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ABSTRACT. Following Mumford and Chiodo, we compute the Chern character of the derived

pushforward ch(R •π∗O (D)), for D an arbitrary element of the Picard group of the universal

curve over the moduli stack of stable marked curves. This allows us to express the pullback

of universal Brill–Noether classes via Abel–Jacobi sections to the compactified universal

Jacobians, for all compactifications such that the section is a well-defined morphism.
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0. INTRODUCTION

Letπ: Cg ,P →Mg ,P be the universal curve over the moduli stack of stable marked curves,

where P is a nonempty set of markings. The (weak version of) Franchetta’s conjecture, now

a theorem due to Harer [7] and Arbarello–Cornalba [1], gives an explicit description of the

Picard group of the universal curve. Every divisor on Cg ,P , up to a divisor pulled back from

Mg ,P , is linearly equivalent to

(0.1) D= ` eKπ+
∑

p∈P

dpσp +
∑

h ,S

ah ,S Ch ,S

for some integers `, dp and ah ,S . Here eKπ = c1(ωπ) is the first Chern class of the relative

dualising sheaf,σp is the class of the p -th section, and Ch ,S (see Definition 1.3) is the class

of the irreducible component not containing the moving point lying above the boundary

divisor∆h ,S ⊂Mg ,P (more details in Section 1).

Our main result is an explicit formula for the Chern character of the derived pushforward

ch(R •π∗O (D)),

in terms of certain standard generators of the tautological ring (boundary strata classes

decorated with κ classes andψ classes). These generators, denoted X,eX,eY and Z, are intro-

duced in Notation 1.5. To state our main result we need to recall the Bernoulli polynomials
1
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Bt (`), defined by the identity
∑

t≥0

Bt (`)
t !

x t = e `x x

e x −1
.

In particular, Bt (0) = Bt are the classical Bernoulli numbers.

In Section 2 we prove:

Theorem 1. If D is as in (0.1), then

ch(R •π∗O (D)) = Ω+Φ,

where

Ω=
∑

t≥1
a+b=t

Bb (`)
b !

∑

r≥0
k1+···+kr=a

k j>0
(h1,S1)<···<(hr ,Sr )





r
∏

j=1

a
k j

h j ,Sj

k j !



Zkr ,b−1
(hr ),(Sr )

+

+
∑

t≥1
a+b=t

b>0
α+β=b

(−1)βBβ (`)

α!β !

∑

r≥0
k1+···+kr=a

k j>0
(h1,S1)<···<(hr ,Sr )





r
∏

j=1

a
k j

h j ,Sj

k j !

∑

p∈P \Sr

d αp (−ψp )
b−1



Xkr
(hr ),(Sr )

and

Φ=
∑

t≥2

∑

a+b=t
b>0 even

a≥0

Bb

b !

∑

r≥0
k1+···+kr=a

k j>0
(h1,S1)<···<(hr ,Sr )

r
∏

j=1

a
k j

h j ,Sj

k j !

∑

0≤e≤b−2

(−1)e ·

·

  

∑

(l ,T )>(hr ,Sr )

eXkr ,(e ,b−2−e )
(hr ,l ),(Sr ,T )

!

+ eYkr ,(e ,b−2−e )
(hr ),(Sr )

+ (−1)kr
eXkr−1,(e+kr ,b−2−e )
(hr−1,hr ),(Sr−1,Sr )

!

and the symbol (h1,S1)< · · ·< (hr ,Sr ) denotes a strictly ordered chain of stable bipartitions

(see Notation 1.4).

Our formula expresses cht (R •π∗O (D)) as a polynomial of degree t +1 in the variables

`, dp , ah ,S with coefficients in the tautological ring of Mg ,P . The special case where all

ah ,S = 0 can be extracted from Chiodo’s formula [3, Theorem 1.1.1].
We prove Theorem 1 by applying the Grothendieck–Riemann–Roch formula to the uni-

versal curve π, as in Mumford’s seminal calculation of the Chern character of the Hodge

bundle [15, Section 4].
The formula in Theorem 1 has been implemented into the Sage program [17] and is

available upon request from the third named author.

Our main motivation is computing the pullback of (extended, cohomological) Brill–

Noether classes wr
d on the universal Jacobian via the Abel–Jacobi sections. Here we give a

preview, full details are in Section 3.
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Fix 0 ≤ d ≤ g − 1 and let J d
g ,P →Mg ,P be the universal Jacobian parametrising line

bundles of degree d over smooth P -pointed curves of genus g . LetL denote the universal

(or Poincaré) line bundle on the universal curve

eπ: J d
g ,P ×Mg ,P

Cg ,P →J d
g ,P .

For 0≤ r ≤ d /2, the universal Brill–Noether locus W r
d is set-theoretically defined by

W r
d

..=
�

(C , P, L )
�

� L ∈ Picd C , h 0(C , L )> r
	

⊂J d
g ,P ,

and can be endowed with the scheme structure of the (g −d + r )-th Fitting ideal of R 1
eπ∗L .

Each W r
d is in general not equidimensional, and the dimension of its irreducible compo-

nents is unknown. However, a cohomological Brill–Noether class wr
d supported on W r

d

and of the expected dimension can be defined, via the Thom–Porteous formula, as the

(r +1)× (r +1) determinant

(0.2) wr
d =∆

(r+1)
g−d+r c (−R •eπ∗L ) ∈ A•(J d

g ,P ).

The notation∆(p )q c stands for the p ×p determinant |cq+ j−i |, for 1≤ i , j ≤ p and a general

series c =
∑

k ck (see Section 3.2 for more details).

The discussion of the previous paragraph extends verbatim to Mg ,P . One constructs a

compactified universal Jacobian

(0.3) J g ,P (φ)→Mg ,P

for all nondegenerate polarisations φ, and classes wr
d (φ) also defined by Formula (0.2),

mutatis mutandis. The compactified universal Jacobian (0.3) extends J d
g ,P →Mg ,P and

consists of torsion free sheaves of rank 1 on stable curves, whose multidegree is prescribed by

φ. The rational sections of (0.3) are called Abel–Jacobi sections. By Franchetta’s conjecture,

they are all of the form

(0.4) s: (C , P ) 7→ω`π

 

∑

p∈P

dpσp +
∑

h ,S

ah ,S Ch ,S

!

,

for some integers `, dp and ah ,S .

A natural question that has attracted lots of attention is computing the pullback of wr
d (φ)

via the section s. This problem is complicated by the fact that the latter section is, in general,

only a rational map. Theorem 1 allows one to compute s∗wr
d (φ) for everyφ such that s is a

morphism (theseφ’s are characterised in [14, Section 6.1]). Indeed, for every suchφ, we

will prove in Corollary 3.7 the equality

(0.5) s∗wr
d (φ) =∆

(r+1)
g−d+r c (−R •π∗O (D(φ))),

where D(φ) is a modification of a divisor D as in (0.1) obtained by replacing the coefficients

ah ,S with the unique coefficients ah ,S (φ) such thatD(φ) isφ-stable on all curves with 1 node.

Combining (0.5) with Theorem 1 and with the inversion formula (see Equation (3.9)) for the

Chern character, we obtain an explicit expression, for allφ such that s is a morphism, for

the cohomology class s∗wr
d (φ) in terms of the standard generators of the tautological ring.



4 N. PAGANI, A. T. RICOLFI, AND J. VAN ZELM

The case r = d = 0 is related to the problem of extending and calculating the (`-twisted)

Double Ramification Cycle — more details are in Section 3.3 (see also Example 3.3).

Conventions. We will work over the field of complex numbersC. If X is a smooth Deligne–

Mumford stack, we will denote by A•(X ) its Chow ring with rational coefficients.

1. TAUTOLOGICAL CLASSES

1.1. Definition of the tautological ring. Throughout we fix an integer g ≥ 1 and a set of

markings P 6= ;. We follow the exposition and the notation of [2, Section 17.4] to introduce

the tautological ring of the moduli space Mg ,P of stable P -pointed curves of genus g .

It is well-known that the universal curve over the moduli stack of stable P -pointed curves

can be identified with the forgetful morphism from the moduli stack with one extra marking.

Throughout we will denote them by

Cg ,P =Mg ,P∪{ x }
π−→Mg ,P ,

and we will freely switch from one description to the other.

For each marking p ∈ P , we let

σp ∈ A1(Cg ,P )

denote the divisor class corresponding to the p -th section of π. Let ωπ be the relative

dualising sheaf, and set

Kπ ..= c1

�

ωπ

�

∑

p

σp

��

, eKπ ..= c1(ωπ) = Kπ−
∑

p

σp .

We define the cotangent line classes by

ψp
..=σ∗p eKπ ∈ A1(Mg ,P ).

For a ≥ 0, we define the kappa classes

κa
..=π∗K

a+1
π ∈ Aa (Mg ,P ).

The tautological ring of the moduli space of stable marked curves

R •(Mg ,P )⊂ A•Q(Mg ,P )

was originally defined by Mumford in [15, Section 4] in the unmarked case P = ; (which

is not discussed in this paper), and an elegant definition for all moduli spaces of stable

marked curves at once was later given by C. Faber and R. Pandharipande [4]. We will give

here an alternative definition to suit our purposes.

First we recall the notion of decorated boundary stratum class. For Γ = (V(Γ), E(Γ),L(Γ)) in

the set Gg ,P of isomorphism classes of stable P -pointed graphs of genus g (see [2, Chapter

XII.10] for the precise definition of a stable graph and of the set Gg ,P ), we let

MΓ =
∏

v∈V(Γ)

Mgv ,Pv

and denote by ξΓ: MΓ→Mg ,P the associated clutching morphism. Here, Pv is the set of

half-edges and legs issuing from the vertex v , and we require that the stability condition
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2gv −2+ |Pv | > 0 is fulfilled for all vertices v . A “decoration” θ = (θv )v on the graph Γ is the

datum of a monomial

θv =
∏

p∈Pv

ψ
ap
p

∏

j

κ
b j

j ∈ A•(Mgv ,Pv
)

for each vertex v ∈V(Γ). Classes of the form

1

|AutΓ|
ξΓ∗

 

∏

v∈V(Γ)

θv

!

∈ A•(Mg ,P ),

for Γ and θ as above, are called decorated boundary strata classes. (Here and in the following,

we omit writing the pullback via the projection map to the factor, and we omit writing

the tensor product of classes, unless that helps identifying which factor they are pulled

back from). We define R •(Mg ,P ) to be the vector subspace of A•(Mg ,P ) generated by these

classes and then endow it with the intersection product. When θv is trivial for all v , we

simply write δΓ ..= ξΓ∗(1)/|AutΓ|.
The collection of decorated boundary strata classes can be made into a finite set (for

fixed g and P ) by only considering decorations θ that are not obviously vanishing for degree

reasons. Even so, this collection is far from being a basis. All known relations among these

generators belong to a vector space generated by the so-called Pixton’s relations, see [16]
and [11], but whether or not these are all the existing relations is so far unknown.

In this paper, “calculating” an element of R •(Mg ,P ) always means expressing it as an

explicit, non-unique, linear combination of decorated boundary strata classes. We will

often use graph notation for these classes; for example we will denote by

3 1 2

S T

(i ) κa

the class ξΓ∗(ψi
p1
⊗1⊗κa ), where ξΓ is the clutching morphism

M3,S∪{p1}×M1,T ∪{p2,p3}×M2,{p4} −→M6,S∪T

which glues p1 to p2 and p3 to p4.

1.2. Boundary divisors. Here we discuss and fix some convention for the particular case

of the tautological classes that correspond to boundary divisors.

Definition 1.1. We define the set of stable bipartitions of (g , P ) to be the collection of pairs

(h ,S )where S ⊆ P is a subset of the set of markings, and 0≤ h ≤ g is such that if h = 0 then

|S | ≥ 2 and if h = g then |S c | ≥ 2 (where S c = P \S denotes the complement).

We also make the following:

Convention 1.2. We assume that for every stable bipartition (h ,S ), the set S contains a

distinguished marking 1 ∈ P . (In particular, S is never empty.)

With this convention, there is a bijection between the set of stable bipartitions and the

set of stable graphs Γh ,S ∈Gg ,P with two vertices and one edge.

The (codimension one) clutching morphism corresponding to Γh ,S is denoted

ξh ,S : Mh ,S∪{q }×Mg−h ,S c ∪{ r }→Mg ,P .
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Its image is the boundary divisor∆h ,S and its class δΓh ,S
will simply be denoted by δh ,S .

There is one more boundary divisor of Mg ,P , which parametrises irreducible singular

curves. That divisor is the image of the clutching morphism ξirr that corresponds to the

stable graph Γirr consisting of one vertex of genus g −1 with a loop and with all markings P .

Definition 1.3. For a fixed stable bipartition (h ,S ) of (g , P ), the inverse image π−1(∆h ,S ) in

the universal curve Cg ,P consists of two irreducible components. We will denote by C +h ,S

the class of the component that contains the moving point x on the universal curve, and by

Ch ,S the class of the other component, see Figure 1.

h g −h

S (P \S )∪{ x }

h g −h

S ∪{ x } P \S

FIGURE 1. After identifying Cg ,P with Mg ,P∪{ x }, the divisor class Ch ,S

(resp. C +h ,S ) corresponds to the stable (P ∪ { x })-pointed graph depicted
on the left (resp. on the right).

1.3. Products of components on the universal curve. In this section we compute the

product of components Ch ,S in the Chow ring of the universal curve Cg ,P . This will motivate

introducing the notation that appears in our main formula, Theorem 1. That notation will

be first used in the following section.

Recall that by Convention 1.2 every subset S ⊆ P contains 1. We define a partial ordering

on the stable bipartitions (h ,S ) by setting (h1,S1)≤ (h2,S2) if and only if h1 ≤ h2 and S1 ⊆ S2.

Notation 1.4. For r > 0 and a strictly ordered chain of stable bipartitions (h1,S1) < · · · <
(hr ,Sr ) and for nonnegative indices i1, . . . , ir and j1, . . . , jr , we define the class

C
(i1, j1),...,(ir , jr )
(h1,...,hr ),(S1,...,Sr )

..= h1 h2−h1 ... hr −hr−1 g −hr

S1 S2 \S1 Sr \Sr−1 (P \Sr )∪{ x }

(i1) ( j1) (i2) ( jr−1) (ir ) ( jr )

in R •(Mg ,P∪{x }) =R •(Cg ,P ).
With the same notation as above, we also define the classes

X
(i1, j1),...,(ir , jr )
(h1,...,hr ),(S1,...,Sr )

..= h1 h2−h1 ... hr −hr−1 g −hr

S1 S2 \S1 Sr \Sr−1 P \Sr

(i1) ( j1) (i2) ( jr−1) (ir ) ( jr )

Y
(i1, j1),...,(ir+1, jr+1)
(h1,...,hr ),(S1,...,Sr )

..= h1 h2−h1 ... hr −hr−1 g −hr −1

S1 S2 \S1 Sr \Sr−1 P \Sr

(i1) ( j1) (i2) ( jr−1) (ir ) ( jr )
(ir+1)

( jr+1)
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Z
(i1, j1),...,(ir , jr ),b
(h1,...,hr ),(S1,...,Sr )

..= h1 h2−h1 ... hr −hr−1 g −hr

S1 S2 \S1 Sr \Sr−1 P \Sr

(i1) ( j1) (i2) ( jr−1) (ir ) ( jr ) κb

in R •(Mg ,P ). For later convenience, we allow b ≥−1 and we fix the convention that

(1.1) κ−1ψ
t ..=ψt−1, ψ−1 = 0.

The classes that appear in Theorem 1 are those introduced in the previous notation, with

a suitable choice of indices, and a suitable coefficient, as described in the following.

Notation 1.5. Let r ≥ 0, b ≥−1 and k1, . . . , kr > 0 be integers, and let (h1,S1) < · · · < (hr ,Sr )
be an ordered chain of stable bipartitions. Set hr = (h1, . . . , hr ), Sr = (S1, . . . ,Sr )and kr = (k1, . . . , kr ).
We define the codimension

∑

1≤a≤r ka , resp. b +
∑

1≤a≤r ka classes:

Xkr
(hr ),(Sr )

..=



















1 when r = 0,

∑

0≤i1≤k1−1
···

0≤ir≤kr−1

 

r
∏

j=1

(−1)k j−1

�

k j −1

i j

�

!

X (i1,k1−1−i1),...,(ir ,kr−1−ir )
(h1,...,hr ),(S1,...,Sr )

when r > 0,

Zkr ,b
(hr ),(Sr )

..=















































κb when r = 0,

∑

0≤i1≤k1−1
···

0≤ir≤kr−1

 

r
∏

j=1

(−1)k j−1

�

k j −1

i j

�

!

Z (i1,k1−1−i1),...,(ir ,kr−1−ir ),b
(h1,...,hr ),(S1,...,Sr )

when r > 0,

∑

0≤i1≤k1−1
···

0≤ir≤kr−2

 

r
∏

j=1

(−1)k j−1

�

k j −1

i j

�

!

X (i1,k1−1−i1),...,(ir ,kr−2−ir )
(h1,...,hr ),(S1,...,Sr )

when b =−1.

Given additional integers i and j , we define the codimension i + j +1+
∑

1≤a≤r ka class:

eYkr ,(i , j )
(hr ),(Sr )

..=



































g −1

(i )

( j )

when r = 0,

∑

0≤i1≤k1−1
···

0≤ir≤kr−1

 

r
∏

j=1

(−1)k j−1

�

k j −1

i j

�

!

Y
(i1,k1−1−i1),...,(ir ,kr−1−ir ),(i , j )
(h1,...,hr ),(S1,...,Sr )

when r > 0.

Finally, given a further stable bipartition (hr+1,Sr+1)> (hr ,Sr ) as well, we define the codi-

mension i + j +1+
∑

1≤a≤r ka class:

eXkr ,(i , j )
(hr ,hr+1),(Sr ,Sr+1)

..=











































h1 g −h1

S1 P \S1

(i ) ( j )

when r = 0,

∑

0≤i1≤k1−1
···

0≤ir≤kr−1

 

r
∏

j=1

(−1)k j−1

�

k j −1

i j

�

!

X
(i1,k1−1−i1),...,(ir ,kr−1−ir ),(i , j )
(h1,...,hr ,hr+1),(S1,...,Sr ,Sr+1)

when r > 0.
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For uniformity of notation in sums, it will be convenient to define the latter tautological

class eX even when the index r equals −1. In this case we set that class to equal zero.

The motivation for introducing the tautological classes described above will become

clear when in Section 2 we will prove Theorem 1, but the reason to package the coefficients

the way we did already appears in the following lemma.

Lemma 1.6. If (h1,S1)� (h2,S2) and (h2,S2)� (h1,S1) then

Ch1,S1
·Ch2,S2

= 0.

Let r > 0 and assume (h1,S1)< · · ·< (hr ,Sr ) is a strictly ordered chain, and k1, . . . , kr > 0 are

integers. Then we have

r
∏

j=1

C
k j

h j ,Sj
=

∑

0≤i1≤k1−1
···

0≤ir≤kr−1

 

r
∏

j=1

(−1)(k j−1)
�

k j −1

i j

�

!

C (i1,k1−1−i1)...(ir ,kr−1−ir )
(h1,...,hr ),(S1,...,Sr )

.

Proof. This is a direct computation using [6, Appendix]where we use our convention that

Si always contains the marking 1 and S c
i

..= (P ∪{ x }) \Si always contains the extra marking

x coming from the identification Cg ,P =Mg ,P∪{x }.

Let Gi be the graph associated to Chi ,Si
. The intersection Ch1,S1

·Ch2,S2
is the sum of all

graphs G with 2 edges e1 and e2, such that contracting the edges ei gives the graph Gi . The

genus of the vertex v of G with the marking 1 has to equal min(h1, h2) and its markings have

to be S1∩S2. Since both the edges e1 and e2 separate the markings 1 and x only one of these

edges can be incident to v . Contracting the edge ei not incident to v can only produce the

graph Gi associated to Chi ,Si
if hi =min(h1, h2) and Si = S1 ∩S2. This proves the first part of

the Lemma.

min(h1, h2) |h2−h1 | g −max(h1, h2)

S1 ∩S2 (S1 ∪S2) \ (S1 ∩S2) (P ∪{x }) \ (S1 ∪S2)

v
ei

FIGURE 2. Graphs G contracting generically to G1 and G2.

The second part of the statement follows from repeatedly applying the same procedure

together with the fact that C ki
hi ,Si
= ξhi ,Si ,∗

�

−ψ•−ψ?
�ki−1

, where • and ? are the half edges

associated to the edge of Chi ,Si
.

To conclude this section, we compute the push-forward of the classes of the previous

lemma under the forgetful morphism π: Mg ,P∪{x }→Mg ,P . This will be key to Section 1.4.

Lemma 1.7. Let r > 0 and assume (h1,S1)< · · ·< (hr ,Sr ) is a strictly ordered chain of stable

bipartitions. Let i1, . . . , ir , j1, . . . , jr be non-negative integers. We have

π∗
�

C
(i1, j1),...,(ir , jr )
(h1,...,hr ),(S1,...,Sr )

�

=

(

0 jr = 0

X
(i1, j1),...,(ir , jr−1)
(h1,...,hr ),(S1,...,Sr )

jr > 0.
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Proof. This follows immediately from Lemma 1.6 and from the String Equation (see [2,

Proposition 4.9]).

1.4. Push-forward of products of divisors on the universal curve. To establish our main

result, Theorem 1, we will need a formula for the push-forward

π∗

 

K α
π ·

∏

p∈P

σ
βp
p

∏

h ,S

C
γh ,S

h ,S

!

of an arbitrary product of divisor classes from the universal curve. By using the vanishing

relations

(1) σp ·σq = 0 for all p 6= q ,

(2) Kπ ·σp = 0 for all p ∈ P ,

(3) Ch1,S1
·Ch2,S2

= 0 if (h1,S1)� (h2,S2) and (h2,S2)� (h1,S1) (see Lemma 1.6),

this is reduced to the problem of proving the remaining lemmas of this section.

For the next result, we will also make use of the relation

(1.2) σp ·Ch ,S = 0 for all p ∈ S .

Lemma 1.8. Let r ≥ 0 and assume (h1,S1)< · · ·< (hr ,Sr ) is a strictly ordered chain of stable

bipartitions of (g , P ). Let b , k1, . . . , kr > 0 be integers. Then

π∗

 

σb
p ·

r
∏

j=1

C
k j

h j ,Sj

!

=

(

(−ψp )b−1Xkr
(hr ),(Sr )

if p ∈ P \Sr

0 if p ∈ Sr .

Proof. The second equality follows immediately from Equation (1.2). The first equality

follows from Lemma 1.6 and from the String Equation (see [2, Proposition 4.9]).

Remark 1.9. The classesψb−1
p Xkr

(hr ),(Sr )
belong to the set of standard generators because of

the equalityψe
p ·ξΓ∗(α) = ξΓ∗(ψ

e
p ·α), which follows from the projection formula combined

with the fact that psi classes pull back along the clutching morphisms.

Lemma 1.10. Let r ≥ 0 and assume (h1,S1)< · · ·< (hr ,Sr ) is a strictly ordered chain of stable

bipartitions of (g , P ). For all integers k1, . . . , kr > 0 and b ≥ 0 we have the identity

π∗

 

K b
π ·

r
∏

j=1

C
k j

h j ,Sj

!

= Zkr ,b−1
(hr ),(Sr )

Proof. The case b = 0 follows immediately from Lemma 1.7 when r > 0, and from the very

definition of Zkr ,b−1
(hr ),(Sr )

in the case (r, b ) = (0, 0).

Let now b > 0. Note that under the identification of the universal curve Cg ,P with

Mg ,P∪{ x } the class Kπ corresponds to ψx . The claim then follows from Lemma 1.6 and

from the Dilaton Equation (see [2, Proposition 4.9]).

2. PROOF OF MAIN THEOREM

This section provides a proof of our main result, Theorem 1, using the notation estab-

lished in Section 1. We prove the theorem by following Mumford (and later Chiodo), namely

by applying the Grothendieck–Riemann–Roch formula to the universal curve π. There
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are, in principle, different ways to approach the calculation. Our approach is to reduce

this computation to the pushforward along π of products of divisors, and we know how

to express them as linear combinations of decorated boundary strata classes following

Section 1.4.

Consider the divisor class

D= ` eKπ+
∑

p∈P

dpσp +
∑

h ,S

ah ,S Ch ,S ,

on the universal curve Cg ,P , where the indices (h ,S ) run over the set of stable bipartitions

of (g , P ) and `, dp , ah ,S ∈Z. It will be convenient to write

(2.1) D= ` eKπ+C+S,

where

C=
∑

h ,S

ah ,S Ch ,S , S=
∑

p∈P

dpσp .

For later use, we use the multinomial theorem and Lemma 1.6 to expand the power

Ca

a !
=

1

a !

∑

r≥0
k1+···+kr=a

k j>0
(h1,S1)<···<(hr ,Sr )

�

a

k1, . . . , kr

� r
∏

j=1

a
k j

h j ,Sj
C

k j

h j ,Sj

=
∑

r≥0
k1+···+kr=a

k j>0
(h1,S1)<···<(hr ,Sr )

∑

0≤i1≤k1−1
···

0≤ir≤kr−1

r
∏

j=1



(−1)(k j−1)
a

k j

h j ,Sj

k j !

�

k j −1

i j

�



C (i1,k1−1−i1)...(ir ,kr−1−ir )
(h1,...,hr ),(S1,...,Sr )

,

(2.2)

where (h1,S1) < · · · < (hr ,Sr ) denotes any strictly ordered chain of stable bipartitions (as

defined in Notation 1.4).

Let Σ⊂ Cg ,P be the smooth closed codimension two substack parametrising the nodes

in the fibers of the universal curve π. Running the Grothendieck–Riemann–Roch formula

we find

ch(R •π∗O (D)) =π∗(ch(O (D)) ·Td∨(Ω1
π)) =π∗

�

e D ·
eKπ

e eKπ −1
·Td∨(OΣ)−1

�

.

A classical argument first given by Mumford and described in [2, Chapter 17.5] shows that

Td∨(OΣ)−1−1 intersects eKπ trivially. Therefore

ch(R •π∗O (D)) =π∗

�

e D ·
eKπ

e eKπ −1
·
�

1+Td∨(OΣ)−1−1
�

�

=π∗

�

e D ·
eKπ

e eKπ −1

�

+π∗
��

Td∨(OΣ)−1−1
�

e D
�

=Ω+Φ

where Ω (resp. Φ) is defined to be the first summand (resp. the second summand) of the

previous equality.

The term Φ is computed in the following Lemma.



PULLBACKS OF UNIVERSAL BRILL–NOETHER CLASSES VIA ABEL–JACOBI MORPHISMS 11

Lemma 2.1. We have

π∗
��

Td∨(OΣ)−1−1
�

e D
�

=

∑

t≥2

∑

a+b=t
b>0 even

a≥0

Bb

b !

∑

r≥0
k1+···+kr=a

k j>0
(h1,S1)<···<(hr ,Sr )

r
∏

j=1

a
k j

h j ,Sj

k j !

∑

0≤e≤b−2

(−1)e

·

  

∑

(l ,T )>(hr ,Sr )

eXkr ,(e ,b−2−e )
(hr ,l ),(Sr ,T )

!

+ eYkr ,(e ,b−2−e )
(hr ),(Sr )

+ (−1)kr
eXkr−1,(e+kr ,b−2−e )
(hr−1,hr ),(Sr−1,Sr )

!

.

Recall that in Notation 1.5 we set the class eXk−1 to equal zero.

Proof. A classical argument given in [2, Chapter 17.5] shows that eKπ and σp intersect

(Td∨(OΣ)−1−1) trivially. We therefore have

π∗
��

Td∨(OΣ)−1−1
�

e D
�

=π∗
��

Td∨(OΣ)−1−1
�

e C
�

.

The class Td∨(OΣ)−1−1 is also explicitly computed in [2, Chapter 17.5] as

(2.3) Td∨(OΣ)−1−1=
∑

b>0
b even

Bb

b !

b−2
∑

e=0

(−1)e
 

∑

l ,T

A(e ,b−2−e )
l ,T +B (e ,b−2−e )

!

where (l , T ) runs over all stable bipartitions, and

A
(i , j )
h ,S

..=
h 0 g −h

S x P \S

(i ) ( j )

, B (i , j ) ..= g −1 0P x

(i )

( j )

.

We expand e C =
∑

a≥0C
a/a ! via (2.2), so that multiplying (2.3) with e C we obtain

�

Td∨(OΣ)−1−1
�

e C =

∑

t≥1

∑

a+b=t
b>0 even

Bb

b !

∑

r≥0
k1+···+kr=a

k j>0
(h1,S1)<···<(hr ,Sr )

∑

0≤i1≤k1−1
···

0≤ir≤kr−1

r
∏

j=1



(−1)(k j−1)
a

k j

h j ,Sj

k j !

�

k j −1

i j

�



 ·

·

 

b−2
∑

e=0

(−1)e
 

∑

l ,T

A(e ,b−2−e )
l ,T +B (e ,b−2−e )

!!

C (i1,k1−1−i1)...(ir ,kr−1−ir )
(h1,...,hr ),(S1,...,Sr )

.
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By a straightforward computation in the spirit of Lemma 1.6 it follows that, if (l , T ) >
(hr ,Sr ) (or if r = 0),

π∗
�

A
(i ′, j ′)
l ,T C

(i1, j1),...,(ir , jr )
(h1,...,hr ),(S1,...,Sr )

�

=π∗













h1 h2−h1 ... l −hr 0 g − l

S1 S2 \S1 T \Sr x P \T

(i1) ( j1) (i2) ( jr ) (i ′) ( j ′)












= X
(i1, j1),...,(ir , jr )(i ′, j ′)
(h1,...,hr ,l ),(S1,...,Sr ,T ).

If (l , T ) = (hr ,Sr ) and jr = 0,

π∗
�

A
(i ′, j ′)
l ,T C

(i1, j1),...,(ir−1, jr−1),(ir ,0)
(h1,...,hr−1,l ),(S1,...,Sr−1,T )

�

=−π∗













h1 h2−h1 ... l −hr−1 0 g − l

S1 S2 \S1 T \Sr−1 x P \T

(i1) ( j1) (i2) ( jr−1) (ir + i ′ +1) ( j ′)












=−X
(i1, j1),...,(ir−1, jr−1)(ir+i ′+1, j ′)
(h1,...,hr−1,l ),(S1,...,Sr−1,T ) ,

and in all other cases,

π∗
�

A
(i ′, j ′)
l ,T C

(i1, j1),...,(ir , jr )
(h1,...,hr ),(S1,...,Sr )

�

= 0.

Similarly

π∗
�

B (i
′, j ′)C

(i1, j1),...,(ir , jr )
(h1,...,hr ),(S1,...,Sr )

�

=π∗















h1 h2−h1 ... hr −hr−1 g −hr 0

S1 S2 \S1 Sr \Sr−1 P \Sr x

(i1) ( j1) (i2) ( jr−1) (ir ) ( jr ) (i ′)

( j ′)















= Y
(i1, j1),...,(ir , jr ),(i ′, j ′)
(h1,...,hr ),(S1,...,Sr )

.

Putting everything together we deduce the statement.

The remainder of this section is devoted to computing the remaining term

Ω=π∗

�

e D ·
eKπ

e eKπ −1

�

.

This will conclude the proof of Theorem 1. First, in the notation of Equation (2.1), we find

Ω=π∗

�

e C+S ·
∑

t≥0

Bt (`)
t !

eK t
π

�

where we have used the identity

e `x x

e x −1
=
∑

t≥0

Bt (`)
t !

x t

defining the Bernoulli polynomials Bt (`). Now we use that

eK t
π = K t

π + (−1)t
∑

p∈P

σt
p , for all t > 0.
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We obtain

(2.4) Ω=π∗

 

e C+S ·

 

1+
∑

t>0

Bt (`)
t !

K t
π +

∑

t>0

(−1)t Bt (`)
t !

∑

p∈P

σt
p

!!

=π∗e
C+S+π∗

�

e C+S ·

�

−1+1+
∑

t>0

Bt (`)
t !

K t
π

��

+π∗

 

e C+S ·

 

−1+1+
∑

t>0

(−1)t Bt (`)
t !

∑

p∈P

σt
p

!!

.

Let us expand the second summand of (2.4). We have that

e C+S ·

�

1+
∑

t>0

Bt (`)
t !

K t
π

�

= e C ·

�

e S+
∑

t>0

Bt (`)
t !

K t
π

�

because Kπ ·S= 0. It follows that

π∗

�

e C+S ·

�

−1+1+
∑

t>0

Bt (`)
t !

K t
π

��

=−π∗e C+S+π∗

�

e C ·

�

e S+
∑

t>0

Bt (`)
t !

K t
π

��

=π∗

�

e C ·

�

−1+1+
∑

t>0

Bt (`)
t !

K t
π

��

=−π∗e C+π∗

��

∑

a≥0

Ca

a !

�

·

�

∑

b≥0

Bb (`)
b !

K b
π

��

=−π∗e C+
∑

t>0
a+b=t

Bb (`)
a ! b !

π∗
�

Ca ·K b
π

�

.

It remains to compute the last summand in (2.4). We start by observing that the formula

(2.5) Sα ·

 

∑

p∈P

σp

!β

=
∑

p∈P

d αpσ
α+β
p

holds whenever (α,β ) 6= (0, 0). We have

e S ·

 

1+
∑

t>0

(−1)t Bt (`)
t !

∑

p∈P

σt
p

!

= e S ·

 

1+
∑

t>0

(−1)t Bt (`)
t !

 

∑

p∈P

σp

!t!

= 1+
∑

t>0
α+β=t

(−1)βBβ (`)

α!β !
Sα ·

 

∑

p∈P

σp

!β

= 1+
∑

t>0
α+β=t

(−1)βBβ (`)

α!β !

∑

p∈P

d αpσ
t
p .

We were allowed to apply (2.5) in the last equality thanks to the fact that α and β cannot

both vanish. Now the last summand in (2.4) equals

−π∗e C+S+π∗






e C ·






1+

∑

t>0
α+β=t

(−1)βBβ (`)

α!β !

∑

p∈P

d αpσ
t
p












.
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This can be rewritten as

(2.6) −π∗e C+S+π∗



1+
∑

t>0





Ct

t !
+

∑

a+b=t
b>0

Ca

a !

∑

α+β=b

(−1)βBβ (`)

α!β !

∑

p∈P

d αpσ
b
p









=−π∗e C+S+π∗e
C+

∑

t>0
a+b=t

b>0
α+β=b

(−1)βBβ (`)

α!β ! a !

∑

p∈P

d αpπ∗
�

Ca ·σb
p

�

.

Summing up, we obtain

Ω=
∑

t>0
a+b=t

Bb (`)
a ! b !

π∗
�

Ca ·K b
�

+
∑

t>0
a+b=t

b>0
α+β=b

(−1)βBβ (`)

α!β ! a !

∑

p∈P

d αpπ∗
�

Ca ·σb
p

�

.

Combining (2.2) with Lemma 1.10, the first summand of Ω reads

∑

t>0
a+b=t

Bb (`)
a ! b !

π∗
�

Ca ·K b
�

=
∑

t>0
a+b=t

Bb (`)
b !

∑

r≥0
k1+···+kr=a

k j>0
(h1,S1)<···<(hr ,Sr )





r
∏

j=1

a
k j

h j ,Sj

k j !



Zkr ,b−1
(hr ),(Sr )

.

By Lemma 1.8, the second summand of Ω reads

∑

t>0
a+b=t

b>0
α+β=b

(−1)βBβ (`)

α!β ! a !

∑

p∈P

d αpπ∗
�

Ca ·σb
p

�

=

∑

t>0
a+b=t

b>0
α+β=b

(−1)βBβ (`)

α!β !

∑

r≥0
k1+···+kr=a

k j>0
(h1,S1)<···<(hr ,Sr )





r
∏

j=1

a
k j

h j ,Sj

k j !

∑

p∈P \Sr

d αp (−ψp )
b−1



Xkr
(hr ),(Sr )

.

This concludes the proof of Theorem 1.

Example 2.2. As a sanity check, we compute ch0(R •π∗O (D))using our formula in Theorem 1.

This means extracting the term with degree equal to 1 in the variable t . In particular, Φ
does not contribute.

The only nonzero contribution from Ω occurs when a = 0 and b = 1 and it equals (first

summand)
�

`−
1

2

�

κ0 =
�

`−
1

2

�

(2g −2+n )

plus (second summand)
∑

p∈P

dp −
�

`−
1

2

�

n

which gives, for d ..= `(2g −2) +
∑

p∈P dp , the Riemann-Roch formula

ch0(R
•π∗O (D)) = d +1− g .
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Example 2.3. Let us compute ch1(R •π∗O (D)) in the generating set (which is actually a basis

as long as g ≥ 3) for the rational Chow group of codimension-1 classes of Mg ,P that consists

of

κ1,{ψp }p∈P ,δirr,{δh ,S }(h ,S ) .

This amounts to extracting the term of degree 2 in the variable t from the formula of

Theorem 1.

The summand Φ only contributes to δ=δirr+
∑

h ,S δh ,S , and with coefficient 1
12 .

The summand Ω contributes to κ1 with coefficient (from a = 0 and b = 2)

B2(`)
2!
=
`2− `+ 1

6

2
.

It contributes to ψp for p ∈ P with coefficient (also from a = 0 and b = 2 but from the

second summand of Ω)

−
1

2
d 2

p +
�

`−
1

2

�

dp −
`2− `+ 1

6

2
.

(The three summands correspond to the cases (α,β ) = (2, 0), (α,β ) = (1, 1), and (α,β ) = (0, 2)
respectively).

Furthermore, the term Ω contributes to δh ,S as follows. Setting dS c
..=
∑

p∈P \S dp the

contribution of Ωwith a = b = 1 reads:
��

`−
1

2

�

(2g −2h −1) +dS c

�

·ah ,S .

(We get B1(`) ·ah ,S ·Z
k1=1,0
h ,S = (`−1/2) ·ah ,S · (2g −2h −1+ |S c |) from the first summand of Ω.

A further contribution dS c ·ah ,S comes from (α,β ) = (1, 0), whereas (α,β ) = (0, 1) contributes

−(`−1/2) ·ah ,S |S c |. )

Finally, the contribution of Ωwith (a , b ) = (2, 0) is

−
a 2

h ,S

2
.

The coefficient of δh ,S is therefore

1

12
+

1

2
ah ,S ·

�

(2g −2h −1)(2`−1) +2dS c −ah ,S

�

.

3. PULLBACK OF BRILL–NOETHER CLASSES VIA ABEL–JACOBI SECTIONS

In this section we review the definition of compactified universal Jacobians J g ,P (φ) and

then define the cohomological universal Brill–Noether classes

wr
d (φ) ∈ Ag−ρ(J g ,P (φ)),

where ρ = g − (r +1)(g −d + r ) is the Brill–Noether number. We always assume r ≥ 0 and

d < g + r throughout.

For fixed integers ` and dP
..= {dp | p ∈ P }, in (3.7) we define the pullbacks

Zr
`,dP
(φ) = s∗wr

d (φ),

where s= s`,dP
is the Abel–Jacobi section defined by (0.4).
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Finally, we observe how the main result of the previous section allows one to explicitly

compute the classes Zr
`,dP
(φ) in terms of decorated boundary strata classes, for allφ’s such

that the section s is a well-defined morphism on Mg ,P .

3.1. Compactified universal Jacobians. We first review the definition of the stability space

V d
g ,P from [14, Definition 3.2] and the notion of nondegenerate elements therein. An element

φ ∈V d
g ,P

is an assignment, for every stable P -pointed curve (C , P ) of genus g and every irreducible

component C ′ ⊆C , of a real numberφ(C , P )C ′ such that
∑

C ′⊆C

φ(C , P )C ′ = d ,

and

(1) if α: (C , P )→ (D ,Q ) is a homeomorphism of pointed curves, then

φ(D ,Q ) =φ(α(C , P ));

(2) the assignmentφ is compatible with degenerations of pointed curves (in the sense

of [14, Definition 3.2]).

The notion ofφ-(semi)stability was introduced in [14, Definitions 4.1 and 4.2]:

Definition 3.1. Given φ ∈ V d
g ,P we say that a family F of rank 1 torsion free sheaves of

degree d on a family of stable curves isφ-stable if the inequality

(3.1)

�

�

�

�

�

degC0
(F )−

∑

C ′⊆C0

φ(C , P )C ′ +
δC0
(F )

2

�

�

�

�

�

<
#(C0 ∩C c

0 )−δC0
(F )

2

holds for every stable P -pointed curve (C , P ) of genus g of the family, and for every subcurve

(i.e. a union of irreducible components) ; 6= C0 ( C . Here δC0
(F ) denotes the number of

nodes p ∈ C0 ∩C c
0 such that the stalk of F at p fails to be locally free. Semistability with

respect toφ is defined by allowing equality in (3.1).

A stability parameterφ ∈V d
g ,P is said to be nondegenerate whenφ-semistability coincides

withφ-stability for all stable P -pointed curves of genus g .

For all φ ∈ V d
g ,P there exists a moduli stack J g ,P (φ) of φ-semistable sheaves on stable

curves, which comes with a forgetful morphism

p : J g ,P (φ)→Mg ,P .

When φ is nondegenerate, by [14, Corollary 4.4], the stack J g ,P (φ) is a smooth Deligne–

Mumford stack, and the morphism p is representable, proper and flat.

3.2. Universal Brill–Noether classes and their pullbacks. Letφ ∈V d
g ,P be nondegenerate.

Then by [13, Corollary 4.3] and [14, Lemma 3.35] combined with our general assumption

P 6= ;, there exists a tautological familyL (φ) of rank 1 torsion free sheaves of degree d on

the total space of the universal curve

eπ: J g ,P (φ)×Mg ,P
Cg ,P →J g ,P (φ).
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Recall the following notation from [5, Ch. 14]. Let c =
∑

k∈Z ck be a formal sum of elements

in a ring R . Then the p ×p determinant |cq+ j−i | in R is denoted

∆(p )q c =

�

�

�

�

�

�

�

�

�

�

cq cq+1 · · · cq+p−1

cq−1 cq · · · cq+p−2
...

...
...

...

cq−p+1 cq−p+2 · · · cq

�

�

�

�

�

�

�

�

�

�

.

Generalising the idea of [13, Definition 3.38] (where the authors extended the universal

theta divisor w0
g−1), we define the (universal, cohomological) Brill–Noether class using the

Thom–Porteous formula, namely by

(3.2) wr
d (φ)

..=∆(r+1)
g−d+r c (−R •eπ∗L (φ)) ∈ Ag−ρ(J g ,P (φ)),

for ρ = g − (r +1)(g −d + r ) the Brill–Noether number. One can interpret the class (3.2) as

follows. Define the universal Brill–Noether scheme as the closed subscheme

(3.3) W r
d (φ) = Fitg−d+r (R

1
eπ∗L (φ))⊂J g ,P (φ),

defined by the (g −d + r )-th Fitting ideal of R 1
eπ∗L (φ) (see [2, Ch. 21] for the use of Fitting

ideals in Brill–Noether theory). Then the Poincaré dual of (3.2) is the class that W r
d (φ)

would have as its fundamental class if it were pure of the expected codimension g −ρ.

The scheme (3.3) has an explicit description as a degeneracy scheme, which was already

described in the proof of [9, Lemma 6] in the case r = d = 0. Fix a sufficiently eπ-ample

divisor H , and consider the short exact sequence

0→L (φ)→L (φ)(H ) u−→L (φ)⊗OH (H )→ 0.

Pushing this forward via eπ yields a presentation

E0
eπ∗u−→ E1→R 1

eπ∗L (φ)→ 0

of R 1
eπ∗L (φ), where eπ∗u is a morphism of vector bundles whose virtual rank is

rkE0− rkE1 = d − g +1

by Riemann–Roch. The k -th degeneracy scheme of eπ∗u , where k = rkE0− (r +1) = rkE1−
(g −d + r ), is by definition the zero scheme

(3.4) Z
�

∧k+1
eπ∗u

�

⊂J g ,P (φ),

which agrees with (3.3) by the general theory of Fitting ideals. Note that, by this identifi-

cation, the vanishing locus (3.4) is independent of the choice of H . Moreover, W r
d (φ) is

set-theoretically supported on
�

(C , P, F )
�

� h 0(C , F )> r
	

⊂J g ,P (φ).

The definition (3.2) is motivated by the following lemma.

Lemma 3.2. The class wr
d (φ) is supported on W r

d (φ). If the Brill–Noether scheme W r
d (φ) is

pure of the expected codimension g −ρ, then wr
d (φ) is its fundamental class.
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Proof. The first statement is proven in exactly the same manner as the first statement of [9,

Lemma 6] (dealing with the case r = d = 0), namely by observing that the class (3.2) is by

construction supported on the degeneracy scheme (3.4). The second statement follows

from [5, Theorem 14.4].

Example 3.3. For r = 0 we have

(3.5) w0
d (φ) = cg−d (−R •eπ∗L (φ)).

These classes can therefore be seen as some formal analogues of the λ-classes on Mg ,P ,

where −R •eπ∗L (φ) is taking the role of the pushforward of the relative dualising sheaf,

namely of the Hodge bundle E=π∗ωπ. Note that for fixed d the classes (3.5) determine, by

their defining formula (3.2), all other classes wr
d (φ) for arbitrary r .

Remark 3.4. While the restrictionW0
d ofW0

d (φ) toMg ,P always has the expected dimension

(being the image of the d -th symmetric product of the universal curve under the summation

map), arguing as in [9, Remark 7] one sees that for each stable bipartition (h ,S ) there exists

a nondegenerateφ such that W0
d (φ) contains the inverse image in J g ,P (φ) of the boundary

divisor∆h ,S . In particular, W0
d (φ) is, in general, not even equidimensional.

From now on we fix integers ` ∈Z and dP
..= {dp | p ∈ P } and set d ..= `(2g −2)+

∑

p dp .

Forφ ∈V d
g ,n nondegenerate, we define the rational map

(3.6) s= s`,dP
(φ): Mg ,P ¹¹ËJ g ,P (φ)

by Rule (0.4), for some choice of coefficients ah ,S . (This map is actually independent of

the coefficients ah ,S of Ch ,S as these divisors are zero on the open dense substack that

parametrises line bundles over smooth pointed curves).

Definition 3.5. We define the pullback classes Zr
`,dP
(φ) by the formula

(3.7) Zr
`,dP
(φ) ..= s∗wr

d (φ) = p∗
�

wr
d (φ) ·

�

Σ(φ)
��

,

where Σ(φ) is the closure in J g ,P (φ) of the image of the section s.

The second equality of Formula (3.7) follows from the definition of pullback of an alge-

braic class by a rational map, and it is well-defined because J g ,P (φ) is proper.

Whenφ is such that the line bundle D of (0.1) isφ-stable, the map (3.6) is a well-defined

morphism onMg ,P but, because the map is insensitive to the coefficients ah ,S , the converse

is not true.

Definition 3.6. We define the open substack

U (φ) ..=U`,dP
(φ)⊂Mg ,P

to be the largest locus where the Abel–Jacobi section s= s`,dP
(φ) extends to a well-defined

morphism.

In [14, Section 6.1] the authors describe the locus U (φ) in terms of D, and we now review

that description. For all nondegenerateφ ∈V d
g ,P there is a unique modification D(φ) of D

that coincides with D on the locus parametrising smooth curves and that is φ-stable on



PULLBACKS OF UNIVERSAL BRILL–NOETHER CLASSES VIA ABEL–JACOBI MORPHISMS 19

all curves with exactly 1 node. More explicitly, D(φ) is obtained from D by modifying the

coefficients ah ,S of Ch ,S into coefficients ah ,S (φ) in the unique way that makes the resulting

D(φ) a divisor that isφ-stable on all curves of Mg ,P with 1 node. By [14, Proposition 6.4]
the open substack U (φ) can be characterised as the locus of Mg ,P where D(φ) =D`,dP

(φ)
isφ-stable.

We now show how Theorem 1 allows one to compute the restriction to U (φ) of the class

s∗wr
d (φ). Chiodo’s formula recovers the particular case when D(φ) equals ` eKπ+

∑

p∈P dpσp .

Corollary 3.7. Letφ ∈V d
g ,P be nondegenerate. Then the equality of classes

(3.8) Zr
`,dP
(φ) =∆(r+1)

g−d+r c (−R •π∗O (D(φ)))

holds on the open substack U (φ) of Mg ,P .

Proof. Consider the Cartesian square

Cg ,P J g ,P (φ)×Mg ,P
Cg ,P

Mg ,P J g ,P (φ)

�

←→s
′

←→ π ←→

eπ

← →s

defining s′. We have the following equalities in the Chow group of U (φ):

s∗ck (−R •eπ∗L (φ)) = ck s
∗(−R •eπ∗L (φ)) = ck (−R •π∗s

′∗L (φ)) = ck (−R •π∗O (D(φ))).

All equalities require to restrict to the locus where s is a morphism. The first follows from

the fact that Chern classes commute with pullbacks via lci morphisms. The second is

cohomology and base change [10, Theorem 8.3.2], using that eπ is flat and R •eπ∗L (φ) is

represented by a two-term complex of vector bundles. The third and the last follow from the

definition of a tautological sheaf and of s′. Formula (3.8) now follows from the definition of

Zr
`,dP
(φ) and from the fact that the pullback along the morphism s is a ring homomorphism.

Combining Formula (3.8) with the formula

(3.9) ct (F) =

�

exp

�

∑

s≥1

(−1)s−1(s −1)! chs (F)

��

t

expressing the Chern classes of a K -theory element F in terms of the Chern character, and

then applying Theorem 1, yields an explicit formula, in terms of decorated boundary strata

classes, for the restriction of Zr
`,dP
(φ) to the open locus U (φ) of Mg ,P . In particular, this

computes Zr
`,dP
(φ) for allφ such that the corresponding Abel–Jacobi section (3.6) extends

to a morphism on Mg ,P .

3.3. Relation to the Double Ramification Cycle. We conclude this section by relating the

classes Zr
`,dP
(φ) (defined in 3.5) for r = d = 0 to the large body of literature on the Double

Ramification Cycle (DRC). We will start by introducing the DRC, following the perspective

of [9], which is in turn based on the resolution of the indeterminacy of the Abel–Jacobi

section by D. Holmes [8]. For more details we refer the reader to [9].
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Let J 0
g ,P be the universal generalised Jacobian, or the moduli stack of multidegree zero

line bundles on stable curves (equivalently, the unique semiabelian extension of the degree

zero universal Jacobian over Mg ,P ). For fixed integers ` ∈Z, dP : P →Z such that

`(2g −2) +
∑

i∈P

di = 0,

let S⊂J 0
g ,P be the closure of the image of the Abel–Jacobi section s= s`,dP

: Mg ,P ¹¹ËJ
0

g ,P .

Call f the restriction to S of the forgetful morphism J 0
g ,P →Mg ,P , and consider the fiber

product diagram

S×Mg ,P
J 0

g ,P J 0
g ,P

S Mg ,P

�

←→

←

→
←

→←

→
ẽ ←

→
s̃

← →
f

←

→

e ←

→

s

that defines the upper left corner. Here s̃ is the inclusion and ẽ is the pullback of the zero

section e . Denoting by [eS] the class of the image of s̃, one can define the `-twisted DRC

following Holmes’ work [8] by

(3.10) DRC(`, dP ) ..= f∗ẽ
∗[eS].

(The fact that when ` = 0 this definition coincides with the “usual” DRC defined as the

pushforward of the virtual class on the moduli space of relative stable maps to rubber P1

follows from [8, Theorem 1.3], combined with the observation in [9, Lemma 11] that Holmes’

stack M◊g ,n equals the normalisation of S).

Denoting by [E] the class of the image of the zero section in J 0
g ,P , we deduce the equality

of classes

(3.11) DRC(`, dP ) = s
∗
`,dP
[E]

by the push-pull formula and by the definition of pullback along the rational map s. This

expression for the DRC is now closely related to the definition of the classes Z (Defini-

tion 3.5). Indeed, wheneverφ ∈V 0
g ,n is nondegenerate and such that J 0

g ,P ⊂J g ,P (φ), by [9,

Corollary 10]we have that w0
0(φ) = [E], so that DRC(`, dP ) =Z0

`,dP
(φ). Combining this with

Corollary 3.7, we deduce the equality

(3.12) DRC(`, dP )|U (φ) = cg (−R •π∗D(φ))|U (φ),

which is valid whenever the inclusionJ 0
g ,P ⊂J g ,P (φ)holds. Note that U (φ) always contains

the moduli stack Mct
g ,P of curves of compact type.

The right hand side of (3.12) can be computed in terms of standard tautological classes

by applying Theorem 1 in combination with (3.9). For `= 0, the left hand side of (3.12) has

been computed in terms of standard tautological classes by Janda–Pandharipande–Pixton–

Zvonkine [12]. This produces lots of explicit relations in the tautological ring of the moduli

stack Mct
g ,P of curves of compact type. We do not know if there is any reason to expect that

these relations should be expressible as linear combinations of known ones, i.e. Pixton’s

relations proven in [16] and [11].
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Relation (3.12) is also valid over Mg ,P for some choices of `, dP . In [9, Proposition 14]
the authors observed that U (φ) coincides with Mg ,P if and only if `= 0 and dP = ei − e j for

some i , j ∈ P , where et : P →Z is defined by

et (p ) =

(

1 when t = p

0 otherwise.

For Di , j =σi −σ j , Relation (3.12) becomes

(3.13) DRC(`= 0, ei − e j ) = cg (−R •π∗Di , j (φ)) ∈ R g (Mg ,P ),

which again is valid wheneverφ is such that the inclusion J 0
g ,P ⊂J g ,P (φ) holds. Explicitly,

the modified divisor Di , j (φ) equals

Di , j (φ) =σi −σ j −
∑

(h ,S ):i∈S , j /∈S

Ch ,S +
∑

(h ,S ): j∈S ,i /∈S

Ch ,S .

Again, the right hand side of (3.13) is computed by combining Theorem 1 with (3.9), and the

left hand side was calculated in [12]. Using [17]we have verified that the ensuing relation of

standard tautological classes can be expressed as a linear combination of Pixton’s relations

for all g ≤ 4. This also provides a non-trivial check of our formula in Theorem 1. Again, we

do not know of an a priori reason to expect these relations to follow from Pixton’s, except

when i = j where the right hand side of 3.13 simply equals λg .

4. OPEN PROBLEMS

We conclude the paper with a list of natural open questions.

4.1. Is Z(φ) tautological? Formula (3.8) implies that the restriction of each class Z(φ) to

U (φ) is tautological on U (φ) – meaning that it is the restriction to U (φ) of a tautological

class globally defined on Mg ,P . That tautological class is explicitly expressed in terms of

decorated boundary strata by combining Theorem 1 with Formulas (3.8) and (3.9). We do

not know whether the class Z(φ) is, in general, itself tautological on Mg ,P , although we do

expect that this should be the case. Except for when Z(φ) has codimension 1 or 2 (when

we know that the entire cohomology of Mg ,P is tautological), the only classes Z(φ) that we

know to be tautological on Mg ,P for general g and P are those for r = d = k = 0 and φ a

small perturbation of 0 ∈ V 0
g ,P . This follows from the main result of [9], showing that this

class coincides with the Double Ramification Cycle, see Section 3.3. The latter is shown to

be tautological in [4].

4.2. Wall-crossing. For fixed d ∈ Z and for every choice of nondegenerate elements φ

and φ′ of V d
g ,P one has classes wr

d (φ) ∈ A•(J g ,P (φ)) and wr
d (φ

′) ∈ A•(J g ,P (φ′)). A natural

question is to “compute” (in terms of some natural classes) the difference

wr
d (φ)−α

∗(wr
d (φ

′)) ∈ Ag−ρ(J g ,P (φ)),

where α is any birational isomorphism J g ,P (φ) ¹¹ËJ g ,P (φ′) that commutes with the for-

getful morphisms to Mg ,P (such birational maps are esplicitly characterised in [14, Sec-

tion 6.2]). To the best of our knowledge, this question has been answered only for the case

of the theta divisor, namely when r = 0 and d = g −1, in [13, Theorem 4.1].
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Another natural question is to compute the difference of the pullbacks

(4.1) Zr
`,dP
(φ)−Zr

`′,d ′P
(φ′) ∈ Ag−ρ(Mg ,P )

for different assignments (`, dP ), (`′, d ′P ) such that `(2g −2)
∑

p∈P dp = `′(2g −2)
∑

p∈P d ′p = d

and different nondegenerateφ,φ′ ∈V d
g ,P . The case of the pullback of the theta divisor is

again covered explicitly in [13, Theorem 5.1]. Theorem 1 immediately allows us to gener-

alise the result in loc. cit., in the sense that it computes explicitly, in terms of decorated

boundary strata classes of Mg ,P , the difference (4.1), wheneverφ andφ′ are such that the

corresponding Abel–Jacobi sections s and s′ extend to morphisms on Mg ,P . Example 2.3

checks that the results of this paper match the earlier results of [13] for the case of the

pullback of the theta divisor.
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