromised. The work of Britton et al. [10]

can be seen as a more general examination of earlier modelling by Brodie et al. [11] that

reached essentially similar conclusions in a more restricted setting.

In contrast Kilner and Langmore [12] introduce the concept of strategy-facilitation as the

complement to the concept of strategy-blocking. Here they imagine that the evolution of

one defence makes the evolution of another defence easier. As an example of this they cite

the modelling work of Svennungsen and Holen [13] who demonstrated that in avian brood

parasite systems it can sometimes be advantageous for hosts to reject a randomly-selected
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egg if they know that they have been parasitised but are unable to identify the parasitic egg.

Kilner and Langmore [12] argue that if the strategy of such random rejection evolves then

this will allow subsequent evolution of egg recognition to facilitate non-random targeting

of the alien egg. As well as facilitating cognitive changes in the host it could trigger

physiological change in egg appearance to improve such recognition.

This means that sometimes an inefficient defence is worth employing/investing in; in our

model example (equation (2.32)) this is a defence with a high value of ki. Given this defence

is invested in, its cost has an effect on the fitness function R, which if it was not invested

in (si = 0) would be absent. There is thus evolutionary pressure to improve the efficiency

(lower ki) if this were possible, which there would not be in the absence of investment.

Kilner and Langmore [12] also argue that defences can operate at levels of organisation

greater than the individual that are often overlooked. They give as an example workers

of the ant genus Temnothorax that can be enslaved by the species Protomognathus amer-

icanus, but which selectively destroy the slave-making pupae in their care. As a result P.

americanus colonies are unusually small for a slavemaker and are less effective at conduct-

ing slave raids on neighbouring Temnothorax colonies. Since Temnothorax populations

are highly kin-structured then there is a kin-selected benefit to this defence. Kilner and

Langmore [12] speculate that as a generality kin-structuring in a host population will select

for a more extensive portfolio of defences. They also predict that a high parasitic virulence

will also select for more extensive portfolios. The last of their predictions is that where a

parasite exploits more than one host, competition between the hosts to shift their parasite’s

attention toward the others should again select for complexity of defensive portfolio.

Coevolutionary Considerations in Sequential Defence Suites

Jongepier et al. [14] argue that for sequential lines of defence, later lines will be more

expensive. Thus arms races between prey and predators would have started with the prey

using a cheap defence acting early in the predation sequence, but as the predator evolved

to overcome this defence there would then have been selection pressure for investment in

later-acting more costly defences. Thus over evolutionary time there will have been a shift

towards investment in more costly defence that act later in the sequence of the interac-

tion between prey and predator. To put this a different way, the temporal order in which

defences are employed will reflect the order in which they evolved. Gilman et al. [15] ar-
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gue theoretically that there are co-evolutionary advantages to a multi-dimensional defence

against any type of antagonist (parasite, predator or pathogen). Using a modelling frame-

work, they argue that a prey is more likely to evolve a way to neutralise the predator as the

number of defences increases or as the correlation between values across traits increases.

Essentially each additional trait provides the prey with an additional opportunity to evolve

an effective escape mechanism. A key point here is that sequential layering of defences is

not necessary for these general conclusions, rather it is the use of multiple defences per se

that matters. This is illustrated in Gilman et al.’s [15] model itself, and in a subsequent

extension modelling plant toxicity by Speed and Ruxton [16]. Sasaki [17] considers the

multiplicative interaction among the effect of defence genes, and finds that the cost of

resistance and virulence values can influence the coexistence of multiple defences in static

equilibria or coevolutionary cycle.

In contrast, Beatman et al. [18] introduce population dynamics into the discussion of in-

vestment across defences. They use a two-prey, one-predator Rosenzweig-McArthur model

of predator-prey interaction. Prey can invest in each of two defences, one of which acts be-

fore the other in the predation sequence, and defences have costs as well as anti-predatory

benefits. The system is allowed to come to equilibrium with only a single prey before

a different prey with a different investment strategy across defences is introduced at low

population density. Beatman et al. [18] then explore whether this second prey increases in

population size. They conclude that the invasion of a given defence strategy is dependent

on the fine detail of traits of the predator and the existing prey type, and the nature of the

costs and benefits of the different defences; and so general conclusions are difficult to draw.

However they do conclude that on the basis of their simulations “there exists no exclusive

ecological or evolutionary advantage to defending early in the predation sequence”. The

word “exclusive” seems important here they mean there is nothing fundamentally benefi-

cial about easy disruption of attacks per se from a population dynamic perspective. We

agree with this, but there are mechanisms (like risk of injury or time lost to other beneficial

activities) that may be correlated with early disruption, are not considered in their model,

and bring benefits.
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2.5 Conclusions

In our view the sequential organisation of defences has received relatively little rigorous

examination in the literature. This is explained in part by expertise focusing on the

mechanisms of individual defensive types (e.g. camouflage or chemical defence), rather

than their integration into suites of defences. A valuable predictive aspect of our model, is

to make a general argument that explains why earlier defences may gain higher investment

than later acting defences. Suppose that a victim could biologically generate a suite of ten

equally effective sequential defences, but it is optimal to only invest in five, then which

five should it invest in, and how much in each? Our model predicts that the solution is

to concentrate in earliest five defences rather than in the other five defences. Moreover,

regarding the trade-off of the investments among each defence, a victim will invest no

less in earlier defences than later defences, given that the investment functions among

defences are the same (e.g. converting resources into defences is equally efficient across

the sequential defences). In our Discussion section, we have shown that the model can

be applied to animal, plant and other defensive systems. Our model can replicate and

add quantitative rigor to the question of strategy-blocking, in which the effectiveness of

early-acting defences makes the deployment of later acting defences redundant. In relating

it to other theoretical works in the field, we note that coevolutionary approaches to the

general question we examine here would add predictive sophistication.
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2.6 Appendices

2.6.1 Appendix A

The relation between si and si+1 when ci+1 = 0

(i) We will prove that when ci+1 = 0, and when (1− s)I ′(s) is an increasing function, only

si = si+1 can happen.

(a) When both si > 0 and si+1 > 0, and from (2.25) and ci+1 = 0 we would have

(1− si+1)I ′(si+1) = (1− si)I ′(si) and so si = si+1.

(b) and when both si = 0 and si+1 = 0, we have si = si+1.

(c) If si > si+1 = 0, from the necessary condition (2.15) and (2.16), we have

∂R

∂si
· (1− si)− h(1− si)I ′(si)

=

n∏
j=1

(1− sj)
(
1− C(IA)−

n∑
j=1

cj
)
− (1− si)(1−

n∏
j=1

(1− sj))
∂C(IA)

∂si
+

n∑
j=i+1

cj

j−1∏
k=1

(1− sk)

− h(1− si)I ′(si)

= 0, (A.1)
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∂R

∂si+1
· (1− si+1)− h(1− si+1)I ′(si+1)

=
n∏
j=1

(1− sj)
(
1− C(IA)−

n∑
j=1

cj
)
− (1− si+1)(1−

n∏
j=1

(1− sj))
∂C(IA)

∂si+1
+

n∑
j=i+2

cj

j−1∏
k=1

(1− sk)

− h(1− si+1)I ′(si+1)

≤ 0 (A.2)

Then following are the similar deduction as (2.22)-(2.27), we have

− (1− si+1)(1−
n∏
j=1

(1− sj))
∂C(IA)

∂si+1
+

n∑
j=i+2

cj

j−1∏
k=1

(1− sk)− h(1− si+1)I ′(si+1)

≤ −(1− si)(1−
n∏
j=1

(1− sj))
∂C(IA)

∂si
+

n∑
j=i+1

cj

j−1∏
k=1

(1− sk)− h(1− si)I ′(si). (A.3)

Since IA =
∑n

i=1 I(si), the above is equivalent to

− (1− si+1)(1−
n∏
j=1

(1− sj))C ′(IA)I ′(si+1)− h(1− si+1)I ′(si+1)

≤ −(1− si)(1−
n∏
j=1

(1− sj))C ′(IA)I ′(si) + ci+1

i∏
k=1

(1− sk)− h(1− si)I ′(si). (A.4)

⇒

− (1− si+1)I ′(si+1)
(

(1−
n∏
j=1

(1− sj))C ′(IA) + h
)

≤ −(1− si)I ′(si)
(

(1−
n∏
j=1

(1− sj))C ′(IA) + h
)

+ ci+1

i∏
k=1

(1− sk). (A.5)

Since C ′(IA) > 0 and also 1−
∏n
j=1(1− sj) > 0 and h ≥ 0, we have that

(
(1−

∏n
j=1(1−
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sj))C
′(IA) + h

)
> 0 , so that equation (2.24) is equivalent to

−(1− si+1)I ′(si+1) ≤ −(1− si)I ′(si) + ci+1

∏i
k=1 sk(

(1−
∏n
j=1(1− sj))C ′(IA) + h

) . (A.6)

The last term in the right-hand side ci+1

∏i
k=1 sk(

(1−
∏n
j=1(1−sj))C′(IA)+h

) is positive when ci+1 > 0,

therefore

−(1− si+1)I ′(si+1) ≤ −(1− si)I ′(si). (A.7)

which is the same to,

(1− si+1)I ′(si+1) ≥ (1− si)I ′(si). (A.8)

(35) together with that the function (1 − s)I ′(s) is increasing violate that si > si+1 = 0.

So si > si+1 = 0 is not possible.

(d) si+1 > si = 0 is not possible either for the same reason as (c).

Therefore, when ci+1 = 0 and when (1−s)I ′(s) is an increasing function, we have si = si+1

(Example see in Figure 2.2).

(ii) We will prove that when c2 = 0, and when (1 − s)I ′(s) is a decreasing function, only

s1 > s2 = 0 or s2 > s1 = 0 can happen.

(a) When both s1 > 0 and s2 > 0, and when c2 = 0, from (2.25),

(1− si+1)I ′(si+1) = (1− si)I ′(si). (A.9)

so we have si = si+1.

However, when s1 = s2 = 1 − m, for some specific m ∈ (0, 1), we can always increase

the value of R by decreasing the value of s1 and increasing the value of s2, given that

(1 − s1)(1 − s2) = m2 and the values of the other sj (j > 2) fixed (e.g. let s1 = 1 −m
1
2
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and s2 = 1−m
3
2 ). This is because, the solution that s1 = s2 = 1−m < 1 is the maximum

solution of I(s1) + I(s2) given that (1 − s1)(1 − s2) = m2 and therefore the minimum

solution of R (see in (2.4)) given that (1− s1)(1− s2) = m2 and the values of the other sj

(j > 2) fixed.

To prove this, we only need to see the necessary and sufficient condition for the question

Max I(s1) + I(s2) s.t.(1− s1)(1− s2) = m2 (A.10)

that is

Max F (s1) = I(s1) + I(1− m2

1− s1
), (A.11)

where m2 is a constant value.

The necessary condition (the first derivative of F (s1) equals 0) is that

F ′(s1) = I ′(s1) + I ′(1− m2

1− s1
)(− m2

(1− s1)2
)

= I ′(s1) + I ′(s2)(−1− s2

1− s1
)

= 0 (A.12)

which is equilalent to

(1− s1)I(s1) = (1− s2)I(s2), (A.13)

so when (1− s)I ′(s) is decreasing,

s1 = s2 (A.14)
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The sufficient condition (the second derivative of F (s1) larger than 0) is that

F ′′(s1) = I ′′(s1) + I ′′(1− m2

1− s1
)

m4

(1− s1)4
− 2I ′(1− m2

1− s1
)

m2

(1− s1)3

=
1

(1− s1)2

(
(1− s1)2I ′′(s1) + (1− s2)2I ′′(s2)− 2(1− s2)I ′(s2)

)
=

1

(1− s1)2

(
2(1− s2)2I ′′(s2)− 2(1− s2)I ′(s2)

)
(since s1 = s2)

< 0 (since (1− s)I ′(s) is decreasing function) (A.15)

So s1 = s2 > 0 is the local maximum solution of I(s1) + I(s2) and therefore the local

minimum solution of R.

(b) When both s1 = 0 and s2 = 0, we can follow the proof below in (iii)(b)(c), and then

all rest si = 0 (i > 2), which is not the optimal solution for R.

Therefore, when c2 = 0, and when (1 − s)I ′(s) is a decreasing function, only s1 > s2 = 0

or s2 > s1 = 0 can be the optimal (Example see in Figure 2.4).

(iii) We will prove that when (1− s)I ′(s) is a decreasing function, for any i 6= 2, ci = 0 but

c2 > 0 does not change the relation 1 > s1 > s2 = ... = sn = 0 (equation (2.28)).

(a) c1 = 0 does not change the relation in (2.25), therefore the relation (2.28) still holds.

(b) If c3 = 0 but c2 > 0, we would have s1 > 0 and s2 = 0 since c2 > 0. If however

s3 = m > 0, since the symmetric relation between s2 and s3 in R when c3 = 0, we would

have s2 = m > 0 and s3 = 0 to be another optimal solution, which violates the fact that

s2 = 0. So s3 can only be 0.

If c3 > 0, s3 can still only be 0 due to the asymmetric relation between s2 and s3 in the R

function and that we can only have s2 ≥ s3.

Therefore, no matter c3 > 0 or c3 = 0, we can only have s3 = 0

(c) For the same reason, no matter c4 > 0 or c4 = 0, we can only have s4 = 0; and so is

for any ci = 0 (i > 2).
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Therefore when for any i 6= 2, ci = 0 but c2 > 0 and when (1 − s)I ′(s) is a decreasing

function, the relation (2.28) still holds.

2.6.2 Appendix B

When the residual fitness when all the defences are breached is positive (scenario (A)), the

fitness function is (2.3) as follows.

R(s1, s2, . . . , sn) = 1− C(
n∑
i=1

Ii(si))− c1 −
n∑
j=2

cj

j−1∏
k=1

(1− sk). (B.1)

The analysis for (2.3) is similar to when the fitness function is (2.4) (scenario (B)– when

the residual fitness is zero when all the defences are breached). The necessary conditions

to maximise R– (2.15) and (2.16) in this case can be written as follows,

(I) When 0 < si < 1,

∂R

∂si
− hI ′(si) = −∂C(IA)

∂si
+

1

1− si

n∑
j=i+1

cj

j−1∏
k=1

(1− sk)− hI ′(si) = 0

(with h ≥ 0) (B.2)

(II) When si = 1,

∂R

∂si
− hI ′(si) = −∂C(IA)

∂si
− 1

1− si

n∑
j=i+1

cj

j−1∏
k=1

(1− sk)− hI ′(si) ≤ 0

(with h ≥ 0) (B.3)

Now (B.2) and (B.3) together is the necessary condition. The following analyses are similar

to the scenario (B). Similar to the equations (2.20) and (2.21),
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∂R

∂si
· (1− si)− h(1− si)I ′(si) = −(1− si)

∂C(IA)

∂si
+

n∑
j=i+1

cj

j−1∏
k=1

(1− sk)− h(1− si)I ′(si) = 0,

(B.4)

∂R

∂si+1
· (1− si+1)− h(1− si+1)I ′(si+1) = −(1− si+1)

∂C(IA)

∂si+1
+

n∑
j=i+2

cj

j−1∏
k=1

(1− sk)

−h(1− si+1)I ′(si+1) = 0

(B.5)

Then we have

−(1− si+1)
∂C(IA)

∂si+1
+

n∑
j=i+2

cj

j−1∏
k=1

(1− sk)− h(1− si+1)I ′(si+1) = −(1− si)
∂C(IA)

∂si

+
n∑

j=i+1

cj

j−1∏
k=1

(1− sk)− h(1− si)I ′(si).

(B.6)

Since IA =
∑n

i=1 I(si), the above is equivalent to

−(1− si+1)C ′(IA)I ′(si+1)− h(1− si+1)I ′(si+1) = −(1− si)C ′(IA)I ′(si)

+ci+1

i∏
k=1

(1− sk)− h(1− si)I ′(si). (B.7)

⇒

−(1− si+1)I ′(si+1)
(
C ′(IA) + h

)
= −(1− si)I ′(si)

(
C ′(IA) + h

)
+ ci+1

i∏
k=1

(1− sk).

(B.8)
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Since C ′(IA) > 0, we have that
(
C ′(IA) + h

)
> 0 , so that equation (B.8) is equivalent to

−(1− si+1)I ′(si+1) = −(1− si)I ′(si) + ci+1

∏i
k=1(1− sk)(
C ′(IA) + h

) . (B.9)

The last term in the right-hand side ci+1

∏i
k=1(1−sk)(
C′(IA)+h

) is negative since ci+1 > 0, C ′(IA) > 0

and h ≥ 0, therefore

−(1− si+1)I ′(si+1) > −(1− si)I ′(si). (B.10)

which is equivalent to,

(1− si+1)I ′(si+1) < (1− si)I ′(si). (B.11)

Therefore we have the same relation between si and si+1 as (2.27). The later analyses are

the same as in the section ”Investing in multiple defences or in a single defence?”.



Chapter 3

The evolution of variance in

sequential defences

3.1 Introduction

Protective defences against organisms’ enemies, such as predators, parasites and pathogens,

are ubiquitous [1, 2, 3, 4, 5, 6] and the study of adaptations for defence is consequently a

major theme in adaptive evolutionary biology.

Evolutionary studies of defences often focus on one or more perspectives, including: the

evolutionary history of defence mechanisms [3, 7, 8], their roles in macroevolutionary pat-

terns [9, 10, 11], the variety of forms of defences used in taxonomic groups [1, 12], the

influence of life-history variation on defence [13, 14, 15, 16, 17], coevolution [18, 19] and

strategies for optimal investment in defences [20, 21].

Despite the extensive research in the biology of defence, an area that has received relatively

little attention is the nature of defensive variation between individuals and between species.

Thus, many studies which seek to understand the function and mode of action of defensive

phenotypes focus (rightly) on species typical defences, rather than variation within species.

The notable exception to this is seen when frequency dependent evolution causes stable

polymorphisms in defences, for example those that give the greatest net benefit when rare,

such as parasitic Batesian mimicry [4]. Some classes of defence are however, very variable

55
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within populations. Chemical defences of plants [22] and animals [23] are, for example,

notoriously variable, both in terms of the concentrations of compounds that can repel

and deter predatory enemies, and even in the mixtures of compounds that are present in

different individuals [23]. Arguably, less is known about variation in other forms of defence

in animals such as camouflage or warning signals, because of an emphasis on species-typical

traits. However, the recent onset of methods for measuring colour patterns is enabling some

evaluation of levels of variation in animal colouration, but overall conclusions cannot be

made at present. Similarly, chemical ecologists have for a long period been able to evaluate

(and demonstrate) variation in secondary metabolites in plants [24]. In addition variation

in physical defences (density of protective trichome hairs, thickness of cuticles and waxes

etc), can be measured, and reveal the level of variation there is within populations [25].

One reason for the interest in the variation of defences is, as described above, that they can

be very variable indeed. There is an apparent paradox here; traits that are viewed as vital

to survival of individuals are none the less highly variable, suggesting that some individuals

are poorly protected in populations. Several explanations have been proposed including

frequency dependence (rare toxins work best) because of predator-counter adaptation and

coevolution [26]. A second compelling explanation is that the effectiveness of some forms

of defence saturate at levels that are phenotypically cheap to achieve by organisms, hence

a lot of observed variation is above a threshold of effectiveness-saturation, of little effect on

survival and with little variation in costs between individuals [23]. It might be for example

that some defensive chemicals are cheaply synthesised and stored, and the observed levels

of variation in concentration imply nothing about variation in survival from attack.

Here we propose an additional and potentially predictive explanation for different levels of

variation in different kinds of defence.

We reason that many defences often work in what Frank [27] calls “sequential layers”.

Defences are in effect ordered as a set of barriers surrounding the organism: each one must

be crossed in turn by an enemy before it can reach the valuable core tissues of the victim.

As Endler [28] and Broom et al. [20] point out, those components of sequential defence

suites which are met first will be challenged by enemies more frequently than those that

are met only later in a sequence. A general conclusion is then that those defences met

or deployed early in an encounter with an enemy will have a larger contribution to the

protection of a victim than those met later. Suppose we have two defences that act in
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sequence, and the probability that an enemy successfully crosses each is 0.5. For each time

the first defence is challenged, the second defence is challenged only half as often, and its

contribution to survival is half that of the first.

Put simply then, selection is likely to be weaker on later acting, than on earlier acting

defences. We may then predict that the mutation-selection equilibrium for a defensive

trait is different depending at what stage in encounters with an enemy it is deployed. For

example, an organism whose only defence is chemical in nature relies very strongly on that

defence and selection to keep it at an optimal value will be very strong. Should however

the organism evolve an effective physical defence that acts before the chemical defence,

then the chemical defence is used less often and makes a smaller contribution to survival

from an encounter. The “corrupting” effects of mutation will make more headway against

the unifying force of selection toward the optimal value of the trait.

Though it is easy to argue this verbally, here we seek a quantitative analysis to evaluate

the effects of order of deployment on mutation. We present a model that is simple in struc-

ture (with only two stages) and investigates the dynamical evolution of paired, sequential

defences, seeking out the conditions in which there will be inequalities in variation between

them arising from mutation-selection balance. A key point is that while we do confirm that

the later acting defence may often evolve to be more variable, we can identify conditions

in which the later-acting defences are the least variable.

Several other theoretical papers look at sequential defences, and though none focus on the

question we ask here about variability, we will briefly comment on their relevance to our

model here.

Broom et al’s sequential defence model [20] gave different benefit and cost values to both de-

fences, and found the optimal strategies (none/preattack defence/post attack defence/both

defences) in regards to these different benefit and cost values. In the model due to the

order in defence, the relation of benefits and costs of the first defence can influence the

condition when the second defence is used or not; but the relation of benefits and costs of

the second defence can not influence the condition when the first defence is used or not.

So the first defence might be relatively more influential in the optimal decision making.

Speed et al [23], Gilman et al [19] and Sasaki [29] gave coevolutionary models to explore

the investments in different defences. In Speed et al [23], victims could invest in one or
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more defences, and coevolution could be the reason for more than one defence, since when

there is not coevolution, plants evolve to invest in only one toxin trait. Gilman et al [19]

’s paper showed that increasing the number of defence traits, and the correlation between

traits could help the victims to win the evolutionary contest, so different defence traits

functioning interactively might be the reason why more than one defence is profitable.

Sasaki [29] found that when the effects of defence genes acts multiplicatively, different

resistant defences exist in either coevolutionary cycle or static equilibria depending on the

cost of resistance and virulence values. These models gave reasons for the existence of more

than one defences, although these models did not show the defence variance evolution of

each defences as we did.

3.2 The Model

We consider a prey species that mounts two sequential defences against predation. We

assume that each individual has a phenotype x describing its first-level defense and a phe-

notype y characterising its second-level defense. These phenotypes determine the success

of each defense repelling predation, so not breached by enemies, and we denote by p1(x)

the probability that the first defense holds and by p2(y) the probability that the second

defense holds. We assume that there are ideal values a and b for these phenotypes, so that

p1(x) is maximal at x = a, and p2(y) is maximal when y = b, and that the defense will

be less likely to hold when the phenotypic values are further away from these ideal values.

Specifically, we assume functional forms

p1(x) = e−ε1−
(x−a)2

α , (B.1)

p2(y) = e
−ε2− (y−b)2

β , (B.2)

so that the first (respectively, second) defense will hold with probability e−ε1 (respectively,

e−ε2) when the corresponding phenotype is at its ideal value x = a (respectively, y = b), and

that the tolerance of phenotypic deviations from the ideal will be wide when α (respectively,

β) is large.

Since these defenses are met sequentially, there are three mutually exclusive scenarios:

(1) defense 1 holds, which occurs with probability p1(x); (2) defense 1 fails, but defense

2 holds, which occurs with probability (1 − p1(x))p2(y); (3) defenses 1 and 2 both fail,
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which occurs with probability (1− p1(x))(1− p2(y)). We assume that the prey’s fitnesses

under these three scenarios are f1, f2 and f3 respectively, and note that these represent

increasingly adverse outcomes for the prey so that f1 ≥ f2 ≥ f3 ≥ 0. The average fitness

of an individual with phenotype (x, y) is then given by

Φ(x, y) = f1p1(x) + f2(1− p1(x))p2(y) + f3(1− p1(x))(1− p2(y)) (B.3)

We now consider how the population distribution of the phenotypes evolves in time. We

assume non-overlapping generations, and let Nt(xt, yt) represent the density of individu-

als with vector of phenotypes (xt, yt) at generation t. We first consider the case where

the phenotype is completely heritable with no mutation. In that case, the abundance of

individuals with phenotypes (xt, yt) simply changes by Φ(xt, yt) at each generation:

Nt+1(xt+1, yt+1) = Nt(xt, yt)Φ(xt, yt). (B.4)

Secondly, we consider the case where phenotype mutates between generations. IfM(xt, yt, xt+1, yt+1)

is the mutation kernel, i.e. the probability density that a parent with phenotype (xt, yt)

has offspring of phenotype (xt+1, yt+1), then

Nt+1(xt+1, yt+1) =

∫ +∞

−∞

∫ +∞

−∞
Nt(xt, yt)Φ(xt, yt)M(xt, yt, xt+1, yt+1)dxt dyt. (B.5)

We assume that the phenotypes mutate independently with a Gaussian mutation kernel of

the form

M(xt, yt;xt+1, yt+1) =
1

πµ
e
− (xt−xt+1)2−(yt−yt+1)2

µ , (B.6)

so that µ/2 is the variance in the mutation per generation in either phenotype.

We assume that, at the first generation, the phenotypes are independently normally dis-

tributed with variances v1/2 and w1/2 and means x̄1 and ȳ1 for the first and second defenses
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respectively, and n1 the total population number.

N1(x1, y1) = n1
1

π
√
v1w1

e
−(

(x1−x̄1)2

v1
+

(y1−ȳ1)2

w1
)
. (B.7)

The evolution of the distribution of phenotypes in the population is therefore obtained by

starting with the initial distribution given in eqn. (B.7) and iterating eqns (B.4) or (B.5),

substituting for Φ from eqn. (B.3), p1 and p2 from eqns. (B.1) and (B.2), and M from eqn.

(B.6). We characterise the population distribution by the means xt and yt and variances
vt
2 and wt

2 of the phenotypic values, defined as

xt = Et(xt)

yt = Et(yt)
vt
2

= Et((x− xt)2)

wt
2

= Et((y − yt)2),

where Et(·) represents the expectation value at time t, defined as

Et(f(xt, yt)) =

∫∞
−∞

∫∞
−∞ f(xt, yt)Nt(xt, yt)dxtdyt∫∞
−∞

∫∞
−∞Nt(xt, yt)dxtdyt

for any function f(x, y). Note that the total number of population at t,

nt =

∫ ∞
−∞

∫ ∞
−∞

Nt(xt, yt)dxtdyt.

Also note that the scale of the variance in defence phenotypes is set by the parameters µ, α,

and β. That is, if we increase these three parameters by a common factor, the equilibrium

value of vt and wt will change by the same factor (Appendix B).

To summarise, the parameters, variables and functions are shown in the tables 4.2,4.1,3.3.
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Parameters

µ mutation strength

a, b ideal phenotypes

ε1, ε2 effectiveness

α, β Tolerance of phenotypic deviations from the ideal

f1, f2, f3 conditional fitness

Table 3.1: Parameter table

Variables

xt, yt defence phenotype values at time t

x̄t, ȳt means of defence phenotype values at time t
vt
2 ,

wt
2 variances of defence phenotype values at time t

nt total population numbers at time t

Table 3.2: Variable table

Functions

p1(x), p2(y) probability each defence holds

Φ(x, y) average fitness

M(xt, yt;xt+1, yt+1) Gaussian Mutation Kernal from (xt, yt) to (xt+1, yt+1)

Nt(xt, yt) population density function about (xt, yt)

Table 3.3: Function table

Note that the idea of dealing with selection and mutation in this model is similar to the

quasispecies model [30], except that the model here deals with continuous transitions across

time in comparison with the discrete transitions across time in quasispecies model.
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3.3 Methods

We use both numerical and analytical approaches to explore how different factors affect

the variances of both defences. The section 3.1 is the numerical approach and the section

3.2 is the analytical approach.

3.3.1 Numerical integration

We are not able to find exact closed-form analytical expressions for the mean or variance

of the phenotypes at generation t, so we approximate the continuous distribution of phe-

notypic values by a discrete set and iterate (B.4) or (B.5) numerically. A each t we replace

(xt, yt) by the grid of pairs of values {(xti, ytj); i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}}, where

xti = xt1 + (i− 1)∆x, i ∈ {1, 2, . . . , n}

ytj = yt1 + (j − 1)∆y, j ∈ {1, 2, . . . , n}.

In all cases we start with a population with means (x̄1, ȳ1) = (1, 1) and variances (v1/2, w1/2) =

(2, 2), and total population number n1 = 10000. The fitnesses are set to (f1, f2, f3) =

(2, 1, 0.2), the ideal phenotypes to (a, b) = (0, 0), the selection forces are (α, β) = (5, 5),

and the grid is defined by ∆x = ∆y = 0.2, n = 101. All integrals are approximated as

follows: ∫ +∞

−∞

∫ +∞

−∞
F (xt, yt)dxt dyt ≈

n∑
i=1

n∑
j=1

F (xti, ytj)∆x∆y,

for any function F . The grid of values extends over a range of (n−1)∆x = (n−1)∆y = 20

units, which (for the variance values under consideration) is sufficient for this finite sum

to approximate the infinite range of integration. To avoid numerical overflow, after each

iteration we replace Nt by

Nt(xti, ytj)→ N ′t(xti, ytj) = n1
Nt(xti, ytj)∑n

i=1

∑n
j=1Nt(xti, ytj)∆x∆y

,

so that the population is always normalised to contain n1 = 10000 individuals; this does

not affect our results, as we are only interested in the relative abundance of different

phenotypes.

For the case where there is no mutation, we use xi1 = yi1 = −9 (so that x extends over the
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range x1 ± 10 and y over the range y1 ± 10), and iterate eqn. (B.4) at this grid of values

for 1000 generations.

For the case where there is mutation, we allow the range of integration to vary as the mean

phenotypic values change to ensure that the range of phenotypic values in the population

does not stray too close to (or beyond) the edges of the range of integration. To do this,

at each generation we calculate xt and yt, and then set

xt+1,1 = xt −
(n− 1)

2
∆x

yt+1,1 = yt −
(n− 1)

2
∆y,

so that the ranges of x and y grid values at the next generation are centred on xt and

yt respectively. Since the grid of (x, y) values changes between generations, we need to

determine the density of phenotypes evaluated on the current generation’s grid from the

density evaluated on the previous generation’s grid. We do this by assuming that the

density is constant within a range (±∆x
2 ,±

∆y
2 ) from the points on the previous generation’s

grid. We set µ = 0.02 and iterate eqn. (B.5) for 1000 generations.

3.3.2 Normal approximation

An alternative method for calculating approximately the evolution in time of the popu-

lation is to use a moment closure assumption, which is a well established approximation

method for stochastic systems that cannot be solved exactly. Moment closure assumes

that the distribution of a random variable is well approximated by a particular parametric

form (Whittle [31], and then derives (approximate) equations for the parameters of the

distribution. Here, we perform a normal moment closure by assuming that the traits are

normally distributed at a generation t, and then calculate the mean and covariance matrix

at generation t+ 1 in terms of the mean and covariance at time t. While the trait will not

in general be normally distributed (except at the first generation, where this is assumed),

it is reasonable to assume that the iteration equations for the mean and covariance provide

a good enough approximation to the true time evolution of the system for the purposes of

understanding the general behaviour of the model. This is an uncontrolled approximation,

by contrast with the direct numerical solution described in the previous section (which

will describe the dynamics exactly in the limit where the integrals are approximated by
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sums over a very large and very fine grid), but has the advantage of being much quicker

to evaluate and therefore permits a much wider exploration of parameter space. We have

tested our approximation scheme against simulation results, and find that it reproduces

the patterns in the result well for a wide range of parameters.

We begin by assuming that the traits are normally distributed at time t, and write the

distribution of traits as

Nt(xt, yt) = nt

√
|Wt|
π

exp
(
− (zt − z̄t)TWt(zt − z̄t)

)
, (B.8)

where zt =

(
xt

yt

)
is the vector of defence phenotypes, z̄t =

(
x̄t

ȳt

)
is the mean vector

of defence phenotypes, and Wt = (2Σt)
−1, where

Σt = Et

(
x2
t xtyt

xtyt y2
t

)
− Et

(
xt

y

)
Et

(
xt yt

)
is the covariance matrix for the trait.

We can find the population distribution at the next generation by applying the iteration

equation (B.5), where Φ is defined by equations (B.1–B.3) and M from eqn. (B.6). After

performing the integrals over (xt, yt) (the details are shown in Appendix A), this leads to

Nt+1(xt+1, yt+1) = nt
√
|Wt|Θt

4∑
j=1

θt,j
1

2π
√
|Σt+1,j |

exp
(
− 1

2
(zt+1 − z′t+1,j)

TΣ−1
t+1,j(zt+1 − z′t+1,j)

)
,

(B.9)
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where

z′t+1,j = (Wt + Fj)
−1(Wtz̄t + Fj â)

Σt+1,j =
1

2

(
U−1 + (Σ−1

t + Fj)
−1
)

γ1 = f3

γ2 = (f1 − f3)e−ε1

γ3 = (f2 − f3)e−ε2

γ4 = (f3 − f2)e−(ε1+ε2)

F1 =

(
0 0

0 0

)

F2 =

(
1
α 0

0 0

)

F3 =

(
0 0

0 1
β

)
F4 = F2 + F3

U =

(
1
µ 0

0 1
µ

)
θt,j =

γjst,j

Θt

√
|Wt + Fj |

Θt =
4∑
j=1

γjst,j√
|Wt + Fj |

st,j = exp
( 1

µ
(Wtz̄t + Fj â)T

(
(Wt + Fj)

−1 + µI
)
K−1
t,j (Wtz̄t + Fj â)− z̄Tt Wtz̄t − âTFj â

)
â =

(
a

b

)

This shows that Nt+1 is the sum of four normal distributions with different means and co-

variance matrices, so cannot be expressed as a single normal distribution. We can, however,

use this expression to compute the mean and covariance of the traits at generation t + 1
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(also see equations (A.9), (A.11) in Appendix A):

z̄t+1 = Et+1(zt+1)

=
4∑
j=1

θt,j(Wt + Fj)
−1(Wtz̄t + Fj â) (B.10)

Σt+1 = Et+1

(
x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

)
− Et

(
xt

y

)
Et

(
xt yt

)
=

1

2
U−1 +

4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1 +
4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − z̄t+1z̄

T
t+1. (B.11)

From the expression of Fj (j = 1, 2, 3, 4), we can tell from eqn. (B.10) that the mean

will evolve over time towards the ideal phenotype â. Also z′t+1,j = (Wt + Fj)
−1(Wtz̄t +

Fj â) (j = 1, 2, 3, 4) approaches to the ideal phenotype â, therefore the term
∑4

j=1 θt,j ·
z′t+1,jz

′T
t+1,j − z̄t+1z̄

T
t+1 in (B.11) approaches to zero, and the covariance matrix approaches

to the following equation (also see in equation (A.12) in Appendix A),

Σt+1 =
1

2
U−1 +

4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1. (B.12)

These equations can be iterated rapidly over time to give an approximation to the time

evolution and equilibrium values of zt and Σt (We can use (B.11) to do the iteration for

the evolution of zt and Σt, and both (B.11) and (B.12) can be used to generate equilibrium

value of Σt).

In the limit µ→ 0, Equation (B.12) approaches the limit

Σt+1 =
4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1 (B.13)

from which it can be shown that variance of both the first and second defence evolve

towards zero as time t grows (details in Appendix C). If U 6= 0, however, it can be shown

from (B.12) that the covariance matrix evolves to a non-zero equilibrium. This shows that

mutation is necessary in order for the traits to be variable.
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3.4 Results

Because of selection, the means of both defences evolve towards the ideal phenotype (this

can be shown analytically for the normal approximation— see the iteration equation for

the mean (B.10) — and also see numerical results in Figure 3.2 (a), (b)). We are interested

in the evolution of the distribution of phenotypes within the population, but in particular

in the variance of the phenotypic values. There are five factors that will influence these

variances.

1. Mutation

In this model, mutation must be present for phenotypic variance to be maintained —

when there is no mutation, the variances of both traits evolve to be zero. This is visible

in the numerical results Figure 3.1 (a), (b), and can be shown analytically for the Normal

approximation (see Appendix C).

A special case is that when mutation is zero and the first defence is perfectly effective

(ε1 = 0), i.e. when the defence will succeed with probability 1 if the trait is at its ideal

value x = a. As the first defence evolves close to the ideal phenotype, and first defence

variance evolves to be zero, the first defence protects all the victims from the enemies so

that the second defence is hardly ever tested and evolves very slowly (Figures 3.1 (c)(d),

3.2 (c)(d), 3.3 (b)).

When there is mutation, the variance of both traits evolve to have positive values (Figures

3.1, 3.3). This is proved for the moment closure approximation in Appendix A. Stronger

mutation leads to higher variances (Figure 3.3).

2. Order of defence in the sequence

When the first and second defence have the same effectiveness (ε1 = ε2) and the tolerance

range is the same for both defences (α = β), then the first defence variance is always

lower than the second defence variance (i.e., the first defence clusters more closely than

the second around its ideal phenotype), no matter what the conditional fitness values are.

This is shown in figure 3.6, where var1/var2< 1 (in which var1 stands for the first defence

variance, and var2 stands for the second defence variance) along the line ε1 = ε2; even

in figure 3.6 (a), where f1 is only a little higher than f2 so that it makes little difference

whether the first defence holds or does not, the first defence variance is still a little smaller
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Figure 3.1: The evolution of phenotypic variances, obtained using numerical integration.
Dashed lines indicate the case of no mutation, solid lines the case when µ = 0.02. Red lines
indicate the variance in the first defense, black lines the variance in the second defense.
(a) ε1 = 0.1, ε2 = 0, (b) ε1 = 0.1, ε2 = 0.9, (c) ε1 = 0, ε2 = 0, (d) ε1 = 0, ε2 = 0.9. Other
parameters: α = 5, β = 5, (f1, f2, f3) = (2, 1, 0.2), (a, b) = (0, 0).
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Figure 3.2: The evolution of phenotypic means, obtained from numerical integration.
Dashed lines indicate the case of no mutation, solid lines the case when µ = 0.02. Red
lines indicate the mean in the first defence, black lines the mean in the second defense.
(a) ε1 = 0.1, ε2 = 0, (b) ε1 = 0.1, ε2 = 0.9, (c) ε1 = 0, ε2 = 0, (d) ε1 = 0, ε2 = 0.9. Other
parameters: α = 5, β = 5, (f1, f2, f3) = (2, 1, 0.2), (a, b) = (0, 0).
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Figure 3.3: The equilibrium values of the variances, obtained from numerical integration.
Red lines: first defence; black lines: second defence. Dotted lines: µ = 0; dashed lines:
µ = 0.01; solid lines: µ = 0.02. (a) ε1 = 0.1, (b) ε1 = 0. Other parameters: α = 5, β = 5,
(f1, f2, f3) = 2, 1, 0.2, (a, b) = (0, 0).
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than the second defence when ε1 = ε2.

3. Effectiveness of defences

(1) If the first defence is less effective than the second defence (ε1 > ε2), then the first

defence variance can be larger than the second defence variance (in Figure 3.6, var1/var2> 1

when ε1 > ε2). The threshold value for the ineffectiveness ε1 of the first defence, above

which the first defence has higher variance than the second, depends also on the conditional

fitness values (see the contour lines above the red contour line given different fitness values

in Figure 3.6 (a-c) described also in “Conditional fitness” below).

(2) When the effectiveness of the first defence increases, the first defence variance decreases

and the second defence variances increases. When the effectiveness of the second defence

increases, the opposite occurs (see Figure 3.4).

4. Tolerance of phenotypic deviations from the ideal

We refer to the quantities α and β as the “tolerance of phenotypic deviations from the

ideal” on the two defensive traits, because they quantify how sensitive the fitness is to

deviations from the ideal trait value. However, the variances of the traits do not depend

on these quantities in a straightforward way. When the tolerance of deviation from the

ideal on a trait is wide, the variance in that trait has a positive relationship with the

tolerance as would usually be expected in a mutation-selection balance (Figure 3.5 (a), (e),

large values of α or β). However, when the tolerance is narrowed beyond a threshold value,

the variance in that trait starts to increase. This is because mutation limits how small

the variance in a trait can become, so that as α (for example) decreases more individuals

have a maladapted first defence, which as a result is increasingly likely to fail. Since this

defence is very likely to fail anyway, its importance in determining the animal’s relative

fitness actually decreases, and the variance of that trait increases, as α decreases further.

(Figure 3.5 (a), (e), small values of α or β). Increasing the ineffectiveness of a defence

(ε1 or ε2) makes this effect stronger, so that the positive relationship starts at a smaller

value of the tolerance. Since narrowing one defence’s tolerance makes it more likely to fail,

and therefore makes the other defence more important, the variance in the other defence

consequentially decreases (Figure 3.5 (b), (d)). Because the first defence variance and

second defence variance can either increase or decrease as the tolerance values change, the

ratio of these variances can either increase or decrease (Figure 3.5 (c), (f)).
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Figure 3.4: The effect of effectiveness on equilibrium variance. Red lines: first defence;
black lines: second defence. Dotted lines: ε1 = 1.1; dashed lines: ε1 = 1.3; solid lines:
ε1 = 1.5. Other parameters: α = 5, β = 5, (f1, f2, f3) = (2, 1, 0.2), µ = 0.02, (a, b) = (0, 0).
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Figure 3.5: The effect of tolerance of phenotypic deviations from the ideal on equilibrium
variances. Red line: ε1 = 0, ε2 = 0; yellow line: ε1 = 0, ε2 = 0.9; green line: ε1 = 5, ε2 = 0;
black line: ε1 = 5, ε2 = 0.9; In (a,b,c) β = 5, and in (d,e,f) α = 5. Other parameters:
(f1, f2, f3) = (2, 1, 0.2), µ = 0.02, (a, b) = (0, 0). These results were obtained by the the
Normal Approximation (B.12), which is much faster than the numerical iteration.
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5. Conditional fitness

We change the relative values of f1

f2
(the ratio between the conditional fitness f1 while the

first defence holds and the conditional fitness f2 while the first defence fails) and f2

f3
(the

ratio between the conditional fitness f2 while the second defence holds and the conditional

fitness f3 while the second defence fails) to see the relative importance of the first and

second defences. When the relative fitness value f1

f2
increases and f2

f3
decreases, meaning

that the first defence becomes more important, then var1/var2 decreases (given the same

ε1 and ε2). This can be seen in Figure 3.6(a), where f1

f2
is lowest and f2

f3
is highest, the value

of var1/var2 (keeping the same values of (ε1, ε2))is highest; and in Figure 3.6(c) where f1

f2

is highest and f2

f3
is lowest, the value of var1/var2 is lowest. As seen in Figure 3.6, the

second defence must be much more effective than the first defence (ε2 � ε1, the upper-left

side of red solid lines) for the first defence variance to be larger than the second defence

variance. Note that here only three typical cases of fitness values are showed (in Figure

3.6(a)(b)(c) respectively) because for the other values (e.g. f2 = 0 which may correspond

to that a victim animal is killed when the second defence is breached, or the other values of

f2 > 0 which may correspond to that a victim plant is still alive when the second defence

is breached), the figures are similar and the relation showed above keep the same.

3.5 Discussion

In this chapter we aimed to predict and explain patterns in the variation of anti-predator

defences, when those defences are deployed in a predictable sequence. It is well known that

defences can be variable in a population, but there is relatively little systematic evalua-

tion of patterns of variation, even though diversifying evolutionary mechanisms are easily

identified [22, 23, 32, 33, 34]. It is our contention that the sequential nature of defence

may often cause predictable patterns of diversity, allowing testable hypotheses about de-

fence variation. Hence, we built and interrogated a model representing both the selection

and mutation mechanisms on the evolution of population distribution of two sequential

defences. By using both analytical and numerical methods, we get the evolution processes

and equilibrium evolution values of the variances in both defences. We first briefly account

for the major determinants of defence variation in our model and subsequently relate its

general findings to a wider set of defences and to other theoretical treatments of defence

evolution.
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(c) (f1, f2, f3) = (2, 0.3, 0.2)

Figure 3.6: Contours of var1/var2 in the (ε1, ε2) plane, for different conditional fitness
values. Red solid line: the contour line var1/var2=1 (above which var1/var2> 1, below
which var1/var2< 1) (red line is not visible in (c) as it occurs only when ε1 > 2, which is out
off the range of ε1-axis); green dashed line: the line ε1 = ε2. (a) (f1, f2, f3) = (2, 1.9, 0.2),
(b) (f1, f2, f3) = (2, 1, 0.2), (c) (f1, f2, f3) = (2, 0.3, 0.2). Other parameters: α = 5, β = 5,
µ = 0.02, (a, b) = (0, 0). These results were obtained by the the Normal Approximation
(B.12), which is much faster than the numerical iteration.
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3.5.1 Factors predicted to be influential in defence variance

(1) Mutation. Mutation is the reason of why there are defence variances in our model. In

the absence of mutation, both defence variances will evolve toward zero, whereas if there

is mutation, equilibria of mutation and selection that give variances > 0. Unsurprisingly,

the stronger the mutation is, the larger the two defence variances evolve to be.

(2) Order of defence in the sequence. If the first defence and the second defence are as

effective as each other, and the tolerance range is the same for both defences, then the first

defence distribution evolves to have smaller variance than the second defence distribution

(see Results, Figure 3.6). That means the first defence is more closely gathered around

the ideal phenotype and therefore has more influence in protecting the victims from being

attacked. Hence, the model demonstrates our verbal argument in the introduction: that

earlier acting defences can often evolve to lower levels of variation than later acting defences.

(3) Effectiveness of defences. Whether the defences are effective enough in the environment

(in the sense of successfully repelling an enemy) is also important to the evolution of

population variance. If the first defence in a sequence is not as effective in repelling

predators as the second defence, then the force of selection can be felt most strongly on

the second defence, with the consequence that it has a lower equilibrium variance than the

first defence. This is counter to the intuition in our Introduction, that defences deployed

earlier are less variable than those deployed later in sequence, and shows the value of a

formal model.

(4) Tolerance of phenotypic deviations from the ideal. We consider that effectiveness of

a defence in repelling enemies becomes weaker as the phenotype diverges from the ideal

value for the relevant trait. A key measure in this model is therefore how much defensive

effectiveness is lost for an incremental deviation from the ideal phenotypic value: in effect

the tolerance of the phenotype in relation to its defensive function (α, β). If tolerance

of phenotypic deviation is narrow, then even when the phenotype is similar to the ideal

phenotype, the defence is likely to fail and be breached. On the contrary, if the tolerance is

very wide and permissive, even the phenotype is quite dissimilar to the ideal phenotype, the

defence is likely to hold. Both the first and second defence variances will evolve to be high

when the tolerance is very narrow or wide. When the tolerance is very wide, the phenotypes
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quite different from the ideal phenotypes are effective to protect the victims, then the

population variance could evolve to be very large. When the tolerance is very narrow,

even the phenotypes are quite similar as the ideal phenotypes are useless in protecting the

victims, then it will not be profitable for the phenotypes to evolve to be similar to the

ideal phenotypes, so the population variance will also be very wide. An interesting result

pertains now if the first defence is subject to narrow tolerance and the second defence to

wider tolerance. Here the first defence can be of little use, and contributes little to prey

survival, hence mutation accumulates and the phenotype becomes variable. Variation in

the second defence however is fundamental to prey survival, hence the model predicts a

lower equilibrium value for mutation (Figure 3.5). This gives us an additional scenario in

which the first defence may evolve to a higher level of variation than the second.

(5) Conditional Fitness. In our model, the relative importance of whether the first defence

holds to whether the second defence holds are described by the relative conditional fitness

values. When the relative conditional fitness value f1

f2
increases (which means that the

importance of holding the first defence increases) and the relative conditional fitness value
f2

f3
decreases (which means that the importance of holding the second defence increases),

then the ratio between the first defence variance and the second defence variance decreases.

The contrary is true when the conditions are reversed.

3.5.2 Application to biological and other contexts

Sequentially-layered defences are very common in biological and other contexts. Many

plants and animals present their enemies with layered defences. John Endler for example

[28] argued that an attack by a predator on its (animal) prey is typically composed of a

sequence of six stages: (i) encounter (spatial proximity), (ii) detection, (iii) identification,

(iv) approach, (v) subjugation and ultimately (vi) consumption. At each stage in this

sequence the prey organism can put up one or more lines of defence with the aim of

preventing, interrupting and stopping the attack. An animal prey may for example hide

(to prevent encounter, i, and detection, ii), use masquerade and cryptic colouration (to

prevent detection and identification, ii, iii), perhaps form aggressive defensive groups (to

prevent approach, iv). They may alternatively have a startle display or use vigilance

and rapid escape behaviours (to prevent approach, iv). They may violently retaliate (to

prevent subjugation, v.) perhaps using stings, spines or bites and/or deploy irritating or
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toxic chemicals (to prevent subjugation and consumption, v, vi). At each stage in the

sequence Endler identified, one or more defences could be deployed by a prey animal, and

they could often operate sequentially, some defences typically used only if earlier-acting

defences have failed to stop the predation event. Here we have simplified to two layers, but

the model could be extended to larger set of defences. An important point is, however, that

we expect sequentially acting defences to be very common in organismal defence, hence

our model has generality.

One very general result is greater variation in later-acting defences. There is some evi-

dence supportive of a key feature of the model, that later-acting defences are used less

often than earlier defences, and thus contribute less to fitness. A meta-analysis of studies

of plant-herbivore interactions shows that variation in earlier-acting defences (physical,

morphological, physiology, chemical defences) in plants is better in predicting herbivores’

damage than later defences (toxic secondary metabolites; [35, 36]). A number of authors

have remarked on the high levels of variability in defensive toxins (see review in ref. [23]),

but we do not know of studies that measure the variability of sets of defences and relate

these to their use in a sequence. We suggest that this is an interesting area for valuable

empirical research.

We note that anti-pathogen systems (skin, immune responses) are also usually layered in

their organisation, hence the model could be elaborated to consider these kinds of defen-

sive systems. There are also interesting parallels between the organisation of biological

and human military defences. Both concern protection of valuable yet vulnerable tar-

gets, seeking optimal deployment of costly defensive “assets”. A relevant military tactic is

“layered defence” in which sets of defensive resources, such as inter-ballistic missiles, are

deployed in sequence; when a first line of defence fails against an incoming threat a second

line of defence activates to minimise further risk, and after that perhaps a third or fourth

defence, and so on. In the military theory literature, layered defence has been described

and modelled by Wilkening [37]. We suggest that it might be an interesting question to

determine whether, in military contexts and perhaps cyber-security, later-acting defences

are more variable in their form and effectiveness than earlier-acting defences.
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3.5.3 Developments of the model

We would draw the reader’s attention to some key assumptions in the model. First, we

assume that there is an optimal value for each defence, and any deviation from that is

punished by reduced efficiency in repelling enemies. This assumption does simplify imple-

mentation, giving us a clear set of results, but it does bring some limitations. On the one

hand, this assumption may fit morphological defences well - for example defensive spines

may need to be the right size to repel certain enemies. It does not represent some kinds

of chemical defence as well however. Here concentrations that are too low may lead to

reduced efficiency, but higher and higher values probably become more effective at anti-

predator defence, albeit in a saturating manner, not less. In this case the model would

have to be modified to incorporate this asymmetry in defensive benefit. An interesting

question is whether the distribution of naturally occurring defensive toxins is asymmetric

in this manner. Secondly, we assumed that once each defence is breached, it cannot be

healed (e.g. the spines of golden barrel cactus Echinocactus grusonii once moved from are-

ole cannot grow back), in comparison to that for some organisms, defences can replenish

when damaged (e.g. the claw of Florida stone crab, Menippe mercenaria can grow back

when broken with the diaphragm at the claw joint intact). Also for the case such as differ-

ent parts of plants maybe attacked independently, defences can be breached several times

in these different parts. Since our model is based on an average fitness, it can describe

qualitatively the dependence of the relative variances on fitness costs and tolerances in the

above cases, but it would be good to be further modified in the case of multiple successive

breaches of each defence (where the organism heals between each attack) and may also for

the case when different parts of plants are breached independently. Finally, we have delib-

erately excluded costs of defences in the model, in part to keep the structure simple and

predictions tractable, but there is profitable scope for including costs in a more complex

development. We note that studies of prey defence can not always identify measurable

costs to defence in any case (Zvereva & Kozlov [38]).

3.6 Conclusion

We aimed to explore the patterns of the defence variations when defences are deployed

in sequence. We built a model with two sequential defences, and use both selection and
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mutation as the evolutionary mechanisms on the evolution of population distribution of

the two defences. Through both analytical and numerical methods, we found that typically

the earlier defence has lower variance than the later defence, which means that the earlier

defence phenotypes are more closely accumulated around the ideal phenotype than the

later defence phenotypes. This matches with intuition and some research that the earlier

defences have higher probability in use and therefore probably have higher anti-predator

effect. Besides, our formal model also gives a broader explanation that when the first

defence is less effective in repelling the predators, or the first defence is less tolerant of

phenotypic deviations from the ideal, then the first defence could evolve to have higher

variance than the second defence. Sequential defences are widely seen in different defence

systems, therefore our model might be predictive in a wide range of areas. Since the

empirical research of sequential defence variances is rare, related research could be valuable.
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3.7 Appendices

3.7.1 Appendix A

To get the population distribution at the next generation Nt+1(xt+1, yt+1) (equation (B.9))

we first write the fitness function in matrix form. From (B.1) and (B.2), the fitness function

(B.3) can be written as

Φ(xt, yt) = f3+(f1−f3)e−ε1−
(xt−a)2

α +(f2−f3)e
−ε2− (yt−b)

2

β +(f3−f2)e−ε1−
(xt−a)2

α e
−ε2− (yt−b)

2

β

=

4∑
j=1

γj exp
(
− (zt − â)TFj(zt − â)

)
(A.1)
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where,

γ1 = f3, γ2 = (f1 − f3)e−ε1 , γ3 = (f2 − f3)e−ε2 , γ4 = (f3 − f2)e−(ε1+ε2),

F1 =

(
0 0

0 0

)
, F2 =

(
1
α 0

0 0

)
, F3 =

(
0 0

0 1
β

)
, F4 =

(
1
α 0

0 1
β

)

zt − â =

(
xt − a
yt − b

)
, â =

(
a

b

)

The mutation function (B.6) can be written as

M(xt, yt;xt+1, yt+1) =
1

πµ
exp

(
− (zt − zt+1)TU(zt − zt+1)

)
(A.2)

where zt − zt+1 =

(
xt − xt+1

yt − yt+1

)
, U =

(
1
µ 0

0 1
µ

)
.

Then from (B.8), (A.1) and (A.2), the population distribution density iteration function

(B.5) is as follows.

Nt+1(xt+1, yt+1) =
nt
√
|Wt|

π2µ

∫ +∞

−∞

∫ +∞

−∞

4∑
j=1

γj exp
(
−(zt−z̄t)TWt(zt−z̄t)−(zt−â)TFj(zt−â)

−(zt − zt+1)TU(zt − zt+1)
)
dxtdyt (A.3)

Since zt is a normal distributed vector, we collect terms for zt, let Kt,j = Wt +Fj +U , and

complete the square for zt:

Nt+1(xt+1, yt+1) =
nt
√
|Wt|

π2µ

∫ +∞

−∞

∫ +∞

−∞

4∑
j=1

γj exp
(
−zTt Kt,jzt+2(Wtz̄t+Fj â+Uzt+1)T zt
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−(z̄Tt Wtz̄t + âTFj â+ zTt+1Uzt+1)
)
dxtdyt

=
nt
√
|Wt|

π2µ

∫ +∞

−∞

∫ +∞

−∞

4∑
j=1

γj exp
(
−(zt−K−1

t,j (Wtz̄t+Fj â+Uzt+1))TKt,j(zt−K−1
t,j (Wtz̄t+Fj â+Uzt+1))

+(Wtz̄t+Fj â+Uzt+1)TK−1
t,j (Wtz̄t+Fj â+Uzt+1)− (z̄Tt Wtz̄t+ âTFj â+ zTt+1Uzt+1)

)
dxtdyt

From the fact that the integral of normal density function equals 1, the above is equivalent

to

Nt+1(xt+1, yt+1) =
nt
√
|Wt|

π2µ

4∑
j=1

γj
π√
|Kt,j |

exp
(

(Wtz̄t+Fj â+Uzt+1)TK−1
t,j (Wtz̄t+Fj â+Uzt+1)

−(z̄Tt Wtz̄t + âTFj â+ zTt+1Uzt+1)
)

(A.4)

Since zt+1 is the next generation defence phenotype vector, if we collect terms for zt+1,

given that U =

(
1
µ 0

0 1
µ

)
, we have

Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

exp
(
− 1

µ
zTt+1(I − (µKt,j)

−1)zt+1

+2
1

µ
(Wtz̄t + Fj â)TK−1

t,j zt+1 + (Wtz̄t + Fj â)TK−1
t,j (Wtz̄t + Fj â)− z̄Tt Wtz̄t − âTFj â

)
To complete a square, the above is equivalent to

Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

exp
(
− 1

µ
(zt+1−z′t+1,j)

T (I−(µKt,j)
−1)(zt+1−z′t+1,j)

+
1

µ
z′Tt+1,j(I − (µKt,j)

−1)z′t+1,j + (Wtz̄t + Fj â)TK−1
t,j (Wtz̄t + Fj â)− z̄Tt Wtz̄t − âTFj â

)
where z′t+1,j = (I − (µKt,j)

−1)−1K−1
t,j (Wtz̄t + Fj â) = (Kt,j − 1

µI)−1(Wtz̄t + Fj â) = (Wt +
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Fj)
−1(Wtz̄t+Fj â). If we put the expression of z′t+1,j into the second term in the exponential

bracket, and combine the second term with the third term, we have

Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

exp
(
− 1

µ
(zt+1−z′t+1,j)

T (I−(µKt,j)
−1)(zt+1−z′t+1,j)

+
1

µ
(Wtz̄t + Fj â)T

(
(Kt,j −

1

µ
I)−1K−1

t,j + µK−1
t,j

)
(Wtz̄t + Fj â)− z̄Tt Wtz̄t − âTFj â

)
Since Kt,j = Wt + Fj + U , we have

Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

exp
(
− 1

µ
(zt+1−z′t+1,j)

T (I−(µKt,j)
−1)(zt+1−z′t+1,j)

+
1

µ
(Wtz̄t + Fj â)T

(
(Wt + Fj)

−1K−1
t,j + µK−1

t,j

)
(Wtz̄t + Fj â)− z̄Tt Wtz̄t − âTFj â

)

If we let st,j = exp
(

1
µ(Wtz̄t+Fj â)T

(
(Wt+Fj)

−1+µI
)
K−1
t,j (Wtz̄t+Fj â)−z̄Tt Wtz̄t−âTFj â

)
,

then

Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

st,j exp
(
− 1

µ
(zt+1−z′t+1,j)

T (I−(µKt,j)
−1)(zt+1−z′t+1,j)

)

Then we can write it into the normal distribution form:

Nt+1(xt+1, yt+1) = nt
√
|Wt|

4∑
j=1

γjst,j√
|Wt + Fj |

√
|(I − (µKt,j)−1)|

πµ
exp

(
− 1

µ
(zt+1 − z′t+1,j)

T (I − (µKt,j)
−1)(zt+1 − z′t+1,j)

)
This is a combination of four normal distribution functions, with mean z′t+1,j = (Wt +
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Fj)
−1(Wtz̄t + Fj â), and variance

Σt+1,j =
µ

2
(I − (µKt,j)

−1)−1 =
µ

2
(Kt,j −

1

µ
I)−1Kt,j =

µ

2
(Wt + Fj)

−1(Wt + Fj + U)

=
µ

2
I +

1

2
(Wt + Fj)

−1 =
1

2

(
U−1 + (Wt + Fj)

−1
)

=
1

2

(
U−1 + (

1

2
Σ−1
t + Fj)

−1
)

=
1

2
U−1 + (Σ−1

t + 2Fj)
−1 j = 1, 2, 3, 4 (A.5)

So the next generation population function can be written as

Nt+1(xt+1, yt+1) = nt
√
|Wt|

4∑
j=1

γjst,j√
|Wt + Fj |

1

2π
√
|Σt+1,j |

exp
(
−1

2
(zt+1−z′t+1,j)

TΣ−1
t+1,j(zt+1−z′t+1,j)

)

Let Θt =
∑4

j=1
γjst,j√
|Wt+Fj |

, and θt,j =
γjst,j

Θt
√
|Wt+Fj |

(j = 1, 2, 3, 4) then
∑4

j=1 θt,j = 1. Then

the above is equivalent to

Nt+1(xt+1, yt+1) = nt
√
|Wt|Θt

4∑
j=1

θt,j
1

2π
√
|Σt+1,j |

exp
(
−1

2
(zt+1−z′t+1,j)

TΣ−1
t+1,j(zt+1−z′t+1,j)

)

Therefore, the probability density function in the next generation can be written as

f(xt+1, yt+1) = Nt+1(xt+1, yt+1)/

∫ +∞

−∞

∫ +∞

−∞
Nt+1(xt+1, yt+1)dzt+1

=
4∑
j=1

θt,j
1

2π
√
|Σt+1,j |

exp
(
− 1

2
(zt+1 − z′t+1,j)

TΣ−1
t+1,j(zt+1 − z′t+1,j)

)
(A.6)

=

4∑
j=1

θt,jfj(xt+1, yt+1)
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Therefore the population distribution probability density function in the (t+ 1)-th gener-

ation is written as a combination of four normal probability density functions

z′t+1,j = (Wt + Fj)
−1(Wtz̄t + Fj â) (A.7)

and covariance matrix

Σt+1,j =
1

2
U−1 + (Σ−1

t + 2Fj)
−1 j = 1, 2, 3, 4 (A.8)

Note that the integral of f(xt+1, yt+1) in respect of (xt+1, yt+1) equals 1, which is the

property of the probability density function. We use ENj (·) to denote the expectation of

each of the four corresponding normal population distribution function.

Therefore the mean in the next generation is

z̄t+1 = E(zt+1) =

∫ +∞

−∞

∫ +∞

−∞
zt+1f(xt+1, yt+1)dzt+1

=

4∑
j=1

θt,j

∫ +∞

−∞

∫ +∞

−∞
zt+1fi(xt+1, yt+1)dzt+1

=

4∑
j=1

θt,jENj (zt+1)

=
4∑
j=1

θt,jz
′
t+1,j

=
4∑
j=1

θt,j(Wt + Fj)
−1(Wtz̄t + Fj â) (A.9)

This is the iteration equations for the mean between generations.
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The above also equals

z̄t+1 =
4∑
j=1

θt,j(Wt + Fj)
−1Wtz̄t +

4∑
j=1

θt,j(Wt + Fj)
−1Fj â (A.10)

The above is a first-order difference equation. Since∑4
j=1 θt,j(Wt + Fj)

−1Wt +
∑4

j=1 θt,j(Wt + Fj)
−1Fj = I, the mean z̄t+1 will gradually

approach to the equilibrium –the ideal phenotype â as t increases. This equilibrium value

can be got by letting both z̄t+1 and z̄t in the above equation equal zT and solve the equation,

we will have that zT = â.

For variance, we have the covariance matrix in the next generation

Σt+1 = E

(
x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

)
− E

(
xt+1

yt+1

)
E
(
xt+1 yt+1

)

=

∫ +∞

−∞

∫ +∞

−∞

(
x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

)
·

4∑
j=1

θt,jfi(xt+1, yt+1)dzt+1 − z̄t+1z̄
T
t+1

=

4∑
j=1

θt,j ·

(
ENj (x

2
t+1) ENj (xt+1yt+1)

ENj (xt+1yt+1) ENj (y
2
t+1)

)
− z̄t+1z̄

T
t+1

=

4∑
j=1

θt,j ·

(
V arNj (xt+1) + ENj (xt+1)2 CovNj (xt+1, yt+1) + ENj (xt+1)ENj (yt+1)

CovNj (xt+1, yt+1) + ENj (xt+1)ENj (yt+1) V arNj (yt+1) + ENj (yt+1)2

)

−z̄t+1z̄
T
t+1

=
4∑
j=1

θt,j · Σt+1,j +
4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − z̄t+1z̄

T
t+1

=
4∑
j=1

θt,j

(1

2
U−1 + (Σ−1

t + 2Fj)
−1
)

+
4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − z̄t+1z̄

T
t+1

=
1

2
U−1 +

4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1 +

4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − z̄t+1z̄

T
t+1 (A.11)
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where z′t+1,j is the j-th mean shown in (A.7).

Now we can use the variance iteration equations from (A.11) to get the evolution of variance

across generations. As z̄t approaches to the ideal phenotype â as t → +∞, so does z̄t+1

and z′t+1,j = (Wt+Fj)
−1(Wtz̄t+Fj â) (j = 1, 2, 3, 4) also approaches to the ideal phenotype

â. Therefore the term
∑4

j=1 θt,j · z′t+1,jz
′T
t+1,j − z̄t+1z̄

T
t+1 in (A.11) approaches to zero, so

covariance matrix (A.11) approaches to the following equation as time grows.

Σt+1 =
1

2
U−1 +

4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1 (A.12)

which is larger than 1
2U
−1, since 1

2

∑4
j=1 θt,j(Σ

−1
t + Fj)

−1 is larger than zero, so as t goes

to infinity, the equilibrium value of Σt will be larger than 1
2U
−1. Therefore, if there is

mutation (U > 0), variances of both defences will be positive (larger than µ
2 ).

3.7.2 Appendix B

The scale of the variance in defence phenotypes is set by the parameters µ, α, and β. In

this appendix, we show that if we increase these three parameters by a common factor, the

equilibrium value of vt and wt will change by the same factor.

Let Pt(x, y) denote the probability distribution of traits at time t, where

Pt(x, y) =
Nt(x, y)∫ ∫
Nt(x, y)dx dy

.

The integration limits are from −∞ to ∞, and are suppressed throughout this section for

brevity. From eqn. (B.5), the dynamics of Pt is determined by

Pt+1(x, y) =
Nt+1(x, y)∫ ∫
Nt+1(x, y)dx dy

=

∫ ∫
Pt(x

′, y′)Φ(x′, y′)M(x′, y′, x, y)dx′ dy′∫ ∫
Pt(x′, y′)Φ(x′, y′)dx′ dy′

,

where we have used the fact that
∫ ∫

M(x′, y′, x, y)dx dy = 1. Over time, Pt will approach
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an equilibrium P∗(x, t) = limt→∞ Pt(x, t), where

P∗(x, y) =

∫ ∫
P∗(x

′, y′)Φ(x′, y′)M(x′, y′, x, y)dx′ dy′∫ ∫
P∗(x′, y′)Φ(x′, y′)dx′ dy′

. (B.1)

From Eqns. (B.1–B.3) and (B.6), Φ and M can be written in the form

Φ(x, y) = Φ̃

(
x− a
α1/2

,
y − b
β1/2

)
(B.2)

M(x′, y′, x, y) =
1

µ
M̃

(
x− x′

µ1/2
,
y − y′

µ1/2

)
, (B.3)

where

Φ̃(u, v) = f1e
−ε1−u2

+
(

1− e−ε1−u2
)(

(f2 − f3) e−ε2−v
2

+ f3

)
(B.4)

M̃(u, v) =
1

π
e−u

2−v2
. (B.5)

We now substitute eqns. (B.2) and (B.3) into Eqn. (B.1), make the change of variables

ξ =
x− a
µ1/2

ξ′ =
x′ − a
µ1/2

η =
y − b
µ1/2

η′ =
y′ − b
µ1/2

,

and further define (without loss of generality)

P∗(x, y) =
1

µ
P̃∗(ξ, η), (B.6)

to give

P̃∗(ξ, η) =

∫ ∫
P̃∗(ξ

′, η′)Φ̃

((µ
α

)1/2
ξ′,
(
µ
β

)1/2
η′
)
M̃(ξ − ξ′, η − η′)dξ′ dη′

∫ ∫
P̃∗(ξ′, η′)Φ̃

((µ
α

)1/2
ξ′,
(
µ
β

)1/2
η′
)
dξ′ dη′

. (B.7)
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Note that, from eqns. (B.4,B.5), neither Φ̃ nor M̃ have any explicit dependence on µ, α,

or β so these parameters only enter into eqn. (B.7) through the ratios µ
α and µ

β in the

arguments to Φ̃. This means that the solution P̃∗(ξ, η) to eqn. (B.7) can be written in the

form

P̃∗(ξ, η) = p

(
ξ, η,

µ

α
,
µ

β

)
,

where p does not depend explicity on µ, α, or β except through its third and fourth

arguments. This means that P∗ takes the form

P∗(x, y) =
1

µ
p

(
x− a
µ1/2

,
y − b
µ1/2

,
µ

α
,
µ

β

)
.

In other words, when traits are measured as a difference from their optimum in units of

µ1/2, their distribution depends only on the ratios of α and β to µ.

We note that P∗ is a probability density so we have
∫ ∫

P∗ (x, y) dx dy = 1. Also, we

can show that
∫ ∫

(x − a)P∗(x, y)dx dy =
∫ ∫

ξP̃∗ (ξ, η) dξ dη = 0. This follows because

M̃and Φ̃ are even functions of their arguments, so from eqn (B.7) if P∗(ξ, η) = P̂ (ξ, η)

is a solution then so is P∗(ξ, η) = P̂ (−ξ, η). Since this solution is unique we must have

P∗(ξ, η) = P∗(−ξ, η), which implies
∫ ∫

ξP̃∗ (ξ, η) dξ dη = 0. Therefore, the mean of the

first defensive trait at equilibrium is

x∗ =

∫ ∫
xP∗(x, y)dx dy

= a

∫ ∫
P∗(x, y)dx dy +

∫ ∫
(x− a)P∗(x, y)dx dy

= a.

The equilibrium variance of the first defensive trait is then

v∗ =

∫ ∫
(x− x∗)2 P∗(x, y)dx dy

=
1

µ

∫ ∫
(x− a)2 p

(
x− a
µ1/2

,
y − b
µ1/2

,
µ

α
,
µ

β

)
dx dy

= µ

∫ ∫
ξ2p

(
ξ, η,

µ

α
,
µ

β

)
dξ dη.

Therefore, v∗
µ depends on µ, α, or β through the ratios µ

α and µ
β only. This means that, if
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µ, α, and β are increased by a common factor λ, which means that µ
α and µ

β are unchanged,

then v∗ increases by the same factor λ. A similar argument can be made for the variance

of the second trait.

3.7.3 Appendix C

This appendix will show that when there is no mutation force, the variances of both the

first and second defences approaches to zero.

When there is no mutation, the population distribution function in the (t+1)-th generation

is the density iteration equations (B.4):

Nt+1(xt+1, yt+1) = Nt(xt, yt)Φ(xt, yt)

From (B.8) and (A.1),

Nt+1(xt+1, yt+1) =
nt
√
|Wt|
π

4∑
j=1

γj exp
(
− (zt − z̄t)TWt(zt − z̄t)− (zt − â)TFj(zt − â)

)
Collecting the terms for zt,

Nt+1(xt+1, yt+1) =
nt
√
|Wt|
π

4∑
j=1

γj exp
(
−zTt (Wt+Fj)zt+2(z̄Tt Wt+â

TFj)zt−(z̄Tt Wtz̄t+â
TFj â)

)
If we complete a square for zt, the above is equivalent to

Nt+1(xt+1, yt+1) =
nt
√
|Wt|
π

4∑
j=1

γj exp
(
− (zt − z′t+1,j)

T (Wt + Fj)(zt − z′t+1,j)

+(Wtz̄t + Fj â)T (Wt + Fj)
−1(Wtz̄t + Fj â)− (z̄Tt Wtz̄t + âTFj â)

)
where

z′t+1,j = (Wt + Fj)
−1(Wtz̄t + Fj â)
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If we let st,j = exp
(

(Wtz̄t+Fj â)T (Wt+Fj)
−1(Wtz̄t+Fj â)− (z̄Tt Wtz̄t+ âTFj â)

)
, then the

above is equivalent to

=
nt
π

√
|Wt|

4∑
j=1

γjst,j exp
(
− (zt − z′t+1,j)

T (Wt + Fj)(zt − z′t+1,j)
)

If we make it in a normal distribution form,

= nt
√
|Wt|

4∑
j=1

γjst,j√
|Wt + Fj |

√
|Wt + Fj |
π

exp
(
− (zt+1 − z′t+1,j)

T (Wt + Fj)(zt+1 − z′t+1,j)
)

which is equivalent to

= nt
√
|Wt|Θt

4∑
j=1

θt,j

√
|Wt + Fj |
π

exp
(
− (zt+1 − z′t+1,j)

T (Wt + Fj)(zt+1 − z′t+1,j)
)

t = 1, 2, 3, ... (C.1)

where Θt =
∑4

j=1
γjst,j√
|Wt+Fj |

, and θt,j =
γjst,j

Θt
√
|Wt+Fj |

(j = 1, 2, 3, 4). Note that
∑4

j=1 θt,j = 1

From the above population distribution function, the probability density function in

the next generation can be written as

f(xt+1, yt+1) = N(xt+1, yt+1)/

∫ +∞

−∞

∫ +∞

−∞
N(xt+1, yt+1)

=

4∑
j=1

θt,j

√
|Wt + Fj |
π

exp
(
− (zt+1 − z′t+1,j)

T (Wt + Fj)(zt+1 − z′t+1,j)
)
dzt+1 (C.2)

=

4∑
j=1

θt,jfj(xt+1, yt+1)
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where

θt,j =
γjst,j

Θt

√
|Wt + Fj |

Θt =

4∑
j=1

γjst,j√
|Wt + Fj |

st,j = exp
(

(Wtz̄t + Fj â)T (Wt + Fj)
−1(Wtz̄t + Fj â)− (z̄Tt Wtz̄t + âTFj â)

)
Therefore the population distribution probability density function in the (t+ 1)-th gener-

ation is written as a combination of four normal probability density functions (each has

mean z′t+1,j = (Wt + Fj)
−1(Wtz̄t + Fj â), covariance matirx Σt+1,j = 1

2(Wt + Fj)
−1 =

1
2(1

2Σ−1
t + Fj)

−1 = (Σ−1
t + 2Fj)

−1, j = 1, 2, 3, 4). Note that the integral of f(xt+1, yt+1) in

respect of (xt+1, yt+1) equals 1, which is the property of the probability density function.

Let ENj (·) denote the expectation of each of the four corresponding normal population

distribution function. Then the mean in the next generation is

z̄t+1 = E(zt+1) =

∫ +∞

−∞

∫ +∞

−∞
zt+1f(xt+1, yt+1)dzt+1 =

4∑
j=1

θt,j

∫ +∞

−∞

∫ +∞

−∞
zt+1fi(xt+1, yt+1)dzt+1

=

4∑
j=1

θt,jENj (zt+1) =

4∑
j=1

θt,jz
′
t+1,j =

4∑
j=1

θt,j(Wt + Fj)
−1(Wtz̄t + Fj â) (C.3)

The above also equals to

z̄t+1 =
4∑
j=1

θt,j(Wt + Fj)
−1Wtz̄t +

4∑
j=1

θt,j(Wt + Fj)
−1Fj â

As mentioned in Appendix A, since
∑4

j=1 θt,j(Wt+Fj)
−1Wt+

∑4
j=1 θt,j(Wt+Fj)

−1Fj = I,

the mean z̄t+1 will gradually approach to the ideal phenotype as t increases.

Now for variance, we have the covariance matrix in the next generation is
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Σt+1 = E

(
x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

)
− E

(
xt+1

yt+1

)
E
(
xt+1 yt+1

)

=

∫ +∞

−∞

∫ +∞

−∞

(
x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

)
·

4∑
j=1

θt,jfi(xt+1, yt+1)dzt+1 − z̄t+1z̄
T
t+1

=

4∑
j=1

θt,j ·

(
ENj (x

2
t+1) ENj (xt+1yt+1)

ENj (xt+1yt+1) ENj (y
2
t+1)

)
− z̄t+1z̄

T
t+1

=
4∑
j=1

θt,j ·

(
V arNj (xt+1) + ENj (xt+1)2 CovNj (xt+1, yt+1) + ENj (xt+1)ENj (yt+1)

CovNj (xt+1, yt+1) + ENj (xt+1)ENj (yt+1) V arNj (yt+1) + ENj (yt+1)2

)

−z̄t+1z̄
T
t+1

=
4∑
j=1

θt,j · Σt+1,j +
4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − z̄t+1z̄

T
t+1

where Σt+1,j is the jth covariance matrix from the jth integral, z′t+1,j is jth mean from the

jth integral. So the above is equivalent to

=

4∑
j=1

θt,j · (Σ−1
t + 2Fj)

−1 +

4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − z̄t+1z̄

T
t+1 (C.4)

Now we can use the variance iteration equations from (C.4) to get the evolution of variance

across generations. As z̄t approaches to the ideal phenotype â as t → +∞, so does z̄t+1

and z′t+1,j = (Wt+Fj)
−1(Wtz̄t+Fj â) (j = 1, 2, 3, 4) also approaches to the ideal phenotype

â. Therefore the term
∑4

j=1 θt,j · z′t+1,jz
′T
t+1,j − z̄t+1z̄

T
t+1 in (A.11) approaches to zero, so

covariance matrix (A.11) approaches to the following equation as time grows.

Σt+1 =

4∑
j=1

θt,j · (Σ−1
t + 2Fj)

−1 (C.5)

If there is an equilibrium, as time t grows as large as T (a very large number), the above
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equation (C.5) approaches to

ΣT =
4∑
j=1

θT,j · (Σ−1
T + 2Fj)

−1 (C.6)

If we write Σ−1
T =

(
a c

c b

)
, then the equation (C.6) can be written as

(
a c

c b

)−1

= θT,1

(
a c

c b

)−1

+ θT,2

(
a+ 2

α c

c b

)−1

+ θT,3

(
a c

c b+ 2
β

)−1

+ θT,4

(
a+ 2

α c

c b+ 2
β

)−1

which is equivalent to

(2− θT,1)
1

ab− c2

(
b −c
−c a

)
= θT,2

1

(a+ 2
α)b− c2

(
b −c
−c a+ 2

α

)

+ θT,3
1

a(b+ 2
β )− c2

(
b+ 2

β −c
−c a

)

+ θT,4
1

(a+ 2
α)(b+ 2

β )− c2

(
b+ 2

β −c
−c a+ 2

α

)
(C.7)

Since α > 0 and β > 0 and the determinant of the covariance matrix ab− c2 > 0, so

(a+
2

α
)b− c2 > ab− c2 > 0, a(b+

2

β
)−c2 > ab− c2 > 0, (a+

2

α
)(b+

2

β
)−c2 > ab− c2 > 0

Comparing the coefficient of term −c in the matrix for both side of the equation, the

coefficient in the left-hand side is larger than the coefficient in the right-hand side, so we

have c = 0, and the equation (C.7) is equivalent to
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(θT,2 + θT,3 + θT,4)
1

ab

(
b 0

0 a

)
= θT,2

1

(a+ 2
α)b

(
b 0

0 a+ 2
α

)

+ θT,3
1

a(b+ 2
β )

(
b+ 2

β 0

0 a

)

+ θT,4
1

(a+ 2
α)(b+ 2

β )

(
b+ 2

β 0

0 a+ 2
α

)
(C.8)

which is equivalent to

(θT,2 + θT,3 + θT,4)

(
1
a 0

0 1
b

)
= θT,2

(
1

a+ 2
α

0

0 1
b

)
+ θT,3

 1
a 0

0 1
b+ 2

β


+ θT,4

 1
a+ 2

α

0

0 1
b+ 2

β

 (C.9)

Since α > 0 and β > 0, the above equation cannot hold unless a and b approaches to +∞
as t grows, so the matrix Σt grows to zero matrix as t grows. Therefore the variances of

both the first and second defences approaches to zero.



Chapter 4

Coevolution of group-living and

aposematism in caterpillars:

warning colouration may facilitate

the evolution from group-living

ancestor to solitary habits.

4.1 Introduction

Animals use a rich variety of defences to protect themselves from predators. A common

form of antipredator defence is protective colouration, such as camouflage or aposematic

warning colouration (distinctive and often conspicuous colour patterns which advertise

repellent secondary defences). For example, many dart frogs (Dendrobatidae) use bright

aposematic colours to warn predators of toxic chemical defence and so avoid the costs of

an attack [1]. Alternatively, many species have cryptic colour patterns which reduce their

detectability, for instance, the green colouration of many arboreal snakes which blend in

with surrounding foliage [5].

Living in aggregated groups can also enable many antipredator strategies, such as the ‘di-

99
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lution effect’ in which individual risk of predation decreases with increasing group size,

assuming that a predator selects prey in a group randomly and can’t consume the whole

group [13]-[15][17]. Moreover, aggregation can interact with protective colouration to influ-

ence the costs and benefits of a given strategy. For instance, when aposematic individuals

gather in a group, the combined signal may be magnified and more conspicuous (signal

augmentation), so the predators are less likely to attack the prey group [31]. Indeed, the

evolution of aposematism has been linked to group-living for many years [2], but the di-

rectional nature of the relationship remains debated. On the one hand, according to the

signal augmentation hypothesis above, aposematism should evolve first and subsequently

provide selection pressure to evolve grouping to enhance the warning signal [2]-[7]. On the

other hand, kin selection [8]-[11] or synergistic selection (Müllerian mimicry) [10]-[12] may

be important in overcoming constraints in the initial evolution of aposematism, whereby

rare (new) conspicuous individuals are eaten but their kin may survive and carry genes

for aposematism. Under this scenario, grouping should evolve first (for example via the

presence of local kin) and subsequently facilitate the evolution of aposematism. Hence,

although a link between grouping and aposematism is established, understanding the di-

rection of this relationship can provide insights into the underlying mechanisms.

In a well-known study of caterpillars, Tullberg and Hunter [3] attempted to answer this

question using early phylogenetic comparative methods and concluded that the transition

to group living is more frequent in aposematic lineages than cryptic ones. This suggests

that grouping is more beneficial for aposematic than cryptic species, but their study was

unable to simultaneously account for the evolutionary dynamics of both aposematism and

grouping, impairing our understanding of the relationship between these traits.

The current study revisits and expands the work of Tullberg and Hunter [3], taking advan-

tage of developments in comparative biology over the last two decades to address several

limitations of that study. First, we explicitly model transitions between both colour pat-

terns and grouping habits simultaneously using evolutionary pathway models. Second, we

use the estimated transition rates from our pathway models to estimate ancestral states

accounting for unequal transition rates. An inherent assumption in previous work is that

the ancestral state for caterpillars was solitary and cryptic, but since the larvae of many

closely related insect clades, such as Trichoptera (caddisflies), Antliophora (e.g. scorpi-

onflies and true flies), Hymenoptera (e.g. sawflies, wasps, ants, bees) are group-living, as

are some more basal lepidopteran clades, we used our ancestral state estimates to test this
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assumption.

Third, Tullberg and Hunter [3] use “independent contrasts” in their analysis, however,

their application of independent contracts differs from the classical independent contrasts

approach described by Felsenstein [33] and neglects many branches entirely by not including

them in their defined contrasts. Here by adopting Pagel’s [32] approach of modelling

transition rates we are able to make greater use of the information in the full tree, including

branch lengths.

Fourth, phylogenetic datasets are now much more comprehensive than in the 1990s. The

phylogenetic trees used by Tullberg and Hunter [3] are necessarily smaller than that used

here (analysed separately for each superfamily), originate from disparate data sources

(including taxonomic classification as a proxy), and do not use informative branch lengths

(related to time). In contrast, here we are now able to reconstruct a single phylogeny for

the whole sample using a standard set of molecular data with branch lengths related to

time to provide a more powerful basis for our analyses.

Here we make use of advances in comparative biology and data availability to revisit the

study in the coevolution of aposematism and grouping. Our approach enables us to more

robustly test conclusions, examine potentially important assumptions made, and expand

the questions asked to gain a better understanding of the system. Specifically, we aim

to 1) investigate evolutionary transitions between combinations of grouping (vs solitary

habits) and aposematic (vs cryptic) colouration to better understand their coevolution,

2) estimate ancestral states to infer where these transitions occurred and in what order,

3) calculate the probabilities of different states across time, the equilibrium probabilities,

and the expected time that the evolutionary transition cycle around all the states, so as

to predict the potential future dynamics of the system.

4.2 Methods

4.2.1 Trait data

We used data on colour pattern and grouping from Tullberg and Hunter’s [3] original

dataset. Colour pattern was classified as either aposematic or cryptic. Caterpillars which

are strikingly marked with combinations of black and yellow, red and/or white were con-



102 Lingzi Wang

sidered aposematic, whereas other colour patterns (such as plain green or counter-shaded)

were considered to be cryptic. Grouping was classified as either group-living, where cater-

pillars aggregate during the whole or part of their development, or solitary if they do not

aggregate. Species which lay eggs in clusters but disperse upon hatching are also treated

as solitary.

The dataset we used for analyses consists of 676 species, of which 541 (80.0%) are solitary-

cryptic, 82(12.1%) are solitary-aposematic, 21 (3.1%) are group-cryptic, 32 (4.7%) are

group-aposematic. Note that all data used for this paper are available at

https://figshare.com/s/359ff8f6c15beb68fab8.

4.2.2 Phylogenetic tree

There are five superfamilies present in our dataset: Papilionoidea, Bombycoidea, Drepanoidea,

Geometroidea and Noctuoidea. Two DNA sequences, CO1 and EF-1α, were obtained for

the species in our dataset from the website GenBank [26] by 1 July 2018. We were able

to obtain CO1 for 667 species (98.7%), EF-1α for 227 species (33.6%), and both CO1 and

EF-1α sequences for 218 species (32.2%). The accession numbers for the sequences are

also available at https://figshare.com/s/359ff8f6c15beb68fab8.

For each of the five superfamilies, we aligned CO1 and EF-1α nucleotide sequences us-

ing MUSCLE [21] with default settings in the software MEGA7 [30], and concatenated

the aligned sequences together using the software SequenceMatrix [20]. We use BEAST

v1.10.4 [16] to estimate Bayesian trees separately for the five superfamilies. We use the

generalised time-reversible model [34] as the substitution model with gamma-distributed

rate variation and an estimated proportion of invariant sites [35], and we use the strict

clock model [29] as the molecular clock model. The five maximum clade credibility su-

perfamily trees were subsequently grafted together based on the higher-level topology and

divergence times from the TimeTree database [22]-[25]. The divergence date for the to-

tal tree (after combining superfamily trees) was 114 million years ago and so the branch

lengths were scaled to give a total tree height of this age. Note that we generate the

five trees separately as a combined analysis failed to achieve convergence and (unlike our

divided approach) estimated topologies which conflicted with our current understanding

of lepidopteran phylogeny, for instance placing some species within superfamilies other

than their own. In contrast, our ‘divide and conquer’ strategy estimated trees that were
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generally consistent with our existing phylogenetic understanding of Lepidoptera.

4.2.3 Analysis of the coevolution of colour and grouping

We estimated evolutionary pathway models between each of the four states combining the

two binary traits of aposematism and grouping following Pagel’s [32] method for estimating

transition rates. The transition in each state follows continuous-time Markov process, and

the four states constitute eight parameters in eight pathways to estimate [32]. The dual

transition in both of the binary traits is assumed to be not possible [32] (Figure 4.1), which

is plausible since the simultaneous transitions in both binary states are very unlikely to

happen either in the continuous-time Markov process. Pathway models were estimated

via maximum likelihood using the function corDISC in the package corHMM 1.22 [19]

implemented in R 3.5.1 [18].

We first estimated transition rates for a general model which has no constraints (Figure

4.1). To explicitly test for alternative evolutionary pathways we also fitted a series of

restricted models in which different combinations of the transition rates were constrained

to equal 0. Figure 4.1 shows one example of the restricted models in which the transition

rate ‘csg’ (cryptic solitary→cryptic group) is set to 0 and so not possible. We have named

our models such that the unconstrained model is called ‘general’ and constrained models are

named after the rates which are constrained; for instance, we use ‘(csg)’ for the constrained

model with the transition ‘csg’ not possible, shown in Figure 4.1. Similarly, a model with

rates ‘csg’ and ‘gca’ set to 0 is referred to as ‘(csg, gca)’. We have exhausted all the possible

models, and overall we have 28−1 = 255 models including the general model. We compare

the evidence for each of our pathway models using Akaike’s information criterion (AIC).

We estimated the ancestral state combinations using the best fitting pathway model in

a maximum likelihood framework, implemented using the plotRECON function in the R

package corHMM. Incorporating our results from our pathway modelling into this analysis

should lead to improved estimates by accouting for any inferred constraints on the evolution

of the traits.

subsectionThe state probability dynamics across time and the equilibrium The probabilities

for the four binary states (solitary cryptic- sc, solitary aposematic- sa, group cryptic-

gc, and group aposematic- ga) across time can be calculated using the transition rates

estimated in subsection 4.2.3 (shown in Figure 4.2). Suppose Pi(t) (i ∈ {sc, sa, gc, ga}) is
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(sca)

(sac)

(gca)

(gac)

(csg) (cgs) (asg) (ags)

general model

(sca)

(sac)

(gca)

(gac)

(cgs) (asg) (ags)

restricted model

Figure 4.1: Diagrammatic representations of the general model (left) with no constrained
transition rates and an example of a restricted model (csg) with some transition rates (in
this case rate ‘csg’, cryptic solitary to cryptic group) constrained to 0. (grey, red)=(cryptic,
aposematic); (one triangle, four triangles)=(solitary, group).
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the probability of being in state i at time t, and Mi,j (i, j ∈ {sc, sa, gc, ga}) is the transition

rate from state i to state j [32], then the rate of change of probability of being in each of

the four binary states across time satisfies the Kolmogorov forward equations:

dPi(t)

dt
=
∑
j 6=i

Mj,iPj(t)−
∑
j 6=i

Mi,jPi(t), i, j ∈ {sc, sa, gc, ga}. (C.1)

Equation (C.1) can also be written in a matrix form as follows:

dP (t)

dt
= MP (t). (C.2)

where,

M =


−
∑

j 6=scMsc,j Msa,sc Mgc,sc Mga,sc

Msc,sa −
∑

j 6=saMsa,j Mgc,sa Mga,sa

Msc,gc Msa,gc −
∑

j 6=gcMgc,j Mga,gc

Msc,ga Msa,ga Mgc,ga −
∑

j 6=gaMga,j

 , (C.3)

P (t) =


Psc(t)

Psa(t)

Pgc(t)

Pga(t)

 . (C.4)

The probabilities for the four states across time can also be solved from eq. (C.2). Since

the initial state at the root of the tree can be either of the four states (sc, sa, gc, ga), we

will solve (C.2) separately for the four possible initial probabilities: (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0), (0, 0, 0, 1). The solution will have the form as follows,


Psc(t)

Psa(t)

Pgc(t)

Pga(t)

 =
(
c1 ~v1 c2 ~v2 c3 ~v3 c4 ~v4

)


eλ1t

eλ2t

eλ3t

eλ4t

 = C


eλ1t

eλ2t

eλ3t

eλ4t

 . (C.5)

Where λ1,λ2,λ3,λ4 are the eigenvalues of M , ~v1, ~v2, ~v3, ~v4 are the right eigenvectors of M ,

c1, c2, c3, c4 are the coefficients solved from (C.5) given the initial probabilities at time
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t = 0, and C is the 4× 4 dimensional matrix representing
(
c1 ~v1 c2 ~v2 c3 ~v3 c4 ~v4

)
.

The equilibrium probabilities can be solved using linear algebra by assuming that each of

the probabilities in (C.5) does not change:

dPi(t)

dt
= 0, i ∈ {sc, sa, gc, ga}, (C.6)

with the constraint that
∑

i Pi(t) = 1.

4.2.4 The mean first passage time

The transition between the four binary states form a cycle (Figure 4.2). It is possible that

after a certain time, the transition from one state (e.g. gc) goes around a whole cycle and

back to the same state (e.g. gc) again. We can formulate a first passage time problem

to calculate the mean duration of such a cycle, using the transition rates defined above.

We consider the transition in the clockwise cycle, as it turns out that counter-clockwise

cycles are not possible because the estimated transition rate from gc to sc is zero. If the

transition travels from the state, e.g. gc, clockwise back to the same state, gc, then the

whole transition is like gc → ga → sa → sc → gc′, where gc′ represents the state gc

accessed directly from sc. If Ti denotes the mean time to reach the state gc′, starting from

the state (= gc, ga, sa, sc, gc′), then considering the transitions that can take place during

an infinitesimal time interval. We have,

Ti = dt+ dt
∑
j 6=i

Mi,jTj + Ti(1− dt
∑
j 6=i

Mi,j) (C.7)

⇒ −1 =
∑
j 6=i

Mi,jTj − Ti
∑
j 6=i

Mi,j , i, j ∈ {sc, sa, gc, ga}, (C.8)

which is to be solved under the condition Tgc′ = 0. Note that the mean first passage time

for a whole cycle starting from any the states (gc, ga, sa, sc) will be the same.
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K logLik AIC ∆AIC LikRatio AkaikeWeight

(cgs) 7 -363.835 741.671 0.000 1.000 0.725
general 8 -363.835 743.671 2.000 0.368 0.267
(cgs,asg) 6 -369.900 751.800 10.129 0.006 0.005
(cgs,csg) 6 -370.794 753.587 11.916 0.003 0.002
(asg) 7 -369.900 753.800 12.129 0.002 0.002

Table 4.1: The five best models according to Akaike’s Information Criteria (AIC). ∆AIC=
difference in AIC between each model and the best model (AIC-AICmin); LikRatio =
likelihood ratio between each model and the best model (exp((AICmin-AIC)/2)), sometimes
called the ’evidence ratio’ and gives the strength of evidence for each model as a proportion
of the best model; AkaikeWeight = model probabilities (probablility of each model being
the best model in the set) [27][28].

4.3 Results

4.3.1 Transition rate model comparison

The best five models chosen by the AIC method are shown in Table 1, whereby the ‘best’

model is that with the lowest AIC value. Model (cgs) is the best and equivalent support

exists for the ‘general’ model since the log-likelihoods are identical and AIC values differ

by exactly 2 (attributable solely to the penalty of the extra parameter which adds no

more information). In keeping with the model selection statistics, these two models are

actually identical since they only differ structurally by the general model having one extra

parameter, but this parameter is estimated as 0 (Figure 4.2). Other models receive much

weaker, in fact negligible, support. Hence we find strong support for one particular pathway

model (illustrated in Figure 4.2) in which cryptic caterpillars are unable to shift from group

to solitary.

4.3.2 Ancestral state estimation

The ancestral state estimation suggests that, contrary to previous assumptions, the ances-

tor at the root of our tree was group, although it is ambiguous whether this ancestor was

cryptic or aposematic (Figure 4.3). The subsequent evolutionary history of this clade has

been characterised by several transitions to the solitary and cryptic state which charac-

terises 80% of the species in our dataset. Several of these transitions occurred in species-rich
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0.0033  (sca)

0.0417  (sac)

0.1431  (gca)

0.0599  (gac)

0.0008
(csg)

0.0057
(asg)

0.0281
(ags)

(cgs) model

0.0033  (sca)

0.0417  (sac)

0.1431  (gca)

0.0599  (gac)

0.0008
(csg)

0
(cgs)

0.0057
(asg)

0.0281
(ags)

general model

Figure 4.2: The two lowest AIC models and their estimated transition rates. The restricted
model (cgs) with the pathway ‘cgs’ not possible is the lowest AIC model. The general model
with all the possible pathways is the second lowest AIC model. Colours: (grey, red) =
(cryptic, aposematic); (one triangle, four triangles)=(solitary, group). The numbers in the
brackets are the indices for transition pathways corresponding to the ones in Figure 4.1.
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Initial probabilities C

(1, 0, 0, 0)


0.000 0.042 0.104 0.854
−0.001 −0.049 −0.034 0.084
−0.003 0.003 −0.021 0.021
0.003 0.004 −0.048 0.041


.
(0, 1, 0, 0)


0.000 −0.761 −0.092 0.854
0.002 0.883 0.030 0.084
0.011 −0.051 0.019 0.021
−0.013 −0.071 0.043 0.041


(0, 0, 1, 0)


−0.027 0.588 −1.415 0.854
0.131 −0.683 0.468 0.084
0.649 0.040 0.290 0.021
−0.754 0.055 0.657 0.041


(0, 0, 0, 1)


0.012 0.372 −1.238 0.854
−0.061 −0.432 0.409 0.084
−0.300 0.025 0.254 0.021
0.349 0.035 0.575 0.041



Table 4.2: Matrix C for four initial probabilities

subclades which accounts for the commonness of the strategy.

4.3.3 The state probabilities across time, the equilibrium, and the first

passage time

Probabilities of different states

The equilibrium probabilities, solved from eqn. (C.6), are 85.3% for the solitary cryptic

state (sc); 8.4% for the solitary aposematic state (sa), 2.2% for the group cryptic state

(gc), and 4.1% for the group aposematic state (ga). The time-dependent probabilities of

the four binary states across time have the form eqn. (C.5), which can be solved from eqn.

(C.2). The eigenvalues λ1, λ2, λ3, λ4 are -0.209, -0.052, -0.018, 0. The matrix C in eqn.

(C.5) for the four initial probabilities are shown in Table 4.2.

Eq. (C.5) together with Table 4.2 show that, over time, the probabilities approach the

equilibrium probabilities (85.3%, 8.4%, 2.2%, 4.1%). The dominant eigenvalue (-0.018)
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(Cryptic,Solitary)
(Cryptic,Group)
(Aposematic,Solitary)
(Aposematic,Group)

Figure 4.3: Ancestral state estimation for combinations of colour pattern and grouping.
Pie charts at nodes display the relative likelihood of being in each of the four states. Note
that the very common case of solitary and cryptic species arises from several transitions
to this state from a group-living ancestor at the root of the tree (95% to be group-living
at the root).
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determines how quickly the state probabilities approach the equilibrium (since compared

to -0.018, the other two eigenvalues -0.209 and -0.052 make the exponential terms more

quickly go to zero as time grows). Therefore, when t = 114 million years, the deviations

from the four state (sc, sa, gc, ga) equilibrium values are about e−0.018×114cT3 = 12.85%cT3
and when t = 300 million years, the deviations from the four state equilibrium values are

about e−0.018×300cT3 = 0.45%cT3 (almost no deviation), where c3 is the third column in

the matrix C (e.g. (0.104,−0.034,−0.021,−0.048)T when the initial probabilities for the

four states are (1, 0, 0, 0)). The probabilities across time given the four different initial

probabilities are shown in Figure 4.4.

The first passage time

The transition rates in the clockwise direction are all higher than transition rates in the

corresponding counter-clockwise direction (e.g. route gca vs. gac in Figure 4.2), and a

full transition cycle can only be fulfilled in the clockwise direction, since the transition

rate from grouping to solitary in cryptic caterpillars (route cgs in the counter-clockwise

direction) is estimated to be zero. The mean first passage time circling clockwise, i.e. the

mean time taken to evolve in a cycle from one state back to the same state, is 1465.7

million years. The mean first passage time is much longer than the time length of the

phylogenetic tree we used (114 million years old) and also the time by which the state

probabilities are close to the equilibrium (e.g. 300 million years, Figure 4.4). This means

that the probabilities are close to the equilibrium some time before each state is expected

to evolve through a full cycle. This is because the transition rate from solitary cryptic

back to the group lineage (0.0008) is relatively very low, so the waiting time from solitary

cryptic to group cryptic has mean of 1377 million years (which can be calculated from

eq. C.8). So it is more likely to stay in the solitary cryptic state, or go counter-clockwise

direction to solitary aposematic state, rather than transit to the group cryptic state.

The transient dynamics towards equilibrium

Figure 4.4 and Figure 4.2 show the dynamics of the four states. Just as can be seen in eq.

(C.5), whatever the initial state is, the probabilities of the four states will approach the

equilibrium.

When the initial state is either gc or ga (as estimated in Figure 4.3), the probabilities of
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Figure 4.4: The probabilities of four binary states are approaching the equilibrium prob-
abilities across time. Solitary-cryptic: dashed grey; solitary-aposematic: dashed orange;
group-cryptic: solid grey; group-aposematic: solid red.
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the other state and the state sa will first increase quickly from 0 to one point (the time for

which can be calculated from eq.C.5), and then gradually decrease towards the equilibrium

values. This is because the transition rates between gc and ga is relatively high (0.1431

and 0.0599), and there is also a moderate transition rate from ga to sa (0.0281).

Furthermore, since the transition rates away from sc to gc (0.0008) and to sa (0.0033) are

very low, all the other states are more easily go in clockwise direction (as the clockwise

transitions are all higher than the corresponding counter-clockwise transitions) towards

the state sc, but will less easily leave the state sc, so the equilibrium probability for the

state sc is the highest.

Comparing model and empirical state probabilities

The phylogenetic tree is 114 million years, so the data in our dataset are at t=114 million

years. The frequency of sc in our dataset is 80.0%, which is lower than the equilibrium

probability, and the probabilities of sa, gc and ga are 12.1%, 3.1%, and 4.7% respectively,

which are all higher than the corresponding equilibrium probabilities. Therefore, we can

predict that the probability of state sc is likely to increase further, and the probabilities

of states sa, gc and ga are likely to decrease over future evolutionary time. This trend is

closer to the above two graphs “gc root ancestor” and “ga root ancestor”, consistent with

our ancestral state estimation showing that the initial state is more likely to be state gc

or ga (Figure 4.3).

4.4 Discussion

4.4.1 Group-living is likely to be the ancestral state for caterpillars

This research was initiated from the debate about whether the evolution from crypsis

to aposematism is typically before or after the evolution form solitary-living to group-

living. The hypothesised pathway via kin (or synergistic selection [8]-[12]) predicts that

a transition from solitary to group-living comes first, and then facilitates the evolution of

conspicuous warning colouration. An alternative pathway, via signal augmentation [2]-[7]

predicts that the evolution of aposematism precedes the evolution of group-living since

group enhances the effect of aposematism. Our results challenge the underlying premise

of both of these hypotheses and instead find strong evidence for a group-living ancestral
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state (leaving the evolution of solitary-living as requiring explanation). This contradicts

the assumptions of previous analyses [2]-[12], and (because the ancestral colour state is so

uncertain) limits our ability to answer the initial question of ’did grouping or aposematism

evolve first’. Specifically, the ancestor at the root of our tree (Figure 4.3) was estimated as

group living with the relative likelihood ∼0.95 (with the ancestral colour pattern is highly

ambiguous). The analysis in the probability dynamics (Figure 4.4) also shows that the ini-

tial state is likely to be a group state (either group cryptic or group aposematic state) and

solitary cryptic state is more stable than the other states and has the highest abundence

in the equilibrium (as will be mentioned below).

4.4.2 Aposematism might facilitate the transition from group-living to

solitary-living

The transition rates estimated in Figure 4.2 show that the transition is very likely to go in

a clockwise direction from a grouping state to the solitary cryptic state (as the transition

rates are all higher in clockwise direction compared to the counter-clockwise direction).

In the two possible ancestral group states (group cryptic- gc and group aposematic -ga),

it is more likely to transit from cryptic lineage (gc) to aposematic linage (ga) (rate ‘gca’)

than the other way around (rate ’gac’). That the transition rate from gc to ga is relatively

quite high supports the kin selection hypothesis [8]-[12] to some extend, since it assumes

that aposematism is evolved in kin groups. This high rate probably also explains the

tight relationship between the group-living and aposematism since group-living relatively

rapidly leads to aposematism and hence limits the opportunity to observe cryptic group-

living caterpillars, the rarest state in our dataset (3.1% of species). This is probably one

of the reasons that previous research ([2]-[12]) barely connects group-living with crypsis,

but rather with aposematism.

The following clockwise transition from group aposematic (ga) to solitary aposematic state

(sa) (rate ‘ags’) is more likely to happen compared to the corresponding counter-clockwise

transition from sa to ga (rate ‘asg’), which may indicate costs to this strategy such as in-

creased predation by toxin-resistant predators due to the greater conspicuousness of groups

[17]. Notably, transitions from group-living to solitary-living can only happen in apose-

matic species (rate ‘ags’), not cryptic species (rate ‘cgs’). In fact, almost all transitions
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between group-living and solitary caterpillars occur in aposematic lineages which suggests

that aposematism may facilitate shifts in grouping vs solitary-living in both directions.

Perhaps this operates by providing an additional level of protection above that conferred

by group benefits, hence loosening evolutionary constraints against changes in aggregation

status. Importantly, our finding that the transition rate from solitary to grouping is higher

in aposematic species (rate ‘asg’) than in cryptic species (rate ‘csg’) agrees with Tullberg

and Hunter’s [3] finding, which is used to support signal augmentation hypothesis in their

research. Our ability to recover the results of Tullberg and Hunter’s original work using

appropriate comparisons in our study demonstrates a congruence that adds weight to our

more powerful approach and the insights provided.

The later clockwise transition rate from sa to sc (rate ‘sac’) is also higher than the corre-

sponding counter-clockwise transition rate from sc to sa (rate ‘sca’), which may indicate

that staying cryptic is more beneficial than warning predators for solitary individuals. This

perhaps because of the increased chance of being spotted and consumed (without group

benefits) in conspicuous singletons, an explanation which is consistent with a kin selected

(or similar) origin of aposematism since it suggests costs to being aposematic when solitary.

The net result of all these transition rates are that colour pattern (horizontal see transitions

in Figure 4.2) is far more evolutionarily labile than aggregation propensity grouping pattern

(see vertical transitions in Figure 4.2), and the transitions are more likely to go from the

possible ancestral group state to the later relatively stable solitary cryptic state in clockwise

direction, and so the loss of group-living trait might be facilitated by the protection of

warning colours. Furthermore, the transition rates between group states (group/solitary)

is higher in the aposematic species than in the cryptic species, and the transition rate

between two colour states (aposematism/crypsis) is higher in group states than in solitary

states. This is probably driven by the synergistic effects of aposematism and group-living

in terms of increasing conspicuousness, and vice versa for crypsis and solitary-living. This

agrees with Tullberg, Leimar and Gamberale-Stille [4] who found no difference in attack

rates on cryptic and aposematic prey in groups, but the attack rate on the aposematic prey

is significantly lower than on the cryptic prey in solitary individuals. This also agrees with

Alatalo and Mappes [10] who showed that the relative mortality caused by predators was

more similar between group aposematic and group cryptic unpalatable prey than between

solitary aposematic and solitary unpalatable prey.
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4.4.3 Solitary cryptic caterpillar will be the most abundant at the equi-

librium

The equilibrium probabilities for the four states – sc, sa, gc, ga – are 85.3%, 8.4%, 2.2%,

4.1%, respectively, and over time, the probabilities of the four states will go towards the

equilibrium values no matter what the ancestral state is. As mentioned above, the solitary

cryptic species is unlikely to be the ancestral state, but this state will become more common

and then gradually approach the equilibrium abundance (85.3%) since transitions are more

likely to go from the group state towards and then stay in the solitary cryptic state. The

frequencies of the other states will grow at first, since the transition rates between the

three conspicuous states (gc, ga, sa) are relatively high, and then after certain points, the

probabilities of all the states will fall towards their corresponding equilibrium values.

The transition of a full clockwise cycle is expected to last 1465.7 million years, which is

much longer than the time of the tree (114 million years), and the time that the state

probabilities take to approach equilibrium (e.g. 300 million years in Figure 4.4). This

means that the state probabilities will be close to equilibrium a long time before the

evolutionary transitions have run a full clockwise cycle. This is because the transition rate

from sc to gc is very low (rate 3), so it is more likely to stay at the state sc for long or even

transit counter-clockwise to the sa state rather than finish the full clockwise cycle back to

the group states. Since both the transition rates away from sc (rate 3 and 5) are lower

than the other positive rates, it will typically stay longest in the state sc compared to the

other states.

4.4.4 Implications, limitations and future work

The pattern of highly observed frequencies of solitary cryptic states (combined with less

informative comparative methods) may be why previous research focused on understanding

the evolution of aposematic group-living animals from a solitary cryptic ancestor ([2]-[12]).

Hence, future work to understand the loss of group-living and so the evolution of solitary

life may prove fruitful. Since we find solitary-living only originates in aposematic species,

not directly from cryptic lineages, we specifically encourage future work to understand how

aposematism might facilitate the loss of group-living. We suggest one possibility is that

being solitary is relatively risky and so reducing predation risk with warning signals facil-
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itates the loss of group-living by compensating the added risk with another defence which

deters attacks. Alternatively group-living may not increase conspicuousness by as great

a magnitude in cryptic species than aposematic species, such that selection for switch-

ing grouping strategies is lower in cryptic lineages. Under this scenario, other benefits

of group-living may prevent its loss in cryptic species, whereas the balance of costs and

benefits of group-living in aposematic species may be more similar to those of solitary life.

In any case, our results provide new insights into the coevolution of protective colouration

and grouping tendencies in a long-standing model system and in doing so show the ben-

efit of revisiting classic studies in ecology and evolution using newer and more powerful

methodological approaches.

Caterpillars have many advantages for studies such as ours, hence they established as model

systems for antipredator mechanisms. However, Macrolepidoptera is a very large clade

containing over 90,000 described species, so one limit in our research is that our analysis

is based on the dataset of Tullberg and Hunter [3] and we assumed that the dataset

is reasonably unbiased in sampling species with respect to their traits, and sufficiently

informative to draw general conclusions about the coevolutionary dynamics of the group

and colour states. However, it is possible that the dataset is strongly biased and the results

that we find does not tell the real underlying patterns. Nevertheless, the datasets in some

other studies [36, 37, 38, 39] have also shown the similar pattern of colour and gregarious

states of caterpillar as Tullberg and Hunter’s [3]. Moreover, Tullberg and Hunter’s dataset

[3] contains five different superfamilies, and we think that data are unlikely to be biased

in a consistent way across the five superfamilies can be less likely given their different

lifestyles and general ecology.

4.5 Conclusion

This research revisits the classical debate about the evolutionary order between aposema-

tism and group-living. Our results challenge the earlier assumption that aposematism and

group-living are derived states from ancestral cryptic and solitary-living caterpillars. Based

on analyses of transition rates of colour and grouping states, we proposed that aposema-

tism might act as a facilitator to the solitary habits from grouping habits, perhaps by

offsetting the risk incurred by losing the protective benefits of grouping. Solitary crypsis

is the most stable state and has the highest abundance in the equilibrium compared to
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the other states. Our results also provide new avenues for future research focused on how

aposematism colours and perhaps other secondary defences, might facilitate the evolution

from group-living to solitary-living in animals.
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Chapter 5

Comparing the diversification rates

of defence and non-defence species

5.1 Introduction

Speciation (the formation of new species) might happen for many different reasons. It

might happen when an interbreeding population is separated by some ecological barriers

into several populations. Here, subpopulations may not have enough chances to interbreed,

so gradually evolve to become two different species [1]. It might also start even if there is

no distinct ecological barrier, but a population is living in a large area, so the individuals

living in one part of the area can have less chance to interbreed with individuals living

in another part of the area. The gene flow between these two groups will be less, which

gradually causes reproduction isolation [2]. It could also happen when the inhabited eco-

logical environment is different for certain groups in the population, and they experience

different selection pressure, so evolve to become different species [1]. Furthermore, the new

evolution of new traits in certain groups might change the selection pressure to them, and

so they might evolve to become unable to interbreed with the rest of the population [3, 4].

On the other hand, extinction (the termination of existing species) might be caused by

the change of environment (e.g. climate change, loss of food, pollution) [5], loss of habitat

[6], natural enemies (e.g. predators, parasites, pathogens), competition from other species

122
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(e.g. species with better traits, invasive species) [7], loss of food [8], and so on.

The terms “speciation rate” and “extinction rate” are usually used by biologists to describe

the increasing or the decreasing rates of change in a number of species [9], and the term

“diversification rate” is used to measure the net rate of change (i.e. the net difference

between speciation and extinction rates) [10, 11]. It is important but also can be chal-

lenging, to determine what influences diversification rates. Like the causes of speciation

and extinction, researchers often focus on the patterns of diversification variation with the

ecological niches and characteristics of organisms. Broader ecological niches are consid-

ered to be associated with larger populations, which have higher chances to speciate into

new species [12], and lower chances of becoming extinct than smaller populations [13]. In

addition, broader ecological environments can facilitate allopatric speciation (which hap-

pens when the gene flow is blocked by certain barriers, such as rivers or mountain ranges)

[1]. Related factors with expended niches, such as a larger geographical range size [2], or

disparate ecological environments [1], are found to be influential. Characters such as self-

incompatibility –which is related to increased genetic diversity [14, 15]–or floral asymmetry,

which is associated with the chance of character displacement, are factors that increase

diversification rates [16]. Other traits, such as defences [17], biotic dispersal growth [18],

pollination systems, and life forms (e.g. herbs, shrubs or trees)[19] are also found to be

influential.

Defence is one of the traits that is found to be associated with variations in diversification

rates. The idea comes from Ehrlich and Raven [17], who predicted that a new defence can

help the organisms enter a new adaptive zone, in which they are protected from predators’

attacks, so evolutionary radiation might follow (“escape and radiate” [20]). The population

with new defences can grow not only because the defence traits protect the population in

the same ecological area, which might be followed by sympatric speciation [3, 4], but also

because the population with the defence traits can expend their ecological habitats [21, 22],

which might lead to allopatric speciation [1]. At the same time, due to the protection by

defences, the extinction risk could be lower. Therefore, the net diversification rates (the

difference between speciation and extinction rates) increase.

Ehrlich and Raven [17] have been cited many times (more than 4490 times) by other re-

searchers. However, the evidence for their “escape and radiate” theory is comparatively

small. One way to test the theory is, as was proposed in [17], to see whether there is a
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significant increase in the diversification rate of the clade where a new defence evolves (com-

pared to the sister-clade without the corresponding new defence)in the ancestral estimated

phylogenetic tree (sister-clade analysis). For example, increases in the diversification rates

are found in the insect lineages that have new chemical defenced host plants [23, 24, 25];

on the other hand, plant lineages that have new mutualisms with chemical defenced insects

are also found to have higher diversification rates [10, 20]. Compared to chemical defences

in mutualised plants and insects, the evidence about chemical defences in non-mutualised

organisms is less consistent. For example, in the study of plant diversification in Farrell

[3], it was found, that the lineages with the defence resin canal have higher diversification

rates than the lineages without the defence, but Vamosi [26] found no significant relation

between resin canal and diversification rates. Arbuckle and Speed [11] found that both

the speciation rates and extinction rates increase in the amphibian lineages with chemi-

cal defences, but that the net diversification rates decrease in the lineages with chemical

defences. Agrawal et al. [27] also found a negative relation between the investment in

milkweed chemical defence and diversification rates.

Another way to test the theory is not just to focus on the sister-clades, but to calculate

both the speciation rates and extinction rates for traits in the full phylogenetic tree (Binary

State Speciation and Extinction –BiSSE [28]). Using this method, the relation between

diversification rates and chemical defences is similar to using the above methods. Peña and

Espeland [29] found higher diversification rates in butterflies which feed on toxic plants

compared to those which do not. Increased diversification rates are also found in plants

mutualised with chemical defenced insects [10, 20]. Armbruster et al. [30] however, found

no evidence between diversification and chemical defences in vines.

Compared to the chemical defences, the association between aposematic defences and faster

diversification rates is more consistent, although the evidence is also scarce. Unlike apose-

matic species, cryptic species may be constrained behaviourally. For example, they may

have narrow foraging niches because they can match relatively few backgrounds, or they

may be constrained to feed nocturnally. Aposematic species may lose these constraints

and be able to use expended and diverse ecological opportunities. Przeczek et al. [31]

compared 14 sister clade pairs of amphibians, spiders, and insects and found evidence for

increased diversification in aposematic clades. Arbuckle and Speed [11] used BiSSE and

found that diversification rates are higher in the amphibians with conspicuous colours.

Also, increased acoustic diversification is found in poison frogs with aposematic defences
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using BiSSE (Santos et al., [32]).

Living in groups can benefit organisms with regard to their foraging, survival, or defence

behaviours [33]. The reason why group-living behaviour can persist could be that indi-

viduals can have higher fitness by living in group since their genes can be passed on to

the next generation not only from the individuals themselves but also from their nearby

relatives, so they might choose to be altruistic to enhance the genetic fitness of both the

recipient of the act and the altruists themselves (“inclusive fitness”). [33]. For caterpillars,

the group-living behaviour can be associated with cooperative living and foraging (e.g.

Malacosoma americanum) [34], and can also function as a defence. Since caterpillars are

soft and vulnerable, and they move slowly relative to many other animals, a group can

help to protect them from their natural enemies [35]. The yellowneck caterpillar (Datana

ministra)makes a U-shaped posture to make ovipositor more difficult for some parasitoids

(braconid wasps, or tachinid flies) [36]. This defence behaviour can be simultaneously

displayed by other caterpillars in the group, even if they are not attacked by parasitoids.

The sharing of danger signals can not only inform the nearby caterpillars that are not

attacked to start to defend themselves but also the group can form a large menacing de-

fence together, which can frighten parasitoids or even predators away [36]. Besides group

displays, caterpillars can also stay together to form a large defence (e.g. a shelter, or a

pattern) for their protection [35]. Also, group-living is also found to enhance the effect of

some defences, such as aposematic defences [37, 38, 39, 40, 41, 42] or chemical defences

[43]. In addition, the individuals’ fitness can also be affected by the risk-dilution effect in

the group (because per capita risk decreases with group size). For example, although a

larger group size can increase the detection risk from parasites in leaf miner caterpillars

(Antispila nysaefoliella), it also decreases the post-detection risk while individuals are hid-

ing in groups [44, 45, 46]. Therefore, like the other defences mentioned above, group-living

defences might also be associated with diversification rates, although we do not find any

literature that tests this.

In this chapter, the BiSSE method is used to test whether the two defences, aposematism

and group-living, can influence the diversification rates, to provide further evidence for

Ehrlich and Raven’s “escape and radiate” theory [17, 20]. We will show whether aposema-

tism can increase diversification rates, as suggested by previous research [11, 31, 32], and

whether group-living can increase diversification rates, which is a new evidence area for the

“escape and radiate” theory. We will however not pool one defence trait while analysing
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the other one as the dataset we used is not large enough to do this.

5.2 Method

5.2.1 The tree and the traits

The phylogenetic tree and the traits are the same as those in the previous chapter. We

used the genes CO1 and EF-1α from Genbank to make the Bayesian phylogenetic tree and

used the trait dataset from the research by Tullberg and Hunter [38].

5.2.2 Net diversification rate

We use the method proposed by Maddison, Midford and Otto [9], which introduces the

”BiSSE” model (Binary State Speciation and extinction). In our case, we use the model to

solve the speciation and extinction rates for the state “aposematism” and “crypsis” and the

state “group-living” and “solitary-living” respectively of the Macrolepidoptera order. The

net diversification rate is the difference between speciation rate and extinction rate. The

functions “make.bisse” and “find.mle” in [47, 48, 49] in the package “diversitree” [50, 51]

in R 3.5.1 [52] are used to obtain the maximum likelihood (ML) values for all of the rates.

For the “BiSSE” analysis, we also need to know the smallest single clade which contains all

of the species we used; in particular, the fraction of this clade that covers our dataset. The

smallest clade which covers all of our species has 92,100 species, with the five superfam-

ilies, Papilionoidea, Bombycoidea, Drepanoidea, Geometroidea, Noctuoidea each having

approximately 14,000, 3,400, 700, 22,000, 52,000 species, respectively [53]. Therefore the

proportion of our sample to this full single clade is 0.7% (=676/92,100).

Since the total numbers of the five superfamilies are only known approximately, as the

Lepidoptera Order is still unsolved, we are unsure of the exact proportion value of our

dataset. We, therefore, obtained the results for a range of different assumed proportion

values above and below 0.7%, to see if the different proportion values make any difference

to the result. We conducted the analysis for the proportion range from 0.1% to 1.5% (0.1,

0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, specifically). Then we compared whether the diversification

rates for the aposematism state were consistently higher than the diversification rates for
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the crypsis state; and whether the diversification for the group-living state was consistently

higher than the diversification rates for the solitary-living state for this proportion range

0.1%-1.5%.

When we obtain the ML values for the rates for different proportion values between 0.1%

and 1.5%, we use these values as the initial values and conduct the mcmc analysis [54] for

those proportion values to obtain the diversification rate posterior density distributions

for the aposematism/crypsis states and group/solitary-living states. Then, we use the

posterior distributions to see whether the two rates are different.

5.3 Results

5.3.1 Aposematism and crypsis

Diversification rates of aposematism and crypsis for different assumed propor-

tion values

Both the speciation rates and extinction rates with the defence aposematism are consis-

tently higher than without the defence aposematism for all of the assumed proportion

values from 0.1% to 1.5% (Figure 1 left). Equivalently, the net diversification rates with

the defence aposematism are consistently higher than without the defence aposematism

for all of the assumed proportion values from 0.1% to 1.5% (Figure 1 right).

The speciation and extinction rates are higher when the proportion values of the species

that are covered in the samples are lower since, in this case, the actual number of species

in the real world is higher, so the corresponding speciation rates and extinction rates will

be higher. The net diversification rates are relatively stable and do not change much with

the proportion values.

MCMC posterior density distribution of diversification rates of aposematism

and crypsis for different assumed proportion values

The mcmc posterior density distributions show that the diversification rates with apose-

matism are distributed much higher and with larger variance than the diversification rates
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Figure 5.1: The speciation and extinction rates (left), and net diversification rates (right)
of cryptic and aposematic lineages with different values for the assumed proportions of
species that are covered in the samples.
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without aposematism, with a smaller variance for all of the proportion values (Figure 2).

5.3.2 Group-living and solitary-living

Diversification rates of group-living and solitary-living for different assumed

proportion values

Like the results above for aposematism and crypsis, both the speciation rates and extinc-

tion rates with the defence group-living are consistently higher than without the defence

group-living for all of the proportion rates from 0.1% to 1.5% (Figure 3 left). The net

diversification rates with the defence group-living are consistently higher than without the

defence group-living for all the proportion rates from 0.1% to 1.5% (Figure 3 right).

The speciation and extinction rates are higher when the proportion values of the species

that are covered in the samples are lower. The net diversification rates are relatively stable.

MCMC posterior density distributions of diversification rates of group-living

and solitary-living for different assumed proportion values

The mcmc posterior density distributions show that the diversification rates with group-

living are distributed much higher and with a larger variance than the diversification rates

without group-living with a smaller variance for different proportion rates (Figure 4).

5.4 Discussion

Diversification rates with and without the defence aposematism and the defence group-

living are compared in this research. Diversification rates with the defence aposematism

/group-living are consistently higher than the diversification rates without the defence

aposematism/group-living. This agrees with Ehrlich and Raven’s“escape and radiate”

theory [17], that defences can be associated with higher diversification rates. Specifically,

the results about the aposematism agree with the previous research in its positive asso-

ciation with the diversification [11, 31, 32]. The association between diversification rates

and group-living is to my knowledge a new finding, and here we find that group-living also

helps to increase the diversification rates.
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Figure 5.2: The posterior probability density functions for the diversification rates of both
cryptic and aposematic lineages with different values for the assumed proportions of species
that are covered in the samples.
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Figure 5.3: The speciation and extinction rates (left), and diversification rates (right) of
solitary-living and group-living lineages with different values for the assumed proportions
of species that are covered in the samples.
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Figure 5.4: The posterior probability density functions for the diversification rates of both
solitary-living and group-living lineages with different values for the assumed proportions
of species that are covered in the samples.
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The association between group-living and diversification rates has been barely studied

before. We hypothesised that group-living can function as a defence, in the sense that it

can dilute the risks each individual faces and therefore increase individuals’ survival rates

[44, 45, 46], and also a group itself can function as a huge defence [36, 35]. The findings

here about the association between group-living and diversification rates also agree with

Ehrlich and Raven’s “escape and radiate” theory, as we expected [17]. However, since

group-living has many functions other than defences, it is possible that it is the other roles

of group-living that influence diversification rates more than its defence role. For example,

some caterpillars might gather together mainly for cooperative living and foraging [34]

and, compared to defending against enemies, diseases are more likely to be transmitted in

their groups which brings more risks to the group [55, 56]. The overall effect of these roles

of group-living might still help to increase the species’ survival and reproduction rates,

and therefore the population size grows, which might be followed by higher diversification

rates. So here we have a positive relation between group-living and diversification rates

but, since group-living has many other functions, we are unsure whether it is its defence

function that helps to increase diversification rates.

Compared to the consistent findings of the association between aposematic defences and

diversification rates in this and previous research, the findings of the relation between

chemical defences and diversification rates, however, were ambiguous in the previous re-

search. The reason for this might be that the chemical defences are variable, and there-

fore their relation with diversification rates can be complicated. Chemical defences, as

secondary defences, can be more variable compared to first defences(e.g. physical, mor-

phological defences, etc), either in their quantities, and their components [57, 58, 59, 60];

therefore, treating chemical defences using binary traits (chemical defences vs no chemical

defences)might have simplified their influence on diversification rates; whereas the first de-

fences can be less variable [59], so treating them as binary traits (defences vs no defences)

is relatively plausible. Since the current evidence is limited, we are unsure whether the

“escape and radiate” theory [17] is true for some defences, or if it is a questionable theory.

It will be helpful for future researchers to offer more evidence in this area.

The species’ mutualistic defence relationship with another species might further help to

explain the “escape and radiate” theory [17]. As mentioned in the introduction to this

chapter, the chemical defences obtained from other mutualised species are found to have a

consistent association with faster diversification rates—those insects with chemical defences
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gained from the host plants have higher diversification rates than those that lack these

[23, 24, 25]. At the same time, the plants that have insects in a mutualistic defence

relationship are also found to have faster diversification rates [10]. It is possible that the

defences that function more effectively might have a closer relationship with diversification

rates (e.g.the defences that mutualise with the traits of other species;or first defences, such

as aposematism, that are predicted to be more effective since they are more often used

than the secondary defences [59, 60, 61, 62]).

One of the limit of this study has been mentioned in subsection 4.4.4. We have assumed

the dataset from Tullberg and Hunter [38] is reasonably unbiased with respect to their

traits, however, certain bias of the dataset compared to the large Macrolepidoptera clade

might be unavoidable. Nevertheless, we find that studies such as [35, 63, 64, 65] have

shown the similar trait patterns as Tullberg and Hunter [38], also Tullberg and Hunter [38]

includes five different superfamilies which can be less likely to be biased in a consistent

way given their different lifestyles and general ecology. Another limit is that the dataset

covers about 0.7% of the species of the species in the smallest clade that contains all of

the species in our dataset, which is a small proportion value and and might influence

the results associated with diversification rates. However, we have tested a wide range of

proportions from 0.1% to 1.5% which covers 0.7%, which have shown consistent results

for both aposematism (which is also consistent with other studies [11, 31, 32]) and group-

living in two separate studies here (Figure 5.1, 5.2, 5.3, 5.4). Therefore the data has certain

consistence in explaining these corresponding defence traits associated with diversification.

If one defence such as aposematism or group-living is able to increase diversification rates,

we can expect that species with both defences will be more likely to increase their di-

versification rates than those with only one defence. In this case, it would be helpful to

test whether species with two defences (both aposematism and group-living) have higher

diversification rates than species with one defence (either aposematism or group-living).

However, in our research, the species with aposematic defences account for (82+31)/676 =

16.7% and the species with group-living defences account for (21 + 32)/676 = 7.8% of the

total dataset used, which means that the sample size will be much smaller than what

was used above (0.7%). We suspect the new sample sizes will be relatively small for this

research. Therefore, the same research could be better carried out with species whose

phylogenetic trees are smaller and more fully solved than the Macrolepidoptera Order (e.g.

fish families).
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Ehrlich and Raven’s “escape and radiate” hypothesis [17], that defences are associated with

faster diversification rates, is logical and has consistent evidence for some defences, such

as aposematism. However, the evidence for some other defences is less consistent, such as

chemical defences. Which factors can influence diversification rates is quite a complicated

question. Not only defences, but other factors such as other traits and niches might also

influence diversification rates. It can be difficult when these factors are interacting with

each other so the effect of defences on diversification rates might be less obvious. It is

especially the case when the defences are less effective for the species in their defending

functions. For example, chemical defences, as secondary defences, have fewer chances of

being used compared with other earlier defences since they are deployed later, so they

appear to be more variable and the selection force on them is lower [59]. Therefore,

their effect on the diversification rate could be less than the other earlier defences, such as

aposematic defences. Also, how to deal with the effect of variable defences on diversification

rates is another question to consider, which could be more complicated than dealing with

the effect of fewer variable defences.

5.5 Conclusion

Here we have revisited Ehrlich & Raven’s [17] “escape and radiate” hypothesis regarding the

association between diversification rates and two defence traits aposematism and group-

living. Our results agree with their hypothesis that both of these traits are associated

with faster diversification rates. The results about aposematism is consistent with several

previous studies [11, 31, 32], and the results about group-living is new to our knowledge.

Further studies are suggested in using certain smaller and more fully solved clades to test

the same hypothesis and can also test whether the diversification rates is even faster with

multiple defence traits than one single defence trait.
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Chapter 6

Discussion

6.1 Conclusions and Implications

The current literature about multiple defences usually focuses on cases in which each de-

fence is-deployed individually in different circumstances (e.g. towards different enemies

[1, 2], in disparate environments [3, 4, 5], or during different periods of individuals’ lifetime

[6, 7]). However, the connections between defences are much less studied. Defences can

work synergistically with each other, so the function of at least one defence is enhanced by

other defences [8, 9, 10, 11, 12]. It is found that the synergistic effect of multiple defences

can help victims to survive better in the victim-exploit competition [13]. Besides syner-

gistically operating defences, multiple defences are also connected when they are deployed

sequentially since they act one after another. Predators can launch a sequence of attacks

against victims; e.g. detection, identification, approach, subjugation, and consumption

[14]. Victims could have better a chance of survival when they can respond effectively and

correspondingly towards each level of attack [15]. This thesis focus on the connections

between defences. Chapters 2 and 3 study the sequentially-deployed multiple defences,

while Chapters 4 and 5 study the synergistically working multiple defences. In this thesis,

the evolutionary reason, the distribution variances, the coevolution between defences, and

the association between defences and diversification were explored. Here I reflect on each.
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6.1.1 Sequential defences

Chapter 2 studies the evolutionary reason for multiple defences and the trade-off between

defences in the sequential deployment scenario. Some organisms use only one defence very

often, whereas other organisms tend to apply a sequence of several defences. The question

is why do organisms invest in multiple defences rather than in one single “super-defence”?

One reason for this might be that sequential multiple defences could be better than one

“super-defence” in protecting victims in response to sequential enemy attacks. Another

reason could lie in the effect of the sequence deployment of defences; when the earlier

defences are breached, the victims can still escape the enemies when the later defences

hold.

In Chapter 2, I used a mathematical model to explore the evolutionary reason for the

sequential deployment of defences. The mathematical model is used to find the optimal

investment allocation strategy in each defence. I find that whether the optimal strategy

is to invest in multiple defences, or to invest in only one single defence is dependent on

the investment function that converts victims’ fitness into defences. So it can be expected

that the reason why some organisms tend to use only one defence, but other organisms

tend to use multiple defences, might be that the investment functions between defences

are different.

I also find the trade-off between the investment in defences. The investment in early

defences is typically more than the investment in later ones. This happens because the

earlier defences have a higher chance of being used than later defences since they are

deployed earlier. This result agrees with Endler [14], who also argues that prey should

generally invest preferentially in earlier deployed defences than later ones.

The model improves the model in Broom [16] as a general form of investment function

rather than a specific linear investment function is used, which might not be exactly what

the victims perform. I generalise the number of defences to n rather than only two, as

used in Broom [16], since some organisms in the real world have more than two levels

of sequential defences. So the findings here can be applied to understand the defence

investment allocation strategies in a wider range of organisms.

Chapter 3 focuses on the defence phenotype distributions in sequential defences. Defences

are observed as having variable phenotypic appearances [17, 18]. I used a mathematical
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model to explore the evolution of variance across time under the forces of both selection

and mutation. Both mathematical analyses and numerical simulations are used to find the

equilibrium variances in the mutation-selection balance in earlier and later defences. The

results show that the position of the defence in the sequence influences the variance, and

typically the earlier defence evolves to have less variance than the later defence. These

results can help to explain why the secondary defences (e.g. chemical defences) are found

to be very variable both in quantity of toxin and in the chemical constituents [17] whereas

many earlier-acting physical defences such as aposematic colours, thick epidermises, and

thorns appear almost identical in the same organisms. In addition, the defence effectiveness

for protection can influence the equilibrium variance in such a way that a more effective

defence decreases the equilibrium variance, and higher tolerance of deviation from the ideal

phenotype in defences can increase the equilibrium variances.

These results agree with the results in the empirical meta-analysis [19] and field-work [20]

studies. Both found the correlation between variations in later defences (e.g. chemical

defences) and variations in plants’ damage from herbivores are not significant, but varia-

tions in earlier defences (e.g. plant or leaf size, trichomes) are significantly related with

the variation in plants’ damage. This might be because the deployed position of earlier

and later defences plays an important role in protection as Endler [14] proposed and also

as our model suggests, so the earlier defences have higher chances so higher influence on

fitness values. This might also be because the effectiveness is higher and the tolerance of

deviation from the ideal is lower in earlier defence than in later defence, so the effect of

resistance in the earlier defences is better than that in the later defences also indicated in

our model.

6.1.2 Synergistically-acting defences

Sequential defences can be connected by acting one after another. Synergistically-acting

defences have another way of connection since defences can enhance the effect of each

other. For example, chemical defences and aposematic defences can enhance the effect

of each other, since aposematic colours constitute further visual cues of unseen chemical

defences, so their communal effect is better than the effect of each one of them individually

[8, 9, 10, 11, 12].
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Since the evolution of new traits is usually instantaneous compared to the persistence of

existing traits, the simultaneous evolution of two traits can be rare. It is therefore worth

considering which of the two synergistic defences evolved earlier than the other. For the

above example, chemical defences in caterpillars might have evolved before aposematism

because chemical defences themselves can protect victims, but aposematic defences them-

selves might attract the attention of predators, which then results in predator attack.

For the two traits considered (aposematism and group-living), previous research has differ-

ent predictions about the evolutionary order of the two traits. The kin selection hypothesis

suggests that the evolution of aposematism happens before group-living since aposematism

is likely to evolve in kin groups. The signal enhancement hypothesis suggests that since

group-living enhances the effect of aposematism, the evolution of group-living evolved af-

ter aposematism. Even so, I suspect that there could be dynamic coevolution between

the two. Since the larvae of many closely-related insect clades of Lepidoptera (e.g. Tri-

choptera, Antliophora, Hymenoptera) and some basal Lepidoptera clades are group-living,

group-living could be the ancestral state and the evolution from group-living to solitary-

living is likely. Also, the possibility that the evolution from aposematism to crypsis might

happen cannot be excluded. It may also be possible that derived states can evolve back to

the primitive states (backward evolution).

In Chapter 4, the coevolution of the binary states (solitary-living/group-living and cryp-

tic/aposematic) is explored. Here I find that backwards evolution can happen (both from

group-living to solitary-living and from aposematic to cryptic). The initial ancestral state

is more likely to be the group-living state rather than the solitary-living state, although

whether it is aposematic or cryptic is less certain. I also find that the evolution from

group-living to solitary-living is more likely to happen in an aposematic lineage compared

to a cryptic lineage and then followed by the transition from aposematism to crypsis. The

reason for this could be that directly losing the group protection is risky for cryptic individ-

uals, but initial evolution to aposematism could facilitate the transition from group-living

to solitary-living so that the individuals are still protected by the aposematic defences in

the process. Also, the aposematic state is still riskier than the cryptic state in a solitary

lineage, so the evolution from an aposematic state to cryptic states is more likely to happen

than the reverse.
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In addition, I find that the transition rates from the solitary cryptic state to the two

neighbouring states (group cryptic state and solitary aposematic state) is relatively low,

so the solitary cryptic state is relatively more stable compared to the other states. After

calculating the probability dynamics of the four binary states, I find that the solitary

cryptic state has the highest probability value in the equilibrium regardless of ancestral

state.

The findings in Chapter 4 are a little against intuition in at least two aspects. First, the

ancestral state might not be solitary-living but is more likely to be group-living, so the

previous studies about the evolutionary order of group-living and aposematism might be

problematic. Second, there are coevolutionary dynamics in all the four binary states so,

during the evolution, each of the four binary states has a certain probability of existing.

Although the solitary cryptic state has the highest probability in the equilibrium, it is still

possible to transit to other states at some point and then possibly evolve back later.

Chapter 5 studies the role of defences in macroevolution. As mentioned in Chapters 2 and

3, more effective defences can change the survival rates, and also change the selection force

on the population, both of which are found to be associated with diversification rates. For

one thing, higher survival rates can help the population to grow, and so a higher chance of

diversification might follow [21, 22]. For another thing, different selection forces can make

populations evolve in different directions, which is then followed by reproduction isolation

and the generation of new species [23, 24, 25]. Ehrlich and Raven [26] have been cited many

times for their hypothesis regarding the association between defences and diversification.

There have been a few empirical tests for their hypothesis, although the number is still

relatively limited. In Chapter 5, I used the same defence traits aposematism and group-

living as used in Chapter 4, in order to add some new evidence to Ehrlich and Raven’s [26]

hypothesis.

I found that both aposematism and group-living are associated with faster diversification

rates, which agrees with Ehrlich and Raven’s [26] hypothesis, and especially, the association

between aposematism and diversification rates is consistent with other empirical evidence

[27, 22, 28]. However, the previous literature shows that the associations between chemical

defences and diversification rates are less consistent, as the relations between the two can

be either positive [29, 30, 31, 32, 33, 34], negative [35, 36], or non-existent [37]. This agrees
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with our previous findings from Chapters 2 and 3, which show that earlier defences (e.g.

aposematism) are more likely to be used and to be more effective at providing protection,

therefore, earlier defences might be more likely to associate with higher diversification rates

than later defences (e.g. chemical defences). Also, since the later defences (e.g. chemical

defences) typically have higher variances than earlier defences, treating chemical defences

using binary traits might have simplified their influence on diversification compared to the

less variable earlier defences (e.g. aposematism). The association between group-living

and diversification rates to my knowledge is new. Since group-living can either function as

defence [38, 39, 40, 41, 42], or cooperative living and foraging [43, 44], and both of which

can increase diversification rates, the association between group-living and diversification

could be an extended area linked to Ehrlich and Raven’s [20] hypothesis.

6.2 Limitations and future work

Both Chapters 2 and 3 use mathematical models to analyse the relationship between earlier

and later defences in the sequential defence scenario. When using mathematical models, it

is inevitable to use some assumptions either to simplify the questions or to focus on the key

points or scenarios that are of interest. The model developed in Chapter 2 assumed that the

whole population faces the same predation pressure, so the population evolves to have the

same optimal defence strategy. I do this in order to find the optimal investment strategies

for the populations in which defence strategies are found to be similar in individuals.

Therefore, this model cannot be used to analyse a population which has a variation in the

defence phenotypes, or in which the individuals have different defence strategies. However,

I have tried to make the question as general as possible. As mentioned above, I have used

the investment function in the most general form f(x) compared to a linear form, and the

defence numbers are a general n compared to two. In these ways, we do not need to think

about whether a linear form function as well as whether two levels of defences will influence

our results.

Compared to Chapter 2, Chapter 3 explores the variance in the mutation-selection balance

in the population, so the predation pressures on defences are not assumed to be the same

but stronger when the defences are further away from the ideal defence phenotype. In

order to give the model a wide use, a normal form of mutation function and an exponential
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form of selection function are used. I use a normal mutation function because, according to

the central limit theorem, when a large number of independent, and identically-distributed

events are observed, their mean tends to distribute normally. I use an exponential selection

function because the cumulative distribution function of evenly-distributed events (Poisson

Process) — that is defences are breached—not happening satisfies exponential distribution.

Therefore, the model has wide uses in the real world when the event size is large.

The model I used to consider the mutation-selection balance in defence variances in Chapter

3 can also be applied to traits other than defences either to theoretically analyse the

properties in trait variances or to empirically calculate the equilibrium variance values

given the mutation and selection parameters.

There are two ways in which this research could be extended. First, we could include

the competition or invasion of a second population with different characteristics (e.g. a

different investment function, different damage costs caused by predators, or no defence

investment at all but with a mimicry strategy). Second, we could include the coevolution

between victims and their predators. So we can consider the interaction inside victims by

their own and each other’s population densities or abundances [45], their fitness values,

their mimicry strategies [46], the character mutation rates in themselves or even to the

other population, and so on; and we can consider the interaction between victims and

their predators by each other’s population density or abundance [47, 45], the mutation of

defence characters and predation characters [13], and so on. In these ways, we could see

the patterns of evolution of the defence strategies and distributions in the dynamics of the

coevolution between victim populations and also between victims and predators.

Chapter 4 explores the coevolution of two defence traits (aposematic traits and group-

living). It will be helpful to carry out the same study in other species, which would provide

results for comparison with the present study in caterpillars, in order to see whether the

similar pattern of dynamics can be observed in those species. Our method can be used to

explore any other coevolved two or more than two categorical traits (e.g. defences traits

or other traits) or genes (e.g. genetic network in genetic sequences [48]), and find out their

possible ancestors, their future equilibrium and the dynamics across time. It can also be

applied to predict the dynamics of populations’ migration behaviour in several habitats.
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In Chapter 5, I study the association between defences and diversification rates. Since the

sample species in our dataset is relatively small compared to the number of species in the

smallest clade that covers our dataset, I am not able to compare the diversification rates in

the species with two defences (a) to the diversification rates in the species with one defence

(b). If Ehrlich and Raven’s [26] ’s hypothesis holds, (a) could be larger than (b). This

research can be carried out using clades that are more phylogenetically solved and whose

dataset is more accessible than the Macrolepidoptera clade (e.g. fish clades).

In summary, this thesis aims to study the connection between defences in two important

multiple defence scenarios— sequentially-deployed multiple defences and synergistically

acting multiple defences. Different topics were explored: the evolutionary reason for mul-

tiple defences, the trade-off between defences, the distribution variances in defences, the

coevolution between defences, and the association between defences and macroevolutionary

diversification rates. Here the connections between earlier and later defences and between

two synergistically acting defences are found to play important roles in the evolution of

multiple defences, apart from the protective effect each defence has. Multiple defences

are widely found in nature and also have applications in certain human practical areas

(e.g. computer network defences), so understanding how they evolve interactively can be

meaningful.
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