A probabilistic interpretation of the Gaussian binomial coefficients

Takis Konstantopoulos* Linglong Yuan

7 March 2017

Abstract

We give a stand-alone simple proof of a probabilistic interpretation of the Gaussian binomial coefficients by conditioning a random walk to hit a given lattice point at a given time.

Introduction

The Gaussian binomial coefficients [4] are generalizations of classical binomial coefficients and are usually defined as

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-m+1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)} .
$$

The term "generalization" is justified, e.g., by the fact that $\lim _{q \rightarrow 1}\left[\begin{array}{l}n \\ m\end{array}\right]_{q}=\binom{n}{m}$, which becomes obvious if we divide each term in the numerator and denominator of the last display by $1-q$ and expand the ratio into a power series with finitely many terms. The Gaussian binomial coefficients turn out to be polynomial functions of the variable q and satisfy many analogs of the usual properties of binomial coefficients. We refer, e.g., to the textbook of Kac and Cheung [5].

Originally, they appeared in combinatorics, so it is not surprising that they are nowadays very important in random polymer models which have strong connections to algebraic combinatorics; see, for example, the recent work on the q-weighted version of the RobinsonSchensted algorithm introduced by O'Connell and Pei [6]. In the study of random graphs, Gaussian binomial coefficients are present, for instance, in the distributions of the sizes of the transitive closure and transitive reduction of node 1 in a random acyclic digraph with n nodes, see [3] and [2]. Another application is in integer-valued random matrices; see, for example, [1] where the distribution of the m-rank of a random matrix is expressed in terms of these coefficients.

The purpose of this note is to give a short proof of a probabilistic interpretation of the Gaussian coefficients which, not surprisingly, is very similar to their combinatorial interpretation, given by Pólya [7], as counting the number of nondecreasing paths in a rectangle in the 2-dimensional integer lattice that leave a fixed area below them. The probabilistic proof given below (Theorem 1) is different than Pólya's. The note is stand-alone in that everything discussed is proved, including Heine's formula (see (4) below) that is needed at the end of the proof of Theorem 1. The probabilistic interpretation gives a natural meaning to several identities and properties satisfied by the coefficients (see end remarks).

[^0]
The statement and proof

Consider nondecreasing paths in the standard 2-dimensional integer lattice \mathbb{Z}^{2}, that is, finite or infinite sequences x_{0}, x_{1}, \ldots of elements of \mathbb{Z}^{2} such that $\eta_{i}=x_{i}-x_{i-1}$ is either e_{1} or e_{2}, where $e_{1}=(1,0), e_{2}=(0,1)$, the standard unit vectors. Let r, s be nonnegative integers. By a random nondecreasing path from $(0,0)$ to (r, s) we mean a finite nondecreasing path that starts at $x_{0}=(0,0)$ and ends at $x_{r+s}=(r, s)$, and that is chosen uniformly at random among the set of all such paths. Since there are $\binom{r+s}{r}$ such paths, the increments sequence $\left(\eta_{1}, \ldots, \eta_{n}\right)$ is assigned probability equal to $\binom{r+s}{r}^{-1}$.

Theorem 1. Consider a random nondecreasing path from $(0,0)$ to (r, s). This path splits the rectangle $[0, r] \times[0, s]$ into two regions. Let $A_{r, s}$ be the area of the region under the path. Then

$$
\mathbb{E} q^{A_{r, s}}=\left[\begin{array}{c}
r+s \\
r
\end{array}\right]_{q} /\binom{r+s}{r} .
$$

Proof. Toss a fair coin independently and let e_{1} represent heads and e_{2} tails. Denote by ξ_{1}, ξ_{2}, \ldots the successive outcomes, a random independent sequence with $\mathbb{P}\left(\xi_{t}=e_{i}\right)=1 / 2$, $i=1,2, t \geq 1$. Let $X_{0}=0, X_{t}=\xi_{1}+\cdots+\xi_{t}, t \geq 1$. If it takes T_{r+1} coin tosses until the $(r+1)$-th head occurs for the first time then, conditional on the event that we have seen s tails up to T_{r+1}, the sequence $\left(\xi_{1}, \ldots, \xi_{T_{r+1}-1}\right)$ (of length $T_{r+1}-1=s+(r+1)-1=s+r$, under the conditioning) has uniform distribution. Thus, conditional on the same event, the path $\left(X_{0}, X_{1}, \ldots, X_{T_{r+1}-1}\right)$ is a random nondecreasing path from $(0,0)$ to (r, s). Let $N_{i}(t)$ be the number of heads/tails seen up to the t-th toss:

$$
N_{i}(t):=\sum_{k=1}^{t} \mathbf{1}\left\{\xi_{k}=e_{i}\right\}, \quad i=1,2,
$$

and consider the stopping times

$$
T_{0}:=0, \quad T_{m}:=\inf \left\{t \geq 1: N_{1}(t)=m\right\}, m \geq 1 .
$$

Since T_{1}, T_{2}, \ldots is an increasing sequence of stopping times in i.i.d. Bernoulli trials, the random variables $Z_{i}=N_{2}\left(T_{i+1}\right)-N_{2}\left(T_{i}\right), i=0,1,2, \ldots$, are i.i.d. geometric: $\mathbb{P}\left(Z_{i}=j\right)=$ $(1 / 2)^{j+1}, j \geq 0$, and so $\mathbb{E} \theta^{Z_{i}}=\frac{1}{2}(1-\theta / 2)^{-1},|\theta|<2$. Simply putting it, the Z_{i} count the number of up-steps of the path between two successive right-steps and so

$$
V=N_{2}\left(T_{r+1}\right)=\sum_{i=0}^{r} Z_{i}
$$

is the total number of up-steps up to T_{r+1}. The distribution of V is

$$
\begin{equation*}
\mathbb{P}(V=s)=\left(\frac{1}{2}\right)^{r+s+1}\binom{r+s}{r}, \quad s \geq 0 \tag{1}
\end{equation*}
$$

The area $A=A_{r, s}$ under the path $\left(X_{0}, X_{1}, \ldots, X_{T_{r+1}-1}\right)$ is then

$$
A=r Z_{0}+(r-1) Z_{1}+\cdots+Z_{r-1} .
$$

Letting q, θ be variable with, say, $|q|,|\theta|<2$, we have

$$
\begin{align*}
\mathbb{E} q^{A} \theta^{V} & =\mathbb{E}\left[\left(q^{r} \theta\right)^{Z_{0}}\left(q^{r-1} \theta\right)^{Z_{1}} \cdots(q \theta)^{Z_{r-1}} \theta^{Z_{r}}\right] \\
& =\left(\frac{1}{2}\right)^{r+1} \frac{1}{1-\frac{q^{r} \theta}{2}} \frac{1}{1-\frac{q^{r-1} \theta}{2}} \cdots \frac{1}{1-\frac{q \theta}{2}} \frac{1}{1-\frac{\theta}{2}}=\left(\frac{1}{2}\right)^{r+1} \sum_{s=0}^{\infty} C_{r, s}(q)(\theta / 2)^{s}, \tag{2}
\end{align*}
$$

where the $C_{r, s}(q)$ are defined by the right-hand side as coefficients in the Taylor expansion in the variable $\theta / 2$. On the other hand,

$$
\begin{equation*}
\mathbb{E} q^{A} \theta^{V}=\sum_{s=0}^{\infty} \theta^{s} \mathbb{P}(V=s) \mathbb{E}\left[q^{A} \mid V=s\right] \tag{3}
\end{equation*}
$$

Equating coefficients in (2) and (3), also taking into account (1), gives

$$
\mathbb{E}\left[q^{A} \mid V=s\right]=C_{r, s}(q) /\binom{r+s}{r}
$$

It remains to show that the $C_{r, s}(q)$ are Gaussian binomial coefficients. To this end, we prove that if

$$
\begin{equation*}
F_{r}(x):=\prod_{j=0}^{r} \frac{1}{1-q^{j} x}=\sum_{s=0}^{\infty} C_{r, s}(q) x^{s}, \tag{4}
\end{equation*}
$$

then the recurrence relation

$$
\begin{equation*}
C_{r, s}(q)=C_{r, s-1}(q) \frac{1-q^{r+s}}{1-q^{s}}, \quad s \geq 1 \tag{5}
\end{equation*}
$$

holds. This follows quite easily from the observation that

$$
\left(1-q^{r+1} x\right) F_{r}(q x)=(1-x) F_{r}(x) .
$$

Indeed, if, in this identity, we replace $F_{r}(q x)$ and $F_{r}(x)$ by their series, from the righthand side of (4), and equate coefficients of similar powers, we obtain (5). Since, clearly, $C_{r, 0}(q)=F_{r}(0)=1$, we can iterate (5) to obtain

$$
C_{r, s}(q)=\frac{1-q^{r+s}}{1-q^{s}} \frac{1-q^{r+s-1}}{1-q^{s-1}} \cdots \frac{1-q^{r+1}}{1-q}=\left[\begin{array}{c}
r+s \\
r
\end{array}\right]_{q} .
$$

This completes the proof.

Remarks

1. Since $\left[{ }_{r}^{r+s}\right]_{q}$ is proportional to $\mathbb{E} q^{A_{r, s}}$ we have that $\left[{ }_{r}^{r+s}\right]_{q}$ is a polynomial in q.
2. Formula (4) with $C_{r, s}(q)$ the Gaussian binomial coefficients is known as Heine's formula [5]. When $q=1$ it corresponds to the Taylor series (Newton's formula) $(1-x)^{-r}=$ $\sum_{s \geq 0}\binom{-r}{s}(-x)^{s}=\sum_{s \geq 0}\binom{r+s}{r} x^{s}$.
3. By symmetry, the area above the random nondecreasing path has the same distribution as the area below, i.e., the random variables $A_{r, s}$ and $r s-A_{r, s}$ have the same distribution. This is equivalent to the identity $\left[{ }_{r}^{r+s}\right]_{q}=q^{r s}\left[{ }_{r}^{r+s}\right]_{1 / q}$.
4. By the definition of the random variable $A_{r, s}$ as the area under a random nondecreasing path from $(0,0)$ to (r, s) we see, by conditioning on the last edge of this path, that $A_{r, s}$ is in distribution equal to $A_{r, s-1}$ with probability $s /(r+s)$ or to $A_{r-1, s}+s$ with probability $r /(r+s)$. Using then the result of Theorem 1, the well-known recursion $\left[{ }_{r}^{r+s}\right]_{q}=\left[{ }_{r}^{r+s-1}\right]_{q}+$ $q^{s}\left[\begin{array}{c}r+s-1 \\ r-1\end{array}\right]_{q}$ follows.

References

[1] R.P. Brent and B.D. McKay (1987). Determinants and ranks of random matrices over \mathbb{Z}_{m}. Discr. Math. 66, No. 1-2, 35-49.
[2] D. Crippa and K. Simon (1995). q-distributions in random graphs: transitive closure and reduction. Tech. Report, ETH Zurich, Dept. of Computer Science.
[3] D. Crippa and K. Simon (1997). q-distributions and Markov processes. Discr. Math. 170, No. 1, 81-98.
[4] C.F. Gauß (1811). Summatio quarundam serierum singularium. In: Untersuchungen über höhere Arithmetik. German translation by H. Maser of Disquisitiones Arithmeticae and other papers on number theory, 2nd Ed. Chelsea, New York, 1965.
[5] V. Kac and P. Cheung (2002). Quantum Calculus. Springer-Verlag, New York.
[6] N. O'Connell and Y. Pei (2013). A q-weighted version of the Robinson-Schensted algorithm. Electron. J. Probab. 18, No. 95, 1-25.
[7] G. Pólya (1969). On the number of certain lattice polygons. J. Combin. Th. 6, 102-105.

Takis Konstantopoulos
Department of Mathematics
Uppsala University
SE-75106 Uppsala, Sweden
E-MAIL: takiskonst@gmail.com

Linglong Yuan
Department of Mathematical Sciences
Xi'an Jiaotong-Liverpool University
111 Ren'ai Rd, 215123 Suzhou, China
E-MAIL: Linglong.Yuan@xjtlu.edu.cn

[^0]: *Supported by Swedish Research Council grant 2013-4688

