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Abstract. We study the largest block size of Beta n-coalescents at small times as n tends to infinity,

using the paintbox construction of Beta-coalescents and the link between continuous-state branching
processes and Beta-coalescents established in Birkner et al [4] and Berestycki et al [2]. As a corollary,

a limit result on the largest block size at the coalescence time of the individual/block {1} is provided.

1. Introduction and main results

Beta n-coalescents form a class of partition-valued coagulating Markov chains. This family was
introduced by Schweinsberg ([20]) following pioneer works of Pitman ([17]), Sagitov([18]) and Möhle
and Sagitov ([16]). Formally, a Beta n-coalescent (Π(n)(t), t ≥ 0) is a continuous-time Markov chain
with values in partitions of [n] := {1, 2, . . . , n} starting at Π(n)(0) = {{1}, {2}, . . . , {n}}. As n-
coalescents can be used as models for the genealogy of a sample of n individuals, we refer to [n] as
the set of (labels of) individuals. Its dynamics are determined by a parameter α ∈ (0, 2): when Π(n)

has b blocks, any k-tuple of them merges into one block at rate

λb,k :=
β(k − α, b− k + α)

β(α, 2− α)
(1)

where β(a, b) = Γ(a)Γ(b)/Γ(a + b) is the Beta function. In this paper, we are only interested in the
case α ∈ (1, 2).

Equation (1) induces exchangeability and consistency of these processes. Exchangeability means
that if we permute the labels of individuals, the law of Π(n) stays unchanged. Consistency refers
to that for any couple of integers n < m, the projection of Π(m) on [n] has the same law as Π(n).
By Kolmogorov’s extension theorem ([17]), we can construct the so-called Beta-coalescent process
(Π(t), t ≥ 0) taking values in partitions of N such that the projection of Π on [n] is equal in distribution
to Π(n). When α ∈ (1, 2) the Beta-coalescent has proper frequency (i.e., almost surely for any t > 0,
Π has no singletons, see [17]) and comes down from infinity (i.e., almost surely for any t > 0, Π has a
finite number of blocks, see [19]).

Berestycki et al ([2]) provided many results on the behaviour of functionals of Π(t) as t tends to
0, such as the number of blocks, the ranked sequence of asymptotic frequencies of those blocks and
the asymptotic frequency of the largest block. For the latter, they establish the following result in
Proposition 1.6:

Proposition 1.1. let X(t) be the asymptotic frequency of the largest block of Π at time t, then

(αΓ(α)Γ(2− α))
1
α t−

1
αX(t)

d→ X, as t goes to 0 (2)

where X is a Fréchet random variable with parameter α, i.e., P(X ≤ x) = e−x
−α
, for any x ≥ 0, and

“
d→” stands for the convergence in law.
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This is a result in the infinite coalescent for t → 0. Often, especially when used as a genealogy
model, we are actually more interested in the n-coalescents and their asymptotic behaviour, since we
can then interpret results in terms of the finite models (as in [7, 8, 9, 12, 13, 15, 21, 22]). Proposition
1.1 would in this sense be first taking n → ∞, then t → 0, while we would like a simultaneous limit
(tn, n)→ (0,∞). In this case, we could look at specific, interpretable/interesting small times tn.

Such time is the external branch length of individual 1 (studied in [9], and with further extensions

given recently in [22] and [24]), denoted by T
(n)
1 and defined by

T
(n)
1 := sup{t, {1} ∈ Π(n)(t)}.

This can be seen as seeing the coalescent from the eyes of individual 1 and measuring its “distance”
to the rest of the sample or its genetic uniqueness ([6]). Here individual 1 represents a randomly
chosen individual of the sample thanks to exchangeability. Observe that, since the Beta-coalescent
has proper frequency when α ∈ (1, 2), this variable vanishes as we let n tend to infinity. We are now
curious how the block structure of the coalescent looks like at this specific time (asymptotically).

One possible tool for this study is the minimal clade size, studied in [22] for α ∈ (1, 2) (see also

[11] for α = 1 and [5] for α = 2). This is the size of the block containing 1 at time T
(n)
1 . The size of

the minimal clade gives the information of how many individuals share the genealogy with individual
1 after he merges. It was shown in [22] that the minimal clade size converges in law, without any
renormalization, to a heavy-tailed random variable of index (α− 1)2.

Now we would like to compare this minimal clade size to the size of the largest block at time T
(n)
1 ,

denoted by W̃ (n). This comparison gives a first picture of the inhomogeneity of the block structure
of the Beta n-coalescent at small times. To study W̃ (n), we first consider the size of the largest block
at any time t, denoted by W (n)(t). Hence, we have

W̃ (n) = W (n)(T
(n)
1 ).

We obtain an asymptotic result for W (n) at the n1−αt scale.

Theorem 1.2. For a Beta n-coalescent with 1 < α < 2, as n tends to infinity

(αΓ(α)Γ(2− α))
1
α (nt)−

1
αW (n)(n1−αt)

d−→ X, (3)

where X is a Fréchet random variable with parameter α.

Rewriting (3) as

αΓ(α)Γ(2− α))
1
α (n1−αt)−

1
α
W (n)(n1−αt)

n

d−→ X,

the reader can observe the similarity with (2).

To study the behaviour of W̃ (n), we shall consider the restriction of Π(n) on {2, . . . , n}, denoted
by Π(n,2) = (Π(n,2)(t), t ≥ 0). By consistency, the latter is equal in law to Π(n−1) modulo notations

of the labels of individuals. Then W̃ (n) is actually the largest block size of Π(n,2)(T
(n)
1 ) plus 1, if {1}

coalesces with the largest block of Π(n,2)(T
(n)
1 ) or plus 0 otherwise.

It has been established in the proof of Theorem 5.2 of [9] that conditional on Π(n,2), nα−1T
(n)
1

converges in law to a random variable T . More precisely,

P(nα−1T
(n)
1 ≥ t|Π(n,2))

d−→ P(T ≥ t) = (1 +
t

αΓ(α)
)−

α
α−1 . (4)

This shows that in the decomposition of W̃ (n) = W (n)(T
(n)
1 ), the terms (W (n)(n1−αt), t ≥ 0) and

nα−1T
(n)
1 are asymptotically independent. Combining (4) together with Theorem 1.2, we can describe

the limit of W̃ (n) as a mixture.

Corollary 1.3. As n tends to infinity,

W̃ (n)

n
1
α

d−→ W̃ , (5)
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where W̃ is a positive random variable such that for any x ≥ 0,

P(W̃ ≤ x) =

∫ ∞
0

exp(−x−α t
αΓ(α)Γ(2−α) )

(α− 1)Γ(α)
(1 +

t

αΓ(α)
)−

2α−1
α−1 dt.

This note is organised as follows. In Section 2, we introduce the main tools such as the construc-
tion of Beta-coalescents via continuous-state branching processes and the paintbox construction of
exchangeable coalescents. Section 3 is devoted to the proofs of Theorem 1.2.

2. Preliminaries

2.1. Ranked coalescent and paintbox construction. Assume all along the rest of the paper that
1 < α < 2. Let Π = (Π(t), t ≥ 0) be the Beta-coalescent and denote by K = (K(t), t > 0) the
block-counting process of Π. In words, K(t) stands for the number of blocks of Π(t). It is known
that Π is coming down from infinity: for any t > 0, K(t) is finite almost surely ([19]). Also recall
that for any t ≥ 0, Π(t) is an exchangeable random partition of N. This means that if we permute
finitely many integers in Π(t), the law of Π(t) is unchanged. Applying Kingman’s paintbox theorem
on exchangeable random partitions ([14]), almost surely for every block B ∈ Π(t), the following limit,
called the asymptotic frequency of B, exists:

lim
m→∞

1

m

m∑
i=1

1{i∈B}.

Furthermore, when t > 0, the sum of all asymptotic frequencies equals 1 since Π is of proper frequency
([17]). Hence, one can reorder all the asymptotic frequencies in a non-increasing way to define a

sequence Θ(t) = {θ1(t), θ2(t), · · · , θK(t)(t)} where θ1(t) ≥ θ2(t) ≥ · · · ≥ θK(t)(t) and
∑K(t)
i=1 θi(t) = 1.

At time t = 0, every block is a singleton and then has asymptotic frequency 0. Hence one can
naturally set Θ(0) = {0, 0, . . .}. Then the process Θ = (Θ(t), t ≥ 0) is well defined. We call it the
ranked coalescent.

Given Θ(t) for some t > 0, one can recover the distribution of Π(t) using again Kingman’s paintbox
theorem. Let us at first divide [0, 1] into K(t) subintervals such that their lengths are equal one to one
to the values of elements of Θ(t). Then we throw individuals 1, 2, · · · uniformly and independently
into [0, 1]. Finally, all individuals within one interval form a block and this procedure provides a
random exchangeable partition which has the same law as Π(t). Thanks to the consistency property,
the restricted partition Π(n)(t) can be obtained using the same procedure but throwing n particles
instead of infinitely many.

2.2. Beta-coalescents and stable continuous-state branching processes. To prove Theorem
1.2, we will use classical relations between Beta-coalescents and continuous-state branching processes
(CSBPs) developed in [4] (see also Section 2 of [2]). We give a short summary to provide a minimal
set of tools. A continuous-state branching process (Z(t), t ≥ 0) is a [0,∞]-valued Markov process (in
continuous time) whose transition semigroup pt(x, ·) satisfies the branching property

pt(x+ y, ·) = pt(x, ·) ∗ pt(y, ·), for all x, y ≥ 0.

For each t ≥ 0, there exists a function ut : [0,∞)→ R such that

E[e−λZ(t)|Z(0) = a] = e−aut(λ). (6)

If, almost surely, the process has no instantaneous jump to infinity, the function ut satisfies the
following differential equation

∂ut(λ)

∂t
= −Ψ(ut(λ)),

where Ψ : [0,∞) −→ R is a function of the form

Ψ(u) = γu+ βu2 +

∫ ∞
0

(e−xu − 1 + xu1{x≤1})π(dx),
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where γ ∈ R, β ≥ 0 and π is a Lévy measure on (0,∞) satisfying
∫∞

0
(1∧x2)π(dx) <∞. The function

Ψ is called the branching mechanism of the CSBP.
As explained in [3], a CSBP can be extended to a two-parameter random process (Z(t, a), t ≥ 0, a ≥

0) with Z(0, a) = a. For fixed t, (Z(t, a), a ≥ 0) turns out to be a subordinator with Laplace exponent
λ 7→ ut(λ) thanks to (6).

There exists a measure-valued process (Mt, t ≥ 0) taking values in the set of finite measures on
[0, 1] which characterises (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1). More precisely, (Mt([0, a]), t ≥ 0, 0 ≤ a ≤ 1) has
the same finite-dimensional distributions as (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1). Hence (Mt([0, a]), 0 ≤ a ≤ 1)
is a subordinator with Laplace exponent λ 7→ ut(λ) and Z(t, 1) = Mt([0, 1]) is a CSBP with branching
mechanism Ψ started at M0([0, 1]) = 1. In particular, if the branching mechanism is Ψ(λ) = λα, its

Lévy measure is given by π(dx) = α(α−1)
Γ(2−α)x

−1−αdx and, for all t > 0, Mt consists only of a finite

number of atoms. For the construction of (Mt([0, a]), t ≥ 0, 0 ≤ a ≤ 1), we refer to [1, 4, 10].
A deep relation has been revealed in [4] between the Beta-coalescent and the CSBP with branching

mechanism Ψ(λ) = λα. It is described by the following two lemmas which are respectively Lemma
2.1 and 2.2 of [2]. To save notations, from now on, (Z(t), t ≥ 0) will always denote a continuous-state
branching process (Z(t, 1), t ≥ 0).

Lemma 2.1. Assume that (Z(t), t ≥ 0) is a CSBP with branching mechanism Ψ(λ) = λα and
let (Mt, t ≥ 0) be its associated measure-valued process. If (Π(t), t ≥ 0) is a Beta-coalescent and
(Θ(t), t ≥ 0) is the associated ranked coalescent, then for all t > 0, the distribution of Θ(t) is the same

as the distribution of the sizes of the atoms of the measure
MR−1(t)

Z(R−1(t)) , ranked in decreasing order. Here

R(t) = (α− 1)αΓ(α)
∫ t

0
Z(s)1−αds and R−1(t) = inf{s : R(s) > t}.

Let µ denote the Slack’s probability distribution on [0,∞) (see [23]) characterised by its Laplace
transform

Lµ(λ) =

∫ ∞
0

e−λxµ(dx) = 1− (1 + λ1−α)−
1

α−1 , λ ≥ 0. (7)

Lemma 2.2. Assume Ψ(λ) = λα. For any t ≥ 0, let D(t) be the number of atoms of Mt, and let
J(t) = (J1(t), · · · , JD(t)(t)) be the sizes of the atoms of Mt, ranked in decreasing order. Then D(t)

is Poisson with mean γ(t) = ((α− 1)t)
− 1
α−1 . Moreover, conditional on D(t) = k, the distribution of

J(t) is the same as the distribution of (γ(t)−1X1, · · · , γ(t)−1Xk) where X1, · · · , Xk are obtained by
picking k i.i.d. random variables with distribution µ and then ranking them in decreasing order.

Remark 2.1. From the relation between (Mt, t ≥ 0) and (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1) and also the fact
that for all t > 0, Mt has a finite number of atoms D(t), we can deduce that for a given t > 0,
there exist 0 ≤ a1, · · · , aD(t) ≤ 1 such that {Z(t, a1) − Z(t, a1−), · · · , Z(t, aD(t)) − Z(t, aD(t)−)} are
exactly the sizes of the atoms of Mt. Markov property of (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1) implies that for
s ≥ t, discontinuity points of the subordinator (Z(s, a), 0 ≤ a ≤ 1) must be part (or all) of the points
a1, · · · , aD(t). Therefore, t 7→ D(t) is almost surely non-increasing.

3. Proofs

In this section, we aim to prove Theorem 1.2 and Corollary 1.3. From now on, we will use the
notations tn = n1−αt and t′n = tn

(α−1)αΓ(α) . Lemma 2.1 entails that Θ(tn) has the same law as
MR−1(tn)

Z(R−1(tn)) . Moreover, Lemma 4.2 of [2] states that R−1(tn)
t′n

P→ 1, as n goes to ∞. From this arises the

idea of approximating the block sizes of the coalescent at time tn by the atoms of the renormalized
measure-valued process at time t′n. The advantage of this approximation is that the time is no longer
random. This idea will be executed through three steps. First, we will study the size of the largest
atom of the rescaled measure M/Z at deterministic time t′n, using tools of the theory of CSBPs.
Second we show that the paintbox construction of an exchangeable partition can also be provided by
using a different paintbox and by modifying it according to the differences between the paintboxes. In
the third step, we use this construction to approximate the partition Π(n) at time tn from partitions
built from the rescaled atoms of M/Z at time (1± ε)t′n for small ε.
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3.1. The largest atom size of M/Z at a fixed time. We start with a technical lemma associated
to the measure µ. We write an ∼ bn if limn→∞

an
bn

= 1. Recall from Equation (33) of [2] that

µ([x,∞)) ∼ x−α

Γ(2− α)
(8)

when x goes to ∞.

Lemma 3.1. Let k > 0 and X be a random variable distributed according to µ. Define X such that
conditional on X, X is a Poisson variable with parameter X

k . Then for any x > 0,

lim
n→∞

nP(X ≥ xn 1
α ) =

(kx)−α

Γ(2− α)
.

Proof. Let M = bxn 1
α c. We start the proof with two claims. First, using Stirling’s formula for M !

and a change of variable, we get that for any 0 < β < 1,∫ Mβ

0

e−t
tM

M !
dt =

∫ Mβ

0

eM−t
(
t

M

)M
(2πM)−

1
2 (1 +O(M−1))dt

=

∫ β

0

eM(1−t+ln t)(
M

2π
)

1
2 (1 +O(M−1))dt

= O(eM(1−β+ln β)M
1
2 ). (9)

The last equality is due to the fact that 1 − t + ln t is negative and increasing for t ∈ (0, 1). Second,
if β > 1, then ∫ ∞

Mβ

e−t
tM

M !
dt =

∫ ∞
β

eM(1−t+ln t)(
M

2π
)

1
2 (1 +O(M−1))dt.

Notice that 1 − t + ln t is strictly decreasing and concave over [β,∞]. Then there exists a positive
number ε such that 1− t+ ln t ≤ −εt for any t ≥ β. Therefore,∫ ∞

Mβ

e−t
tM

M !
dt ≤

∫ ∞
β

e−εMt(
M

2π
)1/2(1 +O(M−1))dt = O(e−εMβM−1/2). (10)

Now we can turn to X . Thanks to successive integrations by parts,

P(X ≥M + 1) = E[

∫ X
k

0

e−t
tM

M !
dt]. (11)

Let 0 < β1 < 1 and β2 > 1, then we have

P(X ≥M + 1) = I1 + I2 + I3,

where

I1 = E[

∫ X
k

0

e−t
tM

M !
dt1{X<kMβ1}],

I2 = E[

∫ X
k

0

e−t
tM

M !
dt1{kMβ1≤X≤kMβ2}],

I3 = E[

∫ X
k

0

e−t
tM

M !
dt1{X>kMβ2}].

Now let n tend to infinity. By (9), we get

0 ≤ nI1 ≤ nP(X < kMβ1)

∫ Mβ1

0

e−t
tM

M !
dt −→ 0, n→∞. (12)

It is easy to verify that
∫∞

0
e−t t

M

M !dt = 1 for any integer M ≥ 0. Then using together (8) and (10),
we obtain

lim
n→∞

nI3 = lim
n→∞

nP(X > kMβ2) =
(kxβ2)−α

Γ(2− α)
. (13)
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In the same way, we have

0 ≤ nI2 ≤ nP(kMβ1 ≤ X ≤ kMβ2) −→ (kxβ1)−α

Γ(2− α)
− (kxβ2)−α

Γ(2− α)
, n→∞. (14)

If β1 and β2 are close enough to 1, nI2 can be bounded by an arbitrarily small positive number for n
large enough. The proof is finished by combining (12), (13) and (14). �

Fix t > 0. If D(t) 6= 0, let J̄i(t) = Ji(t)
Z(t) for 1 ≤ i ≤ D(t). Let {d1(t), · · · , dD(t)(t)} be an interval

partition of [0, 1] such that the Lebesgue measure of di(t) is J̄i(t). Build a partition of [n] thanks to a
paintbox associated with {d1(t), · · · , dD(t)(t)}. Let Ni(t) be the number of integers in the i-th interval
and N(t) = max{Ni(t) : 1 ≤ i ≤ D(t)}. This random variable stands for the size of the largest block
of a partition of [n] obtained by a paintbox construction from the atoms of M/Z at time t.

Lemma 3.2. Let x > 0. Then
1)

lim
n→∞

P(N(t′n) ≤ xn 1
α ) = exp(− tx−α

αΓ(α)Γ(2− α)
).

2) Let 0 < y < x. Then

lim
n→∞

P(∃i : Ji(t
′
n) < n

1−α
α y,Ni(t

′
n) ≥ xn 1

α ) = 0. (15)

Proof. 1) Let us throw a Poisson number of integers on [0, 1] with parameter nZ(t′n) . Then, condi-
tional on {Ji(t′n) : 1 ≤ i ≤ D(t′n)}, the number of integers falling in di(t

′
n), denoted by Ni, is a Poisson

variable with parameter nJi(t
′
n) and {Ni : 1 ≤ i ≤ D(t′n)} forms a family of (conditional) independent

random variables. Let N be the maximum of all Ni’s. Then, using Lemmas 3.1 and 2.2, as n tends
to infinity,

P(N ≤ xn 1
α ) = E[Π

D(t′n)
i=1 P(Ni ≤ xn

1
α )] −→ exp(−γ(

t

(α− 1)αΓ(α)
)1−α x−α

Γ(2− α)
) = exp(− tx−α

αΓ(α)Γ(2− α)
).

Lemma 2.2 implies that Z(t′n) tends in probability to 1 as n goes to infinity. Hence N and N are
close in the limit and standard comparison techniques allow to conclude.

2) As Z(t′n) converges to 1, it is easy to show that (15) is equivalent to

lim
n→∞

P(∃i : Ji(t
′
n) < n

1−α
α y,Ni ≥ xn

1
α ) = 0.

Let Ñ = max{Ni : Ji(t
′
n) < n

1−α
α y}. It is necessary and sufficient to show that lim

n→∞
P(Ñ ≥

xn
1
α ) = 0. Notice that conditional on Ji(t

′
n), Ni is a Posson variable with paprameter nJi(t

′
n).

Let {P1(yn
1
α ), P2(yn

1
α ), · · · } be a sequence of i.i.d. Poisson variables with parameter yn

1
α and also

independent of D(t′n). Then

P(Ñ ≥ xn 1
α ) ≤ P

(
max{Pi(yn

1
α ) : 1 ≤ i ≤ D(t′n)} ≥ xn 1

α

)
= 1− E[(P(P1(yn

1
α ) < xn

1
α ))D(t′n)].

Using (11) and (9), one gets

P(P1(yn
1
α ) < xn

1
α ) = 1− o( 1

n
).

Meanwhile, Lemma 2.2 tells that
D(t′n)
n converges in probability to γ( t

((α−1)αΓ(α) ) as n goes to infinity.

Hence the proof is finished. �

Remark 3.1. The key points to prove (15) is that Z(t′n) converges to 1 in probability and
D(t′n)
n is

asymptotically bounded by a positive value from above. The distribution of {Ji(t′n)}1≤i≤D(t′n) is not
necessary to know. Actually (15) remains true if t′n is random and conditions on Z(t′n) and D(t′n) are
still satisfied. This fact will be used in the proof of Theorem 1.2.
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3.2. Alternative paintbox construction. Let (A1, · · · , Ak) and (B1, · · · , Bk) be two partitions
of [0, 1] with k ≥ 1. We throw n particles uniformly and independently on [0, 1] and group those
within the same intervals of (B1, · · · , Bk), which gives a sequence of k numbers (NB1 , · · · , NBk)
such that NBi is the number of particles located in Bi. We can obtain the law of this sequence
in another way using (A1, · · · , Ak). Throw n particles uniformly and independently on [0, 1]. Let
I := {i : 1 ≤ i ≤ n, l(Ai) ≤ l(Bi)}, where l(·) denotes the Lebesgue measure. If a particle falls in
Ai with i ∈ I, then move this particle to Bi. If a particle falls in Ai with i ∈ Ic, then associate to

this particle an independent Bernoulli variable with parameter l(Bi)
l(Ai)

. If the Bernoulli variable gives 1,

then the particle is put into Bi. Otherwise, this particle will be put into Bj for j ∈ I with probability

l(Bj)− l(Aj)∑
h∈I(l(Bh)− l(Ah))

. (16)

We denote by NA
Bi

the new amount of particles in Bi. We have the the following result.

Lemma 3.3. The following identity in law holds.

(NA
B1
, · · · , NA

Bk
)

(d)
= (NB1 , · · · , NBk).

Proof. Notice that only the Lebesgue measure of each element of (A1, · · · , Ak) and (B1, · · · , Bk)
matters. So one can always assume that [0, 1] is divided in a way that Ai is contained in Bi for i ∈ I
and Bi is contained in Ai for i ∈ Ic. Then if a particle is located in Ai for i ∈ I, it is also located in

Bi. But if a particle is located in Ai for i ∈ Ic, with probability l(Bi)
l(Ai)

it is located in Bi. Assume that

this particle is not located in Bi, then it must be in ∪h∈IBh\Ah. Using the uniformity of the throws,
this particle falls in Bj with probability (16). �

3.3. Proof of Theorem 1.2. Let us first recall some technical results from [2]. Let ε > 0, t > 0 and
recall tn and t′n. Let t− = (1−ε)t′n and t+ = (1+ε)t′n. Define the event B1,t := {t− ≤ R−1(tn) ≤ t+}.
It can be found in Lemma 4.2 of [2] that there exists a constant C17 such that

P(B1,t) ≥ 1− C17tnε
−α. (17)

Also from Lemma 5.1 of [2], there exists a constant C18 such that for all a > 0, t > 0 and η > 0,

P( sup
0≤s≤t

|Z(s, a)− a| > η) ≤ C18(a+ η)tη−α. (18)

Thus, if we define B2,t := {1− n 1−α
2α ≤ Z(s) ≤ 1 + n

1−α
2α , ∀s ∈ [t−, t+]}, we obtain that

P(B2,t) ≥ 1− C19t(1 + ε)(1 + n
1−α
2α )n

1−α
2 (19)

where C19 = C18/(α− 1)αΓ(α).
Fix any s ≥ 0 and let π be the random partition of [n] obtained from a paintbox associated

with
MR−1(s)

Z(R−1(s)) . Then π
d
= Π(n)(s). Observe that if R−1(s) ≥ t−, we can as well at first build a

partition from a paintbox associated with
Mt−
Z(t−) and then use Lemma 3.3 to obtain that associated

with
MR−1(s)

Z(R−1(s)) which has the same law as π.

By Markov and branching properties of CSBPs, for any s ≥ t−, we can consider the CSBP as
the sum of D(t−) independent CSBP’s which we denote by mi(s) = Zi(s − t−, Ji(t−)). Notice
that mi(s) can be 0 while Ji(t−) is always positive. Let us then build a partition V (n)(s) =

(V
(n)
1 (s), V

(n)
2 (s), . . . , V

(n)
D(t−)(s)) of [n] from a paintbox associated with (mi(s)Z(s) , 1 ≤ i ≤ D(t−)). Let

I
(n)
i (s) be the number of particles in V

(n)
i (s). and I

(n)
+ (s) = sup{I(n)

i (s), 1 ≤ i ≤ D(t−)}. Fix x > 0

and define B3,t = {∃k : I
(n)
k (t−) ≥ xn 1

α , Jk(t−) ≥ n
2(1−α)
α , sup

t−≤s≤t+
|mk(s)− Jk(t−)| ≤ εJk(t−)}.

On the event B3,t, we have that I
(n)
+ (t−) ≥ xn

1
α . Conditional on B1,t we can also build the

partition V (n)(R−1(tn)) from a paintbox associated to the partition Z(t−)−1(J1(t−), . . . , JD(t−)(t−))
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and Lemma 3.3. Let B(m, p) be a binomial variable with parameters m ≥ 2 and 0 ≤ p ≤ 1. Lemma
3.3 implies that

P
(
I

(n)
+ (R−1(tn)) ≥ (1− 2ε)xn

1
α |B1,t ∩B2,t ∩B3,t

)
≥P
(
B

(
dxn 1

α e, mk(R−1(tn))Z(t−)

Jk(t−)Z(R−1(tn))
∧ 1

)
≥ (1− 2ε)xn

1
α |B1,t ∩B2,t ∩B3,t

)
≥P

(
B

(
dxn 1

α e, (1− ε)1− n 1−α
2α

1 + n
1−α
2α

)
≥ (1− 2ε)xn

1
α

)

=P

(
(xn

1
α )−1B

(
dxn 1

α e, (1− ε)1− n 1−α
2α

1 + n
1−α
2α

)
≥ (1− ε)− ε

)
.

A law of large numbers argument implies that

P
(
I

(n)
+ (R−1(tn)) ≥ (1− 2ε)xn

1
α |B1,t ∩B2,t ∩B3,t

)
≥ 1− ε (20)

for n large enough. Now observe from (18) that

P(B3,t) = P(∃k : I
(n)
k (t−) ≥ xn 1

α , Jk(t−) ≥ n
2(1−α)
α )

× P( sup
t−≤s≤t+

|mk(s)− Jk(t−)| ≤ εJk(t−)|∃k : I
(n)
k (t−) ≥ xn 1

α , Jk(t−) ≥ n
2(1−α)
α )

≥ P(∃k : I
(n)
k (t−) ≥ xn 1

α , Jk(t−) ≥ n
2(1−α)
α )(1− 2tC19n

(1−α)(2−α)
α (1 + ε)ε1−α).

By Lemma 3.2, we obtain that

P(∃k : I
(n)
k (t−) ≥ xn 1

α , Jk(t−) ≥ n
2(1−α)
α ) ∼ P(∃k : I

(n)
k (t−) ≥ xn 1

α ) = P(I
(n)
+ (t−) ≥ xn 1

α )

∼ 1− exp(−(1− ε) tx−α

αΓ(α)Γ(2− α)
).

In consequence,

lim inf
n→∞

P(B3,t) ≥ 1− exp(−(1− ε) tx−α

αΓ(α)Γ(2− α)
)

when n tends to ∞. Then, thanks to (17) and (19), we deduce that

lim inf
n→∞

P(B1,t ∩B2,t ∩B3,t) ≥ 1− exp(−(1− ε) tx−α

αΓ(α)Γ(2− α)
).

Combining the latter with (20), we obtain

lim inf
n→∞

P
(
I

(n)
+ (R−1(tn)) ≥ (1− 2ε)xn

1
α

)
≥ 1− exp(−(1− ε) tx−α

αΓ(α)Γ(2− α)
). (21)

Next, we seek to find an upper bound for P
(
I

(n)
+ (R−1(tn)) ≥ xn 1

α

)
. Conditional on B1,t, we

construct V (n)(t+) from V (n)(R−1(tn)) using the method in Lemma 3.3. Let

B4,t = B1,t∩{∃k : I
(n)
k (R−1(tn)) ≥ xn 1

α ,mk(R−1(tn)) ≥ n
2(1−α)
α , sup

R−1(tn)≤s≤t+

|mk(s)−mk(R−1(tn))|
mk(R−1(tn))

≤ ε}.
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Similarly as for the lower bound,

P
(
I

(n)
+ (t+) ≥ (1− 2ε)xn

1
α |B2,t ∩B4,t

)
≥P
(
B

(
dxn 1

α e, Z(R−1(tn))mk(t+)

Z(t+)mk(R−1(tn))
∧ 1

)
≥ (1− 2ε)xn

1
α |B2,t ∩B4,t

)
≥P
(
B

(
dxn 1

α e, (1− ε)1− n(1−α)/α

1 + n(1−α)/α

)
≥ (1− 2ε)xn

1
α

)
−→ 1. (22)

Using the strong Markov property of the CSBP and (18), we have

P(B4,t) = P(B1,t ∩ {∃k : I
(n)
k (R−1(tn)) ≥ xn 1

α ,mk(R−1(tn)) ≥ n
2(1−α)
α }) (23)

× (1− 2tC19n
(1−α)(2−α)

α (1 + ε)ε1−α) (24)

Notice that using (18), in the sense of convergence of probability

lim
n→∞

sup
t−≤s≤t+

Z(s) = lim
n→∞

inf
t−≤s≤t+

Z(s) = 1

Together with (17), we get the following convergence in probability

lim
n→∞

Z(R−1(tn)) = 1.

Recall Remark 2.1 where it is deduced that t 7→ D(t) is non-increasing. Thus, on the event B1,t, we

have D(t−) ≤ D(R−1(tn)) ≤ D(t+). It is then easy to see that D(R−1(tn))
n is asymptotically bounded

from above by a certain positive number. Now we can apply Remark 3.1 and get

P(B4,t) = P(∃k : I
(n)
k (R−1(tn)) ≥ xn 1

α ) + o(1) = P(I
(n)
+ (R−1(tn)) ≥ xn 1

α ) + o(1). (25)

Using (22), (19) and (25), we get that

lim sup
n−→∞

P(I
(n)
+ (R−1(tn)) ≥ xn 1

α )

≤ lim
n−→∞

P(I
(n)
+ (t+) ≥ (1− 2ε)xn

1
α )

=1− exp(−(x(1− 2ε))−α
t(1 + ε)

αΓ(α)Γ(2− α)
). (26)

Since ε can be arbitrarily small, (21) and (26) allow to conclude.
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