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Abstract

This thesis focuses on the machine learning based trading strategies of China
Exchange Traded Funds (ETFs). Machine learning and artificial intelligence (AI)
provide an innovative level of service for financial forecasting, customer service
and data security. Through the development of automated investment advisors
powered by machine learning technology, financial institutions such as JPMorgan,
the Bank of America and Morgan Stanley have recently achieved AI investment
forecasting. This thesis intends to provide original insights into machine learning
based trading strategies by producing trading signals based on forecasts of stock
price movements.

Theories and models associated with algorithmic trading, price forecasting and
trading signal generation are considered; in particular machine learning models
such as logistic regression, support vector machine, neural network and ensemble
learning methods. Each potential profitable strategy of the China ETFs is tested,
and the risk-adjusted returns for corresponding strategies are analysed in detail.

The primary aim of this thesis is to develop two machine learning based trad-
ing strategies, in which machine learning models are utilised to predict trading
signals. Each machine learning model and their combinations are employed to
generate trading signals according to one day ahead forecasts, demonstrating that
the final excess return does not cover the transaction costs. This encourages us to
reduce the number of unprofitable trades in the trading system by adopting the
’multi-day forecasts’ in place of the ’one day ahead forecasts’. Therefore, investors
benefit from a longer prediction horizon, in which more predicted information of
the total number of upward (or downward) price movements is provided. Investors
can make trading decisions based on the majority of the predicted trading signals
within the prediction horizon. Moreover, this method of trading rules is con-
sistent with the industry practice. The strategy is flexible to allow risk-averse
investors and risk-loving investors to make different trading decisions.

A multi-day forecast based trading system through random forest yields posi-
tive risk-adjusted returns after transaction costs. It is identified that it is possible
that some machine learning techniques can successfully assist individuals in nav-
igating their decision-making activities.
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Chapter 1

Introduction

The chapter starts by introducing algorithmic trading strategies with

several aims to be achieved, and then briefly reviews all methods used

in this thesis to discover trading opportunities and evaluate trading

strategies, and discusses how these methods are used. The chapter

concludes with the thesis structure.

1.1 Research aims

Machine learning based trading, which is an interdisciplinary area that com-

bines machine learning techniques and finance knowledge into developing trading

strategies. These trading strategies should be of interest to both hedgers and

speculators who seek to trade using machine learning models. This thesis also

contributes to the academic literature as it provides empirical evidence on the

forecasting and trading power of a wide variety of nonlinear machine learning

models for the China ETFs. Three research aims are:

• to develop profitable trading strategies that take into account transaction

costs. More importantly, this research aims to develop a robust trading
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system that remains valid with regard to different assets and time periods.

• to investigate whether machine learning models are able to generate more

profitable trading signals compared with using statistical-based models and

knowledge-based subjective models.

• to verify whether machine learning based trading strategies outperform two

benchmarks, i.e. a passive trading strategy (buy-and-hold) and a traditional

econometric forecasting method such as Autoregressive model (AR model)

in terms of financial performance.

1.2 Research approach

The most common methods that investors use to analyse the benefits and

risks associated with stock investments are fundamental analysis and technical

analysis. Among these analyses, technical analysis is the main method utilised in

all trading strategies in this study. Technical analysis is using past information

to forecast future trends. The price trend is capable of being determined by some

patterns in a chart. One example is a chart pattern trading strategy, in which

a bull template was utilised as a pattern to generate buy signals. Moreover, for

technical traders, it is common to employ technical indicators such as moving

average convergence divergence (MACD) to trade. I also developed a MACD

trend following strategy that uses technical trading rules to trigger trading signals.

In addition, in machine learning based strategies, all machine learning models

were trained with technical indicators to predict future price movements.

After using technical analysis to identify trading opportunities, back-testing is

applied as the main technique to evaluate the trading performances in the past for

all developed trading strategies. Back-testing is accomplished by reconstructing
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with historical data and trades that would have occurred in the past using rules

defined by a given strategy. Back-testing can provide plenty of valuable statistical

feedback about a given system. The universal back-testing statistics include net

profit or loss measures (excess return1 and annualised returns), volatility measures

(standard deviation and maximum drawdown), and risk-adjusted return measures

(Sharpe ratio and Sortino ratio).

All back-testing statistics mentioned above are used to evaluate the trading

performances of the developed trading strategies, and the various trading strate-

gies are compared from the perspective of daily and annual performance measures.

The daily performance measures to differentiate the economic significance of the

return series based on every day’s log returns are average return, standard devia-

tion, t-Statistic of right-tailed t-tests, minimum, median, maximum, skewness and

kurtosis. In general, the daily measurements show the property of distributions

for daily returns. Specifically, daily average return demonstrates the profitability

while daily standard deviation shows the risk magnitude; t-Statistic investigates

whether a trading strategy can yield significant positive daily returns, and the

other estimators measure whether there are some profitable opportunities in some

extreme cases.

The annual performance measures to compare all trading strategies are an-

nual return, excess return, standard deviation, downside deviation, Sharpe ratio,

Sortino ratio, and maximum drawdown. Annual return and excess return reflect

the ability of generating final profits. Excess return shows the extra return ex-

cluding the risk-free deposit rate. The annual risk-free interest rate is 1.75%2.

Standard deviation, downside deviation and maximum drawdown show the risk

1Returns in excess of the fixed deposit interest rate.
2Based on the annual interest rate of ’Bank of China 1 Year Time Deposit’ on 6 August

2019, refer to https://china.financialadvisory.com/time-deposit.html
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magnitude of annualised returns. Downside deviation is a measure of downside

risk that focuses on negative returns. Maximum drawdown is defined as the fall

in the total return curve from the previous maximum. The Maximum drawdown

corresponds to the maximum loss experienced during the entire period. The

smaller the value of the maximum drawdown, the better the strategy is. When

comparing two strategies, the one with the higher Sharpe ratio and Sortino ratio

is more preferable as it indicates more return for the same risk, and translates

into greater risk-adjusted performance. That is to say, Sharpe ratio and Sortino

ratio consider whether investors are able to be well-compensated for taking this

risk.

Cumulative return plot of each trading strategy is provided as another per-

formance measure except for daily and annual performance measures to show

the total returns over some trading periods. Cumulative return is the total net

realised profit (or loss) of all trades made by each strategy per one contract

throughout the period. In these plots, investors can observe how the developed

trading strategies compare in value over time.

1.3 Thesis organisation

The rest of the chapters is organised as follows:

Chapter 2 - Algorithmic trading strategies. This chapter presents contex-

tual information on algorithmic trading in the stock market, which offers the

reader a clear perspective of the complexities and surrounding influences out-

lined in this thesis. To position this thesis within a well-established context,

information on algorithmic trading is considered and general steps for a complete

algorithmic trading system are proposed. Principally, common trading strategies

within the financial market are outlined as benchmark strategies, and compared
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with contemporary strategies that employ machine learning models. The chap-

ter concludes with the evaluations of trading performances between non-machine

learning strategies.

Chapter 3 - Machine learning methods selected for predicting and trading

asset returns. This chapter provides an overview of preceding research specific to

predicting stock price movements and developing machine learning based trading

strategies, and in the application of logistic regression, support vector machine,

random forest and neural networks models to financial time series. I mathemati-

cally model the problem of financial market prediction in the study, and explain

why these machine learning models are provided to solve the proposed problem.

Machine learning based trading strategies is proposed in chapter 4 based on the

predictions made in this chapter.

Chapter 4 - Generating trading signals with machine learning. This chap-

ter focuses on how machine learning methods such as logistic regression, support

vector machine, random forest, and neural network can be incorporated into

making an investment decision for use within stock market trading systems. It

creates and follows a well defined methodology for developing trading systems

which focuses on signal generation. Machine learning models are trained with

technical indicators and the future price movements are predicted. One day and

multi-day forecasts are then used to generate trading signals to make trading deci-

sions. In voting integration system, the final trading signals are further confirmed

by majority vote based on the predicted signals generated from single machine

learning models. This chapter evaluates how well the investment decisions of each

machine learning based strategy perform according to out-of-sample backtesting

experiments. It verifies the robustness of machine learning based strategy with

empirical results.
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Chapter 5 - Conclusion. The major empirical results related to thesis aims

are summarised and future works are presented.



Chapter 2

Algorithmic trading strategies

This chapter presents contextual information on algorithmic trading

in the stock market, which offers the reader a clear perspective of the

complexities and surrounding influences outlined in this thesis. To

position this thesis within a well-established context, information on

algorithmic trading is considered and general steps for a complete al-

gorithmic trading system are proposed. Principally, common trading

strategies within the financial market are outlined as benchmark strate-

gies, and compared with contemporary strategies that employ machine

learning models. The chapter concludes with the evaluations of trading

performances between non-machine learning strategies.

2.1 Background - market environment

The stock market is a marketplace where public companies trade their shares.

A company becomes public after an Initial Public Offering, which enables in-

vestors to purchase and trade their shares or stocks in the company. The shares

of a company represent a partial ownership of the company, with shareholders
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considering that the company will be profitable and that its stocks will be valuable

in the future.

There is a diverse range of investors in the stock market, each undertaking

varying levels of risk. Individual investors, institutional investors - such as mutual

funds, ETFs, and hedge funds - and computer trading algorithms all compete

within the same market with an identical goal; gaining profit from accurately

forecasting future stock prices, and following the ’Buy Low, Sell High’ method to

trade.

ETFs are structured as open-ended funds, and trade similarly to an equity

listing on the stock exchange. This provides a convenient platform for imple-

mentation and the ability to mark-to-market in real time. With the ability to

trade on various exchanges electronically, it is possible to construct automated

trading systems to analyse the fluctuating market data and place orders when

certain criteria are met. Trading ETFs possesses two key advantages over trad-

ing stocks. First, ETFs enable investors to gain a broader exposure to equity

markets at a lower cost than numerous other forms of investment 1. Second,

ETFs are comprised of a selection of stocks that are designed to reflect how well

stocks are performing overall. Explicitly, ETFs are a suitable investment option

for diversification.

2.1.1 China ETFs

The dataset comprises of three China ETFs -ETF50, ETF300 and ETF500-

which track the underlying Index SSE50, CSI300 and S&P China 500 Index

(WCHN) respectively. While SSE50 is a stock index consisting of 50 of the

largest stocks of suitable liquidity listed on the Shanghai Stock Exchange (SSE),
1For example, no stamp tax is applicable when trading China ETFs but trading Chinese

stocks need pay stamp tax.
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CSI300 is comprised of 300 of the largest and most liquid A-share stocks that

trade on the Shanghai and Shenzhen Stock Exchange. Meanwhile, WCHN se-

lects 500 of the largest eligible companies from the broader S&P Total China

BMI Index, which characterises the entire investment environment of companies

in China based on market capitalisation and trading volume. SSE50, CSI300,

ETF50, ETF300, WCHN and ETF500 are supplied by the China Securities In-

dex Company Limited2, and are correct as of March 20193.

China ETFs are examined as the equity market of China is the second largest

worldwide, offering potential investors innovative opportunities as it unlocks its

financial markets. ETF50 and ETF300 are investigated since they are tradable

and are the most renowned benchmark prices that reflect stock market perfor-

mance in China. ETF50 and ETF300 are utilised to test all trading strategies

to enable the performance comparability of all trading strategies. ETF500 is

employed solely as a robustness check of the most profitable trading strategies

to examine the strategy performance of a new ETF. The past performances of

ETF50, ETF300 and ETF500 are further analysed.

This thesis focuses on post-adjusted prices, since there is no requirement to

manage fluctuations in price levels that are attributable to variations in capital

structure. Returns are unaffected, but this indicates that certain prices have not

existed. The adjusted close prices of ETF50, ETF300 and ETF500 during the

selected period are plotted in Figure 2.1. Since the prices of ETF300 are available

from May 2012, the data provided for both ETF50 and ETF300 commences from

this time period to ensure that the performances of all trading strategies are

comparable. As ETF500 was launched on March 2013, ETF500 has a shorter

2Official website: http://www.csindex.com.cn/en
3It should be noted that the China ETFs are revised on a half-year basis and are updated

to reflect changes in market capitalisation.
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(a) ETF50 from 28 May 2012 to 8 March 2019

(b) ETF300 from 28 May 2012 to 8 March 2019

(c) ETF500 from 15 March 2013 to 8 March 2019

Figure 2.1: Closing values of ETF50 for the 1651 trading days, ETF300 for the
1651 trading days, and ETF500 for the 1456 trading days
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price history and it is chosen for checking the robustness. ETF50, ETF300 and

ETF500 showed a comparable market pattern in the investigated time period

from March 2013. Meanwhile, there was a stable movement between 2013 and

2014. All ETFs experienced a large upward movement in June 2015, but a strong

negative movement in late 2015. Following January 2016, the ETFs recovered

from the loss experienced in the financial crisis, and from January 2019, a negative

growth was recorded for the ETFs until June 2019.

Two test sets - test period 1 and test period 2 - consisting of 250 days and 500

days, respectively, are utilised in all trading strategies4. Test period 1 covers the

period 28th February 2018 to 8th March 2019. Throughout this period, ETF50

and ETF300 decreased by 8.98% and 8.93% respectively, which correspond to

-8.83% and -10.45% at an annualised rate. The number of days with a negative

return outweighs the positive by 12 for ETF50 and 24 for ETF300. Test period

2 covers the timeframe 21st February 2017 to 8th March 2019. During this time

period, the two indices of ETF50 and ETF300 increased by 22.82% and 15.72%

respectively, with annualised returns of 20.12% and 15.80%. The number of

days with positive returns outweighed the negative by 23 for ETF50 and 35 for

ETF300.

From the trading mechanism perspectives, "T+1 trading rule"5 is adopted for

China’s A-share and B-share while some China ETFs such as SSE50 ETF permit

"T+0" same-day trading. Moreover, short selling mechanism for China ETFs can

be realised by some possible alternatives. For example, buying inverse ETFs such

as Direxion Daily China Bear 3X and ProShares Short FTSE China 50 is one

alternative to do short selling.

4Roughly, there are 250 trading days per year. Therefore, trading performances are checked
over 1 year and 2 year horizons.

5Under the "T+1 trading rule", stock investors cannot make settlement, payment and trans-
fer of ownership in the same day.
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2.1.2 Transaction costs

An accurate approximation of transaction costs is fundamental for a realistic

evaluation of the considered trading strategies. Earlier research indicates that

trading strategies that take account of transaction costs in the stock markets may

not be profitable (Brock et al., 1992; Andrada-Félix and Fernández-Rodríguez,

2008). Specifically, as trading frequency increases, the effect of transaction costs

outweighs the profitability of trading strategies (Bowen et al., 2010).

Numerous approaches to calculating transaction costs are outlined across var-

ious studies. Some studies focus solely on commission fees in the estimation

of transaction costs (Gorgulho et al., 2011; Mabu et al., 2013). However, this is

insufficient, with Narang (2009) proposing that liquidity costs should also be con-

sidered. Further research indicates that transaction costs should include the cost

of commissions, trading fees, market impact and liquidity from a theoretical per-

spective (Hu et al., 2015b). The most common means of estimating transaction

costs when dealing with stocks are the bid-ask spread and commission fees, since

these two components can be explicitly observed (Pesaran and Timmermann,

1994; Korajczyk and Sadka, 2004; Demsetz, 1968).

Long Short
Asset Commission fee Relative slippage cost Commission fee Relative slippage cost Rental fee
ETF50 0.001 0.004566 0.002 0.004566 0.000317
ETF300 0.001 0.003165 0.002 0.003165 0.000317
ETF500 0.001 0.006202 0.002 0.006202 0.000317

Notes: Each year has 252 trading days.

Table 2.1: Transaction costs for each trade in all developed trading strategies.

Transaction costs in this thesis include the commission fees charged by ex-

changes and security firms, slippage costs based on the tick size of stocks, and

the short-selling costs such as stock rental fees, which are all utilised in accor-

dance with market practice in the stock markets in China. The corresponding
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values for commission fees, slippage costs and rental fees are displayed in Table

2.1. In this instance, as just one share of the ETFs is traded in each transac-

tion, this thesis considers that one tick size approximately calculates the slippage

cost in each transaction. On the Shanghai and Shenzhen stock exchange, the

tick size is 0.01 RMB, and for ETF50, ETF300, and ETF500, the average prices

are 2.19 RMB, 3.16 RMB and 1.61 RMB respectively. The slippage costs for

ETF50 and ETF300 are approximately estimated by the tick size divided by the

average prices, which are 4.566e-3, 3.165e-3 and 6.202e-3 respectively. For each

transaction, the ’gap’ cost is considered, as there may be a delay in taking action

when a trading signal is generated. Additionally, rental fees for holding the stock

in a short position are considered with a value of 8% per year based on market

practice in the Chinese stock market. According to Table 2.1, all transaction

costs are deducted for active trading strategies when a new position is opened

at the beginning of each trade. The buy-and-hold strategy does not include any

transaction costs over its holding periods.

2.2 What is algorithmic trading?

In many ways, algorithmic trading (AT) has a more sophisticated power than

that of manual trading, as it analyses data, makes assumptions, acquires knowl-

edge and provides detailed predictions on a large scale. Meanwhile, the assump-

tions, studies and predictions of human analysts may be limited by volume, time

and cost constraints. Moreover, human investors are emotional. When confronted

with continuous profits or drawdowns, humans find it challenging to overcome

avaricious or fearful emotions to systematically adhere to trading disciplines. As

a result, a winning trade may ultimately transform into a losing trade when hu-

man investors break the existing trading rules. In addition, AT can surmount
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numerous irrational behaviours such as regret and herding.

AT is an automated trade that is performed by algorithms in computers with

little or no human interaction. The AT process incorporates three main steps,

namely trading signal generation, trading decision, and trade execution. Trad-

ing signal usually provides a trigger for action, which can either be generated

by humans or computers. For instance, pairs trading, which examines pairs of

financial instruments that are statistically correlated based on criteria set by hu-

mans; trend following strategies, which investigate trading signals generated by

man-made trading rules based on technical indicators; and chart pattern strategy,

which is a similar type of trading strategy that is dependent on expert experience

of pattern recognition. In these three examples, the thresholds for issuing trad-

ing signals and the threshold for stop loss protection are determined by traders.

However, computers can also generate signals since it extracts information from

data, and could possibly determine the inner relationship between predictors (or

features) and targets, and then provide predictions.

In this research, once trading signals have been triggered, computer systems

can accomplish all the tasks from trading decisions to execution. When managing

trade, trading decisions comprise of several components. For instance, the perfor-

mance of strategies determines trading decisions, and the trading size should be

reduced during losing periods. Additionally, trading decisions are determined by

the trading rules utilised in trading strategies. For example, possible trading rules

for one day forecast based trading strategy indicate that if a positive, negative

or neutral signal is predicted, buy, sell and hold decisions are made accordingly.

Trade execution determines the trading plan not only by deciding the venue, but

also the order type. Specifically, numerous assets can be traded in more than one

exchange in reality, and consequently, trade on the trading venues with a high
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liquidity is significant to reduce transaction costs. In regard to order type, trade

consisting of one large order or several small orders in the same trading strategy

may affect trading profits due to transaction costs. Trade execution critically de-

termines how to effectively execute the trade to reduce market impact and timing

risk. Factors relating to exchange selection and the quantity splits of orders are

not covered in this research.

Generally, trading systems consist of two processes, i.e. determining entry

strategies and exit strategies. Determining entry strategies is largely dependent

on the trading opportunities of specific trading strategies. For example, certain

trading signals may oscillate between buy and sell signals, or may only perform

effectively under strict assumptions. Thus, to prevent the risk of misusing a single

signal to enter the market, multiple signals may reduce the risk of the model.

Determining exit strategies influences the time to exit after entering the trad-

ing position. Exit strategies may also be highly dependent on trading strategies

under specific scenarios. For instance, traders may remain in the position as long

as their assumption about the market is valid, until their assumption is proven

erroneous by updated information. Traders may close the existing position if the

reverse signals occur. Traders can also close the current position by implementing

certain protective actions, such as stop loss order, which is an order to buy or sell

an instrument once its price increases above or decreases below a pre-specified

price level, to limit the loss to an investor.

Furthermore, money management, which involves determining the actual size

of the trade, takes the potential risk of each trade into consideration. This means

that how much money should be risked in each trade, and how much should be

traded at one time, needs to be determined. As every trade possesses a potential

for loss, the maximum amount of capital exposed at each trade is determined in
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a real trading system. In this thesis, one equity per trade is assumed, which will

simplify the complexities of trading systems. In future research, money manage-

ment in the trading algorithms may be considered.

While algorithm trading is powerful due to its reliable monitoring, short re-

action times and data detection ability, automating the entire process from in-

vestment decisions to execution is challenging. System stability and robustness

are fundamental for preventing mechanical failures. One possible view therefore

believes that the less complex the system, the stronger it tends to be.

Although algorithm trading has some limitations, trading through algorithms

should be encouraged from a policy perspective, as it indicates that liquidity

increases with algorithmic activities (Hendershott et al., 2011). Moreover, al-

gorithmic trading can further enhance market efficiency by narrowing spreads,

reducing adverse selection and lessening trade-related price discovery. It also as-

sists institutional market participants by decreasing transaction costs, improving

entry speeds, and reducing bid-ask spread.

2.3 Trading strategies without machine learning

assistance

There are numerous prevalent algorithmic trading strategies, including high

frequency trading, statistical arbitrage and financial time series forecasting based

trading strategies. This section presents two trading strategies, namely chart

pattern and trend following strategies, along with the application of the Chinese

stock markets. Both chart pattern and trend following strategies can be consid-

ered as benchmark strategies for comparing the performance of trading strategies

using machine learning techniques.
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2.3.1 Chart pattern trading strategy

Chart patterns are essentially price information presented in a graphical for-

mat. The technical difficulty lies in transforming the information on the k line

diagram into numerical forms, such as vector and matrix, which the computer can

recognise. Possible approaches of overcoming this difficulty are template-based

or rule-based pattern matching (Fu et al., 2007; Sezer and Ozbayoglu, 2018). The

template grid technique enables the replacement of traders to recognise antici-

pated patterns. In terms of algorithms, computers with an abundance of data

can accomplish chart pattern recognition conveniently and efficiently.

Chartists consider that the occurrence of certain patterns can be utilised to

generate profitable buy or sell signals. Head-and-shoulder, tops and bottoms, tri-

angles, wedges, saucers and gaps, bull and bear flag are patterns that are broadly

used to predict the direction of price movements for stock indices. Previous re-

search presents a five-point chart pattern, which was originally proposed by Levy

(1971). Lo et al. (2000) later employ the kernel regression approach to identify

ten-point chart patterns, and examine the possibility of generating profits through

charting. By identifying the perceptually significant features, pattern searching

is developed (Fu et al., 2007). In previous research, both the closing price and

the body of the candlesticks are investigated as data. This section focuses on the

commonly used data type - close prices, while further studies on candlesticks can

be obtained in Cervelló-Royo et al. (2015) and Arévalo et al. (2017).

Methodology

The entire process consists of introducing fit function with its two components,

Template grid and Image grid, followed by several ways in which to calculate

Template grid.
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Figure 2.2: Bull flag from k-line in chart pattern strategy

Figure 2.3: Bull flag template (Leigh et al., 2002b) in chart pattern strategy

The pattern employed as an example in this section is ’bull flag’. A flag

pattern is a trend continuation pattern, which forms during an uptrend, with

parallel trend lines6 above and below the price-action, which form a down slope

6Blue lines in Figure 2.2
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(see Figure 2.2). A breakout above the price-action confirms that an uptrend is

continuing. A bull flag pattern is a horizontal flag of consolidation followed by a

rise in the positive direction.

The template grid is a weight matrix that records the price trend of graphical

patterns such as head-and-shoulder, tops and bottoms, triangles, wedges, saucers

and gaps, bull and bear flag. An example template is the ’bull flag template’,

which is exemplified in Figure 2.3. The grey grid is the matrix version of the

’bull flag’ pattern. The first 7 columns indicate the consolidation process while

the last 3 columns represent the sharp increase of the price (breakout). Template

grid is adopted for calculating fit function, which measures how the experimental

data corresponds with the anticipated bull flag designed for this research.

Figure 2.4: Calculation process of the fit function (Michniuk, 2017) in chart
pattern strategy

The fit function is defined as a cross-correlation calculation between the grid
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of weights and the price values in a window of p periods (i.e. p=10 in Figure 2.3).

This matching serves as a measurement to identify a specific pattern. An example

of the fit function for a 10×10 grid is displayed in Figure 2.4, using the Michniuk

(2017) to clarify the process. Jit is so called Image grid introduced before, which

records price information in images. For Jit, each column (j = 1, 2, · · · , p) derives

from each of the p periods of the sliding window. Meanwhile, the rows - where

i denotes the price rank - mark out the maximum and minimum reached by the

index during p periods. Further details on how to calculate Jit will be explained

in Algorithm 2. The fit function is:

Fitk = ∑ ∑(Iit ∗ Jit) (2.1)

For the estimations on Image grid J , it is not necessary to have a format with

only one ’1’ and all ’0’s for the others in each column in the M ×M template

(Wang and Chan, 2009). More generally, the procedure for obtaining Jit, i =

1, 2, . . . ,M, t = 1, 2, . . .M is outlined below.

Suppose a window ofN price values is being fitted to the template grid starting

with the earliest price, with the sliding window moving daily for each of the

fittings. pt is the price value on the trading day t for the window ending on

trading day k. For each trading day k, we calculate a 10 by 10 image grid, I.

The price values will relate to the rows in the grid by computing the range of

N prices and scaling the range by M to get the increment (inc) value:

inc = (pmax − pmin)/M (2.2)

where pmax and pmin are the maximum and minimum price values found within

the N values in each window separately.
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After obtaining the inc, row i is allocated with an interval:

[pmax − i× inc, pmax − (i− 1)× inc] for i = 1, 2, . . . , M (2.3)

Price values for the earliest 1
K

% of the trading days are mapped to the first

column of the template grid, with the most recent 1
K

% of the trading days mapped

to the final columns on the right.

Next, the element value jit of matrix Jit is determined by the portion of N
K

%

price values in each column that fall into each of the K intervals. Especially,

when N = K, it is the same case as shown in Figure 2.3.

Finally, if the figure obtained from the data falls in grey cells, which is the

ideal pattern combination, the highest score is provided. Otherwise, it will be

penalised by a different weight, depending on how far it deviates from the perfect

pattern.

Since the solution of pattern recognition is to estimate the template grid, 5

methods to achieve pattern recognition are provided.

Template 1

One means of constructing a template grid is provided by Wang and Chan

(2009), who assume that the ideal pattern is defined in theory, and that the weight

values are linearly decremented. They propose a simple and explicit method based

on three steps:

Step1 Give the weight values ’1’ according to the variation of object charting

pattern.

Step2 Give the weight values for the rest cells based on the distance from the

cell whose weight value is ’1’.

Step3 Ensure that the sum of the rows, column by column, equals 1.

An example of how to implement Template 1 is displayed in Figure 2.5, where
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Figure 2.5: Illustration for a template formation (Wang and Chan, 2009) in chart
pattern strategy

all of the weight values ’1’ are clearly defined by the variation of the object

charting pattern. Then, take the third column as an example in 2.5 b. As the

total sum of each column should have a weight of 1, d is determined.

Template 2

An alternate choice for template calculation is employed by inputting a three

sample-period with a typical sloping flag to estimate the template grid (Bo et al.,

2005). It appears reasonable to obtain a template based on certain sample-periods

with a typical pattern. However, Bo, Linyan and Mweene do not indicate how

they calculate the template from the data.

Template 3

Leigh et al. (2002b) propose another means of obtaining a template by directly

utilising the template grid for the ’bull flag’. This method relates to the definition

of a flag according to Downes and Goodman (2014), and further described by

Duda et al. (1973)7.

Template 4

An issue is identified with the template proposed by Leigh et al. (2002b).
7See Figure 2.3 for more details.
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Figure 2.6: Two examples of bull flag templates in chart pattern strategy

According to Figure 2.6, the grey cells in 2.6(a) indicate a bull flag pattern with

a fitting value of 6.5, while 2.6 (b) also displays a score of 6.5 despite not be-

ing considered a bull flag pattern. Therefore, in certain instances, the template

proposed by Leigh et al. (2002b) cannot distinguish an accurate bull flag pattern.

Due to the instability of Leigh’s template, Wang (2007) defines a template

that is more accurate in identifying price increases, as displayed in Figure 2.7.

Rather than employing a consolidation and breakout version like Leigh, Figure

2.7 presents a possible break and consolidation version, where the first 5 columns

confirm an upward wave band, followed by 4 columns of horizontal consolidation

and a final column for an upward-tilting breakout.
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Figure 2.7: Bull flag template (Wang, 2007) in chart pattern strategy

Template 5

Figure 2.8: Bull flag template (Cervelló-Royo et al., 2015) in chart pattern strat-
egy

Cervelló-Royo et al. (2015) later propose a template that utilises a dissimilar

breakout and consolidation approach, as shown in Figure 2.8. The only positive

weight in all cells is located at the lowest corner on the left. All price paths in

I with a positive fitness score must pass through this starting point (Cervelló-

Royo et al., 2015). According to this method, the cells labeled with a negative
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value indicate that a punishment will be provided to the candidate that sought

to match the bull flag template.

Application to up-trend trading strategies by chart patterns on China

ETFs

In this section, the chart pattern trading strategy is back tested to examine

whether the ’bull template’ pattern can be recognised and predicted using tem-

plate grids. The idea of the chart pattern strategy is to utilise the sliding window

to locate at what time point the bull template pattern appears. Subsequently,

the buy signal is generated at this time point. The criteria for determining the

occurrence of the ’bull template’ -time point - can be obtained from the concepts

with certain assumptions, or from the previous time series of prices in the periods

that bull template patterns occurred. Once the trading position is opened, stop

loss rules should be established to reduce price downward risks.

Specifically, the following 3 steps are expected to be applied to the trading

strategy in this research, and these steps are developed by recognising patterns

from the empirical data, establishing trading rules, and analysing model perfor-

mances with the transaction costs. The procedure for establishing the template

grid follows with the work of Chen and Chen (2016), as displayed in Algorithm

1. They adopt the weighted averages methods to generate the weight (wi,t) of

each cell in the template (Iit). The main idea is to obtain Template I from the

historical close prices, which covers the period that the anticipated patterns ap-

peared. However, it is difficult to consult with experts to recognise the bull flag

pattern in this research. Thus, the same bull flag template is adopted according

to Bo et al. (2005) as their data also arises from the Chinese stock indices.

The recognised pattern triggers the trading signals through a threshold. To
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Step 1: P = p1, p2, · · · , pk is a set of daily closing index containing the
pattern, where k is the fitting window size.
Step 2: Rank the index value in set P at a decrement.
Step 3: Calculate template Iit for trading day i(1 ≤ i ≤ k), and t is
1 ≤ t ≤M .

Ii,t = 1 if Rank(pt) falls in the i-th interval.
Ii,t = 0 otherwise.

Step 4: Repeat Step 3 until the last Iit of possible pattern is calculated.
Step 5: Calculate wi,t in template grids for all n patterns.

wi,t =
∑b=n

b=1 Patternb(Ii,t)
n

Algorithm 1: Template (I) building for pattern recognition

determine this threshold, some studies are reviewed. Wang (2007); Zapranis

and Tsinaslanidis (2012) specify how to acquire thresholds and holding periods.

According to some studies, they support the idea that trading thresholds can be

obtained by the empirical data of the previous trading days (Bo et al., 2005; Chen

and Chen, 2016; Leigh et al., 2002a). The trading rule is implemented by taking

long positions in assets on the day, which a buy signal is triggered. After entering

a trading position, another threshold needs to be determined is ’stop loss’, e.g.

Cervelló-Royo et al. (2015); Arévalo et al. (2017) employ stop loss and take profit

in their studies.

The investigated chart pattern strategy coheres with the previous work, and

is presented in Algorithm 2. The input data is the historical close prices for the

investigated asset. During the initial Wind days in the test set, the ImgGrid is

generated daily based on the updated sliding window with training data from i to

i+ wind. During the Wind days, the values for the earliest (PMax − PMin)/T %

of the trading days8 are mapped to the first column of the grid (ImgGrid). The

values for the subsequent earliest (PMax−PMin)/T % trading days are mapped to

the second column of the grid, with the most recent (PMax− PMin)/T % trading

8PMax and PMin represent the maximum and minimum prices over the T days in the rolling
window.
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procedure MatchTemplateSearch(data, TemGrid, hold, Wind, M,
Threshold, StopLoss)
Input: data, TemGrid,Wind,M, Threshold, hold
Output: CumsumReturn
for i in test set do

PRICE = data[i : i+Wind];
pMax = max(price);
pMin = max(price);
Calculate inc;
for a = 1, 2, · · · ,M do

for b = 1, 2, · · · ,M do
p = price[Wind

M
b : Wind

M
(b+ 1)];

ImgGrid[a,b] = len([pp for pp in p if pp falls in a-th
interval])/len(p)

end
FitScore = sum(sum(ImgGrid ∗ TemGrid))

end
S=0

if FitScore ≥ Threshold then
S = 1 ; // Open "Long"
P_buy = price[i + wind +1];
Start = i+wind+1;
j = i+ wind+ 2
while p[j] > StopLoss do

j = j + 1;
if j==i+ wind+ hold then

break
end
P_sell = p[i+ wind+ hold];
End = i+wind+Hold;
n = End - Start ; // Number of holding days
S = 0 ; // Close "Long"

end
P_sell = p[j]
End = j;
n = End - Start;
S = 0 ; // Close "Long"

end
Return = (ln(P_sell/P_buy)- cost)/n ; // Daily return per trade
CumsumReturn = CumsumReturn + Return

end
return CumsumReturn

Algorithm 2: Backtest the chart pattern strategy
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days mapped to the farthest column on the right. In line with the study Bo et al.

(2005), the weight matrix TempGrid has been given directly, and ImgGrid and

TempGrid generate the fitted value for a daily stock pattern, together.

When the FitScore is above the Threshold, a buy signal occurs. The Threshold

is defined as 70% of the maximum previous FitScore. StopLoss is closely related to

the buying price at the time when the long position was opened. Once a buy signal

occurs, the stock will be sold on the hold day unless the threshold (StopLoss) is

touched prior to the hold day. That is to say, as soon as the price reaches the

StopLoss, the position will be automatically closed at the current market price,

preventing further risk to the capital. In this example, StopLoss is 0.97 × the

buying price, which indicates that the investor only affords a 3% loss at most in

each trade. If the stock price does not touch the stop loss protection before hold

day, the long position has to be closed on the specific hold day. Then investors

need to wait for a new buy signal to occur. The profit for each transaction is

calculated based on log returns (ln(P_sell/P_buy)). The daily return is the

profit for each transaction per hold day, which is (ln(P_sell/P_buy)/hold).

The passive trading strategy, buy-and-hold, is considered a comparison to the

chart pattern strategy. The buy-and-hold strategy is a simple strategy in which

investors purchase stocks on the first day of the holding period, and hold the

stock until it is sold at the end of the holding period. The current daily return9

of buy-and-hold is the current log return calculated from the current price and

the future price.

The empirical results are presented from the perspective of daily returns and

annual returns analysis. Although the most commonly employed statistics relat-

ing to the chart pattern strategy in previous research are based on the return of

9ReturnBH(t) = ln(P (t+ 1)/P (t))
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Before transaction costs After transaction costs
ETF50 ETF300 ETF50 ETF300

L L L BH L BH

Panel A: 250 trading day daily returns when Wind = 120, hold=25

Average return (e-3) -1.5850 -1.3810 -1.7910 -0.3505 -1.5160 -0.4148
Standard deviation 0.0054 0.0048 0.0060 0.0146 0.0053 0.0147

t-Statistic -4.6790 -4.5290 -4.7400 -0.3807 -4.5580 -0.4458
Minimum -0.0474 -0.0472 -0.0530 -0.0486 -0.0514 -0.0528
Median 0 0 0 -0.1751e-3 0 -1.2489e-3

Maximum 0.0008 0.0020 0.0006 0.0729 0.0018 0.0682
Skewness 5.2620 -5.5490 -5.1560 0.0729 -5.5100 0.3210
Kurtosis 20.3800 14.2800 18.6700 5.7300 13.3100 15.6100

Panel B: 500 trading day daily returns when Wind = 120, hold=25

Average return (e-3) -0.3966 -0.3354 -0.5940 0.2211 -0.4707 1.0134
Standard deviation 0.0039 0.0037 0.0043 0.0121 0.0040 0.0120

t-Statistic -2.2220 -2.0090 -3.0270 0.4091 -2.6000 0.1962
Minimum -0.0473 -0.0472 -0.0529 -0.0486 -0.0513 -0.0528
Median 0 0 0 0.4195e-3 0 0.5345e-3

Maximum 0.0042 0.0036 0.0039 0.0729 0.0034 0.0682
Skewness -6.7250 -7.4050 -6.8370 0.0517 -7.5630 0.0414
Kurtosis 19.0700 13.9400 17.6700 3.9690 12.8300 4.2840

Notes: ’L’, ’LS’, and ’BH’ stand for ’long’ strategy, ’long and short’ strategy, and ’buy-and-hold’ strategy.
The test set sizes for Panel A and Panel B are 250 days and 500 days, individually.
t test is one side test to check whether positive returns are significant.
Significant estimate for t test at 0.1% (***), 1% (**) 5% (*) and 10% (+) levels are marked correspondingly.

Table 2.2: Daily trading profits of chart pattern strategy.

each trade, all the results are finally shown in a daily basis to compare with other

trading strategies.

Table 2.2 displays the daily return results for two possible test periods, which

cover 250 and 500 trading days individually. The results show that all daily re-

turns of chart pattern strategies are negative. Table 2.3 illustrates the annual

return results of the same instance as Table 2.2. The charting strategy appears

unprofitable, since the Sharpe and Sortino ratios after transaction costs are gen-

erally negative.

As the daily return of chart pattern strategy is the average log returns in each
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Before transaction costs After transaction costs
ETF50 ETF300 ETF50 ETF300

L L L BH L BH

Panel A: 250 trading day annual returns when Wind = 120, hold=25

Annual return -0.3993 -0.3480 -0.4513 -0.0883 -0.3820 -0.1045
Excess return -0.4168 -0.3655 -0.4688 -0.1058 -0.3995 -0.1220

Standard deviation 0.0850 0.0765 0.0948 0.1919 0.0834 0.1897
Downside deviation 0.0885 0.0795 0.0988 0.1619 0.0867 0.1613

Sharpe ratio -4.9040 -4.7760 -4.9430 -0.4579 -4.7860 -0.5225
Sortino ratio -4.7110 -4.6010 -4.7440 -0.6535 -4.6080 -0.7462

Maximum drawdown 0.4450 0.4390 0.4960 0.2120 0.4780 0.2120

Panel B: 500 trading day annual returns when Wind = 120, hold=25

Annual return -0.0999 -0.0845 -0.1496 0.0557 -0.1186 0.0264
Excess return -0.1174 -0.1020 -0.1672 0.0382 -0.1361 0.0089

Standard deviation 0.9854 0.9375 0.9756 0.2550 0.9273 0.2595
Downside deviation 0.0611 0.0578 0.0684 0.1352 0.0634 0.1340

Sharpe ratio -1.8540 -1.7220 -2.4000 0.1992 -2.1180 0.0470
Sortino ratio -1.9200 -1.7650 0.2827 -2.4440 0.0666 -2.1470

Maximum drawdown 0.5150 0.5080 0.5690 0.2895 0.5480 0.2895

Notes: ’L’, ’LS’, and ’BH’ stand for ’long’ strategy, ’long and short’ strategy, and ’buy-and-hold’ strategy.
The test set sizes for Panel A and Panel B are 250 days and 500 days, individually.
Table 2.3 presents the annualised return converted from Table 2.2 with the assumption that one year contains 252 trading days.

Table 2.3: Annualised trading profits of chart pattern strategy.

trade while the daily return of buy-and-hold is the daily log returns for the stock

price, it is difficult to compare the total return of chart pattern strategies with

that of buy-and-hold strategy in a graph. Therefore, the cumulative return plots

are not provided for chart pattern strategies.

To summarise, the risk management tool (stop loss) is utilised in the investiga-

tive chart pattern trading strategies. In this scenario, stop loss is pre-determined

by the extent of the loss that can be tolerated by investors to safeguard investors

against an extensive loss in all opened positions. Although the chart pattern trad-

ing algorithm enables investors to accurately capture the target pattern and take
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efficient action, solid experience and knowledge of how to identify pattern forms

is required. Algorithms solely replace humans in monitoring price changes, and

take action if a pattern is acknowledged. The success of chart pattern strategy is

largely dependent on whether the pattern proposed by experts can truly generate

a buy or sell signal. Considering each of the aforementioned characteristics, chart

pattern trading strategies are not extended in this thesis.

2.3.2 Trend following strategy

Literature review

Trend following strategies are widely accepted by traders who seek to avoid

making predictions when designing trading strategies. Traders employ technical

indicators to track historical trends, and react to changes of the trends by observ-

ing buy and sell signals from previous market movements. Thus, trend following

automates the buying or selling process according to the position of the price rel-

ative to a long-term moving average value, and holds the position until it closes

when the signals change. In the short-term, trend following does not guarantee

profits for every trade, but in the long-term, a positive cumulative return may be

achieved since the positive returns can suppress the negative returns.

Some successful trend following strategies are outlined. The trend following

strategy, which aims to determine the appropriate entry and exit time, is con-

ducted by monitoring the trend in the upward direction and the opposite trend

after a ’pivotal’ is observed (Fong et al., 2011). Later, a valid trend following step

is employed to catch the minor fluctuations after the trend following, as the trend

following may work by leveling out the averages of the time series. It appears that

the improved trend following model with trend recalling is more effective than

other trend following methods (Fong et al., 2012). Upon verification of this rule
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to generate positive profits, an evolutionary trend following strategy is identified

in Hu et al. (2015a).

Different types of trend following trading strategies are summarised. Fong and

Yong (2005) apply 840 moving average rules to a sample of 30 leading Internet

stocks during 1998-2002. Narayan et al. (2015) examine whether momentum-

based trading strategies that buy past winners and sell past losers work in the

commodity futures market. Szakmary et al. (2010) seek to whether momentum

strategies, dual moving average crossover strategies and channel strategies yield

positive mean excess returns net of transaction costs in at least 22 of the 28

markets. Han et al. (2016) unify in a single framework the three major price

patterns: the short-term reversal effects, the momentum effects, and the long-

term reversal effects. Moreover, trend following strategies can be combined with

other strategies to develop profitable trading strategies. Fuertes et al. (2010)

illustrate that the double-sort strategy that exploits both momentum and term

structure signals outperforms the single-sort strategies using momentum and term

structure signals separately.

The most straightforward trend following strategies focus on moving averages.

Moving average rules are mechanical trading rules that endeavour to capture

trends. The price crossover rule (MACD trend following strategy) generates the

buy and sell decisions solely from historical close prices. The theory of the MACD

trend following strategy is that if the actual price on a set day is above the moving

average, the strategy provides a long signal. If the actual price is below the moving

average, the signal is short. As recent prices are lower than earlier prices, the

price is determined to be in a downtrend and a sell signal is produced. The

response following a buy or sell signal is to buy or sell. Moving average trading is

profitable if the variation in price level between buy and sell signals is sufficient
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to cover the costs. The actual number of average days was selected to provide

the most sufficient information ratio for the stock.

Application of MACD trend following trading strategy on China ETFs

Two steps have been applied to the trend following strategy in this research;

namely algorithm demonstrations, and model performance analyses with trans-

action costs.

The MACD is calculated as the difference between a short-term period of

12 days and a long-term period of 26 days exponential moving average (EMA).

The actual number of average days was determined based on the research of

Fernández-Blanco et al. (2008); Eric et al. (2009); Beyaz et al. (2018). The

’signal line’ is obtained by the 9-day EMA of the MACD.

Figure 2.9: Sliding window process on the 1-day horizon

The dynamic training process is defined in Figure 2.9, consisting of a train-

ing period Wind as an initial window to generate MACD and SignalLine in

Algorithms 3 and 4. To verify the one-side active trading strategy (’L’) and the

two-sided active trading strategy (’LS’), this research will proceed as follows. On

the first trading day, trading decisions are determined based on trading strategies.

For the ’L’ strategy, a long position is taken if the MACD (MACD in Algorithms

3 and 4) crosses above the signal line (SingalLine). A long position means pur-

chasing a stock for later resale, while a short position means selling the stock now

and purchasing it later. A long position is maintained if the MACD is above the
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Input: dataclose,Wind, cost
Output: TotalReturnL
Data: Close price
Calculate MACD and SignalLine
Initial State S = 0
for i in test set do

if S = 0 AND MACD(i) > SignalLine(i) AND
MACD(i− 1) < SignalLine(i− 1) then

S=1 ; // Open "Long"
Return = ln(P(i+1)/ P(i)) -cost

if S = 1 AND MACD(i) > SignalLine(i) then
Return = ln(P(i+1)/ P(i)) - cost ; // Keep "Long"

else
S = 0
Return = 0 ; // Close "Long"

end
end
TotalReturnLS = cumsum(Return)

Algorithm 3: Backtest MACD Strategy (’L’) in test set

signal line. In the ’LS’ strategy, a buy (or sell) signal is generated when the price

shifts above (or below) the longer moving average. Following the first trading

day, the training window shifts forward by one day, and the trading decision on

the second day is considered immediately following the updated training window.

This process is repeated until the data in the training window is exhausted.

The main difference between Algorithms 3 and 4 is that there is one state

("Long") for Algorithm 3 while Algorithm 4 considers two states ("Long" and

"Short"). For Algorithms 3, three options can be chosen- enter, stay or exit the

state "Long". However, only the periods of open and hold the "Long" position

are recorded. For Algorithm 4, investors not only can enter, stay and exit either

"Long" or "Short", but also transfer from one state to the other state. During the

periods of open and hold the "Long" or "Short" position, return are calculated.

Tables 2.4 and 2.5 present the daily and annual returns of trend following
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Input: dataclose,Wind, cost
Output: TotalReturnLS
Data: Close price
Calculate MACD and SignalLine
Initial State S = 0
for i in test set do

if S = 0 AND MACD(i) > SignalLine(i) AND
MACD(i− 1) < SignalLine(i− 1) then

S=1 ; // Open "Long"
PriceBuy = ln(P (i+ 1)/P (i))− cost
Return = 0

if S = 0 AND MACD(i) < SignalLine(i) AND
MACD(i− 1) > SignalLine(i− 1) then

S=-1 ; // Open "Short"
PriceSell = ln(P (i)/P (i+ 1))− cost

if S = 1 AND MACD(i) > SignalLine(i) then
Return = ln(P(i+1)/P(i)) ; // Keep "Long"

if S = −1 AND MACD(i) < SignalLine(i) then
Return = ln(P(i)/ P(i+1)) ; // Keep "Short"

else
S = 0
Return = 0 ; // Wait

end
end
TotalReturnLS = cumsum(Return)

Algorithm 4: Backtest MACD Strategy (’LS’) in test set
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Before transaction costs After transaction costs
ETF50 ETF300 ETF50 ETF300

L LS L LS L LS BH L LS BH

Panel A: 250 trading day daily returns when Wind = 1401

Average return(e-3) -0.9303 -0.9303 -1.2209 -1.2209 -0.6260 -0.6260 -0.3505 -0.8435 -0.8435 -0.4148
Standard deviation 0.0111 0.0111 0.0113 0.0113 0.0114 0.0114 0.0146 0.0115 0.0115 0.0147

t-Statistic -1.3150 -1.3150 -1.7030 -1.7030 -0.8640 -0.8640 -0.3807 -1.1580 -1.1580 -0.4458
Minimum -0.0485 -0.0485 -0.0485 -0.0485 -0.0527 -0.0527 -0.0486 -0.0527 -0.0527 -0.0528
Median 0 0 0 0 0 0 -0.1751e-3 0 0 -1.2489e-3

Maximum 0.0729 0.0729 0.0729 0.0729 0.0682 0.0682 0.0729 0.0682 0.0682 0.0682
Skewness 0.4431 0.4431 0.4392 0.4392 0.3112 0.3112 0.0729 0.2682 0.2682 0.3210
Kurtosis 12.8800 12.8800 12.3600 12.3600 11.4300 11.4300 5.7300 11.0200 11.0200 5.6100

Panel B: 500 trading day daily returns when Wind = 1151

Average return(e-3) -0.1617 -0.4060 -0.1758 -0.3100 -0.4071 -0.7094 0.2211 -0.3762 -0.5736 1.0134
Standard deviation 0.0089 0.0081 0.0088 0.0080 0.0090 0.0083 0.0121 0.0089 0.0081 0.0120

t-Statistic -0.4040 -1.1151 -0.4444 -0.8610 -1.0075 -1.8928 0.4091 -0.9429 -1.5693 0.1962
Minimum -0.0485 -0.0424 -0.0527 -0.0514 -0.0485 -0.0424 -0.0486 -0.0527 -0.0514 -0.0528
Median 0 0 0 0 0 0 0.4195e-3 0 0 0.5345e-3

Maximum 0.0729 0.0473 0.0682 0.0472 0.0729 0.0473 0.0729 0.0682 0.0472 0.0682
Skewness 0.3128 0.1407 0.1678 0.0339 0.2933 0.0601 0.0517 0.1011 0.0115 0.0414
Kurtosis 13.3070 7.3180 13.5060 8.5550 12.8190 6.6150 3.9690 12.8000 7.9980 4.2840

Notes: ’L’, ’LS’, and ’BH’ stand for ’long’ strategy, ’long and short’ strategy, and ’buy-and-hold’ strategy.
The test set sizes for Panel A and Panel B are 250 days and 500 days, individually.
t test is one side test to check whether positive returns are significant.
Significant estimate for t test at 0.1% (***), 1% (**) 5% (*) and 10% (+) levels are marked correspondingly.

Table 2.4: Daily trading profits of trend following strategy.

strategies. When the testing set is established by the last 250 days’ data, there

is no difference between the ’L’ and ’LS’ trading strategies. However, when the

testing set is reset to include 500 days’ data, the trading profits of the ’L’ and

’LS’ trading strategies are negative in all cases, with no trend following strategy

capable of outperforming the buy-and-hold strategy.

As the concern of most investors is the recent trading performance, only the

cumulative returns of the chart pattern over the most recent 500 trading days

are plotted for comparison purposes. The results of the trend following strategy

in Figure 2.10 reveal that ’L’ strategies outperform ’LS’ strategies in all cases

for both ETF50 and ETF300. Nevertheless, no positive cumulative returns are

generated after transaction costs.
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(a) ETF50 in 500 days

(b) ETF300 in 500 days

Figure 2.10: Cumulative returns (after transaction costs) for MACD trend fol-
lowing strategy in 500 trading days.
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Before transaction costs After transaction costs
ETF50 ETF300 ETF50 ETF300

L LS L LS L LS BH L LS BH

Panel A: 250 trading day annual returns when Wind = 1401

Annual return -0.2344 -0.2344 -0.3077 -0.3077 -0.1578 -0.1578 -0.0883 -0.2126 -0.2126 -0.1045
Excess return -0.2519 -0.2519 -0.3252 -0.3252 -0.1753 -0.1753 -0.1058 -0.2301 -0.2301 -0.1220

Standard deviation 0.1772 0.1772 0.1796 0.1796 0.1815 0.1815 0.2311 0.1825 0.1825 0.2335
Downside deviation 0.1325 0.1325 0.1367 0.1367 0.1314 0.1314 0.1619 0.1345 0.1345 0.1635

Sharpe ratio -1.4220 -1.4220 -1.8109 -1.8109 -0.9657 -0.9657 -0.4579 -1.2603 -1.2603 -0.5225
Sortino ratio -1.9010 -1.9010 -2.3780 -2.3780 -1.3340 -1.3340 -0.6535 -1.7100 -1.7100 -0.7462

Maximum drawdown 0.5082 0.4828 0.4337 0.4986 0.4817 0.4739 0.2120 0.6125 0.5413 0.2120

Panel B: 500 trading day annual returns when Wind = 1151

Annual return -0.0407 -0.1023 -0.0443 -0.0781 -0.1025 -0.1787 0.0557 -0.0947 -0.1445 0.0264
Excess return -0.0582 -0.1198 -0.0618 -0.0956 -0.1200 -0.1962 0.0382 -0.1122 -0.1620 0.0089

Standard deviation 0.1419 0.1291 0.1403 0.1277 0.1433 0.1329 0.1919 0.1415 0.1296 0.1897
Downside deviation 0.1024 0.0942 0.1009 0.0923 0.1056 0.1003 0.1352 0.1040 0.0965 0.1340

Sharpe ratio -0.4105 -0.9280 -0.4406 -0.7489 -0.8381 -1.4768 0.1992 -0.7938 -1.2502 0.0470
Sortino ratio -0.5685 -1.2711 -0.6123 -1.0350 -1.1368 -1.9556 0.2827 -1.0788 -1.6790 0.0666

Maximum drawdown 0.4022 0.4258 0.4377 0.4386 0.4831 0.4129 0.2895 0.5192 0.4561 0.2895

Notes: ’L’, ’LS’, and ’BH’ stand for ’long’ strategy, ’long and short’ strategy, and ’buy-and-hold’ strategy.
The test set sizes for Panel A and Panel B are 250 days and 500 days, individually.
Table 2.5 presents the annualised return converted from Table 2.4 with the assumption that one year contains 252 trading days.

Table 2.5: Annualised trading profits of trend following strategy.

2.4 Summary

This chapter has verified whether non-machine learning trading strategies

yield significant positive excess returns when applied to two ETFs in China.

Both the chart pattern and trend following trading strategies cannot generate

continuous positive returns.

It is worth noting that the chart pattern strategy cannot generate positive

returns with other possible cases. For example, when the holding period changes

from 25 to 40 days, 40-day forecast horizon performs worse than 25 forecast hori-

zon. Moreover, the use of other parameter combinations to develop the MACD

trend following strategy cannot improve the current results.

To summerise, the chart pattern strategy cannot generate a positive risk-

adjusted return. Neither Sharpe ratios nor Sortino ratios are above 1 after trans-
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action costs. This indicates that the return is not be high enough to compensate

for the risk. As previously mentioned, the success of the chart pattern is heavily

dependent on experts’ experience. However, algorithm trading for chart pattern

strategies is a robust tool that can replace traders in monitoring trade and tak-

ing actions based on trading rules. Therefore, the chart pattern remains feasible

for experts who have profitable trading strategies. MACD trend following can-

not generate a positive Sharpe ratio after transaction costs for both ETF50 and

ETF300. Thus, other technical indicators should perhaps be considered in the

future when designing trend following strategies.



Chapter 3

Machine learning methods

selected for predicting and

trading asset returns

This chapter provides an overview of preceding research specific to pre-

dicting stock price movements and developing machine learning based

trading strategies, and in the application of logistic regression, sup-

port vector machine, random forest and neural networks models to

financial time series. I mathematically model the problem of finan-

cial market prediction in the study, and explain why these machine

learning models are provided to solve the proposed problem. Machine

learning based trading strategies is proposed in chapter 4 based on the

predictions made in this chapter.
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3.1 Literature review

This chapter reviews an abundance of existing literature pertaining to the field

of trading strategies with machine learning models. Previous studies succeeded

in establishing machine learning models that generate signals. One method of

signal generation is to apply piecewise linear representation to discover turning

points. In such research, the buy and sell signals generated from turning points

are then denoted as the target of the proposed machine learning models (Chang

et al., 2011; Luo and Chen, 2013; Luo et al., 2017; Chang et al., 2008). Possible

trading signals may be generated by periodic occurrences. For instance, Booth

et al. (2014) solely assess the weighted random forest ensemble when trading

over seasonal events rather than daily trading. Further research models focus

on the transaction probabilities of uptrend/downtrend to downtrend/uptrend to

generate profitable trading strategies (Ładyżyński et al., 2013). Chavarnakul

and Enke (2008) determine that neural networks can provide more appropriate

trading signals based on two technical indicators, namely volume adjusted moving

average and ease of movement. Meanwhile, Chang et al. (2009) identify that when

training artificial neural networks, buy and sell signals are generated according

to the experience of experts, but not the stock prices for each input. A recent

study generates trading signals by news based data, and trains the model through

random forest (Feuerriegel and Prendinger, 2016).

Numerous attempts have been made to devise a consistently profitable au-

tonomous trading system assisted by single machine learning models, such as

LSTM (Troiano et al., 2018), SVM (Choudhury et al., 2014; Chen and Hao, 2018)

and neural network (Chenoweth et al., 2017; Chen and Leung, 2004). Multi-layer

perceptron (MLP) is perceived to be capable of approximating arbitrary functions

since artificial neural network is a highly elaborate analytical technique for mod-
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eling complex nonlinear functions (Principe et al., 2000).A considerable volume

of work has already been published on the application of neural networks on stock

market trading. For instance, Dunis and Williams (2002) conclude that neural

network regression models can forecast EUR/USD returns. Moreover, according

to empirical evidence from the Madrid Stock Market, in the absence of trading

costs the technical trading rule is always superior to the buy-and-hold strategy

for ’bear’ and ’stable’ market episodes (Fernandez-Rodrıguez et al., 2000). Chen

et al. (2003) reveal that probabilistic neural network based investment strate-

gies obtain higher returns than other investment strategies on the Taiwan Stock

Index.

With exception to single machine learning models, numerous studies have been

conducted on ensemble learning across many fields, including credit risk forecasts

and price predictions on the oil market, the stock futures market, the gold market

and the electricity market. A summary of the most commonly employed ensemble

methods is provided.

Previous literature indicates that the simple combination of neural networks

outperforms individual networks when trading S&P 500 future contracts (Trippi

and DeSieno, 1992). Moreover, Paleologo et al. (2010) compare the subagging

decision tree with SVM when contending with credit scoring problems. Yu (2008)

perform crude oil forecasting through a three-step forecasting system called the

EMD-based neural network ensemble learning paradigm. The first step employs

empirical mode decomposition (EMD) to separate the crude oil price into certain

intrinsic mode functions (IMFs). Then, each IMF is directed into a three-layer

feed-forward neural network. Finally, an adaptive linear neural network totals the

prediction outcomes. Tang et al. (2018) implement a similar system through de-

composition by EMD, prediction through random vector functional link network,
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and ensemble by linear addition. Yu et al. (2008) establishes a more complex sys-

tem, the multistage neural network ensemble learning approach, which consists of

6 stages. Zhao et al. (2017) first utilise bootstrapping to replicate the original sam-

ple, thus generating several sub-samples. Then, stacked denoising autoencoders

are adopted to train, test and predict all sub-samples. Finally, the average of the

sub-sample prediction results is selected to obtain a final prediction. Meanwhile,

Xian et al. (2016) devise the Ensemble Empirical Model Decomposition and In-

dependent Component Analysis method for gold price analysis, while Neupane

et al. (2017) employ two types of ensemble model for comparison, namely the

fixed weight method and varying weight method.

This chapter primarily focuses on literature concerned with price prediction

on the stock market through ensemble learning approaches. The local weighted

polynomial regression formulates a sophisticated ensemble model for exposing

stock index (Chen et al., 2007). It has been determined that the multiple clas-

sifier is superior to the single classifier in terms of prediction accuracy for stock

returns (Tsai et al., 2011). The 3-stage nonlinear ensemble model, proposed by

Xiao et al. (2014), includes training through three neural network based models,

optimisation by improved particle swarm optimisation, and prediction by SVM.

The 3-layer expert trading system comprises of random forest prediction, ensem-

ble of ensembles, and signal filtering alongside risk management (Booth et al.,

2014). To predict stock prices, Ballings et al. (2015) establish an innovative idea

to generate imbalanced data based on certain thresholds of annual stock price

returns. Consequently, the results were unresponsive to the selected threshold.

The research of Ballings et al. (2015) indicate that exponential smoothing is fun-

damental for predicting stock price movements through random forest.

To the best of our knowledge, no previous research develops trading strate-
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gies based on forecasts of price movements across multiple days. Thus, through

the utilisation of one-day forecasts and multi-day forecasts generated by machine

learning models, this research verifies and analyses the performance of machine

learning techniques in making trading decisions, and draws comparison with sev-

eral benchmark strategies including the buy-and-hold strategy, the time series

strategy (AR model), the chart pattern strategy, and the trend following strat-

egy.

3.2 Model setups for financial market predic-

tion

Financial market prediction problem can be expressed as the attempt to ex-

plore the relationship between an output y and a set of D inputs x where x ={
x1, x2, ..., xD

}
, i.e. y = F(x)1. If y represents the total of upward price move-

ments in n days in the future, the function F could be learnt from in-sample

training data so that when new unseen (out-of-sample) data is presented, a new

prediction can be made. Both binary classification where y ∈ {0, 1} and multi-

class classification where y ∈ {0, 1, ..., n}, i.e. y denotes the total number of

upward prices (p) across the n days, 2 are investigated in the next chapter. x

could be composed of exogenous variables. However, x in this research is L lags

of x so that:

yt+1 = F (xt) (3.1)

1F can be any machine learning models.
2Especially, n=1 for binary classification
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where xt =
{
x1
t , ..., x

D
t , x

1
t−1, ..., x

D
t−1, ..., x

1
t−L, ..., x

D
t−L

}
, and yt+1 is obtained by

considering pi from t+1 until t+n, pi ∈ {0, 1} 3.

The following sections in this chapter describe all machine learning models,

including logistic regression, the support vector machine, artificial neural network,

random forest and the majority vote employed for prediction.

3.3 Logistic Regression

Logistic regression is the first machine learning model to be investigated as

it is the simplest and maybe the most effective classifier when dealing with clas-

sification problems. The advantage of logistic regression is that it can give the

probability of a binary class by producing a simple probabilistic formula for the

classification. Moreover, it does not require strict assumptions like normally dis-

tributed input variables. A linear relationship between the input and output

variables is not required as well. Logistic regression is based on two assumptions:

(1) it requires the dependent variable to be binary, with the groups being discrete,

non-overlapping, and identifiable; and (2) it considers the cost of type I and type

II error rates in the selection of the optimal cut-off probability (Ohlson, 1980).

Logistic regression, developed by statistician Cox (1958), is a classification

algorithm utilised to assign observations to a discrete set of classes. Ng (2000)

provides a basic structure of the logistic regression model (Appendix A.1). The

optimisation solver of logistic regression that employed in this thesis is the limited-

memory BFGS (LBFGS) algorithm as LBFGS can be applied straightforwardly

to high-frequency data. Mathematically speaking, LBFGS never explicitly forms

or stores the Hessian matrix, which can be rather expensive when the number

of dimensions is increased (Appendix A.2). LBFGS has been selected because
3yt+1 = pt+1 for binary classification
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for high frequency data, and time efficiency is just as significant as prediction

accuracy. To implement high frequency trading, predicting stock movement im-

mediately and accurately enables the opportunity to defeat competitors.

3.4 Support Vector Machine

Support Vector Machine (SVM) is the second classifier to be utilised since it

can produce a binary classifier - optimal separating hyperplanes - by an extremely

non-linear mapping of the input vectors into a high-dimensional feature space

(Pai et al., 2011). The idea of SVM is to transform the data that is non-linear

separable in its original space to a higher dimensional space in which it can be

separated by a simple hyperplane.

SVM, proposed by Vapnik (1998), is a means of generating a classification

hyper-plane that separates two classes of data with a maximum margin, consid-

ering that aspect of the error is tolerated. In SVM, a linear model is adopted to

estimate a decision function using non-linear class boundaries based on support

vectors. If the data can be linearly separated, SVM trains linear machines for an

optimal hyperplane that separates the data without error and into the maximum

distance between the hyperplane and the closest training points. The training

points that are closest to the optimal separating hyperplane are called support

vectors (Kim and Sohn, 2010). Mathematically, more details about the basic

structure of SVM can be found in Appendix A.2.

There are some advantages of SVM: (1) there are purely two free parame-

ters to be chosen, namely, the upper bound and the kernel parameter; (2) the

solution of SVM is unique, optimal, and global since the training of an SVM is

conducted by solving a linearly constrained quadratic problem; (3) SVM is based

on the structural risk minimization principle, therefore, this type of classifier min-
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imizes the upper bound of the actual risk, whereas other classifiers minimize the

empirical risk (Shin et al., 2005).

3.5 Artificial Neural Network

Multi-layer perceptron (MLP) is selected as the third classifier since it per-

ceived to be capable of approximating arbitrary functions. Artificial neural net-

work is a highly elaborate analytical technique for modeling complex nonlinear

functions (Principe et al., 2000).

procedure MLPCLASSIFIER(X)
Initialization

Initialize all weights to small random values
Training
while learning do

for each input vector do
Forwards Phase

Compute the activation of each neuron in the hidden layer(s)
Work through the network and calculate the output activations

Backwards Phase
Compute the error at the output
Compute the error in the hidden layers
Update the output layer weights
Update the hidden layer weights

end
Randomize the order of the input vectors

end
Recall
Use the Forwards Phase described above

Algorithm 5: MLP Algorithm

With regard to MLP algorithm 4, the process of feed-forward neural network

with back propagation is shown in Algorithm 5 (Rumelhart et al., 1985). Back-
4The basic structure of MLP from mathmatical perspective can be found in Appendix A.3.
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propagation is a form of gradient decent where the gradient of the errors are

calculated with respect to the weights of the network so that the weights are

adjusted and the error function is minimised. As this differentiation cannot be

done directly, the chain rule of differentiation is utilized. This produces an update

function for each layer, which is applied backwards through the network.

3.6 Ensemble Learning

The machine learning algorithms previously discussed contain some parame-

ters that require optimisation. As the ’No Free Lunch’ theorem states, there is

no single learning algorithm that consistently generates the most accurate learner

in any domain (Wolpert, 1996). Moreover, each learning algorithm is based on a

certain model that derives from a set of assumptions. This inductive bias results

in an error if the assumptions do not hold for future data. Consequently, these

issues increase motivation to explore models that are comprised of multiple base

learners to solve the problem. The theory proposes that by suitably combining

multiple base learners, overall accuracy will be improved. This general approach

is termed the ensemble method, which has certain advantages when confronted

with statistical, computational and representational problems (Ballings et al.,

2015). Commonly used ensemble learning models such as decision tree, random

forest, and majority vote are introduced in the next section.

3.6.1 Decision Tree

The principle of decision tree is to recursively divide data into subsets, until

the state of the target predictable attribute in each subset is homogeneous. The

decision tree classification technique consists of two phases, namely tree building
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and tree pruning. Tree building is a top-down process, which aims to recursively

partition the tree until all data items are assembled into the same class label.

Meanwhile, tree pruning is a bottom-up process. Thus, by reducing over-fitting,

prediction and classification accuracy will be improved (Imandoust and Bolan-

draftar, 2014).

The decision tree commonly imitates the human mindset, deeming it straight-

forward to comprehend data and provide accurate interpretations. Decision trees

even provide the logic for the data to interpret, unlike black box algorithms such

as SVM and MLP.

3.6.2 Random Forest

The overall objective of random forest is to combine the predictions of mul-

tiple binary decision trees to establish more accurate predictions than individual

models. One advantage of the random forest algorithm is its relative robustness

when confronted with noisy data. According to Patel et al. (2015), the utilisation

of sub-sampling and random decision trees often generates sounder predictive re-

sults than single decision trees. Moreover, random forest contains methods for

balancing errors in unbalanced data sets of class population. The random for-

est algorithm minimises overall prediction errors by maintaining low error rates

on larger classes whilst permitting high error rates on smaller classes (Breiman,

1999).

Bagging (see Algorithm 6) is applied when the goal is to reduce the variance

of the decision tree. The objective is to establish several subsets of data from

the training sample selected at random with replacement. The subset of data is

employed to train the decision trees, and consequently, an ensemble of diverse

models is produced. The average of all predictions from the various trees is
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for m = 1 to M do
Bootstrap sample Dm of size N with replacement from the original
training set D with equal weight
Train a model Gm(x) to the bootstrap sample Dm

end
for m = 1 to M do

Employ Gm(x) to the testing set DT

end

Classifier using I(∑i=M
i=1 Gi(xi)/M > threshold) ∈ class1

Algorithm 6: Bagging Algorithm

procedure RandomForestClassifier(X) 5

Forest = new Array[ ]
for i = 0 to B do

Di = Bagging(D)
Ti = new DecisionTree( )
featuresi = RandomFeatureSelection(Di)
Ti.train(Di,featuresi)
forest.add(Ti )

end
return forest

Algorithm 7: Random Forest Classifier Algorithm
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utilised to establish a more robust estimator than the single decision tree.

Alternatively, the random forest algorithm is an extension to bagging. The

random forest algorithm not only considers a random subset of data, but also a

random selection of features to develop the trees. Random forest is an ensemble

that consists of multiple classification or regression trees, which produces a higher

accuracy than any base classifier (Booth et al., 2014).

In the random forest algorithm(see Algorithm 7), B samples are first boot-

strapped from the original dataset (Liaw et al., 2002). Then, for each bootstrap

sample, every node is divided using the most effective predictor from the ran-

domly selected predictors. Meanwhile, in the decision tree, each node is divided

using the most appropriate split among all of the predictors. New data is then

forecast by aggregating the predictions of the B number of trees, such as the

majority votes for classification and the average for regression.

Finally, a training dataset score is obtained through an out-of-bag (OOB)

estimate. An estimate of the error rate is calculated based on the following

training sample (Liaw et al., 2002):

• At each bootstrap iteration, predict the data that is not in the bootstrap

sample (’out-of-bag’ (OOB) data) using the tree grown with the bootstrap

sample.

• Aggregate the OOB predictions, calculate the error rate, and call it the

OOB estimate of the error rate.

3.6.3 Voting-based ensemble classifier

The majority vote model (Vote) is the most straightforward means of combin-

ing multiple classifiers. The majority vote model is established through combining
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certain single classifiers such as logistic regression, support vector machine and

random forest. In this study, the majority vote model is an ensemble of ensem-

ble. Furthermore, in this instance, all base learners are granted equal weight

to establish a final decision. The combination rule for the Vote strategy is that

the information from the base classifiers includes the binary decisions in each

instance. The majority vote produces the final decision from the common results

of the base classifiers.

All machine learning models introduced in this chapter will be applied to

predict the trading signals of the machine learning based trading strategies in the

next chapter.



Chapter 4

Generating trading signals with

machine learning

This chapter focuses on how machine learning methods such as lo-

gistic regression, support vector machine, random forest, and neural

network can be incorporated into making an investment decision for

use within stock market trading systems. It creates and follows a well

defined methodology for developing trading systems which focuses on

signal generation. Machine learning models are trained with techni-

cal indicators and the future price movements are predicted. One day

and multi-day forecasts are then used to generate trading signals to

make trading decisions. In voting integration system, the final trading

signals are further confirmed by majority vote based on the predicted

signals generated from single machine learning models. This chapter

evaluates how well the investment decisions of each machine learning

based strategy perform according to out-of-sample backtesting experi-

ments. It verifies the robustness of machine learning based strategy

with empirical results.
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4.1 Introduction

Studies with regard to Chinese stock market anomalies are reviewed in this

section. The presence of stock market anomalies defeats the basic premises of

the Efficient Market Hypothesis (EMH). The definition of an efficient market is

a market in which all available information is fully reflected by the price. Fama

(1995) defines three levels of efficiency, namely weak form, semi-strong form and

strong form.

• In a weak form efficient market, the past price movements, volume and

earnings data do not affect a stock’s price and can’t be used to predict its

future direction.

• In a semi-strong form efficient market, security prices have factored in

publicly-available market and that price changes to new equilibrium lev-

els are reflections of that information.

• In a strong form efficient market, all information in a market, whether

public or private, is accounted for in a stock’s price.

The classical evidence of equity market anomalies is calendar anomalies, such

as weekend, day of the week, and January effects. The following research show

calendar anomalies in the Chinese stock market. Luo et al. (2009) show that the

day-of-the-week effects and monthly effects exist in the Chinese stock markets

based on the evidence from Shanghai and Shenzhen A-shares Closing Index and

Shanghai and Shenzhen B-shares Closing Value-Weighted Index. Cai et al. (2006)

verify that the day-of-the-week effect in the Chinese market for both A-share and

B-share indexes remains significant. Chukwuogor et al. (2006) conclude that the

day-of-the-week effect exists in the Shanghai Stock Exchange (SSE), supported

by Kruskal-Willis test and basic statistics for daily returns. More recently, Lu
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Author (year) Stock market Test period Machine learning methods Transaction cost Positive returns

Andrada-Félix and Fernández-Rodríguez (2008) New York Stock Exchange Composite Index 1993 - 2002 Boosting 0.2% per stock Yes

Booth et al. (2014) Deutsche Borse Ag German Stock Index 2000 - 2010 Random forest $0.003 per stock Yes

Chang et al. (2011) 3 US stocks and 3 Taiwan stocks 2008 - 2009 Neural network $40 per transaction Yes

Chang et al. (2009) 700 Taiwan stocks 2005 - 2006 Neural network No Yes

Chavarnakul and Enke (2008) S&P 500 Index 1998 - 2003 Neural network No Yes

Chen et al. (2003) Taiwan Stock Index 1982 - 1992 Neural network 3 cases are 0.03%, 3%, and 6% All cases are profitable

Chen and Hao (2018) Shanghai and Shenzhen stock markets 2012 - 2014 SVM No Yes

Chenoweth et al. (2017) S&P 500 Index 1982 - 1993 Neural network break even cost is 0.35% Yes

Fernandez-Rodrıguez et al. (2000) Madrid Stock Index 1991 - 1997 Neural network No Yes

Feuerriegel and Prendinger (2016) Deutsche Borse Ag German Stock Index 2014 - 2011 Natural language processing 0.1%-0.3% Yes

Leigh et al. (2002b) New York Stock Exchange Composite Index 1981 - 1996 Neural network No Yes

Luo and Chen (2013) 20 stocks in Shanghai stock market 2010 - 2011 SVM 0.35% Some stocks are profitable

Sezer and Ozbayoglu (2018) Dow 30 stocks and ETFs 2002 - 2017 Convolutional neural network No Most stocks are profitable

Table 4.1: Literature for machine learning based trading strategies reviewed in
this thesis

et al. (2016) point out that holiday effects are significant in both Shanghai and

Shenzhen Security Exchanges according to Wilcoxon Rank-Sum test. Monday

anomalies are prominent in Shenzhen Component Index by calendar effect per-

formance ratio with three sample interval cases of 500 days, 1000 days and 1500

days (Zhang et al., 2017). Xiong et al. (2018) prove the existence of four types of

calendar effect - reversed Monday effect, January effect, TOTM effect,and CLNY

effect- in SSE50, SSE1801, CSI300, and ChiNext index2. Casalin (2018) lists that

some empirical results for data including Shanghai and Shenzhen index, and sug-

gests that the holiday effects are positive, significant, time-varying, with no signs

of decline over time. To summarise, several studies covering Chinese stock indices

anomalies are analysed. All studies obtained positive results supporting Chinese

stock market calendar anomalies. It proves the existence of market inefficiencies

in Chinese stock markets.

Lo (2004) propose Adaptive Markets Hypothesis (ADH) that assumes that

evolutionary market dynamics, such as cycles, trend, and market inefficiency, are

1SSE180 consists of 180 stock with some of the large scale, good fluidity, and strong industry
representative stock listed on the SSE.

2ChiNext index can comprehensively and objectively reflect the overall price movements of
the Growth Enterprises Market stocks.
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capable of trigger arbitrage opportunities. The studies in section 3.1 related to

machine learning based strategies which tested for the stock market are discussed

to verify whether technical indicators and calendar anomalies can be trained to

generate profitable trading strategies. Other papers that apply machine learn-

ing in stock trading are not re-summerised as they purely provide performance

measurements, such as ’Accuracy’ for classification and ’Mean Square Error’ for

regression problem. Therefore, 13 papers are selected from section 3.1 to be pre-

sented in Table 4.1. The evidence from 13 papers supports that machine learning

based trading strategies are profitable among different countries. This indicates

that there may be huge investment opportunities to be explored by machine

learning models in stock markets.

4.2 Problem statement

This section deals with the problem of verifying whether machine learning

models can take trading opportunities in the Chinese stock market to make prof-

itable investment decisions based on price predictions. The tasks for machine

learning models are predicting one day and several day’s future price movements

instead of one day and several day’s future values. Learning tasks, therefore, are

forecasting upward prices in a single day and over several days, and these two

tasks are solved by binary and multi-class classification models, separately.

For the first task related to one day forecast, the next day’s stock price change

is classified into two types: upward price and downward price.

With regard to multi-day (n) price movement problem, for each day, we still

assume that the stock price either goes up or down. In this case, the target

is classified into m classes3 based on how many upward price movements are
3n+ 1 cases can be obtained during the next n days. In other words, m = n+ 1.
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observed during the next n days. The second task deals with the multi-day

forecasts with the aim of improving the risk-adjusted returns by reducing the

number of transactions.

4.3 Data pre-processing and data description

The targets in the two tasks are described in detail. Daily close prices of

ETF50, ETF300, and ETF500 from 28 May 2012 to 8 March 2019 are selected

for experimental evaluation. Experiments are based on 7 years of historical data

for these 3 ETFs. In more detail, the dataset for ETF50, ETF300 and ETF500

consists of 1650, 1650, and 1455 observations, 809, 811 and 777 of which belong

to ’up’, and the remaining 841, 839, and 678 belong to ’down’. Each observation

has 7 features4 and 1 class label. The class label is either ’1’ or ’0’ for the

binary classification problem where ’1’ indicates an uptrend and ’0’ indicates price

downfall. The class labels for the second task (multi-class classification problem)

are ’0’, ’1’, ’2’, ’3’, and ’4’, in which ’0’ indicates no upward price movements

during the next four days, ’1’ implies there is one upward price movement during

four days from today, ..., and ’4’ denotes all price movements are upward in the

four days, respectively. Under this setting, class ’4’, ’3’, ’2’, ’1’ and ’0’ imply a

strong buy signal, a weak buy signal, a neutral signal, a weak sell signal and a

strong sell signal, respectively.

The data is divided into three sets: training, cross validation and test sets.

We set the length of the in-sample training window to three possible values:

1100 days, 1000 days and 800 days. In order to determine the best architec-

ture of machine learning models, the subsequent 300-600 daily data is utilized to

optimise the best parameters before making out-of-sample predictions on the cor-
4Refer to section 4.4
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ETF50 ETF300
One day Multiple days One day Multiple days

Day 1 0 4 3 2 1 0 1 0 4 3 2 1 0
250 119 131 8 61 100 65 16 113 137 6 57 95 70 22
500 255 245 31 134 191 116 28 255 245 31 133 193 114 29

Table 4.2: Comparison of classification observation for test sets in machine learn-
ing based trading strategies with one-day forecast and multi-day forecasts.

responding test sets. To provide robust results of model performance, three cross

validation periods with 300, 400, and 600 days are checked in Table 4.4. Based

on assessments of performance in the cross validation period, the specification of

random forest type is selected for the use of out-of-sample testing. In Tables 4.7

to 4.13, the trading performances of the selected model are examined with two

investment horizons of 250 days and 500 days.

Table 4.2 illustrates the number of observations for test sets in each class for

both one day prediction and multiple days prediction problems. Balanced data

can be observed in the binary classification setting for one day prediction. How-

ever, the observations per class in the multiple days prediction are imbalanced:

more than a third of the data belongs to class ’2’ (38% to 40%) whereas class ’3’

or ’1’ has 22.8% to 28% data. Only 2.4% to 8.8% data belongs to ’4’ or ’0’.

4.4 Features

Features for each observation are generated from the stock price information

(open price, close price, low price, high price, and volume), which means that

technical indicators are utilised as features.

Some scholars support that technical indicators can be employed to generate

positive trading strategies (Kwon and Kish, 2002; Nam et al., 2005; Chong and

Ng, 2008; Metghalchi et al., 2008; Marshall and Cahan, 2005; Conrad and Kaul,
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Technical indicator Description Calculation

RSI Relative Strength Index 100-100/(1+SMAt(pupn ,n1)
SMAt(pdnn ,n1))

STCK Fast Slow Stochastic Oscillator %K = pc−min(pln)
max(phn)−min(pln) ∗ 100

STCD Slow Stochastic Oscillator %D = SMA(%K,N)

WILLS Williams % R W%R = pc−HIGHn
HIGHn−LOWn

∗ 100

MACD Moving Average Convergence Divergence EMAt(pc, s)− EMAt(pc, f)

ROCP Rate of Change Percentage EMAt(ph−pl,n)
EMAt−n1(ph−pl,n) − 1

OBV On Balance Volume OBVt = OBVt−1 ± V OLt

Table 4.3: Description and calculation of feature in machine learning based trad-
ing strategies with one-day forecast and multi-day forecasts.

1998). Some papers report the mixed results of technical trading strategies over

different trading periods (Schulmeister, 2009, 2008). Other scholars argue that

technical trading rules are unprofitable after data snooping bias or transaction

costs are taken into account (Marshall et al., 2008; Ready, 2002). The rest of

my thesis intends to examine whether some technical indicators is capable of

developing profitable machine learning based trading strategies.

Sullivan et al. (1999) divide trading rules into five families, namely, filter rules,

moving averages, support and resistance rules, channel breakouts, and on-balance

volume averages. In this thesis, some commonly used technical indicators such

as relative strength index, stochastic line, williams, moving average convergence

divergence, rate of change percentage, and on balance volume (see Table 4.3) are

selected from the five categories of indicators.

Relative strength index (RSI) is a strength indicator computed as rise
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rate over fall rate in a time period5. It is usually used to identify an overbought

or oversold state in the trading of an asset. RSI ranges from 0 to 100. If the

RSI is below level 30, the asset is oversold; when RSI is above 70, the asset is

overbought. Large surges and drops in the price of an asset will influence the RSI

by creating false buy or sell signals. Therefore, the RSI is best used with other

tools together to determine the trading signals (Wilder, 1978).

Stochastic line (STCK, STCD) is composed of two smooth moving av-

erage lines (%K and %D) to judge the buy/sell points. The fast stochastic K

represents a percent measure of the last close price related to the highest of the

high price values (highest high) and the lowest of the low price values (lowest

low) of the last n periods. The theory behind the stochastic line is that the

price is likely to close near its high (or low) in an upward-trending (or downward-

trending) market. Transaction signals occur when the STCK crosses the STCD

(Basak et al., 2019).

William (WILLS) indicates stock overbuy or oversell. It can be used to

discover the peak or trough of the stock price. If the difference between the

lowest stock prices and close prices is large (or small), and the stock is overvalued

(or undervalued), traders need wait for a short (or long) trading signal to sell (or

buy) the stock (Chang et al., 2009). WILLS therefore is adopted to assist the

turning point decision through examining stock is overvalued or undervalued.

Moving average convergence divergence (MACD) is to find the fluc-

tuation of stock price via exponential moving average of the last n observations

of series pc6. When MACD is above 0, the short-term average is above the long-

term average, which signals upward momentum. The opposite is true when the

5SMAt(pup
n , n1) and SMAt(pdn

n , n1) are the simple moving averages of the last n1 observa-
tions of p’s up and down.

6EMA(pc, n) = λ
∑∞

s=0 (1− λ)spc
t−s, where λ = 2

n+1
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MACD is below 0. The zero line (when the MACD is 0) usually acts as an area of

support and resistance for the MACD indicator. A typical trading strategy using

MACD is MACD crossover. When the MACD falls below the signal line, it is a

bearish signal which indicates that it is the time to sell. On the contrary, when

the MACD rises above the signal line, the indicator gives a bullish signal, which

suggests that the price of the asset tends to experience an upward momentum

(Appel, 2005).

Rate of change percentage (ROCP) of a time series pct evaluates the

breadth of the range between high and low prices. ROCP can be used to confirm

price moves or detect divergences (Larson, 2012).

On balance volume (OBV) is using positive and negative volume flow to

predict the change of stock price. It adds the volume when the close has increased

and subtracts it when the close has decreased (Granville, 1976).

Due to the huge value difference among 7 features, pre-processing process i.e.

normalisation (or standardisation) 7 is necessary to feed logistic regression, SVM,

and MLP with a same range for each input.

4.5 Training, cross validation and test set

Cross-validation set is separated from test set as it plays an essential role

in robustness check for model accuracy with different model parameters prior

to trade on the out-of-sample test sets. In the cross-validation set, the optimal

combination of parameters is determined before out-of-sample tests.

7Each feature is standardised independently. The standardised features have zero mean and
unit variance.
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4.5.1 K-fold cross-validation vs. sliding window cross-

validation process

In most situations, the k-fold cross-validation or leave one out cross validation

is widely used when the training and testing data are independent. Due to time

series data have non-random time orders, k-fold cross-validation by random pro-

cess may mix up past, present and future. Instead, all models are trained via a

rolling horizon approach to make out-of-sample forecasts in cross-validation set.

This sliding window process updates training set for every out-of-sample predic-

tions and incorporates the latest observed information into the model. After one

out-of-sample forecast is made, the training set moves forward for one day and

the same training process is repeated.

4.5.2 Parameter optimisation in cross-validation phase

All cross-validation data is used for checking the out-of-sample prediction ac-

curacy of machine learning models. The model accuracy8 defined by the following

equation:

Accuracy = 100× Number of success (i.e. predicted equals real)
Sample size , (4.1)

All machine learning models mentioned in chapter 3 are examined by Accuracy

in 3 cross-validation sets. As MLP is a heavily parametrised model, and the

number of hidden nodes selected controls the complexity of the model, we use a

simple 2 hidden layers with 3 nodes in the first layer and 2 nodes in the second

layer to consider the basic version of MLP.

As an example to show the empirical results during the test set of 250 days,
8Specifically, the predicted classes are 2 and n+1 for binary classification and multi-

classification (n), respectively.
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ETF50 ETF300
RF DT SVM LR MLP RF DT SVM LR MLP

Wind, CV N=5 N=10 nn(3,2) N=5 N=10 nn(3,2)
(801, 600) 63.67 64.33 61.50 66.83 67.17 67.17 63.33 65.50 62.83 65.00 66.00 66.00
(1001, 400) 64.25 68.00 65.25 68.50 70.00 70.00 67.00 68.50 65.50 66.00 66.00 66.00
(1101, 300) 66.00 71.00 65.00 69.67 70.67 70.67 63.67 64.67 62.33 67.67 67.00 66.00

Notes: ’RF’, ’DT’ and ’LR’ represent ’random forest’, ’decision tree’ and ’logistic regression’, respectively.
N is the number of decision trees in the random forest.
Wind is the length of sliding window (in days). CV is the size of cross validation set.
LR uses limited-memory bfgs (LBFGS) to implement regularized logistic regression.
The parameters in SVM are obtained by radial basis function kernel (RBF).
nn(3,2) is the neural nodes with 2 hidden layers, which is composed of 3 nodes in the first hidden layer and 2 nodes in the second
hidden layer.

Table 4.4: Up/down prediction accuracy (%) in the cross validation set of machine
learning based trading strategies with one-day ahead forecasts.

Table 4.4 tabulates the results of optimal estimations for all machine learning

models in all 3 cases, in which training window size is 801 days, 1001 days and

1101 days, respectively. SVM, logistic regression and random forest have a better

performance in all cross-validation sets, all with an accuracy of greater than

61.50%. Random forest classifier performs better than decision tree classifier

considering all cases including different training window sizes and different stock

indices. It means that a single tree is not accurate enough in determining the

future stock price movement. Similarly, if we compare the performance of MLP

and logistic regression with respect to both stock indices across different training

window sizes, MLP does not perform as well as logistic regression in all cases.

As a result, decision tree and MLP are not used in predicting one day price

movement. As the Accuracy for random forest improves as Wind increases, this

indicates that a larger training window size often contributes to the prediction

accuracy. Furthermore, random forest always results in a higher accuracy for

N = 10 than for N = 5. Therefore, N = 10 is the pre-determined optimal

parameter when we use random forest to predict one day forecast.
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4.6 Trading strategies

This section presents the overall process of formulating the machine learn-

ing based trading strategies by algorithms and formulas. Three types of ma-

chine learning based trading strategies, namely one day prediction based trading

strategies with single machine learning classifier, one day prediction based trad-

ing strategies with majority vote and multi-day forecast based trading strategies

with machine learning are introduced. The corresponding trading rules for these

three trading strategies are explained.

4.6.1 Trading using the one-day ahead prediction with

machine learning

The overall process of formulating the one day ahead prediction based trading

strategies with machine learning is shown in this section.

Input: data,Wind, cost
Output: TotalReturnL
Initial State S = 0
for i in test set do

da(i) = data[i-Wind,i]
ypredict(i) = AICLASSIFIER(da(i))
if S = 0 AND ypredict(i) is TRUE then

S=1 ; // Open new long position
Return = ln(P(i+1)/P(i))-cost

if S = 1 AND ypredict(i) is TRUE then
Return = ln(P(i+1)/ P(i)) ; // Hold the existing position

else
S = 0
Return = 0 ; // Close the long position

end
end
TotalReturnL = cumsum(Return)

Algorithm 8: Back testing for trading using single day machine learning pre-
diction (’L’)
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Input: data,Wind, cost
Output: TotalReturnLS
Initial State S = 0
for i in test set do

da(i) = data[i-Wind,i]
ypredict(i) = AICLASSIFIER(da(i))
if S = 0 AND ypredict(i) is TRUE then

S=1 ; // Open a long position
Return = ln(P(i+1)/P(i))-cost

if S = 0 AND ypredict(i) is FALSE then
S= -1 ; // Open a short position
Return = ln(P(i)/P(i+1))-cost

if S = 1 AND ypredict(i) is TRUE then
Return = ln(P(i+1)/ P(i)) ; // Hold the long position

if S = −1 AND ypredict(i) is FALSE then
Return = ln(P(i)/ P(i+1)) ; // Hold the short position

else
S = 0
Return = 0 ; // Close the existing position

end
end
TotalReturnLS = cumsum(Return)

Algorithm 9: Back testing for trading using single day machine learning pre-
diction (’LS’)
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The operational details of the machine learning based trading strategies are

described. At the beginning of each trading period, the investor makes an asset

allocation decision of whether to invest in the stock market or deposit it in the

bank. The alternative to stock market investment is regarded as an opportunity

cost. Hence, excess return is calculated by subtracting the deposit rate from the

actual log return of trading strategies. If investors decide to trade in the stock

market, there are two choices: buy-and-hold or active trading decision. Buy-and-

hold is investing money in the stock fund and taking no action until the end of

the test periods. Active trading strategies developed in this section include single

machine learning based trading strategies, voting integration strategy and time

series based strategy.

Algorithms for single machine learning based trading strategies and voting-

based integration strategy (see Algorithms 8 to 13) have a common structure.

The inputs are two ETFs: ETF50 and ETF300 (data), training window size

(Wind) and transaction costs (cost). The out-of-sample forecasts (ypredict(i)) are

produced by training the models using the previous Wind-day data information

before i day (from i −Wind to i). Based on the daily forecasts, three trading

strategies with different trading rules are designed.

The first type of trading strategy is the single machine learning based trad-

ing strategy. Algorithm 8 illustrates the long only (’L’) machine learning based

strategy. As the name suggests, only opportunities to buy are considered. In this

case, we open the position when the stock will go upward, and close the position

when the stock is predicted to go into a downtrend. In Algorithm 9, long and

short (’LS’) strategy demonstrates that at initial state (S = 0), if it is predicted

that stock will go up, we take a long position (S = 1) for the upcoming day

whereas a short position is taken (S = −1) today if a downward prediction is
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obtained. Meanwhile, we keep a record of the previous one position (or signal9)

as it is needed to determine the following decision later. However, we only record

the previous one position of the trade since it is not necessary to keep the history

of previous positions. The current position is determined by the last previous

position and the predicted signal together. If the same signal is predicted today

compared with yesterday’s signal, the current position is the same as the last

previous position. On the contrary, when an opposite signal is predicted, the

current position is updated based on the new predicted signal, that is to say, we

close the existing position and open a new position in the opposite direction. The

trading process is terminated by closing out the existing position at the end of

the testing period.

Voting-based strategy is a valid single machine learning based trading strategy.

Three predictors used in voting based strategy are the random forest, logistic

regression and SVM, respectively. For each predictor, we set yMpredict = 1 if M-

th machine learning classifier shows an ’upward’ prediction for the next day,

otherwise, we set yMpredict = 0, where M = 1, 2, 3. Instead of using the single

machine learning predictor to generate one trading signal in each trading day,

another two machine learning predictors identify two separate signals on the

same day. Finally, all three classifiers together determine the buy (V ote > 1)

or sell (V ote < 2) decision if any two classifiers give the consistent prediction

result. For the long - only (’L’) strategy, if any two of the single machine learning

predictors give a counter to the previous one position, we should close the existing

long position (see Algorithm 12). For the long and short (’LS’) strategy, when all

machine learning predictors simultaneously show the opposite signals, we close the

existing position and open a new position in the opposite direction (see Algorithm

9’Long position’ means that the last predicted signal is ’buy signal’ while ’short position’
indicates that a ’sell signal’ was predicted at the previous day.
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13).

Finally, time series (AR model with lag = 2) based strategy uses the lagged

stock price information to predict the stock price. On each trading day, the

predicted price movement is obtained by comparing the one day ahead price pre-

diction with the current price. That is, a buy signal is generated if the predicted

price will go up compared with the current price, otherwise, a sell signal is ob-

tained. The trading rule for AR model is the same as that for single machine

learning model (’LS’ strategy). The lagged return is included with the purpose

to check whether the time series properties of the past information contain any

useful information in forecasting the future returns.

4.6.2 Trading using the multi-day machine learning pre-

diction

As previously discussed, in the machine learning trading strategies with binary

labels, investment decisions are made based on the price information for the next

day. However, under the formulation of trading strategies based on the next

few days’ forecasts, we consider the sequence of ups and downs over the next

several days. To examine whether the information of multi-day forecasts is able

to improve the performance of machine learning based trading strategies, we

simply classify the target by counting the number of upward price movements in

the multiple days sequence day by day.

There are several changes made by multi-day forecast based trading strategies

with machine learning compared to the single day ahead forecast based trading

strategies. First, the trading signal of the one day ahead forecast based trading

system is either ’buy’ or ’sell’, so there are no neutral signals. In this case, when a

reverse signal is forecasted, we close the previous position and open a new opposite
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Input: data, p, n, a,Wind, cost
Output: TotalReturnBH , T otalReturnL
Data: Close, Open, High, Low, Volume
Calculate feature matrix X from data
yall[i] = sign (Close[i+1]-Close[i])
y[i] = sum all elements in (yall[i:i+n]) ; // Count n day movements

Train (X[i], y[i]) in AICLASSIFIER
Initial State S = 0
for i in test set do

da(i) = data[i-Wind,i]
ypredict(i) = AICLASSIFIER(da(i))
if S = 0 and ypredict(i) == p then

Return= ln(P(i+1)/P(i))-cost;
S = 1 ; // Open long

if S = 1 and ypredict(i) > a then
Return= ln(P(i+1)/P(i)) ; // Hold long

else
Return = 0;
S = 0 ; // Close long

end
ReturnBH = ln(P(i+1)/P(i))

end
TotalReturn = cumsum(Return)
TotalReturnBH = cumsum(ReturnBH)

Algorithm 10: Back testing for trading using multi-day machine learning pre-
diction (’L’)
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Input: data, p, q, n, a, b,Wind, cost
Output: TotalReturnBH , T otalReturnLS
Data: Close, Open, High, Low, Volume
Calculate feature matrix X from data
yall[i] = sign (Close[i+1]-Close[i])
y[i] = sum all elements in (yall[i:i+n]) ; // Count n day movements

Train (X[i], y[i]) in AICLASSIFIER
Initial State S = 0
for i in test set do

da(i) = data[i-Wind,i]
ypredict(i) = AICLASSIFIER(da(i))
if S = 0 and ypredict(i) == p then

Return= ln(P(i+1)/P(i))-cost;
S = 1 ; // Open long

if S = 0 and ypredict(i) == q then
Return= ln(P(i+1)/P(i))-cost;
S = - 1 ; // Open short

if S = 1 and ypredict(i) > a then
Return= ln(P(i+1)/P(i)) ; // Hold long

if S = −1 and ypredict(i) < b then
Return= ln(P(i)/P(i+1)) ; // Hold short

if S = 1 and ypredict(i) == a then
Return= 0 ; // Close long
S = 0

if S = −1 and ypredict(i) == b then
Return= 0 ; // Close short
S = 0

else
Return = 0

end
ReturnBH = ln(P(i+1)/P(i))

end
TotalReturn = cumsum(Return)
TotalReturnBH = cumsum(ReturnBH)

Algorithm 11: Back testing for trading using multi-day machine learning pre-
diction (’LS’)
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position at the same time, according to ’LS’ strategy. However, as for the trading

system with multi-day forecasts, since we have more accurate signals considering

the multiple day sequence for the trend, we can close the existing position and

wait for the next trading signal (i.e. strong ’buy’ or strong ’sell’ signal) to open

a new trading position, according to ’LS’ strategy. Second, multi-day forecast

based trading strategies take account of investors’ risk-return preferences to set

parameters (p, q, a, b), while the trading rule for one-day forecast only switches

between long position and short position based on signals without considering

investors’ risk preference. For example, risk averse investors may close the long

position as long as the buy signal disappears while risk loving investors exit the

long position only when the weak sell signal is obtained. The difference between

these two types of investor is how much risk they can bear if neither a buy

signal nor a sell signal is generated. That is to say, risk averse investors cannot

keep investing in the long position in any other cases unless all signals generated

before are strong buy signals. Nevertheless, risk loving investors can hold the

long position in all cases which has a buy opportunity. This is because risk

loving investors prefer to take a risk to profit from holding the long position.

More details about the parameters (p, q, a, b) used in this thesis are shown in the

empirical results in section (4.7).

Algorithms 10 and 11 demonstrate the ’L’ and ’LS’ strategies with consider-

ation of n-day ahead price movements to classify our target (or trading signal)

y into n classes. Historic close, open, high, low prices and volume are passed

into machine learning models to generate trading signals. Every day, we re-train

updated information X to predict trading signals y, where y counts how many

positive price movements are observed during the next n-days. In ’L’ strategy,

buy decisions are triggered whenever the trading signal is predicted to be p, where
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p is any integer between
⌈
n
2

⌉
and n. When p is large, the strong upward price

movement is expected during the following n days. The long position is held by

investors as long as a buy or neutral signal is forecasted in the following n days.

Once y is predicted to be a, the buy position is closed. The value of a is chosen

based on investor’s risk preference and tolerance: risk averse investors may close

the long position at the first time the trading signal reaches a neutral signal (a

=
⌊
n
2

⌋
) while risk loving investors exit the long position when a is any number

between 0 and
⌊
n
2

⌋
.

’LS’ strategy discovers both buy and sell opportunities to trade. New short

position is opened whenever a strong sell signal is predicted (ypredict = q, where q

= 0, ...,
⌊
n
2

⌋
). When the short position has already been opened, and the uptrend

price movement is predicted (S = 0 and ypredict = b), the long position is closed.

The trading process then restarts from the initial state that no position has been

taken.

4.7 Empirical results

This section evaluates different variants of machine learning based trading

strategies over various time periods (or test sets). The trading performances are

analysed and possible improvements are suggested. Starting with the one day

forecast based strategy using single machine learning classifiers, the profitability

of one-day prediction based trading strategy is discussed. In addition, the risk

and return analysis for the majority vote trading strategies are verified to analyse

whether the voting based one-day trading signals can be improved. Furthermore,

the possible variants of multiple days forecasts based trading strategies and their

performances are presented to overcome the shortcomings of the one day pre-

diction based trading strategies. The performance of the best machine learning
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based trading strategy is compared with that of the trend following strategy with

respect to the risk-adjusted returns. Finally, some empirical results for all the

considered trading strategies are summarised.

4.7.1 Trading using the one day ahead machine learning

prediction

This section presents the results of one day ahead forecasting strategy with

machine learning over several trading periods, namely the most recent 1 week,

1 month, 3 months, 6 months, 1 year, and 2 years10. Evaluating the one day

forecast based trading strategies using simple machine learning with ETF50 and

ETF300 reveals the following findings (see Tables 4.5 to 4.8).

When the investment horizon is less than 1 year (i.e 1 week, 1 month, 3 months

and 6 months), single day forecast based trading strategies may generate positive

daily returns after transaction costs during the last 1 month and 3 months. Al-

though SVM, logistic regression and the vote-based classifier can produce positive

returns, none of the investigated machine learning models can beat the buy and

hold trading strategies for both ETF50 and ETF300.

As can be observed in the last 250 trading days, single day forecast based

trading strategies yield negative returns in most experiments, while we can only

note positive returns in a few cases. Compared to ETF50, ETF300 has more op-

portunity to gain positive returns before transaction costs according to annualised

excess returns (-0.13 on average) and risk-adjusted returns (-0.55 on average) in

the last 250 days. Trade ETF300 by machine learning models can generate higher

returns with an annualised rate of 4.55% on average after transaction costs. Al-

though these results seem to be low, some risk adjusted returns are higher for
10The last 5 days, 21 days, 63 days, 125 days, 250 days, and 500 days, individually.
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machine learning models compared with the buy-and-hold strategy. When com-

paring with the second benchmark, for the same period, AR model yields an

excess return of -0.3151. In this period, both ETF50 and ETF300 are in down-

ward trends. Neither active trading strategies nor passive trading strategy can

generate positive returns after transaction costs11.

With respect to 500 trading day returns, all machine learning models are

profitable (0.023 for ETF50 and 0.064 for ETF300 on average) before transac-

tion costs according to excess returns; however, no machine learning models are

profitable (-0.195 for ETF50 and -0.124 for ETF300 on average) after transaction

costs. This result is consistent with the observation from the cumulative returns

in Figure 4.7, which indicates that the total return for random forest based strat-

egy is positive before transaction costs but negative after transaction costs are

included. Following the previous table (Table 2.1) in section 2.1.2, the average

transaction costs for ETF50 and ETF300 per trade are 6.225e-3 and 4.824e-3, the

result demonstrates that the annualized transaction costs in this case are 0.259

and 0.188, individually. This implies that the transaction costs in total are high

for the trading strategies developed in this section. The possible reason is that

the number of trades utilising the one-day ahead forecast is high according to

Table 4.12, and the improved results of multi-day forecast based trading strategy

are presented later in section 4.7.2.

Based on the evidence from the prediction of ETF50 price movements (Table

4.4), we find that the use of random forest (when N=10) improves the accuracy

compared with the logistic regression. However, random forest yields less excess

returns compared to logistic regression as shown in Panel C and Panel D of Table

11’Active trading strategies’ in this section include all developed one day forecast based trad-
ing strategies and AR model based strategy. ’Passive trading strategy’ is referred to as buy-
and-hold in all sections.
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(a) ETF50 in 500 days

(b) ETF300 in 500 days

Figure 4.1: Cumulative returns (after transaction costs) for one day random forest
forecast based strategy in the last 500 trading days.
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4.7. This finding implies that a high ’Accuracy’ in cross-validation set does not

necessarily result in a high trading profit in daily and annual returns.

It is worthwhile to point out that majority vote performs even worse than

single machine learning models since the Sharpe ratio is reduced from -0.8726 to

-0.9481 on average. Therefore, the simple majority vote method does not provide

a more accurate signal for making trading decisions compared to single machine

learning models, under the same experimental settings.

Viewing all the results, we conclude that it is possible for the developed strate-

gies to generate profits based on one day prediction over 500 trading days. The

major limitation of machine learning based trading strategy is that these trading

strategies are profitable before transaction costs but unprofitable after transac-

tion costs during the period. The possible explanation is that if the trading

signals of the first task are volatile, we shift between long position and short

position frequently. Then, the total expenditure on transaction costs is high. In

some trades, profits generated in each trade are insufficient for trading to be prof-

itable if transaction costs are taken into account. Therefore, the improvement of

multi-day forecast based trading strategy is proposed by predicting the next few

days’ price movement instead of one day price movement to avoid this type of

unprofitable trades.

4.7.2 Trading using the multi-day machine learning pre-

diction

The profitability of multi-day forecast based trading strategy is verified in

this section. The trading rules which are parameterised as (p, q, a, b) to carry out

purchase and sell decisions are defined below.

The idea of trading rules using the multi-day machine learning prediction is
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to reduce the number of trades. We provide a possible way here to reasonably

select parameters, and our final determination is p ≥ 3, a = 1, b = 3 and q = 0

according to the following reasons. Since p is chosen from the label to trigger

buy signals, it should be larger than 2 to confirm there is a buy signal in the

next 4 days. Therefore, we follow the rule of opening the long position when

m ≥ 3 if no positions have been opened already. It is important to stress that

the determination of a and b will directly affect the number of trades. Once the

long position is opened, we keep the long position when it shows a buy signal

or a neutral signal, and we only close the long position when a weak sell signal

(a = 1) occurs to reduce the number of trades.

Tables 4.9 and 4.10 depict the trading performances of daily returns over 6

trading periods with the parameters N12= 100 for random forest, and nn(3, 2)

for MLP. As illustrated, the trading performance, that measured by average daily

return, has been improved by the multi-day random forest and MLP strategies

compared to single day machine learning strategies (see Tables 4.5 and 4.6).

Moreover, over the 1 year and 2 years trading period, ’LS’ trading strategies

always yield higher average returns compared with ’L’ trading strategies for both

random forest and MLP based strategies before transaction costs. This result is

also supported by machine learning based trading strategies even after transaction

costs. It is consistent with the result that the cumulative returns for ’LS’ strategy

are higher than that for ’L’ strategy shown in Figures 4.2 and 4.5.

If considering the risk, the standard deviation for ’L’ strategies is usually

smaller than that for ’LS’ strategies no matter which test period, asset, or classifier

used. We perform a one-sided t-test with the null hypothesis test that the mean

of the return is above 0. Random forest yields a positive daily return at the 10%

12For the multi-class classification prediction instance, to obtain steady trading results, N =
100 is the default value in scikit-learn in Python (in version 0.22) for random forest.
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significance level for both the 250 days and the 500 days test periods. Therefore,

both indices have an above-zero mean of daily returns. Median returns appear

to be 0% as there are no frequent trades. The magnitude of the maximum daily

returns is higher than that of the minimum daily returns, which indicates that

the extreme profits have great chances to cover the extreme losses. None of the

daily returns show normality: skewness and kurtosis statistics of the returns for

each day are generally above 0 and 3 respectively in all active trading strategies.

Similar to other financial markets, the daily returns have fat tailed distribution.

Both skewness and kurtosis show that positive daily returns can be generated

in machine learning based trading strategies. The non-normality of the trading

returns results in looking for an alternative to measure the risk of the strategy:

the maximum drawdown. It shows that the smaller maximum drawdown with 0.1

is observed for both stock indices, while buy-and-hold strategy has a maximum

drawdown of 0.25. Therefore, in all cases the investor would obtain a favourable

risk-adjusted return using random forest by analysing the final return and the

maximum drawdown.

Apart from t-statistics, we also find other positive evidence in favour of the

trading signals generated by random forest from the perspective of risk-adjusted

return analysis. Random forest is a better classifier since its Sharpe ratios range

from 1.0480 to 2.6300, which are always above 1 after transaction costs. On the

contrary, MLP cannot generate more risk-adjusted returns especially during 250

trading days when the market shows downward trends in price. Random forest

is better than the other algorithm as it can deal with highly imbalanced data

by some re-sampling methods. It is the case that the target only contains a few

samples in some classes (see Table 4.2).

On the perspective of the total return of investment, multiple days random
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(a) ETF50 in 250 days (b) ETF50 in 500 days

(c) ETF50 in 750 days (d) ETF50 in 1000 days

Figure 4.2: Cumulative returns (after transaction costs) for multiple days random
forest based strategy with forecasts for ETF50.

forest forecast based strategies are further evaluated in the following Figure 4.2.

Some results are found below.

Stable and continuous positive returns can be generated by random forest.

Random forest based trading strategies produce superior results in terms of prof-

itability even when stock markets are in bear periods, e.g. the period after Jan.

201813. In the same period, all the other trading strategies developed in this

thesis cannot generate positive trading performances.

As a benchmark for comparison, the corresponding performance for buy-and-

hold strategy is also included. During the period from 21 February 2017 until 8

March 2019, ETF50 and ETF300 increased by 11.69% and 8.36%, which corre-

spond to 5.57% and 2.64% at an annualised rate. This implies that buy-and-hold

strategy is profitable in the latest 500 days. By comparison of trading strategies

13This is the period of the last 250 days.
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using our algorithms (see Figures 4.2(b) and 4.5(b)) in the same period, the total

return on 8 March 2019 for ETF50 reaches 40% while 60% for ETF300. That is to

say, the result for ETF300 shows a return 5 times greater than the one obtained

by the buy-and-hold strategy.

4.7.3 Robustness check for trading using the multi-day

random forest prediction

To test if multi-day random forest prediction based trading strategies are able

to obtain consistently profitable returns for a new asset for all time, we expand the

assets and trading time periods used before. Specifically, the performances of the

cumulative returns after transaction costs on ETF500 are checked under the same

trading strategies used for the task of multi-day ahead prediction. The trading

performances of all three indices are checked over another two time periods, the

most recent 3 and 4 years14.

As done in the performance analysis of ETF50 and ETF300, ETF500 is tested

based on using multi-day forecasts version. According to the results for the

cumulative return in Figure 4.3, when compared with the red curve (buy-and-

hold strategy), the blue curve (’LS’ strategy) and green curve (’L’ strategy) gain

significantly greater profits. Especially, ’LS’ strategy outperforms ’L’ strategy

when the stock price is in a downtrend. These results are consistent with the

observed results from ETF50 and ETF300 in Figures 4.2 and 4.5.

In addition, break-even analysis is used to further validate the profitability of

multi-day random forest forecast based trading strategies in instances of assets

and time periods. Break-even costs are computed based on the most recent 250,

500, 750 and 1000 out-of-sample forecasts in the test sets, respectively. Under
14The most recent 750 and 1000 days, separately.
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(a) ETF500 in 250 days (b) ETF500 in 500 days

(c) ETF500 in 750 days (d) ETF500 in 1000 days

Figure 4.3: Cumulative returns (after transaction costs) for multiple days random
forest forecast based trading strategies for ETF500.

the assumption that the transaction costs for opening a long position and a short

position are the same, the break-even transaction costs in all considered cases are

around 0.01500- 0.04000 per trade in Figure 4.4. In reality, for all China ETFs,

the average transaction costs on each trade are 0.00564 for long position and

0.00696 for short position, separately. The transaction costs in the real world are

smaller than the break-even costs, and this implies that the profitability of 4 day

ahead random forest forecast based strategies is high over the last 4 years.

Figures 4.2 to 4.5 show the results for profit after transaction costs by applying

random forest across all forecast horizons, i.e. the last 250, 500, 750 and 1000

days. For all indices, two periods come to our attention. First, we observe

strong returns between June 2015 and February 2016, i.e., the period of ’Chinese

stock market turbulence’15. Second, the year of 2018 witnessed high returns, and

15The ’Chinese stock market turbulence’ can be found in Bloomberg, refer to:
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(a) 250 days (b) 500 days

(c) 750 days (d) 1000 days

Figure 4.4: Break-even costs for cumulative returns (after transaction costs) for
multi-day random forest forecast based trading strategies for ETF50, ETF300
and ETF500 during the last 250, 500, 750 and 1000 days.
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(a) ETF300 in 250 days (b) ETF300 in 500 days

(c) ETF300 in 750 days (d) ETF300 in 1000 days

Figure 4.5: Cumulative returns (after transaction costs) for multiple days random
forest forecast based trading strategies for ETF300.

coincides with the time of US trade war, when all major Chinese stock indices

lost more than 25%16. Both these results verify that multi-day random forest

predictions based trading strategies yield high excess returns during a financial

crisis.

In general, all results for total returns in this section show positive and upward

trends. Therefore, for investors who select the tested trading rule with parameters

setting p ≥ 3, a = 1, b = 3 and q = 0, the proposed 4-day forecast based strategies

with random forest are robust in the presence of costs and are robust over asset

and time.

https://www.bloomberg.com/news/articles/2015-07-27/chinese-stock-index-futures-drop-
before-industrial-profits

16For more details, refer to CNBN news in 2018 with link:
https://www.cnbc.com/2018/12/31/china-markets-2018-performance-was-worst-in-a-
decade.html
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4.7.4 Variations of the multi-day machine learning pre-

diction based trading

By showing some possible trading system variations, this section presents some

evidence to support the view that 4-day random forest prediction based trading

stra is the best trading strategy. Three relevant changes in the previous trading

system are described below. First, time horizon in class label version, i.e. class

label 2 and 3 are used as opposed to 4 class label version which has already been

explored in the previous analysis. New trading rules are redefined accordingly.

However, the aim of the new trading rules is still reducing the number of trades.

The second relevant change deals with the use of another algorithm - MLP. The

third relevant change consisted of introducing another trading rule to further

reduce the number of trades by trading only when strong buy and sell signals are

generated.

In this section, for the first change, the possible cases for time horizon less

than 4 but more than 1 are analysed. Since there are many possible cases for the

second and third change, only one possible case for each of the last two changes

is shown as an example.

Time horizon in class label

One practical issue with multi-day forecasts based trading is how many fu-

ture observations should be used in the trading system. The number of future

observations used in the estimation is referred to as the time horizon in the class

labels. In the first variation, we consider the time horizon of 2 and 3 days.

When the next 2 days’ price movements are considered (n=2), the possible

class label (y) is 2 for a buy signal, 1 for a neutral signal and 0 for a sell signal.

The new trading rules in this case is described below. The long position is entered
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(a) ETF50 for 2 classes (b) ETF300 for 2 classes

(c) ETF50 for 3 classes (d) ETF300 for 3 classes

Figure 4.6: Cumulative returns (after transaction costs) for multiple days random
forest forecast based trading strategies with different class labels in the last 500
days.

when we predict ypredict = 2, and the long position is held till ypredict = 0 at the

first time. The short position is triggered when ypredict = 0, and the short position

is closed if ypredict = 1.

Similarly, the case when n = 3 is a 3 day price movement prediction with 4

classes - 3 for a strong buy signal, 2 for a weak buy signal, 1 for a weak sell signal,

and 0 for a strong sell signal. Following the ’L’ strategies, we purchase the stock

when ypredict > 1 and sell the stock when ypredict = 1. In ’LS’ strategy, the short

position is opened if ypredict = 0 and is closed when ypredict = 1.

The performance of the multi-day forecast based strategy under different clas-

sification settings is shown in Figure 4.6.

All random forest based trading strategies when n = 2 in Figures 4.6(a) and

4.6(b) cannot beat buy-and-hold strategy. Therefore, we cannot choose n = 2.
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Although the final returns for ’LS’ strategies are around 0.3 when n = 3 in Figures

4.6(c) and 4.6(d), these results still cannot beat the case with the final return 0.6

when n = 4 in Figures 4.2. It’s worth mentioning that the trading rules for 3-day

forecast based trading system (n = 3) and 4-day forecast based trading system

(n = 4) are same, and the only difference is that 4-day forecast based trading

strategy has one more class. In other words, with a longer time horizon in class

label, 4-day forecast based trading strategy enhances the total returns, compared

to 3-day forecast based trading strategy. From those empirical results, it may

suggest that large n improves the trading performance in terms of the cumulative

return. However, if n is very large, more classes are created, and the data will

become more imbalanced as it is difficult to observe an example with all upward

movements in 5 consecutive days.

In conclusion, for investors with the trading rule that p ≥ 3, a = 1, b = 3

and q = 0, the trading performance of multi-day random forest prediction based

strategy is sensitive to the choice of time horizon in the class label. According

to the previous comparisons, applying the new trading rules on 2 classes and

3 classes obtain poor results, we, therefore, select n = 4 for multi-day forecast

based trading strategy for investors who set p ≥ 3, a = 1, b = 3 and q = 0.

Algorithms chosen

As shown in Table 4.10, random forest is a better model relative to MLP from

the perspective of t-Statistics, Sharpe ratio and Sortino ratio.

In almost all cases, the t-Statistics for random forest are statistically signif-

icant while none of t-Statistics for MLP are statistically significant. Although

in some cases, for ETF50 during 500 trading days, MLP can beat buy-and-hold

strategy considering transaction costs, the Sharpe ratios in this case are still less
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(a) ETF50 in 500 days (b) ETF300 in 500 days

Figure 4.7: Cumulative returns (after transaction costs) for multiple days random
forest forecast based trading strategy with an alternative trading rule in the last
500 trading days.

than 1. In contrast, the Sharpe ratios for random forest in all cases are above 1.

This implies that random forest can generate high risk-adjusted returns. In ma-

jority cases including ETF50 and ETF300, MLP cannot generate positive Sortino

ratios after transaction costs during the forecast comparison periods (250 and 500

days). For ETF50 and ETF300, random forest based trading strategies can ob-

tain Sortino ratios with values larger than 1.5 after transaction costs during the

same periods. Therefore, random forest outperforms MLP when generating a

signal of the next 4 days’ price movements in the case of p ≥ 3, a = 1, b = 3 and

q = 0.

Alternative trading rule

We also consider an alternative trading rule for risk averse investors to take

multi-day prediction based strategy. As before, a = 1, b = 3, but p = 4 instead

of p ≥ 3. In this strategy, we only trade when strong buy signals are generated.

Figure 4.7 demonstrates that almost all trades are profitable. However, from

the perspective of total return, the majority of active trading strategies cannot

beat buy-and-hold strategy as there are few trades. Consequently, there is a

trade-off between profits for each trade and the number of trades.
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ETF50 ETF300
(Wind, Test) RFone RFmultiple RFone RFmultiple
(1401,250) 0.536 0.580 0.568 0.544
(1351,300) 0.560 0.587 0.480 0.553
(1151,500) 0.558 0.562 0.570 0.570

Notes: ’RFone’ and ’RFmultiple’ represent ’one-day prediction based random forest model’ and ’multi-day prediction based
random forest model’.
N = 10 for RFone while N = 100 for RFmultiple.
The multi-day predictions based model considers 5 classes while one-day prediction based model takes account 2 classes.

Table 4.11: Comparison of the model accuracy in random forest based trading
strategies with one-day forecast and multi-day forecasts.

Therefore, the obtained results in this section confirm that 4 day prediction

based trading strategy by random forest generates a positive return continuously

after transaction costs. Moreover, under two tested trading rules-Option 1 is

p ≥ 3, a = 1, b = 3 and q = 0; Option 2 is - p = 4, p = 1, b = 3, and q = 0, using

the 4 day random forest prediction based trading strategy is robust in terms of

assets and time periods.

4.7.5 Performance comparison

Trading with one day forecast vs. Trading with multiple days forecast

As previously mentioned, before transaction costs, one day prediction based

strategies are unprofitable during the last 250 days but profitable over the last 500

days. When incorporating transaction costs into strategies, one-day prediction

based strategies are not able to gain profits in all cases17. As for multi-day

prediction based strategies, random forest based trading strategies are profitable

after transaction costs during both test periods i.e. 250 days and 500 days18.

It can be concluded that for the random forest model, using multi-day forecasts

generates a higher risk-adjusted return than the one day ahead forecast for all

the assets and different trading time periods.
17Refer to section 4.7.1 for more details
18Refer to section 4.7.2 for more details
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ETF50 ETF300
RFone RFmultiple RFone RFmultiple

Day L LS L LS L LS L LS
250 38 140 22 24 38 141 17 16
500 92 133 42 40 87 130 43 47

Notes: ’RFone’ and ’RFmultiple’ represent ’RF based trading strategies using one day ahead forecast’ and ’RF based trading
strategies using multiple days ahead forecast’.
’L’, ’LS’, and ’BH’ stand for ’Long’ strategies, ’Long and Short’ strategies, and ’Buy and Hold’ strategies.

Table 4.12: Comparison of the number of trades in random forest based trading
strategies with one-day forecast and multi-day forecasts.

The random forest models for one-day prediction and multi-day predictions

with three test sets (250, 300, and 500 days) are summarized in Table 4.11. Nearly

all multi-day prediction based random forest model has a higher accuracy than

one-day prediction based random forest model in all three cases.

The advantage of trading strategies with multi-day forecasts compared to that

with one day forecast is that the number of trades in multi-day forecast strategy

is reduced by half for ’L’ strategy and by more than two-thirds for ’LS’ strategy

according to Table 4.12. As a result, transaction costs for multi-day prediction

strategy during the trading periods should be highly reduced.

The three results of this section are that multi-day random forest forecast

based strategy is better than one-day random forest forecast based strategy from

the perspective of risk-adjusted returns and model accuracy; the number of trades

for multi-day random forest forecast based strategy is highly reduced compared

with the strategy using one day forecast. These are encouraging results and it

may suggest that the multiple days random forest based strategies are able to

reduce some losing trades.
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Machine learning based trading strategies vs. MACD trend following

trading strategies

This section compares the benchmark strategy (MACD trend following strat-

egy) to the best machine learning based trading strategies to demonstrate the

performance of machine learning model used in the trading system to improve

the investment decisions (see Table 4.13).

ETF50 ETF300
MACD RFone RFmultiple MACD RFone RFmultiple

L LS L LS L LS L LS L LS L LS
Panel A: 250 trading day annual returns

Annual return -0.1578 -0.15787 -0.2266 -0.4982 0.2798 0.3134 -0.2126 -0.2126 -0.2172 -0.3869 0.1480 0.1867
Excess return -0.1753 -0.1753 -0.2441 -0.5157 0.2623 0.2959 -0.2301 -0.2301 -0.2348 -0.44044 0.1305 0.1692

Standard deviation 0.1815 0.1815 0.1733 0.3002 0.2140 0.2203 0.1471 0.1541 0.1928 0.2562 0.1245 0.1257
Downside deviation 0.1314 0.1314 0.1258 0.2532 0.0859 0.0906 0.1345 0.1345 0.1215 0.1737 0.0843 0.0830

Sharpe ratio -0.9657 -0.9657 -1.4083 -1.7178 1.7820 1.9200 -1.2603 -1.2603 -1.2178 -1.5784 1.0480 1.3460
Sortino ratio -1.3340 -1.3340 -1.9405 -2.0364 3.0520 3.2630 -1.7100 -1.7100 -1.9327 -2.3280 1.5470 2.0370

Maximum drawdown 0.4817 0.4739 0.5090 0.5980 0.1047 0.1047 0.6125 0.5413 0.3607 0.3207 0.0910 0.0910
Panel B: 500 trading day annual returns

Annual return -0.1025 -0.1787 -0.1515 -0.4982 0.1938 0.2305 -0.0947 -0.1445 -0.1314 -0.1968 0.1906 0.2862
Excess return -0.1200 -0.1962 -0.1690 -0.2902 0.1763 0.2130 -0.1122 -0.1620 -0.1498 -0.2143 0.1731 0.2687

Standard deviation 0.1433 0.1329 0.1324 0.1949 0.1210 0.1316 0.1415 0.1296 0.1286 0.2002 0.1160 0.1311
Downside deviation 0.1056 0.1003 0.0971 0.1395 0.0712 0.0744 0.1040 0.0965 0.0914 0.1346 0.0672 0.0730

Sharpe ratio -0.8381 -1.4768 -1.2766 -1.4894 1.4560 1.6180 -0.7938 -1.2502 -1.1589 -1.0706 1.4910 2.0490
Sortino ratio -1.1368 -1.9556 -1.7411 -2.0798 2.4740 2.8630 -1.0788 -1.6790 -1.6285 -1.5920 2.5740 3.6810

Maximum drawdown 0.4831 0.4129 0.5110 0.4230 0.1047 0.1047 0.5192 0.4561 0.3168 0.3354 0.0910 0.0910

Notes: ’RFone’ and ’RFmultiple’ represent ’random forest based trading strategies using one day ahead forecast’ and ’random
forest based trading strategies using multiple days ahead forecast’.
’L’, ’LS’, and ’BH’ stand for ’Long’ strategies, ’Long and Short’ strategies, and ’buy-and-hold’ strategies.
The sizes for test set in Panel A and Panel B are 300 days and 600 days, individually.
Both Panel A and Panel B analyse the parameter settings with n = 10 for RFone and n = 100 for RFmultiple .
We assumption that one year contains 252 trading days.
Maximum drawdown is defined as the peak-to-tough decline over the duration of a strategy’s test period.

Table 4.13: Comparison of annualised trading profits of active trading strategies
for ETF50 and ETF300 after transaction costs.

The results show that MACD trend following strategy is unprofitable in terms

of Sharpe ratio (ranges from -1.4768 to -0.7938 after transaction costs) and Sortino

ratio, ranges from -1.9556 to -1.0788 after transaction costs. One day random

forest forecast based strategy cannot improve the Sharpe ratio (ranges from -

1.7178 to -1.0706) and Sortino ratio (ranges from -2.3280 to -1.5920), compared

to MACD strategy.

As expected, by incorporating multi-day prediction information into random

forest based trading strategy, it leads to the improvements in the results as in-
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dicated by Table 4.13. Multi-day forecast based trading system produces better

performances than one-day forecast based trading system in terms of Sharpe ratio

(ranges from 1.0480 to 2.0490) and Sortino ratio (ranges from 1.5470 to 3.6810).

It can be implied that using multiple days forecast is capable of gaining the best

results of Sharpe ratio and Sortino ratio.

In the case of maximum drawdown, the lower measures of maximum draw-

down also identify that the amount of risk incurred by the multi-day forecast

based trading strategy becomes smaller than the other strategies.

Therefore, the empirical results show that multi-day random forest forecast

based strategy is superior compare to the other methods, since it generates the

highest excess returns, around 21.11% on average, the highest Sharpe and Sortino

ratios, as well as the lowest maximum drawdown.

4.8 Discussion

This section summarises the major empirical results that have been observed

during the different experiments and back-testings.

A comparison between trend following strategies and machine learning based

trading strategies is presented. Comparing the cumulative return plots for the

MACD trend following strategy (see Figure 2.10) with the multiple days random

forest prediction based strategy (see Figures 4.3 to 4.5), we find that multi-day

random forest forecast based strategy outperforms the trend following strategies.

According to the results of our previous experiments, which are not presented

here, not only the MACD trend following strategies, but also other trend following

strategies, such as moving average and relative strength index, fail to outperform

the random forest based trading strategies.

There are at least two reasons why trend following strategies fail to beat
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machine learning based strategies. Trend following strategies solely consider one

technical indicator. Using single technical indicator to judge the price movement

is risky, and it may generate wrong signals since the single technical indicator

may be easily influenced by the noisy information. In contrast, machine learning

based trading strategies consider other technical indicators. The second reason is

that trend following strategies trade based on lagging technical indicators while

machine learning based trading strategy is a forecasting system to predict the

future. That is to say, trend following strategy can be considered as a rule

engine automating trading decisions only based on the technical signals. However,

machine learning based trading strategy is another rule engine that uses technical

signals and predictive signals mapping into future price movements and hence

producing signals.

The comparisons of different machine learning models are discussed. In this

study, Tables 4.7, 4.8 and 4.10 demonstrate the performances of machine learning

classifiers used in this thesis. After transaction costs, SVM cannot generate pos-

itive Sharpe ratios in all cases, logistic regression and MLP can obtain positive

Sharpe ratios in some cases. These results may be due to the disadvantages of

each machine learning model. Different classifiers may fit different datasets. SVM

doesn’t perform well when the dataset has more noise, which means that if data

is not properly separated and the target classes overlap, SVM performs poorly.

Moreover, decision trees are also affected by the noise. Logistic regression may re-

quire a fairly large training set before it can make accurate predictions outside of

the training set. MLP and LSTM cannot predict one-day ahead price movement

with high accuracy according to the experiments conducted but not included in

this thesis. Both MLP and LSTM contain a large number of parameters, and it is

difficult to get a robust accuracy under all possible combinations of parameters.
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In practical applications, we recommend using the 4-day random forest pre-

diction based trading strategies to trade China ETFs. One potential challenge

is the use of close-to-close log returns, however, this implies that prediction and

order execution should be very fast or almost simultaneously. It is the case that

the same profits of the developed trading strategies are not guaranteed in a one-

to-one fashion. Therefore, slippage costs have been considered in our strategies

to approximate the potential costs. Moreover, there is still a great potential

to make profits since the break-even costs for multi-day random forest forecast

based trading strategies on average is high, refer to Figure 4.4. In general, our

4-day random forest prediction based trading strategies are capable of generat-

ing positive returns when the total transaction costs are below 0.015 - 0.040 per

trade.

In this chapter, the performances of machine learning based trading strategies

were examined. After the robustness check and model comparisons, it demon-

strates that the most successful trading strategy in this study is 4-day forecast

based trading strategies using random forest algorithm.



Chapter 5

Conclusion

This chapter summarises the conclusions related to three aims. Furthermore,

other machine learning based trading strategies can be developed in the future

based on this study.

The primary aim of this study was to develop profitable trading strategies

taking into account transaction costs. Chart pattern, trend following and machine

learning based trading strategies1 are developed as potential candidates to achieve

the aim. The results show that only multi-day random forest forecast based

trading strategies yield positive risk-adjusted returns after transaction costs. It

is worthwhile to point out that the presence of profitability in multi-day random

forest forecast based trading strategies is robust with respect to different assets2

and trading periods3. Therefore, multi-day random forest forecast based trading

strategies are the only profitable and robust strategies.

The second aim was to compare machine learning based trading strategies

with chart pattern strategies and MACD trend following strategies. As previ-

1Machine learning based trading strategies are composed of one-day machine learning fore-
cast based trading and multi-day machine learning forecast based trading.

2Assets include China ETFs, i.e. ETF50, ETF300 and ETF500.
3Trading periods consist of 250, 500, 750 and 1000 days.
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ously mentioned, the limitation of chart pattern strategy is that it heavily relies

on the experts’ experiences. If only one single technical indicator such as MACD

is considered to generate trading signals, it may not obtain positive risk-adjusted

returns. Without considering transaction costs, the machine learning based trad-

ing strategies with one day prediction yields positive returns. However, the one

day prediction based trading strategies considered in this thesis fail to generate

positive returns after transaction costs. As for robustness check with respect to

trading period, chart pattern, MACD trend following and machine learning with

one day forecast are not profitable during market recessions. After analysing

the limitations of all trading strategies mentioned above, an improved trading

strategy - multi-day machine learning forecast based trading strategy - is devel-

oped. The result shows that multi-day machine learning forecast based trading

strategies are profitable in terms of risk-adjusted returns. It is verified that the

superiority of 4-day forecast based trading strategies with random forest over

chart pattern and trend following strategies is most striking when transaction

costs and trading periods are taken into account. In conclusion, not all machine

learning trading strategies are profitable, and the trading profits generated by

machine learning based strategies depend on the way the target variable is de-

rived. That is, multi-day ahead forecasting techniques should be considered for

profit generation.

The third aim of this thesis was to compare the developed machine learning

based trading strategies with two benchmarks, namely buy-and-hold strategy and

AR model. The recent performance of the best machine learning based trading

strategies shows that it is superior to the buy-and-hold strategy and time series

(AR) based strategy even when the stock market indices are declining in a reces-

sion, as measured by the Sharpe ratios and cumulative returns. It appears that
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passive trading and solely adopting historical stock price information to generate

trading signals do not constitute robust investment decisions. However, this re-

search verifies that machine learning method has superiority in predicting trading

signals based on the multi-day forecasting techniques. With proper training of

the models, machine learning is able to successfully assist investors to navigate

the decision-making activities.

Overall, this thesis focuses on selecting the best investment times to trade

on China ETFs. The new insight into the trading signal generation is that the

machine learning models are trained with the time sequence of the multi-day price

movements. It turns out that the multi-day machine learning based strategies

have improved the trading performances during the last 4 years of backtesting

period. The main contribution to the existing literature is the design of the multi-

day target outputs for the machine learning based trading strategies, which offer

smoother returns than the methods based on a single day predictions considered

in the existing literature.

Future research directions can be considered as follows. Future studies can

focus on a performance-weighted ensemble since the simple majority voting does

not perform well. To design an effective ensemble classifier, the base classifiers

will be selected by some restrictions such as diversity and accuracy to obtain final

predictions. This thesis can be part of a larger algorithmic trading system which

may include risk management systems in place.

One of the challenges of forecasting stock price movement is that of the in-

formation quality of features utilisation in the model. It is possible to improve

the forecast of asset returns by incorporating a broader set of predictors. Related

predictors include data sources from Baidu search trends and online news. With

the help of natural language processing models, events and news can be added as
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features into machine learning models.
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Appendix A

Machine learning models

A.1 Basic structure of logistic regression

For a classification problem, the target variable (output) y can only have

discrete values for a given set of features (inputs) x.

The hypothesis1 for logistic regression model is

hθ(x) = g(θTx) (A.1)

where g(z) = 1
1+e−z , g is called the logistic function or the sigmoid function.

The conditional probabilities P for 2 labels (0 and 1) for i − th observation

are defined as
P(y(i) = 1|x(i); θ) = h(x(i)),

P(y(i) = 0|x(i); θ) = 1− h(x(i))
(A.2)

The cost function (J) is

J(θ) = − 1
m

[∑m
i=1 y

(i) ln (hθ(x(i))) + (1− y(i)) ln (1− hθ(x(i)))] (A.3)

1The formula we use for calculating h(x) is called a hypothesis.
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To minimise J with respect to θj ∈ θ (j-th feature), we repeat

hθj(x) = θj − α ∂
∂θj
J(θ) + λ

2m
∑n
j=1 θ

2
j (A.4)

simultaneously update for all θj, where α is called learning rate, is the penalty

parameter.



A.2 Basic structure of support vector machine

SVM represents the relationship between an output y and a set of inputs x

in the form (Cortes and Vapnik, 1995):

f(x) = ∑N
i=1 wiφ(x) + b (A.5)

where φ(x) represents a non-linear mapping of x into a higher dimensional feature

space, i.e. a basis function, and w and b are parameters learnt from the N

instances of training data.

In classification, these parameters are found by using Quadratic Programming

(QP) optimisation to first find the αi which maximise:

∑N
i=1 αi − 1

2
∑N
i,j αiαjyiyjφ(xi) · φ(xj) (A.6)

where αi > 0 ∀i,
∑N
i,j αiyi = 0. The αi are then used to find w:

w = ∑N
i=1 αiyiφ(xi) (A.7)

The set of Support Vectors S is then found by finding the indices i where αi > 0.

b can then be calculated:

b = 1
Ns

∑
m∈S(ys −

∑
s∈S αmymφ(xm) · φ(xs)) (A.8)

The mapping x → φ(x) is intended to make the data linearly separable in

the feature space, and the kernel k(xi, xj) = φ(xi) · φ(xj). The Radial Basis

Function (RBF): k(xi, xj) = e−(
||xi−xj ||

2

2σ2 ) and the Linear Kernel: k(xi, xj) = xix
T
j

are commonly used. In this study, the RBF kernel is utilised for SVM.
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A.3 Basic structure of artificial neural network

Figure A.1 depicts the structure of the multi-layer perceptron (MLP). Specif-

ically, the input layer on the left-hand side of the figure corresponds with the

vector of independent variables. The two hidden layers, where data transforma-

tions occur, are presented in the centre of the figure. Finally, the output layer on

the right-hand side of the figure generates predictions of the dependent variable.

Figure A.1: The structure of the feed forward neural networks

More specifically, the input, hidden and output layers are noted as I, H, O,

respectively. Let w(L) denote the weights at level L, L=1, 2, 3. Let (Ip, Op), p =

1, 2, . . . , P represent the input and output vectors for training the neural network.

For each input Ipi(i = 0, 1, . . . ,m), the neurons Hpj, Hpk and Opl are calculated

as follows:
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Hpj(w(1)) = f(∑m
n=0 Ipiw

(1)
ij ), j = 1, 2, . . . , n (A.9)

Hpk(w(1), w(2)) = f(∑n
j=0 Hpjw

(1) · w(2)
jk ), k = 1, 2, . . . , K (A.10)

Opl(w(2),w(3)) = ∑K
k=0 Hpjw

(2) · w(3)
jl , l = 1, 2, . . . , L (A.11)

The activation function for the hidden layer can be sigmoid, tanh and Relu

function. The training of the neural network is executed by minimising the fol-

lowing objective function with L2 penalty (regularization term) term:

Cost(w) = 1
P×K×L

∑n
p=1

∑K
k=1

∑L
l=1(Opl − Ypl)2 + α||w||2 (A.12)

where Ypl is the true value of the fitted Opl, α is the L2 penalty (regularization

term) parameter2, and w = w(1) ∪ w(2) ∪ w(3).

2In our model, the penalty parameter α = 0.01.



A.4 LBFGS Optimiser

Figure A.2: The structure of LBFGS

To minimize the cost function efficiently, limited-memory BFGS (LBFGS)

algorithm is employed in this research (see Figure A.2 in Appendix).



Appendix B

Backtesting Algorithms

B.1 Algorithm for Vote (’L’)

Input: data,Wind, cost
Output: TotalReturnL
Initial State S = 0
for i in test set do

da(i) = data[i-Wind,i]
ypredict(i) = AICLASSIFIER(da(i))
V ote = SUM(AICLASSIFIER(da(i)))
if S = 0 AND V ote > 1 then

S=1 ; // Open "buy"
Return = ln(P(i+1)/P(i))-cost

if S = 1 AND V ote > 1 then
Return = ln(P(i+1)/ P(i)) ; // Hold "buy"

else
S = 0
Return = 0 ; // Close "buy"

end
end
TotalReturnL = cumsum(Return)

Algorithm 12: Back testing for trading using majority vote prediction (’L’)
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B.2 Algorithm for Vote (’LS’)

Input: data,Wind, cost
Output: TotalReturnLS
Initial State S = 0
for i in test set do

da(i) = data[i-Wind,i]
ypredict(i) = AICLASSIFIER(da(i))
V ote = SUM(AICLASSIFIER(da(i)))
if S = 0 AND V ote > 1 then

S=1 ; // Open "buy"
Return = ln(P(i+1)/P(i))

if S = 0 AND V ote < 2 then
S= -1 ; // Open "sell"
Return = ln(P(i)/P(i+1))

if S = 1 AND V ote > 1 then
Return = ln(P(i+1)/ P(i)) ; // Hold "buy"

if S = −1 AND V ote < 2 then
Return = ln(P(i)/ P(i+1)) ; // Hold "sell"

else
S = 0
Return = 0 ; // Close

end
end
TotalReturnLS = cumsum(Return)

Algorithm 13: Back testing for trading using majority vote prediction (’LS’)
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